
Ranking Deep Web Text Collections for
Scalable Information Extraction

Pablo Barrio
Columbia University
New York, NY, USA

pjbarrio@cs.columbia.edu

Luis Gravano
Columbia University
New York, NY, USA

gravano@cs.columbia.edu

Chris Develder
Ghent University – iMinds

Ghent, Belgium
cdvelder@intec.ugent.be

ABSTRACT
Information extraction (IE) systems discover structured in-
formation from natural language text, to enable much richer
querying and data mining than possible directly over the
unstructured text. Unfortunately, IE is generally a com-
putationally expensive process, and hence improving its ef-
ficiency, so that it scales over large volumes of text, is of
critical importance. State-of-the-art approaches for scaling
the IE process focus on one text collection at a time. These
approaches prioritize the extraction effort by learning key-
word queries to identify the “useful” documents for the IE
task at hand, namely, those that lead to the extraction of
structured “tuples.” These approaches, however, do not at-
tempt to predict which text collections are useful for the IE
task—and hence merit further processing—and which ones
will not contribute any useful output—and hence should be
ignored altogether, for efficiency. In this paper, we focus on
an especially valuable family of text sources, the so-called
deep web collections, whose (remote) contents are only ac-
cessible via querying. Specifically, we introduce and study
techniques for ranking deep web collections for an IE task,
to prioritize the extraction effort by focusing on collections
with substantial numbers of useful documents for the task.
We study both (adaptations of) state-of-the-art resource se-
lection strategies for distributed information retrieval, and
IE-specific approaches. Our extensive experimental eval-
uation over realistic deep web collections, and for several
different IE tasks, shows the merits and limitations of the
alternative families of approaches, and provides a roadmap
for addressing this critically important building block for
efficient, scalable information extraction.

1. INTRODUCTION
A large body of today’s knowledge is embedded in natural

language text documents. Information extraction (IE) sys-
tems identify and extract information from text into a struc-
tured form, such as relational tables. For example, an IE sys-
tem to extract an Occurs-in(Natural Disaster , Location) re-
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lation would extract the tuple 〈earthquake, Mexico〉 from the
text fragment “A powerful earthquake shook a wide area of
Mexico.” Much richer querying and data mining are possi-
ble over structured information than over the unstructured
text where it originates. Unfortunately, IE is generally a
computationally expensive process [22], and hence improv-
ing its efficiency, so that it scales to large volumes of text,
is of critical importance.

In this paper, we focus on IE over deep web collections,
which are text document collections that are accessible only
through a query interface and are hence not “crawlable”
through traditional search engine crawlers [7,17,27,28]. Ex-
amples of such collections include the Federal Emergency
Management Agency (FEMA) collection1, a key up-to-date
resource for natural disasters and other hazards in the United
States; and PubMed2, a well-known resource for life sciences
and biomedical research with over 22 million abstracts and
references to research papers. Deep web collections often
host high-quality content and together span a broad range
of topics. Furthermore, the collective content in deep web
collections may exceed in volume, according to some esti-
mates, that of the crawlable, or “surface” web [18,24].

To run an IE system over a deep web collection, a key chal-
lenge is effectively and efficiently retrieving its useful doc-
uments, namely, the documents from which the IE system
manages to extract tuples. To address this challenge, tech-
niques such as QXtract [2], PRDualRank [12], FactCrawl [8],
and RSVM-IE and BAgg-IE [6] learn a collection-specific
set of text queries (e.g., consisting of words and phrases) to
target the useful documents and ignore the rest, thus reduc-
ing the overall extraction cost drastically. These techniques,
however, do not attempt to predict which text collections are
useful for the IE task—and hence merit further processing—
and which ones will not contribute any useful output—and
hence should be ignored, for efficiency.

In this paper, we introduce and address the problem of
ranking deep web collections for an IE task, to prioritize
the extraction effort by focusing on collections with sub-
stantial numbers of useful documents for the IE task. An
approach for this task should rightfully conclude, for exam-
ple, that FEMA is better for extracting Occurs-in tuples
than PubMed. This collection ranking problem is related
to the problem of resource selection in distributed informa-
tion retrieval [29, Chapter 3], to identify topically relevant
collections for a given user query. Unlike in distributed IR,
though, our IE scenario requires that we identify collections

1http://www.fema.gov/
2http://www.ncbi.nlm.nih.gov/pubmed
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with useful documents for the IE task, rather than docu-
ments that are topically relevant for a given query. Despite
this difference in focus, we can adapt resource selection ap-
proaches to our IE scenario, as we will see, as well as develop
alternative, IE-specific approaches.

To prioritize deep web collections for an IE task, we must
identify the most useful collections, namely, the collections
with the largest numbers of useful documents for the IE
task. Therefore, we need to estimate the number of useful
documents in each collection and, importantly, we need to
do so efficiently (e.g., by issuing a relatively small number
of queries to each collection). For this estimation problem,
we could exploit state-of-the-art techniques for measuring
certain deep web collection properties (e.g., their number of
documents) [4, 34, 35]. Unfortunately, as we will see, such
techniques can be prohibitively expensive for IE, because
they may need to issue many queries to sufficiently cover
the (often rare) useful documents for an IE task of interest.

To address the limitations of generic estimation techniques,
and to effectively rank deep web collections for a given IE
task, we develop approaches that target the useful docu-
ments for the IE task in question. We compare both (adap-
tations of) state-of-the-art resource selection strategies and
IE-specific approaches in an extensive experimental evalua-
tion over realistic deep web collections, and for several dif-
ferent IE tasks. In summary, our key contributions are:
• We introduce the problem of ranking deep web collec-

tions for efficient and scalable IE (Section 2).
• We study traditional as well as IE-specific approaches

for estimating, for each deep web collection, the number of
useful documents for a given IE task (Section 3).
• We report the results of an extensive evaluation of both

(adaptations of) traditional approaches for distributed infor-
mation retrieval and IE-specific approaches over real-world
deep web collections and for several different IE tasks. Our
results show the merits and limitations of the alternative
families of approaches, and provide a roadmap for addressing
this critically important building block for efficient, scalable
information extraction (Sections 4 and 5).

