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Summary

This Dissertation is structured as follows. In Chapter 1, we give a short historical

overview and define fundamental concepts. Chapter 2 contains a clear narrative

of the progress made towards finding the smallest planar hypohamiltonian graph,

with all of the necessary theoretical tools and techniques—especially Grinberg’s

Criterion. Consequences of this progress are distributed over all sections and

form the leitmotif of this Dissertation. Chapter 2 also treats girth restrictions

and hypohamiltonian graphs in the context of crossing numbers. Chapter 3 is a

thorough discussion of the newly introduced almost hypohamiltonian graphs and

their connection to hypohamiltonian graphs. Once more, the planar case plays

an exceptional role. At the end of the chapter, we study almost hypotraceable

graphs and Gallai’s problem on longest paths. The latter leads to Chapter 4,

wherein the connection between hypohamiltonicity and various problems related

to longest paths and longest cycles are presented. Chapter 5 introduces and stud-

ies non-hamiltonian graphs in which every vertex-deleted subgraph is traceable,

a class encompassing hypohamiltonian and hypotraceable graphs. We end with

an outlook in Chapter 6, where we present a selection of open problems enriched

with comments and partial results.
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Chapter 1

Introduction

Throughout this Dissertation, all graphs are undirected, finite, connected, and

contain neither loops nor multiple edges, unless explicitly stated otherwise. A

graph G is hamiltonian (traceable) if it contains a hamiltonian cycle (hamiltonian

path), i.e. a cycle (path) visiting every vertex of the graph. (More generally, a

subgraph of G which contains all vertices of G will be called spanning .) The term

is named after Sir William Rowan Hamilton, who presented in 1857 a puzzle

in which, by travelling along the edges of a dodecahedron, a path was sought

that visits every vertex of said dodecahedron precisely once, and ends in the

same vertex it began: the “Icosian game”. However, Hamilton certainly was not

the first to study spanning cycles in graphs—Leonhard Euler [37] had already

treated the problem in the (closed variant of the) “knight’s tour” problem in 1766.

Even concerning spanning cycles in polyhedra, this had already been done by

Thomas P. Kirkman in 1856, see [86]. For more on the history of graph theory

in the period 1736–1936, see the monograph by Biggs, Lloyd, and Wilson [11].

More recent material on hamiltonian cycles (and related concepts) in graphs

and hypergraphs can be found in Gould’s comprehensive three-part survey [48–

50]. For an overview of results on hamiltonicity in directed graphs, see [90] by

Kühn and Osthus. From a complexity standpoint, determining hamiltonicity is

difficult and one of Karp’s famous 21 NP-complete problems [83]. It even remains

NP-complete if one restricts the problem to cubic polyhedra [44].
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We introduce the central notion of this Dissertation. A graph G is hypohamil-

tonian if G does not contain a hamiltonian cycle but for any v ∈ V (G) the graph

G − v does contain a hamiltonian cycle. A graph is hypotraceable if we replace

in the preceding sentence every instance of “cycle” by “path”. The smallest hy-

pohamiltonian graph is the famous Petersen graph [107] on 10 vertices, shown in

Figs. 1 and 45. For a proof that it is indeed the smallest such graph, see e.g. [67].

Petersen published this graph in 1898, but it appears in the literature (at least) as

early as 1886, in a semi-mathematical, semi-philosophical article of Kempe [85].

The seven smallest hypohamiltonian graphs are shown in Fig. 10.

Fig. 1: Petersen’s graph drawn with two edge crossings—that it cannot be

drawn with fewer is proven in Section 2.2. The Petersen graph has order 10 and

is the smallest hypohamiltonian graph.

The study of hypohamiltonian graphs was initiated in the early sixties by

René Sousselier [10, 119]. He stated a mathematical problem of recreational

nature in [119] entitled “Le Cercle des Irascibles”. His paper is in French, but

a translation can be found in Holton and Sheehan’s survey on hypohamiltonian

graphs [71]. A solution to Sousselier’s problem was given by Gaudin, Herz, and

Rossi [46] in 1964. Further early work on the subject was done by Busacker and

Saaty [18], Lindgren [93], and Herz, Duby, and Vigué [67].

The topic was quickly picked up by many researchers. It was extensively

studied by Thomassen [125–129]—Thomassen’s body of work is an important

influence for this Dissertation, both concerning techniques and style. Further sig-
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nificant early contributions include work of Bondy [12], Chvátal [25], Doyen and

van Diest [33], Harary and Thomassen [63], and Collier and Schmeichel [28, 29].

For further details, see the survey by Holton and Sheehan [71]. Not included

therein are papers published in the past two decades, for instance work of Kateri-

nis [84], Máčajová and Škoviera [94, 95], Araya and Wiener [7, 141], McKay [96]

and publications by the author and his collaborators [47, 80, 143–146] discussed

here. Ozeki and Vrána [103] recently used hypohamiltonicity to show that there

exist infinitely many graphs which are 2-hamiltonian1 but not 2-edge-hamiltonian-

connected2.

Regarding combinatorial optimisation, Grötschel [52, 53], and Grötschel and

Wakabayashi [55–58] extensively discuss hypohamiltonian (as well as hypotrace-

able) graphs in the context of the travelling salesman polytope. The computa-

tional complexity of determining whether a graph is hypohamiltonian is unknown,

but is believed to be high, see Grötschel’s paper [53]. Recent applications of con-

cepts closely related to hypohamiltonicity, e.g. fault-tolerant networks, can be

found in [104].

Substantial work has also been done investigating directed graphs which are

hypohamiltonian, but due to the extensive literature, here we can only select

certain articles and invite the reader to follow the references found there. Early

work includes Thomassen’s [128] and an article by Fouquet and Jolivet [41], a

paper by Grötschel, Thomassen, and Wakabayashi [54], and work of Penn and

Witte [105]. Using a result from [105], Thomassen [130] disproves the old conjec-

ture of Adám [3] that any digraph containing a directed cycle has an arc whose

reversal decreases the total number of directed cycles. For articles published

recently—these also provide overviews—see [1, 2].

Likewise, we will not treat the interesting family of infinite hypohamilto-

nian graphs. For results therein, see for instance Thomassen’s paper [127] and

1Let k ≥ 1. A graph G is k-hamiltonian if for any S ⊂ V (G) with |S| ≤ k we have that

G− S is hamiltonian.
2A graph G is 2-edge-hamiltonian-connected if for any X ⊂ {x1x2 : x1, x2 ∈ V (G)} with

1 ≤ |X| ≤ 2, G ∪ X has a hamiltonian cycle containing all edges in X, where G ∪ X is the

graph obtained from G by adding all edges in X.
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Schmidt-Steup’s article [112], where the latter settles the question raised in the

former whether there exists an infinite hypohamiltonian graph which is locally

finite. (In fact, Schmidt-Steup showed that such graphs exist even with the ad-

ditional condition of planarity imposed.)

Lastly, we mention hypohamiltonicity in connection with snarks. We shall call

a reducible snark a bridgeless cubic graph which has chromatic index3 4 and girth

at least 5. A snark is a cyclically 4-edge-connected4 reducible snark. Early work

on the subject includes Fiorini’s paper [39] from 1983. Fiorini showed that there

exist infinitely many hypohamiltonian snarks [39]. (Later it was discovered that

this had already been done by Gutt [60].) Steffen [121] proved that there exist

hypohamiltonian snarks of order n for every even n ≥ 92 (and certain n < 92).

For more material, see e.g. [14, 94, 116, 122]. Hypohamiltonian snarks have been

studied in connection with the famous Cycle Double Cover Conjecture, see [14]

for more details, and Sabidussi’s Compatibility Conjecture [40].

The number of hypohamiltonian snarks on n ≤ 36 vertices can be found in [14,

Table 2], see also sequence A218880 in Sloane’s On-Line Encyclopedia of Integer

Sequences [118]. Many snarks are hypohamiltonian, but not all—consider for

instance the reducible snark shown in [150, Fig. 12] and discussed in Section 3.6.

The smallest snark is the Petersen graph shown in Figs. 1 and 45. Steffen [120]

also showed that every cubic hypohamiltonian graph with chromatic index 4 is

bicritical, i.e. the graph itself is not 3-edge-colourable but the removal of any

two distinct vertices yields a 3-edge-colourable graph. Nedela and Škoviera [101]

showed that every cubic bicritical graph is cyclically 4-edge-connected and has

girth at least 5. Therefore, every cubic hypohamiltonian graph with chromatic

index 4 must be a snark. In 2015, Steffen [122] published a conjecture on hy-

pohamiltonian snarks—see Problem 3 in Chapter 6. In the recent not yet pub-

3The chromatic index of a graph is the smallest number of colours necessary to colour the

edges of the graph such that any two edges sharing an end-point do not have the same colour.
4In a graph G, M ⊂ E(G) is cycle-separating if G −M is disconnected, and at least two

of its components contain cycles. (Note that there exist graphs with no cycle-separating sets,

for instance K3,3.) A graph G which contains disjoint cycles is cyclically k-edge-connected if

no set of fewer than k edges is cycle-separating in G. The cyclic edge-connectivity of G is the

maximum k such that G is cyclically k-edge-connected.
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lished manuscript [42], de Freitas, Nunes da Silva, and Lucchesi show that every

hypohamiltonian snark has a 5-flow5, thus answering a question proposed by

Cavicchioli, Murgolo, Ruini, and Spaggiari in 2003 [20].

We now provide definitions and notation used throughout this Dissertation—

for notions not defined here, please see Diestel’s book [32]. For a graph G, we will

denote by V (G) its vertex set and by E(G) its edge set. For a set S, |S| shall be

the cardinality of S. |V (G)| is the order of G and |E(G)| its size. Unless stated

otherwise, we put n = |V (G)| and m = |E(G)|, and when we describe a graph as

the “smallest” or “smaller than”, we always refer to the order of the graph.

For a vertex v, we denote by N(v) the set of vertices which are joined to v by

an edge, and put N [v] = N(v)∪{v}. We call N(v) (N [v]) the open neighbourhood

(closed neighbourhood) of v. |N(v)| is the degree of v. A vertex is cubic if its

degree is 3. A graph, a cycle (in a graph), or a face (in a planar graph) is cubic

if all of its vertices are cubic. Denote by Pk (Ck) a path (cycle) on k vertices. A

cycle on k vertices will also be called a k-cycle. An edge between the vertices v

and w will be denoted by vw. For a path P with V (P ) = {a1, ..., ak}, k ≥ 3, and

E(P ) = {aiai+1}k−1i=1 we write a1...ak. Let κ(G), δ(G), ∆(G), and λ(G) denote the

vertex-connectivity, minimum degree, maximum degree, and edge-connectivity of

G, respectively. In the following, when we speak simply of connectivity, we always

refer to vertex-connectivity.

A graph G is bipartite if there exist disjoint sets A,B ⊂ V (G) such that

A ∪ B = V (G), and every edge of G is of the form ab : a ∈ A, b ∈ B. We call

(A,B) a bipartition of G. G is balanced if there exists a bipartition (A,B) of

G such that |A| = |B|, and unbalanced if it is not balanced. For S ⊂ V (G) we

denote by G[S] the subgraph of G induced by S.

We call a graph polyhedral if it is planar and 3-connected. G is almost hypo-

hamiltonian if G is non-hamiltonian, and there exists a vertex w, which we will

call exceptional , such that G − w is non-hamiltonian, yet for any vertex v 6= w

the graph G−v is hamiltonian. We will denote the family of all hypohamiltonian

5Consider a graph G, an integer k > 1, an orientation D of G, and let ϕ : E(G) −→
{1, ..., k − 1}. The pair (D,ϕ) is a (nowhere-zero) k-flow of G if for every v ∈ V (G), the sum

of the values of all edges leaving v equals the sum of the values of all edges entering v.
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(almost hypohamiltonian) graphs by H (H1). These families restricted to planar

graphs will be denoted by H and H1, respectively.
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Chapter 2

Hypohamiltonian and

Hypotraceable Graphs

2.1 The Planar Case

In the early seventies, Chvátal [25–27] raised the problem whether there ex-

ist planar hypohamiltonian graphs, and offered $5 for its solution [27, Prob-

lem 19]. Grünbaum conjectured that no such graph exists [59, p. 37]. In 1976,

Thomassen [127] constructed infinitely many planar hypohamiltonian graphs.

(I do not know whether he received the $5.) The smallest among them has

order 105, and is shown in Fig. 2. In analogy to hypohamiltonian graphs in

general, the following natural question arose. What is the order of the smallest

planar hypohamiltonian graph?

In the general case this was solved in 1967 by Herz, Duby, and Vigué [67], and

the answer is that Petersen’s graph of order 10, shown in Fig. 1 and Fig. 45 in

two different drawings, is the smallest (both in terms of order and size, in fact).

In the planar case, the question is as of now unanswered, but significant progress

has been made.

In 1979, Hatzel [64] found a smaller planar hypohamiltonian graph than the

105-vertex example given by Thomassen, and substantially improved the upper

bound for the smallest planar hypohamiltonian graph; Hatzel’s graph has only

7



Fig. 2: Thomassen’s plane hypohamiltonian graph—the first of its kind.

It has order 105.

57 vertices. This was then improved to 48 by the author and T. Zamfirescu [146],

to 42 by Araya and Wiener [141], and most recently to 40 vertices by Jooyandeh,

McKay, Österg̊ard, Pettersson, and the author [80]. The latter three graphs are

shown in Fig. 3. The 40-vertex graph is the smallest example known so far,

together with 24 other graphs of the same order [80], shown in Fig. 6.

Fig. 3: Plane hypohamiltonian graphs of order 48, 42, and 40, resp. They held

or hold the record of smallest known planar hypohamiltonian graph for the

periods 2007–09, 2009–12, and since 2012, resp.
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We will tacitly use the fact that for G ∈ H, we have κ(G) = λ(G) = δ(G) = 3,

due to the following argument. Since the deletion of any vertex gives a hamil-

tonian graph, we have κ(G) ≥ 3. Thomassen [128] showed that G must con-

tain a cubic vertex, so δ(G) ≤ 3. The equalities now follow from the fact that

κ(G) ≤ λ(G) ≤ δ(G).

2.1.1 Grinberg’s Criterion

In a plane graph, we call a face of size k a k-face. An essential ingredient for

the progress that has been made towards finding smaller planar hypohamiltonian

graphs in the past decades is the following useful result of Grinberg.

Theorem 2.1: Grinberg’s Criterion (Grinberg, 1968 [51]) Given a plane graph

with a hamiltonian cycle h and fk (f ′k) k-faces inside (outside) of h, we have∑
k≥3

(k − 2)(fk − f ′k) = 0. (†)

Instead of giving here a proof of this theorem central to our efforts, we present

two proofs in Section 2.5.

For j ∈ {0, 1, 2}, define Aj = Aj(G) to be the set of faces of G with size

congruent to j modulo 3. We call a graph grinbergian if it is 3-connected, plane

and all of its faces but one belong to A2. We call the face not lying in A2

exceptional.

A few examples: Thomassen’s graph from Fig. 2 is grinbergian since all of

its faces are pentagons, with the exception of the unbounded face, which is a 10-

gon, and 10 ≡ 1 (mod 3). Two of the graphs shown in Fig. 3 (left and centre),

and the graph depicted in Fig. 12 on the right are grinbergian as well, while

the Herschel graph given in Fig. 4 is not grinbergian, since all of its faces are

quadrilaterals. However, it can be shown to be non-hamiltonian making use of

Grinberg’s Criterion, see the caption of Fig. 4.

By Grinberg’s Criterion, grinbergian graphs are non-hamiltonian—their face

sizes are such that the left-hand side of (†) cannot possibly vanish. Thus, they

are good candidates for hypohamiltonian graphs. Notice the difference between

9



Fig. 4: Herschel’s graph. Grinberg’s Criterion yields that Herschel’s graph is

non-hamiltonian, since it only contains quadrilaterals and we have f4 + f ′4 = 9,

so the left side of (†) becomes (4− 2)(f4 − f ′4), which cannot vanish. In fact,

Herschel’s graph is (one of) the smallest non-hamiltonian polyhedral graphs [9].

our definition and that of Zaks [142], who defines non-Grinbergian graphs to be

graphs with every face in A2.

Theorem 2.2 (Jooyandeh, McKay, Österg̊ard, Pettersson, Zamfirescu, 2016 [80])

Every grinbergian hypohamiltonian graph has the property that its exceptional face

belongs to A1 and that its order is a multiple of 3.

Proof. Consider G ∈ H to be grinbergian, let the j-face F be the exceptional

face of G (so F /∈ A2), and let v be a vertex of F . v belongs to F and to several,

say h, faces in A2. The face of G − v containing v in its interior has size j − 2

(mod 3), while all other faces have size 2 (mod 3). Since G ∈ H, G− v must be

hamiltonian. Thus G − v cannot be a grinbergian graph, so j − 2 ≡ 2 (mod 3),

which implies F ∈ A1.

Counting the edges twice we get 2m ≡ 2(f − 1) + 1 (mod 3), where f is the

number of faces in G. Together with Euler’s formula [35, 36] this gives

2n = 2m− 2f + 4 ≡ 2f − 1− 2f + 4 ≡ 0 (mod 3),

so n is a multiple of 3. 2

10



Lemma 2.3 [80] In a grinbergian hypohamiltonian graph G, all vertices of the

exceptional face have degree at least 4.

Proof. Denote the exceptional face by F . Now assume that there is a cubic vertex

v ∈ V (F ), and consider the vertex w ∈ N(v)\V (F ). (Note that N(v)\V (F ) 6= ∅,
because G is 3-connected.) Let k be the degree of w, and denote by N1, . . . , Nk

the sizes of the faces of G that contain w. We have Ni ≡ 2 (mod 3) for all i. Put

G′ = G − w. The size of the face of G′ which in G contained w in its interior

is ` =
∑

i(Ni − 2) ≡ 0 (mod 3). Since G is hypohamiltonian, G′ is hamiltonian.

The graph G′ contains only faces in A2 except for one face in A1 and one in A0.

The face in A1 and the face in A0 are on different sides of any hamiltonian cycle

in G′, as the cycle must pass through v. Since `− 2 ≡ 1 (mod 3), (†) modulo 3

gives 1 + 1 ≡ 0 (mod 3) or 2 + 2 ≡ 0 (mod 3), which are both false. 2

In what follows we will use these properties to show that the smallest grin-

bergian hypohamiltonian graph has 42 vertices. This shows that, restricted to

this particular family, the result of Araya and Wiener published in [141] is best-

possible.

2.1.2 Generation of 4-face Deflatable Hypohamiltonian

Graphs

We define the operation 4-face deflater denoted by FD4 which squeezes a 4-face

of a plane graph into a path of length 2, see Fig. 5. The inverse of this operation

is called 2-path inflater which expands a path of length 2 into a 4-face and is

denoted by PI2. In Fig. 5, each half-line connected to a vertex designates an

edge incident to the vertex at that position; a small triangle allows zero or more

incident edges at that position. For example v3 has degree at least 3 and at least 4

on the left-hand side and right-hand side of Fig. 5, respectively. The set of all

graphs obtained by applying PI2 and FD4 to a graph G is denoted by PI2(G)

and FD4(G), respectively.

Let D5(f) be the set of all (simple connected) plane graphs with f faces and

minimum degree at least 5. This class of graphs can be generated using the

11



Fig. 5: Operations FD4 and PI2.

program plantri [15, 16], written and maintained by Brinkmann and McKay. Let

us denote the dual of a plane graph G by G∗. We define the family of 4-face

deflatable graphs (which are not necessarily simple) with f 4-faces and n vertices,

denoted by M4
f (n), recursively as

M4
f (n) =

 {G
∗ : G ∈ D5 (n)} , f = 0,⋃
G∈M4

f−1(n−1)
PI2(G), f > 0.

Note that applying PI2 to a graph increases the number of both vertices and

4-faces by exactly one. We now filter M4
f for possible hypohamiltonian graphs

and put

H4
f (n) =M4

f (n) ∩H.

The set H4
f (n) can be defined for all non-negative n, but is non-empty only

for n ≥ 20 because the minimum face count for a simple plane 5-regular graph

is 20 (icosahedron). Also it is straightforward to check that f ≤ n− 20 because

H4
f (n) is defined based on H4

f−1(n− 1) for f > 0.

To test hamiltonicity of graphs, we use depth-first search with the following

pruning rule. If there is a vertex that does not belong to the current partial cycle,

and has fewer than two neighbours that either do not belong to the current partial

cycle or are an end-vertex of the partial cycle, the search can be pruned. This

approach can be implemented efficiently with careful bookkeeping of the number

of neighbours that do not belong to the current partial cycle for each vertex. It

turns out to be reasonably fast for small planar graphs.
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Finally, we define the set of 4-face deflatable hypohamiltonian graphs denoted

by H4(n) as

H4(n) =
n−20⋃
f=0

H4
f (n).

The graphs found on 105 vertices by Thomassen [127], 57 by Hatzel [64], 48 by

the author and T. Zamfirescu [146], and 42 by Araya and Wiener [141] are all 4-

face deflatable and belong to H4
0(105), H4

1(57), H4
1(48), and H4

1(42), respectively.

But, using this definition, we are also able to find many hypohamiltonian graphs

which were not discovered so far.

Jooyandeh and McKay have generated H4
f (n) exhaustively for 20 ≤ n ≤ 39

and all possible f , but no graph was found, which means that for all n < 40 we

have H4(n) = ∅. For n > 39 they were not able to finish the computation for

all f due to the amount of required time. For n = 40, 41, 42, 43 they finished the

computation up to f = 12, 12, 11, 10, respectively. The only values of n and f for

which H4
f (n) was non-empty were H4

5(40), H4
1(42), H4

7(42), H4
4(43), and H4

5(43).

More details about these families are provided in Tables 1–3 in the Appendix.

Based on the computations we obtain Theorem 2.4. The complete list of graphs

generated is available for download at Jooyandeh’s repository [78]. They can also

be obtained from the House of Graphs [13] by searching for the keywords “planar

hypohamiltonian graph”.

Theorem 2.4 [80]

• There is no planar 4-face deflatable hypohamiltonian graph of order less

than 40.

• There are at least 25 planar 4-face deflatable hypohamiltonian graphs on

40 vertices.

• There are at least 179 planar 4-face deflatable hypohamiltonian graphs on

42 vertices.

• There are at least 497 planar 4-face deflatable hypohamiltonian graphs on

43 vertices.
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Fig. 6: In Figs. 3 and 8, we present the same plane hypohamiltonian graph on

40 vertices. Here we show the remaining 24 plane hypohamiltonian graphs of

order 40 mentioned in Theorem 2.4.

Lemma 2.5 [80] Let G be a grinbergian hypohamiltonian graph whose faces have

size at least 5 with one exception, which has size 4. Then both (possibly isomor-

phic) graphs in FD4(G) have a simple dual.

Proof. As G is a simple 3-connected graph, the dual G∗ of G is simple, too. Let

G′ ∈ FD4(G) and assume to the contrary that G′∗ is not simple.

If G′∗ contains multiedges, then the fact that G∗ is simple implies that either

the two faces incident with v1v5 or with v3v5 in Fig. 7 (b) (we assume the first by

symmetry) have a common edge v8v9 in addition to v1v5. Let v1v6 and v1v7 be

the edges adjacent to v1v5 in the cyclic order of v1. Note that v6 6= v7 because the

degree of v1 in G′ is at least 3 by Lemma 2.3. If v1 and v8 were the same vertex,

then v1 would be a cut-vertex in G considering the closed walk v1v6...v8(= v1).

But this is impossible as G is 3-connected, so v1 6= v8. Now we can see that

{v1, v8} is a 2-cut for G considering the closed walk v1v6...v8...v7v1.

Also, if G′∗ has a loop, with the same discussion, we can assume that the two

faces incident with v1v5 are the same. However, then v1 would be a cut-vertex

for G. Therefore, both having multi-edges or having loops violate the fact that

G is 3-connected. So the assumption that G′∗ is not simple is incorrect, which

completes the proof. 2
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Fig. 7: Showing that FD4(G) has a simple dual.

Theorem 2.6 [80] Every grinbergian hypohamiltonian graph is 4-face deflatable.

More precisely, every grinbergian hypohamiltonian graph of order n is in H4
0(n)∪

H4
1(n).

Proof. Let G ∈ H be a grinbergian graph with n vertices. By Theorem 2.2,

the exceptional face belongs to A1 so its size is 4 or greater. If the exceptional

face is a 4-face, then by Lemma 2.3 the 4-face has two non-adjacent vertices

of degree at least 4. So we can apply FD4 to obtain a graph G′ which has

no face of size less than 5. So δ(G′∗) ≥ 5 and G′∗ is a simple plane graph

by Lemma 2.5. Thus G′∗ ∈ ⋃f D5(f) and as a result of the definition of M4
f ,

G′∗∗ = G′ ∈ M4
0(n− 1). Furthermore, G ∈ M4

1(n) because G ∈ PI2(G′) and as

G ∈ H, we have G ∈ H4
1(n).

But if the exceptional face is not a 4-face, then by the fact that it is 3-connected

and simple, G∗ is simple as well and as the minimum face size of G is 5, we have

δ(G∗) ≥ 5, which implies that G ∈M4
0(n) and so G ∈ H4

0(n). 2

Corollary 2.7 [80] The smallest grinbergian hypohamiltonian graph has 42 ver-

tices and there are exactly seven such graphs on 42 vertices.

Proof. By Theorem 2.6 every grinbergian graph belongs to H4
0(n) ∪ H4

1(n) but

according to the results presented in the paragraph preceding Theorem 2.4, we

have H4
0(n) ∪ H4

1(n) = ∅ for all n < 42. So there is no such graph of order

less than 42. On the other hand, we have H4
0(42) = ∅ and |H4

1(42)| = 7 which

completes the proof. 2
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Fig. 8: A plane hypohamiltonian graph of order 40.

(It is isomorphic to the right-most graph from Fig. 3, but drawn differently.)

Theorem 2.8 [80] The graph shown in Fig. 8 is hypohamiltonian.

Proof. This was already tested by computer but we also give a manual proof. We

first show that the graph is non-hamiltonian. Assume to the contrary that the

graph contains a hamiltonian cycle, which must then satisfy Grinberg’s Criterion.

The graph in Fig. 8 contains five 4-faces and 22 5-faces. Then (†) becomes∑
i≥3

(i− 2)(fi − f ′i) ≡ 2(f4 − f ′4) ≡ 0 (mod 3),

where f4 + f ′4 = 5. So w.l.o.g. f ′4 = 1 and f4 = 4. Let Q be the 4-face on a

different side of the hamiltonian cycle than the other four 4-faces.

Note that an edge belongs to a hamiltonian cycle if and only if the two faces

it belongs to are on different sides of the cycle. Since all edges of the outer face

of the embedding in Fig. 8 have a 4-face on the other side, and not all of its edges

can lie in a hamiltonian cycle, that face cannot be Q.

If Q is one of the other 4-faces, then the only edge of the outer face in the

embedding in Fig. 8 that belongs to a hamiltonian cycle is the edge belonging to

Q and the outer face. The two vertices of the outer face that are not endpoints

of that edge have degrees 3 and 4, and we arrive at a contradiction as we know

that two of the edges incident to the vertex with degree 3 are not part of the

hamiltonian cycle. Thus, the graph is non-hamiltonian.

To end the proof, Fig. 9 shows for each vertex of the graph a cycle omitting

that vertex. 2
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Fig. 9: For each vertex v of the plane hypohamiltonian graph G of order 40

shown in Fig. 8, we depict here a cycle of length |V (G)| − 1 avoiding v.

2.1.3 Possible Orders of (Planar) Hypohamiltonian

Graphs

In 1973, Chvátal showed [25] that if we choose n to be sufficiently large, then there

exists a hypohamiltonian graph of order n. We now know that for every n ≥ 18

there exists such a graph of order n, and that 18 is optimal, since Aldred, McKay

and Wormald showed that there is no hypohamiltonian graph on 17 vertices [5].

Their paper determined for all orders whether hypohamiltonian graphs exist or

do not exist. (For more details, see the survey of Holton and Sheehan [71].)

