
A fully parameterized Virtual Coarse Grained Reconfigurable Array for High
Performance Computing Applications

Amit Kulkarni, Elias Vansteenkiste and Dirk Stroobandt

ELIS department, Computer Systems Lab, Ghent University,
Sint-Pietersnieuwstraat 41, Ghent B-9000, Belgium

Email:{Amit.Kulkarni, Elias.Vansteenkiste, Dirk.Stroobandt}@UGent.be

Andreas Brokalakis and Antonios Nikitakis

Synelixis Solutions Ltd,
Farmakidou 10, 34100, Chalkida, Greece

Email:{brokalakis, nikitakis}@synelixis.com

Abstract—Field Programmable Gate Arrays (FPGAs) have
proven their potential in accelerating High Performance Com-
puting (HPC) Applications. Conventionally such accelerators
predominantly use, FPGAs that contain fine-grained elements
such as LookUp Tables (LUTs), Switch Blocks (SB) and
Connection Blocks (CB) as basic programmable logic blocks.
However, the conventional implementation suffers from high
reconfiguration and development costs. In order to solve
this problem, programmable logic components are defined
at a virtual higher abstraction level. These components are
called Processing Elements (PEs) and the group of PEs along
with the inter-connection network form an architecture called
a Virtual Coarse-Grained Reconfigurable Array (VCGRA).
The abstraction helps to reconfigure the PEs faster at the
intermediate level than at the lower-level of an FPGA.

Conventional VCGRA implementations (built on top of the
lower levels of the FPGA) use functional resources such as
LUTs to establish required connections (intra-connect) within
a PE. In this paper, we propose to use the parameterized
reconfiguration technique to implement the intra-connections
of each PE with the aim to reduce the FPGA resource
utilization (LUTs). The technique is used to parameterize the
intra-connections with parameters that only change their value
infrequently (whenever a new VCGRA function has to be
reconfigured) and that are implemented as constants. Since
the design is optimized for these constants at every moment
in time, this reduces the resource utilization. Further, inter-
connections (network between the multiple PEs) of the VCGRA
grid can also be parameterized so that both the inter- and intra-
connect network of the VCGRA grid can be mapped onto
the physical switch blocks of the FPGA. For every change
in parameter values a specialized bitstream is generated on
the fly and the FPGA is reconfigured using the parameterized
run-time reconfiguration technique. Our results show a drastic
reduction in FPGA LUT resource utilization in the PE by at
least 30% and in the intra-network of the PE by 31% when
implementing an HPC application.

Keywords-FPGA; Reconfiguration; DCS; TLUT; TCON; PE;

I. INTRODUCTION

FPGAs have been consistently proving their importance in

accelerating high performance computing applications. They

are used as auxiliary resource for CPUs replacing GPUs or

DSPs for intense data manipulation applications. However,

the FPGAs incur a heavy development cost compared to the

processing units (CPUs, GPUs and DSPs). The programming

of the FPGAs (called configuration) is usually done starting

from the RTL that describes a circuit in the lower abstraction

level (gate level) and therefore the compilation time is

VSB

VSB

PE

PE

VSB

VSB

PE

PE

Figure 1. A fragment of VCGRA grid with Processing Elements
(PEs), Virtual Switch Blocks (VSB) and corresponding settings registers
(rectangles)

high, thus resulting in a slow design cycle. However, this

limitation is not present for processing units (CPUs, GPUs

and DSPs) since they can be easily programmed at a higher

abstraction level and hence they have very low development

cost and shorter time-to-market [1].

In order to overcome this limitation for the FPGAs,

VCGRAs are proposed [2]. The programming model for

the VCGRAs is different by the fact that the code can be

written on a higher abstraction level. This reduces the com-

pilation time by several orders of magnitude as compared to

the fine-grained FPGA, thus VCGRAs act as intermediate

virtual fabrics [3] to curb the development costs. Figure 1

shows a fragment of a VCGRA. The architecture consists

of groups of coarse-grained processing elements connected

using virtual connection blocks and switch blocks forming

a communication network (inter-connect). The processing

elements are powerful and more complex than a LUT and

are defined at a higher abstraction level. The complexity of

the processing elements can range from a simple ALU to a

fully capable RISC processor.