2. PROBLEM DEFINITION
Our focus is on the efficiency and scalability of the IE pro-

cess over deep web text collections, whose contents can only
be accessed via querying and cannot be retrieved using tra-
ditional Web “crawlers.” To run an IE system over the avail-
able deep web collections, a näıve, expensive approach could
resort to state-of-the-art approaches for efficient query-based
IE execution (e.g., [2,6,8,12]) over each deep web collection
individually.3 Such a näıve approach would be unnecessar-
ily expensive, because not all collections contain any useful
documents, or documents from which the IE system at hand
manages to extract tuples. Therefore, to prioritize the IE
effort, for efficiency, we focus on the problem of ranking deep
web collections for an IE task of interest.

A related problem, resource selection, has been studied in
the context of distributed information retrieval, to rank col-
lections according to their topical relevance to a given user
query [29]. Resource selection approaches generally consist
of two steps: (1) descriptor generation: in an offline step,

3Our approach is not applicable over open information ex-
traction scenarios (e.g., [3]) where documents frequently con-
tribute tuples to the open-ended extraction task.
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Figure 1: Collection ranking for IE over the deep web.

build a compact, representative collection summary (e.g.,
consisting of word frequency vectors [11, 15] or document
samples [30,32]); (2) relevance estimation: to process a given
query, use the collection descriptors to estimate the number
of topically relevant documents in each collection, and rank
the collections accordingly.

Unlike in distributed IR, our IE scenario requires that we
identify collections with useful documents for the IE task,
rather than collections with documents that are topically
relevant to a given query. As a result, the collection descrip-
tors will need to effectively capture the characteristics of the
useful documents, a challenging proposition because of two
critical reasons. First, the notion of document usefulness
is, by definition, specific to a given IE task, so our collec-
tion ranking approaches—and the collection descriptors on
which they rely—will have to be flexible to adapt to each
given IE task. In particular, the “one-size-fits-all” descrip-
tors adopted by resource selection approaches for distributed
IR would not be appropriate for our IE scenario. Second,
the fraction of documents in a collection that are useful for
an IE task can many times be very small, so our collec-
tion ranking approaches—and the estimation techniques on
which they rely—will have to effectively target the useful
documents, to keep the ranking overhead to manageable lev-
els. In particular, state-of-the-art techniques for estimating
certain deep web collection properties [4,34,35], as discussed
above, would be prohibitively expensive for our IE scenario.

We summarize the problem that we address as follows:

Problem Definition 1. Consider a set of deep web col-
lections and an information extraction task T with its corre-
sponding (previously trained) information extraction system.
Our goal is to rank the collections according to their num-
ber of useful documents for the IE task T (see Figure 1).
Furthermore, the ranking process should be efficient (e.g., in
terms of the number of queries issued to each collection), to
keep its overhead to reasonable levels.

Earlier efforts to identify collections for an extraction task
(e.g., [1, 21]) have focused on examining the quality of the
extraction output, rather than its volume. The (comple-
mentary) methods described in this paper can be adapted
to consider quality (see Section 6).

3. ESTIMATING COLLECTION USEFUL-
NESS

To prioritize the IE effort and rank deep web collections
for an IE task, we need to estimate the number of useful
documents for the IE task in each collection. Specifically,
for each collection C , we will estimate the cardinality of C u,
the set of useful documents in C for the IE task at hand.
In this section, we first provide an overview of three families
of state-of-the-art estimation approaches that we can adapt
for the task (Section 3.1) and then describe each method in
detail (Sections 3.2 through 3.4).
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3.1 Overview of Estimation Approaches
Given an IE task, we can cast the problem of estimating

the number of useful documents for the task in a deep web
collection as an instance of the generic task of estimating a
“property” of interest for a deep web collection, which has
been studied extensively in the research literature. Such
a property F of a collection C is typically defined as an
aggregate over a document-level function, say, f(d). A sim-
ple example is the estimation of the number of documents
in a deep web collection C: in this case, f(d) = 1 for ev-
ery document d in C, and F (C) =

∑
d∈C f(d). In our IE

scenario, to estimate the number of useful documents we
should define f(d) = 1{d is useful}, that is, as the indica-
tor function that returns 1 if d is useful and 0 otherwise.
Various methods have been proposed to estimate proper-
ties of (queryable) document collections (e.g., collection size,
number of documents relevant to a query, average document
length) [4,19,34,35], and these methods can be classified in
three broad classes: (i) surrogate-based methods, (ii) query
pool-based methods, and (iii) query pool-free methods.

Surrogate-based methods construct an approximate repre-
sentation of the entire collection, and then use that surrogate
to estimate the metric of interest, without further accessing
the actual collection. A surrogate typically comprises a (rel-
atively small) document sample (e.g., [30,32]), or document
frequency estimations for the terms occurring in the collec-
tion (e.g., [11, 15]). In resource selection for distributed IR,
such representations have been widely used to estimate the
number of documents relevant to a query (e.g., CORI [11],
GlOSS [15], ReDDE [32], and Relax [30]). For example,
ReDDE builds a random document sample S for each col-
lection C , once and for all. Simply stated, to judge the rel-
evance of C to a query q, ReDDE extrapolates the number
of documents relevant to q in S to the entire collection.

Query pool-based methods pick queries from a predefined
query pool Q (e.g., a dictionary of words or n-grams col-
lected from extensive web crawls) to retrieve—from the col-
lection at hand—documents from which to estimate the met-
ric of interest. Unlike the collection-specific surrogates, the
query pool can be shared across collections and can also be
targeted specifically to the estimation task at hand. The
query pool-based method in [23] aims at estimating collec-
tion size effectively but is inefficient: for large collections,
the samples required to produce accurate estimates are very
large. Subsequent (query pool-based) methods addressed
this limitation, and sample random edges from a (query,
document)-graph, as sketched in Figure 2: the graph ver-
tices are queries q ∈ Q and documents d ∈ C , and a solid
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Table 1: Summary of the characteristics of the baseline and
IE-specific methods of Section 3.

edge (q, d) means that q retrieves d. For each sampled (q, d)
pair, the measure f(d) contributes to the estimation of F (C )
with a weight that is proportional to the probability of hav-
ing sampled d (see Section 3.3). Pool-based methods work
well, provided the query pool Q retrieves all documents of
interest for the metric (i.e., for which f(d) 6= 0).

