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zij is één van de belangrijkste slachtoffers van wat in de hierna volgende pagina’s
is neergepend.
Een dankwoord is natuurlijk niet compleet zonder een “Last but not Least”, die in
dat geval uitgaat naar mijn levensgezellin Claire, die altijd in de eerste linie stond
als mijn humeur het weer eens begaf. Ik hoop dat ze snel gaat kunnen wennen aan
de tijd die ik nu aan en met haar ga kunnen besteden.



ii

Gent, maart 2009
Robby Haelterman



Table of Contents

Dankwoord i

List of symbols x

English summary xv

Nederlandse samenvatting xix

1 Introduction and problem-statement 1
1.1 Problem-statement . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Non-linear systems of equations . . . . . . . . . . . . . . 2
1.1.2 Linear systems of equations . . . . . . . . . . . . . . . . 4

1.1.2.1 Example: monolithic approach . . . . . . . . . 5
1.1.2.2 Example: partitioned approach . . . . . . . . . 6

1.1.3 Series of related coupled systems . . . . . . . . . . . . . 7
1.2 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . 8
1.2.2 Iterative Substructuring Method . . . . . . . . . . . . . . 9
1.2.3 Fixed-point iteration with stationary or dynamic relaxation

and vector extrapolation . . . . . . . . . . . . . . . . . . 11
1.3 Outline of the study . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Introductory definitions and theorems 15
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 General theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Solution methods for a single system of linear equations 27
3.1 Legacy solvers: Richardson, Jacobi, Gauss-Seidel and SOR . . . . 27

3.1.1 Richardson iteration . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Jacobi iteration . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Gauss-Seidel iteration . . . . . . . . . . . . . . . . . . . 28
3.1.4 Successive Over-Relaxation (SOR) . . . . . . . . . . . . 29

3.2 Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 The Full Orthogonalization Method . . . . . . . . . . . . 30
3.2.2 The Generalized Minimal Residual Method (GMRes) . . . 30



iv

3.2.2.1 Elementary implementation of GMRes . . . . . 31
3.2.2.2 Adaptation of GMRes to our framework . . . . 32

3.2.3 Other Krylov subspace methods . . . . . . . . . . . . . . 34
3.2.3.1 The Lanczos Method, Conjugate Gradient Method

(CG), CGNR, LSQR, CGLS, CGNE, OrthoRes
and GENCG . . . . . . . . . . . . . . . . . . . 35

3.2.3.2 The Generalized Conjugate Residual Method (GCR),
Axelsson’s method, OrthoDir, OrthoMin, GENCR
and MinRes . . . . . . . . . . . . . . . . . . . 35

3.2.3.3 Bi-Conjugate Gradients (Bi-CG), Conjugate Gra-
dient Squared (CGS), Bi-CGStab, QMR and TFQMR 36

3.2.4 Orthogonalization procedures . . . . . . . . . . . . . . . 36

4 Solution methods for a single system of non-linear equations 37
4.1 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Least change secant updates . . . . . . . . . . . . . . . . . . . . 41
4.4 Rank-one update quasi-Newton methods . . . . . . . . . . . . . . 41

4.4.1 Broyden’s first or “good” method . . . . . . . . . . . . . 42
4.4.2 Broyden’s second or “bad” method . . . . . . . . . . . . 44
4.4.3 Column-Updating Method . . . . . . . . . . . . . . . . . 46
4.4.4 Inverse Column-Updating Method . . . . . . . . . . . . . 46
4.4.5 Symmetric Rank-One update (SR1) . . . . . . . . . . . . 47
4.4.6 Pearson’s Method . . . . . . . . . . . . . . . . . . . . . . 48
4.4.7 McCormick’s method . . . . . . . . . . . . . . . . . . . 48
4.4.8 The Eirola-Nevanlinna method . . . . . . . . . . . . . . . 48

4.5 Rank-two update quasi-Newton methods . . . . . . . . . . . . . . 50
4.5.1 Powell symmetric Broyden (PSB) method . . . . . . . . . 50
4.5.2 Davidon-Fletcher-Powell (DFP) method . . . . . . . . . . 51
4.5.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) method . .. 51
4.5.4 Greenstadt’s method . . . . . . . . . . . . . . . . . . . . 51

4.6 Quasi-Newton methods preserving the structure of a matrix . . . . 51

5 Solution methods for two systems of non-linear equations 53
5.1 Interface quasi-Newton methods (IQN and IQN-I) . . . . . . .. . 54
5.2 Interface quasi-Newton method with Composed Jacobian (IQN-C) 55
5.3 Interface block quasi-Newton method (IBQN) . . . . . . . . . .. 55
5.4 Construction of the approximate Jacobians for two systems of non-

linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Broyden’s good and bad method for the Interface quasi-

Newton approach . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Column-Updating and Inverse Column-Updating method

for the Interface quasi-Newton approach . . . . . . . . . . 59



v

6 Least Squares Jacobian 61
6.1 Construction of the Least Squares Jacobian . . . . . . . . . . .. 61
6.2 Orthogonalization and re-arrangement of input–ouptutmodes . . . 64
6.3 Applying the Least Squares approximate Jacobian to quasi-Newton

type methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.1 IQN-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 IQN-ILS . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 IQN-CLS . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.4 IBQN-LS . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Properties of IQN-LS, IQN-ILS, IQN-CLS and IBQN-LS for non -linear
mappings 71
7.1 Re-writing IQN-LS and IQN-ILS with a Rank-One Update formula 72

7.1.1 IQN-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2 IQN-ILS . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.3 IQN-CLS and IBQN-LS . . . . . . . . . . . . . . . . . . 78
7.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 The generalized secant property . . . . . . . . . . . . . . . . . . 82
7.2.1 IQN-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.2 IQN-ILS . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.3 IQN-CLS and IBQN-LS . . . . . . . . . . . . . . . . . . 85
7.2.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 The Least Change Secant Update property . . . . . . . . . . . . . 86
7.3.1 IQN-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.2 IQN-ILS . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.3 IQN-CLS and IBQN-LS . . . . . . . . . . . . . . . . . . 91

7.4 Equivalence between the different Least Squares methods . . . . . 91
7.4.1 Equivalence between IQN-LS and IQN-CLS . . . . . . . 91
7.4.2 Equivalence between IQN-CLS and IBQN-LS whenF is

an affine mapping . . . . . . . . . . . . . . . . . . . . . . 95
7.5 Avoiding singularity . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5.1 Avoiding singularity for the original formulation (§6.3.1) . 98
7.5.2 Avoiding singularity for the rank-one update formulation . 99

8 Properties of IQN-LS, IQN-ILS, IQN-CLS and IBQN-LS for lin ear
mappings 101
8.1 Non-singularity and convergence of the approximate Jacobian for

IQN-LS and IQN-ILS . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2 Comparison between IQN-LS, IQN-ILS and GMRes . . . . . . . 105

8.2.1 Writing GMRes as a Quasi-Newton method . . . . . . . . 106
8.2.2 Krylov subspaces for IQN-LS . . . . . . . . . . . . . . . 108
8.2.3 Krylov subspaces for IQN-ILS . . . . . . . . . . . . . . . 114
8.2.4 Further discussion . . . . . . . . . . . . . . . . . . . . . 119

8.3 The effect of step-length parameters . . . . . . . . . . . . . . . .119



vi

8.4 Modifying IQN-LS and IQN-ILS to make them algebraicallyiden-
tical to GMRes . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.1 Re-writing the quasi-Newton algorithm for matrix-vector

products . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.2 Optimal step-length . . . . . . . . . . . . . . . . . . . . . 123
8.4.3 Multiple parameters . . . . . . . . . . . . . . . . . . . . 124

9 Improving the Jacobian for discretized time-dependent and grid-based
problems 127
9.1 Recovery of data from previous time-levels . . . . . . . . . . .. 128

9.1.1 Recovery methods based on input-output pairs . . . . . . 128
9.1.2 Recovery methods based on the rank-one update formulation131

9.2 Creating a better initial approximate Jacobian from a coarser grid . 133

10 Numerical experiments with non-affine operators 135
10.1 One-dimensional flow in a flexible tube . . . . . . . . . . . . . . 135

10.1.1 Preliminary remark about notations . . . . . . . . . . . . 135
10.1.2 Analytical description of the problem . . . . . . . . . . . 136
10.1.3 Discretizing the equations . . . . . . . . . . . . . . . . . 138
10.1.4 Non-dimensionalizing the equations . . . . . . . . . . . . 140
10.1.5 Fourier error analysis . . . . . . . . . . . . . . . . . . . . 141
10.1.6 Results with the quasi-Newton solvers . . . . . . . . . . . 144

10.1.6.1 No re-use of data from previous time-steps . . . 148
10.1.6.2 Re-use of data from previous time-steps . . . . 152
10.1.6.3 Initial Jacobian from a coarser grid . . . . . . . 158

10.2 One-dimensional heat equation . . . . . . . . . . . . . . . . . . . 161
10.2.1 Analytical description of the problem . . . . . . . . . . . 161
10.2.2 Results with the quasi-Newton solvers . . . . . . . . . . . 162

10.2.2.1 No re-use of data from previous time-steps . . . 163
10.2.2.2 Re-use of data from previous time-steps . . . . 165

10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11 Numerical experiments with linear operators 171
11.1 Test matrix from the MATRIX MARKET REPOSITORY . . . . . . 172
11.2 One-dimensional advection-diffusion equation . . . . .. . . . . . 172
11.3 Two-dimensional advection-diffusion equation . . . . .. . . . . 174
11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12 Conclusions 183

A Matlab Source code 185
A.1 Main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2 first init temp.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3 secondinit temp.m . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.4 third init temp.m . . . . . . . . . . . . . . . . . . . . . . . . . . 189



vii

A.5 datareset.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.6 createextrapolatedJacobian.m . . . . . . . . . . . . . . . . . . . 191
A.7 IQN solver: QNsolver IQN .m . . . . . . . . . . . . . . . . . . 193
A.8 IQN-C solver: QNsolver IQNC.m . . . . . . . . . . . . . . . . . 195
A.9 IBQN solver: QNsolver IBQN.m . . . . . . . . . . . . . . . . . 198
A.10 IQN-I solver: QNsolver IQNI.m . . . . . . . . . . . . . . . . . . 202

Bibliography 205







x

List of Symbols

b General system vector (“right hand side”)
bF , bH , etc. System vector forF , H, etc. when affine

(F (g) = AF g − bF , H(p) = AHp − bH )
c (For FSI problem) wave speed
cmk (For FSI problem) Moens-Korteweg wave speed
cs, ds Defining vector for quasi-Newton method in rank-one update form
es Error forps, i.e. ps − p∗

g One of the variables in the interaction problem
g (For heat problem) set of coefficients (ρ, C andk)
g∗ Solution of the interaction problem
g∗ (For FSI problem) solution for the cross-section in the discretized,

non-dimensional equations
gs Value forg at thes-th iteration
g (For FSI problem) continuous cross-section variable
gt (For FSI problem) discretized non-dimensional cross-section

variable (vector) at time-stept
gs,t (For FSI problem) discretized non-dimensional cross-section

variable (vector) at iterations and time-stept
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English summary

Often in nature different systems interact, like fluids and structures, heat and elec-
tricity, populations of species, etc. It is our aim in this thesis to find, describe
and analyze solution methods to solve the equations resulting from the mathemat-
ical models describing those interacting systems. Even if powerful solvers often
already exist for problems in a single physical domain (e.g.structural or fluid prob-
lems), the development of similar tools for multi-physics problems is still ongoing.
When the interaction (or coupling) between the two systems isstrong, many me-
thods still fail or are computationally very expensive.

Approaches for solving these multi-physics problems can bebroadly put in two
categories: monolithic or partitioned. While we are not claiming that the parti-
tioned approach is panacea for all coupled problems, we willonly focus our at-
tention in this thesis on studying methods to solve (strongly) coupled problems
with a partitioned approach in which each of the physical problems is solved with
a specialized code that we consider to be a black box solver and of which the Ja-
cobian is unknown. We also assume that calling these black boxes is the most
expensive part of any algorithm, so that performance is judged by the number of
times these are called. In 2005 Vierendeels presented a new coupling procedure for
this partitioned approach in a fluid-structure interactioncontext, based on sensitiv-
ity analysis of the important displacement and pressure modes which are detected
during the iteration process. This approach only uses input-output couples of the
solvers (one for the fluid problem and one for the structural problem). In this thesis
we will focus on establishing the properties of this method and show that it can be
interpreted as a block quasi-Newton method with approximate Jacobians based on
a least squares formulation. We also establish and investigate other algorithms that
exploit the original idea but use a single approximate Jacobian.
The main focus in this thesis lies on establishing the algebraic properties of the
methods under investigation and not so much on the best implementation from a
numerical point of view.

The work is organized as follows.
After an introductory chapter (chapter 1), where we give a historical overview and
introduce the established terminology, we give, in chapter2, the most useful def-
initions. Lemmas and theorems that are used in later chapters are established and
proven in chapter 2.
In chapter 3 an overview is given of existing linear solvers with the main focus on
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Krylov methods in general and GMRes in particular.
In chapter 4 a similar overview is given of existing non-linear solvers with a fo-
cus on quasi-Newton methods in general and those using a rank-one update form
in particular. Methods of particular interest are Broyden’s “good” and “ bad”
method, the Column-Updating Method and Inverse Column-Updating Method.
In chapter 5 we extend the idea of the quasi-Newton method to interacting sys-
tems of non-linear equations and formulate four approachesbased on the origi-
nal quasi-Newton method. These are the Interface Quasi-Newton (IQN) method,
Interface Quasi-Newton method with Inverse Jacobian (IQN-I), Interface Block
Quasi-Newton method (IBQN) and Interface Quasi-Newton method with Com-
posed Jacobian (IQN-C). The construction of the Jacobian can be done based on
existing methods, or with the Least Squares approach which is investigated in de-
tail and forms the main topic of this thesis.
In chapter 6 we formalize the method for constructing approximate Least Squares
Jacobians proposed by Vierendeels and co-workers and applyit to the quasi- New-
ton methods established in the previous chapter. This method is based on available
input-output pairs of a function, which will allow us to approximate the Jacobian
of that function. Basic properties of this construction areestablished and proven,
like the possibility to re-arrange the input data; this allows us to orthogonalize the
input vectors and, hence, improve the conditioning of the matrices involved in the
construction. The resulting methods with this particular construction of the appro-
ximate Jacobian will be called IQN-LS, IQN-ILS, IBQN-LS andIQN-CLS.
In chapters 7 and 8, which form the main body of this work, we establish and
prove the properties of the quasi-Newton methods with LeastSquares Jacobian(s)
for non-linear and linear systems respectively. In chapter7 we re-write the orig-
inal formulation of the method of Vierendeels and co-workers, and its newly es-
tablished variants, in a rank-one update formulation. We remark that the method
bears some similarities to the Broyden methods. We further establish that these
Least Squares method satisfy a generalized secant propertyand a Least Change
Secant Update property; these properties formally bring the Least Squares method
within the framework of other well-established quasi-Newton methods. Further in
chapter 7, the equivalence between the four methods is investigated in detail; it is
shown that IQN-LS and IQN-CLS are algebraically identical;IQN-LS and IBQN-
LS are only identical if one of the black box solvers represents an affine mapping.
Finally, attention is given to the possibility of singularities and methods to deal
with them.
Chapter 8 includes a detailed comparison between GMRes and two of the new
quasi-Newton methods when applied to linear systems. It is shown that for affine
mappings all of the Least Squares quasi-Newton methods find the exact solution
after at mostn + 1 matrix-vector products, in exact arithmetic (n being the size
of the solution-vector); singularities cannot occur before the solution has been
reached. It is proven that IQN-LS, IQN-ILS and GMRes share the same Krylov
search subspace, but not the subspace of constraints. It is also shown that under
certain hypotheses the quasi-Newton Least Squares method can be transformed to
a method that is mathematically identical to GMRes without the need for extra
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matrix-vector products.
In chapter 9 we discuss various possibilities to enhance theJacobian for problems
originating from (time-dependent) ordinary and partial differential equations. For
the Least Squares method in the original formulation this isbased on adding input-
output couples from previous time-steps. For quasi-Newtonmethods in a rank-one
update form this is either based on the re-use of the final Jacobian of the previous
time-step or on the construction of an initial Jacobian on a coarser grid.
In chapters 10 and 11 the algorithms discussed in this work are compared against
each other on two non-linear and three linear problems respectively. The non-
linear problems are one-dimensional flow in a flexible tube and the one-dimensional
heat equation with temperature-dependent coefficients. These tests show the po-
tential of the Least Squares methods and the proposed methods to re-use data from
previous time-steps. The linear tests are taken from the literature and are meant to
illustrate the possible adaptation of IQN-LS and IQN-ILS toa form that is equiva-
lent to GMRes, as shown in chapter 8.
Finally, we finish by drawing the most important conclusions.





Nederlandse samenvatting
–Summary in Dutch–

In de natuur komt het vaak voor dat systemen met elkaar interageren, zoals flui-
da en structuren, hitte en electriciteit, bevolkingsgroepen, etc. In deze thesis is
het onze bedoeling om oplossingsmethoden te vinden en te beschrijven die toe-
laten de vergelijkingen op te lossen die voortkomen uit de wiskundige modellen
die deze interagerende systemen beschrijven. Zelfs al bestaan er reeds krachtige
oplossingstechnieken voor problemen in een enkel fysisch domein (bv. structuur-
of fluidumproblemen), dan blijft de ontwikkeling van gelijkaardige middelen voor
multi-fysica problemen nog steeds een domein van actief onderzoek. Wanneer de
interactie (of koppeling) tussen de systemen sterk is, falen nog steeds veel metho-
den of vragen ze erg veel rekentijd.

Voor de aanpak van dergelijke multi-fysica problemen kan een gebruiker meestal
kiezen uit monolitische of gepartitioneerde methoden. Ookal beweren we niet dat
de gepartitioneerde aanpak een zaligmakende oplossing is,toch zullen we ons in
deze thesis enkel toespitsen op dit soort methoden om (sterk) gekoppelde proble-
men op te lossen, waarbij we er vanuit gaan dat elk deelprobleem wordt opgelost
met een beschikbare oplossingsmethode die beschouwd wordtals een zwarte doos
en waarvan bijgevolg de Jacobiaan niet gekend is. We gaan er verder ook van uit
dat het aanroepen van de oplossingsmethode voor een deelprobleem rekenkundig
het duurste deel is van elk koppelingsalgoritme; bijgevolgmeten we de performan-
tie van een methode aan de hand van het aantal keer dat deze worden aangeroepen.
In 2005 presenteerde Vierendeels een nieuw koppelingsalgoritme voor de geparti-
tioneerde oplossing in de context van vloeistof-structuurinteractie, gebaseerd op
de analyse van de gevoeligheden van de belangrijkste verplaatsings- en drukmo-
des, die tijdens de iteraties werden waargenomen. Deze aanpak gebruikt enkel
invoer-uitvoer koppels van de oplossingsmethoden (die voor het fluidum en die
voor de structuur) en bouwt voor elk een Jacobiaan. In deze thesis spitsen we
onze aandacht toe op het formuleren van de eigenschappen vandeze methode en
tonen dat ze kan geı̈nterpreteerd worden als een blok quasi-Newton methode met
een benaderde Jacobiaan gebaseerd op het principe van de kleinste kwadraten. We
formuleren en onderzoeken ook andere algoritmes die het oorspronkelijke idee ex-
ploiteren, maar diéeén enkele Jacobiaan gebruiken. De aandacht in deze thesis
gaat vooral uit naar de algebraı̈sche eigenschappen van de onderzochte methoden,
en niet zozeer naar de optimale numerieke implementatie.
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Het werk is als volgt georganiseerd.
Na een inleidend hoofdstuk (hoofdstuk 1), waar een historisch overzicht en de
geijkte terminologie worden gegeven, vindt men de belangrijkste definities gefor-
muleerd in hoofdstuk 2. Lemma’s en theorema’s die in latere hoofdstukken zullen
worden gebruikt, worden vermeld en bewezen.
In hoofdstuk 3 vindt men een overzicht van bestaande oplossingstechnieken voor
lineaire problemen, met particuliere aandacht voor Krylovmethoden, meer bepaald
GMRes.
In hoofdstuk 4 wordt een gelijkaardig overzicht gegeven voor niet-lineaire proble-
men. Dit betreft quasi-Newton methoden in het algemeen en deze met een rang-
één aanpassing in het bijzonder. Specifieke methoden die behandeld worden zijn
Broyden’s “goede” en “slechte” methode, de Kolom-Aanpassingsmethode (Eng:
Column-Updating Method) en de Inverse Kolom-Aanpassingsmethode (Eng: In-
verse Column-Updating Method).
In hoofdstuk 5 breiden we het idee van de quasi-Newton methode uit naar intera-
gerende systemen van niet-lineaire vergelijkingen. We formuleren vier methoden
gebaseerd op de oorspronkelijke quasi-Newton methode. Deze zijn de Raakvlak
Quasi-Newton Methode (Eng. afk. IQN), Raakvlak Quasi-Newton Methode met
Inverse Jacobiaan (Eng. afk. IQN-I), Raakvlak Blok Quasi-Newton Methode (Eng.
afk. IBQN) en Raakvlak Quasi-Newton Methode met Samengestelde Jacobiaan
(Eng. afk. IQN-C). De constructie van de Jacobiaan kan gebeuren aan de hand van
bestaande methoden of met de Kleinste Kwadraten methode diein detail wordt
bestudeerd en de hoofdmoot uitmaakt van deze thesis. In hoofdstuk 6 formali-
seren we de methode voor de constructie van de Kleinste Kwadraten Jacobiaan,
zoals voorgesteld door Vierendeels en medewerkers, en passen we ze toe op de
quasi-Newton methoden uit het vorige hoofdstuk. Deze methode is gebaseerd op
invoer-uitvoer koppels van een functie, die ons zullen toelaten een benaderde Ja-
cobiaan van die functie op te bouwen. De voornaamste eigenschappen van deze
methode worden gegeven en bewezen, zoals de mogelijkheid deinvoergegevens te
herschikken. Dit laat ons toe de invoervectors te orthogonalizeren en zo de condi-
tionering van de betrokken matrices te verbeteren. De resulterende methoden met
deze Jacobiaan krijgen de Engelse afkortingen IQN-LS, IQN-ILS, IBQN-LS en
IQN-CLS mee.
In hoofdstukken 7 en 8, die de kern van dit werk vormen, stavenwe de belangrijk-
ste eigenschappen van de quasi-Newton methoden met Kleinste Kwadraten Jaco-
bi(a)n(en), respectievelijk voor niet-lineaire en lineaire systemen. In hoofdstuk 7
herschrijven we de oorspronkelijke methode van Vierendeels en medewerkers, en
de nieuwe varianten, in een rang-één aanpassing formulering. We merken op dat
de methoden gelijkenissen vertonen met de Broyden methoden. We staven ver-
der dat de Kleinste Kwadraten methode een veralgemeende secant eigenschap en
een Kleinste Wijziging Secant Aanpassing (Eng. Least Change Secant Update)
eigenschap vertoont. Deze eigenschappen brengen de Kleinste Kwadraten me-
thode formeel binnen het kader van een type quasi-Newton methode dat reeds in
het verleden uitgebreid werd onderzocht. Verder in hoofdstuk 7 wordt de gelijk-
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waardigheid tussen de vier methoden onderzocht; er wordt getoond dat IQN-LS en
IQN-CLS algebräısch identiek zijn en dat IQN-LS en IBQN-LS identiek zijn op
voorwaarde dat een van beide zwarte doos functies een affienetransformatie voor-
stelt. Finaal wordt er aandacht besteed aan de mogelijkheidvan singulariteiten en
oplossingen ervoor.
Hoofdstuk 8 bevat een gedetailleerde vergelijking tussen GMRes en twee van de
nieuwe quasi-Newton methoden wanneer ze worden toegepast op lineaire syste-
men. Er wordt aangetoond dat voor affiene transformaties alle Kleinste Kwadraten
quasi-Newton methoden de exacte oplossing vinden na maximaal n + 1 matrix-
vector producten, op numerieke fouten na (n zijnde de dimensie van de oplossings-
vector); singulariteiten kunnen niet voorkomen alvorens de oplossing is bereikt. Er
wordt aangetoond dat IQN-LS, IQN-ILS en GMRes een Krylov zoek-deelruimte
delen, maar niet de deelruimte van beperkingen. Er wordt ookaangetoond dat
onder bepaalde hypothesen de quasi-Newton Kleinse Kwadraten methode omge-
vormd kan worden tot een methode die wiskundig identiek is aan GMRes zonder
de nood voor extra matrix-vector producten.
In hoofdstuk 9 bespreken we verschillende mogelijkheden omde initiële Jacobiaan
te verbeteren wanneer het op te lossen probleem afkomstig isvan een (mogelijks
tijdsafhankelijke) gewone of partiële differentiaalvergelijking. Voor de Kleinste
Kwadraten methode in de originele formulering is dit gebaseerd op het toevoegen
van invoer-uitvoer koppels van vorige tijd-stappen. Voor quasi-Newton methodes
in rang-́eén aanpassing formulering wordt dit gedaan door ofwel de laatste Jacobi-
aan van de vorige tijd-stap te nemen of door een initiële Jacobiaan op te bouwen
op een groffer rooster.
In hoofdstukken 10 en 11 worden de algoritmes die we eerder bestudeerden met
elkaar vergeleken op respectievelijk twee niet-lineaire en drie lineaire problemen.
De niet-lineaire problemen zijn déeén-dimensionale stroming in een flexibele buis
en déeén-dimensionale hittevergelijking met temperatuursafhankelijke cöefficiënten.
Deze tests tonen het potentieel aan van de Kleinste Kwadraten methoden en de
voorgestelde methoden om gegevens van vorige tijd-stappente herbruiken. De li-
neaire tests werden genomen uit de literatuur en zijn bedoeld om de aanpassing
van IQN-LS en IQN-ILS naar een vorm equivalent met GMRes te illustreren, zo-
als opgesteld in hoofdstuk 8.
Uiteindelijk eindigen we met de belangrijkste conclusies.





1
Introduction and problem-statement

Often in nature different systems interact, like fluids and structures, heat and elec-
tricity, populations of species, etc. It is our aim to find, describe and analyze
solution methods to solve the equations resulting from the mathematical models
describing those interacting systems.

From the growing number of conferences, publications and software releases it
is clear that in silico simulations of these kinds of coupledsystems are becoming
ever more important in the engineering community. Examplescan be found in

• aeronautics; e.g. [66,68–71,71,123,177,211];

• bio-medical science; e.g. [13,17,35,59,61,89,110,185,224,227];

• civil engineering; e.g. [21,64,79,115,120,176,187,188,239,240];

to name but a few.

Often powerful solvers already exist for problems in a single physical domain (e.g.
structural or fluid problems). Even so, development of similar tools for multi-
physics problems is still ongoing and the paths followed to obtain such a solver
can be broadly put in one of the following categories:

• Monolithic or simultaneous solution: the whole problem is treated as a
monolithic entity and solved simultaneously with a specializedad hocsolver.
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• Partitioned solution: the physical components are treated as isolated entities
that are solved separately. Interaction is modeled as forcing terms and/or
boundary conditions.

The relative merits of these methods are very problem dependent.
The advantage of the monolithic approach is the enhanced stability [156]. This
comes at a cost, however, as specialized software has to be written for each type
of interaction problem, which can result in very large systems. Furthermore, it
can be inappropriate to use the same basic formulation for both types of prob-
lems. It also forces the user to treat non-linearities in thesame way for all com-
ponents. Still, the monolithic approach has shown to be a very popular method,
e.g. [14,17,23,111,186,213].

The partitioned approach allows for the use of available specialized solvers for
each physical component (structure, fluid, ...), on the condition that the coupling
effects can be treated efficiently. The latter is often feasible for problems where
the systems only weakly interact. Strongly coupled problems, on the other hand,
still pose a real challenge. Many articles can be found on partitioned methods in
the literature, e.g. [21,46,73,150,151,153,174,177,225].

We will give a simple example of both approaches in§1.1.2 after which we will
solely focus on the partitioned approach, as the main aim of this work is to study
the properties of a partitioned method first proposed by Vierendeels and coworkers
in 2007 [227]. We are not concerned with the solution processof the constituent
physical problems as these are assumed to be handled by specialized solvers which
we assume to beblack boxoperations of which no specific details can be modified
or even assessed.

1.1 Problem-statement

1.1.1 Non-linear systems of equations

In general we are interested in non-linear coupled problemsthat can be mathemat-
ically stated in the following form:

F (g) = p (1.1a)

S(p) = g, (1.1b)
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where
F : DF ⊂ R

m×1 → R
n×1 : g 7→ F (g)

and
S : DS ⊂ R

n×1 → R
m×1 : p 7→ S(p).

Each equation describes (the discretized equations of) a physical problem that is
spatially decomposed. (E.g.F (g) = p could give the pressurep on the wall of
a flexible tube for a given geometryg, while S(p) = g could give the deformed
geometry of that same wall under influence of the pressure exerted on it by the
fluid.)
We limit p andg to values on the interface between the two physical problems.
In this way the physically decoupled nature of the problem isexploited. This ap-
proach can be regarded as a special case ofheterogeneous domain decomposition
methods[54] and limits the number of variables the coupling technique will be
dealing with, even though the black box solvers that giveF (g) andS(p) might
use a substantially higher number of internal variables; for instance in the case of
a fluid-structure interaction problem where the pressure ispassed from the fluid to
the structure, the fluid velocity is an internal variable forthe flow solver as are all
nodal values of the pressure that are not on the interface.
Alternatively, (1.1) can be written as the fixed point problem

F (S(p)) = H(p) = p (1.2)

or the root-finding problem

H(p) − p = K(p) = 0. (1.3)

Using (1.2) or (1.3) means that we have actually lumped both systemsF andS

together into one system (eitherH or K), which in general has a lower number of
variables than the sum of the number of variables of both constituent systemsF
andS.

We assume thatF , S, H andK satisfy the following hypotheses, which are typical
when working with Newton and quasi-Newton type methods [166]:

Hypothesis 1.1. F , resp. S,H,K, is continuously differentiable in an open set
DF , resp.DS ,DH ,DK .

Hypothesis 1.2.K(p) = 0 has one solutionp∗ in DK .

Hypothesis 1.3.(K ′(p))−1 exists and is continuous in an open set containingp∗.
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We assume the operationsF (g) andS(p) (and henceH(p) andK(p)) are black
box systems, representing the propriety solvers, with a high computational cost and
of which nothing is known about the Jacobian; neither do we make assumptions
about this Jacobian like sparseness, symmetry, etc. For that reason we count the
performance of a method by the number of timesF (g) or S(p) are executed, a
process we will call afunction call. Requirements like actual cpu-time or storage
are not taken into consideration.

Remark 1.1. While we write the equations in (1.1) in explicit form, this is only
for convenience; any form is usable as long as for a given value ofg (resp. p) a
corresponding value ofp (resp.g) can be computed that satisfies equation (1.1a)
(resp. (1.1b)).

Remark 1.2. Some of the solution methods that we will present in this thesis will
be specifically aimed at solving (1.3) irrespective of the fact that it stems from a
coupled problem or not.

Remark 1.3. We could have used (and sometimes will use)

S(F (g)) = g (1.4)

instead of (1.2). The choice between both can depend on

• practical implementation issues due to the solvers used;

• the relative sizes ofn and m. If n < m, resp. n > m, the use of (1.2),
resp. (1.4), will result in a problem that is defined on a spacewith the lowest
dimension.

1.1.2 Linear systems of equations

Besides being easier to analyze, linear problems are interesting in their own right.
They also give a valuable insight into the behavior and properties of weakly non-
linear systems. Moreover, when we are sufficiently close to azero of a non-linear
function, its behavior is mainly linear.
WhenF , S, H and/orK represent affine mappings then we will write

F (g) = AF g − bF (1.5a)

S(p) = ASp − bS (1.5b)

H(p) = AHp − bH (1.5c)

K(p) = AKp − bK , (1.5d)
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whereAF ∈ Rn×m, AS ∈ Rm×n, AH , AK ∈ Rn×n, bF , bH , bK ∈ Rn×1,
bS ∈ Rm×1. We assume thatAF , AS , AH andAK are non-singular.
Obviously the following relations hold:

AH = AF AS

bH = AF bS + bF

AK = AH − I

bK = bH .

Just as in§1.1.1 we assume that we have no prior knowledge ofAF (AS , . . . ) or
bF (bS , . . . ) whatsoever, but are able to form eitherAF x (ASy, . . . ) or AF x− bF

(ASy − bS , . . . ) for all x ∈ Rm×1 (y ∈ Rn×1)1. We also assume that it is impos-
sible to form eitherAT

F x (AT
Sy, . . . ) or AT

F x − bF (AT
Sy − bS , . . . ).

We count the performance of a method by the number of times a matrix-vector
product is computed, which we assume to be the dominant cost of any solution
method.

The simplicity of the linear case also allows us to give an elementary example of
the difference between the monolithic and partitioned approaches.

1.1.2.1 Example: monolithic approach

If the coupled problem is derived from the discretization ofa set of partial differen-
tial equations, we can choose between two different techniques in the monolithic
approach. The first is to discretize the ensemble of all partial differential equations
as a whole. This will, in general, result in a system of equations with a number
of variables that is vastly superior to the sum of the number of variables contained
in p andg (equation (1.1)); i.e. all the internal variables of both physical domains
have to be treated by the solver. The advantage is that no further constraints are
imposed on the use of the best discretization method or the solution method for the
resulting system.

Alternatively, the domain decomposition technique could be used, resulting in a
set of discretized equations using only the variables on theinterface between the
physical domains, as done in (1.1). We illustrate this for affine mappings, for
which (1.1) can then be written as

1Most often it will beAF x − bF , etc., as this is the affine equivalent ofF (x), etc; we tacitly
assume that this is the case, unless otherwise stated.
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AF g − bF = p (1.7a)

ASp − bS = g. (1.7b)

If we write (1.7) as an aggregated system

Az = b, (1.8)

with

A =

[
I −AF

−AS I

]
, z =

[
p
g

]
, b =

[
−bF

−bS

]
,

then (1.8) can be solved with any of the well-known linear solvers, like Richardson,
GMRes,... As we do not explicitly exploit the componentsAF andAS of A or limit
ourselves to a solution process based solely on function calls F (g) andS(p), this
is an example of a monolithic solution method.
We will discuss neither of these approaches any further as the focus of our study
lies in the study of partitioned methods.

1.1.2.2 Example: partitioned approach

Alternatively, we could keep the segregated nature of (1.1)and use a separate
solver for each constituent equation. This forms the basis of the partitioned ap-
proach.
While we will discuss the partitioned approach in more details in the following
chapters, we give an illustrative example applied to linearsystems.

One way to solve (1.8) is

[
I O
O I

] [
ps+1

gs+1

]
=

[
O AF

AS O

] [
ps

gs

]
−
[

bF

bS

]
. (1.9)

(I represents the identity matrix andO the zero matrix.) We see that in (1.9) the
following equations ensue:ps+1 = AF gs − bF (= F (gs)) andgs+1 = ASps −
bS(= S(ps)). This shows the possible use of solvers that yieldF (g) andS(p).
Note that the resulting method is equal to the block Jacobi approach applied to
(1.8), which shows the possible similarities between both approaches. The block
Gauss-Seidel method would give
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[
I O

−AS I

] [
p
g

]

s+1

=

[
O AF

O O

] [
p
g

]

s

−
[

bF

bS

]
, (1.10)

i.e. S(ps) = gs andF (gs) = ps+1.

Equation (1.9), resp. (1.10), also gives a clear illustration of the conditional stabil-
ity of this method, as the convergence of the iteration is governed by the spectral

radius of

[
O AF

AS O

]
, resp.

[
I O

−AS I

]−1 [
O AF

O O

]
, which should be

inferior to unity and which will mainly depend on some measure of the “size” of
AF andAS , i.e. the coupling matrices.

1.1.3 Series of related coupled systems

When (1.1) is derived from a physical problem, it often represents the equations
obtained after discretizing the continuous equations in time and space, and thus
only represents the evolution over one time-step. This is anexample of how we
could be presented with a series of related problems.

In this context we can write (1.1) as

Ft+1(g, pt, gt) = p (1.11a)

St+1(p, pt, gt) = g, (1.11b)

where the subscriptt + 1 (t = 0, 1, . . . ) denotes the time-level at which the prob-
lem is solved. The solution of (1.11) will give the values ofp andg at that time-
level (pt+1, resp.gt+1); the extra argumentspt andgt are added to show that the
solution at the next time-level depends on the values at the previous time-level2.
In what follows we will almost always simply writeF (g) andS(p) and assume it
is clear from the context that this either describes an isolated problem or a problem
solved over one time-step. The only time we will use the subscript is in chapter 9
when we will use data from various time-steps.

In time-dependent problems, two coupling approaches can bedistinguished:weak
couplingandstrong coupling. Weak coupling means that (1.11) is only solved
approximately, while in the strong coupling method (1.11) is solved up to conver-
gence (see§1.2.2 for further details).

2It is possible that it depends on more than one of the previous time-levels.
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1.2 Solution methods

As the focus of this study lies on partitioned methods, and one specific partitioned
method in particular, we will no longer treat monolithic methods from hereon and
assume we are solving a single coupled problem in either the form of (1.1) or (1.3),
unless otherwise noted.
In this section we give a brief outline of three possible solution methods.

1.2.1 Quasi-Newton methods

A classical solution method for the nonlinear problemK(p) = 0 is Newton’s
method. However, as we have assumed we don’t have access to the Jacobians of
F , S, H or K, we will resort to quasi-Newton methods, which we apply either to
the single equation

K(p) = 0

or the system

F (g) = p

S(p) = g.

Classical quasi-Newton methods [49] replace the Jacobian of the well-known New-
ton method for the non-linear equationK(p) = 0 by an approximation. The way
this approximation is constructed differentiates the particular methods. (See§4.2
for more details.)

In this thesis we will also consider slightly different approaches that use approxi-
mate Jacobians of bothS andF in

F (g) = p

S(p) = g

based on ideas first formulated by Vierendeels and coworkersin [227]. Whatever
the way we construct the Jacobian(s), we will distinguish four solution methods:
Interface3 Quasi-Newton, Interface Quasi-Newton with Composed Jacobian, In-
terface Block Quasi-Newtonand Interface Quasi-Newton with Inverse Jacobian.
We will go into more detail on these methods in chapter 4.

Quasi-Newton methods have been used intensively for solving linear and non-
linear systems and for minimization problems [145]. Their main attraction is

3“Interface” refers to the fact that we only use values on the interface between the two coupled
problems. This term will be dropped from the name of the method ifthe equations do not originate
from an interaction problem on the interface.
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that they avoid the cumbersome computation of derivatives for the Jacobians.
Recently, interest in quasi-Newton methods has waned, as automatic differenti-
ation has become available [58, 126] except for a recent algorithm by Eirola and
Nevanlinna [63, 85] and the research performed by Deuflhard (e.g. [55, 57]) and
Brown [22].

We are mainly interested in quasi-Newton methods because

• we do not have access to the Jacobian as we are working with black box
systems, which also makes automatic differentiation impossible;

• the cost of a function evaluation is sufficiently high so thatnumerical differ-
entiation becomes prohibitive. For this reason we will judge performance of
the method by the number of function evaluations it needs forconvergence.

We will also extensively study the proposed methods when applied to linear sys-
tems of equations. Studying quasi-Newton methods for linear problems is not only
important because many problems are linear or nearly linear, but also because the
properties of a method in the linear case often define the local convergence beha-
vior of the method in the non-linear case. This can be understood by observing
that close to a solution ofK(p) = 0 where the Jacobian is non-singular, the lin-
ear approximation ofK(p) tends to be dominant. Hence, the generated iteration
sequence tends to behave like in the linear case. This is the main reason why the
local convergence of Newton’s method is quadratic [166].

If the problem is time-dependent, solving a single time-step with the quasi-Newton
method until convergence is reached, represents a strong coupling technique, as we
assume the exact solution is obtained.

In the following paragraphs we will briefly sketch other well-known strongly cou-
pled partitioned methods.

1.2.2 Iterative Substructuring Method

The fixed point method applied to (1.3) gives theiterative substructuring method
(ISM) [3,37,135,161,183]. The method is given below in algorithm 1.2.1.
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Algorithm 1.2.1 (Iterative substructuring method - ISM).

1. Startup:
a. Take an initial valuepo.
b. Sets = 0.

2. Loop until sufficiently converged:
a. Computegs = S(ps).
b. Computeps+1 = F (gs).
d. Sets = s + 1.

If the problem is time-dependent, solving a single time-step with the ISM repre-
sents a strong coupling technique.

As the lines 2.a and 2.b of algorithm 1.2.1 can be re-written asps+1 = H(ps) it is
clear that the iterative substructuring method can be seen as a fixed point iteration
applied to equation (1.2)4. ISM can also be interpreted as a preconditioner which
compresses the coupled problem onto a smaller subspace witha better distribution
of the eigenvalues [156].

The main drawback of this method is its conditional stability which has been
widely studied, e.g. [34, 53, 127, 135, 156–158, 165, 236], and it is well-known
that the approach fails for problems where the interaction between the two solvers
is strong [156,219].

The conditional stability is not difficult to see from the following example. We
haveps+1 = H(ps), which, if all mappings are affine, translates tops+1 =

AHps − bH . As AH = AF AS it is thus clear that convergence will depend on the
spectral radius ofAH and hence onAF andAS . (Also see the examples in§1.1.2
and§10.1.5.)

Remark 1.4. Doing only a single iteration of the ISM for a time-dependentprob-
lem results in one of the best known weak coupling techniques, called the staggered
solution method [67,79,158,170,175,176,252]. The methodobviously only gives
good results when the interaction between the two systems isnot too strong, as the
solution does not necessarily satisfy (1.11).

4Other names can be given to this type of iteration: nonlinear Richardson iteration, Picard iteration
or method of successive substitution [127].
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1.2.3 Fixed-point iteration with stationary or dynamic relax-
ation and vector extrapolation

An improvement over ISM is the thefixed-point iteration with dynamic relaxation,
which in its most general form is given in algorithm 1.2.2.

Algorithm 1.2.2 (Fixed-point iteration with dynamic relaxation).

1. Startup:
a. Take an initial valuepo.
b. Sets = 0.

2. Loop until sufficiently converged:
a. Computegs = S(ps).
b. Computeps+1 = (1 − ωs)ps + ωsF (gs), with ωs a suitably chosen relaxation factor.
d. Sets = s + 1.

Another way to write the resulting iteration isps+1 = ps + ωsK(ps).
Fixed-point iteration with stationary relaxationis obtained by simply settingωs =

ωo for s = 1, 2, . . . .

This approach falls under the general label of(vector) acceleration techniques,
about which a vast literature is available, e.g. [87,119,120,129,158,235].
Perhaps the best known is Aitken’sδ2 method studied by Aitken [2] and Lubkin
[137]. (See also [118,129,157,158], and variants, e.g. [138].)
In this methodωs is defined recursively by

ωs+1 = −ωs
〈K(ps−1),K(ps) − K(ps−1)〉

〈K(ps) − K(ps−1),K(ps) − K(ps−1)〉
. (1.12)

Generalized versions of Aitken’s method have been developed by Wynn [241–
244], and Graves-Morris [95]. All of these are part of what iscalled theLozenge
algorithm family[15,16,109].
Other acceleration techniques have been proposed: the Minimal Polynomial Ex-
trapolation (MPE) of Cabay and Jackson [30]; the Modified Minimal Polynomial
Extrapolation (MMPE) of Sidi et al. [203], Brezinski [20] and Pugachev [182]; the
Reduced Rank Extrapolation (RRE) of Eddy and Mešina [62,154].
Polynomial extrapolation methods are closely related to Krylov methods [191,192,
194,203,238].
A survey of these method can be found in [121,207].
In this work we will not go into details about these methods.



12 CHAPTER 1

1.3 Outline of the study

While we are not claiming that the partitioned approach is panacea for all coupled
problems, we will only focus our attention in this thesis on studying methods to
solve (strongly) coupled problems with a partitioned approach in which each of
the physical problems is solved with a specialized code thatwe consider to be a
black box and of which the Jacobian is unknown. We also assumethat calling
these black boxes is the most expensive part of any algorithm, so that performance
is judged by the number of times these are called.

In 2007 Vierendeels [227] presented a new coupling procedure for this partitioned
approach in a fluid-structure interaction context, based onsensitivity analysis of
the important displacement and pressure modes which are detected during the it-
eration process. This approach only uses input-output couples of the solvers (one
for the fluid problem and one for the structural problem).
In this thesis we will focus on establishing the properties of this method and show
that it can be interpreted as a block quasi-Newton method with approximate Jaco-
bians based on a least squares formulation. We also establish and investigate other
algorithms that exploit the original idea but use a single approximate Jacobian.
These methods fall within a well-established framework of quasi-Newton methods
that can be written in a rank-one update form and belong to thefamily of Least
Change Secant Update quasi-Newton methods.
We establish the relationship between the variants and other existing quasi-Newton
methods.
When applied to affine operators, the method shares a Krylov search subspace with
GMRes and, with a mild assumption on the nature of the black box solvers, can be
modified to be analytically identical to GMRes.
We stress that throughout this work we will mainly be concerned about the beha-
vior of the algorithms in exact arithmetic, more than about implementation issues
and/or numerical stability.