Each PE has a settings register used to configure a

function of the PE. With the proper connection settings

(configured in the settings register of the VSB - Virtual

Switch Block), every application that uses these PEs can

be implemented. The settings registers are updated using a

dedicated bus that enables us to reconfigure the settings of

the PEs and VSBs.

Authors in [2] have shown that conventional VCGRA

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.13

265

implementations use LUTs of the FPGA to realize recon-

figurable virtual switch blocks, virtual registers and other

virtual components. With the help of parameterized config-

uration, the authors were able to map the virtual components

to the lower level physical resources (settings registers were

mapped onto configuration memory and VSBs were mapped

onto switch blocks) of an FPGA. This saves a significant

amount of functional resources (LUTs) of an FPGA.

However, the work in [2] was limited to parameterize the

LUTs of the PEs and inter-connect (VSBs) of the VCGRA

only, thus resulting in a semi-parameterized VCGRA. In this

paper, our main contribution is to parameterize not only

the PEs and VSBs, but also the connections within each

PE (intra-connect) using Tunable Connections (TCONs) [4].

The parameterized intra-connections can be automatically

mapped to the lower level physical connection blocks and

switch blocks of the FPGAs, thus avoiding the use of

LUTs to implement the intra-connect. Therefore, we save an

additional amount of physical LUT resources of the FPGA.

The rest of the paper is organized as follows: in Section II,

we describe the VCGRA tool flow and how it makes use

of TLUTs and TCONs. In Section III, we describe a fully

parameterized VCGRA that contains TLUTs in the PEs and

TCONs for the inter- and intra-connections of the VCGRA.

We evaluate our VCGRA on a high performance comput-

ing medical application called Retinal Vessel Segmentation

which is described in Section IV. In Section V, we present

our results and discuss the improvements in the FPGA

resource gain. Finally, we conclude in Section VI.

II. PARAMETERIZED CONFIGURATION FOR VCGRAS

The main contribution of introducing the VCGRA concept

is explained next. It results in splitting up the tool flow in a

high level tool flow to be used by the application designer

(Section II-A) and a low level tool flow that is only used

to generate the proper VCGRA components in an automatic

and reconfigurable way (explained in Section II-B).

A. VCGRA tool flow

Figure 2, explains the tool flow for VCGRA design. The

VCGRA tool flow makes use of a VCGRA architecture that

defines the granularity as well as the possible functionality

of the PEs and describes the possible ways the PEs are

interconnected. The implementations of the PEs and VSBs

is performed in the parameterized reconfiguration tool flow

(left hand side of Figure 2) and is explained in Section II-B.

In the VCGRA tool flow (right hand side of Figure 2), the

user will determine the VCGRA settings that will configure

the required configurable components of the VCGRA to

realize the desired application.

The higher level VCGRA tool flow that produces these

VCGRA settings consists of a synthesis and a mapping tool

in which the textual description of the application design is

parsed and converted into a netlist of Processing Elements

Specialization Stage

HDL Design of VCGRA

Synthesis

Technology Mapping

Placement and Routing

Parameterized Configuration VCGRA Settings

Application
Design

VCGRA
Architecture

Specialized Configuration

Parameterized Configuration
tool flow

VCGRA
tool flow

Synthesis*

Technology Mapping*

 Placement and Routing*

Figure 2. Implementation of applications on a VCGRA using the
parameterized configuration tool flow
Note: * indicates steps considering PEs as a basic programmable component

(PEs). Next, we perform placement of the synthesized netlist

of PEs on to the virtual PEs of the VCGRA architecture. The

tool flow has to take care that all the inter- and intra-connect

links of the VCGRA are implemented on the VCGRA

architecture’s communication network. We make use of a

router to establish optimal connections between the placed

elements of the VCGRA architecture. The Place and Route

(PaR) result determines what the functionality of each PE

is and how the communication network is exactly used and

that this is reflected in the VCGRA settings.

Because the basic programmable element in the VCGRA

tool flow is a PE, the tools (synthesis, mapper, place

and route) need considerably less complexity and time

to generate the settings values than the standard FPGA

compilation would. This is because the higher abstraction

level reduces the problem size and therefore the tools are

faster. If the application design specification changes with

the same VCGRA platform then we can generate the settings

values much faster than processing the new design with the

standard FPGA tool flow.