Query pool-free methods avoid relying on a query pool, and
rather find the queries to issue “on the fly.” These methods
use a seed query (e.g., a common word or phrase) to re-
trieve a first set of documents and select the next query to
issue from these documents. Thus, they issue queries and
retrieve documents to perform a random walk on a graph
where nodes are either queries or documents. To properly
weigh the particular f(d) value derived from visiting a node
in such graph, these methods use the fact that the probabil-
ity of visiting a node during a random walk is proportional
to its number of incident edges.

In our IE scenario, we need to estimate the number of use-
ful documents in a deep web collection for an IE task of in-
terest. Unfortunately, only very few or no useful documents
might be present in a truly random document sample from
the collection, given that useful documents might be rare for
an IE task. This poses a problem for all three families of es-
timation methods summarized above. The next subsections
describe the existing approaches in detail and derive IE-
specific estimators that effectively target useful documents.
By aiming to collect documents for which f(d) 6= 0, our IE-
specific methods are designed to have more non-zero terms in
their estimation, thus alleviating the limitations of existing
estimation techniques for other tasks. Each subsection first
discusses a state-of-the-art baseline method and how we can
apply it to our IE scenario; the second part introduces an
IE-specific method, designed specifically for collection use-
fulness estimation. Table 1 summarizes the requirements of
each method to handle collections and IE tasks.

3.2 Surrogate-Based Estimators
Baseline (ReDDE): Our first (baseline) estimator is an
adaptation of ReDDE, a resource selection technique for
distributed IR [31]. To estimate the number of topically
relevant documents for a query q in a collection C , ReDDE
predicts the relevance of a representative sample S ⊂ C and
scales it to the entire collection with a factor SF = |C |/|S |
to obtain a collection relevance metric Rel(q,C ). This met-
ric relies on estimating (i) the collection size |C | and (ii) the
relevance of sample documents in S to the given query q.
The size |C | is query-independent and thus computed once
and for all, while the query relevance for d is based on issuing
q to a centralized global sample unifying all individual collec-



tion samples. To apply ReDDE to our IE scenario, we model
the IE task as a set of high-performing queries Qie, which
we can automatically learn (e.g., see QXtract [2]). We thus
calculate collection relevance for the IE task as a sum of the
ReDDE relevance metric, taken over the top-k queries from

our set of IE-specific queries: ˆ|C u| =
∑
q∈topk(Qie)

Rel(q,C ).

IE-specific (Surrogate): An alternative, IE-specific esti-
mation approach is to collect a random sample S from a
collection C , run the IE system over the documents in S ,
and extrapolate the number of useful documents to the full

collection C as in ReDDE, namely, ˆ|C u| = SF · |Su| with
scaling factor SF = |C |/|S |. Unfortunately, a random sam-
ple might have very few or no useful documents because, as
discussed, useful documents for an IE task are often rare.
To address this problem, the document sample S should be
then biased towards useful documents. This implies that
we subsequently have to correct the scaling factor SF for
that usefulness bias of S . The main idea is to look at doc-
ument frequency differences of certain terms between the
sample S and the full collection C . For a given term t, let
df(t,X) be the fraction of documents in X that contain t,
and define the frequency ratio in the sample vs. in the full

collection as αS
t , df(t,S)

df(t,C)
. We propose to use the average of

this ratio over useful terms, T u, as a heuristic scaling fac-
tor: SF = ETu

[
1/αS

t

]
, where useful terms are those that are

(i) biased towards usefulness, in contrast to “neutral” terms
that would appear equally in useful and useless documents;
and (ii) overrepresented in the sample (i.e., αS

t > 1). The
rationale for this choice of SF is that the overrepresentation
of such useful terms in S compared to in C is a good proxy
for the overrepresentation of useful documents. (We can find
T u through standard statistical significance tests.) Impor-
tantly, we assume that we know the document frequencies
df(t,C ) in the complete collection, as well as the collection
size |C |. We can estimate these values reliably once and for
all for each collection (e.g., see [20] and [31]).

3.3 Query Pool-Based Estimators
Baseline (PB): We consider the method of Bar-Yossef et
al. [4], which set the foundations for subsequent query pool-
based estimators (e.g., [34]) and allows estimating any generic
metric that can be expressed as a discrete integral over the
documents in C : Intπ(f) ,

∑
d∈C

f(d) · πD(d), where f is

the target function of interest and πD weighs documents as
needed (e.g., πD(d) = 1 if all documents contribute equally).
As indicated in Section 3.1, documents d ∈ C are obtained
by issuing queries from a pool Q . Bar-Yossef et al.’s method
relies on two core ideas: (i) extend πD to a measure over the
(query, document)-space Q × C , and (ii) apply importance
sampling to use a practical sampling strategy, selecting a
(query, document)-pair with probability p(q, d), rather than
from the probability distribution induced by πD , which is
unfeasible to sample from. For (i), the extended measure is:

π(q, d) ,
1{d ∈ Cq} · πD(d)

ω(d)
,

where Cq is the set of documents that q retrieves from C and
ω(d) is the degree of document d, defined as the number of
queries in Q that retrieve d. For (ii), the practical sampling
strategy is: (1) pick a random query q from the set of queries
that return at least one document, noted as Q+, and then

(2) randomly pick one of the documents it retrieves:

p(q, d) ,
1

|Q+|
· 1{d ∈ Cq}

|Cq|
.

In importance sampling, p(q, d) and π(q, d) induce probabil-
ity distributions referred to as the trial and target distribu-
tions, respectively, and define the importance weight as:

w(q, d) ,
π(q, d)

p(q, d)
=
πD(d) · |Q+| · |Cq|

ω(d)
.