This work is organized as follows.
In chapter 2 we start with formulating the most useful definitions. Lemmas and
theorems that are used in later chapters are given.
In chapter 3 an overview is given of existing linear solvers with the main focus on
Krylov methods in general and GMRes in particular.
In chapter 4 a similar overview is given of existing non-linear solvers with a focus
on quasi-Newton methods in general and those using a rank-one update form in
particular.
In chapter 5 we extend the idea of the quasi-Newton method to interacting systems
of non-linear equations.
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In chapter 6 we formalize the method for constructing approximate Least Squares
Jacobians proposed by Vierendeels and coworkers [227] and apply it to the quasi-
Newton methods established in the previous chapter.
In chapters 7 and 8, which form the main body of this work, we establish and
prove the properties of the quasi-Newton methods with LeastSquares Jacobian(s)
for non-linear and linear systems respectively. Chapter 8 also includes a detailed
comparison between GMRes and two of the new quasi-Newton methods when
applied to linear systems.
In chapter 9 we discuss various possibilities to enhance theJacobian for problems
originating from (time-dependent) ordinary and partial differential equations.
In chapters 10 and 11 the algorithms discussed in this work are compared against
each other on non-linear and linear problems respectively.
Finally, we finish by drawing the most important conclusions.
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2
Introductory definitions and theorems

In this chapter we give the definitions that are most commonlyencountered in this
work. We also establish and prove a number of theorems and lemmas upon which
later properties are based. Theorems and proofs that were found in the literature
are stated as such.
Most of the properties apply to the single system of (non-)linear equations as given
in (1.3).

2.1 Definitions

We will usep∗ and g∗ for the exact solution of (1.1) and/or (1.3); when using
an iterative process to solve the equation we will usees = ps − p∗ for the error
at thes-th iterate. (We do not use an error measure for the iterates of g). The
residual of this iterate for (1.3) will be defined byrs = K(ps), which equals
(AH − I)es = AKes if H is an affine operator, i.e.H(p) = AHp − bH .
We will also use the notationδps = ps+1 − ps(= δes = es+1 − es) andδgs =

gs+1 − gs.

Definition 2.1. A “ natural” (or “ induced”) matrix norm is a matrix norm induced
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by a vector norm in the following manner (withM ∈ Rn×m, x ∈ Rm×1):

‖M‖ = sup
x6=0

‖Mx‖
‖x‖ (2.1)

or equivalently

‖M‖ = sup
‖x‖=1

‖Mx‖, (2.2)

or

‖M‖ = sup
‖x‖≤1

‖Mx‖. (2.3)

Definition 2.2. The Frobenius norm of a matrix is defined in the following manner
(with M ∈ Rn×m):

‖M‖Fr =
√

Tr(MMT ) =

√√√√√




n∑

i=1

m∑

j=1

([M ]ij)2



, (2.4)

where Tr denotes the trace of a matrix and[M ]ij is the element on thei-th row
andj-th column ofM .

Note that the Frobenius norm is not a natural matrix norm, although it is compati-
ble with the Euclidean norm.

Definition 2.3. Anyn + 1 vectorsxo, x1, . . . , xn ∈ Rn×1 are in “general posi-
tion” if the vectorsxn − xj (j = 0, . . . , n − 1) are linearly independent.

Definition 2.4. The “Moore-Penrose generalized matrix inverse” or “pseudo-
inverse”1 Q+ ∈ Rn×m [18,173] for a real matrixQ ∈ Rm×n is uniquely defined
by the following four properties:

1. QQ+Q = Q;

2. Q+QQ+ = Q+;

3. (QQ+)T = QQ+;

4. (Q+Q)T = Q+Q.

1This is also sometimes called the “general reciprocal” and written asQI , e.g. [113].
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Remark 2.1. WhenQ is full rank the pseudo-inverse can be computed easily.

• For m > n we haveQ+ = (QT Q)−1QT . It will be mainly this case we will
be interested in.

• For m < n we haveQ+ = QT (QQT )−1.

Remark 2.2. If Q is not full rank we can use the SVD decomposition ofQ to
compute its pseudo-inverse. We can write the singular valuedecomposition2 of
Q as Q = LSRT , where the singular values are given byσi (i = 1, . . . , s).
According to the conventions of the singular value decomposition we have[S]ii =

σi and[S]ij = 0 wheni 6= j. BothL andR are orthogonal matrices.
Then we have thatQ+ = RS+LT , whereS+ ∈ Rn×m is defined by[S+]ii = σ−1

i

and [S+]ij = 0 wheni 6= j. If a certain singular value is zero, which happens
whenQ is not full rank, then its inverse inS+ is replaced by zero.

Remark 2.3. We also have thatx = Q+y is the least squares solution to the
problemQx = y.

Definition 2.5. We define the “range” R of M ∈ Rn×m as

R(M) = {Mx |x ∈ R
m×1}. (2.5)

Definition 2.6. We define the “null space” or “ kernel” N of M ∈ Rn×m as

N (M) = {x ∈ R
m×1 |Mx = 0}. (2.6)

Definition 2.7. LetV be a subspace of the vector spaceRn×1. The “orthogonal
complement” of V is the set of vectors which are orthogonal to all elements ofV.
We write this as(V)⊥.

Definition 2.8. A vectorv ∈ Cn×1 \ {0} is a “generalized eigenvector” of A ∈
Rn×n corresponding to the eigenvalueλ ∈ C if ∃k ∈ N \ {0} such that(A −
λI)kx = 0 [10].

Some properties of eigenvalues and generalized eigenvectors are given below [10,
195,230].

2Different conventions exist for the singular value decomposition (SVD). We will use the one where
L ∈ Rm×m, S ∈ Rm×n, R ∈ Rn×n and where the singular values are ordered in a non-increasing
way.
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• The multiplicity of an eigenvalueλ of A is defined to be the dimension of the
subspace spanned by the generalized eigenvectors corresponding toλ and is
equal to the multiplicity ofλ as a root of the characteristic polynomial, i.e.
its algebraic multiplicity.

• The geometric multiplicity of an eigenvalueλ is the dimension of the sub-
space of (ordinary) eigenvectors ofλ.

• The geometric multiplicity of an eigenvalue is smaller thanor equal to its
algebraic multiplicity.

Definition 2.9. Letu, v ∈ Rn×1. We define a “rank-one matrix” by uvT .

Definition 2.10. A mappingK : DK ⊂ Rn×1 → Rn×1 is called “affine” on DK

if there existsA ∈ Rn×n andb ∈ Rn×1 such thatK(x) = Ax − b, ∀x ∈ DK .

Definition 2.11. If P 2 = P (P ∈ Rn×n) we say thatP is a “projection matrix”.

Some properties of a projection matrix are given below [193].

• P defines a projection ontoR(P ) parallel toN (P ).

• If P is a projection matrix, then so is(I − P ).

• N (P ) = R(I − P ).

• N (P ) ⊕R(P ) = Rn×1 where⊕ denoted the direct sum of two subspaces.

• Let P be of ranks, {v1, . . . , vs} a basis forR(P ) and{w1, . . . , ws} a basis
for (N (P ))⊥.
If V = [v1| . . . |vs],W = [w1| . . . |ws], then

P = V (WT V )−1WT .

Definition 2.12. If P is a projection matrix such thatR(P ) = (N (P ))⊥, then
we say thatP is an “orthogonal projection matrix”. If a projection matrix is not
orthogonal, we say it is oblique.
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In [193] it is shown that a real projection matrix is orthogonal if and only if it is
symmetric.
Note that the termorthogonal projection matrixis not to be confused withorthog-
onal matrixwhich is a matrix for whichPT P = I.

Definition 2.13. [193] Let Ys andZs be two subspaces ofRn×1 of dimensions
(s ≤ n).
A “ projection method” for solving the linear system given in (1.3) (i.e.K(p) =

AKp − bK = 0) is a method in which an approximate solutionp̃ is found in
an affine subspacepo + Ys (wherepo is an initial guess) and in which a Petrov-
Galerkin condition is imposed:

r̃ = AK p̃ − b⊥Zs. (2.7)

We callpo + Ys the “search subspace” and Zs the “subspace of constraints”.
If Ys = Zs we say the projection method is “orthogonal” 3, otherwise we say it is
“ oblique” 4.

If {v1, . . . , vs} is a basis forZs, {w1, . . . , ws} a basis forYs and
V = [v1| . . . |vs],W = [w1| . . . |ws], then a projection method defined above (de-
finition 2.13) will result in the approximatioñp given by

p̃ = po − W (V T AKW )−1V T ro, (2.8)

if V T AKW is non-singular [193].
V T AKW is guaranteed to be non-singular if one of the following conditions holds
[193]:

1. AK is positive-definite andZs = Ys;

2. AK is non-singular andZs = AKYs, whereAKYs = {AKx|x ∈ Ys}.

Definition 2.14. We define a “Krylov subspace of dimensions” generated by
M ∈ Rn×n andv ∈ Rn×1 as

Ks{M ; v} = span{v,Mv,M2v, . . . ,Ms−1v}. (2.9)

If there is no confusion possible we will refer toKs{M ; v} asKs for short.
Ks{M ; v} is the subspace of all vectorsx ∈ Rn×1 that can be written asx =

qs−1(M)v whereqs−1(M) is a polynomial inM of degrees − 1 or less.

3This is also called the “Ritz-Galerkin approach” [222].
4This is also called the “Petrov-Galerkin approach” [222].
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Definition 2.15. [193] A “ Krylov subspace method” is a projection method (defi-
nition 2.13) where for thes-th iterateps we haveYs = Ks{AK ; ro} when solving
the linear systemAKp = bK .

It follows thatps will be an approximation ofA−1
K bK such that

ps = po + qs−1(AK)ro whereqs−1(AK) is a polynomial inAK of degrees − 1

or less.
The choice ofZs defines the type of Krylov method within the broader class.

Definition 2.16. Let{xs}s∈N be a sequence withxs andx∗ ∈ Rn×1. We say that
the sequence{xs} converges towardsx∗ with q-orderα > 1 if

∃C,N > 0,∀s > N : ‖xs+1 − x∗‖ ≤ C‖xs − x∗‖α, (2.10)

for a given norm‖ · ‖ in Rn×1.

Definition 2.17. Let{xs}s∈N be a sequence withxs andx∗ ∈ Rn×1. We say that
the sequence{xs} converges superlinearly5 towardsx∗ if

lim
s→∞

‖xs+1 − x∗‖
‖xs − x∗‖ = 0 (2.11)

for a given norm‖ · ‖ in Rn×1.

Definition 2.18. Let f : Ω ⊂ Rn×1 → Rm×1. f is Lipschitz continuous onΩ if
∃C > 0 (the Lipschitz constant ) such that

∀p1, p2 ∈ Ω : ‖f(p1) − f(p2)‖ ≤ C‖p1 − p2‖. (2.12)

If C < 1 andf : Ω → Ω thenf is called a contraction mapping with respect to
the chosen norm.

2.2 Conventions

All matrix norms that are used are natural matrix norms, unless otherwise stated.
〈·, ·〉 denotes the standard scalar product between vectors definedas follows:

∀x, y ∈ R
n×1 : 〈x, y〉 = xT y.

5These definitions are based on “q-superlinearity” as opposed to “r-superlinearity” which is a
weaker type of convergence rate [52]; as we only use this typeof convergence criteria, we will simply
use the term “superlinear”, etc.
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Orthogonality of vectors or vector spaces will be expressedwith respect to this
scalar product unless noted otherwise.
We use the symbol~⊂ to denote a vector subspace.

2.3 General theorems

Theorem 2.3.1. [Fundamental Theorem of Linear Algebra6]
LetQ ∈ Rn×m, thenN (Q) = (R(QT ))⊥.

For a proof of this theorem we refer to [212].

Lemma 2.3.1. ∀u, v ∈ Rn×1 : det(I + uvT ) = 1 + 〈u, v〉.

Proof. Let P = I + uvT .
Foru = 0 or v = 0 the proof is trivial.
If u, v 6= 0 and〈u, v〉 6= 0, then any vector orthogonal tov is a right eigenvec-
tor of P (corresponding to an eigenvalue 1) and any multiple ofu is also a right
eigenvector ofP (corresponding to an eigenvalue1 + 〈u, v〉 6= 0). As there are
n− 1 vectors orthogonal tov, and as the algebraic multiplicity of an eigenvalue is
larger than or equal to its geometric multiplicity, we see that the algebraic multi-
plicity of the eigenvalue 1 is at leastn−1. As there is another eigenvalue different
from 1, the algebraic multiplicity of the eigenvalue 1 must be equal ton − 1. As
the determinant of a matrix equals the product of its eigenvalues, we have that
det P = 1 + 〈u, v〉.
If u, v 6= 0 and〈u, v〉 = 0 then1 + 〈u, v〉 = 1. But then

(P − I)2 = (uvT )2 = uvT uvT = 0.

So the space of generalized eigenvectors corresponding to the eigenvalue 1 has
dimensionn. Hence the algebraic multiplicity of the eigenvalue 1 isn and
det P = 1.

Remark We like to point out that the property given in lemma 2.3.1 canbe found
in most reference works on linear algebra but that this is thefirst time, to our
knowledge, that a complete proof is given that also takes into account the case for
u, v 6= 0 and〈u, v〉 = 0.

6Also known as Fredholm’s Theorem.
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Lemma 2.3.2. LetV ∈ Rn×s be a matrix with rankr, then

V V + = LrLT
r , (2.13)

with Lr = [L̄1|L̄2| . . . |L̄r] ∈ Rn×r, whereL̄k is thek-th left (normalized)
singular vector ofV 7.

Proof. Let V = LSRT be the singular value decomposition ofV . Then

V V + = (LSRT )(RS+LT )

= LSS+LT .

Because of the special structure ofS andS+ (see definition 2.4) we haveSS+ =

In,r, whereIn,r = diag(1, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, 0, . . . , 0︸ ︷︷ ︸
n−r times

). Hence

V V + = LIn,rL
T .

We can further reduce this expression by introducingLr = [L̄1|L̄2| . . . |L̄r],
whereL̄k is thek-th left singular vector ofV :

V V + = LrLT
r ,

which completes the proof.

Note thatV V + = LLT is an orthogonal projection matrix on the range ofV

(definition 2.11 and 2.12).

Lemma 2.3.3. Let V ∈ Rn×s be a matrix with rankr and M ∈ Rm×n, then,
using the notation of lemma 2.3.2,

N (MLLT ) ⊃ (R(V ))⊥ (2.14a)

N (M(LLT − I)) ⊃ R(V ). (2.14b)

If M has rankn, then

N (MLLT ) = (R(V ))⊥ (2.15a)

N (M(LLT − I)) = R(V ). (2.15b)

7The firstr singular vectors ofV form an orthonormal basis for the range ofV
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Proof. (2.14) is an immediate consequence of lemma 2.3.2 as
∀x ∈ R(V ) : LLT x = x and∀y ∈ (R(V ))⊥ : LLT y = 0.
To prove (2.15b) we note that fromMx = 0 it follows thatx = 0 if the rank ofM
is n . FromM(LLT − I)x = 0 it follows thatLLT x = x ∈ R(V ).
We now prove (2.15a). IfMLLT x = 0 then it follows thatLLT x = 0, such that
∀y ∈ Rs×1: 0 = 〈LLT x, V y〉 = 〈V T V V +x, y〉.
Using the properties of the SVD decomposition of the Moore-Penrose generalized
inverse (definition 2.4) we obtain
0 = 〈V T V V +x, y〉 = 〈V T x, y〉 = 〈x, V y〉
and hencex ∈ (R(V ))⊥.

Lemma 2.3.4. If A~⊂B~⊂Rn×1 then‖MPA‖ ≤ ‖MPB‖, wherePA, resp.PB, is
an orthogonal projection matrix onA, resp.B andM ∈ Rn×n.

Proof. Let z ∈ Rn×1, with ‖z‖ ≤ 1. Then we have‖PAz‖ ≤ 1

andPAz = PBPAz. Hence

‖MPAz‖ = ‖MPB(PAz)‖ ≤ sup
x∈Rn×1;‖x‖≤1

‖MPBx‖ = ‖MPB‖.

From this it follows that

‖MPA‖ = sup
z∈Rn×1;‖z‖≤1

‖MPAz‖ ≤ ‖MPB‖.

Theorem 2.3.2. Let T1, T2 ∈ Rn×n. Let {Xs}s∈[1,n] be an arbitrary sequence
of vectors (Xs ∈ Rn×1) that are linearly independent,{Vs}s∈[1,n] be a sequence
defined byVs = [X1| X2| . . . | Xs] and let{Qs}s∈[1,n] be a sequence defined by
Qs = T1VsV

+
s − T2;

then

‖Qs+1 − (T1 − T2)‖ ≤ ‖Qs − (T1 − T2)‖, (2.16)

for s = 1, 2, . . . , and

Qn = T1 − T2. (2.17)
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Proof. We first note that the rank ofVs is s and that fors = n we will have

Qn = T1VnV +
n − T2 = T1 − T2, (2.18)

and hence‖Qn − (T1 − T2)‖ = 0, which proves (2.17).
Fors < n lemma 2.3.2 gives us

Qs = T1LsLT
s − T2, (2.19)

whereLs = [L̄1|L̄2| . . . |L̄s], with {L̄k}s
k=1 an orthonormal basis for the range

of Vs.
Hence

Qs − (T1 − T2) = T1(LsLT
s − I) (2.20)

Qs+1 − (T1 − T2) = T1(Ls+1LT
s+1 − I). (2.21)

IntroducingPs, resp. Ps+1, as the orthogonal projection matrix on(R(Vs))
⊥,

resp.(R(Vs+1))
⊥, we obtain

Qs − (T1 − T2) = T1Ps (2.22)

Qs+1 − (T1 − T2) = T1Ps+1. (2.23)

As (R(Vs+1))
⊥ ~⊂(R(Vs))

⊥ we can use lemma 2.3.4 to obtain

‖T1Ps+1‖ ≤ ‖T1Ps‖ (2.24)

‖Qs+1 − (T1 − T2)‖ ≤ ‖Qs − (T1 − T2)‖, (2.25)

which completes our proof.

Theorem 2.3.3.Sherman-Morrison Theorem [201]
LetQ ∈ Rn×n be non-singular, and letu, v ∈ Rn×1 be vectors such thatvT Q−1u 6=
−1, thenQ + uvT is non-singular and

(Q + uvT )−1 = Q−1 − Q−1uvT Q−1

1 + vT Q−1u
. (2.26)

Proof. The non-singularity ofQ + uvT follows from lemma 2.3.1:det(Q +

uvT ) = det(Q) det(I + (Q−1uvT ); equation (2.26) is easily verified by mul-
tiplying both sides byQ + uvT .
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This theorem is also sometimes called the Sherman-Morrison-Woodbury theorem
[52], although strictly speaking this is a generalized theorem given in the following
form [113].

Theorem 2.3.4.Sherman-Morrison-Woodbury Theorem
Let Q ∈ Rn×n andS ∈ Rm×m be non-singular, and letU, V ∈ Rn×m (m ≤ n),
then(Q − USV T ) is non-singular and there exists a non-singular matrixW ∈
Rm×m such that

(Q − USV T )−1 = Q−1 − Q−1UWV T Q−1, (2.27)

whereW is defined implicitly by

W−1 + S−1 = V T Q−1U. (2.28)

Theorem 2.3.5. Assume we are solvingAKp − bk = 0 with bK ∈ Rn×1 and
AK ∈ Rn×n non-singular. If the minimal polynomial ofAK has degreeδ, then
the solution of the system is contained in the subspaceKδ(A; bK).

A proof of this theorem is an immediate consequence of the definition of the min-
imal polynomial [117].

This theorem explains the main strength of Krylov methods inthat (in exact arith-
metic) the solution will be found in at mostn iterations, and possibly less, depend-
ing on the degree of the minimal polynomial of the system matrix.

Theorem 2.3.6. Assume we are solvingAKp − bK = 0, with AK ∈ Rn×n an
arbitrary matrix; assume that we haveZs = AKYs, defined as in definition 2.13.
Then a vector̃p is the result of an oblique projection method ontoYs orthogonally
to Zs with the starting iteratepo if and only if it minimizes the Euclidean norm of
the residual vector̃r = AK p̃ − bK overp ∈ po + Ys.

For a proof of this theorem we refer to [193].

Theorem 2.3.7. Let AK ∈ Rn×n be an arbitrary matrix. Let̃p be the appro-
ximate solution toAKp − bK = 0, obtained from a projection process ontoYs

orthogonally toZs = AKYs (Ys andZs defined as in definition 2.13) and let
r̃ = AK p̃ − bK be the associated residual vector. Then

r̃ = (I − P )ro, (2.29)

whereP denotes the orthogonal projection matrix onto the subspaceZs.
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For a proof of this theorem we refer to [193].
The class of methods respecting theorem 2.3.7 is called “residual projection me-
thods”.



3
Solution methods for a single system

of linear equations

While, in general, we are interested in solving the non-linear system of equations
(1.1), a substantial part of the analytical study of the available algorithms will be
performed assuming that eitherF (g), S(p) and/orH(p) are affine operators. We
therefore include a small overview of the most important linear solvers known in
the literature.
In this chapter the system of equations we are trying to solveis

Ap = b, (3.1)

wherep, b ∈ Rn×1, A ∈ Rn×n. (We will drop the subscript “K” when no confu-
sion is possible for ease of reading.)

Readers with a good knowledge of this matter can skip this chapter.

3.1 Legacy solvers: Richardson, Jacobi, Gauss-Seidel
and SOR

As no introduction about linear solvers can be complete without mentioning the
most elementary of them, we briefly summarize four of the best-known linear
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solvers, even though they are no longer competitive with current Krylov subspace
methods.
For more details we refer to any of the handbooks on numericalalgebra like [72],
[98], [101], [127], [226] and [247], to name but a few.

3.1.1 Richardson iteration

In the Richardson method the iteration can be written in one of the following
forms:

ps+1 = (I − ωsA)ps + ωsb (3.2a)

ps+1 = ps − ωsrs, (3.2b)

whereωs ∈ Ro is a relaxation parameter,I is the identity matrix andrs is the
residual ofps defined asAps − b.
If ωs varies from iteration to iteration we speak of a non-stationary Richardson
iteration; ifωs = ωo is fixed, then we speak of a stationary Richardson iteration.
Note that the Richardson iteration is essentially identical to the fixed point iteration
with dynamic relaxation (algorithm 1.2.2).

3.1.2 Jacobi iteration

In the Jacobi method the iteration can be written in one of thefollowing forms:

ps+1 = D−1(D − A)ps + D−1b (3.3a)

ps+1 = ps − D−1rs, (3.3b)

whereD is defined by

[D]ij =

{
0 for i 6= j

[A]ij for i = j
. (3.4)

Often an under-relaxation parameterωs is added:
ps+1 = ps − ωsD

−1rs for s = 0, 1, . . . .

3.1.3 Gauss-Seidel iteration

In the forward Gauss-Seidel method the iteration can be written in one of the fol-
lowing forms:

ps+1 = (D + L)−1(D + L − A)ps + (D + L)−1b (3.5a)

ps+1 = ps − (D + L)−1rs, (3.5b)
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whereL is defined by

[L]ij =

{
0 for i ≥ j

[A]ij for i < j
. (3.6)

In the backward Gauss-Seidel method this becomes:

ps+1 = (D + U)−1(D + U − A)ps + (D + U)−1b (3.7a)

ps+1 = ps − (D + U)−1rs, (3.7b)

whereU is defined by

[U ]ij =

{
0 for i ≤ j

[A]ij for i > j
. (3.8)

3.1.4 Successive Over-Relaxation (SOR)

The forward SOR method is a parametrized version of the forward Gauss-Seidel
method, given by:

ps+1 = (D + ωL)−1((1 − ω)D − ωU)ps + ω(D + ωL)−1b, (3.9)

whereω ∈ R is a relaxation parameter.
By analogy one can also start from the backward Gauss-Seidelmethod to obtain
the backward SOR method:

ps+1 = (D + ωU)−1((1 − ω)D − ωL)ps + ω(D + ωU)−1b. (3.10)

3.2 Krylov subspace methods

Krylov subspace methods1 [131] have been defined in definitions 2.13-2.15. They
have been developed as linear solvers for systems of the formof equation (3.1).
The choice of the search subspacepo +Ys and subspace of constraintsZs defines
the particular method within this class.
In these methods the system matrix does not need to be stored or formed; only a
routine for matrix-vector productsAx is needed∀x ∈ Rn×1. For that reason these
methods are also known as “matrix-free” methods.
We will briefly describe some of the best known Krylov methodsin the following
paragraphs and mention their applicability to our framework. For further reading
we refer to the excellent book by Van der Vorst [222].

1Also known as “Krylov projection methods” and “Krylov methods” for short.
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3.2.1 The Full Orthogonalization Method

The “Full Orthogonalization Method” or FOM2, is a Krylov subspace method de-
fined byYs = Zs = Ks(A; ro); it is thus an orhogonal projection method.
It is intended for general non-Hermitian matricesA and, in exact arithmetic, con-
verges in at mostn steps [193].
Variants of the method include “restarted FOM” where the method is stopped after
a number of iterations and the iterate at that point is then used as an initial iterate
for a new iteration loop.
Another variant is the “Incomplete Orthogonalization Method” or IOM where only
a limited number of the last basis vectors of the search subspace and subspace of
constraints are kept.

3.2.2 The Generalized Minimal Residual Method (GMRes)

GMRes [192,193,222], which is a generalization of the MinRes algorithm of Paige
and Saunders [167] and based on the Arnoldi orthogonalization process [7,190], is
perhaps the best known Krylov subspace method for general non-Hermitian matri-
cesA. It is defined byYs = Ks(A; ro) andZs = AKs(A; ro) when solving (3.1);
it is thus an oblique projection method (definition 2.13) anda residual projection
method (see theorem 2.3.7).
As ps ∈ po + Ks(A; ro) impliesrs ∈ ro + AKs(A; ro), and asrs⊥AKs(A; ro),
it results thatps is the unique value in the search subspace that minimizes‖rs‖2

(which denotes the Euclidean norm ofrs).
Hence, another way to look at GMRes is the following: we construct

ps = po +
s∑

i=1

ωiA
i−1ro (3.11)

with coefficients{ωi}i=s
i=1 chosen such that

‖rs‖2 = ‖ro +

s∑

i=1

ωiA
iro‖2 (3.12)

is minimal.

Well known properties of GMRes [98,222] are:

2Sometimes called “Arnoldi method” [7, 193], although this termmore correctly refers to the or-
thogonalization procedure contained in the FOM.
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• GMRes generates a residualrs ∈ ro + AKs{A; ro}, at which point it has
useds + 1 function calls, corresponding to matrix-vector products in the
linear case3.

• GMRes will converges inn iterations or less (in exact arithmetic) corre-
sponding ton + 1 function calls (or less).

• The convergence of GMRes (measured by the Euclidean norm of the resi-
dual) is strictly non-increasing. This does not necessarily mean the residual
decreases as it can stagnate for maximallyn−1 iterations (see [96] for more
details).

• In exact arithmetic the method will not encounter any singularities (cfr. de-
finition 2.13 [193]).

• When used in Newton iterations and if0 is the initial guess, GMRes offers
descent directions for minimizingKKT [23]) and monotone errors [31].

These properties all suppose that the operations are performed in exact arithmetic.
For the behavior of GMRes in the context of finite precision arithmetic see [5,60,
97,98]. Other properties can be found in [127,222] and references therein.
We can use GMRes to solve (1.3) when it represents a linear problem. As we are
only dealing with variables on the interface between the twoconstituent problems
S andF , the termInterface GMResis sometimes used in this context.

Variants of GMRes include “restarted GMRes” or GMResR4 where the method is
stopped after a number of iterations and the iterate at that point is then used as an
initial iterate for a new iteration loop. This variant does not keep the property of
convergence in at mostn steps [193].
Another variant is “quasi-GMRes” (or “truncated GMRes”) where only a limited
number of the last basis vectors of the search subspace and subspace of constraints
are kept.
As recent developments of GMRes we mention GMBack, MinPert [33, 124, 125]
and “simplerGMRes” [233].
A variant working with affine operators will be described in§3.2.2.2.

3.2.2.1 Elementary implementation of GMRes

In the GMRes method it is assumed that for everyp ∈ Rn×1 we are able to form
Ap, which differs from what we have assumed in chapter 1, i.e. wenormally

3We recall that the reason for counting function calls is thatwe have assumed that these constitute
the dominant computational cost of any algorithm.

4Also called GMRES(m) [127,192,222] wherem indicates the number of iterations before a restart
is performed; Van der Vorst uses “GMRESR” for a particular case of preconditioned GMRes.
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assume we can formH(p), K(p) etc., which corresponds toAp − b.
In its most basic form GMRes can be written as in algorithm 3.2.1.

Algorithm 3.2.1. GMRes method

1. Take a starting valuepo;
ro = Apo − b;
s = 1.

2. Loop until sufficiently converged:
a. ComputeAsro.

b. Find coefficients{ω̄i}i=s
i=1 that minimize‖rs‖2 with rs = ro +

s∑

i=1

ωiA
iro.

c. Optionally:ps = po +
s∑

i=1

ω̄iA
i−1ro.

d. Sets = s + 1.

Note that the computation ofps in 2.c is optional, and is normally only performed
when the algorithm has sufficiently converged.

Most of the analysis of GMRes that will be done in this work takes an analyti-
cal point of view, meaning that we will not use GMRes in the form that is the
most numerically stable as can be found in most textbooks on Krylov methods,
e.g. [12,98,127,193,222,232].
The most common modification is an orthogonalization of the basis vectors of the
Krylov search subspace; this orthogonalization can be any of those discussed in
§3.2.4.

3.2.2.2 Adaptation of GMRes to our framework

When we want to solve (1.3) whenH(p) is an affine (black box) operator, we are
only able to formH(p) = AHp − bH ∀p ∈ Rn×1 without explicitly knowingbH ,
according to our framework as outlined in chapter 1.
Most formulations of GMRes however assume that the user has knowledge of the
right hand sidebH (= bK) and can compute the matrix-vector product(AH −
I)p = AKp for any givenp ∈ Rn×1 as outlined above.
Within our self-imposed constraints constructingro = AHpo − bH − po poses
no problem, but findingAi

Kro (i = 0, . . . , s) does. In [218] an algorithm was
proposed that circumvents this problem. The idea behind it is the following: the
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exact solution ofAKp = bK would be given by

p∗ = po −A−1
K ro︸ ︷︷ ︸
δp

, (3.13)

which could be seen as a single (exact) Newton iteration. Re-arranging the terms
we get

ro + AKδp = 0. (3.14)

As AK is not available, we approximateδp by δ̂ps ∈ span{δ1, δ2, . . . , δs} (s =

1, 2, . . . ), whereδs = ds−do, do = po anddi+1 = H(di). p∗ is thus approximated
by the iterateps = po + δ̂ps to which corresponds the residualrs which we can
write as

ro + AK

s∑

i=1

ωiδi = ro + AK

s∑

i=1

ωi (di − do)

= ro +

s∑

i=1

ωi (AKdi − AKdo)

= ro +

s∑

i=1

ωi ((di+1 − di) − ro)︸ ︷︷ ︸
ρi

.

According to (3.14)rs should ideally be zero; coefficients̄ω1, . . . , ω̄s are thus
computed that minimize‖ro +

∑s
i=1 ωiρi‖2.

It is easy to show that

ρj = Aj
Kro −

j−1∑

k=1

(
j

k

)
(−1)k+jρk (3.15)

and thus thatro + span{ρ1, . . . , ρs} = ro + AK span{ro, AKro, . . . , A
s−1
K ro},

which shows that the resulting method is indeed analytically identical to the clas-
sical implementation of GMRes.

The resulting algorithm is given in 3.2.2.
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Algorithm 3.2.2. GMRes - affine variant [218]

1. Take a starting valuepo;
setdo = po;
computed1 = H(do) = AHdo − bH ;
ro = d1 − do;
s = 1.

2. Loop until sufficiently converged:
a. Computeds+1 = H(ds) = AHds − bH .
b. δs = ds − do.
c. ρs = (ds+1 − ds) − ro.
d. Find coefficients{ω̄i}i=s

i=1 that minimize‖rs‖2 with rs = ro +
∑s

i=1 ωiρi.
e. Optionally:ps = po +

∑s
i=1 ω̄iδi.

f. Sets = s + 1.

Note that the computation ofps in 2.e is optional, and is normally only performed
when the algorithm has sufficiently converged.

Our experience with this variant of GMRes is that it exhibitspoor numerical sta-
bility. In [218] a remedy was proposed in which theδs (s = 1, 2, . . . ) were orthog-
onalized. As, in our view, it is mainly the conditioning of the ρs (s = 1, 2, . . . )
which causes the instability in 2.d of algorithm 3.2.1, we noted only a slight im-
provement with this modification as it does not guarantee orthogonality (or indeed
a better conditioning) ofρs (s = 1, 2, . . . ).
As we have not found a better alternative in the literature, we therefore propose to
use standard GMRes (e.g. [193,222]) after findingbK(= bH) with a function call
K(0). If the initial iterate ispo = 0 then this invokes no additional cost; otherwise
an extra function call needs to be spent.

Remark 3.1. In chapter 8 (§8.2.1) we will show that GMRes can also be written
as a quasi-Newton method.

3.2.3 Other Krylov subspace methods

We only briefly outline some of the other Krylov subspace methods, either because
they cannot immediately be applied to the framework as stated in chapter 1 or
because they are variants of the Krylov subspace methods given above that are
algebraically identical to GMRes.
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3.2.3.1 The Lanczos Method, Conjugate Gradient Method (CG), CGNR,
LSQR, CGLS, CGNE, OrthoRes and GENCG

The Lanczos, resp. Conjugate Gradient, method [112, 134, 222] can be viewed as
the Full Orthogonalization Method applied to (3.1) whenA is symmetric, resp.
symmetricpositivedefinite (spd). This allows to simplify the algorithm [193].
In our framework we do not assume this condition forA.

An extension of CG is the CGNR (“Conjugate Gradient on the Normal equations
to minimize the Residual”) and CGNE (“Conjugate Gradient onthe Normal equa-
tions to minimize the Error”) methods. In CGNR [65, 81, 112, 163] (also known
as LSQR [168] or CGLS [222]) the original problemAp = b is transformed to
AT Ap = AT b and asAT A is a spd matrix CG can then be applied. Similarly, in
CGNE [39,81,163] the CG method is applied toAAT y = b with x = AT y.
The disadvantages of CGNR, LSQR, CGLS and CGNE are that two matrix vector
product are needed per iteration: one withA and one withAT . Not only is this
expensive in our framework, but we also assume that a matrix-vector product with
AT is unavailable.
Methods that are analytically equivalent to FOM are OrthoRes [122] and the Gen-
eralized Conjugate Gradient Method (GENCG or GCG) [38,192,222,237].

For further reading about these methods we refer to [93], [101] and [222].

Remark An interesting discussion about the classical argument that CGNE, LSQR,
CGLS and CGNR cannot be competitive because the squaring of the condition
number ofA by eitherAT A or AAT (and other arguments against these methods)
can be found in [98].

3.2.3.2 The Generalized Conjugate Residual Method (GCR), Axelsson’s method,
OrthoDir, OrthoMin, GENCR and MinRes

The Generalized Conjugate Residual method [65] is mathematically equivalent to
GMRes, but with double the amount of storage required and 50%more arithmetic
operations per step compared to GMRes [193].
Axelsson’s method [8], Orthodir [122], Orthomin [229] and GENCR [65] are four
other Krylov methods that are analytically identical to GMRes but differ in their
implementation.
MinRes [167] is the resulting method when GMRes is applied tosystems with a
symmetric matrix.
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3.2.3.3 Bi-Conjugate Gradients (Bi-CG), Conjugate Gradient Squared (CGS),
Bi-CGStab, QMR and TFQMR

Other methods for general, non-symmetric systems have beendeveloped, all of
which need two matrix-vector products5.
It is well documented that these methods can be faster in terms of iterations than
GMRes, but at a cost of a higher number of matrix-vector products, which makes
them uneconomical in our framework [98, 127], and will not bediscussed further
for that reason.

For further reading we refer to [29,77,82,83,98,127,134,208,220,222].

3.2.4 Orthogonalization procedures

A key ingredient of Krylov methods is the construction of a basis for the Krylov
subspaces. As the conditioning of the basis of the search subspace has a major
impact on the numerical stability of the algorithms, and as the vectorsro, Aro,
A2ro, . . . point more and more in the direction of the dominant eigenvector, an
orthogonalization procedure is almost invariably added tothe method [193, 222].
We will briefly discuss several orthogonalization procedures in this paragraph.

The best-known orthogonalization procedure is the Gram-Schmidt (GS) method.
In its original form it is not numerically stable [193] and istherefore better replaced
by the Modified Gram-Schmidt method (MGS), although both arealgebraically
identical.
These methods are typically implemented in the Arnoldi method, in which the
(modified) Gram-Schmidt method is applied to the basis-vectors of Ks(A, ro),
storing the scalar products of the GS method in an upper Hessenberg matrix.
Even with the MGS method numerical instabilities can develop. This can happen
when the new basis vector has only a very small component thatis orthogonal
to the previous basis vectors. A solution, that is known to work well, is to re-
orthogonalize a basis-vector if this occurs [193].
An even more stable algorithm, albeit at a higher cost, is theHouseholder-Arnoldi
method which uses reflection matrices, as proposed by Walker[234].

The typical implementation of GMRes (and most other Krylov methods) also in-
cludes an orthogonalization process, as found in [193] or [222] for instance.

5Some of the methods require a matrix-vector product withAT .



4
Solution methods for a single system

of non-linear equations

In this chapter we give an overview of the most commonly encountered quasi-
Newton solvers.

4.1 Newton’s method

Probably the best known solution method for (systems of) non-linear equations is
Newton’s method [164], also known as Newton-Raphson’s method1 [19, 33, 166,
184], which for the solution of (1.3) is given by:

ps+1 = ps − (K ′(ps))
−1K(ps), (4.1)

whereK ′(ps) represents the Jacobian ofK evaluated atps.
The hypotheses 1.1, 1.2 and 1.3 in§1.1.1 ensure that there exists an open setD

which contains the solutionp∗ such that for any initialpo ∈ D the Newton iterates
are well-defined, remain inD and converge superlinearly top∗ as specified by the
Newton attraction theorem [166]. IfK ′(p) is also Lipschitz continuous for allp

1Actually, Newton only developed the method for single equations; it was Simpson that extended
it to systems of equations [248]. Raphson was responsible forthe practical implementation of the
algorithm as we know it today [184].
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close enough top∗ then the convergence is quadratic. (For more details see [166].)

The main disadvantages of the method are that it requires a good initial guesspo

and the possible cost of computing the Jacobian. If the latter is not immediately
available it can be replaced by a finite difference approximation (requiringn func-
tion evaluations in general) or it can be kept constant during a number of iterations.
In the context of this study we assume that this Jacobian is indeed unavailable and
that it is too expensive to compute it by finite differences. For that reason we turn
our attention to quasi-Newton methods in the next section.

Note that in actual computations the inverse of a matrix is almost never explicitly
computed; for instance (4.1) is most often replaced by

K ′(ps)δ = −K(ps) (4.2)

ps+1 = ps + δ. (4.3)

The solution of (4.2) can be obtained with any linear solver.If this linear solver is
a Krylov method, the resulting method is called a Newton-Krylov (e.g. Newton-
GMRes) method, based on the naming convention in [166] and [200].
If (4.2) is only solved approximately by the linear solver the term “Inexact” or
“Truncated” Newton method is also used.
The disadvantage of Newton-Krylov methods for non-linear problems lies in the
number of function evaluations needed. For these methods one function evaluation
is needed for each outer and inner iteration2 while for a quasi-Newton method one
function evaluation is needed per outer evaluation. (Thereis no inner iteration.)

4.2 Quasi-Newton methods

When the Jacobian ofK is unavailable, or too expensive to compute, we can re-
place the true Jacobian of Newton’s method by an approximation, resulting in
what is called aquasi-Newton method(QN method). While, strictly speaking, any
approximation would result in a quasi-Newton method (e.g. the chord method,
Jacobi iteration etc.), the term is generally reserved for specific methods. Other
names have been used in the literature like:variable metric method, variance
method, modification method, andsecant update method. We will reserve the des-
ignatorsecant methodfor a specific subclass of quasi-Newton methods which we
will discuss below.

2By “outer iteration”, or “Newton step”, we mean equation (4.3), while by “inner iteration’ we
mean an iteration needed to solve (4.2).
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A particular new development that can be considered to be a quasi-Newton method
is that where the Jacobian of a set of equations, describing aphysical phenomenon,
is approximated by the Jacobian of a simpler, though related, physical phenom-
enon (e.g. [88,89]).

Historically, most quasi-Newton methods have been developed to solve non-linear
equations resulting from a minimization problem and thus require a symmetric
(possibly positive-definite) Jacobian; we will only brieflymention these methods
in this chapter, as we have not made this assumption about theJacobian for the
problems we are trying to solve (see chapter§1).

Quasi-Newton methods can take two forms and are either defined by

ps+1 = ps − (K̂ ′
s)

−1K(ps) (4.4)

or

ps+1 = ps − M̂ ′
sK(ps), (4.5)

(s = 0, 1, 2, . . . ) where{K̂ ′
s}s∈N is a sequence of approximations toK ′(ps) and

{M̂ ′
s}s∈N is a sequence of approximations to(K ′(ps))

−1.
Sometimes an iteration parameter is added to (4.4) and (4.5); this parameter can
be a fixed value, or based on line-searches. We refrain from the latter as a line-
search invokes a high number of function calls, which we haveconsidered very
expensive. For that reason, we will only use a fixed under-relaxation parameter
in the first time-step to avoid excessive divergence of the iterations, which would
hamper further convergence (see chapter 10). Further discussion about the use of
relaxation parameters in linear problems can be found in§8.3.

Again, the inverse of the approximate Jacobian is rarely explicitly computed3. As
for the Newton method a linear system is solved instead.

If K(p) represents an affine mapping (K(p) = AKp− bK) then the resulting error
(es+1 = ps+1 − p∗), resp. residual (rs+1 = K(ps+1)), for equation (4.4) is

es+1 = es − (K̂ ′
s)

−1AKes (4.6)

rs+1 = rs − AK(K̂ ′
s)

−1rs, (4.7)

3When, in the remainder of this study, we write a matrix inverse, we will always tacitly assume that
this represents a concise notation for the corresponding linear system to be solved.
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while for (4.5) it is

es+1 = es − M̂ ′
sAKes (4.8)

rs+1 = rs − AKM̂ ′
srs. (4.9)

For the quasi-Newton methods we are interested in, these approximations are con-
structed in a way that thesecant equation4

K̂ ′
s(ps − ps−1) = K(ps) − K(ps−1), (4.10)

or

ps − ps−1 = M̂ ′
s(K(ps) − K(ps−1)), (4.11)

is respected for alls = 1, 2, . . . . We call methods that respect the secant equation
secant methods, following the nomenclature of [52]. The origins of these secant
equations are to be found in a first order Taylor expansion ofK:

K(ps) ≈ K(ps−1) + K ′(ps)(ps − ps−1) (4.12a)

K(ps) ≈ K(ps−1) + K̂ ′
s(ps − ps−1). (4.12b)

In one dimension, equation (4.12b) uniquely definesK̂ ′
s (or M̂ ′

s), but in more than
one dimension it leaves an infinite choice of approximate Jacobians, as (4.12b)
represents an underdetermined system of equations, thus allowing for different
methods, some of which we will discuss in the following paragraphs.

Remark 4.1. While the Richardson, Jacobi, Gauss-Seidel and SOR methodsare
rarely counted among the class of quasi-Newton methods, (3.2b), (3.3b), (3.5b),
(3.7b), (3.9) and (3.10) can be seen to correspond to the quasi-Newton formula
(4.4) with an approximate Jacobian̂K ′

s equal to resp.(τsI)−1, D, D +L, D +U ,
ω−1(D − ωL) andω−1(D − ωU) when applied to linear systems.
Similarly, the Iterative Substructuring Method (§1.2.2) and “Fixed-point iteration
with dynamic relaxation” (§1.2.3) can be written as a quasi-Newton method with
an approximate Jacobian equal to−I and−ωsI respectively.

Remark 4.2. The study of the convergence behavior of quasi-Newton methods is
still a field of ongoing research (e.g. [32]).

4The secant equation is sometimes calledthe fundamental equation of quasi-Newton methods.
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4.3 Least change secant updates

Most quasi-Newton methods respect the underlying idea thatthe approximate Ja-
cobian must not change “too much” from one iteration to another, which translates
into an update using a rank-one or rank-two matrix or a matrixwith minimal norm,
but still satisfying the secant equation.

Definition 4.1. Least Change Secant Update (LCSU)
We define a Least Change Secant Update (LCSU) method as a secant method
where, of all possible new approximations of the Jacobian taken from a given
set, the difference between the new and old approximation isthe smallest in some
norm, i.e.K̂ ′

s+1, resp.M̂ ′
s+1, is the solution of

min{‖K̂ ′ − K̂ ′
s‖, K̂ ′ ∈ QK},

resp.

min{‖M̂ ′ − M̂ ′
s‖, M̂ ′ ∈ QM},

with the choice of matrix norm5 andQ to be specified [50].

The most important properties of LCSU methods can be found in[50–52,140,141].
One of the most important conclusions from these studies is that LCSU algorithms
are well-defined, converge to a solution while the rate of convergence is superlinear
[28,140–142].

Remark 4.3. For ease of reading in the remainder of this chapter, we have chosen
not to add a subscript or other indication to the approximateJacobian referring
to the method used. It should be clear from the context which method this approx-
imation refers to.

4.4 Rank-one update quasi-Newton methods

Rank-one update quasi-Newton methods are characterized bythe fact that the dif-
ference between̂K ′

s+1 andK̂ ′
s (or betweenM̂ ′

s+1 andM̂ ′
s) is given by a rank-one

matrix (definition 2.9), i.e.