Using the parameterized reconfiguration flow gives a set

of parameterized VCGRA components. The settings values

are then combined with these parameterized components

in the specialization stage and this results in the final

reconfiguration bitstreams automatically.

B. Tool flow for parameterized configuration

The VCGRA tool flow builds on top of the parameterized

reconfiguration tool flow, which provides a parameterized

version of the VCGRA building blocks (left side of Fig-

ure 2). Figure 3 shows more details on the tool flow

for generating a parameterized configuration for a general

parameterized application. An application is said to be

parameterized if some of its input values change infrequently

compared to the rest. The infrequently changing input values

are called parameters.

266

Parameterized
HDL design

Specialized
Configuration

Parameter
Values

Synthesis
Technology

Mapping
(TCONMAP)

Placement
(TPLACE)

Routing
(TROUTE)

Evaluate
Boolean
Function

Partial
Parameterized
Configuration

(PPC)

Template
Configuration

(TC)

Generic
Stage

Specialization
Stage

Figure 3. Tool flow for parameterized configuration

There are two stages: a generic stage and a specialization
stage. In the generic stage, a HDL design with parameterized

inputs (annotated with –PARAM) describes the application.

The application is processed to yield a Template Configura-

tion (TC) and a Partial Parameterized Configuration (PPC).

A detailed explanation on each step of the generic stage is

explained in [5].

The final output of the generic stage is the TC and PPC.

The TC contains static bits (0’s and 1’s) which are the non-

reconfigurable parts of the problem. The PPC contains multi-

port Boolean functions of the parameter inputs. In order to

generate specialized bitstreams, the PPC has to undergo the

specialization stage.

In the specialization stage, for every change in parameter

values, the Boolean functions are evaluated by a Special-

ized Configuration Generator (SCG) to generate specialized

bitstreams. The SCG takes a specific parameter value and

evaluates the Boolean functions to produce specialized bits.

The SCG can be implemented on an embedded processor

(PowerPC, ARM or MicroBlaze) present in the FPGA. With

the help of a configuration interface such as HWICAP or

MiCAP [6] [7], the FPGA is reconfigured with the spe-

cialized bitstream. The technique is called Dynamic Circuit

Specialization (DCS).

Upon a value change in parameter inputs, the configura-

tion bits of the TLUTs and TCONs are reconfigured with

specialized bits that are thus generated after evaluation of

the Boolean functions for a specific set of parameter values.

This means that in the parameterized VCGRA approach,

the settings registers are mapped onto the configuration

memory of the FPGA which is in contrast with conventional

implementation that maps the registers to the flip-flops of

a logic cell present in the FPGA. Therefore, a significant

amount of flip-flops can be saved.

As long as we are only reconfiguring LUTs, we are able to

parameterize LUTs on commercial Xilinx FPGAs. However,

parameterization of other primitives such as routing switches

can be done only on a hypothetical FPGA but not on the

commercial FPGAs (because we do not have access to the

low level routing reconfiguration infrastructure). Hence, the

tool flow explained above is used to generate the parameter-

ized configuration for a hypothetical FPGA. Therefore, the

implementation is limited up to the place and route steps

only.

C. Limitation of parameterized VCGRAs

In a conventional VCGRA implementation, the settings

registers are updated using a dedicated bus. However, in

the parameterized VCGRA implementation, the settings

registers of each PE and the routing switches are updated

by reconfiguring each frame of the FPGA that contains

setting bits of the VCGRA. This is usually accomplished

by read-modify and write back frames of the FPGA (micro-
reconfiguration [5]).

For a VCGRA application that contains dynamic

Network-On-Chips or PEs that require cycle-by-cycle con-

text switching, we cannot afford the cost of reconfiguration

time so often and therefore, such applications may not be

suitable to be handled by a parameterized VCGRA.

However, in the case of much less frequent reconfigu-

ration needs, the parameterized reconfiguration reduces the

overhead of the conventional VCGRA as follows:

• The settings registers of the VCGRA are mapped on

the configuration memory and therefore, the need of a

dedicated bus to update the settings register is avoided.