They also provide a complete list of hypohamiltonian graphs with at most

17 vertices—there is exactly one such graph for each of the orders 10 (the Pe-

tersen graph, see Fig. 1), 13, and 15 (these were found by computer searches

of Herz [66]), four of order 16, among them Sousselier’s graph, and none of or-

der 17. These seven hypohamiltonian graphs on fewer than 18 vertices are shown
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in Fig. 10. There exist at least thirteen 18-vertex hypohamiltonian graphs—

the exact number is unknown. (See also sequence A141150 in Sloane’s On-Line

Encyclopedia of Integer Sequences [117].) In [97], McKay lists all known hypo-

hamiltonian graphs and cubic hypohamiltonian graphs up to 26 vertices (where

for the general case the enumerations on 18 vertices and higher may be incom-

plete), as well as for 28 and 30 vertices the cubic hypohamiltonian graphs with

girth at least 5 and girth at least 6, respectively.

Fig. 10: The seven smallest hypohamiltonian graphs. Their orders are 10, 13,

15, 16, 16, 16, and 16, resp. Of the four 16-vertex graphs, the bottom-left one is

called Sousselier’s graph.

The same question as the one discussed in the above paragraph is of course

also interesting for planar hypohamiltonian graphs (see for instance [71]): is there

an n0 such that there exists a planar hypohamiltonian graph of order n for all

n ≥ n0? In 2011, Araya and Wiener settled this question affirmatively.

Theorem 2.9 (Araya and Wiener, 2011 [141]) There exists a planar hypohamil-

tonian graph on n vertices for every n ≥ 76.

The bound for n0 was improved by the author to 48 (unpublished). We now

present the result that gives the currently best bound for n0. But first, we need an

operation introduced by Thomassen [129] (and called by Araya and Wiener [141]
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the “Thomassen operation”) with which he showed that there exist infinitely

many planar cubic hypohamiltonian graphs. Let G be a graph containing a 4-

cycle v1v2v3v4 = C, and consider vertices v′1, v
′
2, v
′
3, v
′
4 /∈ V (G). We denote by

Th(GC) the graph obtained from G by deleting the edges v1v2, v3v4 and adding

a new 4-cycle v′1v
′
2v
′
3v
′
4 and the edges viv

′
i, 1 ≤ i ≤ 4. Abusing notation, when we

speak of “the graph Th(GC)” and C is a not further specified 4-cycle, we refer

to (an arbitrary but fixed) one of the two (possibly isomorphic) graphs obtained

when applying Th. In the following, if not stated otherwise, we will use the

notation for C and the vertices added to G as introduced in this paragraph. The

operation Th is illustrated in Fig. 11 and preserves polyhedrality and 3-regularity.

v1

v2 v3

v4 v1

v2 v3

v4

v′1
v′2 v′3

v′4

Fig. 11: The operation Th.

The following lemma is essentially due to Thomassen, who gives it (without

proof) in [129]. A detailed proof for the planar case can be found in [141].

Lemma 2.10 (Thomassen, 1981 [129]) Let G ∈ H contain a cubic 4-cycle C.

Then Th(GC) ∈ H. If G is planar or cubic (possibly both), then so is Th(GC).

We now extend Lemma 2.10.

Proposition 2.11 Let G ∈ H contain a 4-cycle C, and let V (C) contain two

adjacent cubic vertices (and no condition is imposed on the other two vertices).

Then Th(GC) ∈ H. If G is planar or cubic (possibly both), then so is Th(GC).

Proof. It is shown in [141, Lemma 4.3] that Th(GC) is non-hamiltonian—there G

is supposed to be planar, but this is not used in the proof of the non-hamiltonicity

of Th(GC). It remains to show that Th(GC) − v is hamiltonian for every v ∈
V (Th(GC)). We consider G− {v1v2, v3v4} to be a subgraph of Th(GC).
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Claim. Consider v ∈ V (G) and let h be a hamiltonian cycle in G− v. If E(C) ∩
E(h) 6= ∅, then there exists a hamiltonian cycle in Th(GC)− v.

Proof of the Claim. Let e ∈ E(C) ∩ E(h). If e = v1v2 and v3v4 /∈ E(h), then

(h − v1v2) ∪ v1v′1v′4v′3v′2v2 is a hamiltonian cycle in Th(GC) − v. If e = v1v2 and

v3v4 ∈ E(h), then (h − {v1v2, v3v4}) ∪ v1v′1v′2v2 ∪ v3v′3v′4v4 is a hamiltonian cycle

in Th(GC)− v. If e = v1v4, then (h− v1v4) ∪ v1v′1v′2v′3v′4v4 is a hamiltonian cycle

in Th(GC)− v.

Consider v ∈ V (G) and a hamiltonian cycle h in G−v. Since there are at least

two cubic vertices in V (C), there is at least one cubic vertex in V (h)∩V (C). Thus

E(C) ∩E(h) 6= ∅, and the Claim implies that there exists a hamiltonian cycle in

Th(GC)−v. It remains to show that Th(GC)−v′i is hamiltonian for all i. W.l.o.g.

let v1 be cubic. By replacing in the hamiltonian cycle in G − v4 the path v1v2

with v1v4v
′
4v
′
3v
′
2v2 (v1v4v

′
4v
′
1v
′
2v2), we obtain a hamiltonian cycle in Th(GC) − v′1

(Th(GC)−v′3). If v4 is cubic, then by replacing in the hamiltonian cycle in G−v1
the path v3v4 with v3v

′
3v
′
4v
′
1v1v4 (v3v

′
3v
′
2v
′
1v1v4), we obtain a hamiltonian cycle in

Th(GC)− v′2 (Th(GC)− v′4). If v2 is cubic, the treatment is very similar. 2

Theorem 2.12 (Jooyandeh, McKay, Österg̊ard, Pettersson, and Zamfirescu,

2016 [80]) There exists a planar hypohamiltonian graph of order n for every

n ≥ 42.

Proof. Figs. 3 and 12 show plane hypohamiltonian graphs on 40, 42, 43, and

45 vertices. It is not difficult to check that applying the operation Th to the

outer face of these graphs gives planar hypohamiltonian graphs with 44, 46, 47,

and 49 vertices. Indeed, for the 44-vertex example (consider for instance the

graph from Fig. 8) and the 47-vertex example (see Fig. 12 (left)) this follows

from Prop. 2.11, but we skip here the details of this part of the proof, since a

detailed account of this step is given in the proof of Lemma 3.6 and Fig. 31.

By the construction, these graphs will have a cubic 4-face, so the statement now

follows from repeated application of Lemma 2.10. 2
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Fig. 12: Plane hypohamiltonian graphs of order 43 and 45, resp.

We have seen that planar hypohamiltonian graphs exist on 40 vertices, and of

order n for every n ≥ 42. However, whether such graphs on fewer than 40 vertices

exist, or whether such a graph of order 41 exists, remains open.

2.1.4 A Planar Counter-Example to a Conjecture of

Chvátal

Chvátal [25] conjectured that if the deletion of an edge e from a hypohamiltonian

graph G does not create a vertex of degree 2, then G − e is hypohamiltonian.

Thomassen [126] gave numerous counter-examples to this conjecture, yet none of

them is planar. We now provide a planar counter-example.

v
e1

e2

e3

(a) (b)

Fig. 13

Consider the plane graph G from Fig. 13 (a) which has 48 vertices, the edge

denoted by e1, and the vertex denoted by v. G is hypohamiltonian, as shown
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in [146]. Using Grinberg’s Criterion, it is clear that G remains hypohamiltonian

if we add an edge such that the octagon becomes two pentagons. Call this graph

G′. Notice that G′ − e1 = G′′ has no vertices of degree 2. In G′′ − v, shown in

Fig. 13 (b), there is exactly one heptagon (the unbounded face) and exactly one

dodecagon, and all other faces are pentagons. Assume that G′′ − v contains a

hamiltonian cycle h. Then Grinberg’s Criterion yields

3(f5 − f ′5)− 5± 10 = 0,

where as before f5 (f ′5) is the number of pentagons inside (outside) of h. This can

only hold if the ambiguous sign is “−”, which implies that the dodecagon, like

the heptagon, lies on the outside of h. But as the edges e2 and e3 (see Fig. 13 (b))

both must lie in h, a contradiction is obtained. So G′′ − v is not hamiltonian,

whence, G′′ is not hypohamiltonian. As both G′ and G′′ are obviously planar, we

are done.

Inspired by Chvátal’s conjecture, we make here the following two observations.

1. Let G be a hypohamiltonian graph. If there exists an edge e ∈ E(G) such that

there is exactly one vertex w ∈ V (G) with the property that for every hamiltonian

cycle h in G − w we have e ∈ E(h), then G − e is almost hypohamiltonian

with exceptional vertex w. Almost hypohamiltonian graphs will be discussed in

Chapter 3.

2. Although for arbitrary e ∈ E(G) the graph G−e is not necessarily hypohamil-

tonian, the graph G− e does have the property that (i) it is non-hamiltonian and

(ii) for every vertex v ∈ V (G) the graph G − e − v is traceable. This will be

studied further in Chapter 5.

2.1.5 Planar Cubic Hypohamiltonian Graphs

We now turn our attention to the family of planar cubic hypohamiltonian graphs.

A brief motivation follows. Hamiltonian paths and cycles in planar cubic graphs

have been investigated extensively since in the early 20th century, Tait tried

to prove the Four Colour Conjecture (which is now a theorem) based on the

22



conjecture that every planar 3-connected cubic graph is hamiltonian. However,

Tutte [132] provided a counter-example in 1946.

Before 1968, when Grinberg proved his hamiltonicity criterion [51], such graphs

were quite difficult to find. Since then, several planar 3-connected cubic graphs

which are non-hamiltonian have been constructed. However, for the smallest

example, the Lederberg-Bosák-Barnette graph on 38 vertices (see Fig. 14), the

proof does not use Grinberg’s Criterion.

In 1988, Holton and McKay [68] (finalising the efforts of several authors)

showed that all planar 3-connected cubic graphs on fewer than 38 vertices are

hamiltonian. So certainly the smallest planar cubic hypohamiltonian graph has

order at least 38.

Fig. 14: The Lederberg-Bosák-Barnette graph. It has order 38 and is the

smallest planar 3-connected cubic non-hamiltonian graph [68].

In 1973, Chvátal asked whether planar cubic hypohamiltonian graphs ex-

ist [26], see also [127, Problem 6.2]. Eight years later, Thomassen [129] showed

not only that planar cubic hypohamiltonian graphs exist, but that there is an

infinite family of such graphs. Using this, he constructs infinitely many planar

cubic hypotraceable graphs and gives a simple proof of the result of Collier and

Schmeichel [28] that every bipartite graph is the induced subgraph of some hy-

pohamiltonian graph. We will come back to this result in Section 3.6.

The smallest member of the family of planar cubic hypohamiltonian (planar

cubic hypotraceable) graphs given by Thomassen has order 94 (460). Currently,

the smallest known planar cubic hypohamiltonian (planar cubic hypotraceable)
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graph has 70 (340) vertices. Both were constructed by Araya and Wiener [7]

in 2011—the 70-vertex graph is shown in Fig. 15. Six more planar cubic hypo-

hamiltonian graphs of order 70 were found by Jooyandeh and McKay [79]. It is

unknown whether smaller such graphs exist, see Problem 5 in Chapter 6.

Fig. 15: The plane cubic hypohamiltonian graph of order 70 discovered by

Araya and Wiener [7]. No smaller example of its kind is known.

This paragraph’s discussion on the lower bound for the order of the small-

est planar cubic hypohamiltonian graph was already given by Araya and Wiener

in [7]. We have already mentioned that in 1988 it was shown that all planar

3-connected cubic graphs on fewer than 38 vertices are hamiltonian. In 2000,

Aldred, Bau, Holton, and McKay [4] proved that there is no planar cubic hypo-

hamiltonian graph on 42 or fewer vertices. They showed that every 3-connected,

cyclically 4-edge-connected cubic planar graph has at least 42 vertices and pre-

sented all such graphs on exactly 42 vertices.

Hypohamiltonian graphs are easily seen to be 3-connected. We now show

a further structural property, which implies that hypohamiltonian graphs are

cyclically 4-edge-connected.

Proposition 2.13 Let M be a 3-edge-cut in a hypohamiltonian graph G. Then

G−M contains exactly two components A1 and A2 with A = K1 and A2 6= K1.

Proof. Let G−M contain components A1, ..., Ak, k ≥ 2, and assume that A1 6= K1

and A2 6= K1. We put M = {a1b1, a2b2, a3b3}, where ai ∈ V (A1), bi ∈ V (A2) for
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all i. Since G is 3-connected, the elements of the set {a1, a2, a3, b1, b2, b3} are

pairwise distinct. Since G is hypohamiltonian, G− b3 is hamiltonian, so there is

a hamiltonian path in A1 with end-vertices a1 and a2. As G− a3 is hamiltonian,

there is a hamiltonian path in A2 with end-vertices b1 and b2. These paths

together with a1b1 and a2b2 yield a hamiltonian cycle in G, a contradiction. Note

that if at least one of the components of G−M is isomorphic to K1, then k = 2.

This completes the proof. 2

As discussed above, planar hypohamiltonian graphs have at least 42 vertices

in the cubic case. Moreover, all 42-vertex graphs presented in [4] have exactly

one face of size not congruent to 2 modulo 3 (i.e. an exceptional face as defined

in Section 2.1.1), and it was observed by Thomassen [125] that cubic graphs

with this property cannot be hypohamiltonian. The order of the smallest cubic

planar hypohamiltonian graph is therefore at least 44 and at most 70. Araya and

Wiener [7] proposed ways to improve the lower bound, but these have not yet

been put into practice.

In order to improve a Theorem of Araya and Wiener from [7], we require the

following result of Thomassen.

Lemma 2.14 (Thomassen, 1981 [129]) Let G be a plane cubic graph containing

a quadrilateral adjacent to four heptagons, and suppose furthermore that the size

of every other face is congruent to 2 modulo 3. Then G is non-hamiltonian.

We will show in Lemma 2.16 the existence of a 76-vertex planar cubic hypo-

hamiltonian graph, which we call Q (see Fig. 16), with which we strengthen the

main result of Araya and Wiener in [7]; they showed the following.

Lemma 2.15 (Araya and Wiener, 2011 [7]) There exist planar cubic hypohamil-

tonian graphs on 70 + 4k vertices for every k ≥ 0, and on n vertices for every

even n ≥ 86.

Note that the result of Araya and Wiener answers a question of Holton and

Sheehan [71], who asked if there exists an integer n such that a planar cubic

hypohamiltonian graph exists for every even integer greater than or equal to n.
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Lemma 2.16 (2015 [144]) There exist planar cubic hypohamiltonian graphs on

76 + 4k vertices for every k ≥ 0.

Proof. Fig. 16 shows the graph Q, which is obviously planar and cubic. Q contains

precisely one quadrilateral surrounded by four heptagons, while all other faces are

pentagons, octagons or 11-gons. By Lemma 2.14, Q is non-hamiltonian. In the

Appendix we provide for each vertex of Q a cycle of length 75 avoiding it. By

applying Lemma 2.10 successively, the proof is complete. 2

Theorem 2.17 [144] There exist planar cubic hypohamiltonian graphs on 70

vertices and on n vertices for every even n ≥ 74.

Proof. Combining Lemmas 2.15 and 2.16, the statement is verified. 2

Summarising, Theorem 2.17 improves the bound linked to the question of

Holton and Sheehan mentioned on the previous page from 86 to 74, which is

currently the best bound. It is unknown whether a planar cubic hypohamiltonian

graph of order 72 exists. The order of the smallest planar cubic hypohamiltonian

graph is at least 44 and at most 70. We have not discussed here what occurs if

we additionally restrict the girth of the graph—we shall do so in Section 2.4.

2.2 Crossing Numbers

In this section we study the crossing number of certain hypohamiltonian graphs.

Historically, much effort has gone into the analysis of planar hypohamiltonian

graphs (i.e., in the context of this section, with crossing number 0), but few

distinctions were made between non-planar hypohamiltonian graphs, and little

seems to be known. The main result of this section is extending the scope of

Theorem 2.12 (which states that there exist planar hypohamiltonian graphs of

order n for every n ≥ 42) beyond the planar case. We conclude by providing
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lower and upper bounds on the order of the smallest hypohamiltonian graphs of

fixed crossing number k for k ≤ 3.

A drawing of a graph G is an injective mapping f that assigns to each vertex

a point in the plane and to each edge uv a Jordan arc (i.e. a homeomorphic

image of a closed interval) connecting f(u) and f(v), not passing through the

image of any other vertex. For simplicity, the arc assigned to uv is called an edge

of the drawing, and if this leads to no confusion, it is also denoted by uv. We

assume that no three edges have an interior point in common, and if two edges

share an interior point p, then we say that they cross at p. We also assume that

any two edges of a drawing have only a finite number of crossings (i.e. common

interior points). A common endpoint of two edges does not count as a crossing.

The crossing number of G, denoted by cr(G), is the minimum number of edge

crossings for all possible drawings of G. An overview of results concerning the

crossing number can be found in Székely’s paper [123] and the survey [109] by

Richter and Salazar.

We shall use the family of generalised Petersen graphs GP(n, k) introduced

by Coxeter [30]. A graph in GP(n, k) has vertex set {u0, ..., un−1, v0, ..., vn−1}
and edge set

⋃n−1
i=0 {uiui+1, uivi, vivi+k}, the indices being taken modulo n, and

k < n/2. Alspach [6] showed that GP(n, k) is non-hamiltonian if and only if

n ≡ 5 (mod 6) and k = 2. We call this particular subfamily F . Bondy [12]

showed that F ⊂ H.

The Petersen graph P = GP(5, 2) ∈ F has crossing number 2. The proof

of this well-known fact is short. Firstly, draw P with two crossings, see Fig. 1.

Secondly, prove that it is impossible to draw the Petersen graph with less than

two crossings. One can do this with the following inequality based on Euler’s

formula (see for instance [123]). Denote the girth, size, order of a graph G by g,

m, n, respectively. Then we have

cr(G) ≥
⌈
m− g(n− 2)

g − 2

⌉
. (?)

For P , g = 5, m = 15, n = 10; thus (?) yields cr(P ) ≥ 2. Exoo, Harary, and

Kabell [38] showed that cr(GP(n, 2)) = 3 when n is odd and at least 7. Therefore,

all other members of F have crossing number 3.
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In 2011, it was shown by Araya and Wiener [141] that there exist planar

hypohamiltonian graphs of order n for every n ≥ 76. In Theorem 2.12, we

decreased this to 42. The smallest hypohamiltonian graph is the Petersen graph,

which has crossing number 2, see Fig. 1. All non-planar hypohamiltonian graphs

constructed (explicitly) in the literature have crossing number at least 2, and in

fact for few of them the crossing number has been computed explicitly in the

sense that it is certainly at least 2, but the exact crossing number is unknown.

We require a construction method introduced by Thomassen [129]. Let G be

a hypohamiltonian graph containing a 4-cycle abcd = C. We delete the edges ab

and cd, add two new vertices a′ and d′, and add the edges a′d′, aa′, dd′, a′c, d′b.

Denote the resulting graph by G?
C . Whenever the choice of abcd = C is clear,

we simply write G?. For an illustration of a case where G is plane, see Fig. 16.

Thomassen mentions in [129] the first part of Lemma 2.18, but gives no proof.

Therefore, we choose to prove here both parts.

Lemma 2.18 (2012 [143]) If G ∈ H contains a cubic 4-cycle C, then G?
C ∈ H.

If G is planar, then cr(G?
C) = 1.

Proof. Notice that the 4-cycle abcd = C is chordless, as it is cubic and G is

3-connected. If G is planar, then abcd is a facial cycle. Assume G? contains a

hamiltonian cycle h. There are two essentially different possibilities for h to visit

a′ and d′: either a′d′ ∈ E(h) or a′d′ /∈ E(h).

For every edge xy ∈ E(C) there exists a path xvwy in G? such that {v, w} =

{a′, d′}, and vice-versa for every such path in G? there exists the corresponding

edge in G. This yields a contradiction for the case a′d′ ∈ E(h), since we obtain

for each of the four ways h might visit a′ and d′, a hamiltonian cycle in G.

In the latter case, i.e. a′d′ /∈ E(h), we have that ca′a ⊂ h and bd′d ⊂ h. Then

h− (ca′a ∪ bd′d) is the union of two paths which, together with either ab and cd

or ad and bc, form a hamiltonian cycle of G. This contradicts the fact that G is

hypohamiltonian.

Hence G? is non-hamiltonian. Put n = |V (G)|, so |V (G?)| = n + 2. We now

show that for each v ∈ V (G?) there exists an (n+ 1)-cycle h?v in G?− v. Consider

v ∈ V (G) and an (n− 1)-cycle hv in G− v. Since C is cubic, hv must contain an
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edge of C. By the observation from the preceding paragraph, we have obtained

hamiltonian cycles h?w for all w ∈ V (G?) \ {a′, d′}. For h?a′ consider hd and replace

ab with add′b. Analogously we get h?d′ . This shows that G? is hypohamiltonian.

Now suppose G is planar. In order to see that G? contains a graph K home-

omorphic to K3,3, where V (K) = {a, c, d′, a′, b, d}, it suffices to prove that there

exist two disjoint paths in G?, one with end-vertices a and b, and the other with

end-vertices c and d. Consider the graph G = G− {ab, cd}, which is a subgraph

of G?. Assume G has connectivity 1 with cut-vertex v. Since a, b, c, and d are

cubic, and a triangle in a hypohamiltonian graph has no cubic vertex, {a, v, d}
and {b, v, c} are 3-cuts in G. As K3,3 is non-planar and G is planar, for every

3-cut X in G, G −X has exactly two components. Let Y ′ and Y ′′ be the com-

ponents of G− {a, v, d} such that b ∈ V (Y ′′). Put G′ = G[V (Y ′) ∪ {a, v, d}] and

G′′ = G[V (Y ′′) ∪ {v}]. Since G − a is hamiltonian, there exists a hamiltonian

path p′′ in G′′ with end-vertices v and c. As G− b is hamiltonian, there exists a

hamiltonian path p′ in G′ with end-vertices v and d. Now p′ ∪ p′′ ∪ cd is a hamil-

tonian cycle in G. We have obtained a contradiction. Hence G is 2-connected

and the two paths exist due to Menger’s Theorem [99].

Finally, consider the face in G which contains the vertices a, b, c, d. Its bound-

ary minus the edges ad and bc yields the two desired disjoint paths. Thus, by

Kuratowski’s Theorem [91], G? is non-planar. It is easy to draw G? in the plane

with exactly one crossing—an example is given in Fig. 16. 2

Lemma 2.19 [143] There exists a hypohamiltonian graph with crossing number 1.

Proof. Apply Lemma 2.18 to a plane cubic hypohamiltonian graph containing a

quadrilateral face. For instance we can take the 76-vertex graph Q from Fig. 16.

The resulting graph Q? is shown in Fig. 16. Using the second part of Lemma 2.18,

we obtain the statement. 2

Consider graphs G and G′ containing cubic vertices x and x′, respectively.

Denote by GxG
′
x′ one of the graphs obtained from G−x and G′−x′ by identifying

the vertices in N(x) with those in N(x′) using a bijection. We continue our

preparations for the main result of this section.
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aa′ b

cd
d′

a b

cd

Fig. 16: On the left, the plane cubic hypohamiltonian graph Q is shown, and on

the right, Q?. Q? has crossing number 1. The grey edges in Q? show a subgraph

homeomorphic to K3,3.

Lemma 2.20 (Thomassen, 1974 [125]) Let G,G′ ∈ H each contain a cubic vertex,

say x and x′, respectively. Then GxG
′
x′ ∈ H.

Lemma 2.21 If a graph G contains k pairwise edge-disjoint copies of subgraphs

homeomorphic to K3,3, then cr(G) ≥ k.

Proof. Let us assume that cr(G) = ` < k. In G, we can delete (at most) ` edges

such that the (possibly disconnected) graph we obtain is planar. Since ` < k,

in at least one copy of K3,3 no edge was deleted—a contradiction, since K3,3 is

non-planar. 2

Lemma 2.22 (2012 [143]) For any k ≥ 0 there exists a hypohamiltonian graph

which has crossing number k.

Proof. For k = 0, consider a planar cubic hypohamiltonian graph such as the

graph Q of Fig. 16. Put Q1 = Q? (see Fig. 16). In Q minus the edges ab and cd,

denote the shortest path between a and b by S and the shortest path between c
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and d by T . Consider

J = Q?[{a, a′, b, c, d, d′}] ∪ S ∪ T,

marked with grey edges in Fig. 16, and a cubic vertex v ∈ V (Q?) with N(v)∩J =

∅. Take two copies Q′, Q′′ of Q?, the corresponding subgraphs J ′, J ′′, and the

corresponding vertices v′, v′′. Consider Q2 = Q′v′Q
′′
v′′ . This graph contains two

graphs homeomorphic toK3,3, namely J ′ and J ′′, and J ′∩J ′′ = ∅. By Lemma 2.21,

we have cr(Q2) ≥ 2. Drawing as we did in Fig. 16, it is clear that in fact

cr(Q2) = 2. (Think of Q2 as drawn on a sphere, with Q′ − v′ on the northern

hemisphere, Q′′− v′′ on the southern hemisphere, and the three vertices resulting

from identification on the equator.) We have shown the statement for k ≤ 2. Now

assume that we have constructed in this manner a graph Qk−1, which is planar,

cubic, hypohamiltonian, and has crossing number k−1. The graph Qk = Qk−1
w Q1

v

(where w ∈ V (Qk−1) is a cubic vertex such that N(w) does not meet any subgraph

isomorphic to J) then has crossing number k, and the lemma is proven. 2

We state the main result of this section.

Theorem 2.23 [143] For every k ≥ 0 there is an integer n0(k) such that, for

every n ≥ n0, there exists a hypohamiltonian graph which has order n and crossing

number k.

Proof. Let Qk be the hypohamiltonian graph with crossing number k constructed

in the proof of Lemma 2.22. It has plenty of cubic vertices. Now choose a cubic

vertex v ∈ V (Qk) no neighbour of which belongs to any of the used subgraphs

isomorphic to J . Theorem 2.12 states that for every n ≥ 42 there exists a planar

hypohamiltonian graph Hn of order n. By a result of Thomassen [128], every

planar hypohamiltonian graph contains a cubic vertex. Thus, for every n the

graph Hn contains a cubic vertex w. We apply Lemmas 2.20 and 2.21 to Qk and

Hn, obtaining the graph Qk
vH

n
w. Drawing in the same manner as in Fig. 16 and

providing the family {Qk
vH

n
w}∞n=42 yields the statement. 2

31



Let ok be the order of the smallest hypohamiltonian graph with crossing num-

ber k, and let o′k denote the minimum number such that there exists a hypohamil-

tonian graph of order n and crossing number k for every n ≥ o′k.

An upper bound for o0 is a direct consequence of Theorem 2.8, where it

is shown that there exists a planar hypohamiltonian graph of order 40. We

now prove that o1 ≤ 46. By applying Thomassen’s operation Th defined in

Section 2.1.3 and Prop. 2.11, we obtain from the plane hypohamiltonian graph of

order 40 shown in Fig. 8 a plane hypohamiltonian graph W of order 44 containing

a cubic 4-face. By Lemma 2.18, W ? is a hypohamiltonian graph of order 46 and

crossing number 1. We recall that the Petersen graph P has crossing number 2

(see Fig. 1), so o2 = 10 (as P is the smallest hypohamiltonian graph, see e.g. [67]).

Moreover, cr(GP(11, 2)) = 3, see [38]. In summary, we have

18 ≤ o0 ≤ 40, 18 ≤ o1 ≤ 46, o2 = 10, and 13 ≤ o3 ≤ 16,

where the lower bounds on o0 and o1 can be computed by using the list of small

hypohamiltonian graphs provided by Aldred, McKay and Wormald [5] and ap-

plying (?): all seven hypohamiltonian graphs on fewer than 18 vertices (see

Fig. 10) have crossing number at least 2. The upper bound for o3 is proven

by Fig. 17. This embedding was found using Markus Chimani’s tool accessible

at http://crossings.uos.de/. It is described in detail in [23, 24]. In fact, the tool

also outputs that the hypohamiltonian graphs on 13 and 15 vertices each have

crossing number exactly 4, but we await an independent implementation.

