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Summary 50 

Respiratory tract infections are among the most common infections in men. We reviewed literature 51 

to document their pharmacological treatments, and the extent to which TDM is needed during 52 

treatment. We subsequently examined potential use of dried blood spots as sample procedure for 53 

TDM. TDM was found to be an important component of clinical care for many (but not all) 54 

pulmonary infections. For gentamicin, linezolid, voriconazole and posaconazole dried blood spot 55 

methods and their use in TDM were already evident in literature. For glycopeptides, beta-lactam 56 

antibiotics and fluoroquinolones it was determined that development of a DBS method could be 57 

useful.  This review identifies specific antibiotics for which development of DBS methods could 58 

support the optimization of treatment of pulmonary infections. 59 

 60 

Key terms:  61 

- Pharmacokinetics: how the body affects a specific drug after administration through the 62 

mechanisms of absorption and distribution, as well as metabolism and the excretion of the 63 

drug. 64 

- Dried blood spot: microvolume sampling technique collecting whole blood spots on a filter 65 

paper card for analysis. 66 

- Therapeutic drug monitoring: individualization of drug dosage by maintaining plasma or 67 

blood drug concentrations within a targeted therapeutic range to ensure efficacy and 68 

prevent side effects.  69 

- Pulmonary infections: number of infectious diseases involving the respiratory tract.  70 

- Pharmacokinetic drug-drug interactions: A drug interaction is a situation in which a another 71 

drug when both are administered together affects the activity of a drug by alterations in 72 

http://en.wikipedia.org/wiki/Medication


the pharmacokinetics of the drug, such as alterations in the absorption, distribution, 73 

metabolism, and excretion of a drug. 74 

- PK/PD: relationship between the pharmacokinetics and pharmacological effect of a drug.  75 

 76 
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Introduction 78 

Respiratory tract infections are among the most common infections in men. The range of respiratory 79 

tract infections can vary from a upper respiratory tract infection e.g. sinusitis to lower respiratory 80 

tract infections e.g. community acquired pneumonia (CAP) respectively in immune competent 81 

patients but also severe pulmonary infections in immune compromised patients and patients with 82 

(non)-cystic fibrosis bronchiectasis ((non-)CF BE). Lower respiratory tract infections are common 83 

diseases for both general practitioners and medical specialists like pulmonary physicians and 84 

infectious diseases (ID)-physicians. Pulmonary infections in immune compromised patients are more 85 

complicated and less common and therefore mostly treated by pulmonary physicians and ID-86 

physicians.  87 

Morbidity and mortality rates among patients with pulmonary infections can be high especially in 88 

immune compromised patients . The causative micro-organism may differ in immune competent 89 

patients or in immune compromised patients [1-6]. Therefore the empirical antibiotic regimen 90 

differs between these categories of patients. Antibiotic treatment for CAP is guided by mortality risk 91 

scores, like the pneumonia severity index or the CURB65 score [7, 8]. In patients with an underlying 92 

disease, like non-CF BE, the local immune system might be impaired, giving way to infections  caused 93 

by micro-organisms that are generally non-pathogenic in immunocompetent patients, requiring 94 

different antibiotic strategies [9, 10]. The most common bacteria causing CAP in immunocompetent 95 

patients are Streptococcus pneumoniae, Haemophilus influenzae and Mycoplasma pneumoniae 96 

followed by less frequent causative micro-organisms like Staphylococcus aureus, Legionella species, 97 

Chlamydiophila pneumonia, Coxiella burnetii and Bordetella pertussis. Lower respiratory infections 98 

in patients with COPD are also frequently caused by the common causative micro-organisms in 99 

immunocompetent patients, but also by other bacteria such as Moraxella catarrhalis and 100 



Pseudomonas aeruginosa [10]. Non-tuberculous mycobacteria can cause pulmonary infections in 101 

patients with COPD as well, as holds true for immunocompromised patients [11-13], who also can 102 

contract infections with less common bacteria like Proteus mirabilis, Klebsiella pneumoniae, 103 

Escherichia coli, Actinomyces species, Nocardia species and Acinetobacter baumannii and fungal 104 

infections (Aspergillus species) [1, 5, 6, 10]. Pseudomonas aeruginosa or Burkholderia cepacia can 105 

cause deterioration of lung function in patients with either CF BE or non-CF BE [2, 4, 9].  106 

Luckily, physicians have an extensive antimicrobial armamentarium to treat patients with pulmonary 107 

infections caused by this plethora of microorganisms, according to national and international 108 

treatment guidelines.  However, emergence of drug resistance and economical reasons challenges 109 

physicians to select an effective and cheap antimicrobial drug with the narrowest antimicrobial 110 

spectrum for the particular infection.  Once the appropriate drug is selected, physicians will use 111 

guidelines, summary of product characteristics, peer-reviewed literature and patient’s 112 

characteristics to determine the dosage of the selected drug. The goal is to prescribe the drug in a 113 

dose that is likely to be effective in the majority of patients with the narrowest possible spectrum, 114 

an acceptable range of side effects and at the lowest costs.  115 

However, in daily practice the registered dose or the dose recommended in general guidelines will 116 

not always result in clinical cure. For instance, several studies have shown that critically ill patients 117 

tend to respond differently to standard dosed drugs [14]. Altered organ function or changes in body 118 

composition may change pharmacokinetics (PK) in these individuals. In addition, drug-drug 119 

interactions are a well-known source of variability of drug concentrations, especially in patients 120 

receiving multiple antimicrobial drugs for co-infections, like HIV patients suffering from a range of 121 

pulmonary infections [15]. Obviously, variability in PK, can have a grave impact on PK / 122 

pharmacodynamics (PD) of antimicrobial drugs. PK/PD parameters for antimicrobial drugs - i.e. the 123 



maximum concentration (Cmax) in relation to minimal inhibitory concentration (MIC), area under 124 

the concentration – time curve (AUC) in relation to MIC, and time above MIC - describe the 125 

correlation between the concentration of the drug in relation to the susceptibility of the pathogen 126 

[16]. In severely ill patients, drug exposure has been observed to be lower than in patients who are 127 

less ill. If such a patient is also infected with a less susceptible isolate the PK/PD ratio might be too 128 

low and might not exceed target values [17]. Therefore, it seems plausible that patients with severe 129 

infectious diseases would benefit most from individualized dosing based on drug concentration 130 

monitoring or therapeutic drug monitoring (TDM).  131 

For TDM often plasma or serum is used as matrix to determine the concentration of the 132 

antimicrobial drug. However, conventional blood sampling using vena puncture is not always 133 

feasible. Alternative sampling strategies have been evaluated and dried blood spot (DBS) sampling 134 

has been increasingly applied for optimizing drug dosages in patients with pulmonary infectious 135 

diseases [18].  Feasibility of TDM using DBS has been demonstrated for drugs used in many different 136 

infectious diseases, such as HIV and malaria [19, 20]. DBS is popular for its well-known advantages 137 

like minimal invasive sampling, sample stability and small blood volume. In general, a DBS sample 138 

consists of a peripheral blood sample obtained by a finger prick. Ideally, it resembles the venous 139 

blood concentration.  140 

Before DBS can be applied in daily practice, an analytical and clinical validation has to be performed. 141 

The analytical validation has to take into account the linearity, accuracy and precision, recovery, 142 

matrix effect, sample stability, type of DBS-card, and punch size of the analytical method.  During 143 

the subsequent clinical validation, the concentrations of a particular drug in the DBS samples are 144 

compared to the plasma or blood concentrations obtained at the same time point [21]. Important 145 

factors regarding the procedure are environmental factors like temperature and humidity as these 146 



may have a detrimental effect on the sample stability. In addition, spot size is important for the 147 

analytical procedure. Especially, in case of non-capillary sampling (punching part of the spot) the 148 

spot size may differ depending on the correct performance of the procedure performed by the 149 

patient or healthcare professional. During the DBS sampling it is important to spot a single free 150 

falling drop of blood on the DBS card for each spot. Touching the DBS cards with the pricked finger 151 

will affect the formation of the blood spot and may create DBS that are too small for partial spot 152 

analysis. This incorrect performance of the DBS procedure will negatively affect the DBS analysis 153 

results. Measuring the haematocrit value during clinical validation enables to correct for the 154 

influence of blood spreading on the DBS-card [22].  So to summarize, a clinical validation of a DBS 155 

application should take into account the haematocrit variability and concentration range within the 156 

intended population along with all the environmental circumstances. 157 

To facilitate pulmonary physicians and ID physicians and those providing analytical and TDM services 158 

to optimize treatment of pulmonary infections, this article provides a comprehensive overview of 159 

published literature. More specifically, our aim is to present an overview of the value of TDM for 160 

drugs used to treat pulmonary infections and the usefulness of DBS sampling when performing 161 