Bar-Yossef et al. use an efficient estimator u(q, d) of w(q, d),
defined as u(q, d) = πD(d) · PSE · |Cq| · IDE(d), with a pool
size estimator PSE for |Q+| and an inverse degree estimator
IDE(d) for 1/ω(d), in turn, to calculate the approximate

importance sampler (AIS): AIS(q, d) , f(d) · u(q, d). The
authors show that if u approximates w well, and if the ratio
u/w is uncorrelated with f , AIS remains largely unbiased.

A variant of the above estimator for sums [4] computes
Avg(f) =

∑
i(f(d) · u(qi, di))/

∑
i u(qi, di) (where the PSE

factor cancels out) and obtains the estimator by multiply-
ing Avg(f) by the size of the collection. This collection size
estimation can be done once and for all, and reused for dif-
ferent metrics (e.g., for the usefulness for different IE tasks),
to amortize its cost.

However, directly using AIS in our IE scenario is prob-
lematic: (i) the number of queries to issue and subsequent
IE-processing of returned documents to determine f(d), to
find some useful documents, may be high; and (ii) the esti-
mation will have high variance because of the few non-zero
f(d) values.4 To address the first limitation for the related
problem of counting the frequency of a given word (e.g.,
“sports”) in a collection, Zhang et al. identify the queries
that are positively correlated with the word (e.g., query
“golf”) [34]. The query sampling process is then stratified
over correlated and uncorrelated queries. Unfortunately,
this approach still requires issuing a large number of queries.
IE-specific (PB-W): We adapt the Bar-Yossef et al. ap-
proach, with target and trial distributions that are aligned
with f(d) for usefulness: Our target distribution assigns
probabilities greater than 0 only to useful documents:

πu(q, d) ,
1{d ∈ C u

q } · πD(d)

ω(d)
,

where C u
q is the set of useful documents that q retrieves

from C . Our trial distribution, accordingly, should (i) re-
trieve useful documents with high recall and precision, and
(ii) be efficient to sample from. Specifically, for recall, we
learn queries from a large, external text collection E that
we can process once and for all. For precision, we learn
the usefulness of queries with respect to the given IE task:
(1) process E with the IE system at hand, (2) query E with
all words in the documents, and (3) count the useful and
useless documents within the top-k results for each query q,
noted as |Eu

q | and |En
q |, respectively. Finally, our trial dis-

tribution assigns a selection weight to each query q, defined
as w · |Eu

q |+ |En
q |.5

Given these query weights, our trial process consists of two
steps: (1) pick a useful query q proportionally to its weight,

4The variance can be reduced via Rao-Blackwellization, as
suggested in [4], which requires running IE over all retrieved
documents. We evaluate this version of the algorithm later
in the experimental section.
5|En

q | in the selection weight operates as a smoothing factor.



and (2) pick a document from q’s useful results uniformly at
random. This yields the following trial distribution:

pu(q, d) ,
w · |Eu

q |+ |En
q |

Zw
·
1{d ∈ C u

q }
|C u
q |

.

Here, Zw =
∑
q∈Qu

+
w ·|Eu

q |+|En
q | is the normalization factor

of the probability distribution induced by the queries that
retrieve at least one useful document, Qu

+. We can now
obtain our importance weight function as:

wu(q, d) ,
πu(q, d)

pu(q, d)
=

Zw · πD(d)

ω(d)
·

|C u
q |

w · |Eu
q |+ |En

q |
,

which we need to compute only over the useful documents.
Similarly to [4], we rely on an efficient estimator uu of wu,
defined as:

uu(d, q) ,
NFE · IDE(d) ·UE(q) · πD(d)

w · |Eu
q |+ |En

q |
,

to keep estimation costs to reasonable levels. Here, NFE
and UE(q) are estimators of normalization factor Zw and
number of useful documents retrieved by a query.

The key challenge in computing NFE is to account for the
number of queries |Qu

+| and the distribution of their selec-
tion weight. We can compute them both on the fly while
sampling during our trial process: Both factors can be com-
puted by sampling according to the selection weight, instead
of uniformly at random, as in Bar-Yossef et al.’s PSE. We
compute NFE by keeping track of the fraction of sampled
queries that retrieve at least one useful document, defined
as α, and computing α ·

∑
q∈Q(w · |Eu

q |+ |En
q |).6 To compute

UE(q), we proceed similarly to Bar-Yossef et al.’s IDE com-
putation: we sample documents uniformly at random from
Cq until we find a useful one; if we find the useful document

after processing n documents, then UE(q) =
|Cq|
n

.

3.4 Query Pool-Free Estimators
Baseline (PF): We focus on the method introduced by
Zhang et al. [35], using a query graph: (i) the nodes are
h-grams7 q that retrieve at least u documents8 and (ii) undi-
rected edges connect a node pair (q, q′) if q′ matches (i.e.,
appears in the text of) at least one of the documents that q
retrieves, and vice versa. Since a random walk implies that
a node q is visited with a probability proportional to its de-
gree d(q), each per-query estimate is weighted with 1/d(q)
to agree with uniform sampling. The estimation of a func-
tion F (C ) =

∑
d∈C f(d) from sampled queries S in (query)

graph Q is:

F̂ (C ) = ˆ|Q | ·

∑
q∈S

1/d(q) ·
∑
d∈Cq

f(d)/ω(d)∑
q∈S

1/d(q)︸ ︷︷ ︸
# useful documents per sampled query

= |Vc| · λ̃ (Vc) ·

∑
q∈S

1/d(q) ·
∑
d∈Cq

f(d)/ω(d)∑
q∈S∩VC

1/d(q)
. (1)

6The |Eu
q | and |En

q | values in this formula are computed once
and for all during the generation of the queries.
7Zhang et al. argue that h = 1 works well in practice.
8Parameter u controls the size and connectivity of the graph.
Zhang et al. propose u = 3.