5For most known methods this is the Frobenius norm.
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∃u, v ∈ R
n×1 : K̂ ′

s+1 = K̂ ′
s + uvT (4.13)

or

∃u, v ∈ R
n×1 : M̂ ′

s+1 = M̂ ′
s + uvT . (4.14)

(4.13) and (4.14) are called rank-one update formulae. If wanted, (4.13), resp.
(4.14), can be transformed to an update for(K̂ ′

s)
−1, resp. (M̂ ′

s)
−1, by applying

the Sherman-Morrison theorem (theorem 2.3.3).

In the majority of existing quasi-Newton methods the rank-one update has a par-
ticular form:

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)c
T
s

〈cs, δps〉
, (4.15)

resp.

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)d
T
s

〈ds, δKs〉
, (4.16)

whereδps = ps+1 − ps andδKs = K(ps+1) − K(ps). The use of either (4.15)
or (4.16) and the choice of the vectorcs or ds then defines the particular method.
We will discuss some of the best known methods in the remainder of this section.

We will also need the following definition.

Definition 4.2. Let V ∈ Rµ1×µ2 ,W ∈ Rµ3×µ2 , µ2 ≤ µ1 andV be of rankµ2.
Define the set of “interpolating matrices” betweenV andW as
A(V,W ) = {A ∈ Rµ3×µ1 ;W = AV }.

4.4.1 Broyden’s first or “good” method

Broyden’s first or good method6 (also abbreviated as “BG”) [24, 25, 49, 50] is a
quasi-Newton method that uses equations (4.4) and (4.15). It is part of the family

6Most often simply calledBroyden’s method.
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of LCSU methods [50,84], where the approximate JacobianK̂ ′
s+1 is chosen as the

solution of the following minimization problem:

min{‖K̂ ′ − K̂ ′
s‖Fr, K̂

′ ∈ A(δps, δKs)}. (4.17)

In other words, it gives a new approximate Jacobian that is closest to the previous
one in the Frobenius norm and that satisfies the secant equation.
The solution of (4.17) leads to the following rank-one update:

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)δp
T
s

〈δps, δps〉
(4.18)

= K̂ ′
s +

K(ps+1)δp
T
s

〈δps, δps〉
. (4.19)

This means that, using the form of equation (4.15), we havecs = δps.

The methods starts from an educated guessK̂ ′
o.

The following property is an immediate consequence of (4.17).

Theorem 4.4.1. Let Q be an arbitrary matrix inA(δps, δKs). If K̂ ′
s+1 and K̂ ′

s

are defined by Broyden’s good update, then

‖K̂ ′
s+1 − Q‖Fr ≤ ‖K̂ ′

s − Q‖Fr. (4.20)

Proof. SinceQ lies in the affine subspaceA(δps, δKs) and since by construction
the matrixK̂ ′

s+1 is the orthogonal projection of̂K ′
s onto this subspace we have

‖K̂ ′
s − Q‖2

Fr = ‖K̂ ′
s+1 − K̂ ′

s‖2
Fr + ‖K̂ ′

s+1 − Q‖2
Fr (4.21)

‖K̂ ′
s − Q‖2

Fr ≥ ‖K̂ ′
s+1 − Q‖2

Fr. (4.22)

The above proof can also be found in [49], but as later theorems are based on this
theorem we have copied it here for clarity.
In the linear case we haveK(p) = AKp − bk and henceK ′(ps) = AK with
AK ∈ A(δps, δKs), ∀s. As a consequence of theorem 4.4.1 we then have that the
sequence of approximate Jacobians{K̂ ′

s}s∈N will converge to the true Jacobian
AK in a monotone way.

Interpreting Broyden’s good method differently, we could say that
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• K̂ ′
s+1 is the projection w.r.t. the Frobenius norm ofK̂ ′

s ontoA(δps, δKs) of
matrices that satisfy the secant equation at iterations + 1;

• no change occurs between̂K ′
s+1 andK̂ ′

s on the orthogonal complement of
δps, i.e. (K̂ ′

s+1 − K̂ ′
s)z = 0 if 〈z, δps〉 = 0.

We also have the following properties of this method:

1. This method can also be directly applied to(K̂ ′
s)

−1, using the Sherman-
Morrison theorem:

(K̂ ′
s+1)

−1 = (K̂ ′
s)

−1 − (K̂ ′
s)

−1K(ps+1)δp
T
s (K̂ ′

s)
−1

〈δps, (K̂ ′
s)

−1δKs〉
(4.23)

if 〈δps, (K̂
′
s)

−1δKs〉 6= 0.

2. For linear problems, the method is known to show superlinear convergence
[127] and it needs at most2n iteration to reachp∗ (Gay’s theorem [86]).

3. No guarantee can be given that the approximate Jacobians are non-singular.

4. Convergence is not monotone.

5. Broyden’s good method does not preserve the semi-positive definite struc-
ture of the Jacobian.

4.4.2 Broyden’s second or “bad” method

Broyden’s second or bad method (also abbreviated as “BB” [24] is a quasi-Newton
method that uses equations (4.5) and (4.16). It is also part of the family of LCSU
methods [50,84], where the approximate JacobianM̂ ′

s+1 is chosen as the solution
of the following minimization problem:

min{‖M̂ ′ − M̂ ′
s‖Fr, M̂

′ ∈ A(δKs, δps)}; (4.24)

i.e. it gives a new approximation of the inverse of the Jacobian that is closest to
the previous one in the Frobenius norm and that satisfies the secant equation.
The solution of (4.24) leads to the following rank- one update

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)δK
T
s

〈δKs, δKs〉
. (4.25)
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This means that, using the form of equation (4.16), we haveds = δKs.

The methods starts from an educated guessM̂ ′
o.

The following property is an immediate consequence of (4.24) [49]:

Theorem 4.4.2. Let Q be an arbitrary matrix inA(δKs, δps). If M̂ ′
s+1 andM̂ ′

s

are defined by Broyden’s bad update, then

‖M̂ ′
s+1 − Q‖Fr ≤ ‖M̂ ′

s − Q‖Fr. (4.26)

The proof of this theorem is analogous to that of theorem 4.4.1. In a similar way
we can conclude that in the linear case the sequence{M̂ ′

s}s∈N will converge to
A−1

K in a monotone way.

Interpreting Broyden’s bad method differently, we could say that

• M̂ ′
s+1 is the projection w.r.t. the Frobenius norm of̂M ′

s ontoA(δKs, δps)

of matrices that satisfy the secant equation at iterations + 1;

• no change occurs between̂M ′
s+1 andM̂ ′

s on the orthogonal complement of
δKs, i.e. (M̂ ′

s+1 − M̂ ′
s)z = 0 if 〈z, δKs〉 = 0.

Broyden himself [24] admitted that this formulation of his algorithm didn’t func-
tion properly7. The reasons for the “good” or “bad” behavior are not well under-
stood, and it is quite possible that in some instances the badmethod outperforms
the good method. It is believed, however, that the good method is better whenever
the JacobianK̂ ′

s of Broyden’s good method “underestimates” the true Jacobian
(see [145] for more details and other differences).
We also have the following properties of this method:

1. For linear problems, the method is known to show superlinear convergence
[127] and it needs at most2n iteration to reachp∗ (Gay’s theorem [86]).

2. No guarantee can be given that the approximate Jacobians are non-singular.

3. Convergence is not monotone.

4. Broyden’s bad method does not preserve the semi-positivedefinite structure
of the Jacobian.

7This is the reason the method is called “bad”
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4.4.3 Column-Updating Method

The Column-Updating method (CUM) is a quasi-Newton method that was intro-
duced by Martinez [139,144,145]. It uses equations (4.4) and (4.15). The rank-one
update of this method is such that the column of the approximate Jacobian corre-
sponding to the largest coordinate of the latest increment (δps = ps+1 − ps) is
replaced in order to satisfy the secant equation (4.10) at each iteration.

The resulting method to update the approximate Jacobian is defined as follows:

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)ı
T
jK,s

〈ıjK,s
, δps〉

, (4.27)

whereıjK,s
is chosen such that

jK,s = Argmax{|〈ıj , δps〉|; j = 1, . . . , n}. (4.28)

({ıj ; j = 1, . . . , n} is the canonical (orthonormal) basis forRn×1.)
This can be viewed as a rank-one update, where only thejK,s-th column of the
approximate Jacobian is altered.
It also means that, using the form of equation (4.15), we havecs = ıjK,s

.

The methods starts from an educated guessK̂ ′
o.

The properties of this method have been investigated in [94,139, 144]. It has to
be noted that this method does not belong to the family of the LCSU methods, but
it satisfies the hypotheses of Gay’s theorem [86] such that finite convergence is
reached in at most2n iterations.

Remark 4.4. This method can also be directly applied to(K̂ ′
s)

−1, using the
Sherman-Morrison theorem if〈ıjK,s

, (K̂ ′
s)

−1δKs〉 6= 0.

4.4.4 Inverse Column-Updating Method

The Inverse Column-Updating method (ICUM) is a quasi-Newton method that
was introduced by Martinez and Zambaldi [136, 143]. It uses equations (4.5) and
(4.16). The rank-one update of this method is such that the column of the approx-
imation of the inverse of the Jacobian corresponding to the largest coordinate of
δKs = K(ps+1)−K(ps) is replaced in order to satisfy the secant equation (4.11)
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at each iteration.

The resulting method to update the approximate Jacobian is defined as follows:

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)ı
T
jM,s

〈ıjM,s
, δKs〉

, (4.29)

whereıjM,s
is chosen such that

jM,s = Argmax{|〈ıj , δKs〉|; j = 1, . . . , n}. (4.30)

This can be viewed as a rank-one update, where only thejM,s-th column of the
approximate inverse Jacobian is altered.
It also means that, using the form of equation (4.16), we haveds = ıjM,s

.

The methods starts from an educated guessM̂ ′
o.

The properties of this method have been investigated in [136]. The method does
not belong to the family of the LCSU methods, but it satisfies the hypotheses of
Gay’s theorem [86] such that finite convergence is reached inat most2n iterations.

4.4.5 Symmetric Rank-One update (SR1)

The symmetric rank-one (SR1) update method of Davidon [42] and Murtagh and
Sargent [162] uses equations (4.4) and (4.15) with the following update formula:

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)(δKs − K̂ ′
sδps)

T

〈δKs − K̂ ′
sδps, δps〉

(4.31)

= K̂ ′
s +

K(ps+1)K(ps+1)
T

〈K(ps+1), δps〉
. (4.32)

Thus, using the form of equation (4.15), we havecs = δKs − K̂ ′
sδps.

As the rank-one update in (4.32) is symmetric, this method isonly to be used when
the Jacobian is symmetric too. For that reason it will not be discussed further.
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4.4.6 Pearson’s Method

Pearson’s method [172] uses equations (4.4) and (4.15) withthe following update
formula:

K̂ ′
s+1 = K̂ ′

s +
K(ps+1)δK

T
s

〈δKs, δps〉
. (4.33)

Thus, using the form of equation (4.15), we havecs = δKs.

Pearson’s method is only valid whenK ′(p∗) is symmetric positive definite (spd)
and needs to start from an initial guess that is spd. For that reason it will not be
discussed further.

4.4.7 McCormick’s method

McCormick’s method [152,172] uses equations (4.5) and (4.16) with the following
update formula:

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)δp
T
s

〈δps, δKs〉
. (4.34)

Thus, using the form of equation (4.16), we haveds = δps.

Mc Cormick’s method is only valid whenK ′(p∗) is spd and needs to start from an
initial guess that is spd. For that reason it will not be discussed further.

4.4.8 The Eirola-Nevanlinna method

In 1989 Eirola and Nevanlinna [63] proposed a quasi-Newton method to solve
linear systems8 of the type of equation (3.1), where the approximationM̂ ′

s to the
inverse of the Jacobian was updated with a rank-one matrix (equation (4.14)).
For this algorithm we need to define the “residual operator”Or

s as

Or
s = I − AKM̂ ′

s, (4.35)

such thatrs+1 = Or
srs (see equation (4.9)).

The argument to arrive at this algorithm starts from the requirement that the resi-
dual operator for quasi-Newton methods must respect the following relationship:

8As it was proposed as a quasi-Newton method it is included in this chapter and not in the chapter
on linear solvers, although no reference to its use on non-linear problems was found so far.
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Or
s+1 = (I − ese

T
s )Or

s (4.36)

for some unitary vectores ∈ Rn×1, which can be interpreted as a projection ofOr
s

onto the orthogonal complement of span{es}.
If we write the linear problem to be solved asAKp = bK and if we require that
rs+1 = Or

s+1rs = 0, then the resulting update would be defined by

us = A−1
K Or

srs andvs =
(Or

s)T AKus

‖AKus‖2 .

Unfortunately,A−1
K is not known, and hencêM ′

s is used as a proxy. This results in
the following algorithm, in its basic form:

Algorithm 4.4.1. Eirola-Nevanlinna method [63]

1. Startup. Take a starting valuepo andM̂ ′
−1.

Sets = 0.
2. Loop until sufficiently converged:

a. Computers = K(ps) = AKps − bK .
b. us = M̂ ′

s(I − AKM̂ ′
s)rs.

c. vs =
(I−(AKM̂ ′

s)T )AKus

‖AKus‖2 .

e. M̂ ′
s = M̂ ′

s−1 + usv
T
s .

e. Quasi-Newton step:ps+1 = ps − M̂ ′
srs.

d. Sets = s + 1.

Its main properties are, if̂M ′
s does not become singular [63]:

• Or
s+1 is the orthogonal projection onto the subspace spanned by{AKuo, . . . , AKus};

• ‖Or
s+1‖Fr < ‖Or

s‖Fr;

• the singular values ofOr
s do not increase;

• the method gives the solution in at mostn steps;

• the algorithm is invariant under unitary transformation ofcoordinates.

The main drawbacks of this method, in its original form are that:

• two multiplications byAK are needed per iteration, which in our self-imposed
conditions are very costly;

• we need to be able to computeAKx for a givenx ∈ Rn×1, which is not
always immediately available in our framework, as we often assume we can
only computeAKx−bK for a givenx ∈ Rn×1 although it might be possible
that a way can be found to work around this;
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• we must either formAKM̂ ′
s and transpose it, which is costly, or be able to

computeAT
Kx for a givenx ∈ Rn×1, which we can’t. In [63] an alternative

formulation is given that seemingly avoids this requirement, on condition
thatco is given.

As far as is known, the first drawback cannot be avoided, and while numerical
tests with the algorithm show that it has indeed very nice convergence properties,
when counted as a function of the iteration count, its overall performance is quite
poor when measured against the number of function calls (matrix-vector multi-
plications). For that reason we have not investigated this method beyond some
elementary test-cases. Furthermore it can be shown that, when measured against
the number of function calls, the residual of the Eirolla-Nevanlinna method cannot
be smaller in the Euclidean norm than that of GMRes [231].
It is unknown how this algorithm behaves when used in the context of non-linear
problems.
Further developments of this algorithm can be found in [85].

4.5 Rank-two update quasi-Newton methods

Other quasi-Newton methods use rank-two updates, i.e. the difference between
two consecutive approximations is a matrix of rank two. The reason for this ap-
proach is to preserve the symmetrical structure of the approximate Jacobian. It is
thus not surprising that these methods are not meant as non-linear solvers but used
to solve minimization problems. We will only touch upon the best-known very
briefly; for a good survey of these and other methods we refer to [245,250].

4.5.1 Powell symmetric Broyden (PSB) method

The PSB method [181] is defined by the following rank-two update:

K̂ ′
s+1 = K̂ ′

s +
K(ps+1)δp

T
s + δpsK(ps+1)

T

〈δps, δps〉

− (K(ps+1)
T δps)δpsδp

T
s

〈δps, δps〉2
. (4.37)

The PSB method is only valid whenK ′(p∗) is spd and needs to start from an initial
guess that is spd.
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4.5.2 Davidon-Fletcher-Powell (DFP) method

The Davidon-Fletcher-Powell method [41,75] is defined by the following rank-two
update:

K̂ ′
s+1 = K̂ ′

s +
K(ps)δK

T
s + δKsK(ps)

T

〈δKs, δps〉
− (K(ps)

T δps)δKsδK
T
s

〈δKs, δps〉2
.

(4.38)

The DFP method is only valid whenK ′(p∗) is spd and needs to start from an initial
guess that is spd.

4.5.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

The Broyden-Fletcher-Goldfarb-Shanno method [26,76,90,198] is defined by the
following rank-two update:

K̂ ′
s+1 = K̂ ′

s −
(K̂ ′

sδps)δp
T
s (K̂ ′

s)
T

〈δps, K̂ ′
sδps〉

+
δKsδK

T
s

〈δps, δKs〉
. (4.39)

The BFGS method is only valid whenK ′(p∗) is spd and needs to start from an
initial guess that is spd.

4.5.4 Greenstadt’s method

Greenstadt’s method [99] is defined by the following rank-two update:

M̂ ′
s+1,G = M̂ ′

s,G −
M̂ ′

s,GK(ps+1)δK
T
s + δKs(M̂

′
s,GK(ps+1))

T

〈δKs, δKs〉

+
(δKT

s M̂ ′
s,GK(ps+1))δKsδK

T
s

〈δKs, δKs〉2
. (4.40)

4.6 Quasi-Newton methods preserving the structure
of a matrix

Some quasi-Newton methods have specifically been developedfor problems where
the Jacobian has a certain structure and impose this structure on the approximate
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Jacobian. For sparse matrices Schubert [27, 147, 196] has developed the Schubert
or sparse Broyden algorithm.
Symmetric secant updates for sparse matrices have been developed by Marwil
[146], Shanno [199] and Toint [214–216]. An overview of sparse quasi-Newton
methods can be found in [132]
We will not go into further detail about these methods.



5
Solution methods for two systems of

non-linear equations

As stated in chapter 1 we are interested in solving problems where two systems of
non-linear equations interact via their interface (equation (1.1)):

F (g) = p (5.1a)

S(p) = g. (5.1b)

One way to do this is to pass to equation (1.3):

F (S(p)) − p = H(p) − p = K(p) = 0, (5.2)

which transforms (5.1) into a single system of non-linear equations. At that point
the solvers of chapter 4 can be put to use. If the single systemis obtained in this
manner we will indicate it in the name of the non-linear solver: Interface Newton
method, Interface quasi-Newton method(IQN), etc.
As we have already stated that we assume that the true Jacobian is unavailable, we
will only focus on quasi-Newton type methods1.
Apart from methods that work on the single system of non-linear equations of
equation (5.2) we will also propose other approaches that take into account the two
constituent systems and build an approximate Jacobian for each of them [104].

1All the methods proposed in this chapter can be easily transformed to Newton type methods by
replacing the approximate Jacobians with their real values.
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5.1 Interface quasi-Newton methods (IQN and IQN-
I)

The Interface quasi-Newton(IQN) method, resp.Interface quasi-Newtonmethod
with Inverse Jacobian(IQN-I), is identical to the ordinary quasi-Newton method
of chapter 4 (equation (4.4), resp. (4.5)) applied to (5.2).The only distinction
between the algorithms in this section (algorithms 5.1.1 and 5.1.2) and those in
chapter 4 is the origin of the equation (5.2).

Algorithm 5.1.1 (IQN).

1. Startup:
a. Take an initial valuepo.
b. Computep1 = (1 − ω)po + ωH(po).
c. Sets = 1.

2. Loop until sufficiently converged:
a. ComputeK(ps).
b. Construct the approximate Jacobian̂K ′

s.
c. Quasi-Newton step:ps+1 = ps − (K̂ ′

s)
−1K(ps).

d. Sets = s + 1.

In this algorithm (and the following)ω represents a relaxation parameter, which
we apply to avoid excessive initial divergence. (For further discussion, see§8.3.)
The actual construction of the approximate JacobianK̂ ′

s can be based on those in
chapter 4 (see§5.4 below for more details) or given by the Least Squares quasi-
Newton method specified in chapter 6.

As already shown in chapter 4 we can also approximate the inverse of the Jacobian.
If we choose to do so, we will use the termInterface quasi-Newtonmethod with
Inverse Jacobian(IQN-I) as given in algorithm 5.1.2.

Algorithm 5.1.2 (IQN-I).

As algorithm 5.1.1 but
2.b. Construct the approximate inverse JacobianM̂ ′

s.
2.c. Quasi-Newton step:ps+1 = ps − M̂ ′

sK(ps).

Again, the actual construction of the approximate inverse JacobianM̂ ′
s can be

based on those chosen from chapter 4 or given by the Least Squares quasi-Newton
method given in chapter 6.
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5.2 Interface quasi-Newton method with Composed
Jacobian (IQN-C)

We recall thatK(p) = H(p) − p = F (S(p)) − p and that as such

K ′(ps) = F ′(S(ps)) · S′(ps) − I. (5.3)

We could therefore replaceF ′(S(ps)) andS′(ps) by their own approximate Jaco-
bian and write the approximation toK ′(ps) as

K̂ ′
s = F̂ ′

sŜ
′
s − I. (5.4)

The resulting method is calledInterface quasi-Newtonmethod withComposed
Jacobian(IQN-C) and can be described as in algorithm 5.2.1.

Algorithm 5.2.1 (IQN-C).

1. Startup:
a. Take an initial valuepo.
b. Computego = S(po) andp1 = (1 − ω)po + ωF (go).
c. Sets = 1.

2. Loop until sufficiently converged:
a. Computegs = S(ps).
b. Construct the approximate Jacobian̂S′

s.
c. ComputeH(ps) = F (gs).

d. Construct the approximate Jacobian̂F ′
s.

e. Quasi-Newton step:ps+1 = ps − (F̂ ′
sŜ

′
s − I)−1(H(ps) − ps).

f. Sets = s + 1.

The actual construction of the approximate JacobiansF̂ ′
s andŜ′

s will be specified
in §5.4 or, for the Least Squares quasi-Newton methods, in chapter 6.

5.3 Interface block quasi-Newton method (IBQN)

In [227] another approach was proposed to couple (5.1) with two approximate Ja-
cobians. In this approach we look at each equation in (5.1) separately and write a
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block Newton method in which we insert the approximate Jacobians.

The method starts from the block Newton method for the systemof equations (5.1),
written as

F (g) − p = 0 (5.5a)

S(p) − g = 0. (5.5b)

We define the block Newton method as
[

F ′(gs) −In

−Im S′(ps)

] [
δgs

δps

]
= −

[
F (gs) − ps

S(ps) − gs

]
, (5.6)

whereδgs = gs+1 − gs andδps = ps+1 − ps.
Replacing the exact Jacobians by approximate Jacobians, weobtain

[
F̂ ′

s −In

−Im Ŝ′
s

] [
δgs

δps

]
= −

[
F (gs) − ps

S(ps) − gs

]
. (5.7)

Solving (5.7) forps+1 andgs+1 we obtain

F̂ ′
s · (gs+1 − gs) = −F (gs) + ps+1 (5.8a)

Ŝ′
s · (ps+1 − ps) = −S(ps) + gs+1; (5.8b)

Re-arranging both equations gives us

F̂ ′
s · gs+1 − ps+1 = −F (gs) + F̂ ′

sgs (5.9a)

Ŝ′
s · ps+1 − gs+1 = −S(ps) + Ŝ′

sps; (5.9b)

Multiplying (5.9a) to the left byŜ′
s and (5.9b) byF̂ ′

s we obtain

Ŝ′
sF̂

′
s · gs+1 − Ŝ′

s · ps+1 = Ŝ′
s

(
−F (gs) + F̂ ′

sgs

)
(5.10a)

F̂ ′
sŜ

′
s · ps+1 − F̂ ′

s · gs+1 = F̂ ′
s

(
−S(ps) + Ŝ′

sps

)
. (5.10b)

Inserting (5.9a) in (5.10b) and (5.9b) in (5.10a) we get

Ŝ′
sF̂

′
s · gs+1 − gs+1 + S(ps) − Ŝ′

sps = Ŝ′
s

(
−F (gs) + F̂ ′

sgs

)
(5.11a)

F̂ ′
sŜ

′
s · ps+1 − ps+1 + F (gs) − F̂ ′

sgs = F̂ ′
s

(
−S(ps) + Ŝ′

sps

)
;(5.11b)

(
Ŝ′

sF̂
′
s − I

)
· gs+1 = −S(ps) + Ŝ′

s

(
−F (gs) + F̂ ′

sgs + ps

)
(5.12a)

(
F̂ ′

sŜ
′
s − I

)
· ps+1 = −F (gs) + F̂ ′

s

(
−S(ps) + Ŝ′

sps + gs

)
. (5.12b)
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Re-arranging the terms we finally obtain

gs+1 = (I − Ŝ′
sF̂

′
s)

−1
(
S(ps) + Ŝ′

s · (F (gs) − F̂ ′
s · gs − ps)

)
(5.13a)

ps+1 = (I − F̂ ′
sŜ

′
s)

−1
(
F (gs) + F̂ ′

s · (S(ps) − Ŝ′
s · ps − gs)

)
.(5.13b)

Up till now, we have assumed that we are solving the equationsfor gs+1 andps+1

in parallel (i.e. a block Jacobi approach). We could also solve one of the equations
first and afterwards use the available information to updatethe second equation
(i.e. a block Gauss-Seidel approach).
If we solve the equation forps+1 first we obtain

gs+1 = (I − Ŝ′
s+1F̂

′
s)

−1
(
S(ps+1) + Ŝ′

s+1 · (F (gs) − F̂ ′
s · gs − ps+1)

)

ps+1 = (I − F̂ ′
sŜ

′
s)

−1
(
F (gs) + F̂ ′

s · (S(ps) − Ŝ′
s · ps − gs)

)
.

The resulting method can be found in algorithm 5.3.1 and is called Interface block
quasi-Newtonmethod (IBQN).

Algorithm 5.3.1 (IBQN).

1. Startup:
a. Take an initial valuepo.
b. Computego = S(po) andp1 = (1 − ω)po + ωF (go).
c. Setg1 = S(p1).
d. Construct the approximate Jacobian̂S′

1.
e. Sets = 1.

2. Loop until sufficiently converged:
a. ComputeF (gs).
b. Construct the approximate Jacobian̂F ′

s.

c. Setps+1 = (I − F̂ ′
sŜ

′
s)

−1
(
F (gs) + F̂ ′

s · (S(ps) − Ŝ′
s · ps − gs)

)
.

d. ComputeS(ps+1).
e. Construct the approximate JacobianŜ′

s+1.

f. Setgs+1 = (I − Ŝ′
s+1F̂

′
s)

−1
(
S(ps+1) + Ŝ′

s+1 · (F (gs) − F̂ ′
s · gs − ps+1)

)
.

g. Sets = s + 1.

The actual construction of the approximate JacobiansF̂ ′
s andŜ′

s will be specified
in §5.4 or, for the Least Squares quasi-Newton methods, in chapter 6.
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5.4 Construction of the approximate Jacobians for
two systems of non-linear equations

For the construction of the approximate Jacobians forS, F , H and/orK we can
base ourselves on existing methods as described in section 4.2.
In this section we will only discuss methods based on existing techniques. Another
construction, the Least Squares approximate Jacobian, which will form the main
topic of our study, will be discussed in chapter 6 and following.

5.4.1 Broyden’s good and bad method for the Interface quasi-
Newton approach

If the mappingK in (5.2) is derived from two interacting systems as in (5.1) then
Broyden’s good method (§4.4.1) can be applied straightaway [103,104], in which
case we call the resulting method theInterface quasi-Newton method with “Broy-
den good” Jacobianor IQN-BG (cfr. algorithm 5.1.1).
Similarly, Broydens’s bad method (§4.4.2) can be applied, which we then call
Interface quasi-Newton method with “Broyden bad” Jacobianor IQN-BB (cfr. al-
gorithm 5.1.2).
We point out that Broyden’s bad method falls under the label of Interface quasi-
Newton methods with Inverse Jacobian (§5.1), so we might as well have used the
label IQN-IB for that method2.
We recall that the only difference with Broyden’s good and bad method of§4.4.1
and§4.4.2 is the origin of the equation to be solved.

We propose to extend the idea of Broyden’s good method to solution methods
using 2 Jacobians, cfr. algorithms 5.2.1 (IQN-C) and 5.3.1 (IBQN), and construct
Ŝ′

s andF̂ ′
s in a similar way to (4.18):

Ŝ′
s+1 = Ŝ′

s +
(δSs − Ŝ′

sδps)δp
T
s

〈δps, δps〉
(5.15)

F̂ ′
s+1 = F̂ ′

s +
(δFs − F̂ ′

sδgs)δg
T
s

〈δgs, δgs〉
, (5.16)

where δps = ps+1 − ps, δgs = gs+1 − gs, δSs = S(ps+1) − S(ps), and
δFs = F (gs+1) − F (gs).

The methods start from an educated guessŜ′
o,BG andF̂ ′

o,BG.

2When doing so, the label IQN-B would be more logical for the Broyden good method.
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5.4.2 Column-Updating and Inverse Column-Updating method
for the Interface quasi-Newton approach

Just as for Broyden’s method we can apply the Column-Updating method (§4.4.3)
to (5.2) if it is derived from (5.1). In that case we call the resulting method theIn-
terface quasi-Newton method with “CUM” Jacobianor IQN-CUM (cfr. algorithm
5.1.1).
Similarly, the Inverse Column-Updating method (§4.4.4) can be applied, which we
then callInterface quasi-Newton method with “Inverse CUM” Jacobianor IQN-
ICUM (cfr. algorithm 5.1.2).
We recall that the only difference with CUM and ICUM of§4.4.3 and§4.4.4 is the
origin of the equation to be solved.

As in §5.4.1 we extend the idea of the Column-Updating Method to solution me-
thods using 2 Jacobians, cfr. algorithms 5.2.1 (IQN-C) and 5.3.1 (IBQN), and
constructŜ′

s andF̂ ′
s in a similar way to (4.27):

Ŝ′
s+1 = Ŝ′

s +
(δSs − Ŝ′

sδps)ı
T
jS,s

〈ıjS,s
, δps〉

(5.17)

F̂ ′
s+1 = F̂ ′

s +
(δFs − F̂ ′

sδgs)ℓ
T
jF,s

〈ℓjF,s
, δgs〉

, (5.18)

and whereıjS,s
, resp.ℓjF,s

is chosen such that

jS,s = Argmax{|〈ıj , δps〉|; j = 1, . . . , n} (5.19a)

jF,s = Argmax{|〈ℓj , δgs〉|; j = 1, . . . ,m}, (5.19b)

where{ıj ; j = 1, . . . , n} is the canonical (orthonormal) basis forRn×1 and{ℓj ; j =

1, . . . ,m} is the canonical (orthonormal) basis forRm×1 .

The methods start from an educated guessŜ′
o,CUM andF̂ ′

o,CUM .
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6
Least Squares Jacobian

6.1 Construction of the Least Squares Jacobian

In this chapter we show how an approximate Jacobian for a given vector-valued
function Φ can be constructed using a Least Squares approach based on known
input-output pairs.

Let Φ : Rn×1 → Rm×1 : x 7→ Φ(x).
Assume that forΦ we haves + 1 (s ≤ n) input-output pairs(xi,Φ(xi)) (i =

0, . . . , s)1 at our disposal. This allows us to constructs input modes∆xs
i = xs−xi

(i = 0, . . . , s − 1) and an equal number ofoutput modes∆Φs
i = Φ(xs) − Φ(xi)

(i = 0, . . . , s − 1). We assumexo, x1, . . . , xs are in general position (definition
2.3).
We defineV xΦ

s = [∆xs
s−1 . . . ∆xs

o] andW xΦ
s = [∆Φs

s−1 . . . ∆Φs
o]

2.

When we have a new inputxs+1, of which the output is not known, but want to
make an approximation ofΦ(xs+1), we writexs+1 − xs as a linear combination

1These input-output pairs can be created in an ad hoc manner or taken from computations that arise
in an iterative process.

2Strictly speakingV xΦ
s does not depend onΦ; it is included in the notation, however, for consis-

tency withW xΦ
s and to emphasize that it will be used in the construction of theapproximate Jacobian

of Φ.
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of the input modes plus a rest-termε:

xs+1 − xs =

s−1∑

k=0

αk∆xs
k + ε, (6.1)

whereαk (k = 0, . . . , s− 1) represents the coordinates ofxs+1 − xs with respect
to the input modes andε the part ofxs+1 −xs that lies outsideR(V xΦ

s ). If we use
α = [αs−1 . . . αo]

T , thenxs+1 − xs = V xΦ
s α + ε.

If we wantε to be minimal in the Euclidean norm3, we imposeε⊥R(V xΦ
s ) with

respect to the standard scalar product.
This leads to

(V xΦ
s )T ε = (V xΦ

s )T ((xs+1 − xs) − V xΦ
s α) = 0 (6.2)

α = ((V xΦ
s )T V xΦ

s )−1(V xΦ
s )T (xs+1 − xs) (6.3)

= (V xΦ
s )+(xs+1 − xs), (6.4)

where(V xΦ
s )+ represents the Moore-Penrose generalized inverse ofV xΦ

s , i.e.

(V xΦ
s )+ = ((V xΦ

s )T V xΦ
s )−1(V xΦ

s )T . (6.5)

We now make a prediction on the output by writing the same linear combination
with respect to the output modes:

∆Φs = Φ(xs+1) − Φ(xs) ≈ W xΦ
s α = W xΦ

s (V xΦ
s )+(xs+1 − xs) (6.6)

Φ(xs+1) ≈ Φ(xs) + W xΦ
s (V xΦ

s )+︸ ︷︷ ︸
Φ̂′

s

(xs+1 − xs). (6.7)

We see that the expressionW xΦ
s (V xΦ

s )+ thus fulfills the role of the approximate
Jacobian ofΦ with respect tox. We will call this approximation the Least Squares
(LS) approximate Jacobian̂Φ′

s of the true JacobianΦ′(xs):

Φ̂′
s = W xΦ

s ((V xΦ
s )T V xΦ

s )−1(V xΦ
s )T (6.8a)

= W xΦ
s (V xΦ

s )+. (6.8b)

If s = n then (6.8) becomeŝΦ′
s = W xΦ

s (V xΦ
s )−1.

3In other words: we want a least squares approximation ofxs+1 − xs.
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To generalize the construction fors > n we use the following formulae:

∆xs
i = xs − xi (i = ñ, . . . , s − 1) (6.9a)

V xΦ
s = [∆xs

s−1 ∆xs
s−2 . . . ∆xs

ñ] ∈ R
n×min{s,n} (6.9b)

∆Φs
i = Φ(xs) − Φ(xi) (i = ñ, . . . , s − 1) (6.9c)

W xΦ
s = [∆Φs

s−1 ∆Φs
s−2 . . . ∆Φs

ñ] ∈ R
m×min{s,n}, (6.9d)

whereñ = max{0, s − n}.

Note that the Jacobian that we construct in this manner (equation (6.8)) is a matrix
that “interpolates” between the columns ofV xΦ

s and those ofW xΦ
s ; such a matrix

is not unique as long as the rank ofV xΦ
s is inferior ton.

To formalize this notion for use in later chapters, we use definition 4.2.

Remark 6.1. The above description is a generalization of a method first described
in [227]. Originally this construction was called “ReducedOrder Model” (ROM),
but as the “reduced” aspect only refers to the use of interface variables and to the
low number of input-output modes used, we have changed the name to “Interface
quasi-Newton Method with Least Squares Jacobian.”

Remark 6.2. Another way to interpret this construction is to look at it asan affine
approximation toΦ:

Φ(x) ≈ Φ̂(x) = Φ(xs) + Φ̂′
s(x − xs), (6.10)

such that

Φ(x) = Φ̂(x) for x ∈ {xñ, xñ+1, . . . , xs}. (6.11)

This approach only leads to a unique value ofΦ̂′
s if s ≥ n and if{xñ, xñ+1, . . . , xs}

are in general position.

Remark 6.3. If Φ is an affine mapping, i.e.Φ(x) = Ax − b, then (6.8) be-
comesΦ̂′

s = AV xΦ
s (V xΦ

s )+, which, according to lemma 2.3.2, corresponds to
Φ̂′

s = ALxΦ
s (LxΦ

s )T whereLxΦ
s = [L̄xΦ

1 |L̄xΦ
2 | . . . |L̄xΦ

s ], with {L̄xΦ
k }s

k=1 an or-
thonormal basis for the range ofV xΦ

s .

Remark 6.4. Note that the approximation of∆Φ(xs+1) in equation (6.6) not nec-
essarily represents the least squares approximation of∆Φ(xs+1) in R(W xΦ

s ).
This is easy to illustrate in the case whereΦ is an affine mapping:Φ(x) = Ax−b.
Let∆Φs = W xΦ

s (V xΦ
s )+∆xs + η (see equation (6.6)).
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If W xΦ
s (V xΦ

s )+∆xs were to be a least square approximation to∆Φs in R(W xΦ
s ),

then we would need thatη⊥R(W xΦ
s ), or in other words

(W xΦ
s )T · η = (W xΦ

s )T ·
(
∆Φs − W xΦ

s (V xΦ
s )+∆xs

)
= 0. (6.12)

As for an affine mapping we have thatW xΦ
s = AV xΦ

s , this leads to

(V xΦ
s )T AT A

(
I − V xΦ

s

[
(V xΦ

s )T V xΦ
s

]−1
(V xΦ

s )T
)

∆xs = 0, (6.13)

which is only satisfied if either

• s = n;

• ∃κ ∈ R : AT A = κI.

6.2 Orthogonalization and re-arrangement of input–
ouptut modes

As the following theorem will show, we can re-arrange the columns ofV xΦ
s with-

out changing the algorithm. This means we can orthogonalizethe columns of
V xΦ

s which improves the condition number of the matrix(V xΦ
s )T V xΦ

s that needs
to be inverted in the construction of the approximate Jacobian of the Least Squares
methods (cfr. equation (6.8).

Theorem 6.2.1. Consider the approximate Jacobian̂Φ′
s constructed in equation

(6.8). If we replaceV xΦ
s byV xΦ

s T andW xΦ
s byW xΦ

s T , whereT is a non-singular
matrix∈ Rs×s, the resulting Jacobian remains the same.

Proof. Let

Φ̂′
s = W xΦ

s ((V xΦ
s )T V xΦ

s )−1(V xΦ
s )T (6.14)

and

Φ̂′
s,T = W xΦ

s T ((V xΦ
s T )T V xΦ

s T )−1(V xΦ
s T )T (6.15)

then

Φ̂′
s,T = W xΦ

s T (T T (V xΦ
s )T V xΦ

s T )−1T T (V xΦ
s )T (6.16)

= W xΦ
s T T−1((V xΦ

s )T V xΦ
s )−1(T T )−1T T (V xΦ

s )T (6.17)

= W xΦ
s ((V xΦ

s )T V xΦ
s )−1(V xΦ

s )T (6.18)

= Φ̂′
s (6.19)

which proves the assertion.
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Not only will this theorem allow us to orthogonalize the columns ofV xΦ
s , it also

allows the use of any linear combination of the columns as long as the rank is
maintained; in other words, as long asR(V xΦ

s ) is not altered. This means, for
instance, that we could have used

∆xs
i = xi+1 − xi (i = ñ, . . . , s − 1) (6.20a)

V xΦ
s = [∆xs

ñ ∆xs
ñ+1 . . . ∆xs

s−1] ∈ R
n×min{s,n} (6.20b)

∆Φs
i = Φ(xi+1) − Φ(xi) (i = ñ, . . . , s − 1) (6.20c)

W xΦ
s = [∆Φs

ñ ∆Φs
ñ+1 . . . ∆Φs

˜s−1
] ∈ R

m×min{s,n}, (6.20d)

instead of the conventions in (6.9).
To see this it suffices to multiplyV xΦ

s andW xΦ
s in (6.9) by

T =





0 0 · · · · · · −1 1
...

... . .
.

. .
. ...

...
0 −1 1 · · · 0 0

−1 1 0 · · · 0 0
1 0 0 · · · 0 0





to obtain the expressions in (6.20). (Note thatT is a non-singular matrix.)

If we use (6.20) then we have, fors ≤ n, thatV xΦ
s = [V xΦ

s−1 | ∆xs
s−1] andW xΦ

s =

[W xΦ
s−1 | ∆xs

s−1]. This property will be useful for analyzing the algorithms.

Remark 6.5. If V xΦ
s is given by (6.9) or (6.20) thenR(V xΦ

s ) = R(V xΦ
s T ) for

s = 0, 1, . . . , if T is a non-singular matrix∈ Rs×s.
The proof of this property is straightforward.

Theorem 6.2.2.For s ≤ n: A(V xΦ
s ,W xΦ

s ) ⊂ A(V xΦ
s−1,W

xΦ
s−1).

Proof. As we have seen in theorem 6.2.1 we can re-arrange the columnsof V xΦ
s

andW xΦ
s without changing the construction of the approximate Jacobian. In this

proof we will use the form given in (6.20).
∀Å ∈ A(V xΦ

s−1,W
xΦ
s−1) we have that

ÅV xΦ
s−1 = W xΦ

s−1 (6.21)

or, alternatively,

Å∆xs
i = ∆Φs

i for i = ñ, . . . , s − 2. (6.22)
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∀Å ∈ A(V xΦ
s ,W xΦ

s ) we have that

Å∆xs
i = ∆Φs

i for i = ñ, . . . , s − 1. (6.23)

We can conclude that∀Å ∈ A(V xΦ
s ,W xΦ

s ) : Å ∈ A(V xΦ
s−1,W

xΦ
s−1), which proves

the theorem.

Theorem 6.2.3.ConsiderV xΦ
s given by (6.9) or (6.20). ThenR(V xΦ

s−1) ⊂ R(V xΦ
s )

for s ≤ n.

Proof. We will prove the theorem for the formulation (6.20).
For that formulation the proof is straightforward asV xΦ

s = [V xΦ
s−1 | ∆xs

s−1].
With remark 6.5 in mind we see that the same holds for the formulation of (6.9).

Remark 6.6. Orthogonalization can be performed with any available method (cfr.
§3.2.4).

Remark 6.7. From the construction of̂Φ′
s it is obvious that̂Φ′

s ∈ A(V xΦ
s ,W xΦ

s ),
and ifΦ is an affine mapping (Φ(x) = Ax− b), thenA ∈ A(V xΦ

s ,W xΦ
s ), ∀s ∈ N.

6.3 Applying the Least Squares approximate Jaco-
bian to quasi-Newton type methods

When solving (1.3), i.e.K(p) = 0, we can apply the approximate Jacobian of
§6.1 to the quasi-Newton type methods of chapters 4 and 5 as we will show in this
section.

6.3.1 IQN-LS

When we apply the Least Squares approximate Jacobian construction of §6.1 to
the Interface quasi-Newton (IQN) method of§5.1 (algorithm 5.1.1) we obtain the
IQN-LS method.

We first point out that the method described in§6.1 will result in a Jacobian of
ranks (≤ n), which clearly poses a problem if we want to use it straightaway to
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approximate the Jacobian ofK in a quasi-Newton method, as we need to invert
this matrix (equation (4.4):ps+1 = ps − (K̂ ′

s)
−1K(ps)). We therefore set̂K ′

s =

Ĥ ′
s − I, based on the fact thatK = H − I, where we defineI as the identity

functionI : Rn×1 → Rn×1 : x 7→ I(x) = x and whereĤ ′
s is the approximate

Jacobian forH,
We then construct̂H ′

s according to the least squares formulation of§6.1:

Ĥ ′
s = W pH

s (V pH
s )+ (6.24)

and thus

K̂ ′
s = W pH

s (V pH
s )+ − I, (6.25)

where

∆ps
i = ps − pi (i = ñ, . . . , s − 1) (6.26a)

V pH
s = [∆ps

s−1 ∆ps
s−2 . . . ∆ps

ñ] ∈ R
n×min{s,n} (6.26b)

∆Hs
i = H(ps) − H(pi) (i = ñ, . . . , s − 1) (6.26c)

W pH
s = [∆Hs

s−1 ∆Hs
s−2 . . . ∆Hs

ñ] ∈ R
n×min{s,n}. (6.26d)

In chapter 7 we will show that, if we construct̂K ′
s in this manner, it will not be-

come singular for affine mappings before the solution has been reached, which
justifies our choice.

Note that (6.24) can only be used fors ≥ 1, becauseĤ ′
s cannot be constructed

earlier. Oftenp1 = H(po) will be used, which can be seen as settingK̂ ′
o = −I

in equation (4.4) or settinĝH ′
s equal to zero, which is as good as any guess, as we

don’t know anything about the Jacobian a priori.
Alternatively, we could use under-relaxation, as already mentioned in algorithm
5.1.1:p1 = (1 − ω)po + ωH(po) (ω ∈ Ro).
We will go into more detail about the use of a relaxation factor in chapter 8 (§8.3).

Remark 6.8. Note that for an affine mappingH(p) = AHp − bH we have

K̂ ′
s = AHV pH

s (V pH
s )+ − I. (6.27)

Remark 6.9. Note that in (6.26)∆ps
s−1 = ps − ps−1 = δps−1. We will use

both notations, whereδps−1 is used to denote the difference of two consecutive
iterates and∆ps

s−1 for an input-mode. As we have seen in§6.2, input modes can
be defined in various ways; hence the distinction in notation.
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6.3.2 IQN-ILS

When we apply the Least Squares approximate Jacobian construction of §6.1 to
the Interface quasi-Newton method with Inverse Jacobian (IQN-I) of §5.1 (algo-
rithm 5.1.2) we obtain the IQN-ILS method.

If we defineM : Rn×1 → Rn×1 : w 7→ M(w) such thatM−1 = K then
we have that(K ′(M(w)))−1 = M ′(w). A logical choice for the Jacobian to
be approximated by the least squares approach would be that of M by means of
WwM

s (V wM
s )+. Unfortunately, just as in§6.3.1, the Jacobian that we obtain in this

manner would be singular fors < n, which means that in the quasi-Newton step of
equation (4.5) we would have thatps+1−ps lies in the range of this singular Jaco-
bian, which is equal to the range ofWwM

s . AsR(WwM
s ) equals span{ps−pi}s−1

i=0

(for s ≤ n) it follows that all consecutive iterates will be linear combinations of
po, p1, . . . , ps. Unlessp∗ lies in the subspace spanned by these vectors, there is no
hope to achieve convergence.