• The PEs of the VCGRA are optimized by symbolic

constant propagation that is integrated within the pa-

rameterized configuration tool flow.

• Each VCGRA intra- and inter-connection is mapped

onto lower level reconfigurable routing switches

(TCONs). Therefore, we reduce the utilization of the

LUTs for implementing the connection network.

Even with the limitations of VCGRAs we believe that a

large number of VCGRA implementations [3] [8] [9] [10] in

which cycle-by-cycle context switching is not needed, can

benefit from the above advantages of the fully parameterized

VCGRA implementation.

III. FULLY PARAMETERIZED VCGRA

In the previous work on parameterized VCGRA imple-

mentations, authors of [2] parameterized the LUTs and inter-

connects of the VCGRA. They were able to save 50% of

the LUT resources. However, they did not parameterize the

intra-connect of the VCGRA (connections within a single

PE) since they had no automatic technology mapper to

generate TCONs for the intra-connections. In order to over-

come this limitation we use an automatic technology mapper

called TCONMAP [4] that can generate TCONs and TLUTs

simultaneously for a given parameterized application.

In Figure 4, a fully parameterized PE is depicted. Each

PE in the VCGRA grid contains Tunable LookUp Tables

(TLUTs) optimized to implement the required functions

of the PE. The optimization is achieved by the method

for optimization for constant parameters as a result of

267

Settings register

BLE
(TLUTs)

BLE
(TLUTs)

BLE
(TLUTs)

BLE
(TLUTs)

TCON

TCON

TCON

TCON

TC
O

N

TC
O

N

TC
O

N

TC
O

N

Figure 4. A fully parameterized Processing Element (PE) containing
Tunable LUTs (TLUTs) and Tunable Connections (TCONs) within a single
PE

parameterization of the LUTs. In this approach, instead of

implementing the parameter inputs of the application as

regular inputs, they are implemented as constants and the

functions of each TLUT are specialized for these constants.

For every change in parameter input values, the function

of the TLUT is re-optimized for new constant values by

reconfiguring the configuration of the TLUT. A group of

TLUTs form a Basic Logic Element (BLE) of the PE.

The BLEs of the PE are connected using virtual routing

switches (connection blocks and switch blocks) within the

PE that form an intra-connect. The PE also contains a

virtual routing network composed of wires that is responsible

of carrying required signals between the BLEs. A virtual

routing switch consists of connection multiplexers with con-

figuration memory. The routing switch connects the wires

between BLEs within the routing network depending on

the configuration values stored in the configuration memory

of the switch and therefore providing an opportunity to

parameterize the routing network.

TCONMAP replaces the virtual routing switches with the

TCONs. A TCON consists of configuration memory that

can be reconfigured depending on the parameter inputs.

Therefore, a connection between two BLEs can be made or

broken depending on the values of the parameter inputs of a

VCGRA application. Further, with the help of TPLACE and

TROUTE, these connections can be placed and routed on to

the lower-level physical routing switches thereby reducing

the PE intra-connect overhead on the physical LUTs of the

FPGA. With the help of TCONs, a significant reduction in

routing resource consumption (at least by 40%) has been

observed in the experiments of [11]. We aim at similar

improvements by using the TCON concept on a VCGRA

implementation of a retinal vessel segmentation application.

IV. RETINAL VESSEL SEGMENTATION APPLICATION

In this Section, we present an HPC application that is

used to investigate the benefits of the fully parameterized

VCGRA approach. We have designed the PEs of the VC-

GRA based on the HPC application. Only those parts of the

application that will be implemented on the reconfigurable

logic (hardware modules) for the performance acceleration

will be used for the VCGRA implementation.

In computer vision, segmentation refers to the process

of partitioning a digital image in multiple segments in

order to extract prominent features and locate objects and/or

boundaries. The particular application of interest - retinal

vessel segmentation - refers to the extraction of the vessel

structure from the background in fundus images. Vessel seg-

mentation enables the extraction of morphological attributes

of retinal blood vessels, such as length, width and branching

pattern, that assist the diagnosis, screening, treatment and

evaluation of various cardiovascular and ophthalmologic

diseases such as diabetes, hypertension, arteriosclerosis and

choroidal neovascularization.