TDM. Furthermore, our aim is to describe the DBS methods for these drugs that are already known 162 

from literature. Finally, we aim to prioritize future development of novel DBS methods of drugs used 163 

to treat pulmonary infections that are currently not available. 164 

 165 

166 



Methods 167 

 168 

Applicability of DBS for drugs used in pulmonary infections 169 



In order to attain our first goal of giving an overview of TDM of drugs to treat pulmonary 170 

infections, we started by selecting microorganisms that cause these infections. For our 171 

review, we limited the pulmonary infections in our search to those that are caused by 172 

common airway pathogens. These pathogens can be found in most guidelines for the 173 

treatment of pulmonary infections (for example in the guidelines of the Infectious Diseases 174 

Society of America, IDSA) and were determined in consultation with a pulmonologist. The 175 

following bacterial species were selected (in random order): Streptococcus pneumoniae, 176 

Streptococcus anginosus, Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus 177 

aureus, Pseudomonas aeruginosae, Legionella species, Mycoplasma pneumoniae, Chlamydia 178 

psittaci, Chlamydophila pneumoniae, Coxiella burnetii, Bordetella pertussis, Proteus 179 

mirabilis, Klebsiella pneumoniae, Escherichia coli, Burkholderia cepacia Actinomyces species, 180 

Nocardia species and Acinetobacter baumannii. We also selected Mycobacterium 181 

tuberculosis. Besides bacteria mentioned above, fungi and viruses also cause pulmonary 182 

infections. Therefore, we selected Aspergillus, a mold capable of causing pulmonary 183 

infections in immunocompromised patients. We selected the following common viruses: 184 

influenza (common flu), para influenza, rhino virus, human meta pneumonia virus and rhino 185 

synovial virus. We also selected the following less common viruses: cytomegalovirus, herpes 186 

simplex and adenovirus.  187 

 188 

After finalizing the list of common airway pathogens, the anti-infective drugs that are active against 189 

these pathogens were retrieved from commonly available antimicrobial guidelines (for example 190 

IDSA guidelines and guidelines from the American Thoracic society).  We selected antibiotic, 191 
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antifungal and antiviral drugs that are readily available in most countries. We only included drugs 192 

that could be used for systemic treatment, i.e. intravenous or oral formulations, according to their 193 

summary of product characteristics. Antimicrobial drugs that are nebulized or inhaled as dry powder 194 

are only applied for local therapy in the lung resulting in reduction in colonization or are given as 195 

prophylaxis. DBS will not likely be used for these treatment strategies. 196 

 197 

Of these selected drugs, we presented an overview of several parameters in order to determine 198 

whether DBS, facilitating drug concentration guided dosing, might be useful. Therefore we 199 

determined the need for dose adjustment in renal or hepatic impairment, the impact of interactions 200 

on the PK of the drugs and the relevance of TDM in general. A number of PubMed searches were 201 

conducted using the following keywords: names of the selected drugs AND pharmacokinetics, 202 

pharmacodynamics, PK/PD, interactions, therapeutic drug monitoring, TDM, renal impairment or 203 

hepatic impairment. The duration of treatment was estimated, based on treatment duration used in 204 

pulmonary infections. Treatment duration exceeding two weeks was considered to be long term 205 

treatment.  206 

 207 

Available DBS methods for drugs used in the treatment of pulmonary infections 208 

After selecting drugs for which DBS could be useful, we searched PubMed for articles about DBS 209 

analytical methods for the antimicrobial drugs used in pulmonary infections. We expanded this 210 

search by including immunosuppressive drugs (cyclosporine, tacrolimus, everolimus, sirolimus and 211 

mycophenolate). To our opinion this expansion of the search could be useful because the patients 212 

using immunosuppressive drugs are often prone to pulmonary infections. In addition, these patients 213 



may already be familiar with DBS sampling (some laboratories might already use DBS in TDM of 214 

immunosuppressive drugs) and the DBS analysis could be extended with the antimicrobial drugs 215 

discussed in this review. We searched for articles with the names of the selected drugs AND dried 216 

blood spot testing OR dried blood spot OR DBS. Only articles about DBS methods in humans for the 217 

selected drugs were included. Articles about other drugs, dried plasma spots (DPS), DBS in animals 218 

and articles that did not describe DBS sampling were excluded. From the retrieved articles we 219 

extracted information about the analytical method, type of DBS card, type of spot, extraction 220 

method, haematocrit effects and correction, stability of the sample, linear range and clinical 221 

validation of the analytical method.  222 

 223 

Feasibility of developing DBS methods for drugs used in pulmonary infections  224 

For some antimicrobial drugs no DBS method could be retrieved from literature. However, for these 225 

drugs a DBS method could be of clinical use. Therefore a feasibility assessment was performed. To 226 

determine the lowest level of quantification that the DBS method should be able to measure, we 227 

verified the summary of product characteristics of the drugs for information on the expected trough 228 

concentrations. For the drugs for which this information was not stated, a PubMed search was 229 

performed using the names of the drugs and the terms pharmacokinetics, single dose, volunteers 230 

and human. We searched for publications describing the pharmacokinetics in healthy volunteers 231 

after a single dose and derived the minimal concentration of this drug. Subsequently PubMed was 232 

searched for published methods of analysis for these drugs in human plasma, serum or whole blood. 233 

The search was restricted to analytical procedures using liquid chromatography tandem mass 234 

spectrometry (LC-MS/MS) because of the required sensitivity for DBS analysis. Out of the 235 

publications found, we selected one analysis method per drug. To determine if these methods were 236 



suitable for DBS we derived the concentration range, the extraction method and the stability 237 

information.  238 

239 



Results 240 

 241 

Applicability of DBS for drugs used in pulmonary infections 242 

In table 1, an overview of the drugs used in pulmonary infections is presented. This overview 243 

indicates whether a DBS analysis technique would be useful for these drugs. We selected drugs for 244 

which TDM is relevant based on the need for dose adjustments in renal or hepatic impairment, 245 

pharmacokinetic interactions and duration of treatment. Multiple drugs are excreted renally and 246 

need dose adjustment in patients with renal impairment. For drugs undergoing metabolism in the 247 

liver, dose adjustments may be required in patients with impaired hepatic function. Several drugs 248 

are metabolized trough Cytochrome P450 (CYP) enzymes, which can lead to interactions when 249 

combined with drugs or other substances that induce or inhibit these enzymes. Moreover, for 250 

several CYP enzymes, the genetic background strongly determines activity (e.g. CYP2D6) [23]. In all 251 

these situations, TDM can be relevant, either in a group of patients or in individual cases. Because of 252 

increasing antibiotic resistance, TDM is more important to guarantee therapeutic blood levels of 253 

these drugs.     254 



Advantages of DBS in pulmonary infections  255 

In the following, we will describe whether or not DBS can be useful for the different groups of drugs 256 

used for the treatment of pulmonary infections. In general, DBS could be useful for different 257 

settings, in a small hospital, in the outpatient setting or for neonates. Small hospitals will not likely 258 

have an in-house laboratory that is able to measure plasma or serum concentrations of these drugs. 259 

DBS will simplify transportation of the sample so that dry ice cooled shipment of plasma or serum 260 

samples to a reference laboratory will not be necessary. In cases where the patient is treated at 261 

home, either with oral drugs or with parenteral drugs, DBS can be convenient for the patient. The 262 

patient can sample at home with or without help of the home care nurse and send the sample to the 263 

laboratory. In neonates, DBS sampling can be helpful because of the very small amount of blood 264 

needed. When considering DBS, it is important to take the increased turnaround time into account. 265 