Here, ω(d) is the number of queries in Q that retrieve doc-

ument d. Furthermore, the size of the query graph ˆ|Q | is
estimated from a startup query collection VC , which is a
sample (e.g., obtained from the documents of another ran-
dom walk, independent of S) of the vocabulary of h-grams

appearing in the collection, and its estimated fraction λ̃ (VC )
that retrieve at least u documents when issued as a query.9

While eliminating a potential coverage issue by avoiding an
a priori query pool, the resulting estimation may still re-
quire many queries in the IE scenario, to find sufficiently
many useful documents.
IE-specific (PF-W): To estimate the number of useful
documents, we could restrict the graph to only useful queries
(i.e., queries that retrieve at least one useful document and
for which f(d) = 1). However, such graph could be largely
disconnected and the random walk would be unable to fully
explore it. Instead, we keep the original graph and modify
the random walk process to favor visiting useful queries: We
define a weighted graph, on which we perform a “weighted”
random walk (i.e., edge e with weight w(e) is selected from
an edge set E with probability w(e)/

∑
e′∈E w(e′)). We de-

fine an edge (q, q′) to be useful if and only if both queries it
connects retrieve at least one useful document. We assign
useful edges weight w and the others 1. In Equation (1) we
thus replace the original (unweighted) degree d(q) with the
weighted counterpart: dw(q) = w ·Nu +Nn, where Nu is the
number of q’s useful incident edges (i.e., useful neighbors q′)
and Nn = Nall − Nu (with Nall = d(q)). The definition
of ω(d) (i.e., the number of queries that retrieve it) remains
unchanged, thus we still estimate it using the method in [35].

To estimate the weighted degree dw(q) of a sampled query
q we need (i) the number of all incident edges Nall, and
(ii) the number of useful edges Nu. For Nall we proceed
as in [35]. For Nu we proceed similarly, now counting the
number of sampling attempts nu we need to find a q′ that
both matches q and is useful, to estimate N̂u = |Q ′|/nu.10

Thus, we calculate d̂w(q) = w · N̂u + (N̂all − N̂u).
In this section, we described the baseline and IE-specific

approaches that we study in this paper. We now describe the
settings for our experimental evaluation of these techniques
(Section 4) and report our results (Section 5).

4. EXPERIMENTAL SETTINGS
Collections: Our test set consists of 96 real web collections
across different topics, collected using an approach similar
to that in [16] over the Open Directory Project (ODP)11.
Specifically, we first selected the 8 top-level ODP categories
with the largest number of entries, namely, Business, Soci-
ety, Arts, Science, Computers, Recreation, Shopping, and
Sports. We then selected the 5 most popular subcategories
in each of the 8 initial categories. In turn, we also picked the
5 most popular subsubcategories from each subcategory, for
a total of 200 subsubcategories. For each subsubcategory,
we then randomly chose 7 unique web collections that have
a text search interface. Finally, we collected their contents
using a state-of-the-art query-based sampler [10], issuing at
most 20,000 queries and retrieving up to 1,000 documents for
each. In our test set, we kept the collections that produced

9We correct an erroneous 1/|S| factor from [35, eq. (5)].
10Implementation-wise, we can get nall, the sampling at-
tempts for Nall, from the same sampling sequence as nu.

11http://www.dmoz.org/

http://www.dmoz.org/


Relation
Useful documents
SSK BONG

Person–Career 56.20% 55.95%
Natural Disaster–Location 2.03% 2.74%
Man Made Disaster–Location (*) 0.80% 0.87%
Person–Charge 1.55% 1.84%
Election–Winner 0.24% 0.84%

Table 2: Fraction of useful documents found in the TREC
1-5 collections for relations extracted using two IE systems,
SSK and BONG. We use (*) only during tuning.

at least 10,000 documents following this method, to focus
the evaluation on collections with a substantial number of
documents. Our tuning set, which we use for tuning param-
eters of the various techniques, consists of 40 collections se-
lected randomly from among the collections under the above
subsubcategories and not in the test set. We collected doc-
uments from these tuning collections using the Nutch Web
crawler12. We indexed each collection, in both the tuning
set and the test set, with the text retrieval toolkit Lucene13,
to emulate the query-only behavior of deep web collections
and only access them through their query interface. We
exhaustively processed the collections with our IE systems
(see below) to obtain the real number of useful documents
in each collection. We also used TREC 1-5 collections14 for
different operations (e.g., query pool construction), which
we describe as needed throughout this section.
Information Extraction Systems: We evaluated a va-
riety of IE systems and components for all relations in our
experiments (see below) via 5-fold crossvalidation over a set
of training documents, and selected the two best-performing
combinations, namely, Subsequence Kernel (SSK) [9] and
Bag of n-Grams (BONG) [14]. We implemented them using
REEL15 [5]. We also considered different named entity tag-
gers and selected: for person and location entities, the pre-
trained conditional random fields (CRF) [26] from the Stan-
fordNLP package16; for natural disasters, CRFs from the
etxt2db framework17; for the remaining entities, maximum
entropy markov models (MEMM) [25], also from etxt2db.
Relations: For a robust evaluation, we include 5 substan-
tially different relations in the experiments (see Table 2).
Four such relations, namely, Natural Disaster–Location, Man
Made Disaster–Location, Person–Charge, and Election–Win-
ner, are sparse, in that very few documents tend to be useful
for them. In contrast, relation Person–Career is a dense re-
lation. (Table 2 shows the percentage of useful documents
for each relation in the TREC 1-5 collections for the two
IE systems. Also, Figure 3 shows the distribution of useful
documents over the collections in our test set.)
Technique Tuning: We tuned each technique over the
tuning set and using the SSK IE system over Man Made
Disaster–Location.
Surrogate-based methods (Section 3.2): (1) Baseline: We
evaluated different query sets Q and numbers of queries k.
For Q , we generated one-word queries using the SVM ap-

12http://nutch.apache.org/
13http://lucene.apache.org/
14http://trec.nist.gov/data.html
15http://reel.cs.columbia.edu/
16http://nlp.stanford.edu/software/CRF-NER.shtml
17http://web.ist.utl.pt/rui.lageira/
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Figure 3: Fraction of useful documents for each relation
across our 96 test collections. The box boundaries are the
25th and 75th percentiles, the bold horizontal line inside
each box is the median, and the dots denote outliers.