To avoid singularity ofM̂ ′
s we will use the procedure described below, which is

similar to the one in§6.3.1. Just as for IQN-LS we will show in chapter 7 that the
approximate inverse Jacobian̂M ′

s obtained in this manner will not become singu-
lar for affine mappings before the solution has been reached,which justifies our
choice.

Let G(w) = H(K−1(w)), then

G(w) − I(w) = H(K−1(w)) − I(w) (6.28)

= H(K−1(w)) − K(K−1(w)) (6.29)

= (H − K)(K−1(w)) (6.30)

= I(K−1(w)) (6.31)

= K−1(w). (6.32)

It follows that(K−1)′(w) = G′(w) − I = (K ′(K−1(w)))−1.
Hence, to approximate(K ′(K−1(w)))−1 we can use the approximation ofG′(w),
using the same technique described in§6.1. We obtain

∆ws
i = ws − wi (i = ñ, . . . , s − 1) (6.33a)

V wG
s = [∆ws

s−1 ∆ws
s−2 . . . ∆ws

ñ] ∈ R
n×min{s,n} (6.33b)

∆Gs
i = G(ws) − G(wi) (i = ñ, . . . , s − 1) (6.33c)

V wG
s = [∆Gs

s−1 ∆Gs
s−2 . . . ∆Gs

ñ] ∈ R
n×min{s,n}. (6.33d)
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Ĝ′
s = WwG

s (V wG
s )+ (6.34)

(̂K−1)
′

s = WwG
s (V wG

s )+ − I. (6.35)

SettingK−1(wi) = pi for i = 0, 1, . . . (i.e. wi = K(pi) andG(wi) = H(K−1(wi)) =

H(pi)) and modifying the notation accordingly we get

(̂K−1)
′

s = M̂ ′
s = WKH

s (V KH
s )+ − I, (6.36)

where

∆Ks
i = K(ps) − K(pi) (i = ñ, . . . , s − 1) (6.37a)

V KH
s = [∆Ks

s−1 ∆Ks
s−2 . . . ∆Ks

ñ] ∈ R
n×min{s,n} (6.37b)

∆Hs
i = H(ps) − H(pi) (i = ñ, . . . , s − 1) (6.37c)

WKH
s = [∆Hs

s−1 ∆Hs
s−2 . . . ∆Hs

ñ] ∈ R
n×min{s,n}. (6.37d)

Remark 6.10. Note that for affine mappingsH(p) = AHp− bH , K(p) = AKp−
bK we have

M̂ ′
s = AH(AK)−1V KH

s (V KH
s )+ − I (6.38)

= (A−1
K + I)V KH

s (V KH
s )+ − I. (6.39)

6.3.3 IQN-CLS

When we apply the Least Squares approximate Jacobian construction of §6.1 to
the Interface quasi-Newton method with Composed Jacobian (IQN-C) of §5.2 (al-
gorithm 5.2.1) we obtain the IQN-CLS method.
To do this we construct̂F ′

s andŜ′
s as follows:

F̂ ′
s = W gF

s (V gF
s )+ (6.40a)

Ŝ′
s = W pS

s (V pS
s )+, (6.40b)

where
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∆gs
i = gs − gi (i = ñ, . . . , s − 1) (6.41a)

V gF
s = [∆gs

s−1 ∆gs
s−2 . . . ∆gs

ñ] ∈ R
m×min{s,n} (6.41b)

∆F s
i = F (gs) − F (gi) (i = ñ, . . . , s − 1) (6.41c)

W gF
s = [∆F s

s−1 ∆F s
s−2 . . . ∆F s

ñ ] ∈ R
n×min{s,n} (6.41d)

∆ps
i = ps − pi (i = ñ, . . . , s − 1) (6.41e)

V pS
s = [∆ps

s−1 ∆ps
s−2 . . . ∆ps

ñ] ∈ R
n×min{s,n} (6.41f)

∆Ss
i = S(ps) − S(pi) (i = ñ, . . . , s − 1) (6.41g)

W pS
s = [∆Ss

s−1 ∆Ss
s−2 . . . ∆Ss

ñ] ∈ R
m×min{s,n}. (6.41h)

6.3.4 IBQN-LS

When we apply the Least Squares approximate Jacobian construction of §6.1 to
the Interface Block quasi-Newton method (IBQN) of§5.3 (algorithm 5.3.1) we
obtain the IBQN-LS method.

F̂ ′
s andŜ′

s are constructed as in§6.3.3.



7
Properties of IQN-LS, IQN-ILS,

IQN-CLS and IBQN-LS for non-linear
mappings

In this chapter we will establish some important propertiesof the four Least Squares
algorithms discussed in chapter 6 (IQN-LS, IQN-ILS, IQN-CLS and IBQN-LS),
when the mappingsK, H, S andF are non-linear.

This chapter is broadly organized as follows.
In §7.1 we re-write the construction of the Least Squares approximate Jacobian
in a Rank-One Update form; we discuss the generalized secantproperty for the
Least Squares quasi-Newton methods in§7.2 and the Least Change Secant Update
property for IQN-LS and IQN-ILS in§7.3. In§7.4.1 we will show that IQN-LS is
algebraically equivalent to IQN-CLS; ifF is an affine mapping then both are also
equivalent to IBQN-LS, as shown in§7.4.2. Finally, in§7.5, we tackle the problem
of possible singularities in the construction of the approximate Jacobian.

In this chapter we will often use the following notation (as used in lemma 2.3.2):
L∗∗

s , which represents a matrix containing, in its columns, an orthonormal basis
for the range ofV ∗∗

s . The “wildcard” superscript “∗∗ ” will be replaced with the
appropriate letters as first used in chapter 6; e.g. for the approximate Jacobian of
H this becomesV pH

s andLpH
s , for that ofS we writeV gS

s andLgS
s , etc.

For the theoretical analysis we will assume that the orthonormal bases are con-
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structed such thatL∗∗
s+1 = [L∗∗

s |L̄∗∗
s+1] (s < n) whereL̄∗∗

s+1 is the newly added
basis vector for the range ofV ∗∗

s+1. We recall that, according to theorem 6.2.3,
R(V xΦ

s ) ⊂ R(V xΦ
s+1) for s < n.

Note that for this convention we have that

L∗∗
s+1(L∗∗

s+1)
T = L∗∗

s (L∗∗
s )T + L̄∗∗

s+1(L̄
∗∗
s+1)

T . (7.1)

Unless otherwise stated we assume that no singularities occur, i.e. all matrices that
need to be inverted are of full rank1. As we will show later, this assumption can be
guaranteed whenF, S,H and/orK are affine mappings (§8.1).

7.1 Re-writing IQN-LS and IQN-ILS with a Rank-
One Update formula

In this section we will show that the approximate Jacobian ofthe IQN-LS, resp.
IQN-ILS, method (̂K ′

s+1, resp. M̂ ′
s+1) can be obtained by applying a rank-one

update toK̂ ′
s, resp.M̂ ′

s (cfr. §4.4) [107].
For IQN-CLS and IBQN-LS a similar procedure is available.
We like to stress that these rank-one formulations do not change the actual algo-
rithms algebraically, although they can influence them numerically and can reduce
the computational cost of the actual implementation.

7.1.1 IQN-LS

Theorem 7.1.1.Suppose that̂K ′
s is constructed as in the IQN-LS method (§6.3.1),

thenK̂ ′
s+1 is linked toK̂ ′

s by the following expression (fors < n):

∀ÅH ∈ A(V pH
s+1,W

pH
s+1) : K̂ ′

s+1 = K̂ ′
s + ÅH L̄pH

s+1(L̄
pH
s+1)

T , (7.2)

whereL̄pH
s+1 is the(s + 1)-th column ofLpH

s+1 (which is a matrix containing in its

columns an orthonormal basis for the range ofV pH
s+1)2.

Proof. ∀ÅH ∈ A(V pH
s+1,W

pH
s+1) ⊂ A(V pH

s ,W pH
s ) (theorem 6.2.2) we have that

W pH
s = ÅHV pH

s andW pH
s+1 = ÅHV pH

s+1. It follows that, according to lemma

1We point out that inverses are rarely computed in real applications, but replaced by the computation
of the solution of the corresponding linear system.

2See definition 4.2 for the meaning ofA(V pH
s+1

, W
pH
s+1

).
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2.3.2, we have

K̂ ′
s+1 − K̂ ′

s = (ÅHLpH
s+1(LpH

s+1)
T − I) − (ÅHLpH

s (LpH
s )T − I)

(7.3)

= ÅH(LpH
s+1(LpH

s+1)
T − LpH

s (LpH
s )T ). (7.4)

Using equation (7.1) we get

K̂ ′
s+1 − K̂ ′

s = ÅH L̄pH
s+1(L̄

pH
s+1)

T , (7.5)

which completes our proof.

Corollary 7.1.1. Suppose that (fors < n) K̂ ′
s is constructed as in the IQN-LS

method (§6.3.1) and that,∀ÅH ∈ A(V pH
s+1,W

pH
s+1), we have

(L̄pH
s+1)

T (K̂ ′
s)

−1ÅH L̄pH
s+1 6= −1, (7.6)

thenK̂ ′
s+1 is non-singular and

(K̂ ′
s+1)

−1 = (K̂ ′
s)

−1 − (K̂ ′
s)

−1ÅH L̄pH
s+1(L̄

pH
s+1)

T (K̂ ′
s)

−1

1 + (L̄pH
s+1)

T (K̂ ′
s)

−1ÅH L̄pH
s+1

, (7.7)

whereL̄pH
s+1 is the(s + 1)-th column ofLpH

s+1.

Proof. To prove this theorem we apply theorem 2.3.3 (Sherman-Morrison theo-
rem) where we putQ = K̂ ′

s, u = ÅH L̄s+1, v = L̄s+1. Then according to theorem
7.1.1 we havêK ′

s+1 = Q + uvT and (7.7) follows.

The results from theorem 7.1.1 and corollary 7.1.1 imply that we can use equation
(7.2) to updateK̂ ′

s and equation (7.7) to update(K̂ ′
s)

−1, if (7.6) is satisfied.
Note thatÅH L̄pH

s+1(L̄
pH
s+1)

T is a matrix of rank 1, and that as a consequence (7.2)
can be considered as a rank-one update applied toK̂ ′

s to obtainK̂ ′
s+1 (definition

2.9 and equation (4.13)). Based on (7.2) and (7.7) we can now conclude that we
are able to formK̂ ′

s+1 and(K̂ ′
s+1)

−1 using only matrix-vector and scalar products
if we are able to computēLpH

s+1 andÅH L̄pH
s+1 from the available data.

We show that this is indeed possible and that we do not need theactual knowledge
of a matrixÅH ∈ A(V pH

s+1,W
pH
s+1) to compute the rank-one update.
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The new basis vector̄LpH
s+1 can be computed using

L̄pH
s+1 =

δps − LpH
s (LpH

s )T δps

‖δps − LpH
s (LpH

s )T δps‖
, (7.8)

which can be done based on the available data (δps = ps+1 − ps), while for the
computation ofÅH L̄pH

s+1 we can use the following relationships.

ÅH L̄pH
s+1 = ÅH

δps − LpH
s (LpH

s )T δps

‖δps − LpH
s (LpH

s )T δps‖

=
ÅHδps − ÅHLpH

s (LpH
s )T δps

‖δps − LpH
s (LpH

s )T δps‖

=
δHs − ÅHV pH

s (V pH
s )T δps

‖δps − LpH
s (LpH

s )T δps‖

=
δHs − ÅHV pH

s (V pH
s )T δps − δps + δps

‖δps − LpH
s (LpH

s )T δps‖

=
δHs − δps − (ÅHV pH

s (V pH
s )T − I)δps

‖δps − LpH
s (LpH

s )T δps‖

=
δKs − K̂ ′

sδps

‖δps − LpH
s (LpH

s )T δps‖

=
K(ps+1) − K(ps) − K̂ ′

sδps

‖δps − LpH
s (LpH

s )T δps‖
, (7.9)

whereδKs = K(ps+1) − K(ps). Note that all the terms in (7.9) are available
from the algorithm.

We can write the resulting update (fors < n) as

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)((I − LpH
s (LpH

s )T )δps)
T

〈(I − LpH
s (LpH

s )T )δps, (I − LpH
s (LpH

s )T )δps〉
. (7.10)

As (I − LpH
s (LpH

s )T )T (I − LpH
s (LpH

s )T ) = I − LpH
s (LpH

s )T this simplifies to

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)((I − LpH
s (LpH

s )T )δps)
T

〈δps, (I − LpH
s (LpH

s )T )δps〉
. (7.11)

Using the fact thatp+1 = ps − (K̂ ′
s)

−1K(ps) we can write equation (7.11) as

K̂ ′
s+1 = K̂ ′

s +
K(ps+1)((I − LpH

s (LpH
s )T )δps)

T

〈δps, (I − LpH
s (LpH

s )T )δps〉
. (7.12)
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Remark 7.1. We will go into more details about possible singularities in§7.5.

Remark 7.2. If H is an affine mapping (H(p) = AHp − bH ) then an obvious
choice forÅH is AH .

For the update from̂K ′
n to K̂ ′

n+1 matters are slightly more involved.
For the derivation we will use the formulation given in (6.20), i.e. K̂ ′

n is formed
with V pH

n andW pH
n as follows.

V pH
n = [p1 − po| p2 − p1| . . . |pn − pn−1] ∈ R

n×n

W pH
n = [H(p1) − H(po)| H(p2) − H(p1)| . . . |H(pn) − H(pn−1)] ∈ R

m×n;

K̂ ′
n = W pH

n (V pH
n )+ − I.

K̂ ′
n+1 is formed withV pH

n+1 andW pH
n+1 as follows

V pH
n+1 = [p2 − p1| p3 − p2| . . . |pn+1 − pn] ∈ R

n×n

W pH
n+1 = [H(p2) − H(p1)| H(p3) − H(p2)| . . . |H(pn+1) − H(pn)] ∈ R

m×n;

K̂ ′
n+1 = W pH

n+1(V
pH
n+1)

+ − I.

Additionally, we introduce the following matrices:

Ṽ = [p2 − p1| p3 − p2| . . . |pn − pn−1] ∈ R
n×(n−1)

W̃ = [H(p2) − H(p1)| H(p3) − H(p2)| . . . |H(pn) − H(pn−1)] ∈ R
m×(n−1);

K̃ ′ = W̃ (Ṽ )+ − I.

(We have chosen to drop most superscripts from the newly introduced entities in
this section, as we believe this does not hamper understanding; these will only ap-
pear in this section.)

It is clear from these conventions that

V pH
n = [p1 − po|Ṽ ] (7.16)

V pH
n+1 = [Ṽ |pn+1 − pn]. (7.17)

As such, using theorem 6.2.3, we see thatR(Ṽ ) ⊂ R(V pH
n ) andR(Ṽ ) ⊂ R(V pH

n+1).

We will be usingLpH
n , resp.LpH

n+1, L̃, for the matrix containing in its columns an

orthonormal basis forR(V pH
n ), resp.R(V pH

n+1), R(Ṽ ). Contrary to previous con-
ventions we will construct the bases such that
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LpH
n = [L̄pH

1 |L̃] (7.18)

LpH
n+1 = [L̃|L̄pH

n+1]. (7.19)

By analogy with the results of theorem 7.1.1 we arrive at

K̂ ′
n = K̃ ′ + ÅH,nL̄pH

1 (L̄pH
1 )T (7.20)

K̂ ′
n+1 = K̃ ′ + ÅH,n+1L̄

pH
n+1(̄L

pH
n+1)

T , (7.21)

whereL̄pH
1 = (I − L̃L̃T )δpo, L̄pH

n+1 = (I − L̃L̃T )δpn. ÅH,n is any matrix in

A(V pH
n ,W pH

n ) andÅH,n+1 is any matrix inA(V pH
n+1,W

pH
n+1).

From this we see that

K̂ ′
n+1 − K̂ ′

n = ÅH,n+1L̄
pH
n+1(L̄

pH
n+1)

T − ÅH,nL̄pH
1 (L̄pH

1 )T . (7.22)

Pointing out that̄LpH
1 = L̄pH

n+1 because(R(Ṽ ))⊥ is only a subspace of dimension
1, we obtain

K̂ ′
n+1 − K̂ ′

n = (ÅH,n+1 − ÅH,n)L̄pH
1 (L̄pH

1 )T , (7.23)

which represents a rank-one update. In generalÅH,n 6= ÅH,n+1, unlessH is an
affine mapping. ( In that case it is clear that the update wouldbe the zero matrix.)
We will show in chapter 8 (§8.1), that this is a logical consequence for affine map-
pings, as in that instance convergence will have been reached.

By analogy with (7.11), and using

K̂ ′
n = K̃ ′ +

(δKo − K̃ ′δpo)((I − L̃L̃T )δpo)
T

〈δpo, (I − L̃L̃T )δpo〉
(7.24)

K̂ ′
n+1 = K̃ ′ +

(δKn − K̃ ′δpn)((I − L̃L̃T )δpn)T

〈δpn, (I − L̃L̃T )δpn〉
, (7.25)

(7.23) can be re-written as

K̂ ′
n+1 = K̂ ′

n +
(δKn − K̃ ′δpn)((I − L̃L̃T )δpn)T

〈δpn, (I − L̃L̃T )δpn〉

− (δKo − K̃ ′δpo)((I − L̃L̃T )δpo)
T

〈δpo, (I − L̃L̃T )δpo〉
, (7.26)
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which equals

K̂ ′
n+1 = K̂ ′

n +
(
(δKn − K̃ ′δpn) − (δKo − K̃ ′δpo)

) ((I − L̃L̃T )δpn)T

〈δpn, (I − L̃L̃T )δpn〉
.

(7.27)

Unfortunately (7.27) cannot be computed becauseK̃ is never explicitly formed.
However, we can show that (7.27) can be re-arranged to a form that is very similar
to (7.12):

K̂ ′
n+1 = K̂ ′

n +
(δKn − K̂ ′

nδpn)((I − L̃L̃T )δpn)T

〈δpn, (I − L̃L̃T )δpn〉
. (7.28)

To show this equality we replacêK ′
n in (7.28) by (7.24). Re-arranging the terms

then yields (7.27).

7.1.2 IQN-ILS

Theorem 7.1.2.Suppose that̂M ′
s is constructed as in the IQN-ILS method (§6.3.2),

thenM̂ ′
s+1 is linked toM̂ ′

s by the following expression (fors < n):

∀ÅM ∈ A(V KH
s+1 ,WKH

s+1 ) : M̂ ′
s+1 = M̂ ′

s + ÅM L̄KH
s+1(L̄KH

s+1)T , (7.29)

whereL̄KH
s+1 is the(s + 1)-th column ofLKH

s+1 .

Proof. ∀ÅM ∈ A(V KH
s+1 ,WKH

s+1 ) ⊂ A(V KH
s ,WKH

s ) (theorem 6.2.2) we have
that WKH

s = ÅMV KH
s andWKH

s+1 = ÅMV KH
s+1 . It follows that, according to

lemma 2.3.2, we have

M̂ ′
s+1 − M̂ ′

s =
(
ÅMLKH

s+1(LKH
s+1)T − I

)
−
(
ÅMLKH

s (LKH
s )T − I

)

(7.30)

= ÅM (LKH
s+1(LKH

s+1)T − LKH
s (LKH

s )T ). (7.31)

Using equation (7.1) we get

M̂ ′
s+1 − M̂ ′

s = ÅM L̄KH
s+1(L̄KH

s+1)T , (7.32)

which completes our proof.
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Theorem 7.1.2 implies that we can use (7.29) to updateM̂ ′
s. Note thatÅM L̄KH

s+1(L̄KH
s+1)T

is a matrix of rank 1, and that as a consequence (7.29) can be considered as a rank-
one update applied tôM ′

s to obtainM̂ ′
s+1 (definition 2.9 and equation (4.14)).

Just as with the matrix̂K ′
s of the IQN-LS method we have to find a convenient

way to computēLKH
s+1 andÅM L̄KH

s+1 from the available data.
The new basis vector̄LKH

s+1 can be computed using

L̄KH
s+1 =

(I − LKH
s (LKH

s )T )δKs

‖(I − LKH
s (LKH

s )T )δKs‖
, (7.33)

while ÅM L̄KH
s+1 can be computed, in similar fashion to§7.1.1, as

ÅM L̄KH
s+1 =

δps − M̂ ′
sδKs

‖(I − LKH
s (LKH

s )T )δKs‖
. (7.34)

As a result, we can write the rank-one update as

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)
(
(I − LKH

s (LKH
s )T )δKs

)T

〈δKs, (I − LKH
s (LKH

s )T )δKs〉
(7.35)

= M̂ ′
s −

M̂ ′
sK(ps+1)

(
(I − LKH

s (LKH
s )T )δKs

)T

〈δKs, (I − LKH
s (LKH

s )T )δKs〉
. (7.36)

Remark 7.3. We will go into more details about possible singularities in§7.5.

Remark 7.4. If H is an affine mapping (H(p) = AHp − bH ) then an obvious
choice forÅM is AH(AH − I)−1 = A−1

K + I. (This follows from the fact that
Hδpi = AHδpi = AHA−1

K δKi = AH(AH − I)−1δKi, for i = 1, . . . , s.)

Remark 7.5. A corollary similar to corollary 7.1.1 can be written, even though
no actual need exists to know the inverse ofM̂ ′

s+1.

Remark 7.6. Similar results as for IQN-LS are found for the update from̂M ′
n to

M̂ ′
n+1

7.1.3 IQN-CLS and IBQN-LS

In the IQN-CLS and IBQN-LS method we use two approximate Jacobians, which
each can be obtained with a rank-one update formula, as givenbelow.
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Ŝ′
s+1 = Ŝ′

s +
(δSs − Ŝ′

sδps)((I − LpS
s (LpS

s )T )δps)
T

〈δps, (I − LpS
s (LpS

s )T )δps〉
(7.37)

F̂ ′
s+1 = F̂ ′

s +
(δFs − F̂ ′

sδgs)((I − LgF
s (LgF

s )T )δgs)
T

〈δgs, (I − LgF
s (LgF

s )T )δgs〉
, (7.38)

whereδSs = S(ps+1) − S(ps), δFs = F (gs+1) − F (gs).

We note that we will actually need the inverse ofF̂ ′
s+1Ŝ

′
s+1 − I for the IQN-CLS

method and the inverses ofI−F̂ ′
s+1Ŝ

′
s+1 andI−Ŝ′

s+1F̂
′
s for the IBQN-LS method

(algorithms 5.2.1 and 5.3.1 respectively). In order to be able to apply the Sherman-
Morrison theorem to these expressions, we would like to write these as a rank-one
update with respect to the previously known values.

For IQN-CLS the updates to be computed are the following:

F̂ ′
sŜ

′
s − I → F̂ ′

s+1Ŝ
′
s+1 − I.

If we use∆F̂ , resp.∆Ŝ for the respective rank-one updates ofF̂ ′
s andŜ′

s (equa-
tions (7.37) and (7.38)) we see that

F̂ ′
s+1Ŝ

′
s+1 − I = (F̂ ′

s + ∆F̂ )(Ŝ′
s + ∆Ŝ) − I

= F̂ ′
sŜ

′
s − I + F̂ ′

s∆Ŝ + ∆F̂ Ŝ′
s + ∆F̂∆Ŝ︸ ︷︷ ︸

(∗)

.

The part marked with(∗) is thus the update of the whole expression. The three
terms of(∗) are each rank-one matrices. In general, this does not imply that their
sum, i.e(∗), is a rank-one matrix. This means that we cannot use the Sherman-
Morrison theorem straight away, but would need to use the theorem three times,
once for each rank-one matrix.
However, as we will show in§7.4, IQN-LS and IQN-CLS are algebraically identi-
cal, and thus
(∗) = (F̂ ′

s+1Ŝ
′
s+1 − I) − (F̂ ′

sŜ
′
s − I) = F̂ ′

s∆Ŝ + ∆F̂ Ŝ′
s + ∆F̂∆Ŝ

is indeed a rank-one matrix.
We point out that this conclusion is generally not applicable to the Jacobians of
the other quasi-Newton methods that were summarized in chapter 4; see§7.4 for
more details.

For IBQN-LS the updates to be computed are the following:

I − Ŝ′
sF̂

′
s → I − Ŝ′

s+1F̂
′
s

I − F̂ ′
sŜ

′
s+1 → I − F̂ ′

s+1Ŝ
′
s+1.
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Using the same approach as for the IQN-CLS method we obtain:

I − Ŝ′
s+1F̂

′
s = I − Ŝ′

sF̂
′
s −∆ŜF̂ ′

s︸ ︷︷ ︸
(∗∗)

I − F̂ ′
s+1Ŝ

′
s+1 = I − F̂ ′

sŜ
′
s+1 −∆F̂ Ŝ′

s︸ ︷︷ ︸
(∗∗∗)

,

where the parts marked with(∗∗) and(∗ ∗ ∗) are rank-one matrices. As such, the
Sherman-Morrison theorem can be applied if required.

Remark 7.7. Similar results as for IQN-LS are found for the update fromŜ′
n and

F̂ ′
n to Ŝ′

n+1 andF̂ ′
n+1.

7.1.4 Conclusions

From the results in this section, we see that IQN-LS corresponds to the rank-one
update form of equation (4.15), i.e.

K̂ ′
s+1 = K̂ ′

s +
(δKs − K̂ ′

sδps)c
T
s

〈cs, δps〉
,

with cs = (I − LpH
s (LpH

s )T )δps, while IQN-ILS corresponds to the form of
equation (4.16), i.e.

M̂ ′
s+1 = M̂ ′

s +
(δps − M̂ ′

sδKs)d
T
s

〈ds, δKs〉
,

with ds = (I − LKH
s (LKH

s )T )δKs.
Furthermore, we see that the vectorv in equation (4.13), resp. (4.14), respects the
condition that〈v, δps−1〉 = 0, resp.〈v, δKs−1〉 = 0, for IQN-LS, resp. IQN-ILS.
Convergence properties of rank-one update secant methods that respect this con-
dition have been well-studied [145].

We also see, from (7.12), that we have that

∀z⊥(I − LpH
s (LpH

s )T )δps : K̂ ′
s+1z = K̂ ′

sz; (7.39)

i.e. the approximate Jacobian only changes in the directionof the newly added
orthogonal basis-vector(I − LpH

s (LpH
s )T )δps of R(V pH

s+1).
For every directionz⊥R(V pH

s ) we haveK̂ ′
sz = −z. The latter can be interpreted

as setting the approximate Jacobian ofH equal to zero in every direction of which
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no information is available.

Similarly, for IQN-ILS we see, from equation (7.36), that wehave that

∀z⊥(I − LKH
s (LKH

s )T )δKs : M̂ ′
s+1z = M̂ ′

sz; (7.40)

i.e. the approximate Jacobian only changes in the directionof the newly added
orthogonal basis-vector(I − LKH

s (LKH
s )T )δKs of R(V KH

s+1 ).
For every directionz⊥R(V KH

s ) we haveM̂ ′
sz = −z. The latter can again be in-

terpreted as setting the approximate Jacobian ofH equal to zero in every direction
of which no information is available.

These results show that IQN-LS and IQN-ILS possess a number of similarities
with resp. Broyden’s good and Broyden’s bad method (§4.4.1 and§4.4.2).
For Broyden’s good method we have

∀z⊥δps : K̂ ′
s+1z = K̂ ′

sz. (7.41)

This closely links IQN-LS with Broyden’s good method. The difference being that
Broyden does not change the Jacobian in the orthogonal complement of the last
directionδps, while we do not change the Jacobian in the orthogonal complement
of the new directionδps after orthogonalizing it w.r.t. all previous directions. This
means that we keep our Jacobian the same for all previously visited directions,
while Broyden doesn’t. This can be both an advantage and a disadvantage. The
advantage being that we keep information about more directions intact. On the
other hand, we are “locked-in” by our previous directions, which may no longer
be accurate, while Broyden does not have this restriction.
One of the most important advantages of our method over Broyden’s is the fact
that in exact arithmetic IQN-LS converges inn + 1 iterations for affine mappings,
while Broyden’s good method only converge in2n iterations. (See§8.1 for more
details.) It is believed that this advantage is carried overto weakly non-linear prob-
lems.

For Broyden’s bad method we have

∀z⊥δKs : M̂ ′
s+1z = M̂ ′

sz. (7.42)

The relationship between Broyden’s bad method and IQN-ILS is analogous to the
one between Broyden’s good method and IQN-LS.
Similar conclusions hold for IQN-CLS versus IQN-CBG and IBQN-LS and IBQN-
BG.
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7.2 The generalized secant property

In this section we will show that the IQN-LS and IQN-ILS algorithms not only
respect the secant equation given in (4.10) and (4.11), but ageneralized secant
equation3 (of orderσ), which we define as

K̂ ′
s(ps−j+1 − ps−j) = K(ps−j+1) − K(ps−j), (7.43)

resp.

ps−j+1 − ps−j = M̂ ′
s(K(ps−j+1) − K(ps−j)), (7.44)

for j = 1, 2, . . . , σ, (σ ≤ min(s, n)).

7.2.1 IQN-LS

Theorem 7.2.1. The IQN-LS method (§6.3.1) is a generalized secant method of
ordermin{s, n} (equation (7.43)).

Proof. From the construction of the Jacobian in§6.3.1 we know that there exists
a non-singular matrixT ∈ Rs×s such that

Ṽ pH
s = [pñ+1 − pñ|pñ − pñ−1| . . . |ps − ps−1]

= V pH
s T

W̃ pH
s = [H(pñ+1) − H(pñ)|H(pñ) − H(pñ−1)| . . . |H(ps) − H(ps−1)]

= W pH
s T .

(See equation (6.20).)

Then, according to theorem 6.2.1, we have that

K̂ ′
s = W̃ pH

s ((Ṽ pH
s )T Ṽ pH

s )−1(Ṽ pH
s )T − I.

It follows that

K̂ ′
s[ps − ps−1|ps−1 − ps−2| . . . |pñ+1 − pñ] = K̂ ′

sṼ
pH
s

= W̃ pH
s (Ṽ pH

s )+Ṽ pH
s − Ṽ pH

s

= W̃ pH
s − Ṽ pH

s

= [K(ps) − K(ps−1)|K(ps−1) − K(ps−2)| . . .
. . . |K(pñ+1) − K(pñ)],

3Also known asextended secant condition[246].
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which proves (7.43).

Corollary 7.2.1. If K is an affine mapping, then for the IQN-LS method (§6.3.1)
the following property holds.∀x, y ∈ Rn×1 such thatx − y ∈ R(V pH

s ) we have
that

K̂ ′
s(x − y) = K(x) − K(y). (7.45)

Proof. The proof is an immediate consequence of lemmas 2.3.2 and 2.3.3.
As K̂ ′

s = AHLpH
s (LpH

s )T − I and asLpH
s (LpH

s )T is an orthogonal projector on
R(V pH

s ) we have

∀x, y ∈ R
n×1 : x − y ∈ R(V pH

s ) :

K̂ ′
s(x − y) = AH(x − y) − (x − y) (7.46)

= ((AH − I)x − bK) − ((AH − I)y − bK)

(7.47)

= K(x) − K(y), (7.48)

which proves (7.45).

Corollary 7.2.2. For the IQN-LS method (§6.3.1) the following expression holds:

K(ps+1) = (I − K̂ ′
s+1(K̂

′
s)

−1)K(ps). (7.49)

Proof. We have thatps+1 = ps−(K̂ ′
s)

−1K(ps) (from the quasi-Newton iteration
(4.4)) and (from theorem 7.2.1)K(ps+1) = K(ps)+ K̂ ′

s+1(ps+1−ps). From this
(7.49) follows.

Corollary 7.2.3. For the IQN-LS method (§6.3.1) the following property holds (for
s < n):

∀ÅH ∈ A(V pH
s+1,W

pH
s+1) : K(ps+1) = ÅH L̄pH

s+1(L̄
pH
s+1)

T δps, (7.50)

with δps = ps+1 − ps andL̄pH
s+1 the(s + 1)-th column ofLpH

s+1.
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Proof. From theorem 7.1.1 we have∀ÅH ∈ A(V pH
s+1,W

pH
s+1):

K̂ ′
s+1(K̂

′
s)

−1 = I + ÅH L̄pH
s+1(L̄

pH
s+1)

T (K̂ ′
s)

−1. (7.51)

Inserting this in (7.49) gives

K(ps+1) = −ÅH L̄pH
s+1(L̄

pH
s+1)

T (K̂ ′
s)

−1K(ps) (7.52)

= ÅH L̄pH
s+1(L̄

pH
s+1)

T δps, (7.53)

which completes our proof.

Remark 7.8. From the arguments in theorem 7.2.1 it follows that IQN-LS also
respects a generalized secant equation, if it were written as

K̂ ′
s(ps − ps−j) = K(ps) − K(ps−j), (7.54)

for j = 1, 2, . . . , σ, (σ ≤ min(s, n)).

Remark 7.9. Corollary 7.2.2 can be extended fors ≥ n by using the arguments
in §7.1.

7.2.2 IQN-ILS

Theorem 7.2.2. The IQN-ILS method (§6.3.2) is a generalized secant method of
ordermin(s, n) (equation (7.44)).

The proof is analogous to the one of theorem 7.2.1.

Corollary 7.2.4. If K is an affine mapping, then for the IQN-ILS method (§6.3.2)
the following property holds.∀x, y ∈ Rn×1 such thatx − y ∈ R(V KH

s ) we have
that

x − y = M̂ ′
s(K(x) − K(y)). (7.55)

The proof is analogous to the one of corollary 7.2.1.
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Corollary 7.2.5. For the IQN-ILS method (§6.3.2) the following expression holds:

K(ps+1) = (I − (M̂ ′
s+1)

−1M̂ ′
s)K(ps). (7.56)

The proof is analogous to the one of corollary 7.2.2.

Corollary 7.2.6. For the IQN-ILS method (§6.3.2) the following expression holds
(for s < n):

∀ÅM ∈ A(V KH
s+1 ,WKH

s+1 ) : δps+1 = −ÅM L̄KH
s+1(L̄KH

s+1)T K(ps), (7.57)

whereδps+1 = ps+2 − ps+1.

The proof is analogous to the one of corollary 7.2.3.

7.2.3 IQN-CLS and IBQN-LS

The notion of the (generalized) secant property can be extended to the approximate
JacobianŝS′

s andF̂ ′
s used in IQN-CLS and IBQN-LS:

Ŝ′
s(ps−j+1 − ps−j) = S(ps−j+1) − S(ps−j) (7.58)

F̂ ′
s(gs−j+1 − gs−j) = F (gs−j+1) − F (gs−j), (7.59)

for j = 1, 2, . . . , σ, (σ ≤ min(s, n)).

Using the same methods as for IQN-LS and IQN-ILS in the previous sections, one
can prove that the Least Squares JacobiansŜ′

s andF̂ ′
s respect a generalized secant

property of ordermin(s, n)4.
For IQN-CLS the approximate Jacobian forK is F̂ ′

sŜ
′
s − I. By using the fact that

it is algebraically identical to IQN-LS (which we will show in §7.4.1) it is obvious
that this Jacobian also respects (7.43).

4Using this terminology, we can say that the Jacobians of IQN-CBG, IQN-CCUM, IBQN-BG and
IBQN-CUM respect a generalized secant property of order 1.
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7.2.4 Comment

We would like to point out that other methods that respect thegeneralized secant
equation (7.43), resp (7.44), of ordermin{s, n} can be constructed that differ from
IQN-LS, resp. IQN-ILS, as this condition only providesmin{s, n} × n equations
for then2 unknowns of the approximate Jacobian and is thus under-determined for
s < n.

7.3 The Least Change Secant Update property

Lemma 7.3.1. Let α ∈ R, x, v, wo, w1, . . . , wk ∈ Rµ×1 (k < µ), with v 6∈
span{wo, w1, . . . , wk}; if

〈v, x〉 = α , (7.60)

〈wj , x〉 = 0 for j = 0, . . . , k, (7.61)

then the unique solution tomin ‖x‖ is

xmin =
α(I − P)v

〈v, (I − P)v〉 , (7.62)

whereP is an orthogonal projector on the span of{wo, . . . , wk}.

Proof. Let the dimension ofW=span{w0, . . . , wk} beν, and let{e1, . . . , eν} be
an orthonormal basis forW. We complete this basis with{eν+1, . . . , eµ} to obtain
an orthonormal basis forRµ×1; in other words{eν+1, . . . , eµ} is an orthonormal
basis forW⊥.
As 〈wj , x〉 = 0 (j = 0, 1, . . . , k), we havex ∈ W⊥. Hence, we can then write

x =

µ∑

i=ν+1

xiei (7.63)

and

v =

µ∑

i=1

viei. (7.64)

The condition〈v, x〉 = α then becomes
µ∑

i=ν+1

vixi = α. So, in order to find

x ∈ Rn×1 that satisfies (7.60) and (7.61) and which minimizes‖x‖, we have to
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find xν+1, . . . , xµ which minimizes the function

f(xν+1, . . . , xµ) =

µ∑

i=ν+1

x2
i , (7.65)

with the additional constraint

g(xν+1, . . . , xµ) =

µ∑

i=ν+1

vixi − α = 0. (7.66)

The solution of (7.65-7.66) with the method of Lagrange yields

xi =
αvi∑µ

i=ν+1 v2
i

, (7.67)

and hence

xmin =

µ∑

i=ν+1

αviei∑µ
i=ν+1 v2

i

(7.68)

=
α(I − P)v

‖(I − P)v‖2
(7.69)

=
α(I − P)v

〈v, (I − P)v〉 . (7.70)

We also present an alternative proof for this lemma [223].

Proof. Forα = 0 the proof is trivial (xmin = 0).
Assumeα 6= 0 and letW=span{w0, . . . , wk}. Then there are unique vectors
v1 ∈ W andv2 ∈ W⊥ such thatv = v1 + v2.
From the condition〈x,wi〉 = 0 (i = 0, 1 . . . , k) we havex ∈ W⊥ and as a
consequenceα = 〈x, v〉 = 〈x, v2〉.
As x ∈ W⊥, we are also able to writex = x1 + x2 wherex1 = βv2 (β ∈ R) and
x2 ∈ (W + spanv2)

⊥. As 〈x2, v2〉 = 0 it follows that

α = 〈x, v2〉 = 〈x1, v2〉 = β〈v2, v2〉 (7.71)

and henceβ = α
〈v2,v2〉

.

The vectorx = α
〈v2,v2〉

v2 + x2, with arbitraryx2 ∈ span(v2)
⊥ satisfies (7.60) and
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(7.61).
To minimize‖x‖2 = ‖x1‖2 + ‖x2‖2 it suffices to takex2 = 0. It follows that

x = x1 =
α

〈v2, v2〉
v2 (7.72)

=
α(I − P)v

〈v, (I − P)v〉 . (7.73)

The following proof is a generalization of the one in [50].

Theorem 7.3.1. Let Υ ∈ Rn×n, xkmin
, . . . , xkmax

, ykmin
, . . . , ykmax

∈ Rn×1 and
xkmin

, . . . , xkmax
6= 0 (kmax − kmin ≤ n − 1).

Then the unique solution to

min
Υ∗∈A

�
Xkmax

kmin
,Y kmax

kmin

� ‖Υ∗ − Υ‖Fr with Υ ∈ A

(
Xkmax−1

kmin
, Y kmax−1

kmin

)
, (7.74)

whereXj
i = [xi|xi+1| . . . |xj ] andY j

i = [yi|yi+1| . . . |yj ], is

Υ+ = Υ +
(ykmax

− Υxkmax
) ((I − P)xkmax

)
T

〈xkmax
, (I − P)xkmax

〉 , (7.75)

whereP is an orthogonal projector on the span of{xkmin
, . . . , xkmax−1}.

Proof. We first define∆Υ = Υ∗ − Υ.

We have forj = kmin, . . . kmax−1:

Υ∗xj = Υxj + ∆Υxj (7.76)

yj = yj + ∆Υxj (7.77)

∆Υxj = 0. (7.78)

For j = kmax we have

Υ∗xkmax
= Υxkmax

+ ∆Υxkmax
= ykmax

. (7.79)
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We can thus restate the problem as

min
∆Υ∈Rn×n

‖∆Υ‖Fr (7.80)

subject to

∆Υxkmax
= ykmax

− Υxkmax
(7.81)

∆Υxj = 0 for j = kmin, . . . , kmax − 1. (7.82)

If we write [∆Υ]i for the i-th row of ∆Υ then the original problem becomesn

disjoint problems (i = 1, . . . , n)

min
[∆Υ]i∈R1×n

‖[∆Υ]i‖Fr (7.83)

subject to

〈[∆Υ]Ti , xkmax
〉 = [ykmax

− Υxkmax
]i (7.84)

〈[∆Υ]Ti , xj〉 = 0 for j = kmin, . . . , kmax − 1

(7.85)

Finally, according to lemma 7.3.1 we have (i = 1, . . . , n)

∆Υ =
(ykmax

− Υxkmax
) ((I − P)xkmax

)
T

〈xkmax
, (I − P)xkmax

〉 , (7.86)

and thus

∆Υ =
(ykmax

− Υxkmax
) ((I − P)xkmax

)
T

〈xkmax
, (I − P)xkmax

〉 , (7.87)

which completes our proof.
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7.3.1 IQN-LS

Using theorem 7.3.1 and equation (7.12) we see that for IQN-LS we have that
K̂ ′

s+1 is the solution of

min
K∗∈A

�
[δp]s

max{0,s−n+1}
,[δK]s

max{0,s−n+1}

� ‖K∗ − K̂ ′
s‖Fr,

with K̂ ′
s ∈ A

(
[δp]s−1

max{0,s−n+1}, [δK]s−1
max{0,s−n+1}

)
, (7.88)

where[δp]ji = [δpi|δpi+1| . . . |δpj ] and[δK]ji = [δKi|δKi+1| . . . |δKj ];
i.e. of all possible rank-one updates applied toK̂ ′

s that respect the generalized
secant equation (7.43) of ordermin{s, n} the update used in the IQN-LS method
results in a value of‖K̂ ′

s+1 − K̂ ′
s‖Fr that is minimal. The method is thus part of

the LCSU family (§4.3).
We can compare this with Broyden’s good method, whereK̂ ′

s+1 is solution of

min
K∗∈A(δps,δKs)

‖K∗ − K̂ ′
s‖Fr.

This finding re-iterates the notion that IQN-LS respects a generalized secant con-
dition whereas Broyden’s good method only respects the ordinary secant condition
(i.e. a generalized secant condition of order 1).

Similarly to theorem 4.4.1 we have the following property:

Theorem 7.3.2.LetQ be an arbitrary matrix in

A

(
[δp]smax{0,s−n+1}, [δK]smax{0,s−n+1}

)
. If K̂ ′

s+1 and K̂ ′
s are defined by the

IQN-LS update, then

‖K̂ ′
s+1 − Q‖Fr ≤ ‖K̂ ′

s − Q‖Fr. (7.89)

7.3.2 IQN-ILS

Using theorem 7.3.1 and equation (7.36) we see that for IQN-ILS we have that

min
M∗∈A

�
[δK]s

max{0,s−n+1}
,[δp]s

max{0,s−n+1}

� ‖M∗ − M̂ ′
s‖Fr,

with M̂ ′
s ∈ A

(
[δK]s−1

max{0,s−n+1}, [δp]s−1
max{0,s−n+1}

)
; (7.90)

i.e. of all possible rank-one updates applied toM̂ ′
s that respect the generalized

secant equation (7.44) of ordermin{s, n} the update used in the IQN-ILS method
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results in a value of‖M̂ ′
s+1 − M̂ ′

s‖Fr that is minimal. The method is thus part of
the LCSU family (§4.3).
For Broyden’s bad method̂M ′

s+1 is solution of

min
M∗∈A(δKs,δps)

‖M∗ − M̂ ′
s‖Fr.

This finding re-iterates the notion that IQN-ILS respects a generalized secant con-
dition whereas Broyden’s bad method only respects the ordinary secant condition.

Similarly to theorem 4.4.2 we have the following property:

Theorem 7.3.3.LetQ be an arbitrary matrix in

A

(
[δK]smax{0,s−n+1}, [δp]smax{0,s−n+1}

)
. If M̂ ′

s+1 and M̂ ′
s are defined by the

IQN-ILS update, then

‖M̂ ′
s+1 − Q‖Fr ≤ ‖M̂ ′

s − Q‖Fr. (7.91)

7.3.3 IQN-CLS and IBQN-LS

Similarly to IQN-LS and IQN-ILS we see that the approximate JacobiansF̂ ′
s and

Ŝ′
s of the IQN-CLS and IBQN-LS methods respect a Least Change Secant Update

principle.

7.4 Equivalence between the different Least Squares
methods

7.4.1 Equivalence between IQN-LS and IQN-CLS

In this section we show that IQN-LS and IQN-CLS are algebraically identical,
although we will keep both methods to see if they behave the same numerically.
To see this we note that for IQN-LS the approximate Jacobian is constructed as

K̂ ′
s = W pH

s [(V pH
s )T V pH

s ]−1(V pH
s )T − I,

while for IQN-CLS this is

K̂ ′
s = F̂ ′

sŜ
′
s − I

= (W gF
s [(V gF

s )T V gF
s ]−1(V gF

s )T )
(
W pS

s [(V pS
s )T V pS

s ]−1(V pS
s )T

)
− I.

Noting that, for this scheme,gs = S(ps), we getW pS
s = V gF

s and thus

K̂ ′
s = F̂ ′

sŜ
′
s − I = W gF

s [(V pS
s )T V pS

s ]−1(V pS
s )T − I.
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As H(ps) = F (gs) this also givesW gF
s = W pH

s ; as we also haveV pS
s = V pH

s

this shows the equivalence between IQN-LS and IQN-CLS.