Drying time of the DBS sample, shipment by mail and sample processing of a DBS sample may 266 

increase turnaround time. When feedback on the concentration of the sample is urgent, DBS is less 267 

suitable. For routine TDM checks, or less urgent questions, DBS could be very practical.     268 

 269 

Beta-lactam antibiotics  270 

For beta-lactam antibiotics it has been shown that dose adjustment is recommended for most drugs 271 

in patients with renal impairment, especially when combined with β-lactamase inhibitors [24-30]. 272 

These drugs are not extensively metabolised by liver enzymes and therefore dose adjustments in 273 

patients with hepatic impairment are not required. Caution is required when using clavulanic acid in 274 

patients with hepatic impairment [31]. Because of their lack of metabolism by the CYP450 isoenzym 275 

system, there are no important drug-drug interactions with drugs inducing or inhibiting these 276 

enzymes that influence the pharmacokinetic profile of the beta-lactam antibiotics [24, 28, 32]. Drugs 277 



influencing the renal clearance of beta-lactam antibiotics could influence their pharmacokinetic 278 

profile, but the beta-lactam antibiotics have a wide therapeutic index [32]. Based on their safety and 279 

their consistent PK profile, beta-lactam antimicrobial drugs are not often subjected to TDM. 280 

However, in critically ill patients it is recommended to perform TDM to prevent sub-therapeutic or 281 

toxic blood concentrations, because of the altered kinetic parameters in these patients [33]. For 282 

critically ill patients, DBS sampling could be useful, but only in hospitals without a local laboratory. 283 

The only advantage would be stability of the sample and lower costs for transportation. The 284 

advantage of sampling would be of less importance because multiple blood samples are taken 285 

frequently from critically ill patients. TDM will generally not be required in outpatients because they 286 

are treated for community acquired infections which are normally susceptible to standard dosing 287 

and the treatment courses are generally short. DBS will therefore be of limited value in these cases.       288 

 289 

Tetracyclines 290 

For tetracycline antibiotics, TDM is not described in literature. Duration of treatment with these 291 

drugs is often short (one or two weeks). Dose adjustments are normally not required for 292 

tetracyclines in patients with renal (except for tetracycline) or hepatic impairment [25, 34]. 293 

Tetracyclines do have important drug-drug interactions related to their absorption or their 294 

metabolism that influence the plasma levels of tetracyclines [35, 36]. It is advised to switch to 295 

another antibiotic in these cases or not to take these drugs at the same time to make sure the 296 

absorption of the tetracycline is not affected [35]. Because there is no need for TDM, DBS will not be 297 

useful for tetracycline antibiotics.  298 

 299 



Fluoroquinolones 300 

Fluoroquinolones are used for a multitude of lung infections. Ciprofloxacin is used in more common 301 

infections, while moxifloxacin is used for infections caused by less common or resistant pathogens, 302 

for example Mycobacterium tuberculosis. Most fluoroquinolones need dose adjustments in patients 303 

with decreased renal function [25, 37-39]. These drugs are not extensively metabolised in the liver, 304 

so no dose adjustments are required for patients with impaired liver function [37, 40]. The plasma 305 

levels of the fluoroquinolones can be altered by drugs that influence the P-gp activity [36]. 306 

Furthermore, absorption can be reduced when the drugs are administered together with cations 307 

[41].  In most infections, the treatment duration with fluoroquinolones is short, but tuberculosis (TB) 308 

patients are treated for a long period of time [41]. Especially in multidrug-resistant tuberculosis and 309 

in cystic fibrosis patients or patients treated for hospital acquired pneumonia, TDM can be 310 

important [32, 38, 41, 42]. DBS can be of great advantage in these situations because these patients 311 

can be treated at home. Patients could be able to sample at home and send the DBS card to the 312 

laboratory. The physician can monitor the treatment from a distance.   313 

 314 

Aminoglycosides   315 

TDM for aminoglycosides is widely accepted because of their small therapeutic range and their 316 

toxicity profile [43]. Dose adjustments for aminoglycosides are required in patients with impaired 317 

renal function [44]. Also, when aminoglycosides are administered together with drugs that influence 318 

their renal clearance, the kinetics of the aminoglycosides will change and the plasma concentration 319 

of the drugs needs to be monitored [32]. Aminoglycosides do not undergo hepatic metabolism and 320 

therefore dose adjustment in patients with hepatic impairment is not required [44, 45]. Sometimes, 321 

patients can be treated at home with an aminoglycoside, for example patients with cystic fibrosis or 322 



patients that need long term treatment with aminoglycosides. TDM usually requires a Cmax and a 323 

trough concentration [43]. DBS can be very helpful in these cases because sampling can be 324 

performed before and after the infusion at the patient’s home. DBS can simplify logistics of sampling 325 

for aminoglycosides.   326 

 327 

Macrolides 328 

Treatment with macrolides can be both short term and long term [46]. Macrolides can be used for 329 

treatment of infection but also for prophylaxis in patients with CF (azithromycin) or tuberculosis 330 

(clarithromycin). For clarithromycin, dose adjustments are recommended for patients with impaired 331 

renal function [46]. The macrolide plasma concentration is influenced by drugs that inhibit or induce 332 

CYP3A4 [36, 47].  Normally, standard dosing is accepted for macrolides because of their wide 333 

therapeutic index, therefore TDM is not recommended [32]. However, in special populations like 334 

patients with TB, TDM of clarithromycin is recommended to prevent subtherapeutic plasma 335 

concentrations [48]. DBS can be useful for TDM of clarithromycin in TB patients.  336 

 337 

Rifamycines 338 

Rifamycin treatment courses are long, varying from weeks to months. The plasma concentration of 339 

these drugs is influenced by many drug-drug interactions, furthermore the absorption of rifampicin 340 

is variable and influenced by both food and drugs [49, 50]. Rifampicin is metabolised by the liver, 341 

and therefore dose adjustment is recommended in patients with hepatic impairment [49]. In specific 342 

populations like patients with TB, TDM is recommended for these drugs to ensure therapeutic 343 

plasma concentrations [51]. For outpatient use, or use of rifamycines in a smaller hospitals without 344 



abilities to analyse rifamycin samples, DBS can be useful. Also for patients treated with oral 345 

rifamycines, sampling would be less painful using DBS.    346 

 347 

Glycopeptides 348 

Glycopeptides are most often used in hospitals because they are administered intravenously. These 349 

drugs are not extensively metabolised, but are subject to renal elimination and dose adjustment for 350 

patients with renal impairment is necessary [43, 52]. Because of their lack of hepatic metabolism, 351 

there are no important drug-drug interactions that influence the pharmacokinetic profile of the 352 

glycopeptides [32, 53]. Only drugs that influence the renal clearance can influence the plasma 353 

concentration of glycopeptides [32, 53]. TDM is highly recommended for vancomycin, because of its 354 

small therapeutic index and toxicity profile [43]. For teicoplanin TDM is recommended in special 355 

populations, to ensure therapeutic plasma concentrations; toxicity is less important for teicoplanin 356 

(except for high dosing) [43, 53]. For both vancomycin and teicoplanin DBS can be useful. In 357 

hospitals without a local laboratory DBS could improve sample logistics and reduce costs. For 358 

outpatient use, regular check of effectivity and toxicity of glycopeptides would be possible wih little 359 

inconvenience for the patient.   360 

 361 

Lincosamides 362 

For clindamycin, dose adjustments are not required for patients with impaired renal functions [25]. 363 

Neither are there important drug-drug interactions that influence the plasma concentrations of this 364 

drug [54]. TDM is not recommended in literature. There is no importance to develop a DBS method 365 

for this group of drugs.  366 



 367 

Oxazolidinones 368 

Oxazolidinones are important drugs in the treatment of TB. Patients are treated with these drugs for 369 

a long period of time. The drugs are susceptible to interactions with food or drugs influencing P-gp 370 

[55, 56]. In special populations it is recommended to perform TDM for these drugs because of their 371 

toxicity profile [51, 55]. DBS can be useful in these cases. Especially for outpatients DBS could be 372 

convenient, and lower transportation costs.   373 

 374 

Other microbial agents 375 

For TB drugs like ethambutol, isoniazid, pyrazinamide and clofazimine it is recommended to perform 376 