proach in [2] and two effective feature selection methods,
namely, Information Gain and χ2 test [36], over 10,000 doc-
uments (50% useful and 50% useless) from TREC 1-5; we
kept the words that are discriminative of the useful class;
also, and as suggested in [2], we evaluated a query set includ-
ing all words in the documents and another one removing the
tuple attribute values. We varied k ∈ [10, 200] in intervals of
10. We built the document samples using the query-based
sampling technique in [10], which produces nearly-random
document samples from words collected from retrieved doc-
uments. (2) IE-specific: We compared (i) the query-based
sampling technique in ReDDE; (ii) the bootstrapping-based
sampling approach in [2], which starts from a set of seed
tuples as queries that is iteratively expanded as it collects
more useful documents and extracts tuples from them; (iii) a
sampling technique that issues the queries in Q above based
on their score. Finally, to find the useful terms and to asses
term bias we used the Fisher exact test in [13] varying p-
value ∈ [0.01, 0.1].
Query pool-based methods (Section 3.3): We built two query
pools of single words from TREC 1-5: (i) a generic query
pool (G) of 4M words considering all documents; and (ii) an
IE specific query pool (S) that only considers words from
useful documents. We performed the estimation process
with and without Rao-Blackwellization, suggested in the
original paper for variance reduction [4]. We evaluated the
sum and average approaches. For the IE-specific method,
we also: (i) evaluated several different values for the weight
w ∈ [50, 500000]; (ii) used the TREC 1-5 collections as our
external collection; and (iii) varied the number of documents
to retrieve k ∈ [10, 1000] for weight computation.
Query pool-free methods (Section 3.4): We varied three pa-
rameters common to the baseline and IE-specific approach:
(i) the number of sampled queries |S | ∈ [10, 500], with in-
crements of 10, (ii) the length of h-grams, h ∈ {1, 2, 3}, and
(iii) the length of the burn-in of the random walk b before
collecting the samples, b ∈ [50, 500] with increments of 50.
For the IE-specific method, we evaluated several different
values for its weight w ∈ [10, 5000].
Techniques for Comparison: We compared the following
alternatives over the 96 collections in our test set, with the
settings derived via tuning, as summarized below:
• Baseline surrogate-based (ReDDE): We generate the

samples with the query-based document sampler in [10], is-
suing up to 300 queries and collecting (at most) 5 documents
for each. We use the queries learned with χ2 for Q and use
the top-100 queries (i.e., k = 100).
• IE-specific surrogate-based method (Surrogate): For sam-

pling, we derive Q using the χ2 method and excluding tuple
attributes. We considered the useful queries in order of χ2.

http://nutch.apache.org/
http://lucene.apache.org/
http://trec.nist.gov/data.html
http://reel.cs.columbia.edu/
http://nlp.stanford.edu/software/CRF-NER.shtml
http://web.ist.utl.pt/rui.lageira/


Our sample S has at most 1000 documents. To select the
useful terms T u, we use p-value = 0.05 in the Fisher test.
• Baseline query-pool-based (PB): We use the sum (ABS)

and average (AVG) methods using the G and Q query pools
and applying Rao-Blackwellization. (The impact on effi-
ciency of applying Rao-Blackwellization is low, because the
number of documents processed with the IE system is small.)
• IE-specific query-pool-based method (PB-W): As with

the baseline, we evaluate sum (ABS) and average (AVG)
estimators using the G and S query pools and applying
Rao-Blackwellization. We index our external collection us-
ing Lucene with default parameters. We use k = 1000 for
the query weight computation and w = 5000.
• Baseline query-pool-free (PF): We use an English dic-

tionary to randomly find an initial query for the estimation
process. We use single terms as queries (i.e., h = 1) and only
accept queries that retrieve at least u = 3 documents, as
suggested in [35]. We collect 100 queries for Vc, the startup
query path that can be shared across IE tasks, and at most
100 for the estimation sample queries S .
• IE-specific query-pool-free method (PF-W): We use a

similar configuration to that in PF, but with w = 1000.
Additional Settings: Estimators issue at most 100 queries,
and retrieve up to 50 documents per query. To account for
randomness, we run each estimator five times and report av-
erage values over the five runs. Finally, note that all estima-
tors contain some form of (weighted) averaging of a metric
over samples S (e.g., for the pool-free estimator, we calcu-
late the individual contribution of each q in the summation
in the denominator of Equation (1)). We filter outliers from
this average, using the outlier detection algorithm in [33,
“Method I”] as implemented in the R18 package“extremeval-
ues”: a value x is an outlier if it is outside the limit where
less than 1 observation is expected, based on observed data
within quantile limits [α, 1−α]. We evaluated every estima-
tor with and without outlier removal (using α ∈ {0.05, 0.1}).
Removing outliers using α = 0.1 performed best across all
techniques. Thus, our final results include such removal.
Evaluation Metrics: We measure ranking quality and
estimation cost with the following metrics:
• Cumulative Gain (CG@k): We measure the number of

useful documents that we obtain by processing the collec-
tions in ranking order. If ui is the number of useful doc-
uments in the ith collection, we define CG@k =

∑k
i=1 ui.

This metric focuses on absolute values of useful documents,
which makes the comparison across relations problematic,
and also does not fully capture “errors” in the ranking.
• Normalized Discounted Cumulative Gain (nDCG@k):

nDCG@k alleviates the limitations above in a robust man-
ner. Specifically, nDCG@k is defined as the normalized
version of Discounted Cumulative Gain DCG@k = u1 +∑k
i=2

ui
log2(i)

, which penalizes the errors in the ranking or-

der.19 Now, to normalize DCG@k—and obtain nDCG@k—,
we need to calculate the DCG@k of an ideal ranking, namely,
IDCG@k. Finally, nDCG@k = DCG@k

IDCG@k
.