Another way to prove this equivalence is based on the following theorem.

Theorem 7.4.1.Consider the following algorithms:

• the IQN method (§5.1) with a rank-one update of the Jacobian given by (for
s = 0, 1 . . . )

K̂ ′
s+1,IQN = K̂ ′

s +
(δKs − K̂ ′

sδps)v
T
s

〈δps, vs〉
, (7.92)

with vs ∈ Rn×1;

• the IQN-C method (§5.2) with a rank-one update of the Jacobians given by

F̂ ′
s+1 = F̂ ′

s +
(δFs − F̂ ′

sδgs)w
T
s

〈δgs, ws〉
(7.93a)

Ŝ′
s+1 = Ŝ′

s +
(δSs − Ŝ′

sδps)z
T
s

〈δps, zs〉
, (7.93b)

and

K̂ ′
s+1,IQN−C = F̂ ′

s+1Ŝ
′
s+1 − I, (7.94)

with ws ∈ Rm×1 andzs ∈ Rn×1.

A sufficient condition so that the IQN-C method produces the same approximate
Jacobian forK as the IQN method (and hence are algebraically identical methods)
is

1. vo = zo, for K̂ ′
1 (i.e. fors = 0);

2. vs = zs, andwT
s Ŝ′

s = 0 for K̂ ′
s+1 (s ≥ 1).

Proof. This proof will be done by induction.
Fors = 0 we have, from chapter 5 that̂F ′

o andŜ′
o are zero matrices and̂K ′

o = −I.
Equations (7.93-7.94) then become

K̂ ′
1,IQN−C =

(
F̂ ′

o +
(δFo − F̂ ′

oδgo)w
T
o

〈δgo, wo〉

)(
Ŝ′

o +
(δSo − Ŝ′

oδpo)z
T
o

〈δpo, zo〉

)
− I

=
δFow

T
o δSoz

T
o

〈δgo, wo〉〈δpo, zo〉
− I.
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As for IQN-C we have thatδFs = δHs andδgs = δSs (s = 0, 1 . . . ), and as
〈δgo, wo〉 = wT

o δgo ,this becomes

K̂ ′
1,IQN−C =

δHoz
T
o

〈δpo, zo〉
− I. (7.95)

For IQN we have, from equation (7.92),

K̂ ′
1,IQN = K̂ ′

o +
(δKo − K̂ ′

oδpo)v
T
o

〈δpo, vo〉

= −I +
(δKo + δpo)v

T
o

〈δpo, vo〉
.

As δKs = δHs − δps for s = 0, 1, . . . , we obtain

K̂ ′
1,IQN = −I +

(δHo − δpo + δpo)v
T
o

〈δpo, vo〉

=
δHov

T
o

〈δpo, vo〉
− I. (7.96)

Hence we see that (7.95) equals (7.96) ifzo = vo, i.e. K̂ ′
1,IQN = K̂ ′

1,IQN−C if
zo = vo.

For s ≥ 1 we start from the assumption that̂K ′
s,IQN−C = K̂ ′

s,IQN = K̂ ′
s and

prove thatK̂ ′
s+1,IQN−C = K̂ ′

s+1,IQN = K̂ ′
s+1 follows.

Introducing∆K̂ ′
IQN−C = K̂ ′

s+1,IQN−C − K̂ ′
s) we obtain for IQN-C, from equa-

tions (7.93-7.94), that

∆K̂ ′
IQN−C

=

(
F̂ ′

s +
(δFs − F̂ ′

sδgs)w
T
s

〈δgs, ws〉

)(
Ŝ′

s +
(δSs − Ŝ′

sδps)z
T
s

〈δps, zs〉

)
− F̂ ′

sŜ
′
s

=
(δFs − F̂ ′

sδgs)w
T
s

〈δgs, ws〉
Ŝ′

s + F̂ ′
s

(δSs − Ŝ′
sδps)z

T
s

〈δps, zs〉

+
(δFs − F̂ ′

sδgs)w
T
s

〈δgs, ws〉
(δSs − Ŝ′

sδps)z
T
s

〈δps, zs〉
.

We recall that we are proving thatvs = zs andwT
s Ŝ′

s = 0 are sufficient conditions
for the equivalence. Hence, usingwT

s Ŝ′
s = 0 and asδgs = δSs, the expression for

∆K̂ ′
IQN−C becomes

∆K̂ ′
IQN−C = F̂ ′

s

(δgs − Ŝ′
sδps)z

T
s

〈δps, zs〉
+

(δFs − F̂ ′
sδgs)w

T
s δgsz

T
s

〈δgs, ws〉〈δps, zs〉
.
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Using〈δgs, ws〉 = wT
s δgs this expression can be simplified to

∆K̂ ′
IQN−C = F̂ ′

s

(δgs − Ŝ′
sδps)z

T
s

〈δps, zs〉
+

δFsz
T
s − F̂ ′

sδgsz
T
s

〈δps, zs〉

=

(
− F̂ ′

sŜ
′
sδps

〈δps, zs〉
+

δFs

〈δps, zs〉

)
zT
s .

As F̂ ′
sŜ

′
s = K̂ ′

s + I andδFs = δHs, we obtain

∆K̂ ′
IQN−C =

−(K̂ ′
s + I)δps + δHs

〈δps, zs〉
zT
s (7.97)

=

(
δHs − δps − K̂ ′

sδps

)
zT
s

〈δps, zs〉
. (7.98)

For IQN we obtain

∆K̂ ′
IQN = K̂ ′

s+1,IQN − K̂ ′
s

=
(δKs − K̂ ′

sδps)v
T
s

〈δps, vs〉
.

As δKs = δHs − δps, we finally obtain

∆K̂ ′
IQN =

(
δHs − δps − K̂ ′

sδps

)
vT

s

〈δps, vs〉
. (7.99)

We see that (7.99) equals (7.98) ifzs = vs andwT
s Ŝ′

s = 0, i.e. K̂ ′
s+1,IQN =

K̂ ′
s+1,IQN−C if zs = vs andwT

s Ŝ′
s = 0.

We conclude that, under the assumptions of the theorem, IQN-C and IQN are
algebraically identical.

Corollary 7.4.1. IQN-LS and IQN-CLS are algebraically identical methods.

Proof. Note that for IQN-LS and IQN-CLS in theorem 7.4.1 we have
vs = (I − LpH

s (LpH
s )T )δps = (I − LpS

s (LpS
s )T )δps = zs

and
ws = (I − LgF

s (LgF
s )T )δgs.

As Ŝ′
s = W pS

s ((V pS
s )T V pS

s )−1(V pS
s )T , and for IQN-C thatW pS

s = V gF
s , we

have that

wT
s Ŝ′

s = wT
s (V gF

s ((V pS
s )T V pS

s )−1(V pS
s )T ). (7.100)



NON-LINEAR PROPERTIES OFIQN-LS ET AL . 95

As, by construction,ws is orthogonal to every column ofV gF
s we have thatwT

s Ŝ′
s =

0, and that, hence, IQN-LS and IQN-CLS are identical.

Worthy of mention in the proof of corollary 7.4.1 is that no condition zT
s F̂ ′

s = 0

needs to be imposed for the equivalence to hold.

Remark Although theorem 7.4.1 is only a sufficient condition for thetheorem
to hold, a simple example suffices to show that IQN-BG and IQN-CBG, resp.
IQN-CUM and IQN-CCUM, which do not satisfy this sufficient condition, are not
identical.

7.4.2 Equivalence between IQN-CLS and IBQN-LS whenF is
an affine mapping

In this section we show that IQN-CLS (and hence IQN-LS) is algebraically iden-
tical to IBQN-LS if F is an affine mapping. As always, we assume that no singu-
larities occur in either algorithm.

We recall that the iterations for the IBQN-LS algorithm are

ps+1 = (I − F̂ ′
sŜ

′
s)

−1
(
F (gs) + F̂ ′

s(S(ps) − Ŝ′
sps − gs)

)
(7.101)

gs+1 = (I − Ŝ′
s+1F̂

′
s)

−1
(
S(ps+1) + Ŝ′

s+1(F (gs) − F̂ ′
sgs − ps+1)

)
.

(7.102)

If F is an affine operator (F (p) = AF p − bF ) we will show that both algorithms
are equivalent5 in the sense that they give the same iteration values forp and the
same approximate JacobiansŜ′

s andF̂ ′
s, but different iteration values forg. The

proof of the equivalence will be done by induction.
We will use subscripts “C” for values related to IQN-CLS and “B” for those related
to IBQN-LS.

• s = 0, 1.
We first remark thatpo, go = S(po), p1 = F (go) and g1 = S(p1) are
identical for both IBQN-LS and IQN-CLS. This is the startup phase, where
we have assumed we do not use an initial relaxation parameter. It follows
thatŜ′

1 andF̂ ′
1 are also identical as the input-output pairs are identical.

5No such requirement is imposed onS.
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• s = 2.
We now prove thatp2 for IBQN-LS, which we will callp2,B , is identical to
p2 for IQN-CLS, which we will callp2,C . We have

p2,B = (I − F̂ ′
1Ŝ

′
1)

−1(F (g1) + F̂ ′
1S(p1) − F̂ ′

1Ŝ
′
1p1 − F̂ ′

1g1).

(7.103)

As g1 = S(p1) this becomes

p2,B = (I − F̂ ′
1Ŝ

′
1)

−1(F (g1) − F̂ ′
1Ŝ

′
1p1). (7.104)

For IQN-CLS we have

p2,C = p1 − (F̂ ′
1Ŝ

′
1 − i)−1(F (g1) − p1) (7.105)

p2,C = p1 + (I − F̂ ′
1Ŝ

′
1)

−1(F (g1) − (p1 − F̂ ′
1Ŝ

′
1p1) − F̂ ′

1Ŝ
′
1p1)

(7.106)

p2,C = (I − F̂ ′
1Ŝ

′
1)

−1(F (g1) − F̂ ′
1Ŝ

′
1p1), (7.107)

and hencep2,B = p2,C = p2 andŜ′
2 is identical for both algorithms.

We now look intog2,B . From (7.102) we obtain

g2,B = S(p2) + Ŝ′
2(F (g1) − F̂ ′

1g1 − p2 + F̂ ′
1g2,B), (7.108)

while g2,C = S(p2).
We know from lemma 2.3.2 that

∀ÅS ∈ A(V pS
2 ,W pS

2 ) : Ŝ′
2 = ÅSLpS

2 (LpS
2 )T . (7.109)

As LpS
2 (LpS

2 )T is an orthogonal projector on the range ofLpS
2 , which is

the space spanned by(p2 − p1) and(p2 − pO), we have that∀x ∈ Rn×1,
∃α, β ∈ R :

LpS
2 (LpS

2 )T x = α(p2 − p1) + β(p2 − po) = V pS
2 [α β]T , (7.110)

and as a consequence

Ŝ′
2x = ÅSV pS

2 [α β]T = W pS
2 [α β]T = α(g2,C − g1) + β(g2,C − go),

(7.111)

becauseS(pi) = gi,C (i = 0, 1, 2).
There thus exist coefficientsγ1, γ2 that allow us to write (7.108) as

g2,B = S(p2) + γ1(g2,C − go) + γ2(g2,C − g1) (7.112)

g2,B = g2,C + γ1(g2,C − go) + γ2(g2,C − g1). (7.113)
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We are now able to comparêF ′
2,B andF̂ ′

2,C . By applying lemma 2.3.2 to
both we can write

∀ÅF,C ∈ A(V gF
2,C ,W gF

2,C) : F̂ ′
2,C = ÅF,CLgF

2,C(LgF
2,C)T (7.114)

∀ÅF,B ∈ A(V gF
2,B ,W gF

2,B) : F̂ ′
2,B = ÅF,BLgF

2,B(LgF
2,B)T . (7.115)

From (7.113) we get

g2,B − go = (γ1 + 1)(g2,C − go) + γ2(g2,C − g1) (7.116a)

g2,B − g1 = γ1(g2,C − go) + (γ2 + 1)(g2,C − g1). (7.116b)

We thus see that∃T ∈ R2×2 : V gF
2,B = V gF

2,CT , with T non-singular if both
IQN-CLS and IBQN-CLS are non-singular.
If F is affine, then we also haveW gF

2,B = W gF
2,CT and thus, using theorem

6.2.1 we have that̂F ′
2,C = F̂ ′

2,B .

• s > 2.
To complete the proof of the equivalence between IQN-CLS andIBQN-LS
we assume thatps and Ŝ′

s are identical for both algorithms and that from
this it follows thatps+1 andŜ′

s+1 are identical as well.
Under the above assumption we can show thatF̂ ′

s is also identical for both
schemes, in analogy to the procedure in equations (7.108)-(7.116) used for
F̂ ′

2. From equation (7.102) we have

gs,B = S(ps) + Ŝ′
s,B(F (gs−1,B) − F̂ ′

s−1gs−1,B − ps + F̂ ′
s−1gs,B).

(7.117)

Knowing thatŜ′
s,B = Ŝ′

s,C = Ŝ′
s we see that, in the manner of equation

(7.113),γi (i = 1, . . . , s) can be found such thatgs,B can be written as

gs,B = gs,C +
s∑

i=0

γi(gs,C − gi,C). (7.118)

In an analogous way as in the first part of this argument we thushave
A(V gF

s,C ,W gF
s,C) = A(V gF

s,B ,W gF
s,B) and F̂ ′

s,B = F̂ ′
s,C = F̂ ′

s follows. From

this last equation we can also derive that∀ÅF ∈ A(V gF
s,C ,W gF

s,C) we have

F̂ ′
s(gs,B − gs,C) = ÅFLgF

s,C(LgF
s,C)T

s∑

i=0

γi(gs,C − gi,C)(7.119)

= ÅF

s∑

i=0

γi(gs,C − gi,C). (7.120)
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As we have assumed thatF is affine we have

F̂ ′
s(gs,B − gs,C) = F

(
s∑

i=0

γi(gs,C − gi,C)

)
(7.121)

F̂ ′
sgs,B − F̂ ′

sgs,C = F (gs,B − gs,C) = F (gs,B) − F (gs,C).

(7.122)

Then we have for IBQN-LS, using equation (7.101),

ps+1,B = (I − F̂ ′
sŜ

′
s)

−1(F (gs,B) + F̂ ′
sgs,C − F̂ ′

sŜ
′
sps − F̂ ′

sgs,B)

(7.123)

and using (7.122)

ps+1,B = (I − F̂ ′
sŜ

′
s)

−1(F (gs,B) + F̂ ′
sgs,C − F̂ ′

sŜ
′
sps − F̂ ′

sgs,B)

(7.124)

ps+1,B = (I − F̂ ′
sŜ

′
s)

−1(F (gs,C) − F̂ ′
sŜ

′
sps). (7.125)

For algorithm IQN-CLS we also have

ps+1,C = (I − F̂ ′
sŜ

′
s)

−1(F (gs,C) − F̂ ′
sŜ

′
sps), (7.126)

which shows the equivalence.

7.5 Avoiding singularity

In this section we will discuss two type of singularities of IQN-LS in the rank-one
update form and one for the original form of (§6.3.1). For the other three Least
Squares quasi-Newton methods similar arguments hold.

7.5.1 Avoiding singularity for the original formulation ( §6.3.1)

Although we will show in§8.1 that singularities in the construction of the appro-
ximate (inverse) Jacobian cannot occur when the mappings are affine and when
working in exact arithmetic, it is quite possible that the columns ofV pH

s , V pS
s ,

etc. become linearly dependent of one another when the mappings are non-linear.
When this happens, the construction of the approximate Jacobian will fail, as the
Moore-Penrose generalized inverse can no longer be constructed using equation
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(6.5). We will solve this problem by applying “QR-filtering”. We will illustrate
the principle onV pH

s .
Note that the procedure below is a reworked version of an ideafirst used in [45].
We apply the “economy size” QR-decomposition toV pH

s :

V pH
s = QsRs, (7.127)

whereQs ∈ Rn×s such thatQT Q = Is andRs ∈ Rs×s is an upper triangular
matrix6.
This corresponds to a Gram-Schmidt orthogonalization process applied to the
columns ofV pH

s starting from the first column.
When, during the orthogonalization process, but before the normalization step, an
orthogonalized column ofV pH

s is smaller than10−8 times the norm of the original
column ofV pH

s (i.e. the column which we are orthogonalizing), then this indicates
that the column was (nearly) linearly dependent of the previous columns. We then
discard this column ofV pH

s , and the corresponding column ofW pH
s , and restart

the orthogonalization procedure. A column is also discarded if, after orthogonal-
ization, its norm is smaller than10−15 times the largest norm of the previously
orthogonalized vectors. We do this until all orthogonalized vectors are sufficiently
large.
As the most recent input and output modes are leftmost inV pH

s andW pH
s this

means that we will discard the oldest conflicting modes.

Note that after filtering we have obtained

(
V

pH
s

)+
=
((

V
pH
s

)T
V

pH
s

)−1 (
V

pH
s

)T
= R−1

s QT
s . (7.128)

7.5.2 Avoiding singularity for the rank-one update formulation

A first type of singularity can occur when̄LpH
s+1 in (7.2) is zero. For this to happen

(I − LpH
s (LpH

s )T )δps needs to be zero, which means thatδps ∈ R(V pH
s ).

Both in the rank-one update formula (7.12) and in the formulation (§6.3.1) this
would lead to a singularity of̂K ′

s+1.
In the rank-one update formulation we cannot just use the procedure described in
§7.5.1 as we do not storeV pH

s andW pH
s . (If we did, we could apply the QR-

filtering.)
We therefore propose to keep̂K ′

s+1 = K̂ ′
s in these circumstances.

6For ordinary QR-decomposition we haveQs ∈ Rn×n andRs ∈ Rn×s.
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A second type of singularity has already been mentioned in§7.1, i.e. the occur-
rence where

(L̄pH
s+1)

T (K̂ ′
s)

−1ÅH L̄pH
s+1 = −1, (7.129)

for ÅH ∈ A(V pH
s ,W pH

s ), in which case the approximate JacobianK̂ ′
s+1 for IQN-

LS becomes singular.

Again we could propose to keep̂K ′
s+1 = K̂ ′

s if this occurs. Unfortunately, doing
so would cause the loss of the secant property as in generalK̂ ′

s(ps+1 − ps) 6=
K(ps+1) − K(ps).
To satisfy the secant property as closely as possible, we could use a convex average

K̂ ′
s+1 = (1 − θs)K̂

′
s + θs

(
K̂ ′

s + ÅH L̄pH
s+1(L̄

pH
s+1)

T
)

, (7.130)

whereθs is chosen∈ [0, 1]. We choose the value closest to unity that keeps the
absolute value of the determinantdet(K̂ ′

s+1) above a certain thresholdσ (say
0.001 det(K̂ ′

s)). To help us chooseθs, we turn to lemma 2.3.1 to obtain

K̂ ′
s+1 = K̂ ′

s

(
I + θs(K̂

′
s)

−1ÅH L̄pH
s+1(L̄

pH
s+1)

T
)

(7.131)

det(K̂ ′
s+1) = det(K̂ ′

s)
(
1 + θs〈(K̂ ′

s)
−1ÅH L̄pH

s+1, L̄
pH
s+1〉

)
. (7.132)

For the update of the inverse approximate Jacobian this becomes:

(K̂ ′
s+1)

−1 = (1 − θs)(K̂
′
s)

−1 + θs

(
(K̂ ′

s) −
(K̂ ′

s)
−1ÅH L̄pH

s+1(L̄
pH
s+1)

T (K̂ ′
s)

−1

1 + θs(L̄
pH
s+1)

T (K̂ ′
s)

−1ÅH L̄pH
s+1

)
.

(7.133)

Note that a similar modification is not possible for the first type of singularity as
L̄pH

s+1 does not exist.

Tests have shown that the modifications for both types of singularities are ade-
quate.



8
Properties of IQN-LS, IQN-ILS,

IQN-CLS and IBQN-LS for linear
mappings

In this section we assumeK, H, F and/orS are affine mappings, i.e.K(p) =

AKp − bK , etc., withAK etc. non-singular. We study the properties of the four
Least Squares quasi-Newton methods described in chapter 6 under this assump-
tion. We recall that, as shown in chapter 7, under this assumption IQN-LS, IQN-
CLS and IBQN-LS are algebraically identical.

This chapter is organized as follows.
In §8.1 we show that the approximate Jacobians for IQN-LS and IQN-ILS exhibit
monotone convergence in the affine case, and that for affine mappings singularities
cannot occur before the solution has been reached (in exact arithmetic).
In §8.2 we establish the relationship between IQN-LS and IQN-ILS on one hand
and Krylov methods on the other and write GMRes as a quasi-Newton method;
we observe similarities between the three methods; finally in §8.3 we discuss the
possibilities of using step-length parameters for the Least Squares quasi-Newton
methods.
In §8.4 we modify the IQN-LS and IQN-ILS methods to make them algebraically
identical to GMRes.

Most of the material in this chapter can be found in [106] and [108].
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8.1 Non-singularity and convergence of the approxi-
mate Jacobian for IQN-LS and IQN-ILS

We show in the next theorems that, in exact arithmetic, the approximate Jacobian
for the IQN-LS and IQN-ILS methods never become singular before the solution
has been reached, if the mappings are affine.
These results can then be extended to IQN-CLS and IBQN-LS which are equiva-
lent, under the above assumptions, as shown in§7.4.1 and§7.4.2.

Theorem 8.1.1.LetK be an affine mapping. Consider the IQN-LS method (§6.3.1).
Let s̆ be the first value for whichδps̆+1 (= ps̆+2 − ps̆+1) is linearly dependent on
δpo, δp1, . . . , δps̆, thenps̆+2 is the solution ofK(p) = 0.

Proof. If δps̆+1 is linearly dependent onδpo, δp1, . . . , δps̆ then

δps̆+1 =

s̆∑

j=0

kjδpj (8.1)

and

K̂ ′
s̆+1δps̆+1 =

s̆∑

j=0

kjK̂
′
s̆+1δpj . (8.2)

Then we have, according to theorem 7.2.1, that

K̂ ′
s̆+1δps̆+1 =

s̆∑

j=0

kjAKδpj (8.3)

= AKδps̆+1. (8.4)

We then have

K(ps̆+2) = K(ps̆+1) + K(δps̆+1) (8.5)

= K(ps̆+1) + AKδps̆+1 (8.6)

= K(ps̆+1) + K̂ ′
s̆+1δps̆+1. (8.7)

Becauseps+2 = ps+1 − (K̂ ′
s+1)

−1K(ps+1) we finally have

K(ps̆+2) = AKps̆+2 − b = 0, (8.8)

which shows thatps̆+2 is the solution ofK(p) = 0 (equation (1.3)).
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Theorem 8.1.2.LetK be an affine mapping and letAK be non-singular. Consider
the IQN-ILS method (§6.3.2). Let̆s be the first value for whichδKs̆+1 (= Ks̆+2 −
Ks̆+1) is linearly dependent onδKo, δK1, . . . , δKs̆, thenps̆+2 is the solution of
K(p) = 0.

Proof. If δKs̆+1 is linearly dependent onδKo, δK1, . . . , δKs̆ then

δKs̆+1 =

s̆∑

j=0

kjδKj (8.9)

and

M̂ ′
s̆+1δKs̆+1 =

s̆∑

j=0

kjM̂
′
s̆+1δKj . (8.10)

Then we have, according to theorem 7.2.2, that

M̂ ′
s̆+1δKs̆+1 =

s̆∑

j=0

kjA
−1
K δKj (8.11)

= A−1
K δKs̆+1. (8.12)

Also

ps̆+2 = ps̆+1 − M̂ ′
s̆+1K(ps̆+1) (8.13)

K(ps̆+2) = K(ps̆+1) − AKM̂ ′
s̆+1K(ps̆+1). (8.14)

We also have

K(ps̆+2) = K(ps̆+1) + δKs̆+1. (8.15)

Using (8.12) in (8.15) we obtain

K(ps̆+2) = K(ps̆+1) + AKM̂ ′
s̆+1δKs̆+1. (8.16)

Combining (8.16) and (8.14) we get

AKM̂ ′
s̆+1δKs̆+1 = −AKM̂ ′

s̆+1K(ps̆+1) (8.17)

AKM̂ ′
s̆+1K(ps̆+2) = 0, (8.18)

and asM̂ ′
s̆+1 andAK are non-singular it follows thatK(ps̆+2) = 0 and thatps̆+2

is the solution ofK(p) = 0 (equation (1.3)).



104 CHAPTER 8

Theorem 8.1.3. If K is an affine mapping, then the approximate JacobianK̂ ′
s

of the IQN-LS method (§6.3.1) converges to the true JacobianAK in a monotone
way, i.e.

‖K̂ ′
s+1 − AK‖ ≤ ‖K̂ ′

s − AK‖ (8.19)

(s = 0, 1, 2, . . . ).

Proof. For the proof of this theorem we apply theorem 2.3.2 in a straightforward
manner.
As, for an affine mapping, we have(equation (6.27))

K̂ ′
s = AHV pH

s [(V pH
s )T V pH

s ]−1(V pH
s )T − I, (8.20)

andAK = AH − I, it suffices to replaceQs in theorem 2.3.2 bŷK ′
s, T1 by AH

andT2 by I, to prove equation (8.19).

Theorem 8.1.4. If K is an affine mapping, then the approximation̂M ′
s of the

inverse of the Jacobian for the IQN-ILS method (§6.3.2) converges to the true
inverse JacobianA−1

K in a monotone way, i.e.

‖M̂ ′
s+1 − A−1

K ‖ ≤ ‖M̂ ′
s − A−1

K ‖ (8.21)

(s = 0, 1, 2, . . . ).

Proof. For the proof of this theorem we apply theorem 2.3.2 in a straightforward
manner.
As, for an affine mapping, we have
M̂ ′

s = AH(AK)−1WKH
s [(V KH

s )T V KH
s ]−1(V KH

s )T − I (equation (6.39)),
andAHA−1

K − I = A−1
K , it suffices to replaceQs in theorem 2.3.2 byM̂ ′

s, T1 by
AHA−1

K andT2 by I, to prove equation (8.21).

As a general conclusion we can see thatK̂ ′
n, resp.M̂ ′

n, will correspond to the exact
Jacobian, resp. inverse of the exact Jacobian (theorem 2.3.2: equation (2.17)) and
that hencepn+1 will be the exact solution for both IQN-LS and IQN-ILS, when
the operators are affine.
This compares very favorable against Broyden’s good and badmethods, the Column-
Updating method and the Inverse Column-Updating method which, according to
Gay’s theorem, converge in at most2n iterations for affine operators (cfr.§4.4.1,
§4.4.2,§4.4.3 and§4.4.4). For that reason, we will only investigate properties for
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whichs ≤ n further in this chapter.
Unfortunately monotone convergence of the approximate (inverse) Jacobians does
not necessarily imply monotone convergence of the iterates1. As for IQN-ILS M̂ ′

s

converges towardsA−1
K in a monotone manner and as it is the inverse ofAK that is

needed in the iteration (equations (4.1) and (4.4)) this shows that IQN-ILS is more
likely to exhibit monotone convergence than IQN-LS.
It is believed that this advantage in convergence speed is carried over to weakly
non-linear problems.

As IQN-CLS is algebraically equivalent to IQN-LS and equivalent to IBQN-LS
for affine operators, these conclusions extend to these two methods.

We would also like to point out that respecting the generalized secant property
of ordermin(s, n) (equations (7.43) or (7.44)), i.e. for all previous iterates, is
clearly a good idea ifK is an affine mapping as judged from theorems 8.1.3 and
8.1.4. However, this matter should be investigated in more detail for non-linear
systems, as secant properties obtained with points that arefar from the actual so-
lution might not be representative of the actual tangent hyperplane and thus might
actually hamper convergence.

8.2 Comparison between IQN-LS, IQN-ILS and GM-
Res

At first sight Newton-GMRes and the various quasi-Newton methods have little in
common. Newton-GMRes is an inexact Newton method, meaning that the linear
system (4.2) in the exact Newton equation (4.1) is only solved approximately. This
is different from quasi-Newton methods where an approximation of the Jacobian
is used in the Newton equation, but the resulting system solved exactly.
Nevertheless, C̆atinaş [32] has shown in an abstract framework that inexactNew-
ton methods are equivalent to quasi-Newton methods. In thissection we will show
the relationship between the Least Squares quasi-Newton methods and Newton-
GMRes in more detail.
We also note that for the affine mappings we are studying here,Newton-GMRes
actually becomes “plain” GMRes if we solve the first Newton step exactly by GM-
Res. We will make this assumption further on in this section.

1An illustration of this can be found in chapter 11.
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8.2.1 Writing GMRes as a Quasi-Newton method

We will show how GMRes can be interpreted as a quasi-Newton method when
applied to the linear equationAKp − bK = 0. We will start our derivation from
the elementary formulation given in§3.2.2.1.
(We recall that in the GMRes method it is assumed that for every x ∈ Rn×1 we
are able to formAKx, which does not correspond to our notion of “function call”,
defined asK(x) = AKx − bK .)

As we have seen in§3.2.2, the GMRes method constructs

ps = po + [ro AKro . . . As−1
K ro][ω̄1,s ω̄2,s . . . ω̄s,s]

T (8.22)

such that

rs = ro + [AKro A2
Kro . . . As

Kro][ω̄1,s ω̄2,s . . . ω̄s,s]
T (8.23)

is minimal in the Euclidean norm (theorem 2.3.6). As a resultwe have (theorem
2.3.7):

rs =
(
I − V GM

s

(
(V GM

s )T V GM
s

)−1
(V GM

s )T
)

ro (8.24)

and

ps = po − WGM
s

(
(V GM

s )T V GM
s

)−1
(V GM

s )T ro, (8.25)

whereV GM
s = [AKro| A2

Kro| . . . |As
Kro] and

WGM
s = [ro| AKro| . . . |As−1

K ro] = A−1
K V GM

s .
Using lemma 2.3.2 we see that

V GM
s

(
(V GM

s )T V GM
s

)−1
(V GM

s )T = LGM
s (LGM

s )T (8.26)

and

WGM
s

(
(V GM

s )T V GM
s

)−1
(V GM

s )T = A−1
K LGM

s (LGM
s )T , (8.27)

where the columns ofLGM
s form an orthonormal basis for the range ofV GM

s as
shown in lemma 2.3.2.
Using theorem 2.3.2, withT1 = A−1

K andT2 equal to the zero matrix, we see that
for s → n (8.27) converges monotonically toA−1

K ; similarly, (8.26) converges
monotonically toI.
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GMRes can thus be written as

ps+1 = po − A−1
K LGM

s (LGM
s )T ro

AK(ps+1 − po) = −LGM
s (LGM

s )T ro

AK(ps+1 − po) − AK(ps − po) = −LGM
s (LGM

s )T ro − AK(ps − po)

AK(ps+1 − ps) = −LGM
s (LGM

s )T ro − AK(es − eo)

= −LGM
s (LGM

s )T ro − (rs − ro).

As (rs − ro) ∈ R(V GM
s ) and henceLGM

s (LGM
s )T (rs − ro) = (rs − ro) this

becomes

AK(ps+1 − ps) = −LGM
s (LGM

s )T rs, (8.28)

and we can thus write GMRes as

ps+1 = ps − A−1
K LGM

s (LGM
s )T

︸ ︷︷ ︸
M̂ ′

s

rs, (8.29)

whereM̂ ′
s can be seen as an approximation toA−1

K . (8.29) corresponds to the form
of (4.5) and hence GMRes can be considered as a quasi-Newton method applied
to (1.3).
Also note that (8.25) corresponds to (2.8) and that the approximate Jacobian is
guaranteed to be non-singular due to the properties of a projection method (defini-
tion 2.13).

Theorem 8.2.1.GMRes, applied to the linear systemK(p) = AKp − bK = 0, is
a generalized secant method of ordermin(s, n) (equation (7.44)).

Proof. For GMRes we have thatps − po ∈ R(WGM
s ) (equation (8.25)), for

s = 0, 1, . . . . As from theorem 6.2.3 we have thatR(WGM
j ) ⊂ R(WGM

s ), for
j = 0, 1, . . . , s, we have thatpj − po ∈ R(WGM

j ) ⊂ R(WGM
s ), and hence that

ps − pj ∈ R(WGM
s ).

It follows thatAK(ps − pj) ∈ R(V GM
s ), i.e.

LGM
s (LGM

s )T AK(ps − pj) = AK(ps − pj), (8.30)

from which we obtain that

A−1
K LGM

s (LGM
s )T AK(ps − pj) = ps − pj (8.31)

We know that, for GMRes in the form of equation (8.29), the approximate inverse
Jacobian can be written aŝM ′

s = A−1
K LGM

s (LGM
s )T . We finally obtain
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M̂ ′
s(K(ps) − K(pj)) = ps − pj , (8.32)

which completes our proof.

Theorem 8.2.2.Suppose that̂M ′
s is constructed as in the GMRes method, applied

to the linear problemK(p) = AKp − bK = 0. ThenM̂ ′
s+1 is linked toM̂ ′

s by the
following expression (fors < n):

M̂ ′
s+1 = M̂ ′

s + A−1
K LGM

s+1 (LGM
s+1 )T . (8.33)

whereL̄GM
s+1 is the(s + 1)-th column ofLGM

s+1 .

The proof of this theorem is analogous to that of theorems 7.1.1 and 7.1.2.

8.2.2 Krylov subspaces for IQN-LS

In this section we apply the Quasi-Newton Least Squares method to a single linear
systemAKp−bK = 0. We will show that the iterates of this method share the same
Krylov search subspace as those of GMRes, but not the subspace of constraints.

Theorem 8.2.3. Consider the IQN-LS method (§6.3.1). Assume that̂K ′
s is non-

singular2 and thatK is an affine mapping. Then the following relations hold:

∀x ∈ R(V pH
j ) : (K̂ ′

s)
−1AKx = x, (8.34)

(j = 0, 1, . . . , s), and

∀j ∈ {0, 1, . . . , s} :

(I − (K̂ ′
s)

−1AK)(es − ej) = 0 (8.35a)

es+1 = ej − (K̂ ′
s)

−1AKej (8.35b)

rs+1 = rj − AK(K̂ ′
s)

−1rj (8.35c)

ps+1 = pj − (K̂ ′
s)

−1K(pj). (8.35d)

2As shown in theorem 8.1.1, this assumption is always satisfiedfor affine mappings.
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Proof. As, from theorem 6.2.3,∀j ∈ {0, 1, . . . , s} : R(V pH
j ) ⊂ R(V pH

s ),

lemma 2.3.3 allows us to write∀x ∈ R(V pH
j ), j = 0, 1, . . . , s:

(AHLpH
s (LpH

s )T − I)x = (AH − I)x (8.36)

x = (AHLpH
s (LpH

s )T − I)−1(AH − I)x (8.37)

x = (K̂ ′
s)

−1AKx, (8.38)

which proves (8.34). It follows that

(I − (K̂ ′
s)

−1AK)x = 0. (8.39)

We can conclude thatR(V pH
s ) is part of the null space of(I − (K̂ ′

s)
−1(AH − I))

(it equals the null-space ifAH is non-singular).
As es − ej = ps − pj we have(es − ej) ∈ R(V pH

s ) from the definition ofV pH
s .

By replacingx in (8.39) by(es−ej) we obtain (8.35a). Equations (8.35b), (8.35c)
and (8.35d) follow immediately.

Note that this theorem can be extended to non-linear mappings by replacingAH

with ÅH ∈ A(V pH
s ,W pH

s ).

From this theorem we see that the previous iterates only contribute to the solution
process by creating a better approximate JacobianK̂ ′

s. This can be seen from equa-
tion (8.35d) which shows that we can use any previous iteratefor the construction
of the new iterate as long as the most recent approximate Jacobian is used.

Corollary 8.2.1. Consider the IQN-LS method (§6.3.1). Assume that̂K ′
s is non-

singular, thatK (or H) is an affine mapping and that the iterations start from an
initial guesspo = 0. Then the quasi-Newton iteration can also be written as

ps+1 = (AHLpH
s (LpH

s )T − I)−1bK (s ≥ 1), (8.40)

and the errores+1 is given by

es+1 =
(
(AHLpH

s (LpH
s )T − I)−1 − (AH − I)−1

)
bK (s ≥ 1).

(8.41)
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Proof. If we start frompo = 0, theneo = −A−1
K bK , as the exact solutionp∗ is

given byp∗ = A−1
K bK . From equation (8.35b) we get

es+1 = −(I − (K̂ ′
s)

−1AK)A−1
K bK (8.42)

= ((K̂ ′
s)

−1 − A−1
K )bK . (8.43)

As K̂ ′
s = AHLpH

s (LpH
s )T−I andAH−I = AK , equation (8.41) has been proven.

As ps+1 = p∗ + es+1 we get

ps+1 = (AH − I)−1bK + ((K̂ ′
s)

−1 − (AH − I)−1)bK , (8.44)

from which (8.40) follows.

Note that (8.41) can also be written, from (8.43) as

es+1 =
(
(K̂ ′

s)
−1 − (K ′(ps))

−1
)

bK , (8.45)

where(K ′(ps))
−1 = A−1

K .

Corollary 8.2.2. Consider the IQN-LS method (§6.3.1). Assume that̂K ′
s is non-

singular and thatK is an affine mapping. Thene1 = AHeo, r1 = AHro and for
s ≥ 1, there exists{γ1,s+1, γ2,s+1, . . . , γs,s+1} ⊂ R, such that

es+1 = AHeo + AH

s∑

i=1

γi,s+1(ei − eo) (8.46)

rs+1 = AHro + AH

s∑

i=1

γi,s+1(ri − ro). (8.47)

Proof. From theorem 8.2.3 it follows that

es+1 = eo − (K̂ ′
s)

−1(AH − I)eo

(AHLpH
s (LpH

s )T − I)(es+1 − eo) = −(AH − I)eo

es+1 = AHLpH
s (LpH

s )T (es+1 − eo) + AHeo.

AsLpH
s (LpH

s )T is a projection operator on the span of{e1 − eo, e2 − eo, . . . , es −
eo}, the latter expression can be written as

es+1 = AHeo + AH

s∑

i=1

γi,s+1(ei − eo), (8.48)
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which proves (8.46).
To prove (8.47) we start from (8.46), and re-arrange it as

es+1 = AKeo + eo + AK

s∑

i=1

γi,s+1(ei − eo) +

s∑

i=1

γi,s+1(ei − eo)

= ro + eo +
s∑

i=1

γi,s+1(ri − ro) +
s∑

i=1

γi,s+1(ei − eo)

AKes+1 = rs+1 = AKro + ro + AK

s∑

i=1

γi,s+1(ri − ro) +

s∑

i=1

γi,s+1(ri − ro)

= AHro + AH

s∑

i=1

γi,s+1(ri − ro),

which completes our proof.

We will now show that IQN-LS shows some similarities with Krylov subspace
methods (definition 2.15) as at thes-th iterate we haveps ∈ Ys, with Ys =

Ks{AK ; ro}, which is the same search subspace as GMRes; on the other handwe
havers⊥Zs−1 = (AT

H)−1Ks−1{AK ; ro}, which is different from GMRes where
rs⊥AKKs{AK ; ro}.

Theorem 8.2.4.Consider the IQN-LS method (§6.3.1) and assumeK is an affine
mapping. AssumêK ′

s−1 is non-singular. Then we have that

es ∈ eo + Ks{AK ; ro} (8.49a)

ps ∈ po + Ks{AK ; ro} (8.49b)

rs ∈ ro + AKKs{AK ; ro}. (8.49c)

Proof. Let Pk = {q(x) ∈ R[x] : q(x) =
∑k

i=1 κix
i}, i.e. the space of real poly-

nomials of degreek, or lower, with zero constant.q(AK) represents a polynomial
in AK , i.e q(AK) =

∑k
i=1 κiA

i
K for q(x) =

∑k
i=1 κix

i.
We first note thatPk overR is a vector-space of dimensionk, and that as such

∀t1(x), t2(x) ∈ Pk,∀α1, α2 ∈ R : α1t1(x) + α2t2(x) ∈ Pk,

and that∀l ≤ k : Pl ⊂ Pk.
We will now give our proof by induction.



112 CHAPTER 8

We know that

e1 = AHeo = eo + (AH − I)eo = eo + q1(AK)eo, (8.50)

whereq1 ∈ P1 andAK = AH − I. We know (from corollary 8.2.2) that

e2 = AH

1∑

i=1

γi,2(ei − eo) + AHeo (8.51)

= AHγ1,2(e1 − eo) + AHeo (8.52)

= AHγ1,2e1 − AHγ1,2eo + AHeo (8.53)

As e1 = AHeo we obtain

e2 = γ1,2AHAHeo − AHγ1,2eo + AHeo (8.54)

= γ1,2AH(AH − I)eo + AHeo (8.55)

= γ1,2AHAKeo + γ1,2(AKeo − AKeo) + AHeo + (eo − eo) (8.56)

= γ1,2AKAKeo + γ1,2AKeo + AKeo + eo (8.57)

= γ1,2A
2
Keo + (γ1,2 + 1)AKeo + eo (8.58)

= eo + q2(AK)eo, (8.59)

whereq2 ∈ P2. We now prove that, if we have

ek = eo + qk(AK)eo, (8.60)

for k = 1, 2, . . . s − 1, whereqk ∈ Pk, it follows that

es = eo + qs(AK)eo, (8.61)

whereqs ∈ Ps.

We have (from corollary 8.2.2) that

es = AHeo + AH

s−1∑

k=1

γk,s(ek − eo) (8.62)

= AHeo + AH

s−1∑

k=1

γk,s(qk(AK)eo). (8.63)

Knowing that∀k ≤ s − 1 : qk ∈ Pk ⇒ qk ∈ Ps−1 and sincePs−1 is a vector-
space overR, we can write

es = AH q̃s−1(AK)eo + AHeo, (8.64)
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whereq̃s−1 ∈ Ps−1. We also have that

es = (AK)q̃s−1(AK)eo + q̃s−1(AK)eo + (AK)eo + eo. (8.65)

As ∀q(x) ∈ Pk : xq(x) ∈ Pk+1 and asx ∈ Pk+1 we can finally write

es = eo + qs(AK)eo, (8.66)

whereqs ∈ Ps.
Thuses+1 ∈ eo + span{AKeo, A

2
Keo, A

3
Keo, . . . , A

s
Keo}.

Noting that
span{AKeo, A

2
Keo, A

3
Keo, . . . , A

s
Keo} = span{ro, AKro, A

2
Kro, . . . , A

s−1
K ro}

we have proven (8.49a).
Equations (8.49b) and (8.49c) follow immediately.

Theorem 8.2.5.Consider the IQN-LS method (§6.3.1) and assumeK is an affine
mapping. AssumêK ′

s−1 is non-singular. Then we have thatrs⊥(AT
H)−1Ks−1{AK ; ro}.

Proof. From corollary 7.2.3 we know thatrs = AH L̄pH
s (L̄pH

s )T δps−1.
If we write (L̄pH

s )T δps−1 = κ ∈ R then we havers = κAH L̄pH
s .

As ∀y ∈ R(V pH
s−1) : 〈L̄pH

s , y〉 = 0, it follows that

∀y ∈ R(V pH
s−1) : 〈rs, (A

T
H)−1y〉 = 0. (8.67)

From the definition ofV pH
s and equation (8.49b), we see thatR(V pH

s−1) = Ks−1{AK ; ro}
if V pH

s−1 is of ranks − 1.
rs is thus orthogonal to(AT

H)−1Ks−1{AK ; ro}.

Remark 8.1. Asrs is only orthogonal to ans− 1-dimensional subspace, it is not
a Krylov subspace method in the classical sense.
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8.2.3 Krylov subspaces for IQN-ILS

We will show that the iterates of this method share the same Krylov search sub-
space as those of GMRes (and hence of IQN-LS), but not the subspace of con-
straints.

Theorem 8.2.6. Consider the IQN-ILS method (§6.3.2). Assume that̂M ′
s is non-

singular3 and thatK is an affine mapping. Then the following relations hold:

∀j ∈ {0, 1, . . . , s} :

(I − AKM̂ ′
s)(rs − rj) = 0 (8.68a)

es+1 = ej − M̂ ′
sAKej (8.68b)

rs+1 = rj − AKM̂ ′
srj (8.68c)

ps+1 = pj − M̂ ′
sK(pj). (8.68d)

Proof. (The proof is similar to the one in theorem 8.2.3.)
As, from theorem 6.2.3,∀j ∈ {0, 1, . . . , s} : R(V KH

j ) ⊂ R(V KH
s ), lemma 2.3.3

allows us to write, using equation (8.34),∀x ∈ R(V KH
j ), j = 0, 1, . . . , s:

M̂ ′
sx = A−1

K x (8.69)

(I − AKM̂ ′
s)x = 0. (8.70)

As rs − rj = K(ps) − K(pj) we have(rs − rj) ∈ R(V KH
s ) from the definition

of V KH
s and the theorem follows.

From this theorem we see that the previous iterates only contribute to the solution
process by creating a better approximate inverse JacobianM̂ ′

s, just as for the IQN-
LS method.

Corollary 8.2.3. Consider the IQN-ILS method (§6.3.2). Assume that̂M ′
s is non-

singular, thatK (or H) is an affine mapping and that the iterations start from an
initial guesspo = 0. Then the quasi-Newton iteration can also be written as

ps+1 = ((A−1
K + I)LKH

s (LKH
s )T − I)bK (s ≥ 1), (8.71)

3As shown in theorem 8.1.2, this assumption is always satisfiedfor linear systems.
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and the errores+1 is given by

es+1 = (A−1
K + I)

(
LKH

s (LKH
s )T − I

)
bK (s ≥ 1). (8.72)

The proof is analogous to the one in corollary 8.2.1.