Fig. 17: A hypohamiltonian graph of order 16 and crossing number at most 3.

It is isomorphic to the top-left of the four 16-vertex graphs depicted in Fig. 10.
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By Theorem 2.12, we have o′0 ≤ 42. For crossing number 1, denote by Hn the

hypohamiltonian graph of order n used to show this result. Once again, by apply-

ing the operation Th to Hn we obtain a plane hypohamiltonian graph Th(Hn) of

order n+ 4 with a cubic quadrilateral face (see the proof of Theorem 2.12). Via

Lemma 2.18 we obtain the family {(Th(Hn))?}∞n=42 with |V ((Th(Hn))?)| = n+6.

This shows that

o′0 ≤ 42 and o′1 ≤ 48.

In Theorem 2.17, we showed that there exists a planar cubic hypohamiltonian

graph Ln of order n for n = 70 and every even n ≥ 74. Each Ln contains

a quadrilateral face, so by Lemma 2.18, each member of the family {(L70)?} ∪
{(Ln)?}∞n=74 is hypohamiltonian and has crossing number 1. Therefore, for n = 72

and every even n ≥ 76 there exists a cubic hypohamiltonian graph of order n and

crossing number 1.

2.3 Hypotraceable Graphs

First of all, note that hypotraceable graphs, in contrast to hypohamiltonian

graphs, may have connectivity 2. Kapoor, Kronk, and Lick [82] asked in 1968

whether hypotraceable graphs exist—see also Kronk’s note [89]. (It is left to the

reader to verify with a simple program that no such graphs exist on 10 or fewer

vertices.) This question was answered when a hypotraceable graph was subse-

quently found by Horton [72]. It has 40 vertices and is 3-connected (but not

planar) and will prove to be very useful when discussing almost hypohamiltonian

graphs in Chapter 3.

Thomassen [125, 127] showed that there exists a hypotraceable graph with

n vertices for n ∈ {34, 37} and every n ≥ 39, but we emphasise that Horton’s

graph is 3-connected, whereas some of Thomassen’s graphs have connectivity 2,

others 3. Since 1976, this list has been neither expanded—in particular, no
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hypotraceable graph of order < 34 is known—, nor has it been shown to be

complete.

All constructions of hypotraceable graphs we know of rely on hypohamiltonian

graphs as “building blocks”, as Wiener observes in [140]. The smallest known

hypotraceable graph was found by Thomassen [125] and has order 34, see Fig. 18.

Fig. 18: The smallest known hypotraceable graph.

We now focus on the planar case. In 2011, Araya and Wiener [141] proved

that there exist planar hypotraceable graphs on 162+4k vertices for every k ≥ 0,

and on n vertices for every n ≥ 180. To improve this result, we make use of the

following theorem, which is essentially due to Thomassen.

Theorem 2.24 (Thomassen) Let G1, G2, G3, G4 ∈ H. Then there is a planar

hypotraceable graph of order |V (G1)|+ |V (G2)|+ |V (G3)|+ |V (G4)| − 6.

Proof. The statement follows from Thomassen’s result [128] that every Gi must

contain a cubic vertex, the proof of [125, Lemma 1], and the fact that the con-

struction used in that proof (which does not address planarity) can be carried out

to obtain a planar graph when all graphs Gi are planar—a detailed description

of Thomassen’s method is given in Section 3.1. 2
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Applying Theorem 2.24 to Theorems 2.8 and 2.12, we obtain the following.

Theorem 2.25 (Jooyandeh, McKay, Österg̊ard, Pettersson, and Zamfirescu,

2016 [80]) There exist planar hypotraceable graphs on 154 vertices, and on n

vertices for every n ≥ 156.

Concerning polyhedral hypotraceable graphs, Thomassen was the first to show

that such graphs exist [127]. He used a different method of construction than the

one presented in Section 3.1 (which is also due to him—it yielded Theorem 2.24),

the details of which are presented in the proof of Theorem 2.27. Thomassen’s

smallest example of a polyhedral hypotraceable graph has 515 vertices. Cur-

rently, the smallest known such graph has order 190. It is obtained by applying

Thomassen’s method given in the proof of Theorem 2.27 to the 40-vertex plane

hypohamiltonian graph from Fig. 8.

Now we discuss planar cubic hypotraceable graphs. In 1993, Holton and Shee-

han [71] asked if there exists an integer n such that a planar cubic hypotraceable

graph exists for every even integer ≥ n. Araya and Wiener [7] settled the ques-

tion with n = 356—in fact, their graphs are not only planar, but polyhedral!

Until recently, the strongest result concerning the question for which orders such

graphs exist was given in 2011 by Araya and Wiener [7] and is as follows.

Theorem 2.26 (Araya and Wiener, 2011 [7]) There exists a polyhedral cubic

hypotraceable graph on 340 vertices and on n vertices for every even n ≥ 356.

With Theorem 2.17 we can improve Theorem 2.26, and thus the bound linked

to the question of Holton and Sheehan mentioned above. The short proof of this

improvement is essentially identical to the proof of Araya and Wiener given in [7],

but still we choose to present it, since it uses an interesting construction method

introduced by Thomassen [127].

Theorem 2.27 There exists a polyhedral cubic hypotraceable graph on 340 ver-

tices and on n vertices for every even n ≥ 344.

Proof. We require a result of Thomassen [127], described in the following. For

1 ≤ i ≤ 5, let Ti be pairwise disjoint hypohamiltonian graphs and let xi and yi be
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adjacent cubic vertices, both lying in Ti. Let the neighbours of xi (yi), different

from yi (xi) be ai and bi (ci and di). Consider the disjoint union of the graphs

Ti − {xi, yi} and add the edges c1a2, c2a3, c3a4, c4a5, c5a1, d1b2, d2b3, d3b4, d4b5,

and d5b1. The resulting graph T is hypotraceable by a lemma of Thomassen [127].

He notes [127] that T is 3-connected. Furthermore, if each Ti is cubic, then T is

cubic, as well, and if each Ti is planar, then the labels can be chosen such that T

is planar.

Now let each Ti be isomorphic to the planar cubic hypohamiltonian graph on

70 vertices constructed by Araya and Wiener [7] and shown in Fig. 15. Then we

obtain a polyhedral cubic hypotraceable graph on 340 vertices. By Theorem 2.17,

there exists a planar cubic hypohamiltonian graph T n of order n for every even

n ≥ 74. By choosing T1, ..., T4 each to be the 70-vertex graph mentioned earlier,

and T5 ∈ {T n}n≥74, n even, the statement is shown. 2

We will come back to concepts closely related to hypotraceability in Sec-

tion 3.5, where almost hypotraceable graphs are discussed, and in Section 3.6

and Chapter 4, in which a famous problem of Gallai concerning the intersection

of all longest paths in a given graph will play a central role.

2.4 Girth Restrictions

There have been interesting questions posed concerning the girth of a hypohamil-

tonian graph. We begin with a simple remark. Collier and Schmeichel [29, p. 196]

observed that the vertices of a triangle in a hypohamiltonian graph have degree

at least 4. (This is true for hypotraceable graphs, as well.) It seems a priori

strange that a hypohamiltonian graph may contain a triangle, i.e. have girth 3.

In 1967, Herz, Duby and Vigué went so far as to conjecture [67] that every hy-

pohamiltonian graph has girth ≥ 5. But this was disproved by Thomassen, who

constructed in [126] hypohamiltonian graphs of girth 3, as well as hypohamilto-
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nian graphs of girth 4. (With his approach, infinite families of such graphs can be

constructed.) His smallest example of girth 3, based on six copies of the Petersen

graph, is shown in Fig. 19.

Fig. 19: Thomassen’s hypohamiltonian graph of girth 3,

published in 1974 and the first of its kind. It has order 60.

Fig. 20: The smallest hypohamiltonian graph of girth 3, and one of the five

smallest hypohamiltonian graphs of girth 4, resp. Each has 18 vertices. The

former was first given by Collier and Schmeichel [28] in 1977, while the latter

was found recently by Goedgebeur and the author [47], and earlier and

independently, by McKay [97] (but not published).
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Fig. 21: The smallest hypohamiltonian graph of girth 6. It has order 25 and its

automorphism group has order 80. It is due to Jan Goedgebeur and the

author [47]. The illustration shown here is due to Nico Van Cleemput.

The smallest hypohamiltonian graphs for a given girth have the following

orders:

• Girth 3: 18 (due to Collier and Schmeichel [28] and shown in Fig. 20)

• Girth 4: 18 (constructed by Goedgebeur and the author [47], as well as

earlier and independently, by McKay [97], and depicted in Fig. 20)

• Girth 5: 10 (Petersen’s graph shown in Figs. 1 and 45)

• Girth 6: 25 (due to Goedgebeur and the author [47] and shown in Fig. 21)

• Girth 7: 28 (Coxeter’s graph [31], see Fig. 24)

The proof that the graph of girth 3 is minimal follows from the list of all hy-

pohamiltonian graphs of order ≤ 17 given by Aldred, McKay, and Wormald [5].

It is noteworthy that Collier and Schmeichel [28] showed that there exists a hy-

pohamiltonian graph of girth 3 and order n for every n ≥ 18 with the possible

exceptions of 19, 20, 22, and 25. In [47] it is proven that the graphs of girth 4 and

6 are of smallest order. Petersen’s graph is in fact the smallest hypohamiltonian

graph (as proven in e.g. [71]), while the result that Coxeter’s graph is the smallest
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hypohamiltonian graph of girth 7 is shown at the end of this section. We note

here that it is unknown whether hypohamiltonian graphs of girth greater than 7

exist.

Fig. 22: A cubic hypohamiltonian graph of girth 4 constructed by Thomassen.

It is the smallest such graph and has order 24.

Fig. 23: Isaacs’ flower snark J7, a cubic hypohamiltonian graph of girth 6.

It is the smallest such graph and has order 28.

We briefly summarise the situation in the cubic case. It is easy to see that ev-

ery hypohamiltonian cubic graph has girth at least 4, since, as remarked above, a

triangle in a hypohamiltonian graph cannot contain cubic vertices. Infinite classes

of cubic hypohamiltonian graphs with girth 4, 5, and 6 are known, see [94, 95]

for details and further references. However, there was only one known example of
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Fig. 24: Coxeter’s graph, a cubic hypohamiltonian graph of girth 7 and order 28.

It is the smallest hypohamiltonian graph of girth 7.

a hypohamiltonian cubic graph of girth 7, the Coxeter graph on 28 vertices (see

Fig. 24), and no examples of girth greater than 7. Máčajová and Škoviera [95]

proved that there exist infinitely many hypohamiltonian cubic graphs of girth 7

and cyclic connectivity 6. The existence of cyclically 7-edge-connected hypo-

hamiltonian cubic graphs other than the Coxeter graph, however, remains open.

Through an exhaustive computer-search, McKay was able to determine the

order of the smallest cubic hypohamiltonian graph of girth 4, 5, 6, and 7, es-

tablishing that certain such graphs previously constructed turned out to be the

smallest of a fixed girth, see [97]. (Note that McKay does not state this explicitly.

These results were verified independently by J. Goedgebeur.) These orders are

presented in the table at the end of this section.

We now discuss the planar case. By the following theorem we know that

any planar hypohamiltonian graphs improving on the upper bound for the order

of the smallest planar hypohamiltonian graph—which currently stands at 40, see

Theorem 2.8 and Fig. 8—must have girth either 3 or 4. A planar hypohamiltonian

graph can have girth at most 5, since such a graph has a simple dual, and the

average degree of a plane graph is less than 6. Note that, perhaps surprisingly,
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there exist planar hypohamiltonian graphs of girth 3. Such graphs have not yet

appeared in the literature, but by applying Thomassen’s method from [126] to

six copies of the plane hypohamiltonian 40-vertex graph presented in Fig. 8, one

obtains such a graph on 240 vertices. This is the smallest known example.

Theorem 2.28 (Jooyandeh, McKay, Österg̊ard, Pettersson, and Zamfirescu,

2016 [80]) There are no planar hypohamiltonian graphs with girth 5 on fewer

than 45 vertices, and there is exactly one such graph on 45 vertices.

Proof. The program plantri [15, 16] can be used to construct all planar graphs

with a simple dual, girth 5, and up to 45 vertices. By checking these graphs, it

turns out that only a single graph of order 45 is hypohamiltonian. That graph,

which has an automorphism group of order 4, is shown in Fig. 25. 2

Fig. 25: A plane hypohamiltonian graph of girth 5 and order 45.

This is the unique graph with the aforementioned properties, and there is no

smaller such graph.

The smallest known planar hypohamiltonian graphs of girth 3, 4, and 5 have

order 240 (application of a construction of Thomassen [126]), 40 ([80]; see The-

orem 2.8 and Fig. 8), and 45 ([80]; see Theorem 2.28 and Fig. 25), respectively.

The only graph of which we know to be the smallest with the advertised property

is the 45-vertex graph, see Theorem 2.28.
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As we have seen, infinitely many planar cubic hypohamiltonian graphs have

been described, starting with work of Thomassen [129] in 1981. However, all of

these graphs had girth 4, so until recently it was unknown whether planar cubic

hypohamiltonian graphs of girth 5 exist.

Theorem 2.29 (McKay, 2016 [96]) There exist planar cubic hypohamiltonian

graphs of girth 5. There exist exactly three such graphs of order 76, and none on

fewer vertices.

McKay recently proved the above result. Each of the three graphs provided

has only the identity as automorphism. One of them is shown in Fig. 26. Subse-

quently, Goedgebeur showed by computer search that there exists a planar cubic

hypohamiltonian graph of girth 5 and order 78, which has a non-trivial automor-

phism group, see Fig. 27. This may prove to be useful in tackling the following

natural question raised by McKay in [96]: are there infinitely many planar cubic

hypohamiltonian graphs of girth 5?

Fig. 26: A plane cubic hypohamiltonian graph of girth 5. It has order 76.

McKay showed that there is no smaller such graph [96].

We collect the findings of this section in the following table. The entries

show the order of the smallest known graph with the given properties, listed by

girth. The symbol “–” designates an impossible combination of properties, and
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Fig. 27: Both figures show different symmetries of the same graph constructed

by J. Goedgebeur. It is the smallest planar cubic hypohamiltonian graph of

girth 5 with a non-trivial automorphism group. It has 78 vertices and D3h

symmetry (as an abstract group, this is the dihedral group of order 12).

underlined entries have been shown to be optimal, i.e. there exists no graph of

order k satisfying the given properties with k strictly smaller than the value given

in the table.

Little is known concerning the lower bounds for the orders of the smallest

planar hypohamiltonian graphs discussed in this section, excluding the case when

the girth of the graph is 5. In [5], Aldred, McKay, and Wormald gave a complete

list of hypohamiltonian graphs of order at most 17.

Finally, let us give a simple argument for the fact that there are no hypo-

hamiltonian graphs of girth 7 on fewer than 28 vertices: assume there was such

a graph G. It would have to be non-cubic, since we know that the smallest cubic

hypohamiltonian graph has order 28. Let v ∈ V (G) have degree at least 4 and

denote by d(v, w) the distance between v and w, i.e. the length of a shortest path

between v and w. Since the girth of G is 7, we have that all elements in

{w ∈ V (G) : d(v, w) ≤ 3} ⊂ V (G)

are pairwise distinct, so |V (G)| ≥ 29, which yields a contradiction.
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girth 3 4 5 6 7

hypohamiltonian 18 18 10 25 28

cubic hypohamiltonian – 24 10 28 28

planar hypohamiltonian 240 40 45 – –

planar cubic hypohamiltonian – 70 76 – –

2.5 Two Proofs of Grinberg’s Criterion

We give Grinberg’s Theorem once more and then provide two proofs. We also

remark that in order to prove (and indeed formulate) Grinberg’s Criterion, we

tacitly make use of the Jordan curve theorem—for Jordan’s original work, see [81,

pp. 587–594], and for an undisputed proof by Thomassen, [131].

Theorem 2.1: Grinberg’s Criterion (Grinberg, 1968 [51]) Given a plane graph

G with a hamiltonian cycle h and fk (f ′k) k-faces inside (outside) of h, we have∑
k≥3

(k − 2)(fk − f ′k) = 0. (†)

For the first proof, we require the following proposition. A graph G is out-

erplanar if it is planar and contains a face F such that all vertices of G lie on

the boundary of F . An outerplanar graph is hamiltonian if and only if it is

2-connected.

Proposition 2.30 Let G be a 2-connected outerplanar graph of order n, and

denote by fk the number of k-faces in G. Then we have∑
k≥3

(k − 2)fk = 2(n− 2).
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Proof. If G is an n-cycle, then the statement is trivially true, so we may assume

that the n-face F of G is unique. Let E ′ = E(G) \E(F ) and m′ = |E ′|. We have∑
3≤k≤n−1

fk = m′ + 1,

and by taking F into account, ∑
k≥3

fk = m′ + 2. (♦)

Each edge in E ′ lies in the boundary of two faces both of which are not F .

Therefore ∑
3≤k≤n−1

kfk = 2m′ + n, whence
∑
k≥3

kfk = 2(m′ + n).

Using (♦) we obtain the statement. 2

First Proof of Grinberg’s Criterion. Let G be a plane graph of order n with a

hamiltonian cycle h. G is composed of two 2-connected outerplanar graphs H

and H ′, the intersection of which is h, where H shall lie inside of h and H ′ outside

of h. We denote by hk (h′k) the number of k-faces in H (H ′). We apply Prop. 2.30

to H and H ′ and obtain∑
k≥3

(k − 2)hk = 2(n− 2) and
∑
k≥3

(k − 2)h′k = 2(n− 2).

In G, denote by fk (f ′k) the number of k-faces inside (outside) of h. Then, since

fk =

hk if k < n

hk − 1 if k = n
and f ′k =

h′k if k < n

h′k − 1 if k = n

hold, we have ∑
k≥3

(k − 2)fk = n− 2 and
∑
k≥3

(k − 2)f ′k = n− 2,

which completes the proof. 2
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Second Proof of Grinberg’s Criterion. Consider a cycle h of length |V (G)| em-

bedded in the plane. By successively adding edges to h, we can construct G in a

finite number of steps such that each intermediary graph contains neither loops,

nor multiple edges, and is planar, as well.

We use induction. (†) clearly holds for h. Now let (†) hold for an intermediary

graph G′. By adding an edge e to G′, where w.l.o.g. we consider e to lie in the

interior of h, we split a j-face into a (j − `)-face and an (`+ 2)-face, and nothing

else changes, i.e. in the interior of h we have one j-face less, but one (j − `)-

face and one (` + 2)-face more. Since G′ satisfies (†), it remains to see that

`+ 2− 2 + j − `− 2− j + 2 = 0. 2
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Chapter 3

Almost Hypohamiltonian Graphs

3.1 Introduction

In this Chapter we discuss a new family of graphs, introduced and baptised by

the author. We repeat the definition given in the introduction: a graph G is

almost hypohamiltonian if G is non-hamiltonian, there exists a vertex w, which

we will call exceptional , such that G−w is non-hamiltonian, and for every vertex

v 6= w the graph G − v is hamiltonian. Note that this does not coincide with

Thomassen’s concept of an almost hypohamiltonian graph mentioned in [127] and

used in [126]. The motivation for introducing almost hypohamiltonian graphs is

three-fold: (i) we acquire new methods to construct hypohamiltonian graphs,

while also (ii) obtaining a result related to an old conjecture of Thomassen, and

(iii) working towards a more general theory of non-hamiltonian graphs in which

some, but not all vertex-deleted subgraphs are hamiltonian, and a method how

to deal with these exceptions.

For a graph G, define Gw as G to which we add a vertex w and edges vw for

all v ∈ V (G). (This is the join of G and ({w}, ∅) and we will write G+ ({w}, ∅).)
Let S ⊂ V (G) satisfy the following property. For each v ∈ V (G), there is a

hamiltonian path in G−v with end-vertices in S. Call such a set S a set of ends ,

and write Gw,S = (V (G) ∪ {w}, E(G) ∪ {vw : v ∈ S}). Thus Gw,V (G) = Gw if

V (G) is a set of ends.
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Lemma 3.1 (2015 [144]) Let G be a hypotraceable graph, and S a set of ends.

Then Gw,S is almost hypohamiltonian with exceptional vertex w.

Proof. G is hypotraceable and therefore non-traceable, so G and Gw,S are non-

hamiltonian. Consider v ∈ V (G). In G− v there exists a hamiltonian path p the

end-vertices u and u′ of which belong to S. If we add to p the edges uw and wu′,

we obtain a hamiltonian cycle in Gw,S − v. 2

Thomassen [125] introduced the following method to construct hypotraceable

graphs from known hypohamiltonian graphs—note that this is the same technique

as in Theorem 2.24 but differs from the approach used to prove Theorem 2.27.

Consider four hypohamiltonian graphs G1, ..., G4, and assume there exist cubic

vertices vi ∈ V (Gi). Put N(vi) = {vi1, vi2, vi3}. Take the four vertex-disjoint

graphs Gi− vi. Therein, identify v11 with v21 and v31 with v41, and add the edges

v12v32, v22v42, v13v33, v23v43. This operation preserves planarity. Thomassen [125]

showed that the resulting graph is hypotraceable. Call T the 34-vertex hypo-

traceable graph constructed by Thomassen [125] by applying above method to

four copies of the Petersen graph. The graph T is shown in Fig. 18. T is the

smallest known hypotraceable graph.

Corollary 3.2 [144] Tw is an almost hypohamiltonian graph of order 35.

We recall Thomassen’s [128] question from 1978 whether hypohamiltonian

graphs with minimum degree 4 exist. Demanding even more, in [128] he also

asked if 4-connected such graphs exist—this is one of the central open problems

in the theory of hypohamiltonian graphs. Tw is almost hypohamiltonian and has

minimum degree 4. But we obtain an even more surprising result if we apply

Lemma 3.1 to Horton’s hypotraceable graph H from [72] (with S = V (H)). As

H is 3-connected, this yields a 4-connected almost hypohamiltonian graph of or-

der 41, shown in Fig. 28. (Adding planarity as a condition is futile due to Tutte’s

famous result that planar 4-connected graphs are hamiltonian [133].) After Hor-

ton’s discovery, Thomassen [127] generalised his construction and showed that

there exist infinitely many 3-connected hypotraceable graphs. This immediately

yields infinitely many 4-connected almost hypohamiltonian graphs.
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Fig. 28: A 4-connected almost hypohamiltonian graph of order 41.

It is the smallest known such graph.

In reverse order, if we take an almost hypohamiltonian graph and delete its

exceptional vertex, we are only guaranteed to obtain a non-hamiltonian graph

which is traceable if an arbitrary vertex is deleted—the family of such graphs

is of interest as it contains both the family of all hypotraceable graphs and the

family of all hypohamiltonian graphs, but is not their union. It will be discussed

in Chapter 5.

3.2 The Planar Case

Lemma 3.3 [144] The 39-vertex graph shown in Fig. 29 is planar and almost

hypohamiltonian.

Proof. We denote the graph from Fig. 29 by G.
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w

Fig. 29: After taking symmetries into account,

a hamiltonian cycle in G− v for every v 6= w is shown.

G is obviously planar. By Grinberg’s Criterion, G is non-hamiltonian. Fig. 29

shows that for all v ∈ V (G) \ {w} the graph G− v is hamiltonian. It remains to

prove that G−w is non-hamiltonian. Assume the contrary, i.e. G−w contains a

hamiltonian cycle h. Let C be the cycle of length 12 in the dual of G−w depicted

as a dotted cycle in Fig. 30. We denote by A the union of all faces of G lying

on the same side of h as the unbounded face, and by B the union of all faces not

lying in A. Denote by f5 (f ′5) the number of pentagons inside (outside) of h. (†)
is now

±2 + 3(f5 − f ′5)− 16 = 0,

which implies that the (unique) quadrilateral lies outside of h, i.e. inA. In Fig. 30,

we have labeled faces A or B if they obviously belong to one of them. Edges are

bold if they certainly lie in h.
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Claim. Of every two faces corresponding to adjacent vertices in C, one must lie

in A and the other must lie in B.

Proof of the Claim. For v ∈ V (C), denote by F (v) the face in G−w corresponding

to v. Assume there exist adjacent vertices v1, v2 ∈ V (C) such that F (v1) and

F (v2) belong to the same component X ∈ {A,B}. We can immediately observe

that X 6= B, since otherwise we would have a vertex surrounded exclusively by

faces from B, see Fig. 30. With the argument concerning Grinberg’s Criterion

given above, we have that among the twelve pentagons corresponding to the

vertices in C, six lie in A and six lie in B. Thus, the Claim is proven.

By the Claim, either the quadrilateral shares no edge with a face in A, or A
is not connected. So G−w does not contain a hamiltonian cycle and the lemma

is proven. 2

A
B

B

B

B

B

B

A

Fig. 30

Consider graphs G and H containing cubic vertices x ∈ V (G) and y ∈ V (H).

Denote by GxHy one of the graphs obtained from G − x and H − y by iden-

tifying the vertices in N(x) with those in N(y) using a bijection. As stated in

Lemma 2.20, Thomassen [125] showed that if G,H ∈ H, then GxHy ∈ H. Recall

that if G ∈ H, then G contains no triangle with a cubic vertex.
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Lemma 3.4 [144] Let G ∈ H1 contain a cubic vertex x different from the excep-

tional vertex w of G, and H ∈ H contain a cubic vertex y. Then GxHy ∈ H1

with exceptional vertex w. If G and H are planar, then so is GxHy.

Proof. We treat G − x and H − y as subgraphs of GxHy. Let N(x) = N(y) =

{z1, z2, z3} in GxHy. Abusing notation, we also denote by zi the corresponding

vertices in G and H, i.e. by {z1, z2, z3} the set of neighbours of x in G, and by

{z1, z2, z3} the set of neighbours of y in H. Assume GxHy contains a hamiltonian

cycle h. If h ∩ G is connected, then it is a path. W.l.o.g. this path has end-

vertices z2, z3. Then (h∩G)∪ z2xz3 is a hamiltonian cycle in G, a contradiction,

as G ∈ H1. If h∩G consists of two components, w.l.o.g. a path with end-vertices

z2, z3 and the isolated vertex z1, then (h ∩ H) ∪ z2yz3 is a hamiltonian cycle in

H, again a contradiction.

Next, we prove that GxHy−w is non-hamiltonian. Assume the contrary, and

let h be a hamiltonian cycle in GxHy − w. Suppose that w /∈ N(x). W.l.o.g.

let z1 be a vertex satisfying either {e ∈ E(h) : e is incident to z1} ⊂ E(G) or

{e ∈ E(h) : e is incident to z1} ⊂ E(H). In the former case, by adding the edges

xz2 and xz3 to h∩(G−x) we obtain a hamiltonian cycle in G−w, a contradiction,

as w is an exceptional vertex of G. In the latter case, (h ∩ (H − y)) ∪ z2yz3 is a

hamiltonian cycle in H, a contradiction. Now say w = z1. Once more, let h be a

hamiltonian cycle in GxHy −w. By adding to h∩ (G− x) the edges xz2 and xz3

we obtain a hamiltonian cycle in G− w, again a contradiction.

It remains to show that GxHy − v is hamiltonian for all v 6= w. Let v ∈
V (G) \N(x). Then there exists a hamiltonian cycle h in G− v. Assume w.l.o.g.

that z2xz3 ⊂ h. Put pG = h−x. Let pH be the path in H obtained by taking the

hamiltonian cycle in H − z1 minus y. pG ∪ pH is the desired hamiltonian cycle in

GxHy − v. What if v ∈ N(x), say v = z1? Then certainly z2xz3 ⊂ h, h being a

hamiltonian cycle in G− z1. We are once more in the situation discussed above.

For v ∈ V (H) the treatment is very similar. 2
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In Section 2.1.3, we defined the operation Th, which was originally introduced

by Thomassen [129]. The statement of the following lemma is a slight modification

of a claim of Thomassen from [129]; as mentioned in the proof of Prop. 2.11, a

detailed proof of this lemma was given by Araya and Wiener in [141].

Lemma 3.5 (Thomassen, 1981 [129]) Let G be a planar non-hamiltonian graph

containing a 4-face bounded by the cycle C. Then Th(GC) is planar and non-

hamiltonian.

We now prove a modified version of Thomassen’s Lemma 2.10.