The Retinal Vessel Segmentation application that we have

implemented is based on the concept of matched filters [12]

and is presented in Figure 5. From an initial 2D input retinal

image (RGB image), the green channel is retained as it

contains most of the information. A preprocessing step is

then applied in order to provide a more suitable and clear

image for the main filtering operations. The preprocessing

involves histogram equalization, optic disc removal and

outer region removal.

The resulting image goes through a denoising function

by means of a Gaussian filter to reduce the effect of high

frequency noise (applying 2 set of coefficients of 5×5 and

9×9 respectively). The main vessel detection function that

follows, involves filtering and thresholding the denoised

image. Since the cross-section of a vessel can be modeled as

a Gaussian function, a series of Gaussian-shaped filters can

be used to “match” the vessels for detection. Steerable filters

are used (in the current implementation, seven directions

are considered) to separate the pixels with the strongest re-

sponses (7 different sets of 16×16 coefficients). The problem

with this approach is that not only vessels but also non-vessel

edges can be identified in the response image. To minimize

this effect, a third processing step that involves texture

filtering is applied so as to retain in the final image only

lines of certain thickness and above. The vessels filtering is

also applied in the form of a modified filter applied many

times in the image with different sizes depending on the

desired filtering effect (e.g 5×5, 9×9, 16×6). In general

the number of filters applied in the pipeline is a tunable

parameter which depends on the quality of the images and/or

imaging technology is used.

Figure 5 presents an overview of the application. It should

be noted that the preprocessing steps are implemented in

software, while all filtering operations are implemented as

hardware modules. All hardware modules employ the same

interfaces and are virtually the same in principle: they all

share the same core architecture and what changes is size

and coefficients of the filter kernels. The orientation of the

filter is defined from the coefficients itself.

268

Preprocessing Denoise
Filter

Match
Filters

Texture
Processing

Hardware Modules

Gaussian
Filter Kernel

5x5/9x9

Steerable Filters
Kernels 16x16
(7 rotations)

Filter Kernel
16x16

Result
Image

Input
 Image

Software Tasks

Figure 5. High level presentation of the processing steps for the retinal
vessel segmentation application

VCGRA for the HPC application

The filters (hardware modules) of the HPC application

described above need to be accelerated by realizing the

filter actions on the reconfigurable logic. We use our fully

parameterized VCGRA approach to implement the filters on

an FPGA. We used a floating point Multiply-Accumulate

(MAC) operator as a processing element. We have used the

“FloPoCo” [13] floating point library to build the floating

point addition and multiplication and thus, we use the

FloPoCo floating point format with a 6-bit exponent and a

26-bit mantissa. We have not used any dedicated multipliers

or adders while generating the floating point operators using

the “FloPoCo” library.

In the MAC operation, the image samples are multiplied

with the filter coefficients. Later, they are added to the

previously accumulated values after the multiplication. The

coefficients of the filter determine the filter configurations

such as the noise level of the denoise filter of the vessel

segmentation application.

The floating point multiplication is parameterized with the

coefficient as a parameter input. The value of the coefficient

input changes infrequently. For each infrequent change in

the coefficient value, a specialized bitstream is generated and

the multiplication is reconfigured accordingly. The settings

register for each MAC operator (PE) holds an integer value

for the counter that decides the number of iterations the

MAC operation should perform with a fixed coefficient

value. Therefore, in order to change the filter coefficients

and counter values, each PE (MAC operator) needs to be

reconfigured.

V. RESULTS AND DISCUSSION

The Processing Element (PE) of the filter application

(MAC operator) was described using VHDL with annotated

parameter inputs (–PARAM). The annotation helps to dif-

ferentiate between the regular inputs and the parameterized

inputs. With the help of Quartus II (v10.0), the PE was syn-

thesized and later subjected to logic optimization by using

the ABC tool [14]. We used the TCONMAP mapper [4] to

generate TLUTs and TCONs.