TDM [51, 55]. Patients are treated with these drugs for a long period of time. Also dose adjustments 377 

are required for some of these drugs in patients with impaired renal function [46]. For these 378 

patients, DBS can improve the ease of sampling, especially in outpatient settings.  379 

TDM for protionamide, thioacetazone and metronidazole has not been described in literature. For 380 

these drugs, dose adjustments are not required in patients with impaired renal function, nor are 381 

there important drug interaction mechanisms that influence the plasma concentration of these 382 

drugs [46]. DBS will not be relevant for these drugs. 383 

Cotrimoxazole is eliminated through the kidneys [57, 58]. It can be used both short and long term. 384 

Usually treatment with cotrimoxazole is short term. Long term treatment is used especially in TB 385 

patients or transplantation patients. In critically ill patients, TDM could be useful because of the 386 

toxicity profile of cotrimoxazole at high doses and to guarantee therapeutic plasma concentrations 387 

[57]. In these cases DBS can be useful in small hospitals. The dosing for outpatient use will be lower 388 



(more susceptible organisms of prophylactic use) and therefore the risk of toxicity is decreased. In 389 

these cases TDM and therefore DBS would not be important.   390 

The new marketed drugs for the treatment of TB, delamanid and bedaquiline, are both metabolised 391 

by CYP isoenzymes (delamanid less then bedaquiline) [59]. Because of the comedication used in 392 

patients treated with these drugs, TDM could be useful in individual patients [60]. Examples include 393 

patients also treated with antiretroviral drugs or patients treated with rifamycines or other inducers 394 

or inhibitors of CYP3A4 [60]. For bedaquiline and delamanid, monitoring of plasma levels can also be 395 

useful because the absorption is dependent on food [60]. Although there are limited data available 396 

yet, also in patients with impaired renal or hepatic function TDM could be helpful for bedaquiline 397 

and delamanid. For these situations DBS could be useful, especially in the outpatient setting. DBS 398 

would lower costs and also sampling will be less painful for the patient.  399 

 400 

Antiviral drugs 401 

In general, the antiviral drugs are excreted renally, therefore dose adjustment is recommended in 402 

patients with impaired renal function [61-65]. The efficacy of these drugs is mostly monitored by the 403 

viral load of the patient. There are no important drug-drug interactions influencing the plasma 404 

concentration of these drugs [62, 64, 66]. TDM is not recommended for most of these drugs [64]. 405 

For (val)ganciclovir TDM is described to prevent subtherapeutic plasma concentrations and toxicity 406 

in special populations when there is uncertainty about the exposure [67]. For ribavirin TDM is 407 

described in the treatment of hepatitis C because of the clear relationship between ribavirin 408 

concentration and both virological response and side effects. In patients with decreased renal 409 

function, TDM could be helpful [68]. When ribavirin is used in the treatment of pulmonary viral 410 

infections, TDM could help in individual cases to optimize ribavirin dosing. In these cases DBS can be 411 



useful for (val)ganciclovir and ribavirin. DBS has also been demonstrated to be useful for monitoring 412 

the viral load of the patient [69]. 413 

 414 

Antifungal drugs   415 

The triazole antifungal drugs voriconazole, posaconazole and itraconazole are subject to CYP450 416 

metabolism and because of that, the plasma concentration of these drugs is influenced by drug-drug 417 

interactions [36, 70-73]. Voriconazole has a nonlinear pharmacokinetic profile and there is a wide 418 

intra and interindividual variety [71]. Patients are often treated with these drugs for a long period of 419 

time. TDM is recommended to assure therapeutic plasma concentrations and prevent side effects 420 

[71]. For itraconazole TDM can be used to assure sufficient absorption of this drug [74]. TDM of 421 

posaconazole can be useful in critically ill patients, patients with presumed malabsorption, children 422 

and patients taking drugs that alter gastric pH [75].  423 

TDM of amphotericin B is not recommended, this drug is not suspected for drug interactions, nor 424 

are dose adjustments required in patients with renal impairment[76]. Caspofungin is a poor 425 

substrate for CYP450 and therefore only strong inhibitors or inducers will influence the plasma 426 

concentration of caspofungin [77]. TDM is only recommended in individual cases when there are 427 

pharmacokinetic changes or drug-interactions [78].  428 

 For caspofungin DBS could also be useful in hospitals without a local laboratory.  429 

 430 

Available DBS methods for drugs used in the treatment of pulmonary infections 431 



After deciding for which drugs DBS could be useful, we searched for publications describing an 432 

analytical DBS method for the drugs mentioned in table 1. In table 2 an overview of the results from 433 

this search is shown. We included immunosuppressant drugs in this overview because patients 434 

taking these drugs are often susceptible to pulmonary infections [79]. For immunosuppressant drugs 435 

there are a lot of papers describing an analytical DBS method for these drugs. We found 25 methods 436 

for the analysis of 5 immunosuppressant drugs. We found 16 analysis methods for 13 drugs used to 437 

treat pulmonary infections. Most analysis methods are LC–MS/MS methods. In almost all methods, 438 

part of the blood spot is punched from the paper and the drug is extracted by simple liquid 439 

extraction.  440 

Not all papers investigated the haematocrit effect for their DBS method, 13 papers did not 441 

investigate the haematocrit effect, 17 papers did investigate it. Out of these, 6 did not observe a 442 

significant effect and 11 did observe a significant effect.  443 

Stability data vary a lot between the publications, especially the tested period of time and the 444 

temperature conditions. Not all publications investigated the stability at ambient temperature. For 445 

some drugs, stability of the DBS sample is an issue, for example ertapenem, (val)ganciclovir and 446 

metronidazole. 447 

Clinical validation is not performed in all studies, 16 papers did describe a clinical validation of their 448 

DBS method, 6 papers did not describe a clinical validation, 2 papers only validated their method 449 

with spiked blood samples, 7 papers used venous dried blood spots (VDBS) for validation the of their 450 

method. A large variability was observed in the number of patients used for the clinical validation.          451 



Feasibility of developing a DBS method for drugs used in pulmonary infections  452 

For the drugs that we decided DBS could be useful based on the results presented in table 1 but we 453 

could not find a published DBS method as shown in table 2, we searched for published analysis 454 

methods for these drugs. In table 3 these results are presented. We also present the concentration 455 

that should be required to measure based on the expected minimal plasma concentration. For most 456 

of the drugs described, it would be feasible to develop a method for DBS analysis based on the 457 

available LC-MS/MS method for that drug. The sensitivity of a LC-MS/MS method is normally 458 

sufficient for measuring the expected minimal concentration for these drugs. When there is no LC-459 

MS/MS method available, it would be less easy to develop a DBS method. For methods with a more 460 

extensive extraction method it could be more difficult to use this analytical method for a DBS 461 

analysis. Stability of the samples is only investigated for a couple of hours in most publications. 462 

When developing a DBS method, the stability of the compound on paper should be taken into 463 

account because of transportation time of the sample at ambient temperatures. 464 

When prioritizing development of DBS methods, it is preferred to start with developing a method for 465 

drugs in which TDM is highly recommended. Therefore, we recommend starting with DBS methods 466 

for aminoglycosides and glycopeptides. Also for drugs used in treatment of TB, a DBS analysis 467 

technique would be very advantageous because of the long term treatment and treatment in 468 

hospitals without a local laboratory or outpatient use. DBS measurement of itraconazole can also be 469 

helpful in treatment of patients who need long term itraconazole treatment and also use 470 

immunosuppressant drugs, because these patients may already be familiar with DBS sampling. DBS 471 

sampling for beta-lactam antibiotics, fluoroquinolones and caspofungin is of less priority, but may 472 

also be important for laboratories that receive a lot of samples from other hospitals.         473 



For some of the drugs there is no LC-MS/MS method published yet. For the drugs used in the 474 

treatment of TB (clofazimine, bedaquiline and delamanid) it might be worthwhile to develop a LC-475 

MS/MS method to be able to perform DBS in the future.   476 



Table 3: Feasibility of developing a DBS method for drugs used in pulmonary infections  477 

Drug Concentration range 

ng/mL 

LC-MS/MS method 

available? 