Lemma 3.6 (2015 [144]) Let G ∈ H1 have exceptional vertex w and contain a

cubic 4-face bounded by the cycle C, w /∈ V (C). Then Th(GC) ∈ H1. If G is

cubic, then so is Th(GC).

Proof. Let C = v1v2v3v4. By Lemma 3.5, both Th(GC) and Th((G − w)C) =

Th(GC)−w are planar and non-hamiltonian. We first show that Th(GC)− v′i is

hamiltonian. Let h be a hamiltonian cycle in G − v2. Clearly, P = v1v4v3 ⊂ h.

In Th(GC), transform P into v1v4v
′
4v
′
3v
′
2v2v3. We obtain a hamiltonian cycle in

Th(GC) − v′1. The cases v′2, v
′
3, and v′4 work in the same way. We construct the

remaining hamiltonian cycles in Th(GC) − v, where v 6= w, by modifying cycles

of length |V (G)| − 1 in G− v, see Fig. 31. 2

Theorem 3.7 [144] There exists a planar almost hypohamiltonian graph of or-

der n for every n ≥ 76.

Proof. Theorem 2.12 states that for every n ≥ 42 there exists a planar hypo-

hamiltonian graph H of order n. By Lemma 3.4, if G is the 39-vertex planar

almost hypohamiltonian graph given in Fig. 29 and x ∈ V (G), y ∈ V (H) are

cubic (note that x 6= w since w is not cubic), then GxHy provides a suitable

graph of order n+ 34. 2
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Fig. 31: On the left-hand side of each of the seven diagrams the bold edges

show the subset of edges of the 4-cycle C contained in an (n− 1)-cycle h′ in G;

on the right-hand side it is shown what the modified h′ looks like in Th(GC).

3.3 The General Case

The following operation was already defined for hypohamiltonian graphs in Sec-

tion 2.2. Let G ∈ H1 contain a 4-cycle v1v2v3v4 = C. We delete the edges v1v2

and v3v4, add two new vertices v′1 and v′4, and add the edges v′1v
′
4, v1v

′
1, v4v

′
4, v

′
1v3

and v′4v2. Denote the resulting graph by G?
C . The proof of Lemma 3.8 essentially

coincides with the proof of Lemma 2.18, and is omitted here.

Lemma 3.8 [144] Consider G ∈ H1 with exceptional vertex w, and let G include

a cubic 4-cycle C not containing w. Then G?
C ∈ H1. If G is cubic, then so is

G?
C. If G is planar, then cr(G?

C) = 1.
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Notice that Th(GC) = (G?
C)?C′ , where C ′ = v1v

′
1v
′
4v4 and for the second itera-

tion of ? we delete v1v
′
1 and v4v

′
4. So in a certain sense, this describes “half” of

an application of the operation Th introduced in Section 2.1.3.

In order to give a good upper bound on the smallest integer n0 for which there

exists an almost hypohamiltonian graph of order n for every n ≥ n0, we prove a

simple yet useful gluing lemma that transforms two hypohamiltonian graphs into

an almost hypohamiltonian one.

Lemma 3.9 [144] Let G and H be hypohamiltonian graphs containing cubic ver-

tices w ∈ V (G) and w′ ∈ V (H), and let u, v ∈ N(w) and u′, v′ ∈ N(w′). If we

identify u with u′, v with v′ and w with w′, we obtain an almost hypohamiltonian

graph Γ with exceptional vertex w = w′. This operation preserves planarity.

Proof. Note that as G and H are hypohamiltonian and w and w′ are cubic, we

have uv /∈ E(G) and u′v′ /∈ E(H). Assume there exists a hamiltonian cycle h in

Γ. By abuse of notation u, v, w shall also denote the vertices in Γ obtained when

identifying u with u′, v with v′ and w with w′, respectively. Let xvy ⊂ h. There

are three cases to study.

(a) x, y ∈ V (G) \ {w}. Then (h ∩ G) ∪ uw is a hamiltonian cycle in G, a

contradiction.

(b) x ∈ V (G) \ {w} and y ∈ V (H) \ {w}. Now either (h ∩ G) ∪ vw is a

hamiltonian cycle in G or (h∩H)∪vw is a hamiltonian cycle in H. In both cases

a contradiction is obtained.

(c) x = w and (w.l.o.g.) y ∈ V (G). Thus vw ∈ E(h). But then (h∩G)∪uw is

a hamiltonian cycle in G, once more a contradiction. Hence, Γ is non-hamiltonian.

We now show that Γ−w is non-hamiltonian. Again, assume the contrary, and

let h be a hamiltonian cycle in Γ− w. Then (h ∩G) ∪ vwu yields a hamiltonian

cycle in G, a contradiction.

Finally, we prove that Γ − x is hamiltonian for every x 6= w. There are two

cases.

(a) x ∈ {u, v}, say x = u. As w has degree 3 in G, a hamiltonian cycle h in

G− u contains the edge vw. Similarly, a hamiltonian cycle h′ in H − u′ uses the

edge v′w′. Now (h− vw) ∪ (h′ − v′w′) yields a hamiltonian cycle in Γ− u.
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(b) x /∈ {u, v}. Let x ∈ V (G). Consider a hamiltonian cycle h in G − x.

h contains wu or vw (possibly both), say vw. Let h′ be a hamiltonian cycle in

H − u′. As before, h′ contains v′w′. Now (h− vw) ∪ (h′ − v′w′) is a hamiltonian

cycle in Γ− x. 2

Observe that if Γ is the graph from the statement of Lemma 3.9, it follows

from its proof that Γ− vw is also almost hypohamiltonian.

Theorem 3.10 [144] There exists an almost hypohamiltonian graph of order n

for every n ≥ 17 with the possible exception of 18, 19, 21, and 24.

Proof. It is known (see e.g. [5] for details) that there exist hypohamiltonian

graphs of order n if and only if n ∈ {10, 13, 15, 16} or n ≥ 18, to which we

apply Lemma 3.9. (Note that no hypohamiltonian graph with minimum de-

gree at least 4 is known.) The equation x + y − 3 = n has solutions x, y ∈
{10, 13, 15, 16, 18, 19, 20, ...} for every n ≥ 17 except n = 18, 19, 21, 24. 2

w

Fig. 32: The smallest known almost hypohamiltonian graph. Its exceptional

vertex is marked w. It has order 17 and is obtained by applying Lemma 3.9 to

two copies of the Petersen graph.

Next, we present a method of transforming two almost hypohamiltonian

graphs into a hypohamiltonian one.
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Theorem 3.11 [144] Consider G,H ∈ H1 with cubic exceptional vertices w and

w′, respectively. Then GwHw′ ∈ H. If G and H are planar, then so is GwHw′.

Proof. We denote by x, y, z the vertices in GwHw′ obtained when identifying

N(w) with N(w′). Abusing notation, we also write N(w) = {x, y, z} in G and

N(w′) = {x, y, z} in H, where x in GwHw′ is the vertex obtained when identifying

x in G with x in H, and analogously for y and z.

First we show that GwHw′ − x is hamiltonian. Let hG be a hamiltonian cycle

in G−x, and hH a hamiltonian cycle in H−x. By deleting from hG the edges yw

and wz we obtain a path pG in G which avoids x and w and has end-vertices y

and z. From hH we delete yw′ and w′z and obtain a path pH which avoids x and

w′ and has end-vertices y and z. Now pG∪pH is a cycle of length |V (GwHw′)|−1

avoiding x, as wished. Exactly in the same manner one shows that GwHw′ − y
and GwHw′ − z are hamiltonian

Now we prove that GwHw′ − v is hamiltonian, where v ∈ V (GwHw′) \N(w);

w.l.o.g. v ∈ V (G) \ {w}. Consider a hamiltonian cycle hG in G − v. Assume

w.l.o.g. that yw,wz ∈ E(hG). Now consider a hamiltonian cycle hH in H − x.

Delete from hG the edges yw and wz, thus obtaining a path pG, and delete from

hH the edges yw′ and w′z, thereby obtaining a path pH . Now pG ∪ pH yields the

desired cycle.

Finally, we prove that GwHw′ is not hamiltonian. Indeed, if GwHw′ is hamil-

tonian, either G − w or H − w′ has a hamiltonian path joining two vertices in

{x, y, z}, which can be immediately extended to a hamiltonian cycle in G or H,

contrary to the hypothesis. 2

Theorem 3.11 warrants the question whether there exist almost hypohamilto-

nian graphs whose exceptional vertex is cubic. In fact, we have already seen such

graphs taking the observation below the proof Lemma 3.9 into account. What

happens in the planar case?
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Theorem 3.12 [144] There exists a planar almost hypohamiltonian graph of or-

der n whose exceptional vertex is cubic for n = 47 and for every n ≥ 84.

Proof. Consider the graph G of order 47 from Fig. 33, and denote by w the

(unique) cubic vertex surrounded by quadrilaterals.

w

Fig. 33: A plane almost hypohamiltonian graph with cubic exceptional vertex w.

By Grinberg’s Criterion, G and G − w are non-hamiltonian. The proof that

for every v ∈ V (G) \ {w} the graph G − v is hamiltonian can be found in the

Appendix. In order to obtain an infinite family, as in the proof of Theorem 3.7,

we use Theorem 2.12: for every n ≥ 42 there exists a planar hypohamiltonian

graph of order n. To G and each of these graphs we apply Lemma 3.4. (Note

that in order to apply Lemma 3.4, each of the graphs obtained by Theorem 2.12

is required to contain a cubic vertex—but this is guaranteed by a theorem of

Thomassen which states that every planar hypohamiltonian graph contains a

cubic vertex [128].) 2

Very recently, B. D. McKay announced (personal communication) that he has

shown the following.

Theorem 3.13 (McKay) There exist three planar cubic almost hypohamiltonian

graphs on 68 vertices, and 25 such graphs of order 74.
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3.4 Beyond Almost Hypohamiltonicity

Consider a 2-connected graph G of circumference1 |V (G)| − 1 and let W ⊂ V (G)

be the (possibly empty) inclusion-maximal set of vertices such that for all w ∈ W
the graph G − w is non-hamiltonian. (And thus, for all v ∈ V (G) \ W , the

graph G − v is hamiltonian.) We call |W | the hypohamiltonicity of G and say

that G is |W |-hypohamiltonian. A vertex from W is called exceptional. Denote

the family of all k-hypohamiltonian graphs by Hk. H0 = H is the family of

all hypohamiltonian graphs, and H1 the family of all almost hypohamiltonian

graphs.
⋃
k≥0Hk is a disjoint union and constitutes the family of all 2-connected

graphs G of circumference |V (G)| − 1.

Somewhat surprisingly, it turns out that for k ≥ 2 it is easy to construct very

small k-hypohamiltonian graphs, even if one adds the condition of planarity: con-

sider a 4-cycle v1v2v3v4 = C. For k ≥ 4, add to C the path v2w1w2...wk−3wk−2v4.

The graph one obtains is k-hypohamiltonian with v2, v4, w1, ..., wk−2 as excep-

tional vertices. For k = 2 take K2,3, and for k = 3 consider the construction for

k = 5 to which the edge v1w2 is added.

Summarising, if we define αk (αk) as the order of the smallest (smallest planar)

k-hypohamiltonian graph, then

α0 = 10, α1 ≤ 17, α2 = α2 = 5, α3 = α3 = 7, α4 = α4 = 6, α5 = α5 = 7,

and α` = α` = `+ 1 for all ` ≥ 6,

where for α2 and α2 the equalities follow from the fact that all three 2-connected

graphs on fewer than 5 vertices are hamiltonian. The equalities α3 = α3 = α5 =

α5 = 7 can be verified using a simple program. Concerning α4 and α4, the

four 2-connected non-isomorphic spanning subgraphs of K5 with at least eight

edges are hamiltonian. Among the three with seven edges, two are hamiltonian,

while the third one is 2-hypohamiltonian. Among the two with six edges, one

is hamiltonian, the other one—which is K2,3—is 2-hypohamiltonian. The only

one with five edges is the 5-cycle. No other spanning subgraphs are 2-connected.

To justify the last equality, let ` ≥ 6. Between two fixed vertices take three

1The circumference of a graph G is the length of a longest cycle in G.
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paths, one of length 2, one of length 3, and one of length ` − 3. This graph is

`-hypohamiltonian and has order `+1. By Theorem 2.8 and Lemma 3.3, we have

α0 ≤ 40 and α1 ≤ 39,

noticing a striking discrepancy between the cases k = 1 and k = 2.

Let H be a 2-connected graph containing three vertices v1, v2, v3, and write

{v1, v2, v3} = ∂H. Additionally, for any i, j with i 6= j, there exists a hamiltonian

path between vi and vj. We call such a graph H nice.

Theorem 3.14 (2015 [144]) Let G ∈ Hj, j ≥ 0, v be a cubic vertex in G with

no exceptional vertex in N(v), and let H be a nice graph. Join by three edges the

vertices of ∂H to those of N(v), according to a bijection, and delete v. Then for

the resulting graph Γ we have

Γ ∈

Hj+|V (H)|−1 if v is exceptional in G

Hj+|V (H)| otherwise.

If G and H are planar and ∂H lies in the boundary of a face, then the edges

between ∂H and N(v) can be chosen such that Γ is planar. If all vertices in V (G)

and V (H) \ ∂H are cubic, and all vertices in ∂H have degree 2, then Γ is cubic.

Proof. Let ∂H = {v1, v2, v3}, N(v) = {v′1, v′2, v′3} with viv
′
i ∈ E(Γ) for all i ∈

{1, 2, 3}. We consider G− v and H to be subgraphs of Γ.

First we show that Γ is non-hamiltonian and that Γ−x is non-hamiltonian for

all x ∈ V (H). Assume the contrary. A hamiltonian cycle of Γ or Γ− x intersects

G − v (which we here consider as a subgraph of Γ or Γ − x, respectively) along

a hamiltonian path p. W.l.o.g. suppose v′2, v
′
3 are the end-vertices of p. In G,

p ∪ v′3vv′2 is a hamiltonian cycle, a contradiction.

Consider the set W of exceptional vertices in G and w ∈ W . Assume there

exists a hamiltonian cycle h in Γ−w. W.l.o.g. v′1v1 /∈ E(h). Now (h∩G)∪ v′2vv′3
is a hamiltonian cycle in G − w, a contradiction, as w is exceptional in G. By

construction, v /∈ V (Γ), so Γ ∈ Hj+|V (H)|−1 if v is exceptional and Γ ∈ Hj+|V (H)|

otherwise.
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Finally, we show that Γ − z is hamiltonian if z ∈ V (G) \ ({v} ∪W ). Let h′

be a hamiltonian cycle in G − z, which exists, as z is non-exceptional. W.l.o.g.

v′1vv
′
2 ⊂ h′. Put p′ = h′ ∩ (G− v). There exists a hamiltonian path p′′ between v1

and v2 in H since H is nice. Now p′ ∪ v′1v1 ∪ v′2v2 ∪ p′′ is the desired hamiltonian

cycle in Γ− z. 2

Actually, the above operation can be applied simultaneously to k cubic ver-

tices. Recall that there exist infinitely many cubic hypohamiltonian graphs [12],

even if one adds planarity as condition [129].

A strengthening of Lemma 3.4 follows.

Theorem 3.15 [144] Let i, j ≥ 0, G ∈ Hi have the set of exceptional vertices W ,

and H ∈ Hj have the set of exceptional vertices W ′. Let x ∈ V (G) and y ∈ V (H)

be cubic vertices with the property that N [x] ∩W = ∅ and N [y] ∩W ′ = ∅. Then

GxHy ∈ Hi+j with W ∪W ′ as set of exceptional vertices. If G and H are planar,

then so is GxHy.

Proof. Let i ≤ j. The case i = j = 0 coincides with Thomassen’s Lemma 2.20,

while i = 0 and j = 1 is Lemma 3.4. When i = 0 and j ≥ 2 the proof is very

similar to the proof of Lemma 3.4, so we skip it and assume in the following

i ≥ 1. We denote by z1, z2, z3 the vertices in GxHy obtained when identifying

N(x) with N(y). Abusing notation, we also write N(x) = {z1, z2, z3} in G and

N(y) = {z1, z2, z3} inH, where zk inGxHy is the vertex obtained when identifying

zk in G with zk in H, for all k ∈ {1, 2, 3}.
We first show that GxHy is non-hamiltonian. Assume GxHy contains a hamil-

tonian cycle h. W.l.o.g. both edges in h incident with z1 lie in E(G − x). But

then (h ∩G) ∪ z2xz3 yields a hamiltonian cycle in G, a contradiction.

Now we show that for all v ∈ W ∪W ′, the graph GxHy−v is non-hamiltonian.

W.l.o.g. let v ∈ V (G)\{x}. Assume there exists a hamiltonian cycle h inGxHy−v.

Among the vertices in {z1, z2, z3} there exists exactly one, say z1, for which either

both edges in h incident with z1 lie in (a) E(G−x) or (b) E(H− y). If (a) holds,

then (h∩G)∪z2xz3 is an (n−1)-cycle in G avoiding v, a contradiction, as v is an
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exceptional vertex of G. If (b) holds, then (h ∩H) ∪ z2yz3 yields a hamiltonian

cycle in H, once more a contradiction.

Next we prove that GxHy−z1 is hamiltonian. Let hG be a hamiltonian cycle in

G− z1, and hH a hamiltonian cycle in H− z1; these exist as z1 is non-exceptional

in both G and H. Put pG = hG − x. pG avoids z1 and has end-vertices z2 and

z3. Similarly we obtain pH , which avoids z1 and has end-vertices z2 and z3. Now

pG ∪ pH is a cycle of length |V (GxHy)| − 1 avoiding z1. Analogously, GxHy − z2
and GxHy − z3 are hamiltonian.

Finally we show that GxHy − u is hamiltonian, for all u ∈ V (GxHy) \ (W ∪
W ′ ∪ {z1, z2, z3}); w.l.o.g. u ∈ V (G). Consider a hamiltonian cycle hG in G− u.

Assume w.l.o.g. that z2x, xz3 ∈ E(hG). Now consider a hamiltonian cycle hH in

H − z1. Delete from hG the vertex x (and edges incident to x), thus obtaining

a path pG, and delete from hH the vertex y (and edges incident to y), thereby

obtaining a path pH . Now pG ∪ pH is the desired cycle. 2

Consider k ≥ 0. Let nk be the smallest integer such that for every n ≥ nk

there exists a planar k-hypohamiltonian graph of order n.

Corollary 3.16 [144] For every k ≥ 0 we have nk <∞.

Proof. In Theorem 2.12 we showed that n0 ≤ 42, and in Theorem 3.7 we proved

n1 ≤ 76. For every n ≥ 76, let Gn denote the graph of order n constructed in the

proof of Theorem 3.7, and put {Gn}n≥76 = G1. Due to the nature of Lemma 3.6,

it is clear that each Gn contains many cubic vertices. By applying Theorem 3.15

to G76 and every graph G ∈ G1, we obtain an infinite family G2 of graphs proving

n2 ≤ 147. (Note that in Theorem 3.15, |V (GxHy)| = |V (G)|+ |V (H)| − 5.) Now

apply Theorem 3.15 to G76 and every G ∈ G2, whence, n3 ≤ 218. This can be

continued ad infinitum. We obtain np ≤ np−1 + 71, for every p ≥ 2. 2

Finally, Theorem 3.17 is a natural strengthening of Lemma 3.8. Its proof is

analogous to the proof of Lemma 2.18, so we skip it.
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Theorem 3.17 [144] Let G ∈ Hk with the set W of exceptional vertices contain

a cubic 4-cycle C with W ∩ V (C) = ∅. Then G?
C ∈ Hk. If G is cubic, then so is

G?
C. If G is planar, then cr(G?

C) = 1.

3.5 Almost Hypotraceable Graphs

In the previous section, we defined hypohamiltonicity. In analogy to the definition

given for cycles, consider a graph G in which the length of a longest path is

|V (G)| − 2 and let W ⊂ V (G) be the (possibly empty) inclusion-maximal set

such that for all w ∈ W , the graph G−w is non-traceable. (And thus, for all v ∈
V (G)\W , the graphG−v is traceable.) We call |W | the hypotraceability t(G) = tG

of G and call G tG-hypotraceable.

It is easy to check that in any graph, two longest paths meet (see for in-

stance [102]). Gallai [43] asked in 1966 whether all longest paths intersect.

(Which is reminiscent of Helly’s property : a collection of sets satisfies it, if any

subcollection of pairwise intersecting sets has a nonempty intersection.) We follow

Ehrenmüller, Fernandes, and Heise [34], and call a vertex present in all longest

paths of a given graph a Gallai vertex , and the set of all Gallai vertices the Gallai

set.

It turns out that, in general, the answer to Gallai’s question is negative.

Walther [137] was the first to show that there exists a graph in which the in-

tersection of all longest paths is empty, i.e. with empty Gallai set. A few years

later, a significantly smaller example—of order 12—was independently found by

Walther and T. Zamfirescu, see [59, 136, 150]. It is shown in Fig. 34. Brinkmann

and Van Cleemput [17] proved (using computers) that in fact there is no smaller

example.

The smallest known example of a planar graph in which all longest paths have

empty intersection has order 17 and is due to Schmitz [113], see Fig. 34. More
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problems in the same spirit as Gallai’s problem were discussed, for instance by

asking larger sets of arbitrary vertices to be missed, by asking for a particular

connectivity, or by posing the question for graphs embeddable in various lattices.

(For an overview, see the survey [114].) Some of these variations will be discussed

in Chapter 4.

Fig. 34: On the left, a graph found independently by Walther and

T. Zamfirescu, and on the right, Schmitz’ planar graph.

In both graphs, the intersection of all longest paths is empty.

Let us emphasise the connection between hypotraceability and Gallai’s prob-

lem: consider a graph G in which the longest path has length |V (G)| − 2. This

is extremal in the sense that it is the greatest length of a longest path for which

Gallai’s question is interesting. Then tG, the hypotraceability of G, is precisely

the cardinality of the Gallai set. Hence, in the (extremal) family of graphs G with

longest paths of length |V (G)| − 2, the answer to Gallai’s question is positive if

and only if tG 6= 0. Why is this interesting?

Gallai’s question has drawn much attention; we can give here only a small

selection of results. One central direction of research was—since with Walther’s

result, in general, Gallai’s question has a negative answer—to study in which

families of graphs Gallai’s question had a positive answer. We call such graphs,

ad hoc, good. Trees, for instance, abide, since in every tree each longest path

contains its centre2. Klavžar and Petkovšek [87] proved that if every block of G

2The eccentricity of a vertex v is defined as maxw∈V (G) d(v, w), where d(v, w) denotes the

distance between two vertices v, w, i.e. the number of edges in a shortest path which has end-

vertices v, w. The centre of a graph is the set of all vertices of minimum eccentricity.
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is hamiltonian-connected3, then G is good. Balister, Györi, Lehel, and Schelp [8]

showed that circular arc graphs4 are good, as well. (Note that this includes

interval graphs. According to Rautenbach and Sereni [108], there is a gap in

the proof of Balister et al.—this alleged gap was closed by Joos [77].) A recent

breakthrough was announced by Chen and Wu [22], who claim to have shown

that chordal graphs5 are also good.

As Kapoor, Kronk, and Lick [82], we denote by ∂(G) the length of a longest

path in a given graph G. This section is devoted to the family of good graphs

G which are “extremal” in two senses: first, ∂(G) = |V (G)| − 2 (the greatest

length of a longest path for which Gallai’s question is interesting), and second,

tG = 1 (the smallest hypotraceability for which the answer to Gallai’s question is

positive), while in Section 3.6, we present families of graphs with empty Gallai

set satisfying additional conditions, for instance specifying the difference between

the order of the graph and the length of a longest path therein, or we ask the

graphs to be snarks.

In the beginning of this chapter, the author studied almost hypohamiltonian

graphs, which are graphs of hypohamiltonicity 1. In analogy thereto, we here

define G to be almost hypotraceable if tG = 1, i.e. if G is non-traceable, there

exists a vertex w such that G−w is non-traceable, and for any vertex v 6= w the

graph G− v is traceable. As before, we call w the exceptional vertex of G. When

handling simultaneously k-hypotraceable and `-hypohamiltonian graphs, we will

call their respective exceptional vertices t-exceptional and h-exceptional . Where

confusion is impossible, we suppress the prefix.

Observe that an almost hypohamiltonian graph G cannot be almost hypo-

traceable, since for every non-h-exceptional vertex v ∈ V (G) we have that G− v
contains a hamiltonian cycle, which immediately yields a hamiltonian path in G.

3A graph is hamiltonian-connected, if any two of its vertices are the end-vertices of a hamil-

tonian path.
4A graph G is a circular arc graph if there exists a mapping α of its vertex set V (G) into a

collection of arcs of a circle such that, for every v, w ∈ V (G), vw is an edge of G if and only if

α(v) ∩ α(w) 6= ∅.
5A graph is chordal if every cycle of length at least 4 has a chord.
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Hypotraceable graphs have no vertices of degree 1 or 2 (trivially, a hypotrace-

able cannot have connectivity 1, and the in-existence of vertices of degree 2 is

proven as in Prop. 3.21). For an almost hypotraceable graph G the latter holds,

see Prop. 3.21, while the former is not necessarily true: G may contain a vertex

v of degree 1, but then v must be a neighbour of the exceptional vertex in G.

Do such graphs exist? One of the graphs answering this question is the smallest

almost hypotraceable graph and surprisingly minute: the “claw” K1,3. But the

claw plays a special role, which is discussed in the next proposition—its proof is a

consequence of the paragraph following it, which treats the issue more generally.

Proposition 3.18 With the exception of K1,3, every almost hypotraceable graph

contains at most one vertex of degree 1.

We now discuss almost hypotraceable graphs of connectivity 1. Let G be

such a graph, and consider w ∈ V (G). w is exceptional if and only if G − w

is disconnected, so G contains exactly one 1-cut, namely {w}. As for all v ∈
V (G)\{w} there is a hamiltonian path in G−v, and such a path has exactly two

end-vertices, we have that G−w consists of at most three components. If G−w
consists of exactly three components, then each component must be K1—assume

to the contrary that there is a component X 6= K1, and let v ∈ V (X). Then a

hamiltonian path in G − v would have to traverse w at least twice, absurd. So

G = K1,3. G − w consisting of exactly two components X1 6= K1, X2 6= K1, is

impossible: for xi ∈ V (Xi) there exists a path pi visiting all vertices in G − xi.
But then

(p1 ∩ (G[V (X2) ∪ {w}])) ∪ (p2 ∩G[V (X1) ∪ {w}])

is a hamiltonian path in G, a contradiction. X1 = X2 = K1 is impossible, so if

G− w consists of exactly two components X1, X2, then X1 6= K1 and X2 = K1.
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Proposition 3.19 Let G 6= K1,3 be an almost hypotraceable graph with excep-

tional vertex w and of connectivity 1. Then the following hold.

(i) G has exactly one 1-cut, namely {w}.

(ii) G−w consists of exactly two components X1, X2, with X1 6= K1 and X2 =

K1. We put V (X2) = {z}.

(iii) G[V (X1) ∪ {w}] = H is 2-connected and for every 2-cut C in H, w /∈ C.

(iv) G has no vertices of degree 2 and exactly one vertex of degree 1, namely z.

(v) H is traceable and for every hamiltonian path p in H, w is not an end-vertex

of p.

(vi) For every v ∈ V (X1), there is a hamiltonian path in H − v which has w as

one of its end-vertices.

(vii) For every ϕ ∈ Aut(G), ϕ(z) = z and ϕ(w) = w.

(viii) The vertices of a triangle in G have degree at least 4.

Proof. We give here the proofs of the properties not discussed in the paragraphs

preceding the statement of the proposition. Let us show (iii): assume there is

a 2-cut {x, y} in H. Due to an argument very similar to the one given after

Prop. 3.18, since G is almost hypotraceable, H − {x, y} contains exactly two

components C1, C2. Assume that w = x. Then the fact that G − y contains a

hamiltonian path of which z certainly is an end-vertex implies that C1 and C2

are isomorphic to K1. But then G is traceable, a contradiction. Thus w /∈ {x, y}.
For (iv), we use Prop. 3.21 for the first part, and (i) and (ii) for the second

part. For (vii), combine (iv) with the arguments used for proving Prop. 3.22. 2

We now settle the natural question whether, in addition to the claw, almost

hypotraceable graphs exist.
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Theorem 3.20

• There exists an almost hypotraceable graph of order n for n ∈ {4, 36, 39}
and every n ≥ 41.