Note that (8.72) can also be written as

es+1 =
(
M̂ ′

s − (K ′(ps))
−1
)

bK , (8.73)

where(K ′(ps))
−1 = A−1

K .

Comparing this withes+1 =
(
(K̂ ′

s)
−1 − (K ′(ps))

−1
)

bK for IQN-LS and taken

into account thatM̂ ′
s converges in a monotone manner towardsA−1

K for IQN-ILS,
whereas(K̂ ′

s)
−1 for IQN-LS does not, would indicate that IQN-ILS would most

likely exhibit better convergence.

Corollary 8.2.4. Consider the IQN-ILS method (§6.3.2). Assume that̂M ′
s is non-

singular and thatK is an affine mapping. Thene1 = AHeo, r1 = AHro and for
s ≥ 1, there exists{γ1,s+1, γ2,s+1, . . . , γs,s+1} ⊂ R, such that

rs+1 = AHro + AH

s∑

i=1

γi,s+1(ri − ro) (8.74)

es+1 = AHeo + AH

s∑

i=1

γi,s+1(ei − eo). (8.75)

Proof. From theorem 8.2.6 it follows that

rs+1 = ro − AKM̂ ′
sro (8.76)

= ro − AK

[
(AK + I)A−1

K LKH
s (LKH

s )T − I
]
ro (8.77)

= ro − (LKH
s (LKH

s )T + AK(I − LKH
s (LKH

s )T ))ro (8.78)

= (AK + I)(I − LKH
s (LKH

s )T )ro (8.79)

= AHro − AHLKH
s (LKH

s )T ro. (8.80)

AsLKH
s (LKH

s )T is a projection operator on span{r1 − ro, r2 − ro, . . . , rs − ro},
the latter expression can be written as

rs+1 = AHro + AH

s∑

i=1

γi,s+1(ri − ro). (8.81)
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To prove (8.75) it suffices to multiply both sides of (8.81) byA−1
K and re-arrange

the terms as follows:

rs+1 = (AK + I)ro + (AK + I)

s∑

i=1

γi,s+1(ri − ro)

A−1
K rs+1 = es+1 = A−1

K (AK + I)ro + A−1
K (AK + I)

s∑

i=1

γi,s+1(ri − ro)

= (I + A−1
K )ro + (I + A−1

K )

s∑

i=1

γi,s+1(ri − ro)

= (I + A−1
K )AKeo + (I + A−1

K )AK

s∑

i=1

γi,s+1(ei − eo)

= AHeo + AH

s∑

i=1

γi,s+1(ei − eo),

which completes our proof.

We will now show that IQN-ILS shows some similarities with Krylov subspace
methods (definition 2.15) as at thes-th iterate we haveps ∈ Ys = Ks{AK ; ro},
which is the same search subspace as GMRes; on the other hand we havers⊥Zs−1,
whereZs+1 = (AT

H)−1AKKs−1{AK ; ro}, which is different from GMRes and
IQN-LS.

Theorem 8.2.7.Consider the IQN-ILS method (§6.3.2) and assumeK is an affine
mapping. AssumêM ′

s−1 is non-singular. Then we have that

es ∈ eo + Ks{AK ; ro} (8.82a)

ps ∈ po + Ks{AK ; ro} (8.82b)

rs ∈ ro + AKKs{AK ; ro}. (8.82c)

Proof. Let Pk = {q(x) ∈ R[x] : q(x) =
∑k

i=1 κix
i}, i.e. the space of real poly-

nomials of degreek, or lower, with zero constant.q(AK) represents a polynomial
in AK , i.e q(AK) =

∑k
i=1 κiA

i
K for q(x) =

∑k
i=1 κix

i.
We first note thatPk overR is a vector-space of dimensionk, and that as such

∀t1(x), t2(x) ∈ Pk,∀α1, α2 ∈ R : α1t1(x) + α2t2(x) ∈ Pk,
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and that∀l ≤ k : Pl ⊂ Pk.
We will now give our proof by induction.

We know that

e1 = AHeo = eo + (AH − I)eo = eo + q1(AK)eo, (8.83)

whereq1 ∈ P1 andAK = AH − I. We know (from corollary 8.2.4) that

e2 = AH

1∑

i=1

γi,2(ei − eo) + AHeo (8.84)

= AHγ1,2(e1 − eo) + AHeo (8.85)

= γ1,2(AH − I)2eo + (1 + γ1,2)(AH − I)eo + eo (8.86)

= eo + q2(AK)eo, (8.87)

whereq2 ∈ P2. (The derivation is similar to the one in theorem 8.2.4.) We now
prove that, if we have

ek = eo + qk(AK)eo, (8.88)

for k = 1, 2, . . . s − 1, whereqk ∈ Pk, it follows that

es = eo + qs(AK)eo, (8.89)

whereqs ∈ Ps.

We have (from corollary 8.2.4) that

es = AHeo + AH

s−1∑

k=1

γk,s(ek − eo) (8.90)

= AHeo + AH

s−1∑

k=1

γk,s(qk(AK)eo). (8.91)

Knowing that∀k ≤ s − 1 : qk ∈ Pk ⇒ qk ∈ Ps−1 and sincePs−1 is a vector-
space overR, we can write

es = AH q̃s−1(AK)eo + AHeo, (8.92)

whereq̃s−1 ∈ Ps−1. We also have that

es = (AH − I)q̃s−1(AK)eo + q̃s−1(AK)eo + (AK)eo + eo. (8.93)
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As ∀q(x) ∈ Pk : xq(x) ∈ Pk+1 and asx ∈ Pk+1 we can finally write

es = eo + qs(AK)eo, (8.94)

whereqs ∈ Ps.
Thuses+1 ∈ eo + span{AKeo, A

2
Keo, A

3
Keo, . . . , A

s
Keo}.

Noting that
span{AKeo, A

2
Keo, A

3
Keo, . . . , A

s
Keo} = span{ro, AKro, A

2
Kro, . . . , A

s−1
K ro}we

have proven (8.82a).
Equations (8.82b) and (8.82c) follow immediately.

Theorem 8.2.8.Consider the IQN-ILS method (§6.3.2) and assumeK is an affine
mapping. AssumêM ′

s−1 is non-singular. Then we have thatrs⊥(AT
H)−1AKKs−1{AK ; ro}.

Proof. From (4.9) we know that

rs = rs−1 − AKM̂ ′
s−1rs−1, (8.95)

and hence

rs = rs−1 − AK(AHA−1
K LKH

s−1(LKH
s−1)

T − I)rs−1 (8.96)

= rs−1 − ((I + AK)LKH
s−1(LKH

s−1)
T − AK)rs−1 (8.97)

= (I + AK)(I − LKH
s−1(LKH

s−1)
T )rs−1 (8.98)

= AH(I − LKH
s−1(LKH

s−1)
T )rs−1. (8.99)

Hencers = AHz, with z = (I − LKH
s−1(LKH

s−1)
T )rs−1 ∈ (R(V KH

s−1 ))⊥.
As ∀x ∈ (R(V KH

s−1 ))⊥,∀y ∈ R(V KH
s−1 ) : 〈x, y〉 = 0, it follows that

∀y ∈ R(V KH
s−1 ) : 〈rs, (A

T
H)−1y〉 = 0. (8.100)

From the definition ofV KH
s and equation (8.82c), we see that

R(V KH
s−1 ) = AKKs−1{AK ; ro} if V KH

s−1 is of ranks − 1.
rs is thus orthogonal to(AT

H)−1AKKs−1{AK ; ro}.

Remark 8.2. Asrs is only orthogonal to ans− 1-dimensional subspace, it is not
a Krylov subspace method in the classical sense.
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8.2.4 Further discussion

While IQN-LS and IQN-ILS share the same Krylov search subspace for the iterates
we need to stress some subtle differences.
First of all, IQN-LS and IQN-ILS were developed based on “function calls” which
in the case of affine mappings correspond toH(p) = AHp − bH = K(p) + p,
while GMRes has been developed based on matrix vector productsAKp. Variants
of GMRes exist that work with function callsH(p) or K(p) instead of matrix-
vector products (e.g.§3.2.2.2 [218]), but these exhibit poor numerical stability.
Experience has shown that the most stable way to use GMRes based on function
calls is to computebK(= bH) explicitly, thus requiring an extra function call.
As we have shown,pn+1 (or an earlier iterate) will be the solution of the system
for both IQN-LS and IQN-ILS (starting frompo), at which pointn + 1 function
calls will have been spent. For GMRespn (or an earlier iterate [222]) will be the
solution. Nevertheless, at that point we will also have usedn + 1 function calls,
as the residualrn = K(pn) needs to be computed4. In IQN-LS and IQN-ILS,
however, we have no knowledge of the final residualrn+1, even though we are
sure that, in exact arithmetic, it is zero. If we were to compute it, for convergence
verification when working in finite precision, then an extra function call would
need to be spent.
Combining this last argument with the one before we see that,when we base our
methods on function calls, GMRes needs at mostn + 2 function calls (for a stable
version) and so do IQN-LS and IQN-ILS (if we want to verify thefinal residual).

8.3 The effect of step-length parameters

We could consider modifying the basic quasi-Newton iteration (4.4), resp. (4.5),
with a step-length parameterωs ∈ R:

ps+1 = ps − ωs(K̂
′
s)

−1rs, (8.101)

resp.

ps+1 = ps − ωsM̂
′
srs. (8.102)

The resulting error and residual equations are

es+1 = es − ωs(K̂
′
s)

−1AKes (8.103)

rs+1 = rs − ωsAK(K̂ ′
s)

−1rs, (8.104)

4It is this variable that is optimized.
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resp.

es+1 = es − ωsM̂
′
sAKes (8.105)

rs+1 = rs − ωsAKM̂ ′
srs. (8.106)

We now show that the effect of the step-length parameter is limited to the current
iterate whenK is an affine mapping.

Theorem 8.3.1.LetK be an affine mapping. Consider the IQN-LS method (§6.3.1),
using a relaxation factor as in equation (8.101), then the choice ofωs ∈ R \ {0}
is irrelevant for the value ofps+2

5.

Proof. We have, by posinges = es,‖ + es,⊥, wherees,‖ ∈ R(V pH
s ) , es,⊥ ∈

(R(V pH
s ))⊥ and using theorem 8.2.3, that

es+1 = es − ωs(K̂
′
s)

−1AKes (8.107)

= es,‖ + es,⊥ − ωs(K̂
′
s)

−1AKes,⊥ − ωses,‖ (8.108)

= (1 − ωs)es,‖ + es,⊥ − ωs(K̂
′
s)

−1AKes,⊥ (8.109)

= (1 − ωs)es,‖ + (1 − ωs)es,⊥ − ωs(K̂
′
s)

−1AHes,⊥ (8.110)

= (1 − ωs)
(
es,‖ + es,⊥ + (K̂ ′

s)
−1AHes,⊥

)

︸ ︷︷ ︸
(∗)

− (K̂ ′
s)

−1AHes,⊥︸ ︷︷ ︸
(∗∗)

.

(8.111)

The new column vector added to updateV pH
s toV pH

s+1 will depend onδps = ps+1−
ps = δes = es+1 − es:

δes = −ωs

(
es,‖ + es,⊥ + (K̂ ′

s)
−1AHes,⊥

)
. (8.112)

We can thus conclude that the direction ofδes is independent ofωs. We see that
es+1 has a part that is parallel toδes (part(∗) in equation (8.111)) and a remaining
part that is independent ofωs (part(∗∗)).
(∗) will be eliminated completely at the next iteration, according to theorem 8.2.3,
as it lies inR(V pH

s+1). We can thus conclude thatωs will have no effect at the next
iteration.

This theorem shows that, for linear problems, line-searches, which are often part
of a (quasi-) Newton method, do not improve the long-term convergence of our

5The value ofps+1 will be affected however.
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algorithm, but can improve the instantaneous convergence.While classical line-
searches [6,91,202] require supplemental function evaluations (which we consider
to be very expensive), we will discuss a cheap and easy alternative in§8.4.
This does not mean that the use of a relaxation parameter might not be beneficial in
the non-linear case. Nevertheless, methods that determinethe relaxation parameter
based on extra function calls might not be economical due to the high cost of these
function calls. For that reason we will only use a fixed relaxation parameter in
the first iteration, where it is meant to avoid excessive initial divergence that might
impair the later convergence.

Remark 8.3. Theorem 8.3.1 extends top1 by settingK̂ ′
o = −I.

Remark 8.4. Similar properties hold for IQN-ILS (equation (8.102)) andby ana-
logy with IQN-LS also for IQN-CLS and IBQN-LS.

8.4 Modifying IQN-LS and IQN-ILS to make them
algebraically identical to GMRes

8.4.1 Re-writing the quasi-Newton algorithm for matrix-vector
products

As we have shown in§8.2, IQN-LS and IQN-ILS (and by extension IQN-CLS and
IBQN-LS) share the same Krylov search subspace for the iterates if the operators
are affine. This means that, theoretically, we can modify theLeast Squares quasi-
Newton methods to make them algebraically identical to GMRes, if we can find a
suitable linear combination of the basis vectors of the search subspace.
In this section we will show that this is indeed possible whenwe can formAKx,
∀x ∈ Rn×1, as opposed toK(x), for those quasi-Newton methods. We will also
show that this can be done without the need for supplementarymatrix-vector prod-
ucts (which are the equivalent of function calls in this context).
(In chapter 11 we will verify this claim with the help of numerical experiments.)

To do this, we first re-write the general quasi-Newton methodgiven in (8.101),
resp. and (8.102), as in algorithm 8.4.1, resp. 8.4.2, basedon ideas in [55].
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Algorithm 8.4.1 (Alternative form 1 of the IQN algorithms with approximate Jaco-
bian).

1. Startup.
Take a starting valuepo;
computero = AKpo − bK ;
chooseK̂ ′

o.
Sets = 0.

2. Loop until sufficiently converged
a. ∆s = (K̂ ′

s)
−1rs

b. ps+1 = ps − ωs∆s

c. qs = AK∆s

d. rs+1 = rs − ωsqs

e. K̂ ′
s+1 = K̂ ′

s +
(qs − rs)c

T
s

〈∆s, cs〉
f. Sets = s + 1.

Algorithm 8.4.2 (Alternative form 1 of the IQN algorithms with approximate in-
verse Jacobian).

1. Startup.
Take a starting valuepo;
computero = AKpo − bK ;
chooseM̂ ′

o.
Sets = 0.

2. Loop until sufficiently converged
a. ∆s = M̂ ′

srs

b. ps+1 = ps − ωs∆s

c. qs = AK∆s

d. rs+1 = rs − ωsqs

e. M̂ ′
s+1 = M̂ ′

s −
M̂ ′

s(qs − rs)d
T
s

〈qs, ds〉
f. Sets = s + 1.

(We assumeωs 6= 0 with s = 0, 1, 2, . . . .)
The definitions ofcs andds in these algorithms are the same as those used in§4.4
and define the specific quasi-Newton method.

For IQN-LS we use the following in algorithm 8.4.1:

• K̂ ′
o = −I.

• If s = 0: cs = L̄pH
s+1 = ∆s

‖∆s‖
;
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else:cs = L̄pH
s+1 =

(I−LpH
s (LpH

s )T )∆s

‖(I−LpH
s (LpH

s )T )∆s‖
.

• If s = 0: LpH
s+1 = L̄pH

s+1;

else:LpH
s+1 = [LpH

s |L̄pH
s+1].

For IQN-LS we use the following in algorithm 8.4.2:

• M̂ ′
o = −I.

• If s = 0: ds = L̄KH
s+1 = qs

‖qs‖
;

else:ds = L̄KH
s+1 =

(I−LKH
s (LKH

s )T )qs

‖(I−LKH
s (LKH

s )T )qs‖
.

• If s = 0: LKH
s+1 = L̄KH

s+1 ;
else:LKH

s+1 = [LKH
s |L̄KH

s+1 ].

We recall that using the parameterωs(6= 0) does not change the search subspace
and the long-term convergence, but can improve the instantaneous convergence of
the algorithm (cfr.§8.3).
Settingωs = 1 in both algorithms yields the standard IQN-LS and IQN-ILS me-
thods in rank-one update form.

8.4.2 Optimal step-length

If we use the formulation of the IQN-LS method given in algorithm 8.4.1 we can
find the value ofωs that minimizesrs in the Euclidean norm. To do so, we impose

rs+1 ⊥ qs, (8.113)

with rs+1 = rs − ωsqs. This leads to

〈rs+1, qs〉 = 〈rs − ωsqs, qs〉 = 0

ωs =
〈rs, qs〉
〈qs, qs〉

. (8.114)

For IQN-ILS we obtain the same expression.

If we compare the resulting variant of IQN-LS and IQN-ILS with GMRes, we see
that both still share the same Krylov spaces forps andrs. When using the optimal
step-length parameter in (8.114) IQN-LS and IQN-ILS searchfor the smallest re-
sidualrs in ro + AKKs{AK ; ro}, but only along the directionqs−1. Even though
this will improve convergence (in exact arithmetic), it will in general result in a
larger residual than for GMRes, as the latter searches for the smallest residual in
ro + AKKs{AK ; ro}, but in all directions contained in that subspace.
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8.4.3 Multiple parameters

In §8.4.1 and§8.4.2 we have only added a single iteration parameter to the quasi-
Newton methods. While an optimal value for that parameter will result in better
convergence6, it does not allow us to obtain algorithms that are algebraically equi-
valent to GMRes.
If we want to obtain an algorithm that is algebraically equivalent to GMRes, we
should add multiple parameters, as done in algorithm 8.4.3.

Algorithm 8.4.3 (Alternative form 2 of the IQN algorithms).

As algorithms 8.4.1 and 8.4.2 , but with

2. b.ps+1 = ps −
s∑

i=o

θs,i∆i

2. d. rs+1 = rs −
s∑

i=o

θs,iqi

(We assumeθs,s 6= 0 with s = 0, 1, 2, . . . .)

We now show, in the following theorem, that adding these parameters does not
change the search subspace (i.e. the subspace in which the iterates are found).

Theorem 8.4.1. The IQN-LS method implemented as in algorithm 8.4.3 retains
the same search subspace as the unmodified algorithm (which can be obtained by
settingθs,s = 1 andθs,i 6=s = 0, for s = 0, 1, . . . ).

Proof. We will proof this theorem recursively, based on the resultsof theorem
8.3.1.
We see that

p1 = po − θo,o(K̂
′
o)

−1K(po) (8.115)

δpo = −θo,o(K̂
′
o)

−1K(po) (8.116)

corresponds to the form of theorem 8.3.1 by settingωo = θo,o.
Forp2 we write

p2 = p1 − θ1,o(K̂
′
o)

−1K(po) − θ1,1(K̂
′
1)

−1K(p1) (8.117)

p2 = p1 − θ1,1(K̂
′
1)

−1K(p1)︸ ︷︷ ︸
(∗)

+
θ1,o

θo,o
δpo. (8.118)

6As always, in exact arithmetic.
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We can apply theorem 8.3.1 to the part marked(∗) by settingω1 = θ1,1. We obtain

e2 = (1 − θ1,1)(e1 + (K̂ ′
1)

−1AHe1,⊥)
︸ ︷︷ ︸

(∗∗)

− (K̂ ′
1)AHe1,⊥︸ ︷︷ ︸
(∗∗∗∗)

+
θ1,o

θo,o
δeo

︸ ︷︷ ︸
(∗∗∗)

(8.119)

δe1 = −θ1,1(e1 + (K̂ ′
1)

−1AHe1,⊥) +
θ1,o

θo,o
δeo. (8.120)

We thus see thate2 has a part that is parallel toδe1 (marked(∗∗)), a part parallel
to δeo (marked(∗ ∗ ∗)), and a part that is independent of the iteration parameters
(marked(∗ ∗ ∗∗)). As (∗∗) and(∗ ∗ ∗) will be eliminated in the next iteration, we
see that there is no long term effect of the iteration parameters.
We also see thatδeo andδe1 are linear combinations of the values ofδeo andδe1

that would be obtained by settingθs,s = 1 andθs,i 6=s = 0, for s = 0, 1, . . . (i.e.
the unmodified algorithm). This means that the subspace spanned byδeo andδe1

is not altered.
Applying this reasoning recursively proves the theorem.

Remark 8.5. A similar proof holds for the IQN-ILS algorithm.

We now compute the optimal values of the parameters, i.e. those hat minimize the
residual in the Euclidean norm. We defineΘs = [θs,o θs,1 . . . θs,s]

T and impose

rs+1 ⊥ qi (8.121)

(i = 0, 1, . . . s). By analogy with (8.114), this leads to

Θs = (QT Q)−1QT rs, (8.122)

whereQ = [qo |q1 | . . . |qs].

As {∆i}s
i=o span the same Krylov subspace as the unmodified algorithm (cfr. the-

orem 8.4.3), they form a basis for the Krylov subspaceKs{AK ; ro}. As AK is
assumed to be non-singular, it follows that{qi}s

i=o form a basis for the Krylov sub-
spaceAKKs{AK ; ro} to whichrs+1 is now orthogonal. It follows that the IQN-
LS and IQN-ILS method, implemented as in algorithm 8.4.3, are algebraically
identical to GMRes (cfr§3.2.2).

Note that the modifications to obtain algorithms 8.4.1, 8.4.2 and 8.4.3 do not de-
mand extra matrix-vector products, and only conceptually differ from the original
formulation in their ability to formAKx for all x ∈ Rn×1 as opposed toAKx−bK .
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9
Improving the Jacobian for discretized

time-dependent and grid-based
problems

Sometimes we are presented with a series of related problems, for instance time-
related problems; this was briefly mentioned in§1.1.3.
We will write

Ft(g ; pt−1, gt−1) = p (9.1a)

St(p ; pt−1, gt−1) = g, (9.1b)

or

Kt(p ; pt−1, gt−1) = 0, (9.2)

(t = 1, 2, . . . ) for this type of problem. (The subscript denotes the problem within
the series, i.e. most often the time-level.)
By this we mean: “solve (9.1) forp andg, with known values ofgt−1 andpt−1”,
resp. “solve (9.2) forp with known values ofgt−1 andpt−1”. pt−1 andgt−1 are
the values ofp andg at the previous time-level; if exact values are not available
we will use the final values of the iterative process used to solve the problem at the
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previous time-level.
The solution of (9.1) or (9.2) will give the values ofp and/org at the new time-
level (pt, resp.gt).
When we solve these equations iteratively, the iterates at iterations for time-level
t will be written asps,t andgs,t, etc.

While there are many problems of different origins that can bewritten in this form,
we assume that from here on we are dealing with discretized time-dependent ordi-
nary or partial differential equations, and that the subscript t denotes the time-level
for which we are solving the resulting algebraic system.

9.1 Recovery of data from previous time-levels

9.1.1 Recovery methods based on input-output pairs

The following method can be applied to all of the Least Squares quasi-Newton
methods when using the formulation of§6.3 (i.e. when not in rank-one update
form). We will use IQN-LS as an example.

If we assume that the input-output pairs of previous time-levels are representative
enough for the current time-level, we might think of enhancing the Jacobian by
adding these to the formulation of§6.3. For the proposed method we might re-use
the data as follows.

V
pH
s,t = [V pH

s,t | V pH
final,t−1 | . . . | V pH

final,t−τ ]

W
pH
s,t = [W pH

s,t | W pH
final,t−1 | . . . | W pH

final,t−τ ],

whereV pH
s,t andW pH

s,t are constructed at the current time-levelt and current it-

erations as in (6.26),V pH
final,t−i andW pH

final,t−i (i = 1, . . . , τ ) are the input and
output matrices constructed as in (6.26) at the end of the iteration process at time-
level t − i andτ is a parameter that determines how many time-levels are kept.

The Jacobian at iterations of time-levelt is then constructed as in (6.25):

K̂ ′
s,t = W

pH
s,t (VpH

s,t )+ − I. (9.3)

Experience has shown that creating input-output pairs by computing the difference
over different time-levels (e.g.po,t−pfinal,t−1) is not a good idea. One reason be-
ing that the difference taken over different time-levels ispartially a time-derivative,
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which is not present in the Jacobian we are approximating.
We start the first iteration of a new time-level (t > 1) by computing
p1,t = po,t − (K̂ ′

final,t−1)
−1Kt(po,t),

whereK̂ ′
final,t−1 is the approximate Jacobian at the last iteration of the previous

time-level; this means we set̂K ′
o,t = K ′

final,t−1. (For the first time-level we

implicitly used K̂ ′
o,1 = −I, possibly combined with under-relaxation.) A first

input-output pair for the new time-level can then be computed based onp1,t − po,t

andHt(p1,t) − Ht(po,t).
po,t is obtained by linear extrapolation based onpfinal,t−1 andpfinal,t−2 (if avail-
able), which are the last iterates at time stept − 1 andt − 2 respectively1.

We will now establish some properties that result from this construction. The first
is an extension of theorem 7.1.1, showing that the method canstill be written in
rank-one update form.

Theorem 9.1.1.Suppose that̂K ′
s,t is constructed as in (9.3), then̂K ′

s+1,t is linked

to K̂ ′
s,t by the following expression (fors < n):

∀ÅH ∈ A(VpH
s+1,t,W

pH
s+1,t) : K̂ ′

s+1,t = K̂ ′
s,t + ÅH L̄pH

s+1,t(L̄
pH
s+1,t)

T , (9.4)

whereL̄pH
s+1,t is the(s + 1)-th column ofLpH

s+1,t andL
pH
s+1,t is a matrix of which

the columns form an orthonormal basis forV
pH
s+1,t.

The proof is similar to the one of theorem 7.1.1.

Just as in§7.1.1 we can re-write (9.4) so that the rank-one update can becomputed
from available data.

The new basis vector̄LpH
s+1,t can be computed using

L̄pH
s+1,t =

δps,t − L
pH
s,t (LpH

s,t )T δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖
, (9.5)

which can be done based on the available data (δps,t = ps+1,t − ps,t), while for
the computation of̊AH L̄pH

s+1,t we can use the following relationships.

1We assume that at the last iteration convergence has been reached.
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ÅH L̄pH
s+1,t = ÅH

δps,t − L
pH
s,t (LpH

s,t )T δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
ÅHδps,t − ÅHL

pH
s,t (LpH

s,t )T δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
δHs,t − ÅHV

pH
s,t (VpH

s,t )T δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
δHs,t − ÅHV

pH
s,t (VpH

s,t )T δps,t − δps,t + δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
δHs,t + δps,t − (ÅHV

pH
s,t (VpH

s,t )T − I)δps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
δKs,t − K̂ ′

s,tδps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖

=
Kt(ps+1,t) − Kt(ps,t) − K̂ ′

s,tδps,t

‖δps,t − L
pH
s,t (LpH

s,t )T δps,t‖
,

whereδKs,t = Kt(ps+1,t) − Kt(ps,t).

We can write the resulting update as follows.

K̂ ′
s+1,t = K̂ ′

s,t +
(δKs,t − K̂ ′

s,tδps,t)((I − L
pH
s,t (LpH

s,t )T )δps,t)
T

〈δps,t, (I − L
pH
s,t (LpH

s,t ))T )δps,t〉
, (9.6)

which can be simplified to

K̂ ′
s+1,t = K̂ ′

s,t +
Kt(ps+1,t)((I − L

pH
s,t (LpH

s,t )T )δps,t)
T

〈δps,t, (I − L
pH
s,t (LpH

s,t )T )δps,t〉
. (9.7)

Equation (9.7) shows that the Jacobian does not change in theorthogonal comple-
ment of the space spanned by(I−L

pH
s,t (LpH

s,t )T )δps,t, where(I−L
pH
s,t (LpH

s,t )T )δps,t

is the direction of the component ofδps,t that is orthogonal to all previously visited
directions (including those of previous time-levels). In other words

K̂ ′
s+1,tz = K̂ ′

s,tz whenz⊥(I − L
pH
s,t (LpH

s,t )T )δps,t (9.8)

(I − L
pH
s,t (LpH

s,t )T )δps,t

Some caution is needed when using this method.
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• The choice of the parameterτ is difficult, as it is not always clear a priori
how many time-levels can be kept, i.e. how long old data will be represen-
tative for the problem at the current time-level.

• If we add a column toVpH
s,t which is linearly dependent on other columns,

then the method will break down. This problem can be solved byQR-
filtering to V

pH
s,t , as explained in§7.5.1.

Remark 9.1. When the operators are affine, e.g.Ht(p) = AH,tp− bH,t etc., then
in general we will haveAH,j 6∈ A(VpH

s,t ,WpH
s,t ), for j = 1, 2, . . . , t, even though

AH,t ∈ A(V pH
s,t ,W pH

s,t ).

Remark 9.2. A similar approach with similar results exists for IQN-ILS,IQN-CLS
and IBQN-LS.

9.1.2 Recovery methods based on the rank-one update formu-
lation

Another approach to re-using data is based on the rank-one update formulation
established in§7.1. This can be applied to all quasi-Newton methods in rank-
one update-form, e.g. the Least Squares methods, Broyden’smethods, CUM and
ICUM [105]. Again we will use IQN-LS as an example.

In this approach we will keep the final approximate Jacobian of the previous time-
levelK̂ ′

final,t−1 and use it aŝK ′
o,t (cfr. as in§9.1.1). If the Jacobian of the previous

time-level is representative enough for the current time-level than this will result
in a better initial Jacobian, which improves convergence.
This means that for the first iteration of the new time-level we have
p1,t = po,t − (K̂ ′

o,t)
−1Kt(po,t) = po,t − (K̂ ′

final,t−1)
−1Kt(po,t).

Again,po,t is obtained by linear extrapolation based onpfinal,t−1 andpfinal,t−2

(if available).
Starting with the input-output pairsp1,t − po,t andHt(p1,t) − Ht(po,t) we will
apply a rank-one update tôK ′

o after the manner described in§7.1:

K̂ ′
s+1,t = K̂ ′

s,t +
(δKs,t − K̂ ′

s,tδps,t)((I − LpH
s,t (LpH

s,t )T )δps,t)
T

〈δps,t, (I − LpH
s,t (LpH

s,t )T )δps,t〉
(9.9)

= K̂ ′
s,t +

Kt(ps+1,t)((I − LpH
s,t (LpH

s,t )T )δps,t)
T

〈δps,t, (I − LpH
s+1,t(LpH

s+1,t)
T )δps,t〉

, (9.10)
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whereLpH
s,t is a matrix of which the columns form an orthonormal basis forV pH

s+1,t,

althoughV pH
s+1,t is not explicitly constructed. We recall thatV pH

s+1,t only contains
input pairs of the current time-level as in (6.26).

Equations (9.7) and (9.10) show the main difference betweenthe method in§9.1.1
and the method in this section.
From equation (9.7) we have concluded that the update only happens in the direc-
tion of the component ofδps,t that is orthogonal to all previous directions, inclu-
ding those of previous time-levels, while (9.10) teaches usthat for this method the
update happens in the direction of the component ofδps,t that is orthogonal to all
previous directions of the current time-level only.
Thus for the method of this section the directions in the current time-level have a
larger influence on the approximate Jacobian than in the method of section 9.1.1.
Also, if the directionδps,t has already occurred in a previous time-level then the
old data will be simply over-written, while for the method in§9.1.1 a singularity
would occur, which needs to be removed by QR-filtering.

A theorem similar to theorem 7.1.1 is no longer valid, i.e. wedo not have that

∀ÅH ∈ A(V pH
s+1,t,W

pH
s+1,t) : K̂ ′

s+1,t = K̂ ′
s,t + ÅH L̄pH

s+1,t(L̄
pH
s+1,t)

T , (9.11)

for s < n, whereK̂ ′
s,t is constructed as in the IQN-LS method described in this

section and wherēLpH
s+1,t is the(s + 1)-th column ofLpH

s+1,t. (LpH
s+1,t is a matrix

of which the columns form an orthonormal basis forV pH
s+1,t.)

This can be shown by a simple example.
AssumeKt(p) = AK,tp − bK,t,Ht(p) = AH,tp − bH,t, then we have

K̂ ′
1,t = K̂ ′

o,t +
(δKo,t − K̂ ′

o,tδpo,t)(δpo,t)
T

〈δpo,t, δpo,t〉

= K̂ ′
o,t +

(AK,t − K̂ ′
o,t)δpo,t

‖δpo,t‖

(
δpo,t

‖δpo,t‖

)T

= K̂ ′
o,t + (AK,t − K̂ ′

o,t)L̄
pH
1,t (L̄pH

1,t )T .

As in generalK̂ ′
o,t 6= −I, and thusAK,t − K̂ ′

o,t 6= AH,t we have that

K̂ ′
1,t 6= K̂ ′

o,t + AH,tL̄
pH
1,t (L̄pH

1,t )T , with AH,t ∈ A(V pH
s+1,t,W

pH
s+1,t).

Nevertheless, the (9.10) clearly shows that the method is still a rank-one update
method.

Remark 9.3. A similar approach with similar results exists for IQN-ILS,IQN-CLS
and IBQN-LS.
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Remark 9.4. The extension of this approach to Broyden’s good and bad method,
the Column-Updating Method and the Inverse Column-Updating method (chapter
4) is straightforward.

9.2 Creating a better initial approximate Jacobian
from a coarser grid

When the problem that needs to be solved is a discretized (partial) differential
equation defined on a mesh, we can solve the same problem on a coarser mesh
and use the input-output pairs on the coarse mesh to create aninitial Jacobian on
the fine mesh [105]. The method presented below can only be applied to the Least
Squares methods. (Note that the problem to be solved not necessarily needs to be
time-dependent.)

After solving the problem on the coarse grid, the input-output modes created dur-
ing the solution process on that grid are prolongated to the fine grid and used to
create the initial Jacobian on the fine grid after which the normal rank-one updates
are performed. The prolongation is shown schematically in figure 9.1.
We illustrate this for the construction of̂K ′

o in the IQN-LS method.

Figure 9.1: Schematic representation of prolongation from coarse to finegrid.

Let If
c be the prolongation (interpolation) matrix used to go from the coarse to the

fine grid. We construct the initial approximate JacobianK̂ ′
o on the fine grid as

K̂ ′
o = If

c W pH,c
final[(I

f
c V pH,c

final)
T If

c V pH,c
final]

−1(If
c V pH,c

final)
T − I, (9.12)

whereV pH,c
final andW pH,c

final are defined as in (6.9) at the end of the solution process
on the coarse grid.
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Afterwards the usual rank-one update is applied (cfr.§7.1).

The initial iterate on the fine grid can be obtained by prolongation of the final solu-
tion on the coarse grid or by extrapolating the solutions of the previous time-levels
when the problem is time-dependent (just as in§9.1.1 and§9.1.2).

We recall that we are only considering valuesp andg on the interface between
the domains of the interacting problems described by the functionsF andS. The
number of variables on the interface might be several orderslower than the (inter-
nal) variables involved in computingF (g) or S(p). Computations with a reduced
number of interface variables will thus be substantially cheaper, hence the con-
struction of the initial approximate Jacobian in this manner is relatively cheap.

The main difficulty with this method is the choice of the ratioof the number of
variables on the coarse and fine grids, which is a trade-off between computational
cost and accuracy.

Remark 9.5. A similar approach with similar results exists for IQN-ILS,IQN-CLS
and IBQN-LS.



10
Numerical experiments with non-affine

operators

We have so far mainly focused on the theoretical properties of the various quasi-
Newton methods. In this chapter we will test these methods ontwo well-understood
test-cases: one-dimensional flow in a flexible tube and the one-dimensional heat
equation with variable coefficients.
In the former, the interaction is between the pressure and velocity of a fluid and the
geometry of a structure. In the latter, the temperature interacts with density, heat
capacity and thermal conductivity.
For the fluid-structure interaction problem we perform a detailed Fourier analysis
and show the conditional stability of a simple fixed point iteration method.
Both problems are solved with approaches discussed in chapters 5, 6 and 9.

10.1 One-dimensional flow in a flexible tube

10.1.1 Preliminary remark about notations

In this section we will use continuous variables, discretized variables, non-dimensional
discretized variables and Fourier coefficients. To avoid confusion we give a brief
overview of the notation that will be used.
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p, u, g : continuous variables: pressure, velocity,
cross-sectional area;

Pt+1, Pt, etc. : discretized variables (vectors) at resp. time-step
t + 1 andt: pressure, etc.;

[Pt+1]i, [Pt]i, etc. : i-th component of discretized variables at
resp. time-stept + 1 andt: pressure, etc.;

[P ]in, [P ]out, etc. : discretized pressure at inlet, resp. outlet, etc.;
pt+1, pt, etc. : discretized non-dimensional variables (vectors) at

resp. time-stept + 1 andt: pressure, etc.;
[pt+1]i, [pt]i, etc. : i-th component of non-dimensional discretized variables

at resp. time-stept + 1 andt: pressure, etc.;
ps,t+1, ps,t, etc. : discretized non-dimensional variables (vectors) at resp.

time-stept + 1 andt ands-th iteration: pressure, etc.;
p̂s : error component in Fourier analysis (vector);
[p̂s]i : i-th component of̂ps;
[p̃s]

l : amplitude ofl-th Fourier mode at iterations;
p∗, u∗, g∗ : solution for discretized, non-dimensional equation:

pressure, velocity, cross-sectional area.

10.1.2 Analytical description of the problem

Figure 10.1: One-dimensional flow in a flexible tube.

This test-case describes one-dimensional unsteady flow in aflexible tube of length
L1.
The fluid is incompressible and inviscid and gravity is neglected. The governing
equations are the conservation of mass and momentum, which can be written in

1This can be thought of as a much simplified model of pulsating flow in an artery.
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conservative form as

∂g

∂t
+

∂gu

∂x
= 0 (10.1a)

∂gu

∂t
+

∂gu2

∂x
+

1

ρ

(
∂gp̃

∂x
− p̃

∂g

∂x

)
= 0, (10.1b)

with g the cross-sectional area of the tube,u the velocity along the axis of the tube
and ∂

∂t the time derivative.x is the spatial coordinate,ρ is the density of the fluid
andp̃ the pressure. We will writep = p̃/ρ for the kinematic pressure.
If the elastic wall of the tube has a constitutive law of the form g = g(p), with
the cross-sectional area only a function of the local kinematic pressure2 and if its
inertia is neglected then (10.1) can be rewritten in the following form

∂p

∂t
+ u

∂p

∂x
+ c2 ∂u

∂x
= 0 (10.2a)

∂gu

∂t
+

∂gu2

∂x
+

∂gp

∂x
− p

∂g

∂x
= 0, (10.2b)

where the wave speedc is defined by

c2 =
g
dg

dp

. (10.3)

The velocity at the inlet of the tube is imposed as

u(t) = uo +
uo

10
sin2 (πt) , (10.4)

whereuo is a reference velocity.
A non-reflecting boundary condition is prescribed at the outlet:

∂u

∂t
=

1

c

∂p

∂t
. (10.5)

The behavior of the flexible tube wall is described with a Hookean constitutive
relation. The structure model contains no mass, as the inertia of the tube wall is
neglected with regards to that of the fluid.
An axisymmetric model is used in the coordinate system (x,r,φ), with r the inner
radius of the tube andφ the angle in the cross-sectional plane. The stress in the
tube wall in the circumferential directionσφφ is approximated as

σφφ = E
r − ro

ro
+ σo, (10.6)

2We will use a long-standing abuse of notation in thatp andg will both refer to functions as to the
corresponding pressure and geometrical variables. Similarly we will be writing bothg for the function
g1 : R → R : p 7→ g1(p) andg2 : R2

→ R : (x, t) 7→ g2(x, t); the latter meaningg1 ◦ p with
p : R2

→ R : (x, t) 7→ p(x, t).
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with E Young’s modulus,ro the radius whereσφφ = σo andσo a reference value.
Other stress components are assumed to be zero. This model allows only radial
motion of the tube wall.
Under the assumption that only pressure forces act on the fluid-structure interface,
the force balance reads

p̃r = σφφh, (10.7)

with h the thickness of the tube wall.
By substituting (10.6) and the definition of the kinematic pressure in (10.7), the
following relation is obtained:

rp =
Eh

ρro
(r − ro) + ropo, (10.8)

with po andp̃o defined bỹporo = σoh. This can be rewritten as

g = go

(
po − 2c2

mk

p − 2c2
mk

)2

(10.9)

by usingg = πr2 (andgo = πro) and by introducing the constantcmk (the Moens-
Korteweg wave speed), given by

c2
mk =

Eh

2ρro
. (10.10)

The wave speed according to definition (10.3) thus becomes

c2 = c2
mk − p

2
. (10.11)

10.1.3 Discretizing the equations

The flow equations (10.1) are discretized on a one-dimensional equidistant mesh
with n cells and mesh size∆x. The fluid velocity and pressure are stored in the
mesh nodes. Central discretization of all terms in the continuity and momentum
equations is used, except for the convective term in the momentum equation which
is discretized with a first-order upwind scheme. The time discretization scheme is
backward Euler and the time-step is indicated with∆t. The conservation of mass
and momentum in a control volume around nodei is expressed by the following
system of equations:

∆x

∆t
([G]i − [Gt]i) + [U ]i+1/2[G]i+1/2 − [U ]i−1/2[G]i−1/2 = 0 (10.12a)
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∆x

∆t
([U ]i[G]i − [Ut]i[Gt]i)+ [U ]i[U ]i+1/2[G]i+1/2 − [U ]i−1[U ]i−1/2[G]i−1/2

+ [P ]i+1/2[G]i+1/2 − [P ]i−1/2[G]i−1/2 − [P ]i
(
[G]i+1/2 − [G]i−1/2

)
= 0,

(10.12b)

for [U ]i ≥ 0 (i = 1, . . . n). The subscriptsi, i+1 andi−1 indicate the mesh nodes
(i = 1, . . . , n)3. The subscripti ± 1/2 signifies the values calculated at the cell
interfaces,[U ]i−1/2 = 1/2([U ]i−1 + [U ]i) and[U ]i+1/2 = 1/2([U ]i + [U ]i+1),
etc. The subscriptt denotes the previous time-level; the subscriptt + 1 for the
new time-level is omitted. A pressure stabilization term isadded in the continuity
equation (10.12a) to prohibit pressure wiggles due to central discretization of the
pressure in the momentum equation (10.12b) :

∆x

∆t
([G]i − [Gt]i) + [U ]i+1/2[G]i+1/2 − [U ]i−1/2[G]i−1/2

− α([P ]i+1 − 2[P ]i + [P ]i−1) = 0 (10.13a)

∆x

∆t
([U ]i[G]i − [Ut]i[Gt]i)+ [U ]i[U ]i+1/2[G]i+1/2 − [U ]i−1[U ]i−1/2[G]i−1/2

+
1

2

(
[G]i+1/2([P ]i+1 − [P ]i) + [G]i−1/2([P ]i − [P ]i−1)

)
= 0, (10.13b)

with α =
Go

Uo + ∆x
∆t

. U0 is the initial flow velocity.

The pressure at the inlet and the velocity at the outlet are linearly extrapolated from
neighboring values as

[P ]in = 2[P ]1 − [P ]2 (10.14a)

[U ]out = 2[U ]n − [U ]n−1. (10.14b)

The velocity at the inlet is imposed and the pressure-condition at the outlet (equa-
tion (10.5)) is discretized as

[P ]out = 2



c2
mk −

(√
c2
mk − [Pt]out

2
− [U ]out − [Ut]out

4

)2


 , (10.15)

which takes into account the variation ofc with p given by (10.11) when integra-
ting from time-levelt to time-levelt + 1.

3The subscript “o” is used to indicate a reference value. No confusion should arise with nodal
values which use a subscript “i” ( i = 1, . . . , n) asi cannot take the value 0. Hence,Uo should not be
interpreted as he “0-th” node.
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The geometrical discretization of the elastic problem is identical to that of the flow
problem to avoid errors in the data transfer between the fluidand the structure:

[G]i = Go

(
Po − 2c2

mk

[P ]i − 2c2
mk

)2

. (10.16)

10.1.4 Non-dimensionalizing the equations

The non-dimensional parameters and nodal variables are defined as

[g]i =
[G]i
Go

[p]i =
[P ]i
c2
o

β =
αco

Go

[u]i =
[U ]i
co

uo =
Uo

co
Do =

∆x
∆t

co
,

for i = 1, . . . , n, whereuo represents the Courant-Friedrichs-Lewy (CFL) num-
ber [44]. Note thatβ = 1

uo+Do .

For (10.13a) the non-dimensionalized equation becomes (after division byGoco),
for i = 1, . . . , n,

Do ([g]i − [gt]i) + [u]i+1/2[g]i+1/2 − [u]i−1/2[g]i−1/2

−β([p]i+12[p]i − [p]i−1) = 0. (10.17)

For (10.13b) the non-dimensionalized equation becomes (after division byGoc
2
o),

for i = 1, . . . , n,

Do ([u]i[g]i − [ut]i[gt]i) + [u]i[u]i+1/2[g]i+1/2 − [u]i−1[u]i−1/2[g]i−1/2

+
1

2

(
[g]i+1/2([p]i+1 − [p]i) + [g]i−1/2([p]i − [p]i−1)

)
= 0.

(10.18)

For the right boundary condition (10.15) we obtain the following equation (after
division byc2

o), for i = 1, . . . , n,

[p]out = 2



c2
mk

c2
o

−
(√

c2
mk

c2
o

− [pt]out

2
− [u]out − [ut]out

4

)2

 .

As c2
mk

c2
o

= 1 + po

2 (equation 10.11) this becomes

[p]out = 2 + po −
(√

2 + po − [pt]out − [u]out + [ut]out

)2

. (10.19)
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As p = 2(c2
mk − c2) andpo = 2(c2

mk − c2
o) (equation 10.11), we obtain for the

structural equation (10.16)

[G]i = Go



 −2
[P ]i
c2

o
− 2

c2
mk

c2
o




2

[g]i = go

(
−2

[p]i − 2
(
1 + po

2

)
)2

[g]i = go

(
2

2 + po − [p]i

)2

. (10.20)

10.1.5 Fourier error analysis

As already mentioned in§1.2.2, fixed-point iterations, like the Iterative Substruc-
turing Method, are only conditionally stable.
We will illustrate this by a Fourier analysis of this one-dimensional fluid-structure
interaction problem.