• Processed Documents (PD) and Issued Queries (IQ):
We measure the efficiency of the IE process in terms of the
number of issued queries and processed documents, and not
running time. The reasons for this are twofold: (1) many

18http://www.r-project.org/
19Variants of DCG@k exist in the literature; the version we
use accounts for the distribution of useful documents.

factors (e.g., network traffic, collection responsiveness) can
distort running times in the distributed environments on
which we focus and are difficult to capture reliably; and
(2) the number of issued queries and processed documents
are good indicators of expected running time. Finally, we re-
port these values only for the actual estimation process and
ignore the initial, once-and-for-all processing (e.g., collection
size estimation or random document sample generation) re-
quired by the techniques, which gets amortized over time.

5. EXPERIMENTAL RESULTS
We now evaluate the baseline and IE-specific ranking ap-

proaches of Section 3, with the settings of Section 4.
Quality of collection ranking approaches: We evalu-
ate the ranking approaches over all relations and IE systems
of Section 4. Figure 4 shows nDCG@k of all techniques over
the entire rank of collections (i.e., k ∈ [1, 96]) for Natural
Disaster–Location using the BONG IE system, and issuing
at most 100 queries. (Other relations and IE systems—with
the exception of Person–Career, which we study in detail
later—yielded similar results. Also, we later vary the num-
ber of issued queries.) Figure 4a, for the surrogate and query
pool-based methods, shows that the PF baseline outper-
forms PF-1000, its IE-specific counterpart, by almost 75%.
PF-1000 requires on average more queries than PF to walk
the random graph; for this reason, PF-1000 will rarely find
useful documents at such small query budget. As we will
see, when PF-1000 finds useful documents, its performance
improves considerably, always overcoming its baseline coun-
terpart. In contrast, among the surrogate methods, Surro-
gate outperforms ReDDE by almost 50%: the IE-specific
document sample, although small, manages to include use-
ful documents; also, ReDDE’s collection descriptors do not
accurately characterize the useful documents.

Figures 4b and 4c, for the query pool-based methods for
sums and averages, show that the IE-specific versions also
outperform the baseline counterparts. For sum, this differ-
ence is mainly based on the number of useful documents
sampled during the estimation, because there are more non-
zero components to include in the estimation. For this rea-
son, PB-S-ABS-5K is best, with its weighted specific query
pool highlighting potentially useful queries. For average, the
quality of the ranking also depends on finding queries that
retrieve a combination of useful and useless documents, as
both types are crucial for computing the average in ques-
tion. PB-S-AVG and PB-G-AVG-5K sample such queries
and thus exhibit the highest quality in this family. Overall,
and across families, the top contenders are Surrogate and
the average pool-based estimators, which effectively exploit
both useful and useless documents during estimation.

To understand the actual number of useful documents ob-
served as we process collections in ranking order, Figure 5
shows CG@k for Natural Disaster–Location and Person Ca-
reer using the BONG IE system, for a selection of high-
quality techniques according to our experiments. For refer-
ence we also show the CG@k of an ideal ranking (labeled
Ideal) and of a random ranking (noted as a dashed line).
Figure 5 reveals substantial gains from prioritizing the col-
lections for extraction. For Natural Disaster–Location, for
example, Surrogate effectively identifies the collections con-
taining 95% of the total useful documents within the top-10
collections. This would translate to an efficiency improve-
ment of almost 90% if we were to only process these top-

http://www.r-project.org/
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Figure 4: nDCG@k for Natural Disaster–Location, for the BONG IE system and issuing (at most) 100 queries.

10 collections, because we would ignore 86 (out of 96) test
collections. A noticeable benefit is also shown for Person–
Career, which we discuss in detail later in this section, for
Surrogate, ReDDE, and PB-G-AVG-5K.
Efficiency of collection ranking approaches: To under-
stand the efficiency of the different approaches, we analyze
the extraction cost and achieved ranking quality at differ-
ent stages in the estimation process. Figures 6 and 7 show,
respectively, the number of documents processed with the
IE system and nDCG@10 for different numbers of issued
queries, for Person–Charge using the SSK IE system. (Dif-
ferent relations and IE systems yielded analogous conclu-
sions.) We show the same technique splits as in the above
analysis, for clarity. Figure 6 shows that IE-specific tech-
niques process on average more documents than their base-
line counterpart. ReDDE is an exception: it does not incur
querying or extraction costs during the estimation process.

The reasons as to why IE-specific approaches process more
documents on average are manifold and differ for each fam-
ily of techniques. Notably, for Surrogate (Figure 6a), the
number of extracted documents grows with the size of the
document sample, because all sampled documents need to be
processed. For the pool-free family (also in Figure 6a), PF-
1000 may need to process several documents before choosing
the next “hop,” due to its weighted walking strategy. In con-
trast, PF does not need this operation, since it navigates the
graph only based on the document contents, without incur-
ring additional extractions. However, these techniques may
retrieve several hundred documents from each collection for
graph construction, to extract h-grams from the documents.

Finally, for the pool-based families (Figures 6b and 6c),
the extraction cost grows with the number of observed useful
documents (from the sampled edges). In fact, after obtain-
ing a useful document further operations take place: (i) for
sum, the inverse degree estimator issues additional queries
to the collection, although it avoids processing the docu-
ments with the IE system; the average estimators do not
need inverse degree estimation and, therefore, more docu-
ments are often processed for the same query budget; and
(ii) the Rao-Blackwellization method for variance reduction
processes all documents that the current query retrieves;
this increases the extraction cost, but this cost is compara-
ble across the techniques we evaluated.