• For every d ≥ 40, there exists an almost hypotraceable graph of maximum

degree d.

Proof. For order 4, consider K1,3. Now let H be a hypotraceable graph and w /∈
V (H). ConsiderH ′ = H+({w}, ∅). By Lemma 3.1, H ′ is almost hypohamiltonian

with exceptional vertex w. Let v /∈ V (H ′). Add to H ′ the edge vw. We obtain

a graph G. First assume that G contains a hamiltonian path p. Then H ∩
p, where we consider H to be a subgraph of G, is a hamiltonian path in H,

which contradicts the fact that H is hypotraceable. Hence G is non-traceable.

Furthermore, since G− w is disconnected, it is trivially non-traceable.

Consider a vertex u ∈ V (G) \ {v, w}. Then there exists a hamiltonian path p′

in H − u = G − {u, v, w}, since H is hypotraceable, and let z be an end-vertex

of p′. Now p′ ∪ zwv is a hamiltonian path in G − u. Similarly, p′ ∪ zwu is a

hamiltonian path in G−v. Therefore G is almost hypotraceable with exceptional

vertex w. Using two theorems of Thomassen [125, 127] stating that there exists

a hypotraceable graph of order n for n ∈ {34, 37} and every n ≥ 39, the proof is

complete. 2

Although Theorem 3.20 does provide an infinite family of almost hypotrace-

able graphs, every member of this family is of connectivity 1, which is unsatis-

factory. In the following we shall see that infinitely many such graphs of connec-

tivity 2 as well as 3 exist. But first we give two structural propositions. Note

that Prop. 3.21 also holds for hypotraceable, hypohamiltonian, and almost hypo-

hamiltonian graphs.

Proposition 3.21 An almost hypotraceable graph G does not contain vertices of

degree 2. Furthermore, the vertices of each triangle in G have degree at least 4.

Proof. Let G be an almost hypotraceable graph with exceptional vertex w, and

let v ∈ V (G) be a vertex of degree 2 with neighbours v′ and v′′. There exists a
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hamiltonian path p in G−v′, so p+vv′ is a hamiltonian path in G, a contradiction.

If v′ = w we argue with G− v′′.
For the second part, consider a triangle T in G with V (T ) = {v1, v2, v3}, where

v3 shall be cubic. Since G is almost hypotraceable, at least one of G − v1 and

G−v2 must be traceable, say G−v1. Let p be a hamiltonian path in G−v1. If v3

is an end-vertex of p, then p + v3v1 is a hamiltonian path in G, a contradiction.

If v3 is not an end-vertex of p, then v3v2 ∈ E(p). Consider p and replace v3v2

with v3v1v2. We obtain a hamiltonian path in G, once more a contradiction. 2

Proposition 3.22 Let G be an almost hypohamiltonian or almost hypotraceable

graph G with exceptional vertex w. Then the stabiliser of w must be all of Aut(G)

and the orbit of w is {w}. In other words, for every ϕ ∈ Aut(G), w is a fix-point

of ϕ.

Proof. The stabiliser of w is defined as the set of all automorphisms ϕ of G such

that ϕ(w) = w. Assume there exists a ψ ∈ Aut(G) such that ψ(w) 6= w. Then,

since G − v is traceable for every vertex v 6= w, there exists a hamiltonian path

p in G − ψ(w). ψ preserves vertex adjacency—recall that a graph isomorphism

is always also an isometry, and vice versa. Thus ψ−1(p) is a hamiltonian path in

G−w, a contradiction. The orbit of a vertex v is defined as {ϕ(v) : ϕ ∈ Aut(G)}.
Since for every ϕ ∈ Aut(G) we have ϕ(w) = w, the orbit of w is {w}. 2

We now generalise an idea used in the proof of Theorem 3.20.

Proposition 3.23 Let k ≥ 0, consider G to be a k-hypotraceable graph with

t-exceptional vertices W , and let w′ /∈ V (G). Then G + ({w′}, ∅) is a (k + 1)-

hypohamiltonian graph with h-exceptional vertices W ∪ {w′}.

Proof. Put G + ({w′}, ∅) = G′. We consider G as a subgraph of G′. Assume G′

is hamiltonian. Then G′ − w′ is traceable, a contradiction. Since G′ − w′ = G

is non-traceable, it is non-hamiltonian. Now consider w ∈ W and assume that

G′−w is hamiltonian. This implies that G′−w−w′ = G−w is traceable, which

is false, since w is t-exceptional in G.
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Consider v ∈ V (G′)\ (W ∪{w′}). Since G is almost hypotraceable, G−v con-

tains a hamiltonian path p with end-vertices x, y. Now p∪ xw′y is a hamiltonian

cycle in G′ − v. 2

We showed earlier in this chapter that 4-connected almost hypohamiltonian

graphs exist—such a graph is depicted in Fig. 28. The most blunt approach to

achieve this was to consider a 3-connected hypotraceable graph T (for instance

the graph of Horton constructed in [72]), an extra vertex w, and connect w to

every v ∈ V (T ). This yields the join of K1 and T , i.e. T + K1. T + K1 is an

almost hypohamiltonian graph, as proven in Lemma 3.1. What would be the

analogous procedure for almost hypotraceable graphs, i.e. which properties must

a (not necessarily connected) graph H have in order for the join of H and K1 to

be almost hypotraceable?

Two conditions must be satisfied: at least three pairwise disjoint paths, each

of which may consist of a single vertex, are required to span H (since if two or

fewer paths suffice, then H + K1 would be traceable) and for any v ∈ V (H),

at most two disjoint paths suffice to span H − v (since if three or more paths

are required, (H + K1) − v cannot be traceable). It is easy to see that this

can immediately be rewritten in the following manner, where sp(G) denotes the

minimum number of pairwise disjoint paths required to span a graph G:

(?) sp(H) = 3 and (??) for every v ∈ V (H): sp(H − v) = 2.

Let us call such graphs—which we explicitly allow to be disconnected—pre-

almost hypotraceable. Clearly, if the connectivity of a pre-almost hypotraceable

graph G is k ≥ 0, then the connectivity of the almost hypotraceable graph G+K1

is k+ 1. One might be inclined to think that no pre-almost hypotraceable graphs

exist, but this would be false: take for instance 3K1, i.e. the disjoint union of three

isolated vertices. Now 3K1 +K1 = K1,3, which is almost hypotraceable. But this

is a special case: assume we have a pre-almost hypotraceable graph consisting of

three components, not all of which are K1; say A 6= K1. Then for every v ∈ V (A)

we have that sp(A − v) ≥ 1, so sp(G − v) ≥ 3, which contradicts (??). Due to

70



(??) it is also impossible that a pre-almost hypotraceable graph contains more

than three components.

What if we consider two components A and B? Clearly, at least one of them,

say A, must be 6= K1. If we consider for a moment that B = K1, then sp(A) = 2

and for any vertex v ∈ V (A), the graph A − v must be traceable. Thus, A is

hypotraceable. (We are in the situation of the proof of Theorem 3.20. Since

there are infinitely many hypotraceable graphs as shown by Thomassen [125],

there exist infinitely many pre-almost hypotraceable graphs consisting of two

components.) Now let both A and B contain more than one vertex. Due to (??),

since sp(A − v) ≥ 1, v ∈ V (A), B must be traceable. The same holds for A, so

both A and B must be traceable. But then (?) is not satisfied.

It remains to study connected pre-almost hypotraceable graphs. Due to very

similar arguments as the ones presented above, if we consider two disjoint hypo-

traceable graphs T, T ′ and v ∈ V (T ), v′ ∈ V (T ′), identifying v with v′ yields a

connected pre-almost hypotraceable graph. As above, we may construct in this

manner infinitely many connected pre-almost hypotraceable graphs, which yields

infinitely many almost hypotraceable graphs of connectivity 2. At this point, the

most interesting further discovery would be a 2-connected pre-almost hypotrace-

able graph. Unfortunately, we were unable to prove the (in-)existence of such

graphs.

Taking the preceding discussion into account, we have the following.

Theorem 3.24 Consider hypotraceable graphs of order n and n′. Then there

exists an almost hypotraceable graph of order n+ 2 and of order n+ n′.

In the next proposition, we adapt a technique of Thomassen [125] to de-

vise a second way to construct almost hypotraceable graphs of connectivity 2.

Thomassen’s approach provides the smallest known hypotraceable graph, which

has order 34, by using four copies of Petersen’s graph (see Fig. 18)—contrasting

this, we shall present in Theorem 3.26 a method which provides smaller al-

most hypotraceable graphs with higher connectivity than the ones derivable from

Prop. 3.25.
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Proposition 3.25 Consider G1 ∈ H1 with exceptional vertex w, and G2, G3, G4 ∈
H. Let these graphs be pairwise disjoint. Assume furthermore that each Gi con-

tains a cubic vertex xi with N(xi) = {x1i , x2i , x3i }, 1 ≤ i ≤ 4, such that w /∈ N [x1].

Now take the graphs Gi − xi, 1 ≤ i ≤ 4, and identify x31, x
3
2 into a vertex y1 and

x33, x
3
4 into a vertex y2. Also add the edges x11x

1
3, x

2
1x

2
3, x

1
2x

1
4, x

2
2x

2
4. The graph we

obtain is almost hypotraceable with exceptional vertex w.

Proof. Denote the graph constructed in the statement by G. Above assumptions

provide all ingredients in order to apply Thomassen’s proof of [125, Lemma 3.1]

that G is non-traceable, and that G− v is traceable for every v ∈ V (G) \ {w}.
It remains to prove that G−w is non-traceable. Assume the opposite and let

p be a hamiltonian path in G − w. We will treat Hi = Gi − xi as subgraphs of

G. In G, put Y = {v ∈ V (H1) : vy1 ∈ E(p)}, e = x11x
1
3, and e′ = x21x

2
3.

Case 1: e, e′ /∈ E(p). Then there is a hamiltonian path q in H2 with end-

vertices x32 and z, where z is either x12 or x22. But then q∪ zx2x32 is a hamiltonian

cycle in G2, a contradiction.

Case 2: e ∈ E(p), e′ /∈ E(p). If |Y | ∈ {0, 2}, then at least one of the end-

vertices of p lies in H1. But then (p ∩ H3) ∪ x13x3x33 is a hamiltonian cycle in

G3, a contradiction. If |Y | = 1, then (p ∩ H1) ∪ x31x1x11 is a hamiltonian cycle

in G1 − w, once more a contradiction as G1 is almost hypohamiltonian with

exceptional vertex w.

Case 3: e, e′ ∈ E(p). For Y = ∅, one of the end-vertices of p lies in H3,

since one neighbour of y2 on p must be in H3, and the other neighbour in H4

(for otherwise we cannot visit any vertices in H4− y2). The other end-vertex of p

lies either in H2 or H4. In the former case, we are led to the hamiltonicity of G4

(since either (p∩H4)∪x34x4x24 or (p∩H4)∪x34x4x14 is a hamiltonian cycle in G4),

while in the latter case, we obtain that G2 is hamiltonian, again a contradiction.

If |Y | = 1, at least one of the end-vertices of p must lie in H1. If both lie

in H1, then y1 must be one of the end-vertices of p. However, in this case p

cannot contain any vertices in H2 − y1, in contradiction to the fact that p is a

hamiltonian path in G − w. So assume the end-vertex of p which is not in H1,

lies in H2. Then either {v ∈ V (G) : vy2 ∈ E(p)} ⊂ V (H3), in which case G3 is
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hamiltonian, or {v ∈ V (G) : vy2 ∈ E(p)} ⊂ V (H4) and hence G4 is hamiltonian

(the hamiltonicity is proven as above); in both cases a contradiction is obtained.

We are left with the case when one end-vertex of p lies in H1 and the other

end-vertex lies neither in H1 nor in H2. Then y1 cannot be an end-vertex of p,

since then due to |Y | = 1, both end-vertices of p would lie in H1, which was

treated above, or G2 is hamiltonian. Finally, if |Y | = 2, once again we have a

contradiction, since (p ∩H1) ∪ x11x1x21 is a hamiltonian cycle in G1 − w. 2

Let H and G be graphs each containing a vertex of degree k, say v and

w, respectively. We say that we replace v with G − w if we delete v (and all

incident edges) from H and connect the neighbours of v in H to the neighbours

of w in G − w using a bijection. The next theorem provides a powerful tool

to construct 3-connected almost hypotraceable graphs, allowing for planar and

cubic constructions as well depending on the input graphs. An example of its

application is given in Fig. 35.

Theorem 3.26 Let G1, G2, G3 ∈ H be pairwise disjoint, each graph containing

a cubic vertex x1, x2, x3, respectively. Consider K4 and put V (K4) = {v1, ..., v4}.
By replacing vi with Gi−xi, 1 ≤ i ≤ 3, a 3-connected almost hypotraceable graph

G is obtained.

Proof. We will treat Gi − xi = Hi as subgraphs of G, and v4 as a vertex in G.

Assume G contains a hamiltonian path p. Since p has two end-vertices, there

exists a Gi, say G1, such that p contains a subpath q which has end-vertices

y, z ∈ N(x1) ⊂ V (G1), and is a hamiltonian path in G1 − x1. q ∪ yx1z is a

hamiltonian cycle in G1, a contradiction. The same argument yields that G− v4
is non-traceable.

Consider v ∈ V (H1). Since G1 is hypohamiltonian, there exists a path q1 in

H1 − v with end-vertices y, z ∈ N(x1) which visits every vertex in H1 − v.

Case 1: {y, z} ∩ N(v4) = ∅. W.l.o.g. let the neighbour of y (z) not lying in

G1 lie in H2 (H3). We denote this vertex by y1 (z1). Put {y2} = N(v4) ∩ V (H2),

{z2} = N(v4) ∩ V (H3), N(x2) = {y1, y2, y3}, and N(x3) = {z1, z2, z3}. Since

G2 (G3) is hypohamiltonian, there is a path q2 (q3) in H2 − y2 (H3 − z3) with
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end-vertices y1 and y3 (z1 and z2) which visits all vertices in H2 − y2 (H3 − z3).
Now

y2v4z2 ∪ q3 ∪ z1z ∪ q1 ∪ yy1 ∪ q2 ∪ y3z3
is a hamiltonian path in G− v.

Case 2: {y, z} ∩N(v4) 6= ∅. W.l.o.g. let y ∈ N(v4).

Claim. Let G ∈ H and v ∈ V (G). Then there exists a hamiltonian path in G− v
which has w ∈ N(v) as an end-vertex.

Proof of the Claim. Let h be a hamiltonian cycle in G− v and wz ∈ E(h). Now

h− wz is the desired hamiltonian path.

W.l.o.g. let the neighbour of z which does not lie in G1 lie in G3. We denote

this vertex by z1. Let {y2} = N(v4) ∩ V (G2). By above Claim, since G2 (G3)

is hypohamiltonian, there is a path q′2 (q′3) in H2 (H3) which has y2 (z1) as an

end-vertex and which visits all vertices in H2 (H3). Now

q′2 ∪ y2v4y ∪ q1 ∪ zz1 ∪ q′3

is a hamiltonian path in G− v.

For a vertex in G2, G3, or G4 we argue in exactly the same manner. 2

If, in Theorem 3.26, each Gi is planar (cubic), then the resulting graph is

planar (cubic), as well.

Corollary 3.27

• There is a unique 3-connected cubic almost hypotraceable graph on 28 ver-

tices, and no smaller such graph.

• There exists a 3-connected almost hypotraceable graph on n vertices for every

n ≥ 28 with the possible exceptions of 29, 30, 32, and 35.

• There exists a polyhedral almost hypotraceable graph on n vertices for n =

118 and every n ≥ 120.

• There exists a polyhedral cubic almost hypotraceable graph on n vertices for

n = 208 and every even n ≥ 212.
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w

Fig. 35: By letting G1, G2, G3 each be the Petersen graph, we obtain above

graph when applying Theorem 3.26. It is the smallest 3-connected cubic almost

hypotraceable graph. Its exceptional vertex is w. Excluding K1,3, it is the

smallest known almost hypotraceable graph.

Proof. McKay [98] has shown that all bridgeless cubic graphs up to 26 vertices

are traceable. Recently, he generated the 40,157,414,176 bridgeless cubic graphs

of order 28 and found that 10 of them are non-traceable. Of these 10, only one

is 3-connected. It is the graph shown in Fig. 35. Using in Theorem 3.26 three

copies of the Petersen graph, we obtain that the aforementioned 28-vertex graph

is almost hypotraceable.

We recall that every hypohamiltonian graph is 3-connected, and that every

known hypohamiltonian graph has minimum degree 3. Theorem 3.26 implies

that if there exist hypohamiltonian graphs of order k, k′, k′′, each containing

a cubic vertex, then there exists a 3-connected almost hypotraceable graph of

order k+k′+k′′−2. The statement now follows from the result that there exists

a hypohamiltonian graph of order n for n ∈ {10, 13, 15, 16} and every n ≥ 18,

see [5].

In Theorems 2.4 and 2.12 we proved that there exists a planar hypohamilto-

nian graph of order 40 and of order n for every n ≥ 42; denote this family of

graphs by F . In contrast to the general case, for which it is unknown whether

hypohamiltonian graphs of minimum degree greater than 3 exist, Thomassen
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showed that every planar hypohamiltonian graph contains a cubic vertex [128].

By applying Theorem 3.26 to three copies of the aforementioned 40-vertex graph,

we obtain a polyhedral hypotraceable graph of order 118. The full statement

follows by applying Theorem 3.26 to all triples of graphs from F , as above.

There exists a planar cubic hypohamiltonian graph of order 70 due to a result

of Araya and Wiener [7]—this graph is shown in Fig. 15—and furthermore, there

are such graphs of order n for every even n ≥ 74 by Theorem 2.17. By applying

Theorem 3.26, we obtain the advertised statement. 2

3.6 Graphs with Empty Gallai Set

Inspired by the approach used by Walther and T. Zamfirescu to construct the

graph shown in Fig. 34 (left), we prove the following.

Theorem 3.28 Let G be a hypohamiltonian graph of order n and v ∈ V (G) of

degree d. Then there exists a graph H of order n+ d− 1 with ∂(H) = n− 1 such

that the Gallai set of H is empty. If G is planar, then so is H.

Proof. H is obtained in the following way. Put N(v) = {v1, ..., vd}. Note that

d ≥ 3 since G is hypohamiltonian and thus 3-connected. Add to G − v new

vertices v′1, ..., v
′
d and the edges viv

′
i for all i ∈ {1, ..., d}. (We treat G − v as a

subgraph of H.) Obviously, H has order n+ d− 1.

By deleting v from a hamiltonian cycle in G − vi, we obtain a path Q in H,

which has end-vertices vj, vk, where i, j, k are pairwise different. Now Q+ vjv
′
j +

vkv
′
k is a path of length n − 1 in H avoiding vi and v′i. Thus ∂(H) ≥ n − 1.

We now prove that ∂(H) ≤ n − 1. Consider a longest path P in H. As every

vertex in {v′1, ..., v′d} has degree 1, at most two such vertices lie in V (P ). If no

such vertex lies in P , then |E(P )| < n − 1, which contradicts the fact that P is

a longest path. If exactly one such vertex lies in P , then |E(P )| = n − 1 if and
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only if P visits all vertices in V (G)\{v}, and otherwise |E(P )| < n−1. If P has,

w.l.o.g., end-vertices v′1 and v′2, then in order for |E(P )| > n−1 to hold, P would

have to visit all vertices in V (G)\{v}. If this were the case (P −{v′1, v′2})∪v1vv2
would yield a hamiltonian cycle in G, a contradiction. Thus, we have proven that

∂(H) = n− 1.

We showed above that for every longest path P in H, we have that |V (P ) ∩
{v′1, ..., v′d}| ∈ {1, 2}, which we will use tacitly in the remainder of this proof. Let

w ∈ V (G) \ {v}. Due to the hypohamiltonicity of G, there exists a hamiltonian

cycle h in G− w. h− v is a hamiltonian path p in G− {v, w} with end-vertices

vj, vk ∈ N(v). Now p + vjv
′
j + vkv

′
k is a longest path in H avoiding w.

In the second paragraph we proved that there exists, for every i, a longest path

avoiding v′i. Thus, for every longest path P in H there exists a vertex w ∈ V (H)

such that w /∈ V (P ), so the intersection of all longest paths must be empty. 2

We now discuss consequences of Theorem 3.28, especially a relaxation of hy-

potraceability which arises naturally: what if we wish, in the spirit of Gallai’s

problem, all longest paths to have empty intersection, and want to study the

difference δ between the order of the graph and the length of a longest path?

Taking the cardinality of the set of avoided vertices into account, Grünbaum de-

fines in [59] the set Π(j, k) to be the family of all graphs G in which δ = k + 1

and for every S ⊂ V (G) with |S| = j there exists a longest path P such that

V (P ) ∩ S = ∅. Clearly, j ≤ k. We focus here on the case j = 1.

Certainly, the smallest value for δ is 2. This is achieved by a graph if and only

if it is hypotraceable, i.e. the family Π(1, 1). Are there graphs with δ = 3? What

about larger values of δ? Walther [137] proved that Π(1, k) 6= ∅ for all k ≥ 4.

Since then, much progress has been made—here we restrict ourselves to point

out one of the strongest results. As Wiener writes in [140], combining results of

Thomassen [127] and T. Zamfirescu [150], we obtain planar 3-connected graphs

belonging to Π(1, k) for every k ≥ 1.

In the third part of the following corollary, by using Theorem 3.28 and tech-

niques of Thomassen, we give a different approach to prove that Π(1, k) 6= ∅ for

all k ≥ 2.
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Corollary 3.29

• The graph shown in Fig. 34 (left) has empty Gallai set.

• There exist infinitely many planar graphs with empty Gallai set in which the

difference between the order of the graph and the length of a longest path

is 3.

• For every δ ≥ 3, there exists a graph of order n with empty Gallai set and

in which the length of a longest path is n− δ.

Proof. For the first part, let the graph G from Theorem 3.28 be the Petersen

graph, and any vertex in G may be chosen as v.

For the second part, it was shown by Thomassen that there exist infinitely

many planar hypohamiltonian graphs [127]. He also showed [128] that every such

graph contains a cubic vertex, which we choose to be our vertex v. Now we apply

Theorem 3.28.

For the third part, we prove that for every k ≥ 0, and fixed and arbitrary

d ∈ {3, ..., 2k+3}, there exists a hypohamiltonian graph of order 24+4k containing

a vertex of degree d. Thomassen [129] observed that given a cubic hypohamilto-

nian graph G containing a 4-cycle C = v1v2v3v4, the graph Th(GC) (we defined

the operation Th in Section 2.1.3) is a cubic hypohamiltonian graph as well—in

Prop. 2.11 a more general result is proven. In [129, Fig. 2], Thomassen presents

the cubic hypohamiltonian graph G0 of order 24 and girth 4. We reproduced this

graph in Fig. 22. Applying above observation iteratively to G0, where v1v2v3v4

shall be a 4-cycle in G0, we obtain a cubic hypohamiltonian graph of order 24+4k

for every k ≥ 0. We call the family of these graphs G.

We now use another argument of Thomassen [129]—he presents it very suc-

cinctly, so we give here a more detailed account. For every G ∈ G, where we

consider G0 − {v1v2, v3v4} to be a subgraph of G,

S = V (G) \ [V (G0) \ {v1, ..., v4}]

induces a balanced bipartite subgraph of G, so we may colour each element of

S either red or blue such that no two red vertices are adjacent and no two blue

vertices are adjacent.
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Claim. If we add to G any set of edges in which every edge joins a red vertex to

a blue vertex, then the resulting graph G′ is hypohamiltonian.

Proof of the Claim. G′ − v is hamiltonian for every v ∈ V (G′), since G is hypo-

hamiltonian and we have V (G) = V (G′) and E(G) ⊂ E(G′). Assume G′ contains

a hamiltonian cycle h. Put P = h ∩ G′[S]. Since h is a hamiltonian cycle in G′

and {v1, v2, v3, v4} is a cut in G′, P consists of either one or two components.

Case 1. P consists of one component, i.e. P is a path. Obviously, the end-

vertices of P lie in {v1, ..., v4}. W.l.o.g. let P have v1 as an end-vertex and let

v1 be a red vertex. If v3 is the other end-vertex of P , then P begins in a red

vertex and ends in a red vertex. But this is impossible, since G′[S] is a balanced

bipartite graph and P a hamiltonian path therein. So either v2 or v4 is the other

end-vertex of P . Say it is v2. Then by replacing in h the path P with v1v4v3v2, we

obtain a hamiltonian cycle in G0—a contradiction. If v4 is the other end-vertex

of P , then we replace in h the path P with v1v2v3v4.

Case 2. P consists of two components P ′, P ′′. Then P ′ ∩ P ′′ = ∅ and each of

P and P ′ is a path with end-vertices lying in {v1, ..., v4}. W.l.o.g. let v1 be one of

the end-vertices of P ′. If v2 is the other end-vertex of P ′, then the end-vertices

of P ′′ are v3 and v4. By replacing in h the path P ′ with the edge v1v2 and P ′′

with v3v4, we obtain a hamiltonian cycle in G0. The arguments for v4, as well as

if P ′ has end-vertices v1 and v3, are very similar. This completes the proof of the

Claim.

G′[S] contains 2 + 2k red vertices and 2 + 2k blue vertices, where k ≥ 0 is

the number of times we have applied Thomassen’s operation Th to G0. Since

G0 − {v1v2, v3v4} is a subgraph of every G ∈ G, we may consider v1 to lie in G.

Let v1 be a red vertex. Then we may join v1 to ` blue vertices (excluding the two

blue vertices it is already neighbouring), for every non-negative integer ` ≤ 2k.

Thus, by adding edges to G appropriately, we can make the degree of v1 take any

integer value d with 3 ≤ d ≤ 2k + 3. 2
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Theorem 3.30 Let Gi, 1 ≤ i ≤ 4, be pairwise disjoint hypohamiltonian snarks,

and xi ∈ V (Gi). Consider K4 and put V (K4) = {v1, ..., v4}. By replacing vi with

Gi − xi for all i, we obtain a reducible snark G with empty Gallai set.

Proof. G is obviously a connected bridgeless cubic graph of girth mini g(Gi),

where g(Gi) denotes the girth of Gi, so certainly at least 5. G is a reducible

snark, since although by Prop. 2.13 hypohamiltonian graphs are cyclically 4-edge-

connected, G is not. Assume G is 3-edge-colourable. Consider the 3-edge-cut M

in G separating G1 − x1 (where we treat each Hi = Gi − xi as a subgraph of

G) from the remainder of the graph. Isaacs’ Parity Lemma [74] implies that the

edges of M must have pairwise different colours. Let M = {w1w
′
1, w2w

′
2, w3w

′
3},

where wi ∈ V (G1)\{x1}, 1 ≤ i ≤ 3. In G1−x1 together with M and the vertices

w′1, w
′
2, w

′
3, identify w′1, w

′
2, w

′
3 into one vertex. We obtain a 3-edge-coloured graph

isomorphic to G1—a contradiction. Due to this observation and the fact that G

has maximum degree 3, by Vizing’s Theorem [135], G is 4-edge-colourable. (Note

that due to the existence of the 3-edge-cut M , G is not hypohamiltonian by

Prop. 2.13.)

It remains to prove that the Gallai set of G is empty. Put n = |V (G)| and

assume that G contains a path P of length n−1 or n−2. Then there exists at least

one Hi, say H1, such that P visits all vertices of H1 and P ∩H1 is connected. Let

P ∩H1 have end-vertices a, b, which necessarily lie in N(x1). Now (P ∩H1)∪ax1b
is a hamiltonian cycle in G1, a contradiction. We have shown that ∂(G) ≤ n− 3.

Let v ∈ V (H1). We now prove that there exists a path of length n−3 in G−v.