The LUT resource utilization of a single PE is tabulated

in Table I. Clearly, the total number of 4-input LUTs utilized

by the PE with our VCGRA approach shows a significant

Table I
RESOURCE UTILIZATION AND PAR RESULTS OF A PE

VCGRA LUTs (TLUTs) TCONs
Logic
Depth
level

WL CW

Conventional 2522(0) 0 36 27242 10

Fully

Parameterized
1802(526) 568 33 16824 10

reduction by ≈ 30%. We also observe a difference in

the logic depth level by 3 and hence it contributes to the

improvement in the performance of the PE.

All the TCONs (568) can be implemented on the physical

switch blocks and connection blocks, instead of LUTs, thus

saving a significant amount of LUT resources of the FPGA.

In the conventional VCGRA implementation, these TCONs

are realized on the LUTs which is an overhead of ≈31%

of the total LUTs of the parameterized VCGRA. Therefore,

we reduce an overhead of ≈31% of LUT resources of the

intra-network of each PE.

The synthesized PE was subjected to a Place and Route

(PaR) tool using the TPaR CAD tool [11]. The PaR was

performed using the 4LUT sanitized FPGA architecture

from the VPR [15]. The results of PaR for a single PE (MAC

operator) are tabulated in Table I. Clearly, the proposed

method (fully parameterized VCGRA) has the total wire

length (WL) decreased by ≈ 31% as compared to the con-

ventional VCGRA implementation, thus saving a significant

amount of routing wire resources of the FPGA.

The minimum channel width (CW) of the experiments

presented in [2] [11] show an increase in the minimum

channel width when using TCONs. However, our results

show that the minimum routing channel width of both

implementations are the same. We observe no overhead on

the minimum channel width of the FPGA after using TCONs

for the inter- and intra-connections of the VCGRA.

A fully parameterized 4x4 VCGRA grid:

The resources utilized by a 4x4 VCGRA grid are tabulated

in Table II. The resource utilized by the grid contains 16

PEs and 9 VSBs, each of them has a settings register and

therefore, the conventional VCGRA would consume twenty

five 32-bit registers. In the conventional implementation,

these registers are realized using the FPGA’s logic-cell flip-

flops. However, with the parameterized VCGRA tool flow

we map them to the configuration memory of the FPGA and

hence we reduce the flip-flops utilization to zero.

Also, in the conventional VCGRA implementation the

routing switches (connection blocks + switch blocks) are

needed to realize a 4x4 VCGRA grid is 41 (9 VSBs and

32 Virtual Connection blocks) and again these would have

to be realized on the LUTs of the FPGA. However, with

our fully parameterized VCGRA implementation we can

target physical routing resources and thereby reducing the

functional resource utilization (LUTs) to zero.

269

Table II
RESOURCE UTILIZATION OF A 4X4 VCGRA GRID

VCGRA Inter-Network Settings register
Conventional 41 25

Fully Parameterized 0 0

With the use of parameterized VCGRA configuration, a

significant reduction in FPGA resource utilization is ob-

served. However, this gain does not come for free. There

exist a reconfiguration overhead such as reconfiguration

time, Boolean function evaluation time and the PPC mem-

ory [5]. The estimated reconfiguration time depending on the

number of TLUTs and TCONs for one PE is 251 ms. The

reconfiguration speed can be improved using the techniques

described in [16].

In the vessel segmentation application, the coefficients of

the Gaussian filter and the texture processing filter change

infrequently and is user configurable. Therefore, the recon-

figuration time cost for these two filters is minimal. For

example, for 1000 images (of same size) can be denoised

and its texture is processed at the reconfiguration time cost

of 251 ms per PE per 1000 images. Therefore, the two filters

benefit from the parameterized reconfiguration technique

along with the advantage of the VCGRA tool flow.

VI. CONCLUSION

In this paper, we presented an extended, complete method

to parameterize the intra-network of the Processing Elements

(PEs) of a parameterized virtual coarse-grained overlay

architecture for FPGAs. The virtual architecture was fully

parameterized (using the parameterized configuration tool

flow) in the sense that the processing elements containing

both intra- and inter-connections of the VCGRA grid were

parameterized. The results showed an improvement in the

optimization of the PE by 30%. The logic depth level

was also reduced by ≈9% which helps in improving the

performance of the PE. The intra-connects (TCONs) are

realized on the physical routing switches, hence we reduced

≈31% of the LUTs for each PE. The results of PaR have

proved that by using the proposed method, we saved 31%

of wire length and no overheads in the routing resource

utilization were observed. With the help of parameterized

configuration we were able to avoid excess LUT utilization

for the implementation of the VCGRA’s intra- and inter-

network by targeting physical routing switches of the FPGA.