After analyzing the extraction cost, we also study the
ranking quality associated with such costs. Figure 7 shows
that the quality of the ranking improves with the number
of issued queries: The estimators learn more—and more
reliably—about the collections as the estimation progresses,
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Figure 5: CG@k for Natural Disaster–Location (left) and
Person–Career (right) for the BONG IE system and issuing
(at most) 100 queries.

which is reflected in better estimations. These improve-
ments, though, vary considerably across techniques: Sur-
rogate, for instance, produces high-quality estimates even
when issuing a small number of queries, whereas the re-
maining techniques improve their quality progressively, with
a steeper gain for IE-specific than for baseline approaches.
Furthermore, some IE-specific techniques yield higher qual-
ity rankings than other techniques at a fraction of their
cost. For example, after issuing 25 queries, PB-G-ABS-
5K and PB-G-AVG-5K exhibit comparable quality to PB-S-
ABS and PB-S-AVG after issuing 100 queries, respectively.
Impact of collection characteristics: Deep web collec-
tions are rather heterogeneous, with substantial differences
in size and contents. Notably, large collections are prob-
lematic for baseline approaches, as Figure 5a shows for Nat-
ural Disaster–Location, where the most useful collections
were among the largest collections (350,000 documents on
average). We showed the effectiveness of our IE-specific ap-
proaches for this case. Similarly, the collection contents also
affect some of the other approaches: Pool-based approaches
retrieved substantially fewer documents than pool-free ap-
proaches (see Figure 6), because many queries in the query
pool were not topically relevant to the contents of the col-
lections; pool-free approaches do not exhibit this problem.
Impact of IE-task characteristics: To understand the
impact of relation characteristics, we now focus on a dense
relation. Figure 8 shows nDCG@k over the entire rank of
collections (i.e., k ∈ [1, 96]) for Person–Career using the
BONG IE system, and for all techniques. We show the same
technique splits as in the above analysis, for clarity. Fig-
ure 8a shows that Surrogate, PF, and PF-1000 exhibit com-
parable (low) quality: these techniques failed to correctly
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Figure 6: Processed documents for Person–Charge, for the SSK IE system and different numbers of issued queries.
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Figure 7: nDCG@10 for Person–Charge, for the SSK IE system and different numbers of issued queries.

rank large collections with a large number—but a relatively
low fraction—of useful documents. Specifically, Surrogate
was unable to obtain discriminative terms for the estima-
tion, since most sampled documents were useful. The pool-
free approaches, on the other hand, were unable to reach
many useful documents, because the useful documents in
the top collections were a small fraction in each collection.
The pool-based sum estimators in Figure 8b exhibit a trend
similar to that of pool-free approaches. However, two sets of
techniques performed relatively well, namely, ReDDE (Fig-
ure 8a) and the IE-specific pool-based AVG estimators (Fig-
ure 8c). These techniques benefited from the scaling to the
entire collection, because the largest collections were among
the top most useful collections.
Additional discussion: An orthogonal, interesting aspect
to the discussion above concerns the overhead incurred by
a ranking approach when new collections or IE tasks arrive.
Table 1 summarized the collection- and IE-specific require-
ments of each ranking technique. For new collections, almost
all techniques require some preprocessing (see collection col-
umn in Table 1). Deciding the approach to adopt will not
only depend on the performance and overhead of the tech-
niques but also on the number of IE systems that we will
run over each (new) collection. Because size estimation and
graph construction may take up to several thousand queries,
approaches that rely on these will only be reasonable when
many IE systems are involved, as the cost will amortize
over time. In other cases, though, estimators that do not
require additional information from the collection, such as
pool-based estimators for sums, may be the best choice.

Similarly, for new IE tasks, almost all techniques also re-
quire some preprocessing (see IE column in Table 1). The
most expensive process is, by far, producing a specific query
pool (with or without query weights). The remaining pro-

cesses, namely, learning queries for document sampling or for
querying the descriptor in ReDDE and producing a query
sample for the pool-free techniques, are relatively inexpen-
sive. Therefore, and given our quality and efficiency results,
surrogate methods (i.e., ReDDE or Surrogate) seem to be
the most reasonable choice for new IE tasks. However, if new
collections are expected to appear at high rates, it may be
worthwhile building—and amortizing the construction of—a
query pool, so that the estimation starts without overhead.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced and addressed the problem of

ranking deep web collections for an IE task, to prioritize the
extraction effort by focusing on collections with substantial
numbers of useful documents for the IE task. Specifically,
the problem is that of effectively and efficiently ranking a set
of deep web collections according to their number of useful
documents for a given IE task. We studied both (adapta-
tions of) state-of-the-art resource selection strategies, and
IE-specific approaches. We performed an extensive exper-
imental evaluation over realistic deep web collections, and
for several different IE tasks. Our evaluation focused on
the quality and efficiency characteristics of the ranking ap-
proaches, with the following conclusions: (1) we found top
contenders for each of these characteristics and provided in-
sight on how to choose among them; (2) we analyzed which
techniques are better suited for certain characteristics of the
collections, such as their size and contents, and of the IE
tasks, such as their sparsity; and (3) we discussed the over-
head incurred by each technique in dynamic domains, where
new collections or IE tasks may arrive. Overall, this paper
provides a roadmap for addressing this critically important
building block for efficient, scalable information extraction.
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Figure 8: nDCG@k for Person–Career, for the BONG IE system and issuing (at most) 100 queries.

As interesting future work, we will consider other factors
for collection ranking, such as the quality, diversity, and nov-
elty of the extraction output from the collections. Some of
these factors (e.g., quality) just require defining an appro-
priate target measure f (e.g., as a function of the confidence
scores of the tuples extracted from a document), as sug-
gested in [4] and [35]. However, other factors (e.g., diversity
and novelty) would also require analyzing the contents of
multiple collections simultaneously, because the extraction
output of one collection may be included in that of others.
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[8] C. Boden, A. Löser, C. Nagel, and S. Pieper. FactCrawl: A fact
retrieval framework for full-text indices. In WebDB, 2011.

[9] R. C. Bunescu and R. J. Mooney. Subsequence kernels for
relation extraction. In NIPS, 2005.

[10] J. Callan and M. Connell. Query-based sampling of text
databases. TOIS, 19(2):97–130, 2001.

[11] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR, 1995.

[12] Y. Fang and K. C.-C. Chang. Searching patterns for relation
extraction over the web: rediscovering the pattern-relation
duality. In WSDM, 2011.

[13] R. A. Fisher. Statistical methods for research workers.
Number 5. Genesis Publishing Pvt Ltd, 1936.

[14] C. Giuliano, A. Lavelli, and L. Romano. Exploiting shallow
linguistic information for relation extraction from biomedical
literature. In EACL, 2006.
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