We contract H2 to a single vertex w and obtain the graph G′. Theorem 3.26 states

that there is a hamiltonian path p in G′ − v. w certainly is not an end-vertex

of p, since by Theorem 3.26, G′ − w is non-traceable. Denote by y1 and y2 the

neighbours of w on p in G′. We expand w back into H2, which renders p−w into

two components P1 and P2. Let {y′1} = V (H2)∩N(y1) and {y′2} = V (H2)∩N(y2).

Note that y1y
′
1, y2y

′
2 ∈ E(p). Since G2 is hypohamiltonian, we can join y1 and y2

with a path in H2 of length |V (H2)| − 2. We have constructed a path of length

n− 3 avoiding v, which completes the proof. 2
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Note that T. Zamfirescu’s [150, Theorem 10] is a special case of Theorem 3.30:

it states that if each Gi is the Petersen graph, then the resulting graph S has

empty Gallai set. (There is no proof of this fact in [150], which warrants the

inclusion of the second part of the proof of Theorem 3.30.) S is a reducible

snark6 on 36 vertices and the smallest reducible snark with empty Gallai set

mentioned in Corollary 3.31, see below.

Steffen [121] showed that there exists a hypohamiltonian snark of order n for

every even n ≥ 92 (and certain n < 92). We show here a similar result, where we

replace “snark” with “reducible snark” (i.e. we allow the snark to not be cyclically

4-connected) and “hypohamiltonian” is replaced with “has empty Gallai set”—it

follows directly from Theorem 3.30 and Steffen’s [121, Theorem 2.5], where we

consider all sums of the form n1 + n2 + n3 + n4 − 4 and each ni is the order of

some hypohamiltonian snark.

Corollary 3.31 There exists a reducible n-vertex snark with empty Gallai set

for every even n ≥ 36 with the possible exception of 38, 40, 42, 48, 50, and 58.

Assume there exists a snark G with a hamiltonian cycle h, the edges of which

we colour alternatingly. Then the graph (V (G), E(G)\E(h)) contains a 1-factor,

which may be coloured using a third colour. Therefore, we have a 3-edge-colouring

of G, a contradiction. We have proven that every snark is non-hamiltonian. Is

every snark non-traceable? Surely not, as the Petersen graph gives a counter-

example. In fact, every hypohamiltonian snark—there are infinitely many such

graphs [39]—provides a traceable snark, while Corollary 3.31 seems to give the

first detailed account of non-traceable reducible snarks.

In the following table, we present the best currently available upper bounds

for the order of the smallest graph G with the stated properties. The symbol “–”

stands for an impossible combination of properties. If a number k is underlined,

this means that there is a graph on k vertices and no graph on fewer than k vertices

with the given properties.

6S is reducible since it is not cyclically 4-edge-connected.
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κ(G) = 1 κ(G) = 2 κ(G) = 3

planar planar planar

empty Gallai set 12 17 26 32 36 156

hypotraceable – – 34 154 40 190

almost hypotraceable 4 4 41 153 28 118

We discuss the graphs responsible for the first row of the table. The numbers

are due to Walther and T. Zamfirescu [59, 138, 150], Schmitz [113], Skupień [115],

T. Zamfirescu [150], T. Zamfirescu [150], and Theorem 4.1, respectively. The

first two numbers follow from the graphs shown in Fig. 34. The bounds from the

second row follow from work of Thomassen [125], Theorem 2.25, a result of Hor-

ton [72], and by applying Thomassen’s method given in the proof of Theorem 2.27

to the plane 40-vertex hypohamiltonian graph from Fig. 8, respectively. In the

third row, the first two numbers are due to the claw K1,3, for the third bound

apply Prop. 3.25 to three copies of the Petersen graph and the almost hypohamil-

tonian graph given in Fig. 32, for the fourth number apply Prop. 3.25 to three

copies of the plane 40-vertex hypohamiltonian graph from Fig. 8 and the plane

almost hypohamiltonian graph shown in Fig. 29, while the last two bounds stem

from applying Theorem 3.26 to three copies of the Petersen graph (see Fig. 35 for

the resulting graph) or three copies of a 40-vertex planar hypohamiltonian graph

such as the one shown in Fig. 8.

In the next chapter, we shall present variations of Gallai’s problem.
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Chapter 4

Intersecting Longest Paths and

Longest Cycles

In Sections 3.5 and 3.6, we discussed Gallai’s famous problem on intersecting

longest paths. Many variations of Gallai’s problem have been studied in the liter-

ature. Important foundational articles concerning intersecting longest paths and

longest cycles are Grünbaum’s [59] and T. Zamfirescu’s [150]. The survey [114]

by Shabbir, the author, and T. Zamfirescu revolves around Gallai’s problem and

other questions in the same spirit, involving conditions on connectivity, planarity

or embeddability on various lattices. It also considers the analogous problem for

cycles instead of paths. We will present the problems neither as deeply nor as

broadly as aforementioned survey, but will mention here certain important results

that were obtained, especially consequences of our work and our collaborators’

work on hypohamiltonian graphs.

Denote by Cj
k

(
P j
k

) [
C
j

k

(
P
j

k

)]
the smallest order of a [planar] k-connected

graph in which any j vertices are avoided by some longest cycle (path). We focus

in the following on the cases k ∈ {1, 2, 3} and j ∈ {1, 2}.
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4.1 Empty Intersection of all Longest Paths

We call P1 the question: “Do there exist graphs in which any vertex is missed

by some longest path?”, or equivalently: “Are there graphs with empty Gallai

set?”—see Section 3.5 for the definition of the Gallai set. Certain results in the

following paragraphs were briefly mentioned in Sections 3.5 or 3.6, but we choose

to repeat them here in order to give more details.

Walther was the first to have found a graph with empty Gallai set in 1969 [137].

A few years later, an example with only 12 vertices was (independently) found

by Walther and T. Zamfirescu, see [59, 138, 150]. It is shown in Fig. 34. The

P1 problem restricted to planar graphs generated several examples, each smaller

than the previous one. Walther’s first example with 25 vertices was planar, but

the smallest so far was found by Schmitz [113] in 1975 and has 17 vertices, see

Fig. 34. It was conjectured [148] that the orders 12 and 17 are smallest possible for

the problem P1 in the general and planar case, respectively. Brinkmann and Van

Cleemput proved (using computers) that in the general case order 12 is minimal.

The examples become naturally larger if higher connectivity is requested. The

first 2-connected example was found in 1972 for P1 and had 82 vertices and was

planar [147]. Currently, the smallest known 2-connected graph answering P1 has

26 vertices and was constructed by Skupień [115] in 1996, while the smallest

known planar example has order 32 and was found by T. Zamfirescu [150] in

1976. For these two graphs, see Fig. 36.

(a) (b)

Fig. 36
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The same problem for 3-connected graphs received its first answer in 1974

through Grünbaum’s example with 484 vertices [59]. But the best answer so far,

provided by T. Zamfirescu, as already mentioned in Section 3.6, is a graph with

36 vertices obtained in the following way. (We say that we insert G into H, if

we replace every vertex of H with copies of G−w, where replacement is used as

defined in Section 3.5.) Insert Petersen’s graph into K4. In summary, we have

P 1
1 = 12, P

1

1 ≤ 17, P 1
2 ≤ 26, P

1

2 ≤ 32, and P 1
3 ≤ 36.

This idea of “insertion” will be used extensively in the proof of the next theorem.

Concerning the problem P1 for 3-connected planar graphs, significant progress

was made by using hypohamiltonian graphs. The techniques used can be deployed

for similar longest paths and longest cycles problems. We summarise these find-

ings in the following briefly. Tables I and II on page 79 in Voss’ book [136] show

the following inequalities.

C
1

3 ≤ 57, P
1

3 ≤ 224, C
2

3 ≤ 6758, and P
2

3 ≤ 26378.

Based on the progress towards finding smaller planar hypohamiltonian graphs,

there were numerous occasions on which these bounds were improved. We now

present only the currently best bounds, while the proofs given here will contain

only the major steps, which are identical to the ones introduced and described

in detail by T. Zamfirescu in [150]. For a different presentation of the same

approach, see [7] by Araya and Wiener.

Theorem 4.1 (Jooyandeh, McKay, Österg̊ard, Pettersson, Zamfirescu, 2016 [80])

We have

C
1

3 ≤ 40, P
1

3 ≤ 156, C
2

3 ≤ 2625, and P
2

3 ≤ 10350.

Proof. The first of the four inequalities follows immediately from Theorem 2.8,

which shows that there exists a planar hypohamiltonian graph of order 40. In

the following, let G be such a graph.

In order to prove the second inequality, insert G into K4. We obtain a graph

in which every vertex is avoided by a path of maximal length. The details of this
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proof are given in the second and third paragraph of the proof of Theorem 3.30.

We obtain P
1

3 ≤ 4 · (40− 1) = 156.

For the third inequality, insert G into the 70-vertex planar cubic hypohamil-

tonian graph—which we will call here Γ—constructed by Araya and Wiener in [7]

and shown in Fig. 15. (Γ is the smallest known planar cubic hypohamiltonian

graph.) This means that each vertex of Γ is replaced by G minus some vertex

of degree 3. We denote the resulting graph by G′. Araya and Wiener proved [7]

(using a computer) that every pair of edges in Γ is missed by a longest cycle.

Combining this fact with the hypohamiltonicity of G and Γ, we obtain that in G′

any pair of vertices is avoided by a longest cycle. This property is not lost if all

edges originally belonging to Γ are contracted. By construction, the order of G′

is (40− 1) · 70 = 2730. Since |E(Γ)| = 105, after contracting all edges originally

belonging to Γ, we obtain C
2

3 ≤ 2730− 105 = 2625.

For the last inequality, consider the graph Γ from above and insert Γ into K4

to obtain H. Now insert G into H. Finally, contract all edges which originally

belonged to H. Since |V (H)| = (70 − 1) · 4 = 276 and H is cubic, we have that

|E(H)| = 414. Then P
2

3 ≤ (40− 1) · 276− 414 = 10350. 2

For a more detailed proof of the latter two bounds (i.e. C
2

3 ≤ 2625 and P
2

3 ≤
10350), replace in [7, Corollary 3.6] the 42-vertex planar hypohamiltonian graph

with a 40-vertex planar hypohamiltonian graph (for instance the one depicted in

Fig. 8).

Research impulses from fault-tolerant designs in computer networks—for fault-

tolerance problems in graph theory see Hayes’ paper [65] and, for more recent

developments, [21, 73, 104]—led to considering P1 in various lattices. Such em-

beddability problems (also concerning longest cycles) are beyond the scope of this

Dissertation, but an overview can be found in [114].
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4.2 Empty Intersection of all Longest Cycles

The Ck problem, i.e. the existence of graphs in which any k vertices are missed by

some longest cycle, was completely solved, in the sense that the provided example

has the smallest possible number of vertices (namely 3k+3), by Thomassen [128]

(see Fig. 37).

Fig. 37

However, one might argue that the appropriate frame while working with

longest cycles demands connectivity at least 2, and in that case the smallest

known example for the C1 problem remains, as for connectivity 3, Petersen’s

graph (see Fig. 1 or 45). That this graph is indeed the smallest among all 2-

connected graphs was verified by Brinkmann and Van Cleemput [17]. For the C1

problem and 2-connected planar graphs, Thomassen found an example with 15

vertices, see [150] and Fig. 42 (c). Again, Brinkmann and Van Cleemput proved

its optimality [17].

For 3-connected planar graphs, the first example was found by Grünbaum [59]

in 1974 and had 124 vertices. Once more through the work on planar hypohamil-

tonian graphs, this was improved by Thomassen [127] to 105 (see Fig. 2), then

by Hatzel [64] to 57. The author and T. Zamfirescu [146] decreased this to 48,

and Araya and Wiener [141] further improved it to 42; for the latter two improve-

ments, see Fig. 3. The hypohamiltonian planar graph with 40 vertices recently

found by Jooyandeh, McKay, Österg̊ard, Pettersson, and the author [80] (see

Theorem 2.8 and Fig. 8), is the smallest example known to date. Due to Tutte’s

result that every planar 4-connected graph is hamiltonian [133], and summarising,

we have for all j ≥ 1

Cj
1 = C

j

1 = 3j + 3, C1
2 = C1

3 = 10, C
1

2 = 15, C
1

3 ≤ 40, and C
j

4 = C
j

5 =∞.
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Nothing is known concerning C1
4 . Note that this is a relaxation of an old

problem of Thomassen whether 4-connected hypohamiltonian graphs exist [128]:

see Problem 1 in Chapter 6.

4.3 Avoiding Arbitrary Pairs of Points

The problem P2 of finding graphs in which every pair of vertices is missed by

some longest path was solved by Grünbaum in 1974, see [59]. His graph is 3-

connected and has 324 vertices. Now the smallest such examples are a graph

with 93 vertices and a 3-connected graph with 270 vertices, found by T. Zam-

firescu [150] in 1976. Concerning planar graphs, a graph of order 308 and a

2-connected graph of order 914, found in 1975 by T. Zamfirescu [149] are still the

smallest known. For 3-connected graphs, the first example with 57838 vertices

was given by T. Zamfirescu [150] in 1976. This was improved step-by-step to the

result given in Theorem 4.1, which is currently the best bound we have, so

P 2
1 ≤ 93, P

2

1 ≤ 308, P
2

2 ≤ 914, P 2
2 ≤ P 2

3 ≤ 270, and P
2

3 ≤ 10350.

The C2 problem, received—for 2-connected graphs—a positive answer as well.

The first 2-connected example was presented already in 1969 by Walther [137]

and has 220 vertices. The chronologically first 3-connected example was found in

1974 by Grünbaum [59]. Currently, the smallest such example known was given

by T. Zamfirescu in 1976 and has 75 vertices [150]. It is obtained by inserting

the Petersen graph P into a copy P ′ of P , and eventually contracting all original

edges of P ′. Note that T. Zamfirescu’s 75-vertex graph is also the record-holder

for the 2-connected case.

Concerning planar 2-connected graphs, an example constructed by T. Zam-

firescu [148] in 1975 is still the smallest known. It has 135 vertices. If the

graph should be polyhedral, the first example, with 14818 vertices, was found by

T. Zamfirescu [150] in 1976. By providing and using smaller and smaller planar
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hypohamiltonian graphs, the results improved. The best we currently have is

based on work of Jooyandeh, McKay, Österg̊ard, Pettersson, and the author, and

has order 2625, as mentioned in Theorem 4.1. (Note that none of these graphs is

regular.) We have

C2
1 = C

2

1 = 9, C
2

2 ≤ 135, C2
2 ≤ C2

3 ≤ 75, and C
2

3 ≤ 2625.

Table 4 in the Appendix summarises the findings of this section up to this point.

In 1981, Thomassen presented an infinite family of planar cubic hypohamilto-

nian graphs [128]. Schauerte and the author [111] have shown that there also exist

polyhedral cubic graphs satisfying C2. In [111], an example of order 8742 was

provided. (Subsequently, Araya and Wiener [7] found an example of order 4830

only.) We present now the argument given in [111].

Theorem 4.2 (Schauerte and Zamfirescu, 2006 [111]) There exists a planar 2-

connected cubic graph on 30 vertices such that any vertex is missed by some

longest cycle.

Proof. The graph of Fig. 38, being a straightforward modification of an example

due to Thomassen (see Fig. 42 (c)) enjoys the required properties—Thomassen’s

graph shares all properties except for 3-regularity, which is why we have modified

his graph. 2

Fig. 38
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Theorem 4.3 [111] There exists a planar 2-connected cubic graph on 280 vertices

such that any pair of vertices is missed by some longest cycle.

Proof. We construct the graph G in the following way. First, consider the pen-

tagonal prism G1 shown in Fig. 39:

Fig. 39: The graph G1.

Each of its vertices will be replaced by a graph G2 (replacement as defined in

Section 3.5; note that G2 already has the necessary “dangling” edges), see Fig. 40,

respecting the location of the arrow-marked edges.

Fig. 40: The graph G2.

We obtain a graph G3. The intersection of any longest cycle of G3 with a

G2-copy is a path with 20 vertices if the arrow-marked edge of that copy is used,

or with 24 vertices if the other two dangling edges of the G2-copy are used.

Suppose we insert between ai and ai+1 (1 ≤ i ≤ 4) and a5 and a1, and

between a′i and a′i+1 (1 ≤ i ≤ 4) and a′5 and a′1 isomorphic copies of a graph with
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m vertices, and between ai and a′i (1 ≤ i ≤ 5) isomorphic copies of a graph with

n vertices, thus obtaining G.

Then each cycle of the type a1a2a
′
2a
′
3a3a4a

′
4a
′
5a
′
1 in G1 induces in G a cycle of

length 5 · 20 + 4 · 24 + 5m + 4n. Each cycle of the type a1a2a3a4a5a
′
5a
′
4a
′
3a
′
2a
′
1 in

G1 induces in G a cycle of length 8 · 20 + 2 · 24 + 8m+ 2n. Both types of cycles

of G must be longest cycles. So we must have

5 · 20 + 4 · 24 + 5m+ 4n = 8 · 20 + 2 · 24 + 8m+ 2n,

which yields 2n = 12 + 3m.

To choose a small example, we consider m = 0 and n = 6, so we intercalate

nothing between ai and ai+1 (1 ≤ i ≤ 4) and a5 and a1, nothing between a′i and

a′i+1 (1 ≤ i ≤ 4) and a′5 and a′1, while between ai and a′i (1 ≤ i ≤ 5) we intercalate

the graph of Fig. 41:

Fig. 41

Since the graph from Fig. 40 has order 25 and the graph from Fig. 41 has

order 6, the resulting 2-connected graph has 25 · 10 + 5 · 6 = 280 vertices, verifies

C2, and is both planar and cubic. 2

Theorem 4.4 [111] There exists a polyhedral cubic graph on 8742 vertices such

that any pair of vertices is missed by some longest cycle.

Proof. Consider Thomassen’s planar cubic hypohamiltonian 94-vertex graph T

published in [129], open it up at some vertex, and introduce it at every vertex

of T ; recall the insertion procedure used in the proof of Theorem 4.1. We have

to prove that every pair of edges in T is avoided by some longest cycle of T . This

turned out to be a tedious task, and it was performed by a computer. For details,
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please see [111]: at the end of that paper, a (very large) table is provided which

associates to every pair of edges a longest cycle omitting it. 2

With the same approach, but replacing T with the 70-vertex graph shown in

Fig. 15, Araya and Wiener were able to dramatically improve this result to the

following, which is the best bound we have.

Theorem 4.5 (Araya and Wiener, 2011 [7]) There exists a polyhedral cubic graph

on 4830 vertices such that any pair of vertices is missed by some longest cycle.
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Chapter 5

On Non-Hamiltonian Graphs for

Which Every Vertex-Deleted

Subgraph is Traceable

5.1 Introduction

We study in this chapter a new class of graphs, closely related to the families of

hypohamiltonian, hypotraceable, and almost hypohamiltonian graphs discussed

in Chapters 2 and 3, defined as follows. A graph G is called a platypus—an egg-

laying mammal—if G is non-hamiltonian, yet for any vertex v ∈ V (G), the graph

G− v is traceable. We will denote the family of all platypuses of connectivity κ

by Pκ and put P =
⋃
κPκ.

Every hypohamiltonian and every hypotraceable graph is a platypus, but

there exist platypuses which are neither hypohamiltonian nor hypotraceable. In-

vestigating platypuses was suggested to the author by Kenta Ozeki in a conver-

sation in 2012. In order to draw connections between results proven here and

Gábor Wiener’s work [140] presented in Bordeaux in 2014, we require the follow-

ing. Let G be a graph and T (G) the set of all spanning trees of G. Denote by

`(T ) the number of leaves of a tree T . The minimum leaf number ml(G) of a

graph G is defined as
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ml(G) =


min

T∈T (G)
`(T ) if G is not hamiltonian,

1 if G is hamiltonian.

Note that for a 2-connected graph G we have ml(G − v) ≥ ml(G) − 1 for all

v ∈ V (G). Consider an integer ` ≥ 2. A 2-connected graph G with ml(G) = ` is

called `-leaf-critical if ml(G− v) = `− 1 for every v ∈ V (G), and `-leaf-stable if

ml(G− v) = ` for every v ∈ V (G).

The family of all 2-leaf-critical graphs (3-leaf-critical graphs) coincides with

the family of all hypohamiltonian (hypotraceable) graphs. Wiener shows that `-

leaf-stable and `-leaf-critical graphs exist for every ` ≥ 2, and studies these graphs

under the additional condition of planarity. Using these results, he solves affir-

matively the open problem of Gargano, Hammar, Hell, Stacho, and Vaccaro [45,

p. 93] whether non-traceable non-hypotraceable arachnoid graphs (defined in [45])

exist.

Related to the present work, for a platypus G we have ml(G) ∈ {2, 3}. It is 2

if and only if G is traceable and 3 if and only if G is hypotraceable. Furthermore,

ml(G− v) in general depends on v ∈ V (G), and is either 1 or 2. (If in a platypus

G we have ml(G) = 3, then necessarily ml(G− v) = 2 for all v ∈ V (G), whence

G is a 3-critical graph, i.e. hypotraceable.) P contains all 2-leaf-critical, 3-leaf-

critical, and 2-leaf-stable graphs, and no other leaf-critical or leaf-stable graphs.

But P is larger than the three aforementioned families—a polyhedral platypus

not belonging to any of the three families will be discussed in Section 5.5.

Let G be a graph. We call a path P ⊂ G with end-vertices v, w an ear if

{v, w} is a cut in G and every vertex in V (P ) \ {v, w} has degree 2 in G. An ear

on k vertices will be called a k-ear. Furthermore, we will require in the remainder

of this Dissertation an ear to not contain any super-ears, i.e. for every ear D there

exists no ear D′ such that D ( D′. We call v ∈ V (G) naughty if N(v) contains

(at least) two vertices of degree 2. For non-adjacent vertices v, w we will write

G+ vw for the graph G to which we add the edge vw.

Let G be a graph of connectivity 2 and X = {v, w} a cut in G. Let A be a

connected component of G −X, and put H = G[A ∪ {v, w}]. Consider a graph
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J and x, y ∈ V (J). We replace (H, v, w) with (J, x, y) (or simply H with J) if in

G− A and J we identify v with x and w with y. In case H or J are paths, v, w

and x, y are required to be their respective end-vertices.

5.2 Structural Results

The following proposition contains basic facts about platypuses. These will

mostly be used tacitly in the remainder of this chapter.

Proposition 5.1 [145]

(i) Every platypus is 2-connected.

(ii) A platypus containing a triangle with at least one cubic vertex is traceable.

(iii) Let G be a platypus containing a k-ear P , k ∈ {3, 4}. Then for every

non-adjacent v, w ∈ V (P ) the graph G+ vw is a platypus.

(iv) Every bipartite platypus must be balanced.

(v) A platypus does not contain naughty vertices. In particular: no platypus

contains a k-ear, k ≥ 5.

(vi) If a platypus contains a vertex of degree 2, then it is traceable.

(vii) If a platypus contains a 4-ear H, then H can be replaced with a 3-ear, and

the resulting graph is a platypus, too.

Proof. (i) Let v be a cut-vertex of a platypus G. Then G−v cannot be traceable.

(ii) Let T be a triangle with V (T ) = {v1, v2, v3} in a platypus G, and let v3 be

cubic. G−v1 contains a hamiltonian path p. If v2v3 ∈ E(p), then (p−v2v3)∪v2v1v3
is a hamiltonian path in G. If v2v3 /∈ E(p), then v3 is an end-vertex of p and

p + v3v1 shows that G is traceable.
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(iii) Certainly, all paths in G remain intact after adding vw. Now assume

G+ vw is hamiltonian, and let x, y be the end-vertices of P . Then there exists a

hamiltonian path in G− (V (P ) \ {x, y}), the end-vertices of which are x and y.

But then G is hamiltonian, a contradiction.

(iv) If (A,B) is a bipartition of G with |A| < |B|, then deleting a vertex from

A cannot yield a traceable graph.

(v) Let G be a platypus containing a naughty vertex v. Let v′, v′′ ∈ N(v)

have degree 2. Since G is a platypus, G− v contains a hamiltonian path p. The

end-vertices of p must be v′ and v′′. But then p ∪ v′vv′′ is a hamiltonian cycle in

G, a contradiction.

(vi) Let the platypus G have a vertex v of degree 2. If w ∈ N(v), then

G − w contains a hamiltonian path p ending in v. p can now be extended to a

hamiltonian path in G.

(vii) Let G be the original and G′ the resulting graph. Clearly, G′ is non-

hamiltonian. Denote the vertices of H which are not its end-vertices by x and y

and let w be the vertex which replaces x, y. Any hamiltonian path in G using xy

may now use w. It remains to see that G′−w is traceable. Let p be a hamiltonian

path in G− x. Now p− y is a hamiltonian path in G′ − w. 2

In fact, the idea behind (vii) can be extended significantly, as we shall explore

in Section 5.4. Applying (iii) to the graph shown in Fig. 42 (a) we obtain a planar

platypus with no cubic vertices. This contrasts Thomassen’s theorem [128] stating

that every planar hypohamiltonian graph contains a cubic vertex—we will come

back to this intriguing fact in Section 5.3. Since the graph from Fig. 42 (a) will

appear frequently in future arguments, we will call it ∆ in the remainder of this

chapter.

As mentioned in Section 2.4, Collier and Schmeichel [29, p. 196] were the first

to publish that the vertices of a triangle in a hypohamiltonian graph have degree

at least 4. (This is true for hypotraceable graphs, as well.) Thus, hypohamiltonian

and hypotraceable graphs do not fulfil the condition from Prop. 5.2, but ∆, the

graph shown in Fig. 42 (a), does satisfy it. Yet again we see that there exist

platypuses which are neither hypohamiltonian nor hypotraceable.
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Proposition 5.2 [145] Let G be a platypus containing a triangle v1v2v3 with

v1, v2 ∈ V (G) cubic. Consider vertices w, v′1, v
′
2, v
′
3 /∈ V (G). Then

R(G) =
(
V (G) ∪ {w}, E(G) ∪ {wvi}3i=1

)
,

S(G) = (V (G) ∪ {v′1, v′2} , E(G) ∪ {v1v′1, v′1v′2, v2v′1, v2v′2, v1v′2, v3v′1}) ,

and

T (G) =
(
V (G) ∪ {v′i}3i=1 , E(G) ∪ {v′1v′2, v′2v′3, v′3v′1} ∪ {viv′i}3i=1

)
,

are platypuses, as well. R, S, and T preserve planarity and 3-connectedness.

Proof. In the remainder of this proof, G will be considered as a subgraph of R(G),

S(G) or T (G), depending on which operation we are studying. We first show

that R(G) is a platypus. Assume R(G) contains a hamiltonian cycle h. Ignoring

symmetric cases, since w is cubic we have either v1wv2 ⊂ h or v1wv3 ⊂ h. In

both situations we can modify h to a hamiltonian cycle in G = R(G) − w by

replacing v1wv2 with v1v2 or v1wv3 with v1v3, yielding a contradiction. Hence

R(G) is non-hamiltonian.

Let v ∈ V (G) and let r be a hamiltonian path in G − v. If v1v2 ∈ E(r),

v2v3 ∈ E(r) or v1v3 ∈ E(r), then r can be transformed into a hamiltonian path

in R(G)− v. If neither of these three edges occurs in r, then necessarily v1 or v2

must be an end-vertex of r. Then r + v1w or r + v2w is a hamiltonian path in

R(G)− v. Since G is a platypus containing a triangle which has a cubic vertex,

Prop. 5.1 (ii) implies that G = R(G)− w is traceable.

Now we prove that S(G) is a platypus. Assume S(G) contains a hamilto-

nian cycle. Then this cycle contains a subpath from v1 to v2 hamiltonian in

S(G)[{v1, v2, v′1, v′2}] or in S(G)[{v1, v2, v3, v′1, v′2}]. In each case, substitute v1v2

or v1v3v2 for the subpath, respectively.

Let s be a hamiltonian path in G − v, where v ∈ V (G) \ {v1, v2}. Assume

v1v2 ∈ E(s). Then (s − v1v2) ∪ v1v′1v′2v2 is a hamiltonian path in S(G) − v.