Publication Matrix Method of 

extraction 

LLOQ 

ng/mL 

Stability in 

plasma  

DBS easily 

possible? 

Aminoglycosides 

amikacin 750
#
 yes Bijleveld et al. [80] plasma PP 300  96h at AT yes 

kanamycin <2000 [81] yes Dijkstra et al. [82] serum PP 100 24h at AT yes 

streptomycin <1000 [83] yes Zhou et al. [84] plasma PP 10.0 8h at AT yes 

tobramycin 540 [85] yes Attema-de Jonge et al. [86] plasma PP 50  24h at AT yes 

Beta-lactam antibiotics 

Carbapenems 

doripenem 1000* [87]  yes Ohmori et al. [88] serum SPE 500 No data yes 

imipenem  <1000
#
 yes Sakke et al. [89] plasma PP 100  No data yes 

meropenem 200* [90]  yes Sime et al. [91] plasma PP 100 4h at AT yes 



Cephalosporins 

cefazolin 2000 [92] yes Sime et al. [91] plasma PP 100 4h at AT yes 

cefotaxim 400* [93] yes Szultka et al. [94] whole 

blood 

SPME 0.465 No data yes 

ceftazidim 1500 [95] yes Sime et al. [91] plasma PP 100 4h at AT yes 

ceftriaxone 10,000* [96] no - - - - - no 

cefuroxim 300 [97] yes Partani et al. [98] plasma SPE 81   7h at AT yes 

Monobactams 

aztreonam 100 [99] no - - - - - no 

Penicillins 

amoxicillin 100* [100] yes Szultka  et al. [94] whole 

blood 

SPME 0.391 No data yes 

benzylpenicillin 1000* [101] yes Sime et al. [91] plasma PP 100 4h at AT yes 

flucloxacillin 800* [102] yes Sime et al. [91] plasma PP 250  4h at AT yes 



Fluoroquinolones 

ciprofloxacin 100* [103] yes Szultka et al. [94] whole 

blood 

SPME 0.436 No data yes 

levofloxacin 1210 [104] yes Jourdil et al. [105] plasma PP 120 24h at AT yes 

ofloxacin 1000* [106] yes Meredith et al. [107] plasma PP 78 4h at AT yes 

Glycopeptides 

teicoplanin 8330 [108] yes Tsai et al. [109] plasma PP 140  24h at AT yes 

vancomycin 8000
#
 yes Tsai et al. [109] plasma PP 500 24h at AT yes 

Oxazolidinones 

cycloserin 2000* [110] yes Polagani et al. [111] plasma PP 50.9 9h at AT yes 

Other 

bedaquiline 100* [112] no - - - - - no 

clofazimin 200-600
#
 no - - - - - no  

ethambutol 200* [113] yes Zhou et al. [84] plasma PP 0.5  8h at AT yes 



delamanid 304 [114] no - - - - - no 

isoniazid 148 [115] yes Zhou et al. [84] plasma PP 4.0 8h at AT yes 

pyrazinamide 788 [115] yes Zhou et al. [84] plasma PP 4.0  8h at AT yes 

sulfamethoxazole 37,800 [116] yes Bedor et al. [117] plasma SPE 500  6h at AT Yes 

trimethoprim 810 [116] yes Bedor et al. [117] plasma SPE 50 6h at AT yes 

Antifungal drugs 

 caspofungin 1770 [118] yes van Wanrooy et al. [78] plasma PP 100 72h at AT yes 

 itraconazole 523
#
 yes Alffenaar et al. [119] serum PP 100 24h at AT yes 

SPME: solid phase micro extraction, PP= protein precipitation, SPE: solid phase extraction, AT: ambient temperature, LLOQ: Lower Limit Of Quantification, *estimation, no exact 478 

data available in publication. The method of detection in all publications was UPLC-MS/MS or LC-MS/MS. # Based on the Summary of Product Characteristics. 479 



Discussion 480 

DBS can be an important tool in optimizing the treatment of pulmonary infections, however there is still a lot of work to be done in developing 481 

DBS methods for the drugs used in the treatment of these infections. For several antimicrobial drugs used in the treatment of pulmonary 482 

infections, TDM can be useful. For betalactam antibiotics, TDM is recommended only in critically ill patient. Therefore DBS sampling is of limited 483 

value and would only be useful in hospitals without a local laboratory.  For tetracyclines and lincosamides there is no general need for TDM, 484 

therefore there will be no value for a DBS method. Patient treated with aminoglycosides and glycopeptides could benefit from DBS sampling 485 

when they are treated at home. For drugs used in the treatment of TB (for example: rifamycines, clarithromycin, isoniazide, ethambutol) TDM is 486 

often important and DBS sampling could be really convenient for patients [18]. For smaller hospitals, DBS sampling for these drugs would lower 487 

transportation costs of samples.   For antifungal drugs (posaconazole, voriconazole, itraconazole) TDM is important and DBS can be useful for 488 

these drugs [120]. Transplantation patients that use one of these drugs at home might also be familiar with DBS sampling (for 489 

immunosuppressant drugs) and may be capable to sample themselves or otherwise sample with the help of a homecare nurse.  490 

We found several published DBS methods, especially for immunosuppressive drugs. For these drugs, DBS is helpful when performing TDM in 491 

transplantation patients. Furthermore, we found published DBS methods for antifungal drugs and some antibiotics. In this review we have 492 

excluded DPS, because DPS required centrifugation of the sample. Especially in outpatient setting, this would be less advantageous than DBS 493 

sampling. However, nowadays there are for example Noviplex™ Cards available that can generate plasma spots out of whole blood in a very 494 

short amount of time.           495 



 496 

There are a lot of drugs used for treating pulmonary infections for which DBS would be useful but there are no published DBS methods yet. 497 

Based on the available LC-MS/MS analysis methods already published for these drugs, the future development of DBS analysis methods is 498 

considered feasible. Depending on the type of laboratory, it can be decided for which drugs the development of a DBS analysis method will be 499 

worthwhile. When a laboratory processes a lot of external samples from other hospitals, it can be useful to develop a method for 500 

aminoglycosides and glycopeptides. Also when there are many patients treated at home with these drugs, developing a DBS method for 501 

aminoglycosides and glycopeptides could be a strategic choice. When a laboratory receives a lot of samples for TB patients, it can be convenient 502 

to develop a single method for drugs used in the treatment of TB like the recently published analysis method by Kim et al. for 20 anti-503 

tuberculosis drugs in human plasma [121]. For hospitals with many transplantation patients, developing a DBS method for antifungal drugs could 504 

be important. 505 

In the development of a new DBS method, it is important to execute a good analytical and clinical validation. Aspects that are important in 506 

validating the method are for example haematocrit effect and stability of the sample [21, 122]. We noticed that for some methods, the stability 507 

of the sample was not tested at ambient temperature, nor at higher temperature or that it was tested for a short period of time. We 508 

recommend testing the stability of the drug in the DBS sample for at least 7 days at ambient temperature and at higher temperatures, because 509 

of possible transportation time of the sample to the laboratory. When stability of the DBS sample is insufficient at ambient temperature or at 510 

higher temperature, the DBS method is less advantageous to use because stability issues during transportation of the sample. Furthermore, we 511 



found that the haematocrit effect was not investigated in some publications. It is important to investigate the effect of the haematocrit and 512 

correct the effect if necessary to be able to generate reliable results [21].   513 

Also a clinical validation of the DBS method is vital. For the clinical validation we recommend using the analysis results of patient finger prick 514 

samples and compare those with the analysis results of regular venous blood samples from these patients. We found that the clinical validation 515 

of DBS methods needs more attention; this was also described recently by Wilhelm et al. [123].    516 

In conclusion, DBS can be promising in optimizing the treatment of patients with pulmonary infections. Especially for aminoglycosides, 517 

glycopeptides, anti-tubercolosis drugs and antifungal drugs, DBS could be of added value. There is a lot of work to be done in developing new 518 

DBS methods for these drugs. It is important to perform a good analytical and clinical validation when developing a new DBS method.   519 