The Iterative Substructuring Method (algorithm 1.2.1) canbe implemented as fol-
lows, based on the non-dimensional equations, with the firstsubscript indicating
the coupling iteration and the second the time-level.

1. Solve the flow equations (10.17 - 10.18 - 10.19) for the velocity and pressure
at time-levelt+1 with a fixed geometrygs,t+1; assignus+1,t+1 andps+1,t+1

to this solution.
When we are only interested in the pressure, we can write this as
Ft+1(gs,t+1, pt, gt) = ps+1,t+1, which corresponds to the definition ofFt+1

used in (9.1a).

2. Compute the geometry at time-levelt+1 from the structural equation (10.20)
given the previously calculated pressureps+1,t+1; assigngs+1,t+1 to this so-
lution. We can write this asSt+1(ps+1,t+1) = gs+1,t+1, which corresponds
to the definition ofSt+1 used in (9.1b); note that in this particular caseSt+1

is no function ofgt or pt.

3. Increases and return to step 1 until convergence is obtained.

The stability of this simple iterative method is now investigated with Fourier analy-
sis [44]. Every unknown in equations (10.17), (10.18) and (10.20) is written as the
sum of the coupled solution (indicated with an asterisk) andthe remaining error
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(indicated with a hat):

us = u∗ + ûs (10.21a)

ps = p∗ + p̂s (10.21b)

gs = g∗ + ĝs, (10.21c)

where we have dropped the subscriptt + 1.
All non-linear combinations in the error terms are neglected and the equations
satisfied by the coupled solution are subtracted from these equations. A constant
velocity, pressure and section along the tube is chosen as a coupled solution:

u∗
i = uo (10.22a)

p∗i = po (10.22b)

g∗i = go, (10.22c)

for i = 1, . . . , n, with uo the mean velocity andpo andgo defined previously. It is
clear that (10.22) satisfies the equations for the coupled solution.
This results in the following equations for the error terms.

Do[ĝs]i +
uo

2

(
[ĝs]i+1 − [ĝs]i−1

)
+

go

2

(
[ûs+1]i+1 − [ûs+1]i−1

)

− β([p̂s+1]i+1 − 2[p̂s+1]i + [p̂s+1]i−1) = 0 (10.23a)

Do (uo[ĝs]i + [ûs+1]i) +
u2

o

2
([ĝs]i+1 − [ĝs]i−1)

+ uo

(
[ûs+1]i+1/2 + [ûs+1]i − [ûs+1]i−1/2 − [ûs+1]i−1

)

+
1

2
([p̂s+1]i+1 − [p̂s+1]i−1) = 0 (10.23b)

[ĝs+1]i = [p̂s+1]i. (10.23c)

(Note that, according to our choice of non-dimensional parameters,go = 1.)
The error terms are expanded as an infinite sum of Fourier modes. As equations
(10.23) are linear in the error terms, every Fourier mode with a given spatial pulsa-
tion ̟l

(
̟l = 2πl

n , l ∈ [−n
2 , n

2 ]
)

can be studied separately4. The following sub-
stitutions are performed in equations (10.23):

[ûs]i → [ũs]
le̟li∆x (10.24a)

[p̂s]i → [p̃s]
le̟li∆x (10.24b)

[ĝs]i → [g̃s]
le̟li∆x, (10.24c)

4This definition of̟ l should not be confused with the relaxation parameterω used in other chapters
and is only used in this way in this section.
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with  =
√
−1 and l the index of the Fourier modes. Withϑl = ̟l∆x, the

following non-dimensional modal equations are obtained.

Do[g̃s]
l + uo[g̃s]

l sin(ϑl) + [ũs+1]
l sin(ϑl) − 2β[p̃s+1]

l(cos(ϑl) − 1) = 0
(10.25a)

Douo[g̃s]
l + Do[ũs+1]

l + u2
o[g̃s]

l sin(ϑl)

+ uo[ũs+1]
l
(
 sin(ϑl) + 1 − e−ϑl

)
+ [p̃s+1]

l sin(ϑl) = 0

(10.25b)

[g̃s+1]
l = [p̃s+1]

l. (10.25c)

At every iteration the component of the error with spatial frequency̟ l for the
cross-section and for the pressure is amplified by

[g̃s+1]
l

[g̃s]l
=

[p̃s+1]
l

[p̃s]l
= 1 − u2

o(1 − e−jϑl)j sinϑl + b1Do + b2

b2
, (10.26)

with b1 = Do + uo(1 + j sinϑl − e−jϑl) andb2 = (sin ϑl)
2 − 2b1β(cos ϑl − 1).

This amplification factor is function ofϑl (and thusn), uo andDo only. In order
to have a stable method the norm of this amplification factor should not be larger
than one, i.e.

µl =

∣∣∣∣
[g̃s+1]

l

[g̃s]l

∣∣∣∣ =
∣∣∣∣
[p̃s+1]

l

[p̃s]l

∣∣∣∣ ≤ 1, (10.27)

for all l ∈ [−n
2 , n

2 ].

We introduce two new parameters:

κ =
1

uo
=

√
Eh
2ρro

− Po

2

Uo
and τ =

Uo

Don
=

uo∆t

L
.

As we mainly varyE and∆t, these can be seen as a dimensionless structural stiff-
ness and a dimensionless time-step respectively. The effect of the reference flow
velocityUo can be seen by modifyingκ andτ such thatκτ remains constant. Ap-
proximate values for a human artery areκ = 100 andτ = 0.01 [44].

Figures 10.2 and 10.3 show that the error amplification increases for decreasingϑl,
meaning that the lowest frequencies are those that are most unstable. The mode for
ϑl = 0 is always unstable. (Note that this mode is normally not present in actual
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implementations due to the presence of boundary conditions.)
As can be seen in figure 10.2, the instability grows when the dimensionless stiff-
nessκ decreases. For an infinitely stiff tube (κ = ∞ or uo = 0) the amplification
factor in equations (10.26) and (10.27) is zero for all Fourier modes, exceptϑl = 0.
Figure 10.3 illustrates that a smaller value ofτn (i.e. a smaller dimensionless time-
stepτ and/or a lower number of nodesn) increases the amount of instability.
While bothτn andκ affect the stability of the iterations, the effect ofκ is generally
greater than that ofτn. κ determines the vertical position of the curve whileτn

modifies both its shape and position.τn influences the stability significantly in the
bottom graph of figure 10.3 whereκ is small (κ = 10) but not in the top graph of
figure 10.3. An increase ofn by some factor has the same effect on the curve as
an increase ofτ with the same factor, i.e. on the ratio of unstable modes to total
number of modes.
The main difference between an increase ofτ and an increase ofn lies in the fact
that for the latter the total number of modes increases (the difference2π

n between
ϑl andϑl+1 decreases, forl ∈ [−n

2 , n
2 ]), and hence that for a given ratio of un-

stable modes the total number of unstable modes will increase. In figure 10.4 we
show this effect in detail. The influence ofn is mainly felt for a flexible structure
and a small time step. Thus, while reducingn will raise the relative number of
modes that are unstable, it also reduces the total number of nodes; both effects
counteract each-other.
Particular results are given below.

• For κ = 1000 andτ = 0.0001: there is never more than40% of the modes
that are unstable.

• For κ = 1000 andτ = 0.01: there is never more than20% of the modes
that are unstable.

• Forκ = 10 andτ = 0.0001: all frequencies are unstable as long asn ≤ 512.

• Forκ = 10 andτ = 0.001: all frequencies are unstable as long asn ≤ 51.

• For κ = 10 andτ = 0.01: there is never more than40% of the modes that
is unstable.

(A more detailed study of this problem can be found in [44].)

10.1.6 Results with the quasi-Newton solvers

In this section we will solve the problem of one-dimensionalflow in a flexible tube
by means of the quasi-Newton methods described in chapter 5 and 6:
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Figure 10.2: Error amplification for various values ofκ andτn = 10 (top) or τn = 0.1

(bottom).

• IQN-BG, IQN-CBG, IBQN-BG, IQN-BB for the Broyden methods;

• IQN-CUM, IQN-CCUM, IBQN-CUM, IQN-ICUM for the (I)CUM me-
thods;

• IQN-LS, IQN-CLS, IBQN-LS, IQN-ILS for the Least Squares methods,
both in the original formulation and in rank-one update formulation.
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Figure 10.3: Error amplification for various values ofτn andκ = 1000 (top) orκ = 10

(bottom).

For this time-dependent problem, the approaches from chapter 9 are used:

• Extrapolating the pressure to obtain an initial iterate andstarting from a new
Jacobian at every time-step.

• Extrapolating the pressure to obtain an initial iterate andadding input-output
modes from previous time-steps to the original formulation(cfr. §9.1.1).
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Figure 10.4: Ratio of number of unstable Fourier modes to total number of Fourier modes
as a function ofn for various values ofκ andτ .

• Extrapolating the pressure to obtain an initial iterate andstarting from the
final approximate Jacobian of the previous time-step in a rank-one update
formulation (cfr.§9.1.2).

• Extrapolating the pressure to obtain an initial iterate andcreating an initial
Jacobian based on data from a coarser grid (cfr.§9.2).

• Constructing an initial iterate based on a coarser grid and creating an initial
Jacobian based on data from a coarser grid (cfr.§9.2).

We will use test-cases withn = 100 andn = 1000 nodes, except for the two-grid
methods, where the fine grid will have 1000 nodes and the coarse grid 334 nodes.
Values ofτ ranging from10−1 to 10−4 and values ofκ ranging from10 to 1000

will be used. (As shown in the Fourier study, more unstable modes will be present
for lower values of bothτ andκ, which will translate into the need for more cou-
pling iterations.)
For the first iteration of the first time-step a relaxation factor ω is used, the value
of which is given in the tables.
We define the relative residual (”Relres”) asKt+1(ps,t+1,pt,gt)

Kt+1(po,t+1,pt,gt)
(for IQN, IQN-C

and IQN-I) or asFt+1(gs,t+1,pt,gt)−ps,t+1

Ft+1(go,t+1,pt,gt)−po,t+1
(for IBQN) and use Relres≤ 10−5 as a

convergence criterium. The performance measure we use is the number of fluid-
solver calls (FC) at the fine grid and (if applicable) at the coarse grid. We break
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off the iteration after100 function calls if no convergence has been achieved at that
point.
In tables 10.1-10.20 we give the number of iterations neededfor the first time-step
as well as the average over the first ten time-steps.

Remark 10.1. All tests were performed using Matlab 7.0 on an Intel Xeon 3.40GHz
dual-core processor.

Remark 10.2. The Matlab source code for these tests can be found in appendix
A.

10.1.6.1 No re-use of data from previous time-steps

As we can see in tables 10.1-10.8, there is little differencein the performance of
the IQN, IQN-C, IBQN and IQN-I methods for the Least-Squares, Broyden and
CUM methods, although the IBQN variants show a slightly lower numerical sta-
bility for low values ofτ andκ.
We see that the Least Squares methods (tables 10.1, 10.2, 10.5 and 10.6) outper-
form the Broyden methods (tables 10.3 and 10.7) and CUM methods (tables 10.4
and 10.9), by a margin that grows asτ andκ become smaller. For the more diffi-
cult test-cases the gain can be of the order of50%, while for the smallest values of
τ andκ the Broyden and CUM methods fail. Also note that the CUM methods are
slightly inferior to the Broyden methods.
Between the Least Squares methods in original formulation (tables 10.1 and 10.5)
and in rank-one update formulation (tables 10.2 and 10.6) there is little difference.
Worthy of notice is that Broyden’s “bad” method is not that much “worse” than
Broyden’s “good” method, although it is somewhat less stable. (The same com-
ment can be made of IQN-ICUM with respect to IQN-CUM.)
We also remark that there is little difference between the values forn = 100 and
n = 1000, unless for low values ofτ and κ, which is in accordance with the
findings of the Fourier analysis.
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κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
1000 10−4 10−3 8 - 7.1 8 - 7.1 div 8 - 7.1
100 10−1 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
100 10−2 10−2 5 - 4.1 5 - 4.1 5 - 4.1 5 - 4.1
100 10−3 10−2 8 - 7.2 8 - 7.2 8 - 7.2 8 - 7.2
100 10−4 10−3 19 - 17.5 19 - 17.5 div 19 - 17.8
10 10−1 10−2 5 - 5.3 5 - 5.3 5 - 5.3 5 - 5.3
10 10−2 10−4 9 - 7.4 9 - 7.4 9 - 7.3 9 - 7.2
10 10−3 10−5 19 - 17.1 19 - 17.1 25 - 18.0 19 - 17.2
10 10−4 10−6 36 - 31.2 37 - 34.5 div 34 - 30.3

Table 10.1:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Least Squares quasi-Newton type in original (i.e. non rank-one update) formulation;

n = 100; ”div”= divergence or non-convergence after 100 function calls.

κ τ ω IQN-LS (R1U) IQN-CLS (R1U) IBQN-LS (R1U) IQN-ILS (R1U)

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
1000 10−4 10−3 8 - 7.1 8 - 7.1 div 8 - 7.1
100 10−1 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
100 10−2 10−2 5 - 4.1 5 - 4.1 5 - 4.1 5 - 4.1
100 10−3 10−2 8 - 7.2 8 - 7.2 8 - 7.2 8 - 7.2
100 10−4 10−3 19 - 17.5 19 - 17.5 div 19 - 17.8
10 10−1 10−2 5 - 5.3 5 - 5.3 5 - 5.3 5 - 5.3
10 10−2 10−4 9 - 7.4 9 - 7.4 9 - 7.3 9 - 7.2
10 10−3 10−5 19 - 17.1 19 - 17.1 19 - 17.2 19 - 17.1
10 10−4 10−6 37 - 31.4 37 - 31.4 div 38 - 33.6

Table 10.2:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Least Squares quasi-Newton type in rank-one update formulation;n = 100; ”div”=

divergence or non-convergence after 100 function calls.
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κ τ ω IQN-BG IQN-CBG IBQN-BG IQN-BB

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
1000 10−4 10−3 9 - 9.0 10 - 9.0 div 11 - 9.4
100 10−1 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
100 10−2 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
100 10−3 10−2 9 - 8.9 10 - 9.0 9 - 8.9 11 - 9.4
100 10−4 10−3 37 - 34.8 39 - 36.3 div 75 - div
10 10−1 10−2 6 - 5.5 6 - 5.7 6 - 5.5 6 - 5.7
10 10−2 10−4 10 - 9.0 10 - 9.0 10 - 9.0 10 - 9.1
10 10−3 10−5 37 - 35.0 40 - 39.4 36 - 35.5 div
10 10−4 10−6 div div div div

Table 10.3:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Broyden type;n = 100; ”div”= divergence or non-convergence after 100 function

calls.

κ τ ω IQN-CUM IQN-CCUM IBQN-CUM IQN-ICUM

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 4 - 3.9 4 - 3.9 4 - 3.9 4 - 4.0
1000 10−3 10−2 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1
1000 10−4 10−3 11 - 9.9 15 - 10.5 div 41 - 15.5
100 10−1 10−2 4 - 4.2 4 - 4.2 4 - 4.2 4 - 4.2
100 10−2 10−2 6 - 5.3 6 - 5.9 6 - 5.9 6 - 6.0
100 10−3 10−2 11 - 9.9 12 - 10.4 12 - 10.3 13 - 11.4
100 10−4 10−3 40 - 38.0 94 - 72.2 div div
10 10−1 10−2 6 - 6.3 6 - 6.4 6 - 6.4 6 - 6.3
10 10−2 10−4 12 - 10.6 13 - 11.5 15 - 11.1 14 - 12.9
10 10−3 10−5 41 - 39.3 87 - 74.0 div div
10 10−4 10−6 div div div div

Table 10.4:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Column-Updating type;n = 100; ”div”= divergence or non-convergence after 100

function calls.
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κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 5 - 4.1 5 - 4.1 5 - 4.1 5 - 4.1
1000 10−4 10−3 8 - 7.0 8 - 7.0 div - 8 - 6.9
100 10−1 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
100 10−2 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
100 10−3 10−2 8 - 7.1 8 - 7.1 8 - 7.1 8 - 7.0
100 10−4 10−3 19 - 15.8 19 - 15.8 div 19 - 15.8
10 10−1 10−2 5 - 5.5 5 - 5.5 5 - 5.5 5 - 5.5
10 10−2 10−4 9 - 7.9 9 - 7.9 9 - 7.9 9 - 7.9
10 10−3 10−5 21 - 16.9 21 - 16.9 21 - 16.7 22 - 16.5
10 10−4 10−6 57 - 51.3 57 - 50.6 div 58 - 51.8

Table 10.5:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Least Squares quasi-Newton type in original (i.e. non rank-one update) formulation;

n = 1000; ”div”= divergence or non-convergence after 100 function calls.

κ τ ω IQN-LS (R1U) IQN-CLS (R1U) IBQN-LS (R1U) IQN-ILS (R1U)

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 5 - 4.1 5 - 4.1 5 - 4.1 5 - 4.1
1000 10−4 10−3 8 - 7.0 8 - 7.0 div 8 - 6.9
100 10−1 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
100 10−2 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
100 10−3 10−2 8 - 7.1 8 - 7.1 8 - 7.1 8 - 7.0
100 10−4 10−3 19 - 15.8 19 - 15.8 div 19 - 15.8
10 10−1 10−2 5 - 5.5 5 - 5.5 5 - 5.5 5 - 5.5
10 10−2 10−4 9 - 7.9 9 - 7.9 9 - 7.9 9 - 7.9
10 10−3 10−5 21 - 16.9 21 - 16.9 22 - 16.6 22 - 16.5
10 10−4 10−6 57 - 51.3 57 - 51.3 div 59 - 53.2

Table 10.6:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Least Squares quasi-Newton type in rank-one update formulation;n = 1000; ”div”=

divergence or non-convergence after 100 function calls.
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κ τ ω IQN-BG IQN-CBG IBQN-BG IQN-BB

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−3 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
1000 10−4 10−3 9 - 8.7 9 - 8.7 div 9 - 8.7
100 10−1 10−2 4 - 4.1 4 - 4.1 4 - 4.1 4 - 4.1
100 10−2 10−2 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0
100 10−3 10−2 10 - 9.1 10 - 9.1 10 - 9.1 10 - 9.1
100 10−4 10−3 36 - 34.9 38 - 36.4 div div
10 10−1 10−2 6 - 5.6 6 - 5.7 6 - 5.6 6 - 5.7
10 10−2 10−4 11 - 9.7 11 - 9.8 11 - 9.7 12 - 10.7
10 10−3 10−5 38 - 36.0 42 - 43.6 39 - 38.6 div
10 10−4 10−6 div div div div

Table 10.7:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Broyden type;n = 1000; ”div”= divergence or non-convergence after 100 function

calls.

κ τ ω IQN-CUM IQN-CCUM IBQN-CUM IQN-ICUM

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0
1000 10−3 10−2 6 - 5.6 6 - 5.9 6 - 5.9 6 - 6.0
1000 10−4 10−3 11 - 10.1 12 - 10.3 div 14 - 11.6
100 10−1 10−2 4 - 4.2 4 - 4.2 4 - 4.2 4 - 4.2
100 10−2 10−2 6 - 6.0 6 - 6.0 6 - 6.0 6 - 6.0
100 10−3 10−2 11 - 10.4 14 - 11.2 16 - 11.6 14 - 12.1
100 10−4 10−3 41 - 37.4 75 - 67.6 div div
10 10−1 10−2 6 - 6.4 6 - 6.5 6 - 6.4 6 - 6.4
10 10−2 10−4 13 - 11.3 14 - 12.4 15 - 12.6 15 - 14.0
10 10−3 10−5 44 - 44.0 div div div
10 10−4 10−6 div div div div

Table 10.8:FC required for convergence of the one-dimensional FSI problem if only the
pressure is extrapolated over the time-steps and the Jacobian reset to−I at every new

time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Column-Updating type;n = 1000; ”div”= divergence or non-convergence after 100

function calls.

10.1.6.2 Re-use of data from previous time-steps

In this section we look into the data-recovery methods for the original formulation
of the Least Squares methods (§9.1.1) and the data-recovery method for quasi-
Newton methods in rank-one update methods (cfr.§9.1.2). The latter includes the
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Least Squares method, the Broyden methods and the CUM methods.

For the original, non-rank-one update, form of the Least Squares algorithm we
see that keeping the input-output pairs of the ten previous time-steps (when avail-
able) gives better results than only keeping those of the previous five time-steps
(tables 10.10 and 10.12 versus tables 10.9 and 10.11). When keeping data from
ten time-steps the gain (in the average number of iterations) with respect to the
approach without re-use (§10.1.6.1) is in the order of25% for the highest values
of τ andκ and in the order of80% for the lowest values ofτ andκ. When using
data from five time-steps these gains are25% and70% respectively. Also note
that this average is only taken over 10 time-steps; as the number of iterates for the
first time-step is the same with and without re-use, this firsttime-step will weigh
rather heavily on the average. Also, the full potential of the re-use of data from
the previous ten time-steps only comes in full force at the tenth time-step. To give
a clearer indication of the potential gain, we point out thatat the tenth time-step
for τ = 10−4 andκ = 10 the number of iterations with re-use of the previous ten
time-steps is about85% lower than without re-use.

For the Least Squares methods in rank-one update formulation (tables 10.13 and
10.16) the gain is also substantial (up to70%), although slightly inferior to that of
the original formulation with the re-use of input-output pairs of the previous ten
time-steps.

The Broyden and CUM methods also profit from the re-use of the Jacobian, but
to a lesser extent than the Least Squares methods (tables 10.14, 10.15, 10.17 and
10.18). Gains up to50% are recorded. The CUM methods are still slightly slower
than the Broyden methods, and both are inferior to the Least Squares methods.
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κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−2 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−3 10−2 4 - 2.4 4 - 2.4 4 - 2.4 4 - 3.3
1000 10−4 10−3 8 - 3.4 8 - 3.4 div 8 - 4.1
100 10−1 10−2 4 - 3.3 4 - 3.1 4 - 6.5 4 - 3.7
100 10−2 10−2 5 - 2.6 5 - 2.6 5 - 2.5 5 - 3.5
100 10−3 10−2 8 - 3.3 8 - 3.3 8 - 3.1 8 - 3.8
100 10−4 10−3 19 - 5.9 19 - 5.9 div 19 - 7.2
10 10−1 10−2 5 - 4.2 5 - 4.5 5 - div 5 - 5.3
10 10−2 10−4 9 - 3.6 9 - 3.7 9 - 3.7 9 - 5.4
10 10−3 10−5 19 - 5.8 19 - 5.8 25 - 6.6 19 - 7.9
10 10−4 10−6 36 - 11.9 37 - 11.3 div 34 - 12.5

Table 10.9:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and input-output modes of 5previous

time-steps (non-R1U formulation) are kept, when available; values for the first time-step
and average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

original (i.e. non rank-one update) formulation;n = 100; ”div”= divergence or
non-convergence after 100 function calls.

κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.0
1000 10−2 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−3 10−2 4 - 2.4 4 - 2.4 4 - 2.4 4 - 3.3
1000 10−4 10−3 8 - 3.2 8 - 3.2 div 8 - 4.1
100 10−1 10−2 4 - 3.2 4 - 3.2 4 - 8.4 4 - 3.5
100 10−2 10−2 5 - 2.7 5 - 2.7 5 - 2.7 5 - 3.5
100 10−3 10−2 8 - 2.9 8 - 2.9 8 - 2.9 8 - 3.7
100 10−4 10−3 19 - 4.7 19 - 4.7 div 19 - 6.0
10 10−1 10−2 5 - 4.1 5 - 4.6 5 - div 5 - 5.2
10 10−2 10−4 9 - 3.6 9 - 3.6 9 - 3.5 9 - 5.6
10 10−3 10−5 19 - 4.0 19 - 4.0 25 - 4.9 19 - 6.0
10 10−4 10−6 36 - 8.1 37 - 7.8 div 34 - 10.6

Table 10.10:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and input-output modes of 10 previous

time-steps (non-R1U formulation) are kept, when available; values for the first time-step
and average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

original (i.e. non rank-one update) formulation;n = 100; ”div”= divergence or
non-convergence after 100 function calls.
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κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−3 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−2 10−2 5 - 2.4 5 - 2.4 5 - 2.4 5 - 3.4
1000 10−4 10−3 8 - 3.3 8 - 3.3 div 8 - 4.1
100 10−1 10−2 4 - 3.2 4 - 3.1 4 - 3.2 4 - 3.5
100 10−2 10−2 5 - 2.7 5 - 2.7 5 - 2.6 5 - 3.5
100 10−3 10−2 8 - 2.8 8 - 2.8 8 - 2.8 8 - 3.8
100 10−4 10−3 19 - 6.2 19 - 6.2 div 19 - 6.9
10 10−1 10−2 5 - 4.4 5 - 5.3 5 - div 5 - 5.0
10 10−2 10−4 9 - 3.6 9 - 3.6 9 - 3.6 9 - 5.5
10 10−3 10−5 21 - 5.9 21 - 5.9 21 - 6.0 22 - 8.2
10 10−4 10−6 57 - 17.1 57 - 16.8 div 58 - 21.4

Table 10.11:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and input-output modes of 5previous

time-steps (non-R1U formulation) are kept, when available; values for the first time-step
and average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

original (i.e. non rank-one update) formulation;n = 1000; ”div”= divergence or
non-convergence after 100 function calls.

κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.0
1000 10−2 10−2 3 - 2.2 3 - 2.2 3 - 2.2 3 - 3.1
1000 10−3 10−2 5 - 2.4 5 - 2.4 5 - 2.4 5 - 3.3
1000 10−4 10−3 8 - 3.1 8 - 3.1 div 8 - 4.0
100 10−1 10−2 4 - 3.1 4 - 3.1 4 - 3.1 4 - 3.4
100 10−2 10−2 5 - 2.7 5 - 2.7 5 - 2.8 5 - 3.5
100 10−3 10−2 8 - 2.8 8 - 2.8 8 - 2.8 8 - 3.8
100 10−4 10−3 19 - 5.0 19 - 5.1 div 19 - 5.3
10 10−1 10−2 5 - 4.3 5 - 5.2 5 - div 5 - 5.0
10 10−2 10−4 9 - 3.5 9 - 3.5 9 - 3.5 9 - 5.6
10 10−3 10−5 21 - 4.4 21 - 4.4 21 - 4.8 22 - 6.5
10 10−4 10−6 57 - 11.9 57 - 11.9 div 58 - 16.0

Table 10.12:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and input-output modes of 10 previous

time-steps (non-R1U formulation) are kept, when available; values for the first time-step
and average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

original (i.e. non rank-one update) formulation;n = 1000; ”div”= divergence or
non-convergence after 100 function calls.
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κ τ ω IQN-LS (R1U) IQN-CLS (R1U) IBQN-LS (R1U) IQN-ILS (R1U)

1000 10−1 10−2 3 - 2.6 3 - 2.6 3 - 2.7 3 - 2.6
1000 10−2 10−2 3 - 2.4 3 - 2.4 3 - 2.4 3 - 2.4
1000 10−3 10−2 4 - 2.7 4 - 2.7 4 - 2.7 4 - 2.7
1000 10−4 10−3 8 - 3.6 8 - 3.6 div 8 - 3.7
100 10−1 10−2 4 - 3.1 4 - 3.1 4 - 3.1 4 - 3.1
100 10−2 10−2 5 - 3.0 5 - 3.0 5 - 2.7 5 - 3.0
100 10−3 10−2 8 - 3.5 8 - 3.5 8 - 3.5 8 - 3.5
100 10−4 10−3 19 - 5.0 19 - 4.9 div 19 - 7.5
10 10−1 10−2 5 - 4.1 5 - 4.1 5 - 4.0 5 - 3.9
10 10−2 10−4 9 - 3.7 9 - 4.0 9 - 4.0 9 - 4.0
10 10−3 10−5 19 - 5.0 19 - 5.5 19 - 5.2 19 - 7.0
10 10−4 10−6 37 - 11.5 37 - 12.4 div 38 - 37.3

Table 10.13:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and
average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

rank-one update formulation;n = 100; ”div”= divergence or non-convergence after 100
function calls.

κ τ ω IQN-BG IQN-CBG IBQN-BG IQN-BB

1000 10−1 10−2 3 - 2.6 3 - 2.6 3 - 2.6 3 - 2.6
1000 10−2 10−2 3 - 2.4 3 - 2.4 3 - 2.4 3 - 2.4
1000 10−3 10−2 5 - 2.8 5 - 2.8 5 - 3.0 5 - 2.8
1000 10−4 10−3 9 - 4.9 10 - 5.5 div 11 - 7.0
100 10−1 10−2 4 - 3.3 4 - 3.3 4 - 3.3 4 - 3.3
100 10−2 10−2 5 - 3.4 5 - 3.5 5 - 3.5 5 - 3.4
100 10−3 10−2 9 - 4.6 10 - 5.1 9 - 5.2 11 - 6.4
100 10−4 10−3 37 - 10.3 39 - 10.9 div 75 - div
10 10−1 10−2 6 - 4.9 6 - 5.0 6 - 5.0 6 - 5.0
10 10−2 10−4 10 - 5.1 10 - 5.5 10 - 5.3 10 - 6.2
10 10−3 10−5 37 - 10.5 40 - 10.8 36 - 10.4 div
10 10−4 10−6 div div div div

Table 10.14:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and

average over the first 10 time-steps; solvers are of Broyden type;n = 100; ”div”=
divergence or non-convergence after 100 function calls.
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κ τ ω IQN-CUM IQN-CCUM IBQN-CUM IQN-ICUM

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 4 - 3.0 4 - 3.0 4 - 3.1 4 - 3.0
1000 10−3 10−2 6 - 4.3 6 - 4.5 6 - 4.3 6 - 4.5
1000 10−4 10−3 11 - 6.9 15 - 13.3 div 41 - 12.1
100 10−1 10−2 4 - 3.4 4 - 3.4 4 - 3.4 4 - 3.4
100 10−2 10−2 6 - 4.4 6 - 4.7 6 - 4.7 6 - 4.7
100 10−3 10−2 11 - 6.6 12 - 7.3 12 - 7.2 13 - 9.5
100 10−4 10−3 40 - 22.2 94 - div div div
10 10−1 10−2 6 - 5.1 6 - 5.0 6 - 5.2 6 - 5.3
10 10−2 10−4 12 - 7.0 13 - 7.7 15 - 8.0 14 - 12.7
10 10−3 10−5 41 - 17.1 87 - 34.1 div div
10 10−4 10−6 div div div div

Table 10.15:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and

average over the first 10 time-steps; solvers are of Column-Updating type;n = 100;
”div”= divergence or non-convergence after 100 function calls.

κ τ ω IQN-LS (R1U) IQN-CLS (R1U) IBQN-LS (R1U) IQN-ILS (R1U)

1000 10−1 10−2 3 - 2.6 3 - 2.6 3 - 2.7 3 - 2.6
1000 10−2 10−2 3 - 2.4 3 - 2.4 3 - 2.4 3 - 2.4
1000 10−3 10−2 5 - 2.5 5 - 2.5 5 - 2.5 5 - 2.5
1000 10−4 10−3 8 - 3.6 8 - 3.6 div 8 - 3.6
100 10−1 10−2 4 - 3.0 4 - 3.0 4 - 3.1 4 - 3.0
100 10−2 10−2 5 - 2.9 5 - 2.9 5 - 2.7 5 - 2.9
100 10−3 10−2 8 - 3.4 8 - 3.4 8 - 3.4 8 - 3.4
100 10−4 10−3 19 - 4.5 19 - 4.5 div 19 - 5.9
10 10−1 10−2 5 - 4.1 5 - 4.0 5 - 4.2 5 - 4.0
10 10−2 10−4 9 - 3.8 9 - 3.9 9 - 3.9 9 - 4.4
10 10−3 10−5 21 - 5.2 21 - 5.3 22 - 5.2 22 - 7.0
10 10−4 10−6 57 - 11.2 57 - 11.7 div 59 - 21.5

Table 10.16:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and
average over the first 10 time-steps; solvers are of Least Squares quasi-Newton type in

rank-one update formulation;n = 1000; ”div”= divergence or non-convergence after 100
function calls.
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κ τ ω IQN-BG IQN-CBG IBQN-BG IQN-BB

1000 10−1 10−2 3 - 2.6 3 - 2.6 3 - 2.6 3 - 2.6
1000 10−2 10−2 3 - 2.4 3 - 2.4 3 - 2.4 3 - 2.4
1000 10−3 10−2 5 - 2.9 5 - 3.0 5 - 3.5 5 - 3.4
1000 10−4 10−3 9 - 4.7 9 - 5.0 div 9 - 5.9
100 10−1 10−2 4 - 3.3 4 - 3.3 4 - 3.3 4 - 3.3
100 10−2 10−2 5 - 3.5 5 - 3.6 5 - 3.5 5 - 4.0
100 10−3 10−2 10 - 4.7 10 - 5.4 10 - 4.8 10 - 5.5
100 10−4 10−3 36 - 9.4 38 - 10.5 div div
10 10−1 10−2 6 - 4.9 6 - 5.0 6 - 4.9 6 - 4.9
10 10−2 10−4 11 - 5.4 11 - 5.6 11 - 5.4 12 - 7.0
10 10−3 10−5 38 - 9.3 42 - 10.5 39 - 9.8 div
10 10−4 10−6 div div div div

Table 10.17:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and

average over the first 10 time-steps; solvers are of Broyden type;n = 1000; ”div”=
divergence or non-convergence after 100 function calls.

κ τ ω IQN-CUM IQN-CCUM IBQN-CUM IQN-ICUM

1000 10−1 10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
1000 10−2 10−2 4 - 3.2 4 - 3.2 4 - 3.2 4 - 3.2
1000 10−3 10−2 6 - 4.4 6 - 3.8 6 - 4.7 6 - 4.4
1000 10−4 10−3 11 - 6.5 12 - 7.1 div 14 - 10.3
100 10−1 10−2 4 - 3.4 4 - 3.4 4 - 3.4 4 - 3.4
100 10−2 10−2 6 - 4.6 6 - 4.7 6 - 4.5 6 - 4.7
100 10−3 10−2 11 - 7.0 14 - 7.5 16 - 8.6 14 - 12.2
100 10−4 10−3 41 - 16.5 75 - div div div
10 10−1 10−2 6 - 5.1 6 - 5.3 6 - 5.2 6 - 5.2
10 10−2 10−4 13 - 7.7 14 - 8.5 15 - 8.6 15 - 14.9
10 10−3 10−5 44 - 17.3 div div div
10 10−4 10−6 div div div div

Table 10.18:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
taken as the final Jacobian from the previous time-step; values for the firsttime-step and
average over the first 10 time-steps; solvers are of Column-Updating type;n = 1000;

”div”= divergence or non-convergence after 100 function calls.

10.1.6.3 Initial Jacobian from a coarser grid

In this approach we use two grids as described in§9.2. The fine grid will have
1000 nodes and the coarse grid 334 nodes.
The validity of this approach is confirmed by the Fourier study in §10.1.5, which
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shows that the most unstable modes are those with the lowest frequency. It will be
exactly those modes that we will be able to capture on the coarse grid.

Comparing these results with those of the previous sectionsis difficult, however,
because

1. the initial residual can be different with this method, when the initial iterate
is obtained from a coarser grid, instead of being extrapolated from previous
time-steps (we recall that we have based our convergence criterium on the
reduction of the relative residual);

2. it is not obvious to put an exact cost on the iterations on the fine grid, al-
though it is roughly one third of the cost on the fine grid, based on the
relative number of nodes on the fine and coarse grid.

From tables 10.19 and 10.20 we see that an initial iterate forthe pressure obtained
by extrapolating from the previous time-steps gives betterresults than when it is
obtained from the coarser grid, even for this relatively high ratio between the num-
ber of nodes of the coarse and fine grid.

Compared with the results in tables 10.5 and 10.6 of§10.1.6.1, we see that the
two-grid method with an extrapolated initial iterate givesa far lower value of the
number of iterations for the first time-step for low values ofτ andκ. The actual
gain is largely off-set, however, when counting an iteration on the coarse grid for
one third of an iteration on the fine grid. For high values ofτ andκ we can even
speak of a net loss.
Compared with the results in§10.1.6.2 (tables 10.11,10.12 and 10.16) there is no
net gain to be obtained with this method, neither for low values ofτ andκ or for
high values.
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κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0
1000 10−2 10−2 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0
1000 10−3 10−2 4 - 4.0| 4 - 4.0 4 - 4.0| 4 - 4.0 4 - 4.0| 4 - 4.0 4 - 4.0| 4 - 4.0
1000 10−4 10−3 4 - 4.0| 8 - 7.2 5 - 4.8| 8 - 7.2 div 5 - 4.7| 8 - 7.2
100 10−1 10−2 3 - 3.0| 4 - 4.0 3 - 3.2| 4 - 4.0 3 - 3.2| 4 - 4.0 3 - 3.2| 4 - 4.0
100 10−2 10−2 4 - 4.0| 5 - 5.0 4 - 4.0| 5 - 5.0 4 - 4.0| 5 - 5.0 4 - 4.0| 5 - 5.0
100 10−3 10−2 5 - 4.3| 8 - 7.1 6 - 5.2| 8 - 7.1 6 - 5.2| 8 - 7.1 6 - 5.2| 8 - 7.1
100 10−4 10−3 7 - 7.8| 20 - 20.4 7 - 8.3| 20 - 20.4 div 7 - 8.1| 20 - 20.8
10 10−1 10−2 4 - 3.7| 5 - 5.5 4 - 4.2| 5 - 5.5 4 - 4.2| 5 - 5.5 4 - 4.2| 5 - 5.5
10 10−2 10−4 5 - 4.2| 9 - 7.9 6 - 5.1| 9 - 7.9 6 - 5.1| 9 - 7.9 6 - 5.1| 9 - 7.9
10 10−3 10−5 8 - 8.4| 21 - 20.4 8 - 8.3| 21 - 20.4 9 - 8.6| 24 - 20.8 8 - 7.9| 21 - 20.5
10 10−4 10−6 27 - 33.0| 57 - 50.3 29 - 31.9| 56 - 51.0 div 36 - 35.7| 54 - 52.0

Table 10.19:FC required for convergence of the one-dimensional FSI problem when the
pressure is extrapolated over the time-steps and the initial Jacobian for a new time-step is
based on computations on a coarser grid at every time-step; values for the first time-step

and average over the first 10 time-steps on fine and coarse grid respectively; solvers are of
Least Squares type; 1000 nodes on fine grid and 334 nodes on coarse grid; ”div”=

divergence or non-convergence after 100 function calls.

κ τ ω IQN-LS IQN-CLS IBQN-LS IQN-ILS

1000 10−1 10−2 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.1| 3 - 3.0 3 - 3.0| 3 - 3.0
1000 10−2 10−2 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0 3 - 3.0| 3 - 3.0
1000 10−3 10−2 3 - 3.3| 4 - 4.0 3 - 3.9| 4 - 4.0 3 - 3.9| 4 - 4.0 3 - 3.9| 4 - 4.0
1000 10−4 10−3 div div div div
100 10−1 10−2 3 - 3.0| 4 - 3.8 4 - 3.7| 4 - 3.8 4 - 3.6| 4 - 3.8 4 - 3.7| 4 - 3.8
100 10−2 10−2 3 - 3.8| 5 - 4.9 4 - 4.0| 5 - 4.9 4 - 4.0| 5 - 4.9 4 - 4.0| 5 - 4.9
100 10−3 10−2 5 - 4.3| 8 - 7.3 5 - 5.0| 8 - 7.3 5 - 5.0| 8 - 7.3 5 - 5.1| 8 - 7.1
100 10−4 10−3 8 - 10.7| 20 - 17.7 8 - 10.9| 20 - 17.8 div 8 - div | 20 - div
10 10−1 10−2 3 - 3.7| 5 - 5.5 4 - 4.3| 5 - 5.5 4 - 4.2| 5 - 5.5 4 - 4.3| 5 - 5.5
10 10−2 10−4 5 - 4.3| 9 - 7.9 5 - 5.2| 9 - 7.9 5 - 5.1| 9 - 8.1 5 - 5.2| 9 - 8.0
10 10−3 10−5 14 - 9.4| 21 - 19.2 15 - 9.2| 21 - 19.2 div 13 - 9.5| 21 - 19.5
10 10−4 10−6 30 - 31.5| 57 - 45.2 31 - 40.4| 56 - 45.2 div 33 - 42.3| 54 - 45.9

Table 10.20:FC required for convergence of the one-dimensional FSI problem when the
initial value for the pressure and the initial Jacobian for a new time-step are based on
computations on a coarser grid at every time-step; values for the first time-step and

average over the first 10 time-steps on fine and coarse grid respectively; solvers are of
Least Squares type; 1000 nodes on fine grid and 334 nodes on coarse grid; ”div”=

divergence or non-convergence after 100 function calls.
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10.2 One-dimensional heat equation

10.2.1 Analytical description of the problem

The heat equation in one dimension without heat source is given by:

ρC
∂T

∂t
− ∂

∂x

(
k

∂T

∂x

)
= 0. (10.28)

In this equationT is temperature,ρ is density,C is heat capacity, andk is thermal
conductivity. The lengthL of the domain is set equal to 1000. The material we are
working with is air. We assume we only have a linear solver to solve (10.28) with
an imposed value ofρ,C andk that may vary in space.
If we want to take dependency ofρ,C andk onT into account, we need to do this
outside the solver for (10.28). They can be obtained by the following interpolation
polynomials (based on values between 0 and 300◦ C in [253]):

k = 7.0277 · 10−5T + 2.4388 · 10−2 (10.29a)

C = 4.3004 · 10−7T 2 + 1.1850 · 10−5T + 1.0048 (10.29b)

ρ = 5.3641 · 10−6T 2 − 3.7809 · 10−3T + 1.2781. (10.29c)

We use a finite differencing scheme onn equidistant nodes for the solver of (10.28),
with spacing∆x, and an implicit time-discretization with time-step∆t. We as-
sume that at the start of the test we have a uniform temperature of To = 150◦ C.
The right boundary is kept atTo, while the left boundary condition is a function of
time, defined asTL = To + To

2 sin
(

πt
10

)
.

After discretization we obtain then equations (i = 1, . . . , n):

2

ν
[ρ]i[C]i([T ]i − [Tt]i) − ([k]i+1 + [k]i)[T ]i+1

+ ([k]i+1 + 2[k]i + [k]i−1)[T ]i − ([k]i + [k]i−1)[T ]i−1 = 0, (10.30)

whereν = ∆t
∆x2 . The subscriptsi, i + 1 andi − 1 indicate the mesh nodes. The

subscriptt denotes the previous time-level; the subscriptt + 1 for the new time-
level is omitted. For ease of notation the same symbol is usedfor the continuous
and discretized variableT , as the brackets and indices for the discretized variable
clearly indicate the difference between continuous and discretized variables.
We will useg to denote the ensemble of discretized constantsρ,C andk expressed
as functions ofT ; discretization is done using a one-to-one relationship with T .

We will define the heat and coefficient solver by the followingconventions.

• Ft+1(gs,t+1, Tt) = Ts+1,t+1: solve the heat equation (10.30) for the tem-
perature at time-levelt + 1 with a fixed set of coefficientsgs,t+1; assign



162 CHAPTER 10

Ts+1,t+1 to this solution.
This corresponds to the definition ofFt+1 used in 9.1a; note that in this
particular caseFt+1 is no function ofgt.

• St+1(Ts+1,t+1) = gs+1,t+1: compute the new coefficients at time-levelt+1

from (10.29) given the previously calculated temperatureTs+1,t+1; assign
gs+1,t+1 to this solution.
This corresponds to the definition ofSt+1 used in (9.1b); note that in this
particular caseSt+1 is no function ofgt or Tt.

Remark Even though (10.30) is a linear equation inT , Ft+1 is not linear, i.e. the
relationship betweeng andT is not linear. This can be easily seen by the fact that
a doubling of the values ofg does not double the corresponding values ofT .

10.2.2 Results with the quasi-Newton solvers

In this section we will solve the problem of the one-dimensional heat equation with
variable coefficients by means of the quasi-Newton methods described in chapter
5 and 6:

• IQN-BG, IQN-CBG, IBQN-BG, IQN-BB for the Broyden methods;

• IQN-CUM, IQN-CCUM, IBQN-CUM, IQN-ICUM for the (I)CUM me-
thods;

• IQN-LS, IQN-CLS, IBQN-LS, IQN-ILS for the Least Squares methods,
both in the original formulation and in rank-one update formulation.

For this time-dependent problem, the following approachesfrom chapter 9 are
used:

• Extrapolating the temperature to obtain an initial iterateand starting from a
new Jacobian at every time-step.

• Extrapolating the temperature to obtain an initial iterateand adding input-
output modes from previous time-steps to the original formulation (cfr. §9.1.1).

• Extrapolating the temperature to obtain an initial iterateand starting from the
final approximate Jacobian of the previous time-step in a rank-one update
formulation (cfr.§9.1.2).
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We will use test-cases withn = 100 andn = 1000 nodes.
Values of∆t ranging from10−7 to 1 will be used.

For the first iteration of the first time-step a relaxation factor ω = 0.1 is used.
We define the relative residual (”Relres”) asKt+1(ps,t+1,Tt)

Kt+1(po,t+1,Tt)
(for IQN, IQN-C and

IQN-I) or as Ft+1(gs,t+1,Tt)−ps,t+1

Ft+1(go,t+1,Tt)−po,t+1
(for IBQN) and use Relres≤ 10−8 as a con-

vergence criterium. The performance measure we use is the number of heat-solver
calls (FC). We break off the iteration after100 function calls if no convergence
has been achieved at that point.
In tables 10.21-10.32 we give the number of iterations needed for the first time-
step as well as the average over the first 10 ten time-steps.