Assume now that v1v2 /∈ E(s). If v2 is an end-vertex of s, then s ∪ v2v′1v′2 is a

hamiltonian path in S(G)−v. If v2 is not an end-vertex of s, then v3v2 ∈ E(s). In

this case (s− v3v2)∪ v2v′2v′1v3 is a hamiltonian path in S(G)− v. The discussion
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for v ∈ {v1, v2} is very similar. Consider a hamiltonian path s′ in G − v2. If

v1v3 ∈ E(s′), then (s′ − v1v3) ∪ v3v2v′2v1 is a hamiltonian path in S(G) − v′1. If

v1v3 /∈ E(s′), then v1 is an end-vertex of s′. Then s′ ∪ v1v′2v2 is a hamiltonian

path in S(G)− v′1. The argument for S(G)− v′2 is exactly the same.

We now show that T (G) is a platypus. We have shown that R(G) is non-

hamiltonian, and T (G) is non-hamiltonian if and only if R(G) is non-hamiltonian.

Consider v ∈ V (G) \ {v1} and a hamiltonian path t in G − v. If v1 is an

end-vertex of t, then t ∪ v1v′1v′2v′3 is a hamiltonian path in T (G)− v. If v1 is not

an end-vertex of t, then v1v2 ∈ E(t) or v1v3 ∈ E(t). In the former case, substitute

in t the path v1v
′
1v
′
3v
′
2v2 for the edge v1v2, and in the latter case substitute in t the

path v1v
′
1v
′
2v
′
3v3 for the edge v1v3, and we obtain a hamiltonian path in T (G)− v.

Since we have dealt with the case v = v2, the case v = v1 follows directly.

A hamiltonian path in T (G) − v′1 can be obtained by considering the hamil-

tonian path t in G − v3. We have v1v2 ∈ E(t). Substitute v1v3v
′
3v
′
2v2 for v1v2 in

t. Similarly for T (G)− v′2. Consider a hamiltonian path t′ in G− v2. If v1 is an

end-vertex of t′, then t′ ∪ v1v′1v′2v2 is a hamiltonian path in T (G) − v′3. If v1 is

not an end-vertex of t′, then v1v3 ∈ E(t′). Replacing v1v3 with v1v
′
1v
′
2v2v3 yields

a hamiltonian path in T (G)− v′3. 2

Theorem 5.3 [145] Let G be a platypus of connectivity k. If H is a subgraph of

G of order k, then G−H has at most k components.

Proof. By Prop. 5.1 (i), G is 2-connected, so k ≥ 2. Let v ∈ V (H) and consider

a hamiltonian path p of G − v. The set of k − 1 vertices M of H − v lies on p

and determines at most k subpaths of p, where each subpath either (i) contains

exactly one vertex from M and an end-vertex of p or (ii) exactly two vertices

from M . Each such subpath visits exactly one component of G−H if it has more

than two vertices, and none if it has just two vertices. Hence G−H has at most

k components. 2

Let G be a graph, consider its Cartesian product with P2, G�P2, and replace

each copy of P2 with a copy of P3. We will call the resulting graph the dotted

prism over G and denote it by Ġ.
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Theorem 5.4 [145]

(i) The dotted prism over a hamiltonian graph G of odd order n ≥ 3 is a

platypus.

(ii) Let G be a hamiltonian graph of even order containing an edge e which lies

on all hamiltonian cycles occurring in G. Let v′w′ = e′ and v′′w′′ = e′′ be

the two copies of e in Ġ. Then H = Ġ− e′− e′′+ v′w′′+ v′′w′ is a platypus.

Proof. (i) Denote the two copies of G in Ġ by G′ and G′′. Assume Ġ is hamil-

tonian. Every copy of P3 must be traversed. Since there is an odd number of

copies of P3, either we begin in G′ and end up in G′′ or vice-versa. In both cases

we obtain a contradiction, so Ġ is non-hamiltonian.

Denote the end-vertices of the n copies of P3 by v′i and v′′i , where v′i ∈ V (G′)

and v′′i ∈ V (G′′), i ∈ {1, ..., n}. Call wi the vertex with neighbourhood {v′i, v′′i }
and put W = {wi}ni=1. We now show that there exists a hamiltonian path in

H = Ġ − wi with i arbitrary, but fixed. It is easy to see that in H there exists

a cycle c which visits all vertices with the exception of v′i. Let x ∈ N(v′i) \ {wi}
and {y} = N(x) ∩W . Then (c− xy) + xv′i is a hamiltonian path in H.

Let v ∈ V (Ġ) \W . W.l.o.g. v ∈ V (G′), so there exists a j such that v = v′j.

As before, Ġ − v′j − wj contains a hamiltonian cycle h. Let z ∈ N(v′′j ) ∩ V (h).

Then (h− zv′′j ) + v′′jw is a hamiltonian path in Ġ− v′j.
(ii) Assume H has a hamiltonian cycle h. Due to the condition that G contains

an edge e belonging to all hamiltonian cycles in G, v′w′′ and v′′w′ are contained

in h. (Since if there was a hamiltonian cycle in H not using the edges v′w′′ and

v′′w′, we would immediately obtain a hamiltonian cycle in G which would not

contain e.) All copies of P3 must be traversed by h. Hence, due to the fact

that there is an even number of copies of P3 and v′w′′, v′′w′ ∈ E(h), we obtain a

contradiction.

Showing that H − v is traceable for every v ∈ V (H) is very similar to the

proof given in (i). 2

Graphs obtained from G in the same manner as H in the statement of The-

orem 5.4 will be called modified dotted prisms of G and will be denoted by G×.
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We present two corollaries of Theorem 5.4, the first of which follows directly from

Theorem 5.4 (ii), while the second one requires further preparations.

Corollary 5.5 [145] There exist infinitely many balanced bipartite platypuses.

Using a computer, Van Cleemput [134] determined that there exist no platy-

puses on fewer than 9 vertices. His program also determined that there are exactly

four such graphs on 9 vertices (Van Cleemput verified these results using two in-

dependent implementations); they are ∆, i.e. the graph from Fig. 42 (a), and the

three graphs obtained as follows. Apply Prop. 5.1 (iii) to one, two, or three of

the 3-ears in ∆. For order 10, the situation changes dramatically and there are

many platypuses: at least forty, as communicated by Van Cleemput [134].

Lemma 5.6 Consider G ∈ {Ċk}k≥3, k odd ∪ {C×k }k≥4, k even. If we replace in G

exactly ` 3-ears with 4-ears, 0 ≤ ` ≤ k, then the graph we obtain is a platypus.

Proof. We prove the statement by induction. G is a platypus due to Theorem 5.4.

Now assume we have replaced in G exactly p < k 3-ears with 4-ears. We denote

the resulting platypus by G′. In G′, replace a 3-ear uvw with a 4-ear uvv′w and

denote the graph we obtain by G′′. Any hamiltonian cycle in G′′ would use the

path uvv′w, which if replaced with uvw would imply the hamiltonicity of G′, a

contradiction.

Since G′ − u and G′ −w are traceable, so are G′′ − u and G′′ −w. It remains

to show that G′′ − v is traceable. Arguing as in the proof of Theorem 5.2 (since

it makes no difference whether we must traverse 3-ears or 4-ears), there exists a

hamiltonian path in G− v which has w as one of its end-vertices. Now consider

this path in G′ and add the edge wv′. The argument for G′ − v′ is exactly the

same. 2

Corollary 5.7 (Van Cleemput and Zamfirescu [145]) There exists a platypus of

order n for every n ≥ 9, there are no platypuses on fewer vertices, and there exist

exactly four platypuses on 9 vertices.

Proof. Adding to Theorem 5.4 and the arguments preceding the statement, we

consider the dotted prism Ċk over Ck for k odd and the modified dotted prism
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C×k over Ck for k even. (Fig. 42 shows (a) Ċ3, (b) C×4 , and (c) Ċ5.) Since we can

replace in each of the graphs one or two 3-ears with 4-ears (see Lemma 5.6), we

have covered all orders. 2

(a) (b) (c)

Fig. 42: (a) shows a platypus on 9 vertices, in this Chapter called ∆,

while (b) and (c) present platypuses of order 12 and 15, resp.

We briefly comment upon the graphs shown in Fig. 42. Graph (b) was already

given by T. Zamfirescu, see [114, Fig. 19 (a)], who asked for the largest integer c

such that any c longest cycles of any 2-connected graph have a common vertex.

(This is in the same spirit as Gallai’s famous question from 1966 whether in every

graph the intersection of all longest paths is non-empty [43]. Walther [137] showed

that this is not the case. See Sections 3.5 and 3.6, as well as Chapter 4 for more

details.) Graph (b) proves that c ≤ 7. Jendrol’ and Skupień [76] showed c ≤ 6,

and this is the best bound we have. Graph (c) was already given by Thomassen,

see [114, Fig. 16], to improve the bound for the smallest order of a planar 2-

connected graph in which every vertex is missed by a longest cycle. Brinkmann

and Van Cleemput [17] showed that Thomassen’s example is the graph of smallest

order with this property.

Herz defines in [66] the cyclability of a graph G as the greatest integer k such

that for every set S ⊂ V (G) of cardinality k there exists a cycle in G containing

S. The family of all graphs G of cyclability |V (G)| coincides with the family of all
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hamiltonian graphs, and cyclability |V (G)| − 1 simply means hypohamiltonicity.

Cyclability has been studied extensively, for instance by Chvátal [26], Halin [62],

and Holton, McKay, Plummer, and Thomassen [69].

Theorem 5.8 [145] For every integer t ≥ 2 there exists a platypus of cyclability t.

Proof. Consider Ċk and C×k as above. Denote by Wk the set of vertices added

to the copies of P2 when constructing the dotted or modified dotted prism. We

have |Wk| = k. Since Ċk and C×k are non-hamiltonian, they have no cycle con-

taining Wk, so their cyclability is at most k − 1. Consider G ∈ {Ċk}k≥5, k odd ∪
{C×k }k≥4, k even. Arguing as in the proof of Theorem 5.4, we obtain the following.

Claim. The circumference of G is |V (G)| − 2 = 3k − 2. Let P = uvw be a 3-ear

in G. Then there exists in G a longest cycle avoiding u and v.

It remains to show that for any set S of k − 1 vertices in G, there is a cycle

containing S. G contains at least one 3-ear P for which V (P ) ∩ S = ∅, since

|S| = k − 1. Using the Claim, we are done.

Finally, the circumference of Ċ3 is |V (Ċ3)| − 1 = 8, see Fig. 42 (a). In the

case of Ċ3 we are finished as well, as in a 2-connected graph any two vertices lie

in a cycle. 2

Theorem 5.9 [145] Let G be a platypus of order n and size m. We have m ≥
d5n/4e , and this bound is sharp.

Proof. We claim that at most half of the vertices of G have degree 2. Assume

the contrary, i.e. that G has p < n/2 vertices of degree greater than 2. By

Prop. 5.1 (v), G contains no naughty vertices, which implies that every vertex

of degree 6= 2 has either no neighbours of degree 2 or one neighbour of degree 2,

and every vertex of degree 2 has at least one neighbour of degree greater than 2.

Therefore, the number of vertices of degree 2 is at most p. But then G has in

total at most 2p < n vertices, a contradiction. This immediately yields that

2m ≥ 2n/2 + 3n/2 = 5n/2, which gives the advertised bound.

Consider G ∈ {Ċk}k≥3, k odd∪{C×k }k≥4, k even. By replacing in G exactly ` 3-ears

with 4-ears, 0 ≤ ` ≤ k, we have constructed graphs which prove the sharpness of

the bound. That these graphs are indeed platypuses follows from Lemma 5.6. 2
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An immediate consequence of Corollary 5.7 and Theorem 5.9 is that ∆ is the

smallest platypus both in terms of order and size.

5.3 Links to Other Families of Graphs

The first important distinction to be made is between traceable and non-traceable

platypuses. While the latter coincides with the family of all hypotraceable graphs,

the former contains (but does not coincide with) the family of all hypohamiltonian

graphs.

We already mentioned in the Introduction that Fiorini showed that there ex-

ist infinitely many hypohamiltonian snarks [39]. Since every hypohamiltonian

graph is a platypus, on one hand we have that there are infinitely many snarky

platypuses (i.e. graphs which are both a snark and a platypus). On the other

hand, Tait [124] proved that the Four Colour Theorem is equivalent to the state-

ment that no snark is planar. As presented in Section 2.1, there exist infinitely

many planar hypohamiltonian graphs [127], whence, there exist infinitely many

non-snarky platypuses.

Consider the almost hypohamiltonian graph G constructed by the author

in [144], see Fig. 29, and denote the exceptional vertex of G by w. It is easy to

verify that G−w is traceable. (Note that a priori, in an almost hypohamiltonian

graph G with exceptional vertex w, the graph G − w may be non-traceable; see

the next paragraph.) As G is almost hypohamiltonian, for every v ∈ V (G) \ {w}
the graph G − v is hamiltonian, so certainly traceable. It can be shown that

this property is not lost if an infinite family is constructed by applying to G the

operation Th, defined in Section 2.1.3. Thus, there exist infinitely many almost

hypohamiltonian platypuses. (Here we have sketched a proof of the fact that

there exist infinitely many polyhedral platypuses. A rigorous treatment is given

in Section 5.5.)
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Let H be a hypotraceable graph and w /∈ V (H) a vertex. Construct a graph G

by joining w with all vertices of H. G is almost hypohamiltonian with exceptional

vertex w, yet not a platypus, as G − w = H is non-traceable. As there exist

infinitely many hypotraceable graphs [125], we have shown that there are infinitely

many almost hypohamiltonian graphs which are not platypuses. This holds vice-

versa as well, since every hypotraceable graph is a platypus, and no graph can

be both hypotraceable and almost hypohamiltonian. Furthermore, Wiener [140]

showed recently that if G is a hypotraceable graph with a cut {a, b}, then G

together with the edge ab is 2-leaf-stable, and thus a traceable platypus. Related

to this, please see Prop. 5.10 (ii).

A further motivation for introducing platypuses follows. Chvátal [25] conjec-

tured that if G is hypohamiltonian, and e ∈ E(G) an edge between vertices each

of degree at least 4, then G − e is hypohamiltonian, too. Although Chvátal’s

conjecture is not true as shown by Thomassen [126] (and even has planar coun-

terexamples as shown in Section 2.1.4), the following lemma does hold.

Proposition 5.10 [145]

(i) Let G be a hypohamiltonian graph. For any e ∈ E(G), the graph G− e is a

platypus.

(ii) Let H be hypotraceable graph, and v, w ∈ V (H) non-adjacent. Then H+vw

is a platypus.

Proof. (i) Put G′ = G − e. G is non-hamiltonian, so G′ is, too. Consider

v ∈ V (G′). Since G is hypohamiltonian, there exists a hamiltonian cycle in

G− v, so there exists a hamiltonian path in G′ − v.

(ii) Put H ′ = H + vw. Since for every u ∈ V (H) there is a hamiltonian path

in H − u, this evidently also holds for H ′. Assume H ′ were hamiltonian. Then

H ′ − vw = H would be traceable, a contradiction. 2

Neither (i) nor (ii) can be inverted: (ii) is obvious, and concerning (i), consider

a traceable platypus. Adding an edge between the end-vertices of a hamiltonian

path would yield a hamiltonian graph. Indeed, for a platypus P and a pair of
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non-adjacent vertices v, w, the graph P + vw is a platypus if and only if there

exists no hamiltonian path between v and w. It may prove interesting to consider

in future work “full” platypuses, i.e. platypuses to which no further edge may be

added without losing the property of being a platypus.

The first part of the following proposition was mentioned, but not proven, in

Chapter 3, while the second part is a special case of Prop. 5.10 (ii) (re-proven

here for convenience), since a platypus is non-traceable if and only if it is hypo-

traceable.

Proposition 5.11 [145]

(i) An almost hypohamiltonian graph G minus its exceptional vertex w is a

platypus.

(ii) The join H ′ of a non-traceable platypus H and K1 = ({w}, ∅) is almost

hypohamiltonian with exceptional vertex w.

Proof. (i) Put G′ = G − w. By definition, G′ is non-hamiltonian, too. Consider

v ∈ V (G′). As G is almost hypohamiltonian, there exists a hamiltonian cycle in

G− v, so there exists a hamiltonian path in G′ − v.

(ii) Since H ′ − w = H is non-traceable, H ′ − w and H ′ are non-hamiltonian.

Let v ∈ V (H ′) \ {w}. As H is a platypus, H − v contains a hamiltonian path p

with end-vertices v′ and v′′. Now p ∪ v′wv′′ is a hamiltonian cycle in H ′ − v. 2

A non-hamiltonian graph G is maximally non-hamiltonian if for every pair of

non-adjacent vertices v, w the graph G+ vw is hamiltonian.

Proposition 5.12 [145] A maximally non-hamiltonian graph G is a platypus if

and only if ∆(G) < |V (G)| − 1.

Proof. Consider a maximally non-hamiltonian graph G of order n. Assume G

contains a vertex v of degree n − 1. If G is a platypus, then G − v contains a

hamiltonian path p. Let the end-vertices of p be x and y. But then p ∪ xvy is a

hamiltonian cycle in G, a contradiction. (xv, vy ∈ E(G) since the degree of v is

n− 1.)
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Now let G satisfy ∆(G) < n − 1. Consider v ∈ V (G). We know that for

w /∈ N [v], G + vw is hamiltonian, ergo G contains a hamiltonian path p with

end-vertices v and w. Then p− v is a hamiltonian path in G− v. 2

Lichiardopol and the author showed [92] that for every k ≥ 1 there exist in-

finitely many k-connected maximally non-hamiltonian graphs, but every graph

G in that construction has maximum degree |V (G)| − 1, so the natural question

whether 4-connected platypuses exist remains open at this point. For hypohamil-

tonian graphs it is a long-standing open problem whether 4-connected such graphs

exist, see Thomassen’s paper [128]. (The existence of 4-connected hypotraceable

graphs is undecided as well.) We shall see in Section 5.6 that, in stark contrast

to hypohamiltonian graphs, a k-connected platypus exists for every k ≥ 2.

We now repeat a useful definition already given in Sections 2.2 and 3.2. Con-

sider graphs G,H containing cubic vertices x ∈ V (G) and y ∈ V (H). Then GxHy

is defined as one of the graphs obtained by taking G− x and H − y, and identi-

fying, using a bijection, N(x) and N(y). Thomassen [125] showed that if G and

H are hypohamiltonian, then GxHy is hypohamiltonian, too (see Lemma 2.20).

In Lemma 3.4, the author showed that if G is almost hypohamiltonian and H is

hypohamiltonian, then GxHy is almost hypohamiltonian, too (under the condi-

tion that x is not the exceptional vertex of G). The next theorem is inspired by

Thomassen’s result mentioned above. Note that if a graph is hypohamiltonian,

then each vertex of a triangle contained in that graph has degree at least 4. Let

G be a graph and e ∈ E(G). Then G/e is the graph obtained by contracting e.

Theorem 5.13 [145] Let G be a hypohamiltonian graph and H a graph with

cubic vertices x ∈ V (G) and y ∈ V (H), and put N(x) = {x1, x2, x3} and

N(y) = {y1, y2, y3}. Consider G − x and H − y, and denote the graph obtained

by identifying x1 with y1 and x2 with y2 by Γ. If H is hypohamiltonian, then

(i) Γ is a 2-leaf-stable graph and

(ii) Γ + x3y3 = Γ′ is a traceable platypus.

(iii) If H is a platypus, then Γ′/x3y3 = GxHy is a platypus.
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Proof. In Γ, let z1 and z2 be the vertices obtained by identifying x1 with y1 and

x2 with y2, respectively. We denote by Gx and Hy the copy of G− x and H − y
in Γ, respectively. (The same nomenclature holds in Γ′ and GxHy.)

(i) We show in (ii) that Γ + x3y3 is non-hamiltonian, whence, Γ is non-

hamiltonian and ml(Γ) 6= 1. We now prove that Γ−v is traceable, i.e. ml(Γ−v) ≤
2, for all v ∈ V (Γ). W.l.o.g. v ∈ V (Gx). First, we treat the case v /∈ {z1, z2}.
Let g be a hamiltonian cycle in G avoiding the copy of v in G. Put p = g − x.

W.l.o.g. one of the end-vertices of p is z1. Let h be a hamiltonian cycle in H−y2.
Since we can treat p and h− y = q as paths in Gx and Hy, respectively, and as q

has z1 as an end-vertex, p ∪ q is a hamiltonian path in Γ− v.

Now assume that v ∈ {z1, z2}. W.l.o.g. v = z1. Combining the path obtained

by deleting from a hamiltonian cycle of G−x1 the vertex x and the path obtained

by deleting from a hamiltonian cycle of H−y1 the vertex y yields the traceability

of Γ− z1.
Suppose there exists a vertex v such that Γ−v contains a hamiltonian cycle h′.

Obviously, v /∈ {z1, z2}. W.l.o.g. v ∈ V (Gx). Then (h′ ∩Hy) ∪ z1yz2 corresponds

to a hamiltonian cycle in H, which is absurd. We have shown that Γ− v is non-

hamiltonian, i.e. that ml(Γ−v) 6= 1 for every v ∈ V (Γ). For Γ to be 2-leaf-stable,

it remains to show that Γ is traceable—we do so in (ii).

(ii) Let Γ′ contain a hamiltonian cycle h. Thomassen [125] showed that

Γ′/x3y3 = GxHy is hypohamiltonian, ergo non-hamiltonian, so h certainly does

not contain x3y3. Hence, the path p = h ∩ Gx has end-vertices z1 and z2 and

visits all vertices in Gx. Now consider p to lie in G. But then p ∪ x1xx2 is a

hamiltonian cycle in G, a contradiction. So Γ′ is non-hamiltonian. That Γ′ − v
is traceable for every v ∈ V (Γ′) follows directly from (i).

Combining the path obtained by deleting from a hamiltonian cycle of G− x1
the vertex x with the path obtained by deleting from a hamiltonian cycle in H−y
the edge y2w, where w ∈ N(y2) \ {y}, we obtain the traceability of Γ′. As x3y3 is

not an edge of this path, we have also shown that Γ is traceable.

(iii) In Γ′/x3y3 = GxHy, let z3 be the vertex obtained by identifying x3 with

y3. Assume that GxHy contains a hamiltonian cycle h. Consider h ∩ Gx. If

h ∩ Gx consists of two components, one of them is a single vertex. We denote
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the other component, which must contain at least two vertices, by p. If h ∩ Gx

consists of one component, we call it p, as well. W.l.o.g. p has end-vertices z2

and z3. If z1 ∈ V (p), and we consider for a moment p to lie in G − x, then

p ∪ z2xz3 corresponds to a hamiltonian cycle in G and we have a contradiction.

If z1 /∈ V (p), consider the path q = h ∩ Hy to lie in H. Now q ∪ y2yy3 is a

hamiltonian cycle in H, once again a contradiction.

Consider v ∈ V (H) \ N [y]. Denote by p′ a hamiltonian path in H − v.

W.l.o.g. y1y ∈ E(p′). Two cases arise: (a) y is an end-vertex of p′, or (b) it

is not. We first treat case (a). Now clearly y1 cannot be an end-vertex of p′.

Consider a hamiltonian cycle in G − x2 and delete from it x. We obtain a path

q which visits all vertices in G excluding x and x2, and has x1 and x3 as its

end-vertices. Combining q − x3 with p′ − y, we have shown that GxHy − v is

traceable. Concerning case (b), w.l.o.g. y3y ∈ E(p′). Construct q as in (a). Then

q ∪ (p′ − y) corresponds to a hamiltonian path in GxHy − v.

Let v ∈ V (G) \ N [x]. Consider a hamiltonian cycle g in G − v. W.l.o.g.

x1xx2 ⊂ g. Then the path g − x has end-vertices x1 and x2. Let q′′ be a

hamiltonian path in H − y3. Then combining q′′ − y (which consists of one or

two components) with g− x yields a hamiltonian path (or hamiltonian cycle) in

GxHy − v. (The treatment is very similar if y2 or y are an end-vertex of q′′.)

Consider a hamiltonian cycle g′ in G − x1, and let p′′ be a hamiltonian path

in H − y1. Putting g′ − x and p′′ − y together gives a hamiltonian path (or

hamiltonian cycle) in GxHy − z1. (Note that although x1x2, x2x3, x3x1 /∈ E(G),

some of the edges z1z2, z2z3, z3z1 might be present in GxHy, but since we did not

make use of such an edge, the argument for z2 and z3 is analogous.) 2

By saying that “we add vertices x1, x2, ..., xn on an edge xy” we mean that we

replace the path isomorphic to K2 having vertices x, y by the path xx1x2...xny

isomorphic to Pn+2.
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Proposition 5.14 [145] Let G be a hypohamiltonian graph and e = v1v2 ∈ E(G).

By adding vertices v and v′ on e, we obtain a platypus G′.

Proof. W.l.o.g. assume v ∈ N(v1) in G′. As G is non-hamiltonian, G′ is non-

hamiltonian, too. For every vertex u ∈ V (G) \ {v, v′, v1, v2} we have that G− u
contains a hamiltonian cycle h. h must contain some edge e′ incident to v1. If

e′ = e, we are done. If not, then (h− e′) ∪ v1vv′ is a hamiltonian path in G′ − u.

Let h′ be a hamiltonian cycle in G−v1 and w ∈ N(v2) such that wv2 ∈ E(h′).

Then (h′ −wv2)∪ v2v′v is a hamiltonian path in G′ − v1. In the same way it can

be shown that G′ − v2 is traceable. Consider w′w′′ ∈ E(h′), where w′ ∈ N(v1).

Then (h′ − w′w′′) ∪ w′v1v is a hamiltonian path in G′ − v′. Similarly, G′ − v is

traceable. Thus, the statement is shown. 2

By Prop. 5.1 (vii), Prop. 5.14 holds as well if only a single vertex is added on

the edge e.

A graph G is called homogeneously traceable if every vertex of the graph is an

end-vertex of a hamiltonian path. It is easy to see that the following holds.

Proposition 5.15 [145] Every non-hamiltonian homogeneously traceable graph

is a platypus.

We now settle the open problem of Wiener [140] whether planar leaf-stable

graphs without cubic vertices exist. Consider the dotted prism Ċk over Ck for

k odd. In each graph, take the end-vertices of each 3-ear and join them by an

edge. It is clear that these graphs are planar and have no cubic vertices. They

are platypuses due to Prop. 5.1 (iii) and they are traceable due to Prop. 5.1 (vi).

We have obtained the following.

Theorem 5.16 [145] There exist infinitely many planar 2-leaf-stable graphs which

have no cubic vertices.

Wiener [140] also poses a meta-question: are there leaf-stable or leaf-critical

graphs not based on hypohamiltonian graphs, in the sense that their construction

does not use hypohamiltonian graphs as building blocks? With Theorem 5.16,

we have answered this question positively.
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In his paper [140], Wiener goes on to ask for the smallest `-leaf-stable graphs,

especially under the added condition of planarity. Consider ∆, the graph from

Fig. 42 (a), and replace each 3-ear with a 4-ear. We call this newly obtained graph

∆′. For the proof of the following statement, which settles Wiener’s question for

` = 2, Van Cleemput and the author used a computer. (We exclude the graph

K2 from the discussion.)

Theorem 5.17 (Van Cleemput and Zamfirescu [145]) ∆′, a planar graph, is the

smallest 2-leaf-stable graph, both in terms of order and size.

5.4 Connectivity 2

Consider G ∈ P2, and let X = {x, y} be a cut in G. We denote the pair (G,X)

by GX . By Theorem 5.3, G −X consists of exactly two connected components,

say A and B. Put G′X = G[V (A) ∪ {x, y}] and G′′X = G[V (B) ∪ {x, y}]. We call

G′X and G′′X halves of G w.r.t. X. x, y will be called the ends of G′X and G′′X . (In

Thomassen’s language [127], G′X and G′′X are 2-fragments of G, and x, y vertices

of attachment of A and B.) When we simply speak of a “half” we are referring to

a half of an arbitrary G ∈ P2 w.r.t. to an arbitrary (but fixed) 2-cut in G. A half

H is traversable if there exists a path between its ends which visits all vertices in

H. Not both halves of G w.r.t. X can be traversable, so there are two cases:

(i) GX is semi-traversable if G′X is non-traversable and G′′X is traversable.

(ii) GX is non-traversable if neither G′X nor G′′X are traversable.