 520 

Future Perspective 521 

In the future years, DBS will become a more important and more common method for performing TDM. Because of more centralization of 522 

laboratories and more outpatient treatment, DBS is more efficient than regular blood sampling. Multi-analyte DBS analysis methods, which 523 

contain tens of drugs, could be developed in the future. This would allow the analysis of DBS for multiple analytes from one DBS extraction and 524 

maybe even in one analytical run. The limitations for such an analysis method would be based more on the molecular properties of the analytes 525 

than on the group of drugs used for one disease. This could be advantageous for the efficiency of the laboratory and for patients which are 526 



treated for multiple diseases. Also the transportation costs and sampling costs for TDM are lower when using DBS. In the future, it might even be 527 

possible to send a sample by drone, speeding up the delivery process and therefore generating results quicker and make early adjustment of 528 

treatment possible. Because of the lower costs using DBS, TDM could be performed more often. DBS can also be used more for sampling in 529 

clinical trials, minimizing the burden for the subjects participating in these trials, while generating more data. DBS methods will be developed for 530 

more and more drugs; official guidelines for developing and validating a DBS method would create more uniformity in the field. Implementation 531 

of automated systems for sample preparation will further simplify the analysis of a DBS sample and provide an opportunity to upscale the use of 532 

DBS, both in patient care and in clinical trials. More DBS data means more knowledge about the pharmacokinetics of drugs in large populations 533 

and optimization of therapy for pulmonary infections.   534 

Executive Summary 535 

Introduction 536 

- Respiratory tract infections are among the most common infections in men. 537 

- Therapeutic drug monitoring is important for the optimization of therapy in pulmonary infections. 538 

- Dried blood spot sampling is increasingly applied in optimization of dosing in patients with infectious diseases. 539 

Methods 540 

- An overview of the importance of TDM of drugs used to treat pulmonary infections is provided. 541 



- The DBS methods for drugs used in pulmonary infections that are already known from literature are described. 542 

- The feasibility and priority of development of DBS methods that are currently not available are shown. 543 

Results  544 

- TDM is important for different groups of drugs used in the treatment of pulmonary infections. 545 

- We found 15 DBS analysis methods for 12 drugs used to treat pulmonary infections. 546 

- For most drugs used in pulmonary infections it may be feasible to develop a DBS method. 547 

Discussion 548 

- Depending on the type of laboratory, it can be decided for which drugs developing a DBS method can be useful. 549 

- Official guidelines for developing and validating a DBS method would create more uniformity in the field. 550 

- The clinical validation of DBS methods needs more attention.  551 

 552 

 553 

[14] *: Interesting paper that describes the importance of TDM of beta-lactam antibiotics in critically ill patients. 554 

[18]: * interesting paper describing the use of DBS for TDM in tuberculosis.  555 

[21] *: interesting paper describing the technical aspects of DBS and the importance of validation for DBS. 556 

[22]: * interesting paper describing the use of potassium as a marker To predict the Hct of a given DBS. 557 



[36]: * interesting paper about important drug-drug interactions conserning inhibition of  CYP3A4 and the role of TDM.  558 

[121]: * Interesting paper describing the LC-MS/MS analysis of 20 anti-tuberculosis drugs in plasma. 559 
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Supplementary Table 1: An overview of drugs used in pulmonary infections in relation to therapeutic drug monitoring and the application of 782 

DBS.  783 
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Beta-lactam 

antibiotics 

  

Time above MIC [1] 

 

 

 

 

 

 

 

 

  LT and ST Only in special 

populations [3, 4] 

Y 

Penicillins   

No important 

mechanisms [5] 

 

Only in special 

populations [2] 

Y 

amoxicillin oral/IV Y(R), N(H)
§ 

LT and ST Y 

benzylpenicillin IV Y(R) [6], N(H)ᵠ LT and ST Y 

pheneticillin oral No data ST N 

flucloxacillin oral/IV N(R) [7], N(H)ᵠ LT and ST Y 

piperacillin IV Y(R), N(H)
§ 

LT and ST Only in special 

populations [8] 
 

Y 



Cephalosporins   

Time above MIC [1] 

 

 

 

 

Trough [2] 

 

 

 

 

 

 

 

Trough [2] 

No important mechanism 

[5] 
LT and ST 

Only in special 

populations [2] 
Y 

cefazolin IV Y(R), N(H)
§ 

cefotaxim IV Y(R) [6], N(H)ᵠ 

ceftazidim IV Y(R), N(H)
§ 

cefuroxim IV Y(R) [6], N(H)ᵠ 

ceftriaxone IV Y(R) (in high 

doses) [9]
  

Y(H)ᵠ 

Carbapenems   

Time above MIC [10, 11] 
No specific interactions 

[10, 12] 
LT 

Only in special 

populations [13] 
Y 

doripenem IV Y(R) [12], N(H)ᵠ 

ertapenem IV Y(R) [14],  

N(H)
§ 

meropenem IV Y(R)
§
 

N(H)[13]
  



imipenem IV Y(R) [10], N(H)ᵠ 

Monobactams  
 

Time above MIC [1]
 

Trough [2]
 

  

Only in special 

populations [2]  
Y 

aztreonam IV Y(R), N(H) [15] No specific interactions 

[16] 

LT 

Tetracyclines   

AUC/MIC [17] No data 

Iron [18] 

ST  
No recommendations 

in literature 
N 

doxycycline oral/IV N(R, H)
§ 

CYP3A4 [19] 

minocycline oral N(R, Hᵠ) [20]
  

 

tetracycline oral Y(R) [6] , N(H)ᵠ CYP3A4, P-gp [19] 

Fluoroquinolones   

AUC/MIC [11, 21, 22] 

 

 Cations [21]  

In special populations 

[21][23][5] 

Y 

 

ciprofloxacin oral/IV Y(R), N(H) [22, 22, 

24] 

Cmax and 

trough [23] 

P-gp [19] ST [21] 

levofloxacin oral/IV Y(R)[25],  

N(H) [23] 

Cmax [23] P-gp [19] ST 

moxifloxacin oral/IV N(R) [6],  AUC [23] Al/Mg, Antacids, Fe [23] LT and ST 



N(H) [26] 

ofloxacin oral Y(R) [22],
 
N(H)ᵠ No data CYP3A4, P-gp [19] ST 

Aminoglycosides   

Cmax /MIC [11, 27] 

 

Trough and 

Cmax [28] 

Drugs influencing renal 

clearance [5] 

LT 

 

Commonly accepted 

[28] 

  Y 

 

gentamicin IV Y(R) [29], N(H)ᵠ
 

tobramycin IV Y(R) [29], N(H)ᵠ 

kanamycin IV 

Y(R) [29],  

N(H) [30] 

amikacin IV 

Y(R) [29],  

N(H) [30] 

streptomycin IV Y(R) [29],  

N(H) [30] 

Macrolides    

No data 

CYP450 inhibition [31]  Not recommended 

[5] 
N 

azithromycin oral N(R) [6], AUC/MIC [32] CYP3A4 [19] LT and ST Not recommended N 



Caution(H)§ [5] 

clarithromycin oral Y(R)  [11], 

Possible (H)
§
 

 

AUC/MIC [11] 
 

CYP3A4, P-gp [19] ST Only in special 

populations [33] 

Y 

erythromycin oral N(R) [6],  

Caution(H)
§
  

Time above MIC [27] CYP3A4, P-gp [19] ST Not recommended 

[5] 

N 

Rifamycins 

rifampicin oral/IV N(R), Y(H) [34] Concentration dependent 

killing [35] 

Cmax and 6 

hours [36] 

P-gp, antacids, food, 

ketoconazole, 

cotrimoxazole, CYP450 

[30, 37] 

LT 

In special populations 

[36] 

Y 

Glycopeptides   

Time above MIC [27] 

 

Trough [28] 

 

 

LT 

 

 

Y 

 

teicoplanin IV Y(R)[38], No(H) 

[39]
 

No important 

mechanisms [39] 

Only in special 

populations [28, 39] 

vancomycin IV Y(R)(H) [28] Drugs influencing the Commonly accepted 



renal clearance [5] [28] 

Lincosamides 

clindamycin oral/IV N(R) [6] Time above MIC [27] No data No important 

mechanisms [40] 