The main advantage of using the proposed VCGRA ap-

proach is: for any changes in specification of the VCGRA

design with the same VCGRA architecture, the VCGRA

tool flow can be used to overcome the limitations of the

compilation time of the standard FPGA tool flow.

ACKNOWLEDGMENT

This work was supported by the European Commission

in the context of the H2020 FETHPC EXTRA project

(#671653).

REFERENCES

[1] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker,
“A Heterogeneous Multicore System on Chip with Run-Time Reconfigurable
Virtual FPGA Architecture,” in Parallel and Distributed Processing Workshops
and PhD Forum (IPDPSW), 2011 IEEE International Symposium on, May
2011, pp. 143–149.

[2] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt,
“Efficient implementation of virtual coarse grained reconfigurable arrays on
FPGAs,” in Proceedings of the 23rd International Conference on Field Pro-
grammable Logic and Applications. Piscataway, NJ, USA: IEEE, 2013, pp.
1–8.

[3] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for circuit
portability and fast placement and routing,” in Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, Oct 2010, pp. 13–22.

[4] K. Heyse, B. Al Farisi, K. Bruneel, and D. Stroobandt, “TCONMAP:
Technology Mapping for Parameterised FPGA Configurations,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, no. 4, pp. 48:1–48:27, Sep. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2751558

[5] A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt, “Performance eval-
uation of Dynamic Circuit Specialization on Xilinx FPGAs,” in FPGAworld
Conference 2014, Proceedings. Stockholm, Sweden: Association for Com-
puting Machinery, 2014, pp. 1–6.

[6] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, “MiCAP: A custom Recon-
figuration Controller for Dynamic Circuit Specialization,” in ReConFigurable
Computing and FPGAs (ReConFig), 2015 International Conference on, Dec
2015, pp. 1–6.

[7] A. Kulkarni and D. Stroobandt, “How to efficiently reconfigure Tunable
LookUp Tables for Dynamic Circuit Specialization,” INTERNATIONAL JOUR-
NAL OF RECONFIGURABLE COMPUTING, vol. 2016, pp. 1–11, 2016.

[8] J. Divyasree, H. Rajashekar, and K. Varghese, “Dynamically reconfigurable
regular expression matching architecture,” in Application-Specific Systems,
Architectures and Processors, 2008. ASAP 2008. International Conference on,
July 2008, pp. 120–125.

[9] L. Sekanina, “Virtual Reconfigurable Circuits for Real-world Applications of
Evolvable Hardware,” in Proceedings of the 5th International Conference on
Evolvable Systems: From Biology to Hardware, ser. ICES’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 186–197. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1766731.1766753

[10] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga, “A Coarse Grain
Reconfigurable Processor Architecture for Stream Processing Engine,” in Field
Programmable Logic and Applications (FPL), 2011 International Conference
on, Sept 2011, pp. 490–495.

[11] E. Vansteenkiste, B. Al Farisi, K. Bruneel, and D. Stroobandt, “TPaR: Place
and Route Tools for the Dynamic Reconfiguration of the FPGA’s Interconnect
Network,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 33, no. 3, pp. 370–383, March 2014.

[12] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection
of blood vessels in retinal images using two-dimensional matched filters,” IEEE
Transactions on medical imaging, vol. 8, no. 3, pp. 263–269, 1989.

[13] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths with
FloPoCo,” Design Test of Computers, IEEE, vol. 28, no. 4, pp. 18–27, July
2011.

[14] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-strength
Verification Tool,” in Proceedings of the 22Nd International Conference on
Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 24–40. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-14295-6 5

[15] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers, 1999.

[16] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt, “Improving reconfigu-
ration speed for Dynamic Circuit Specialization using Placement Constraints,”
in ReConFigurable Computing and FPGAs (ReConFig), 2014 International
Conference on, Dec 2014, pp. 1–6.

270