If, for all 2-cuts X, GX is semi-traversable (non-traversable), then we call G

semi-traversable (non-traversable). If a platypus of connectivity 2 is neither semi-

traversable nor non-traversable, we call it mixed-traversable. ∆ is an example of

a semi-traversable platypus, and applying Theorem 5.13 (i) to two copies of the

Petersen graph yields a mixed-traversable platypus. Every hypotraceable graph

constructed using Thomassen’s method introduced in [125] is a non-traversable

110



platypus—an example of such a graph is given in [125, Fig. 3] and reproduced in

Fig. 18.

We now construct new platypuses from old ones by replacing halves. In order

to do so, we need the following lemma.

Lemma 5.18 [145] For a half H with ends x and y, there exists a path which

spans H − x and has y as an end-vertex.

Proof. Since H is a half of a platypus (of connectivity 2) G, G − x contains a

hamiltonian path p. As {x, y} is a cut in G, p must visit all vertices in H−{x, y}
before reaching y, and in consequence |{v ∈ V (H) : vy ∈ E(p)}| = 1. Thus H ∩p
is the path we are looking for. 2

Theorem 5.19 [145] Let G and H be platypuses such that there are 2-cuts X

and Y in G and H, respectively. If

(i) GX is non-traversable, H ′Y /∈ {P3, K3}, H ′Y contains a hamiltonian path

with y ∈ Y as end-vertex, and H ′′Y is non-traversable, or

(ii) GX is semi-traversable with G′X containing a hamiltonian path with x ∈
X as end-vertex, G′′X /∈ {P3, K3}, G′′X is traversable, and HY is semi-

traversable with H ′Y /∈ {P3, K3} and H ′Y traversable,

then by identifying (using a bijection) the ends of G′X and H ′Y we obtain a platy-

pus.

Proof. We denote by Γ the resulting graph. Put X = {x1, x2} and Y = {y1, y2}.
For the following, we denote by JG and JH the copy of G′X and H ′Y in Γ, re-

spectively, and put V (JG) ∩ V (JH) = Z = {z1, z2}, where the identification of xi

and yi yields zi, i ∈ {1, 2}. Assume that Γ contains a hamiltonian cycle h. Then

h ∩ JG is a path in JG between z1 and z2 visiting all vertices of JG. This implies

that G′X is traversable, a contradiction. So Γ is non-hamiltonian.

For v ∈ Z, the traceability of Γ− v follows directly from Lemma 5.18.
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(i) Let v ∈ V (G′X) \ X. Consider the intersection of a hamiltonian path in

G− v with G′X , and denote it by p. Clearly, p has either one or two components.

If p has two components, both cannot consist of only one vertex simultaneously,

since G′X is non-traversable, so G′X /∈ {P3, K3}. There are two cases. (a) If

both components contain more than one vertex, then G′′X must be traversable, a

contradiction. (b) If one of the two components consists of one vertex, w.l.o.g.

x1, then we obtain the desired hamiltonian path in Γ− v by using the fact that

H ′Y contains a hamiltonian path with y2 as end-vertex. Now consider p to lie in

JG and let p have one component. Since G′′X is non-traversable, it neither is P3

nor K3, so z1 or z2 (possibly both) is (are) an end-vertex of p—denote this fact

by (�). Since p visits all vertices in JG with the exception of v, Lemma 5.18 yields

a hamiltonian path in Γ− v.

Let v ∈ V (H ′Y ) \ Y . Since H ′Y /∈ {P3, K3} (this is needed in order to use (�))
and H ′′Y is non-traversable, the arguments are the same as above.

(ii) Let v ∈ V (G′X) \ X. Consider the intersection of a hamiltonian path in

G − v with G′X , and denote it by p. Consider p to lie in JG. Let p have two

components. Then a hamiltonian path in Γ − v is obtained by using a path

between z1 and z2 visiting all vertices in JH . Let p have one component. Since

G′′X /∈ {P3, K3}, (�) holds. Now Lemma 5.18 yields a hamiltonian path in Γ− v.

Let v ∈ V (H ′Y ) \ Y . Consider the intersection of a hamiltonian path in H − v
with H ′Y , and denote it by q. If q consists of two components, since H ′′Y is non-

traversable, there are two possibilities. (a) Each component is a single vertex.

This is the case if and only if H ′Y ∈ {P3, K3}, but this was excluded in the

theorem’s statement. (b) One component is a single vertex, w.l.o.g. z1, and one

component contains more than one vertex. Since JG contains a hamiltonian path

with z2 as end-vertex, we obtain a hamiltonian path in Γ − v. Now let q be

connected. (�) holds, so we can use Lemma 5.18. 2

Thomassen asked in [128] whether hypohamiltonian graphs with minimum de-

gree at least 4 exist. At the Cycles and Colourings conference in 2015, the author

was asked by Tomáš Madaras the corresponding question for platypuses. After a

solution to Madaras’ problem was given by the author, Gunnar Brinkmann asked
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the same question, but where 4 is replaced with 5. We can answer these questions

positively.

Theorem 5.20 [145]

(i) There exist infinitely many planar platypuses with minimum degree ` for

every ` ∈ {2, 3, 4, 5}.

(ii) For every d ≥ 2 there exists a platypus with minimum degree d.

Proof. Consider the dotted prism Ċk over Ck for k odd. Replace in each such

graph each 3-ear with a 4-ear. This yields platypuses due to Lemma 5.6. We

denote the family we obtain by C.
(i) {Ċk}k odd is an infinite family of planar platypuses with minimum degree 2.

It was shown by Thomassen that there exist infinitely many planar hypohamil-

tonian graphs [127], and that planar hypohamiltonian graphs have minimum

degree 3 [128], so there exist infinitely many planar platypuses with minimum

degree 3. Now replace in each member of C each 4-ear having end-vertices v, w

with (G, v, w), where G is the graph depicted in Fig. 43 (a). (Replacement as

defined in Section 5.1.)

v w v w

(a) (b)

Fig. 43

The resulting graphs are platypuses due to Theorem 5.19 (ii). We have ob-

tained an infinite family of planar platypuses with minimum degree 4. Finally,

in each member of C, replace each 4-ear having end-vertices v, w with (G′, v, w),

where G′ is defined in Fig. 43 (b). The resulting graphs are platypuses due to

Theorem 5.19 (ii), and it is easily seen that each member has minimum degree 5.
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(ii) Consider ∆′, the platypus from Theorem 5.17. In ∆′, replace each 4-ear

with the complete graph (Kp, v, w), p ≥ 4, where any choice of v, w ∈ V (Kp) will

do. We obtain a platypus due to Theorem 5.19 (ii). It has minimum degree p−1.

For minimum degree 2, consider ∆. 2

Theorem 5.20 (i) is complete in the sense that for no other values of ` the

statement would be true. We shall see in Section 5.6 that, with more tools,

Theorem 5.20 (ii) can be improved dramatically.

5.5 Connectivity 3

By Corollary 5.7, there are no 3-connected platypuses on fewer than 10 vertices.

Of course, such a graph must have minimum degree 3. We have the following.

Theorem 5.21 [145] The Petersen graph is among 3-connected platypuses of both

minimum order and minimum size.

Theorem 5.22 [145] There exists a polyhedral platypus of order 40 and of order n

for every n ≥ 42.

Proof. Since every hypohamiltonian graph is a platypus, the statement follows

directly from Theorems 2.4 and 2.12. 2

With Grinberg’s Criterion and Prop. 5.2 we are in the position to present a

result substantially stronger than Theorem 5.22.
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Theorem 5.23 [145] There exists a polyhedral platypus of order n for every

n ≥ 25.

Proof. Let Λ be the graph shown in Fig. 44. By Grinberg’s Criterion, Λ is

non-hamiltonian: (†) becomes ±1 + 3(f5 − f ′5) = 0, which is impossible. Now

we prove that for every v ∈ V (Λ), the graph Λ − v is indeed traceable. (Using

“...” between two letters means a sequence of letters in their alphabetical order

(possibly backwards).)

a b

c dj
g

h fi e

t s
y

x

mℓ n

k ow p

v q

u r

Fig. 44: Λ, a polyhedral platypus on 25 vertices.

It is the smallest known polyhedral platypus.

b: ac...y. c: abn...do...y. d: abcgfeq...htsry...u. e: i...nbacdo...sfghtuyxwv.

f : abnopqedcghtsryuvijkwxm`. g: a...fsth...ry...u. m: nbca`...do...y.

n: yxm`abcdopqe...kw...r. o: w...sf...nbacdeqpxyr. p: abcdo...eq...y.

q: a...px...ry. r: abnopqedcgfsth...mxwvuy. s: a...ry...t.

x: abnm`kwvijcdopqefghtuyrs. y: a...x.

Put T 0(Λ) = Λ. The infinite family{
T k(Λ)

}
k≥0 ∪

{
R(T k(Λ))

}
k≥0 ∪

{
S(T k(Λ))

}
k≥0

yields the statement, where T , R, and S are defined in Prop. 5.2. 2
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5.6 Higher Connectivity

One of the central problems concerning the theory of hypohamiltonian graphs

is Thomassen’s question from 1978 whether 4-connected such graphs exist [128].

(Such a graph cannot be planar due to a famous theorem of Tutte [133].) It is

even unknown whether hypohamiltonian graphs with minimum degree at least 4

exist, a question also posed by Thomassen [128]. In Section 5.4, we settled the

corresponding question for platypuses. In Section 3.1, we showed that there exist

infinitely many almost hypohamiltonian graphs which are 4-connected. (But

whether 5-connected such graphs exist is unknown, see Problem 8 in Chapter 6.)

If we relax Thomassen’s question concerning 4-connected hypohamiltonian graphs

and ask for 4-connected platypuses, we realise that in fact much more can be

shown.

Theorem 5.24 [145] There exists a k-connected platypus for every k ≥ 2, and a

k′-regular k′-connected platypus for every k′ ≥ 3.

Proof. In Section 5.4 we discussed platypuses of connectivity 2. For the remaining

cases, our main tool will be a method of Meredith [100]. We briefly repeat his

construction. Label Petersen’s graph P as in Fig. 45 and let Hk be the multigraph

obtained from it as follows; replace each edge AiBi with b edges, 1 ≤ i ≤ 5, and

each of the other edges with a edges, where if k = 3` + α, α ∈ {−1, 0, 1}, then

a = ` and b = `+ α.

A1

B1
A2

B2

A3

B3

A4

B4

A5

B5

Fig. 45
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Gk is the (necessarily unique) graph obtained by expanding in Hk each vertex

to a Kk,k−1. (For details, please see [100].) Meredith shows that for k ≥ 3, Gk is

k-regular, k-connected, and non-hamiltonian.

It remains to prove that every vertex-deleted subgraph of Gk is traceable.

Consider v ∈ V (P ). There exists a hamiltonian cycle in P − v. This yields a

cycle c of length n− (2k− 1) in Gk, where n is the order of Gk, since exactly one

Kk,k−1 is avoided by c. (The one corresponding to the vertex v.) We denote the

vertices of this avoided complete bipartite graph by a1, ..., ak, b1, ..., bk−1, where

aiaj /∈ E(Gk) and bibj /∈ E(Gk) for all i, j. In Gk, let x ∈ N(a1) \ {bi}k−1i=1 .

Consider xy ∈ E(c) and put c′ = c − xy. Now c′′ = c′ ∪ xa1b1a2b2...ak−1bk−1 is a

hamiltonian path in Gk − ak with end-vertices y and bk−1, and (c′′ ∪ bk−1ak)− y
is a hamiltonian path in Gk − y. All other vertices in Gk behave similarly. 2

By a theorem of Petersen [106], every cubic bridgeless graph contains a per-

fect matching. There exist infinitely many cubic hypohamiltonian graphs; take

for instance the so-called generalised Petersen graphs G(n, k)—which we have

already seen in Section 2.2—originally defined by Coxeter [30] but baptised by

Watkins [139]. Now G(n, 2) with n = 5 (modulo 6) is hypohamiltonian. (Robert-

son showed their non-hamiltonicity [110].) In this situation, the approach above

can be adapted to prove that for every k ≥ 3 there exist infinitely many k-

connected platypuses.
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Chapter 6

Outlook

Many problems of varying difficulty concerning hypohamiltonian and almost hy-

pohamiltonian graphs remain unanswered. We here provide a (subjective) selec-

tion of questions which we consider to be especially interesting.

However, let us first provide a table with the best upper bounds we have for

the orders of the smallest hypohamiltonian and almost hypohamiltonian graphs

under certain additional criteria. The first and third value of the first row stem

from Petersen’s graph, see Fig. 1 or 45, the second value is due to the graph con-

structed by Jooyandeh, McKay, Österg̊ard, Pettersson, and the author discussed

in Theorem 2.8 (for an example of such a graph, see Fig. 8), and the graph dis-

covered by Araya and Wiener [7] shown in Fig. 15 gives the fourth value. In the

second row, the first and second value are due to the author (see Fig. 32 and

Fig. 29, respectively) and consequences of Lemmas 3.9 and 3.3, while the third

and fourth are due to McKay, see Theorem 3.13. We note here that no dedicated

effort has been undertaken to improve the third value. Only the values provided

by Petersen’s graph are known to be optimal and therefore underlined in the

table.

planar cubic planar and cubic

hypohamiltonian 10 40 10 70

almost hypohamiltonian 17 39 68 68
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Similar overviews have been provided if we additionally restrict the crossing

number of the graph, see Section 2.2, or its girth, see Section 2.4.

We now discuss in more detail open questions concerning these values and

other unsolved problems under the following three headings: hypohamiltonian

graphs (6.1), almost hypohamiltonian graphs (6.2), and platypuses (6.3).

6.1 Hypohamiltonian Graphs

1. Thomassen’s question from 1978 whether 4-connected hypohamiltonian graphs

exist remains open [128]. (Even his weaker problem, whether hypohamiltonian

graphs of minimum degree (at least) 4 exist, remains unanswered [128].) This

is one of the central open problems in the study of hypohamiltonicity. We have

seen that for almost hypohamiltonian graphs (Chapter 3) as well as platypuses

(Chapter 5) these questions admit positive answers. In addition to Thomassen’s

questions, we ask here: do 4-connected hypotraceable graphs exist? (Horton [72]

showed that 3-connected hypotraceable graphs exist.) Note that, by Lemma 3.1,

a positive answer to this question would imply a positive answer to Problem 8,

but not necessarily vice-versa.

Related to this, as mentioned in Section 4.2, nothing is known concerning C1
4 ,

i.e. we do not know whether there exists a 4-connected graph in which every vertex

is missed by a longest cycle. This question was first raised by T. Zamfirescu [150,

p. 232] in 1976.

2. Related to girth restrictions, we mention two open questions. Máčajová

and Škoviera [95] ask whether there exist infinitely many hypohamiltonian cubic

graphs with both cyclic connectivity and girth 7. (Máčajová and Škoviera use

Coxeter’s graph, see Fig. 24, to construct an infinite family of cubic hypohamil-

tonian graphs of girth 7 and cyclic connectivity 6. No hypohamiltonian graph of

girth greater than 7 is known.)

McKay asks in his recent paper [96] whether infinitely many planar cubic

hypohamiltonian graphs of girth 5 exist. In [96], he provides three such graphs,
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each of order 76, and each having only identity as automorphism. One of them

is shown in Fig. 26. Subsequently, Goedgebeur showed that there exists such a

graph of order 78 which has non-trivial automorphism group, see Fig. 27.

3. Häggkvist [61] conjectures that every cubic hypohamiltonian graph has six

perfect matchings which together cover every edge exactly twice. (Note that

in [61], there is a minor yet confusing error in the definition of hypohamiltonicity:

it lacks the demand that a hypohamiltonian graph must be non-hamiltonian!

What Häggkvist defines coincides with the disjoint union of the family of all

hypohamiltonian graphs with the family of all 1-hamiltonian graphs.)

For this paragraph, we follow recent work of Steffen [122]. He writes that

Jaeger and Swart [75] conjectured that (i) the girth and (ii) the cyclic connectivity

of a snark is at most 6. (i) was disproved by Kochol [88], while (ii) is still

open. Steffen believes that both statements of Jaeger and Swart are true for

hypohamiltonian snarks, and conjectures that for a hypohamiltonian snark G,

µ3(G) = 3 holds, where µi is defined as follows. Let G be a cubic graph, k ≥ 1,

and Sk be a list of k 1-factors of G. By a list we mean a collection with possible

repetition. For i ∈ {0, ..., k} let Ei(Sk) be the set of edges that are in precisely i

elements of Sk. We define

µk(G) = min{|E0(Sk)| : Sk is a list of k 1-factors of G}.

4. Holton and Plummer [70] define a graph G of order at least m+n to be C(m,n)

if for any set S = {u1, ..., um, v1, ..., vn} ⊂ V (G), G has a cycle which visits

u1, ..., um but avoids v1, ..., vn. They conjecture that if the implication C(k, 1)→
C(k + 1, 0) fails, the only exceptions are hypohamiltonian.

5. We explicitly formulate the obvious question: what is the order of the small-

est planar hypohamiltonian graph? The upper bound is 40, see Theorem 2.4,

and the lower bound is 18, see [5]. So despite significant progress on finding

smaller and smaller planar hypohamiltonian graphs, there is still a wide gap.

One explanation for this gap is the fact that no extensive computer search has

been carried out to increase the lower bound. This is currently being done by
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the author in collaboration with Jan Goedgebeur. Looking at the automorphism

group, it would be somewhat surprising if no extremal graphs would have non-

trivial automorphisms—the graphs of order 40 presented in Chapter 2 have no

nontrivial automorphisms. An exhaustive study of graphs with prescribed auto-

morphisms might lead to the discovery of new, smaller graphs. Whether or not

a planar hypohamiltonian graph of order 41 exists is also unknown.

Concerning the cubic case, we ask the same natural question: what is the

order of the smallest planar cubic hypohamiltonian graph? Currently the best

lower bound is 44, see [7], and the upper bound is 70, given by Araya and Wiener

in 2011, see [141]. In Theorem 2.17, we showed that there exist planar cubic

hypohamiltonian graphs on 70 vertices and on n vertices for every even n ≥ 74.

Is there a planar cubic hypohamiltonian graph of order 72?

Finally, the smallest known hypotraceable has 34 vertices and was constructed

by Thomassen [125] in 1974. It is depicted in Fig. 18. Since then, no smaller

hypotraceable graph has been published. Are there any such graphs of order less

than 34? (Also, no non-trivial lower bound seems to have been published.)

6.2 Almost Hypohamiltonian Graphs

6. What is the smallest order of a (planar) almost hypohamiltonian graph? The

smallest known almost hypohamiltonian (planar almost hypohamiltonian) graph

has 17 (39) vertices, see Fig. 32 (Fig. 29). We would also like to fill the gaps and

know whether almost hypohamiltonian graphs of order n ∈ {18, 19, 21, 24} exist.

7. Is there an almost hypohamiltonian graph G with (i) cubic exceptional ver-

tex w and (ii) all vertices in V (G) \ N [w] of degree at least 4? (The degrees of

the vertices in N(w) do not matter.) Solving this would answer, by using Theo-

rem 3.11, Thomassen’s question whether hypohamiltonian graphs with minimum

degree (at least) 4 exist [128].
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8. Are there 4-connected almost hypohamiltonian graphs on fewer than 41 ver-

tices? It would be very interesting to construct 4-connected almost hypohamilto-

nian graphs without using hypotraceable graphs as building blocks. Going beyond

connectivity 4, we ask: do 5-connected almost hypohamiltonian graphs exist?

9. Thomassen [128] showed that every planar hypohamiltonian graph contains

a cubic vertex. Taking a 4-cycle v1v2v3v4, adding the vertex v5, and the edges

v1v3, v1v5 and v3v5, we obtain a planar 2-hypohamiltonian graph with no cubic

vertex. Does Thomassen’s result hold for planar almost hypohamiltonian graphs,

as well?

10. The smallest known cubic almost hypohamiltonian graph was found by

McKay (see Theorem 3.13) and has order 68, and is in fact planar. No explicit

search has been undertaken to find a small cubic almost hypohamiltonian graph,

so it seems likely that the upper bound on the order of the smallest such graph

can be lowered dramatically.

6.3 Platypuses

11. Prop. 5.1 (vii) states that if a platypus G contains a 4-ear H, then H can

be replaced with a 3-ear, and the resulting graph is a platypus, as well. (And

Lemma 5.20 discusses this more generally.) A priori there does not seem to be

an argument that vice-versa this must hold—but all examples encountered above

allowed this; is there a platypus which contains a 3-ear D, which has the property

that replacing D with a 4-ear, the resulting graph is not a platypus?

12. In light of Theorem 5.9, we ask for an upper bound on the size of a platypus.

We can show that for every n ≥ 9 there exists a platypus of order n and size(
n−6
2

)
+ 12. Following [19], the size of a 2-connected non-hamiltonian graph on at

least ten vertices is at most
(
n−2
2

)
+ 4.
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13. In Section 5.3, we proposed the study of “full” platypuses, i.e. platypuses G

for which for every pair of non-adjacent vertices v, w ∈ V (G), the graph G+ vw

is not a platypus. An example of such a well-fed platypus is the graph we obtain

if we add in ∆ to each 3-ear an edge between its end-vertices. That this is indeed

a full platypus follows from Corollary 5.7.

14. Although Λ, the graph from Fig. 44, is the smallest known polyhedral platy-

pus, it does not address the question of the existence of a small polyhedral `-leaf-

critical or `-leaf-stable graph, since ml(Λ − a) 6= 1 (as for a hamiltonian cycle h

in Λ− a we would have bc ∈ E(h), so then (h− bc)∪ bac would be a hamiltonian

cycle in Λ, a contradiction), so ml(Λ− a) = 2, but ml(Λ− y) = 1. Since among

leaf-stable and leaf-critical graphs, only the families of 2-leaf-stable and {2, 3}-
leaf-critical graphs are contained in the class of platypuses, we focus thereon. The

smallest known polyhedral 2-leaf-critical (i.e. hypohamiltonian) graphs have 40

vertices—see Theorem 2.4. Fig. 8 depicts such a graph. Currently, the smallest

known polyhedral 3-leaf-critical (i.e. hypotraceable) graph has order 190, see Sec-

tion 2.3. The smallest known polyhedral 2-leaf-stable graph is due to Wiener and

has order 152, see [140], and is also based on the aforementioned smallest known

planar hypohamiltonian graph.

15. Let pk (p̄k) be the order of the smallest platypus (smallest planar platypus)

of connectivity k. In Chapter 5, we have shown that

p2 = p̄2 = 9, p3 = 10, p̄3 ≤ 25, and pk ≤ 20k − 10.

We ask here for improving these bounds or showing their optimality, especially

in the cases of p̄3 and p4.
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Chapter 7

Appendix

4-Face Count Face Sequence Degree Sequence Count

5 5× 4, 22× 5

30× 3, 10× 4 4

31× 3, 8× 4, 1× 5 10

32× 3, 6× 4, 2× 5 9

33× 3, 4× 4, 3× 5 2

All 25

Table 1: Properties of H4
5(40).
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4-Face Count Face Sequence Degree Sequence Count

1 1× 4, 26× 5
34× 3, 8× 4 5

35× 3, 6× 4, 1× 5 2

7 7× 4, 22× 5

30× 3, 12× 4 4

31× 3, 10× 4, 1× 5 28

32× 3, 8× 4, 2× 5 57

33× 3, 6× 4, 3× 5 49

33× 3, 7× 4, 1× 5,×6 11

34× 3, 4× 4, 4× 5 10

34× 3, 5× 4, 2× 5, 1× 6 5

34× 3, 6× 4, 2× 6 6

35× 3, 4× 4, 1× 5, 2× 6 2

All All All 179

Table 2: Properties of H4
1(42) and H4

7(42).
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4-Face Count Face Sequence Degree Sequence Count

4 4× 4, 23× 5, 1× 7
36× 3, 6× 4, 1× 6 1

37× 3, 4× 4, 1× 5, 1× 6 1

5

5× 4, 22× 5, 1× 8

34× 3, 9× 4 8

35× 3, 7× 4, 1× 5 20

36× 3, 5× 4, 2× 5 19

37× 3, 3× 4, 3× 5 1

37× 3, 4× 4, 1× 5, 1× 6 1

5× 4, 24× 5

32× 3, 11× 4 52

33× 3, 9× 4, 1× 5 148

34× 3, 7× 4, 2× 5 175

34× 3, 8× 4, 1× 6 2

35× 3, 5× 4, 3× 5 56

35× 3, 6× 4, 1× 5, 1× 6 6

36× 3, 3× 4, 4× 5 1

36× 3, 4× 4, 2× 5, 1× 6 4

37× 3, 2× 4, 3× 5, 1× 6 1

37× 3, 3× 4, 1× 5, 2× 6 1

All All All 497

Table 3: Properties of H4
4(43) and H4

5(43).

j, k 1,1 1,2 1,3 2,1 2,2 2,3

Cj
k 6 10 10 9 75 75

P j
k 12 26 36 93 270 270

C
j

k 6 15 40 9 135 2625

P
j

k 17 32 156 308 914 10350

Table 4: Upper bounds for Cj
k, P

j
k , C

j

k, P
j

k, where k ∈ {1, 2, 3} and j ∈ {1, 2},
as defined in Chapter 4. Underlined entries are optimal.
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w w w w w

w w w w w

w w w w w

w w w w w

Fig. A1: A planar almost hypohamiltonian graph of order 47.

Its exceptional vertex w is cubic.
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Fig. A2. A planar cubic hypohamiltonian graph of order 76 (part 1 of 2).
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Fig. A3. A planar cubic hypohamiltonian graph of order 76 (part 2 of 2).
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[61] R. Häggkvist. Problem 443. Special case of the Fulkerson Conjecture, in:

Research problems from the 5th Slovenian Conference, Bled, 2003 (eds.:

B. Mohar, R. J. Nowakowski, and D. B. West). Discrete Math. 307 (2007)

650–658.

[62] R. Halin. Zur Theorie der n-fach zusammenhängenden Graphen. Abh. Math.

Sem. Hamburg 33 (1969) 133–164.

[63] F. Harary and C. Thomassen. Anticritical graphs. Math. Proc. Camb. Phil.

Soc. 79 (1976) 11–18.

[64] W. Hatzel. Ein planarer hypohamiltonscher Graph mit 57 Knoten. Math.

Ann. 243 (1979) 213–216.

[65] J. P. Hayes. A Graph Model for Fault-Tolerant Computing Systems. IEEE

Trans. Computers 25 (1976) 875–884.
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193–220.

[107] J. Petersen (1898). Sur le théorème de Tait. L’Intermédiaire des
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Nederlandse Samenvatting

Deze thesis is op de volgende manier gestructureerd. In Hoofdstuk 1 geven wij een

kort historisch overzicht en definiëren fundamentele concepten. Het tweede hoofd-

stuk bevat een duidelijk verhaal over de vooruitgang die werd gemaakt om de kle-

inste planaire hypohamiltoniaanse graaf te kunnen vinden, met alle noodzakelijke

theoretische werktuigen—vooral het Criterium van Grinberg. Gevolgen van deze

vooruitgang zijn verdeeld over alle secties en vormen het hoofdmotief van deze

dissertatie. In Hoofdstuk 2 bediscussiëren wij ook de taille en het kruisingsgetal

van hypohamiltoniaanse grafen. Het derde hoofdstuk is een grondige bespreking

van de onlangs gëıntroduceerde bijna hypohamiltoniaanse grafen en hun verbind-

ing met hypohamiltoniaanse grafen. Alweer speelt het planaire geval een bijzon-

dere rol. Op het einde van het hoofdstuk bestuderen wij bijna hypotraceerbare

grafen en het probleem van Gallai over langste paden. Het laatstgenoemde leidt

naar Hoofdstuk 4, waarin het verwantschap tussen hypohamiltoniaanse grafen

en diverse problemen over langste paden en langste cykels gepresenteerd wordt.

Hoofdstuk 5 introduceert en bestudeert niet-hamiltoniaanse grafen met de eigen-

schap dat het verwijderen van elke top een traceerbare graaf geeft—een klasse van

grafen die hypohamiltoniaanse en hypotraceerbare grafen omvat. Wij eindigen

met een vooruitzicht in Hoofdstuk 6, waar wij een selectie van open problemen

samen met commentaren en deeloplossingen voorstellen.
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