LT and ST No recommendations 

in literature 

N 

Oxazolidinones 

linezolid oral/IV N(R) [11]  Time above MIC [27]/ 

AUC/MIC [35] 

Trough [35] P-gp [41] LT In special populations 

[35] 

Y 

cycloserin oral Y(R) [11],  

N(H) [30] 

Cmax/MIC [35] Cmax and 

10 hours 

post dose 

[36] 

Food [36] LT In special populations 

[36] 

Y 

Other 

ethambutol oral Y(R) [11],  

N(H) [34] 

AUC/MIC [11]
 

Cmax [36] Antacids [37] LT In special populations 

[36] 

Y 

isoniazid oral/IV N(R) [11], AUC/MIC [11]
 

Cmax and 6 Food, antacids [34] LT In special populations Y 



Y(H) [34] hours [36] [35] 

clofazimine oral N(R) [11]
  

No data Cmax [36] No important 

mechanisms 

LT Only in special 

populations [36] 

Y 

protionamide oral N(R) [11]
  

No data No data No important 

mechanisms 

LT No recommendations 

in literature 

N 

pyrazinamide oral Y(R) [11],  

Y(H) [30] 

AUC/MIC [11] Cmax and 

6hr sample 

[36] 

No important 

mechanisms 

LT Only in special 

populations [36] 

Y 

thioacetazon oral No data No data No data No important 

mechanisms 

LT No recommendations 

in literature 

N 

metronidazole oral/IV N(R), Y(H)
§ 

Concentration dependent 

killing [42] 

No data No important 

mechanisms [40] 

ST No recommendations 

in literature 

N 

trimethoprim-

sulfamethoxazole 

oral/IV Y(R), N(H) [43, 44]  Time above MIC [44] No data No important 

mechanisms [43] 

LT and ST Only in special 

populations [44] 

Y 

bedaquiline oral Y(H) ᵠ,  

possible(R)
§
 

AUC/MIC [45] No data CYP3A4 [45], food [46] LT Individual cases [46] Y 



delamanid oral No data
§
 Concentration dependent 

[47] 

No data CYP3A4, food [48]
§ 

LT Individual cases Y 

Antiviral drugs 

(val)acyclovir oral/IV Y(R) [49]
  

No data 

No data No important 

mechanisms [50] 

LT and ST 

[51] 

No recommendations 

in literature 

N 

(val)ganciclovir oral/IV Y(R) [52], N(H) ᵠ Trough [53] Drugs influencing the 

renal clearance, no 

interactions involving 

metabolism [54] 

LT and ST 

[51] 

Only in special 

populations [53] 

Y 

cidofovir IV Y(R) [55], N(H) ᵠ 

No data 

No important 

mechanisms [54] 

ST No recommendations 

in literature 

N 

foscarnet IV Y(R) [54], N(H) ᵠ No important 

mechanisms [54] 

LT No recommendations 

in literature 

N 

oseltamivir oral Y(R), N(H)
§ 

No important interactions 

[56] 

ST [56] Not recommended 

[56]  

N 

ribavirin      oral/IV Y(R), N(H)
§ 

AUC [57] No important ST Only in special Y 



mechanisms
§
 populations [57] 

zanamivir IV Y(R) [58], N(H) ᵠ
 

no data No important interactions 

[59] 

ST No recommendations 

in literature 

N 

Antifungal drugs 

voriconazole oral/IV N(R), Y(H) [60] AUC/MIC [61] Trough level 

[61]  

CYP2C9, CYP2C19, 

and CYP3A4 [62]
 

LT [63] Commonly accepted 

[62] 
 

Y 

itraconazole oral/IV N(R), 

possible (H)
§ 

AUC/MIC [61] Random 

[64] 

CYP3A4, drug which 

affects gastric pH, P-gp  

[19, 61] 

LT [63] Only in special 

populations [65] 

Y 

posaconazole oral N(R, H) [60]
 

AUC/MIC [61] Random 

[64] 

Interaction with food, 

drugs which affect gastric 

pH, agents that increase 

gastrointestinal motility, 

CYP [61, 66, 67] 

LT [63] Commonly accepted 

[61, 68] 

Y 

amphotericin B IV N(R) [69] Concentration dependent 

killing [69] 

No data No important 

pharmacokinetic 

LT Not recommended  

[65] 

N 



mechanisms [69] 

caspofungin IV N(R), Y(H) [60]
 

AUC/MIC or Cmax/MIC 

[70] 

Trough/ 

Cmax 

CYP [70] LT and ST 

[63] 

Only in individual 

cases [71] 

Y 

#
 Route of administration is based on the formulation that is marketed in the Netherlands. 784 

*Dose adjustments suggested in renal (GFR<50 ml/min) or hepatic impairment.  785 

$ Pharmacokinetic mechanisms influencing the components’ blood levels.ᵠ Based on the metabolism of the drug.  786 

§
 Based on the Summary of Product Characteristics 787 

Abbreviations: IV: Intravenous, H= hepatic impairment, R= renal impairment, Y=yes, N=no, AUC (Area under the time – concentration curve), MIC: minimal inhibitory 788 

concentration, Cmax: peak concentration, CYP: Cytochromes P450, P-gp: P-glycoprotein, LT= long term, ST= short term (<2 weeks).  789 

Parameters that apply to multiple drugs in a group are shown in the row of this group of drugs. 790 

791 



 792 

 793 

Supplementary Table 2: Available DBS methods for drugs used in the treatment of pulmonary infections. 794 

D
ru

gs
 

P
u

b
lic

at
io

n
 

D
e

te
ct

io
n

 t
e

ch
n

iq
u

e
 

M
e

th
o

d
 o

f 
e

xt
ra

ct
io

n
 

U
se

d
 D

B
S 

ca
rd

 

P
ar

ti
al

 s
p

o
t 

vs
 w

h
o

le
 s

p
o

t 

(m
m

) 
H

ae
m

at
o

cr
it

 (
H

T)
 e

ff
e

ct
 

o
b

se
rv

e
d

 a
n

d
 c

o
rr

e
ct

e
d

 

St
ab

ili
ty

 o
f 

th
e

 s
am

p
le

 

 Li
n

e
ar

 r
an

ge
 (

n
g/

m
L)

 

C
o

m
p

ar
is

o
n

 p
la

sm
a 

o
r 

b
lo

o
d

 s
am

p
le

 v
s 

D
B

S?
  

N
u

m
b

e
r 

o
f 

p
at

ie
n

ts
 f

o
r 

cl
in

ic
a

l v
al

id
at

io
n

  

Antibiotics/ antiviral drugs/antifungal drugs 

Clarithromycin 

[72] 

Vu et al. LC–MS/MS LE 31 ET CHR 8 (P)  No significant HT 

effect observed 

60 days at AT, 30 days at 

37 °C, 15 days at 50 °C. 

150 – 10,000 Y N=4, S= 12  

Ertapenem [73] la Marca et 

al.  

UPLC–

MS/MS 

LE 903 3,2 (P) Yes, corrected Only stable at -20°C 500 – 100,000 Y (spiked 

samples) 

N.A. 

Ganciclovir and 

valganciclovir 

[74] 

Heinig et al.  LC–MS/MS LE FTA-DMPK-

B  

3 (P) N.I. limited (VGCV) 

no data (GCV) 

16 – 40  (GCV) 

4 – 10 (VGCV) 

Y (VDBS) N.A. 



Gentamicin [75] Fujlmoto et 

al. 

FPIA ultra

filtra

tion 

 

filter paper 

type I 

 

W Yes, corrected 8 days at AT 1000 – 20,000 Y (spiked 

samples) 

N.A. 

Linezolid [76] la Marca et 

al. 

LC–MS/MS LE 903 32 (W) Yes, corrected 1 month at AT and 37⁰C 1000 – 100,000 Y N=9, S=15  

Linezolid [77] Vu et al. LC–MS/MS LE 31 ET CHR 8 (P) No significant HT 

effect observed 

2 months at 37°C and 1 

week at 50°C 

50 – 40,000 Y N= 8  

Metronidazole 

[78] 

Cohen-

Wolkowiez 

et al.  

LC–MS/MS LE FTA DMPK-

C 

3 (P) N.I. No data 50 – 50,000 Y N=23, S=50  

Metronidazole 

[79, 80] 

Suyagh et al.  HPLC-UV LE Guthrie 

cards 

6 (P) N.I. 28 days at -20°C 2.5–50 mg/mL No data N=32, 

S=203  

Moxifloxacin 

[81] 

Vu et al. LC–MS/MS LE 31 ET CHR 8 (P) Yes, corrected 4 weeks at AT 50 – 6000 Y (VDBS) N= 6, S=36  

Oseltamivir [82] Hooff et al.  UPLC– LE Schleicher & 

Schuell 

5 (P) N.I. 7 days at AT, 24 hours at 5 – 1500 Y   N=3  



MS/MS 2992 40 °C  

Piperacillin and 

tazobactam [83] 

Cohen-

Wolkowiez 

et al. 

LC–MS/MS LE FTA DMPK-

C  

6 (P) N.I. No data 150 – 150,000 Y N=32, S=37  

Posaconazole 

[84] 

Reddy et al.  LC–MS/MS LE Ahlstrom 

Alh-226, 

FTA DMPK-

C  

3 and 6  

(P) 

No significant HT 

effect observed 

13 days at AT 5 – 5000 N.I. N.A. 

Posaconazole 

[85] 

van der Elst 

et al. 

LC–MS/MS LE FTA DMPK-

C 

8 (P) Yes, no 

correction 

12 days at AT, 37°C, 50°C  100 – 10,000 Y S=8 

Ribavirin [86] Jimmerson 

et al.  

LC-MS/MS LE 903 3 (P) No significant HT 

effect observed 

140 days at AT 50-10.000 Y (VDBS) S=28 

Rifampicin [72] Vu et al.  LC–MS/MS LE 31 ET CHR 8 (P) Yes, corrected 2 months at AT, 10 days 

at 37 °C, 50 °C 

150 – 30,000 Y N=12 

Voriconazole 

[85] 

van der Elst 

et al. 

LC–MS/MS LE FTA DMPK-

C 

8 (P) Yes, no 

correction 

12 days at AT, 37°C, 

50°C 

100 to 10,000  Y S=11  



Immunosuppressant drugs 

Cyclosporin [87, 

88] 

Wilhelm et 

al. 

LC–MS/MS LE 

 

903 8 (P) No significant HT 

effect observed 

17 days at AT 25 –1440 Y N=36, S=38  

Cyclosporin [89] den Burger 

et al. 

LC–MS/MS LE 903  8 (P) Yes, corrected 5 months at 4°C 23.6 – 787 N.I. N.A. 

Cyclosporin [90] Hinchliffe et 

al. 

UPLC–

MS/MS 

LE 903 6 (P) N.I. 14 days at AT 8.5 – 1500 Y (VDBS) S= 153  

Cyclosporin [91] Koster et al. LC–MS/MS LE 31 ET CHR 8 (P) Yes, corrected 7 days at 22°C 20.0 – 2000 Y (VDBS) N=57 

Cyclosporin [92] Sadilkova et 

al. 

LC–MS/MS LE 903 8 (P) No significant HT 

effect observed 

30 days at AT 30 – 1000 Y (VDBS) S= 79  

Cyclosporin [93] Leichtle et 

al.  

LC–MS/MS LE 903 4 (P) N.I. 12h at AT No data Y N=55 

Everolimus [89] den Burger 

et al. 

LC–MS/MS LE 903  8 (P) Yes, corrected 5 months at 4°C 1.26 – 33.7 N.I. N.A. 

Everolimus [91] Koster et al. LC–MS/MS LE 31 ET CHR 8 (P)  Yes, corrected 7 days at AT 1.00 – 50.0 Y (VDBS) N=55  



Everolimus [94] van der 

Heijden et 

al.  

LC–MS/MS LE 903 

 

7,5 (P) N.I. 34 days at 32⁰C, 3 days at 

60⁰C  

2 – 30  Y N= 1 

Mycophenolic 

acid [95] 

Arpini et al. HPLC LE  903 6 (P) Yes, corrected 20 days at AT 250 –  40,000 Y N=19, S=77 

Mycophenolic 

acid [96] 

Wilhelm et 

al. 

HPLC LE 903 8 (P) Yes, no 

correction 

26 days at 4⁰C 740 – 23,400 N.I. N.A. 

Mycophenolic 

acid [95] 

Heinig et al.  LC–MS/MS SPE FTA-DMPK-

B, Ahlstrom 

Alh-226 

3 (P) N.I. 24h at AT 100-40,000 N.I. N.A. 

Sirolimus [89] den Burger 

et al. 

LC–MS/MS LE 903  8 (P) Yes, corrected 5 months at 4°C 1.34 – 35.8 N.I. N.A. 

Sirolimus [91] Koster et al. LC–MS/MS LE 31 ET CHR 8 (P) Yes, corrected 7 days at AT 1.00 – 50.0 Y (VDBS) N=36 

Sirolimus [97] Rao et al. LC–MS/MS LE 

 

FTA   10 (P) N.I. 90 days at 4°C 1 – 100 N.I. N.A. 

Sirolimus [92] Sadilkova et LC–MS/MS LE 903 8 (P) No significant HT 30 days at AT 1.2 – 40 Y (VDBS) N=68  



al. effect observed 

Tacrolimus [98] Cheung et 

al. 

LC–MS/MS No 

data 

Grade CF 12 7,5 (P) N.I. No data No data Y N= 36, 

S=108  

Tacrolimus [89] den Burger 

et al. 

LC–MS/MS LE 903 8 (P) Yes, corrected 5 months at 4°C 1.14 – 30.3 N.I. N.A. 

Tacrolimus [90] Hinchliffe et 

al. 

UPLC–

MS/MS 

LE 903 6 (P) N.I. 14 days at AT 2.3 – 50 Y (VDBS) S=158  

Tacrolimus [99] Hoogtander

s et al.  

LC–MS/MS LE Grade CF 12 

 

7,5 (P) N.I. 9 days at AT, 7 days at 

37°C, 1 day at 70°C 

1-30 Y N=24 

Tacrolimus 

[100] 

Hoogtander

s et al. 

LC–MS/MS No 

data 

Grade CF 12 

 

7,5 (P) N.I. No data 

(described in other 

article) [99] 

No data 

(described in 

other article) 

[99] 

Y N=26  

Tacrolimus 

[101] 

Koop et al. LC–MS/MS SPE 

 

FTA DMPK-

A  

6 (P) N.I. 1 month at AT 1 – 50 Y N=18  



Tacrolimus [91] Koster et al. LC–MS/MS LE 31 ET CHR 8 (P) Yes, corrected 7 days at AT 1.00 – 50.0 Y (VDBS) N=50  

Tacrolimus 

[102] 

Li et al.  LC–MS/MS LLE 903 6 (P) No significant HT 

effect observed 

10 days at AT, 24 hours at 

50°C 

1 – 80 Y (VDBS) N=50  

Tacrolimus [92] Sadilkova et 

al. 

LC–MS/MS LE 903 8 (P) No significant HT 

effect observed. 

30 days at AT 1.2 – 40 Y (VDBS) N=115 

LC–MS/MS = liquid chromatography tandem mass spectrometry, UPLC-MS/MS: Ultra performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS), HPLC-UV= 795 

High-performance liquid chromatography analysis with UV detection,  P= partial spot, W= whole spot, LE= liquid extraction i.e. protein precipitation, LLE= liquid liquid extraction, 796 

SPE: solid phase extraction, AT: ambient temperature, Y=Yes, N= number of patients, S= number of samples, VDBS= venous dried blood spot, N.I.=not investigated, N.A. Not 797 

applicable, 903= Whatman 903, 31 ET CHR= Whatman 31 ET CHR, FTA DMPK= Whatman FTA DMPK, Grade CF 12= Whatman
®
 qualitative filter paper Grade CF 12, filter paper 798 

type I= filter paper type I (Toyo-Roshi), FTA= FTA Whatman, FPIA= fluorescence polarization immunoassay, GCV: ganciclovir, VGCV: valganciclovir. For the linear range of the 799 

method the number of significant figures was described as stated in the publication.800 
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