Remark All tests were performed using Matlab 7.3 on an Intel Xeon E520 2.50GHz
quad-core processor.

10.2.2.1 No re-use of data from previous time-steps

This problem is clearly an easy problem where a low number of iterations is needed
and most methods have a very similar performance.

As we can see in tables 10.21 and 10.23, all the Least Squares methods have the
same performance, with the difference that forn = 100 and ∆t = 10−7 the
original formulation diverges, while the rank-one update method converges in a
low number of iterations. The same is true forn = 1000 and∆t ∈ {10−7, 10−6}.
All the Broyden and CUM methods also share the same performance (tables 10.22
and 10.24); while they are a little bit faster than the methods for the highest value
of ∆t when n = 100, they diverge for the smallest value (∆t = 10−7). For
n = 1000 their performance is identical to that of the Least Squares methods in
the original formulation.
Note that convergence is actually faster forn = 1000 than forn = 100.
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∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-LS -CLS -LS -ILS -LS (R1U) -CLS (R1U) -LS (R1U) -ILS (R1U)

10−7 3 -div 3 - div 3 - div 3 -div 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−6 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−5 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−4 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−3 3 - 3.1 3 - 3.1 3 - 3.2 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

1 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1 6 - 5.1

Table 10.21:FC required for convergence of the one-dimensional heat equation if onlythe
temperature is extrapolated over the time-steps and the Jacobian reset to−I at every new
time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Least Squares type;n = 100; ”div”= divergence or non-convergence after 100 function

calls.

∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-BG -CBG -BG -BB -CUM -CCUM -CUM -ICUM

10−7 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div
10−6 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−5 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−4 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−3 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1 3 - 3.1
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

1 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0

Table 10.22:FC required for convergence of the one-dimensional heat equation if onlythe
temperature is extrapolated over the time-steps and the Jacobian reset to−I at every new
time-step; values for the first time-step and average over the first 10 time-steps; solvers are
of Broyden and Column-Updating type;n = 100; ”div”= divergence or non-convergence

after 100 function calls.
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∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-LS -CLS -LS -ILS -LS (R1U) -CLS (R1U) -LS (R1U) -ILS (R1U)

10−7 3 - div 3 - div 3 - div 3 - div 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−6 3 - div 3 - div 3 - div 3 - div 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−5 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−4 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−3 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0

1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

Table 10.23:FC required for convergence of the one-dimensional heat equation if onlythe
temperature is extrapolated over the time-steps and the Jacobian reset to−I at every new
time-step; values for the first time-step and average over the first 10 time-steps; solvers are

of Least Squares type;n = 1000; ”div”= divergence or non-convergence after 100
function calls.

∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-BG -CBG -BG -BB -CUM -CCUM -CUM -ICUM

10−7 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div
10−6 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div 3 - div
10−5 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−4 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−3 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0

1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

Table 10.24:FC required for convergence of the one-dimensional heat equation if onlythe
temperature is extrapolated over the time-steps and the Jacobian reset to−I at every new
time-step; values for the first time-step and average over the first 10 time-steps; solvers are

of Broyden and Column-Updating type;n = 1000; ”div”= divergence or
non-convergence after 100 function calls.

10.2.2.2 Re-use of data from previous time-steps

For the Least Squares methods in original formulation we seethat the strategy to
re-use data from previous time-steps, as discussed in chapter 9, only pays off for
small values of∆t (tables 10.25-10.28). For large values of∆t the method is ac-
tually slower than for a method without re-use of data.
For n = 100 the re-use of data from 5 time-steps is identical for small values
of τ and better for large values of∆t when compared with the re-use of data over
10 time-steps. The opposite is true forn = 1000, although by a very small margin.
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For methods in rank-one update formulation we also see that again is only ob-
tained for small values of∆t (tables 10.29-10.32). For large values the methods
performs worse than without re-use. A notable exception is the IBQN-LS method
which diverges for∆t = 10−4 whenn = 100 and for∆t ∈ {10−7, 10−3} for
n = 1000. The rank-one update methods with recovery perform somewhat better
than the LS methods in original formulation with recovery ofdata.

For the Broyden and CUM methods (tables 10.30 and 10.32) we see that their
performance is improved by the re-use of the Jacobian of previous time-steps for
small values of∆t; for larger values the performance is identical or marginally
better.
With respect to the Least Squares methods the Broyden and CUMmethods have a
slightly better performance.

∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.2 3 - 2.1
10−3 3 - 2.8 3 - 2.7 3 - 5.4 3 - 3.0
10−2 3 - 2.8 3 - 2.7 3 - 3.1 3 - 3.1
10−1 4 - 4.5 4 - 4.2 4 - 5.9 4 - 4.0

1 6 - 6.7 6 - 7.4 6 - 8.3 6 - 5.8

Table 10.25:FC required for convergence of the one-dimensional heat equation whenthe
temperature is extrapolated over the time-steps and input-output modes of5 previous

time-steps (non-R1U formulation) are kept; values for the first time-step and average over
the first 5 time-steps; solvers are of Least Squares quasi-Newton typein original (i.e. non
rank-one update) formulation;n = 100; ”div”= divergence or non-convergence after 100

function calls.
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∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.6 3 - 2.1
10−3 3 - 2.9 3 - 2.9 3 - 9.2 3 - 3.0
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 4 - 4.2 4 - 4.5 4 - 5.8 4 - 4.1

1 6 - 6.8 6 - 7.6 6 - 11.5 6 - 5.9

Table 10.26:FC required for convergence of the one-dimensional heat equation whenthe
temperature is extrapolated over the time-steps and input-output modes of10 previous

time-steps (non-R1U formulation) are kept; values for the first time-step and average over
the first 10 time-steps; solvers are of Least Squares quasi-Newton type in original (i.e. non
rank-one update) formulation;n = 100; ”div”= divergence or non-convergence after 100

function calls.

∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−3 3 - 2.1 3 - 2.1 3 - 2.4 3 - 2.1
10−2 3 - 2.7 3 - 2.8 3 - 3.0 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.1 3 - 3.1

1 4 - 4.1 4 - 4.2 5 - 7.1 4 - 4.1

Table 10.27:FC required for convergence of the one-dimensional heat equation whenthe
temperature is extrapolated over the time-steps and input-output modes of5 previous

time-steps (non-R1U formulation) are kept; values for the first time-step and average over
the first 10 time-steps; solvers are of Least Squares quasi-Newton type in original (i.e. non

rank-one update) formulation;n = 1000; ”div”= divergence or non-convergence after
100 function calls.
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∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−3 3 - 2.1 3 - 2.1 3 - 2.5 3 - 2.1
10−2 3 - 2.7 3 - 3.0 3 - 6.1 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0

1 4 - 4.1 4 - 4.3 5 - 6.1 4 - 4.1

Table 10.28:FC required for convergence of the one-dimensional heat equation whenthe
temperature is extrapolated over the time-steps and input-output modes of10 previous

time-steps (non-R1U formulation) are kept; values for the first time-step and average over
the first 10 time-steps; solvers are of Least Squares quasi-Newton type in original (i.e. non

rank-one update) formulation;n = 1000; ”div”= divergence or non-convergence after
100 function calls.

∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - div 3 - 2.1
10−3 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

1 6 - 5.1 6 - 5.1 6 - 5.5 6 - 5.4

Table 10.29:FC required for convergence of the one-dimensional heat equation problem
when the temperature is extrapolated over the time-steps and the initial Jacobian for a new

time-step is taken as the final Jacobian from the previous time-step; values for the first
time-step and average over the first 10 time-steps; solvers are of Least Squares type in

rank-one update formulation;n = 100; ”div”= divergence or non-convergence after 100
function calls.
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∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-BG -CBG -BG -BB -CUM -CCUM -CUM -ICUM

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.2 3 - 2.1
10−3 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0 4 - 4.0

1 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0 5 - 5.0

Table 10.30:FC required for convergence of the one-dimensional heat equation problem
when the temperature is extrapolated over the time-steps and the initial Jacobian for a new

time-step is taken as the final Jacobian from the previous time-step; values for the first
time-step and average over the first 10 time-steps; solvers are of Broyden and

Column-Updating type;n = 100; ”div”= divergence or non-convergence after 100
function calls.

∆t IQN-LS IQN-CLS IBQN-LS IQN-ILS

10−7 3 - 2.1 3 - 2.1 div 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−3 3 - 2.1 3 - 2.1 3 - div 3 - 2.1
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.1 3 - 3.0

1 4 - 3.9 4 - 3.9 5 - 4.7 4 - 4.0

Table 10.31:FC required for convergence of the one-dimensional heat equation problem
when the temperature is extrapolated over the time-steps and the initial Jacobian for a new

time-step is taken as the final Jacobian from the previous time-step; values for the first
time-step and average over the first 10 time-steps; solvers are of Least Squares type in

rank-one update formulation;n = 1000; ”div”= divergence or non-convergence after 100
function calls.
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∆t IQN IQN IBQN IQN IQN IQN IBQN IQN
-BG -CBG -BG -BB -CUM -CCUM -CUM -ICUM

10−7 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−6 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−5 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−4 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.1
10−3 3 - 2.1 3 - 2.1 3 - 2.1 3 - 2.4 3 - 2.1 3 - 2.1 3 - 2.5 3 - 2.1
10−2 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0
10−1 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0 3 - 3.0

1 4 - 3.9 4 - 3.9 4 - 3.9 4 - 4.0 4 - 3.9 4 - 3.9 4 - 3.9 4 - 4.0

Table 10.32:FC required for convergence of the one-dimensional heat equation problem
when the temperature is extrapolated over the time-steps and the initial Jacobian for a new

time-step is taken as the final Jacobian from the previous time-step; values for the first
time-step and average over the first 10 time-steps; solvers are of Broyden and

Column-Updating type;n = 1000; ”div”= divergence or non-convergence after 100
function calls.

10.3 Conclusion

The tests in the previous paragraphs have shown that the quasi-Newton Least
Squares methods give very good performance on the non-linear one-dimensional
flexible tube problem, when compared to Broyden’s methods and the Column-
Updating methods. The gains increase when the problem becomes “harder”, i.e.
when more iterations are needed. Methods to further enhancethe performance by
re-using data from previous time-steps also show great potential to improve the
performance.
On the one-dimensional heat equation with variable coefficients, which can be
considered a fairly easy problem to solve, the gains are lessoutspoken, and Broy-
den’s methods and the Column-Updating methods can even outperform the Least
Squares methods.



11
Numerical experiments with linear

operators

This chapter will serve as an illustration to the variants ofthe Least Squares me-
thods discussed in§8.4, where we have shown that we can make IQN-LS and
IQN-ILS1 analytically identical to GMRes if we can formAKx, ∀x ∈ Rn×1.
We will present three test-cases found in the literature andcompare the following
methods [107].

• GMRes in the numerically stable form given by Barrett and coworkers [12];

• IQN-LS as given in algorithm 8.4.1 usingωs = 1 (i.e. analytically equiva-
lent to the standard IQN-LS method);

• IQN-ILS as given in algorithm 8.4.2 usingωs = 1 (i.e. analytically equiva-
lent to the standard IQN-ILS method);

• IQN-LS as given in algorithm 8.4.1 using the optimal value ofωs given by
(8.114);

• IQN-ILS as given in algorithm 8.4.2 using the optimal value of ωs given by
(8.114);

• IQN-LS as given in algorithm 8.4.3.;

1Technically, we would need to use “QN-LS” and “QN-ILS”, instead of “IQN-LS” and “IQN-ILS”
as the problems presented in this chapter are defined byK(p) = 0 without any relation to interface
problems. We will refrain from doing so to keep a uniform nomenclature.
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• IQN-ILS as given in algorithm 8.4.3.

11.1 Test matrix from the MATRIX MARKET REPOS-
ITORY

In this test we take forAK a square non-spd matrix∈ R32×32 from the MATRIX

MARKET REPOSITORY[148] called IBM32.
For the vectorb we choose[b]i = 1 (i = 1, . . . , n).
All iterations will start frompo = [0 0 . . . 0]T . As a convergence requirement
we take a relative reduction of the residualrs

ro
≤ 10−5 and measure the number of

matrix-vector products necessary to obtain convergence.

As seen in figure 11.1 the addition of an optimal value of the parameterωs im-
proves the convergence of the IQN-LS method. Initially the same happens for
IQN-ILS (figure 11.2) but the effect is short lived, and even turns into a slight
worsening of the convergence at the end.
The second alternative form of both IQN-LS and IQN-ILS results in a convergence
pattern that is identical to that of GMRes (as predicted by theory) until the very last
iterations where numerical differences start to be felt; IQN-ILS having the smallest
deviation with respect to GMRes.
Figure 11.3 shows that IQN-ILS has a more monotone convergence than IQN-LS
when settingωs = 1, which is also in accordance with theoretical findings. (We
recall that for IQN-ILSM̂ ′

s converges in a monotone manner towardsA−1
K while

for IQN-LS K̂ ′
s converges in a monotone manner towardsAK ; for more details

see§8.1.)
When using the optimal value ofωs (figure 11.4) both IQN-LS and IQN-ILS are
almost identical except for the last iterations. This similarity is even more pro-
nounced for the second alternative form (figure 11.5). (Bothare analytically iden-
tical for this formulation.)

11.2 One-dimensional advection-diffusion equation

In [55] the following ODE boundary value problem was proposed as a test-case:

−d2u

dx2
+ β

du

dx
= 0 on ]0, 1[ (11.1a)

u(0) = 1 (11.1b)

u(1) = 0. (11.1c)



NUMERICAL EXPERIMENTS WITH LINEAR OPERATORS 173

0 5 10 15 20 25 30 35
10

−15

10
−10

10
−5

10
0

10
5

Number of matrix−vector products

R
el

at
iv

e 
re

si
du

al

Comparison of GMRes and the IQN−LS variants

Alternative form 1 of IQN−LS with ω
s
 =1

Alternative form 1 of IQN−LS with optimal ω
s

Alternative form 2 of IQN−LS

GMRes

Figure 11.1: Convergence history of the different variants of IQN-LSand of GMRes for the
IBM32 matrix test-case.

Equation (11.1) describes a one dimensional advection-diffusion problem and is
discretized on a uniform grid with step-sizeh = 1

n+1 using first-order finite dif-
ference upwind discretization for the advection term and second order central dis-
cretization for the diffusion term. This leads to a linear system that can be written
asK(p) = AKp − b = 0.

For β we take the value10−1; as in [55] we taken = 50. po is chosen as
po = [1 1 . . . 1]T .
The convergence criterion is a relative reduction of the residual of 10−5 and as a
performance measure the number of matrix-vector products is used.

In figures 11.6, 11.7 and 11.8 we see that for this test-case neither IQN-LS nor
IQN-ILS with ωs = 1 show monotone convergence. Using the optimal value of
ωs initially yields better convergence but results in a stagnation of the convergence
(figures 11.6, 11.7 and 11.9). The cause was found in limit-cycle behavior, due to
extremely small values ofωs after about23n iterations.
Figures 11.8 and 11.9 show that IQN-ILS exhibits better convergence performance
than IQN-LS forωs = 1 and for the optimal value ofωs. No difference can be
seen between IQN-LS and IQN-ILS in the second alternative form and GMRes
(figure 11.10).
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Figure 11.2: Convergence history of the different variants of IQN-ILS and of GMRes for
the IBM32 matrix test-case.

11.3 Two-dimensional advection-diffusion equation

We propose the following PDE boundary as a test-case:

~λ · ∇u(x, y) − ν∇2u(x, y) = f(x, y) onΩ =] − 1, 1[×] − 1, 1[

(11.2a)

u(x, y) = 0 on∂Ω. (11.2b)

(11.2) describes a two-dimensional advection-diffusion problem and is discretized
using a residual distribution scheme on an unstructured triangular mesh with 441
nodes (361 interior nodes) [43,102]. This leads to a linear system that can be writ-
ten asK(p) = AKp − b = 0.

We take~λ = (1, 1), ν = 0.1, f(x, y) = (x2 − 1)(y2 − 1)2. We start from
po = [0 0 . . . 0]T .
The convergence criterion is a relative reduction of the residual of 10−5 and as a
performance measure the number of matrix-vector products is used.

For this test-case IQN-LS withωs = 1 shows very erratic convergence behavior
and eventually diverges (figures 11.11 and 11.13), while forthe sameωs IQN-ILS
converges in a monotone way (figures 11.12 and 11.13).
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Figure 11.3: Convergence history of the first alternative form of IQN-LS and IQN-ILS with
ωs = 1 for the IBM32 matrix test-case.

Both IQN-LS and IQN-ILS show good performance when using thefirst alter-
native form with the optimal value ofωs, with IQN-ILS slightly outperforming
IQN-LS (figures 11.11, 11.12 and 11.14).
For the second alternative form no difference between IQN-LS, IQN-ILS and GM-
Res could be discerned (figures 11.11, 11.12 and 11.15).

11.4 Conclusion

This chapter served as an illustration for the theoretical findings in chapter 8. The
tests that were chosen allow us to confirm that IQN-LS and IQN-ILS can be trans-
formed to a method that is algebraically equivalent to GMResby using multiple
parameters but without incurring the cost of extra matrix-vector products. Another
variant with a single parameter, as treated in chapter 8, shows only slight improve-
ments, if at all, and suffers from poor numerical stability.
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for the one-dimensional advection-diffusion problem.
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Figure 11.12: Convergence history of the different variants of IQN-ILS and of GMRes for
the two-dimensional advection-diffusion problem.
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with optimalωs for the two-dimensional advection-diffusion problem.
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12
Conclusions

In this thesis we started from a partitioned coupling methodfor fluid-structure in-
teraction problems proposed by Vierendeels earlier this decade. This method was
based on the construction of approximate Jacobians of black-box solvers with a
Least Squares approach. We formalized the method as being a block quasi-Newton
method (Interface Block Quasi-Newton method with Least Squares Jacobian or
IBQN-LS) and expanded the original idea of the Least Squaresconstruction of the
approximate Jacobian. Ensuing algorithms were IQN-LS (Interface Quasi-Newton
method with Least Squares Jacobian), IQN-CLS (Interface Quasi-Newton method
with Composed Least Squares Jacobian) and IQN-ILS (Interface Quasi-Newton
method with Inverse Least Squares Jacobian).
The four methods were analyzed from a theoretical point of view and compared
with existing quasi-Newton method that are applicable to the interface problem
that was originally studied. These methods are Broyden’s “good ” and “bad”
method, the Column-Updating method and the Inverse Column-Updating method.
These are called IQN-BG, IQN-BB, IQN-CUM and IQN-ICUM respectively in
this context. These methods are also adapted to “block” and “composed form” re-
sulting in the new methods IQN-CBG, IBQN-BG, IQN-CCUM and IBQN-CUM.
From the theoretical analysis it is concluded that Least Squares methods share sim-
ilarities with their respective Broyden counterparts, after having re-written the for-
mer in rank-one update form. The methods also exhibit a generalized secant prop-
erty and Least Change Secant Update property. For linear problems it is shown
that convergence is guaranteed in at mostn + 1 iterations (n being the dimension
of the solution vector) without the possibility of singularities. This compares very
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favorable to the Broyden and CUM methods which, for linear problems, converge
in at most2n iterations.
IQN-LS and IQN-ILS are also transformed, by the addition of multiple parameters,
but without extra matrix-vector products, to a form that is algebraically equivalent
to GMRes.
Approaches to further improve the performance of the Least Squares quasi-Newton
methods for a series of (time-dependent) problems are givenand tested.
From the numerical experiments we have learned that the quasi-Newton Least
Squares methods give very good performance on the non-linear one-dimensional
flexible tube problem, when compared to Broyden’s methods and the Column-
Updating methods. The gains increase when the problem becomes “harder”, i.e.
when more iterations are needed. Methods to further enhancethe performance by
re-using data from previous time-steps also show great potential to improve the
performance.
On the one-dimensional heat equation with variable coefficients, which can be
considered a fairly easy problem to solve, the gains are lessoutspoken, and Broy-
den’s methods and the Column-Updating methods can even outperform the Least
Squares methods.
Tests on linear problems, which served as an illustration for the theoretical findings
in chapter 8, allow us to confirm that IQN-LS and IQN-ILS can betransformed to
a method that is algebraically equivalent to GMRes by using multiple parameters
but without incurring the cost of extra matrix-vector products. Another variant
with a single parameter, as treated in chapter 8, shows only slight improvements,
if at all, and suffers from poor numerical stability.
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Matlab Source code

A.1 Main loop
clear all
close all
clc

global kappa
kappa= % Fill in value
global tau
tau= % Fill in value

% define grid: fine
gridsize=’f’;
% CALL SCRIPT-FILE
first_init_MGM
% CALL SCRIPT-FILE
second_init_MGM
% CALL SCRIPT-FILE
third_init_MGM

for timelabel=1:timesteps % define number of time-steps
switch recovery

% if recovery type is MG then we first create
% an initial Jacobian from a coarser grid.
case{MG1,MG2} % define case-designator for Multi-Grid

% set grid to coarse
gridsize=’c’;
% change all variables that change when grid is changed
second_init_MGM

% create time-dependent BC for this grid
global UL
UL=Uo+Amplitude * Uo* (sin(pi * timelabel * tau2/PERIOD))ˆPOWER;

% Restriction of initial variables to be used on
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% coarse grid
Ginit_f=Ginit;
Ginit=RestrictM * (Ginit);
Gprev_f=Gprev;
global Gprev
Gprev=RestrictM * (Gprev);
Pinit_f=Pinit;
Pinit=RestrictN * (Pinit);
Pprev_f=Pprev;
global Pprev
Pprev=RestrictN * (Pprev);
Uinit_f=Uinit;
Uinit=RestrictN * (Uinit);
Uprev_f=Uprev;
global Uprev
Uprev=RestrictN * (Uprev);

% CALL SCRIPT-FILE
% resetting data for solver for start of each time-step
data_reset

% CALL SCRIPT-FILE
% solver
run(QN_solver_type) % Define QN-method

% Jacobian for fine grid built from fine grid
if fcf<itmax

% CALL SCRIPT-FILE
create_extrapolated_Jacobian

else
break

end

switch recovery
case{MG1}

% if recovery type MG1 then initial iterates are
% extrapolated from previous time-steps
gridsize=’f’;
Ginit=Ginit_f;
Pinit=Pinit_f;
global Gprev
Gprev=Gprev_f;
global Pprev
Pprev=Pprev_f;
Uinit=Uinit_f;
global Uprev
Uprev=Uprev_f;

case{MG2}
% if recovery type MG2 then initial iterates
% are prolongated from coarse grid
gridsize=’f’;
Ginit=ProlongM * (G(:,end));
Gprev=Gprev_f;
Pinit=ProlongN * (P(:,end));
global Pprev
Pprev=Pprev_f
Uinit=ProlongN * (U(:,end));
global Uprev
Uprev=Uprev_f;

end

second_init_MGM
% create time-dependent BC
global UL
UL=Uo+Amplitude * Uo* (sin(pi * timelabel * tau2/PERIOD))ˆPOWER;

% CALL SCRIPT-FILE
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% resetting data for solver for start of each time-step
data_reset
% CALL SCRIPT-FILE
% solver
run(QN_solver_type) % Define QNmethod

case{Basic,Addcolumns,PreviousJacR1U}
global UL
UL=Uo+Amplitude * Uo* (sin(pi * timelabel * tau2/PERIOD))ˆPOWER;

% CALL SCRIPT-FILE
% resetting data for solver for start of each time-step
data_reset
% CALL SCRIPT-FILE
% solver
run(QN_solver_type) % Define QNmethod

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% storage of solution will run one index ahead
GFinal(:,timelabel+1)=G(:,end);
PFinal(:,timelabel+1)=P(:,end);
UFinal(:,timelabel+1)=U(:,end);
% resetting data from previous time step
global Gprev
global Pprev
global PRprev
Gprev=G(:,end);
Pprev=P(:,end);
PRprev=P(N,end);
global Uprev
Uprev=U(:,end);

% creating initial iterates for next loop
switch recovery

case{Basic,Addcolumns,PreviousJacR1U,MG1}
% extrapolation
if timelabel==1

Ginit=2 * GFinal(:,timelabel+1)-GFinal(:,timelabel);
Pinit=2 * PFinal(:,timelabel+1)-PFinal(:,timelabel);
Uinit=2 * UFinal(:,timelabel+1)-UFinal(:,timelabel);

else
Ginit=2.5 * GFinal(:,timelabel+1)...
-2 * GFinal(:,timelabel)+0.5 * GFinal(:,timelabel-1);
Pinit=2.5 * PFinal(:,timelabel+1)...
-2 * PFinal(:,timelabel)+0.5 * PFinal(:,timelabel-1);
Uinit=2.5 * UFinal(:,timelabel+1)...
-2 * UFinal(:,timelabel)+0.5 * UFinal(:,timelabel-1);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % recovery of Jacobian ?
switch recovery

case{Addcolumns}
InitialjacobianK=DK;
InitialjacobianM=DM;
InitialjacobianS=DS;
InitialjacobianF=DF;
VV(1:size(V,1),1:size(V,2),timelabel)=V;
WW(1:size(W,1),1:size(W,2),timelabel)=W;
VVS(1:size(VS,1),1:size(VS,2),timelabel)=VS;
WWS(1:size(WS,1),1:size(WS,2),timelabel)=WS;
VVF(1:size(VF,1),1:size(VF,2),timelabel)=VF;
WWF(1:size(WF,1),1:size(WF,2),timelabel)=WF;

case{PreviousJacR1U}
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InitialjacobianK=DK;
InitialjacobianM=DM;
InitialjacobianS=DS;
InitialjacobianF=DF;
VV=[];
WW=[];
VVS=[];
WWS=[];
VVF=[];
WWF=[];

otherwise
InitialjacobianK=-I;
InitialjacobianM=-I;
InitialjacobianS=zeros(M,N);
InitialjacobianF=zeros(N,M);
VVS=[];
WWS=[];
VVF=[];
WWF=[];

end

if fcf==inf
break

end

if fcf==itmax
break

end

% END TIMELOOP
end

A.2 first init temp.m
Nf= % set value
contrac_fac = % set value
Nc=((Nf-1)/contrac_fac)+1;
Mc= % set value
Mf= % set value

% Number of time-steps to re-use
nnreuse=10;

% Max number of iterations allowed (outer loop per time-step )
itmax=100;

% Initializing time
timelabel=0;
% Set #timesteps#
timesteps= % set value

V=[];
W=[];
VS=[];
WS=[];
VF=[];
WF=[];
VV=zeros(Nf,itmax,timesteps);
WW=zeros(Nf,itmax,timesteps);
VVS=zeros(Nf,itmax,timesteps);
WWS=zeros(Mf,itmax,timesteps);
VVF=zeros(Mf,itmax,timesteps);
WWF=zeros(Nf,itmax,timesteps);
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% Setting initial relaxation factor
% Set #omega#
omega= % set value

% setting parameters for fsolve
options=optimset(’MaxFunEvals’,10000,’MaxIter’,1000 0,’TolFun’,...
eps,’TolX’,eps,’Display’,’off’,’Diagnostics’,’On’);

% clear solver calls over time-steps on fine and coarse grid
FCF=[];
FCFc=[];

% Solution will contain u,p and g over time-steps
% clear converged solutions per time-step
PFinal=[];
GFinal=[];
UFinal=[];

A.3 secondinit temp.m
global N
if gridsize==’c’

N=Nc;
elseif gridsize==’f’

N=Nf;
end

global M
if gridsize==’c’

M=Mc;
elseif gridsize==’f’

M=Mf;
end

global I
I = eye(N,N);
global O
O = zeros(N,N);

global Uo
Uo = 1/kappa;
global Do
Do = Uo/(tau * N);
global Go
Go=1;
global Po
Po=0;

Amplitude=0.1;
POWER=2;
PERIOD=1;

relrestol=10ˆ(-5);
QRthreshold=1e-8;

A.4 third init temp.m
% create restriction and prolongation matrices
RestrictN=zeros(Nc,Nf);

for k = 1:Nc
RestrictN(k,1+contrac_fac * (k-1))=1;
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end

ProlongN=zeros(Nf,Nc);

for k = 1:Nc
for row=1:contrac_fac

ProlongN(row+contrac_fac * (k-1),k)=...
(contrac_fac+1-row)/contrac_fac;

ProlongN(row+contrac_fac * (k-1),k+1)=...
(-1+row)/contrac_fac;

end
end

ProlongN=ProlongN(1:Nf,1:Nc);

RestrictM=zeros(Mc,Mf);

for k = 1:Mc
RestrictM(k,1+contrac_fac * (k-1))=1;

end

ProlongM=zeros(Mf,Mc);

for k = 1:Mc
for row=1:contrac_fac

ProlongM(row+contrac_fac * (k-1),k)=...
(contrac_fac+1-row)/contrac_fac;

ProlongM(row+contrac_fac * (k-1),k+1)=...
(-1+row)/contrac_fac;

end
end
ProlongM=ProlongM(1:Mf,1:Mc);

% Set values of previous time-step
global Gprev
Gprev=Go * ones(N,1);
global Pprev
Pprev=Po * ones(N,1);
global PRprev
PRprev=Pprev(N);
global Uprev
Uprev=Uo * ones(N,1);

Ginit=Gprev;
Pinit=Pprev;
Uinit=Uprev;

% Solution will contain u,p and g over time-steps
PFinal(:,timelabel+1)=Pprev;
GFinal(:,timelabel+1)=Gprev;
UFinal(:,timelabel+1)=Uprev;

PFinalc(:,timelabel+1)=RestrictN * Pprev;
GFinalc(:,timelabel+1)=RestrictM * Gprev;
UFinalc(:,timelabel+1)=RestrictN * Uprev;

% Initialization of Jacobian & base for first time-step
InitialjacobianK=-I;
InitialjacobianM=-I;
InitialjacobianS=zeros(M,N);
InitialjacobianF=zeros(N,M);
InitialL=[];
InitialLS=[];
InitialLF=[];
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A.5 data reset.m
Residual=[];
Hp=[];
Fg=[];
Sp=[];
Kp=[];

d=[];

deltap=[];
deltaK=[];
deltaG=[];
deltaS=[];

fcs=0;
fcf=0;

G=[];
global G
G(:,1)=Ginit;
P=[];
global P
P(:,1)=Pinit;
U=[];
U(:,1)=Uinit;

% Initial orthogonal base
L =InitialL;

LS=InitialLS;
LF=InitialLF;

% Initial approx. Jacobian
if gridsize==’f’

DM=InitialjacobianM;
DK=InitialjacobianK;
DF=InitialjacobianF;
DS=InitialjacobianS;

elseif gridsize==’c’
DM=-eye(Nc,Nc);
DK=-eye(Nc,Nc);
DF=zeros(Nc,Nc);
DS=zeros(Nc,Nc);

end

A.6 create extrapolated Jacobian.m
if isempty(P)==0

P_prol=ProlongN * P;
end

if isempty(G)==0
G_prol=ProlongM * G;

end

if isempty(U)==0
U_prol=ProlongN * U;

end

if isempty(Hp)==0
Hp_prol=ProlongN * Hp;

end
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if isempty(Kp)==0
Kp_prol=ProlongN * Kp;

end

if isempty(Sp)==0
Sp_prol=ProlongM * Sp;

end

if isempty(Fg)==0
Fg_prol=ProlongN * Fg;

end

if QN_solver_type==’QN_solver_IQN_’
Ptemp_prol =...
P_prol(:,max(1,size( P_prol,2)-N):size( P_prol,2)-1);
Fgtemp_prol=...
Fg_prol(:,max(1,size(Fg_prol,2)-N):size(Fg_prol,2)- 1);

V_prol=( P_prol(:,s) * ones(1,size( Ptemp_prol,2)))- Ptemp_prol;
W_prol=(Fg_prol(:,s) * ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
[ntemp mtemp] = size(W_prol);
V_prol=V_prol(1:ntemp,1:mtemp);
clear ntemp
clear mtemp

InitialjacobianK=W_prol * ((V_prol’ * V_prol)\V_prol’)-eye(Nf,Nf);

elseif QN_solver_type==’QN_solver_IQNI’
Kptemp_prol=...
Kp_prol(:,max(1,size(Kp_prol,2)-N+1):size(Kp_prol,2 )-1);
Fgtemp_prol=...
Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);

V_prol=(Kp_prol(:,s) * ones(1,size(Kptemp_prol,2)))-Kptemp_prol;
W_prol=(Fg_prol(:,s) * ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
V_prol=V_prol(:,max(1,size(V_prol,2)-N+1):size(V_pr ol,2));
W_prol=W_prol(:,max(1,size(W_prol,2)-N+1):size(W_pr ol,2));

InitialjacobianM=W_prol * ((V_prol’ * V_prol)\V_prol’)-eye(Nf,Nf);

elseif QN_solver_type==’QN_solver_IQNC’
Ptemp_prol =...
P_prol(:,max(1,size( P_prol,2)-N+1):size( P_prol,2)-1 );
Sptemp_prol=...
Sp_prol(:,max(1,size(Sp_prol,2)-N+1):size(Sp_prol,2 )-1);
Gtemp_prol =...
G_prol(:,max(1,size( G_prol,2)-N+1):size( G_prol,2)-1 );
Fgtemp_prol=...
Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);

VS_prol=( P_prol(:,s) * ones(1,size( Ptemp_prol,2)))- Ptemp_prol;
WS_prol=(Sp_prol(:,s) * ones(1,size(Sptemp_prol,2)))-Sptemp_prol;
VS_prol=VS_prol(:,max(1,size(VS_prol,2)-N+1):size(V S_prol,2));
WS_prol=WS_prol(:,max(1,size(WS_prol,2)-N+1):size(W S_prol,2));

VF_prol=( G_prol(:,s) * ones(1,size( Gtemp_prol,2)))- Gtemp_prol;
WF_prol=(Fg_prol(:,s) * ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
VF_prol=VF_prol(:,max(1,size(VF_prol,2)-N+1):size(V F_prol,2));
WF_prol=WF_prol(:,max(1,size(WF_prol,2)-N+1):size(W F_prol,2));

InitialjacobianS=WS_prol * ((VS_prol’ * VS_prol)\VS_prol’);
InitialjacobianF=WF_prol * ((VF_prol’ * VF_prol)\VF_prol’);

elseif QN_solver_type==’QN_solver_IBQN’
Ptemp_prol =...
P_prol(:,max(1,size( P_prol,2)-N+1):size( P_prol,2)-1 );
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Sptemp_prol=...
Sp_prol(:,max(1,size(Sp_prol,2)-N+1):size(Sp_prol,2 )-1);
Gtemp_prol =...
G_prol(:,max(1,size( G_prol,2)-N+1):size( G_prol,2)-1 );
Fgtemp_prol=...
Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);

VS_prol=( P_prol(:,s) * ones(1,size( Ptemp_prol,2)))-Ptemp_prol;
WS_prol=(Sp_prol(:,s) * ones(1,size(Sptemp_prol,2)))-Sptemp_prol;
VS_prol=VS_prol(:,max(1,size(VS_prol,2)-N+1):size(V S_prol,2));
WS_prol=WS_prol(:,max(1,size(WS_prol,2)-N+1):size(W S_prol,2));

VF_prol=( G_prol(:,s) * ones(1,size( Gtemp_prol,2)))-Gtemp_prol;
WF_prol=(Fg_prol(:,s) * ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
VF_prol=VF_prol(:,max(1,size(VF_prol,2)-N+1):size(V F_prol,2));
WF_prol=WF_prol(:,max(1,size(WF_prol,2)-N+1):size(W F_prol,2));

InitialjacobianS=WS_prol * ((VS_prol’ * VS_prol)\VS_prol’);
InitialjacobianF=WF_prol * ((VF_prol’ * VF_prol)\VF_prol’);

end

if recovery==MG2
Ptemp=P(:,end);
Pinit_temp=ProlongN * Ptemp;
Gtemp=G(:,end);
Ginit_temp=ProlongM * Gtemp;
Utemp=U(:,end);
Uinit_temp=ProlongN * Utemp;

end

GFinalc(:,timelabel+1)=G(:,end);
PFinalc(:,timelabel+1)=P(:,end);
UFinalc(:,timelabel+1)=U(:,end);

A.7 IQN solver: QN solver IQN .m
[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],opti ons);
fcs=fcs+1;

global G
G(:,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],op tions);
fcf=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 * N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
case{Basic}

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

case{Addcolumns,PreviousJacR1U}
if timelabel==1

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

else
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global P
P(:,2)=P(:,1)-DK\Kp(:,1);

end
case{MG1,MG2}

global P
if gridsize==’c’

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

elseif gridsize==’f’
P(:,2)=P(:,1)-DK\Kp(:,1);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main (outer) iteration loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for s=2:itmax
[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],op tions);
fcs=fcs+1;

global G
G(:,s)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(:,s)],op tions);
fcf=fcf+1;

Fg(:,s) =fg(1:N);
U(:,s+1) =fg(N+1:2 * N);

Kp(:,s)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break

end

if R1U_type==’0’ % LS in basic formulation
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

V=(P(:,s) * ones(1,size(Ptemp,2)))-fliplr(Ptemp);
W=(Fg(:,s) * ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VX=[];
WX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VX=[VV(:,1:FCF(kk)-2,kk) VX];
WX=[WW(:,1:FCF(kk)-2,kk) WX];

end
end

VX=[V VX];
WX=[W WX];
[VX WX] =DoQR(VX,WX,QRthreshold);
DK=WX* ((VX’ * VX)\VX’)-I;

elseif R1U_type==’L’ % LS in R1U formulation
deltap=P(:,s)-P(:,s-1);
deltaK=(Kp(:,s))-(Kp(:,s-1));

if min(size(L))<1
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Lnew =(deltap) /norm(deltap);
ALnew=(deltaK - DK * deltap)/norm(deltap );

else
Lnew =(deltap - L * L’ * deltap) /norm(deltap - L * L’ * deltap);
ALnew=(deltaK - DK * deltap) /norm(deltap - L * L’ * deltap);

end

R1U = ALnew* Lnew’;
DK=DK+R1U;

L=[L Lnew];
L=L(:,max(1,size(L,2)-N+2):size(L,2));

if max(max(isnan(L)))==1
fcf=inf;
break

end

elseif R1U_type==’B’ % R1U Broyden
deltap=P(:,s)-P(:,s-1);
deltaK=Kp(:,s)-Kp(:,s-1);

R1U =(deltaK - DK * deltap) * deltap’/dot(deltap,deltap);
DK =DK+R1U;

elseif R1U_type==’C’ % R1U CUM
deltap=P(:,s)-P(:,s-1);
deltaK=Kp(:,s)-Kp(:,s-1);
[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;

R1U =(deltaK - DK * deltap) * ej’/dot(ej,deltap);
DK =DK+R1U;

end

global P
P(:,s+1)=P(:,s)-DK\Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break

end
end

A.8 IQN-C solver: QN solver IQNC.m
[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],opti ons);
fcs=fcs+1;

global G
G(:,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],op tions);
fcf=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 * N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
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case{Basic}
Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

case{Addcolumns,PreviousJacR1U}
if timelabel==1

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

else
global P
P(:,2)=P(:,1)-DK\Kp(:,1);

end
case{MG1,MG2}

global P
if gridsize==’c’

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

elseif gridsize==’f’
P(:,2)=P(:,1)-DK\Kp(:,1);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main (outer) iteration loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for s=2:itmax

[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],op tions);
fcs=fcs+1;

global G
G(:,s)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(:,s)],op tions);
Fg(:,s) =fg(1:N);
U(:,s+1) =fg(N+1:2 * N);

Kp(:,s)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break

end

if R1U_type==’0’ % LS in basic formulation
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Sptemp=Sp(:,max(1,size(Sp,2)-N):size(Sp,2)-1);
Gtemp = G(:,max(1,size( G,2)-N):size( G,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

VS=(P(:,s) * ones(1,size(Ptemp,2)))-fliplr(Ptemp);
WS=(Sp(:,s) * ones(1,size(Sptemp,2)))-fliplr(Sptemp);
VF=(G(:,s) * ones(1,size(Gtemp,2)))-fliplr(Gtemp);
WF=(Fg(:,s) * ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VSX=[];
WSX=[];
VFX=[];
WFX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VSX=[VVS(:,1:FCF(kk)-2,kk) VSX];
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WSX=[WWS(:,1:FCF(kk)-2,kk) WSX];
VFX=[VVF(:,1:FCF(kk)-2,kk) VFX];
WFX=[WWF(:,1:FCF(kk)-2,kk) WFX];

end
end
VSX=[VS VSX];
WSX=[WS WSX];
VFX=[VF VFX];
WFX=[WF WFX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);
[VFX WFX] =DoQR(VFX,WFX,QRthreshold);

DS=WSX* ((VSX’ * VSX)\VSX’);
DF=WFX* ((VFX’ * VFX)\VFX’);
DK=DF* DS-I;

elseif R1U_type==’L’ % LS in R1U formulation
deltap= P(:,s)-P(:,s-1);
deltaS=Sp(:,s)-Sp(:,s-1);

if min(size(LS))<1
LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS * deltap)/norm(deltap);

else
LSnew =(deltap-LS * LS’ * deltap)/norm(deltap-LS * LS’ * deltap);
ALSnew=(deltaS-DS * deltap) /norm(deltap-LS * LS’ * deltap);

end

R1US = ALSnew* LSnew’;
DS=DS+R1US;

deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

if min(size(LF))<1
LFnew =(deltaG) /norm(deltaG);
ALFnew=(deltaF - DF * deltaG)/norm(deltaG );

else
LFnew =(deltaG-LF * LF’ * deltaG)/norm(deltaG-LF * LF’ * deltaG);
ALFnew=(deltaF-DF * deltaG) /norm(deltaG-LF * LF’ * deltaG);

end

R1UF = ALFnew* LFnew’;
DF=DF+R1UF;
DK=DF* DS-I;

LS=[LS LSnew];
LS=LS(:,max(1,size(LS,2)-N+2):size(LS,2));
LF=[LF LFnew];
LF=LF(:,max(1,size(LF,2)-N+2):size(LF,2));

if max(max(isnan(LS)))==1
fcf=inf;
break

end

if max(max(isnan(LF)))==1
fcf=inf;
break

end

elseif R1U_type==’B’ % R1U Broyden
deltap= P(:,s)-P(:,s-1);
deltaS=Sp(:,s)-Sp(:,s-1);

R1U = (deltaS - DS * deltap) * deltap’/dot(deltap,deltap);
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DS=DS+R1U;

deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

R1U =(deltaF - DF * deltaG) * deltaG’/dot(deltaG,deltaG);
DF=DF+R1U;
DK=DF* DS-I;

elseif R1U_type==’C’ % R1U CUM
deltap= P(:,s)-P(:,s-1);
deltaS=Sp(:,s)-Sp(:,s-1);
[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;

R1U = (deltaS - DS * deltap) * ej’/dot(ej,deltap);
DS=DS+R1U;

deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);
[aa kk]=max(abs(deltaG));
ej=zeros(M,1);
ej(kk)=1;

R1U =(deltaF - DF * deltaG) * ej’/dot(ej,deltaG);
DF=DF+R1U;
DK=DF* DS-I;

end

global P
P(:,s+1)=P(:,s)-DK\Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break

end
end

A.9 IBQN solver: QN solver IBQN.m
[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],opti ons);
fcs=fcs+1;

global G
G(:,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],op tions);
fcf=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 * N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
case{Basic}

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

case{Addcolumns,PreviousJacR1U}
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if timelabel==1
Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

else
global P
P(:,2)=(eye(N,N)-DF * DS)\(Fg(:,1) +...

DF* (Sp(:,1) - DS * P(:,1) - G(:,1)));
end

case{MG1,MG2}
global P
if gridsize==’c’

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

elseif gridsize==’f’
P(:,2)=P(:,1)-DK\Kp(:,1);

end
end

[Sp(:,2) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],opti ons);
fcs=fcs+1;

global G G(:,2)=Sp(:,2);

if R1U_type==’0’
VS=P(:,2)-P(:,1);
WS=Sp(:,2)-Sp(:,1);
VSX=[];
WSX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VSX=[VVS(:,1:FCF(kk)-1,kk) VSX];
WSX=[WWS(:,1:FCF(kk)-1,kk) WSX];

end
end
VSX=[VS VSX];
WSX=[WS WSX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);
DS=WSX* ((VSX’ * VSX)\VSX’);

elseif R1U_type==’L’
deltap=P(:,2)-P(:,1);
deltaS=Sp(:,2)-Sp(:,1);

LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS * deltap)/norm(deltap);

R1US = ALSnew* LSnew’;
DS=DS+R1US;
LS=[LS LSnew];

elseif R1U_type==’B’
deltap=P(:,2)-P(:,1);
deltaG=G(:,2)-G(:,1);

R1US=(deltaG - DS * deltap) * deltap’/dot(deltap,deltap);
DS=DS+R1US;

elseif R1U_type==’C’
deltap=P(:,2)-P(:,1);
deltaG=G(:,2)-G(:,1);
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[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;
R1US=(deltaG - DS * deltap) * ej’/dot(ej,deltap);
DS=DS+R1US;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main (outer) iteration loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for s=2:itmax

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(:,s)],op tions);
fcf=fcf+1;

Fg(:,s) =fg(1:N);
U(:,s+1) =fg(N+1:2 * N);

Kp(:,s)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break

end

if R1U_type==’0’
Gtemp = G(:,max(1,size( G,2)-N):size( G,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

VF=(G(:,s) * ones(1,size(Gtemp,2)))-fliplr(Gtemp);
WF=(Fg(:,s) * ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VFX=[];
WFX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VFX=[VVF(:,1:FCF(kk)-2,kk) VFX];
WFX=[WWF(:,1:FCF(kk)-2,kk) WFX];

end
end

VFX=[VF VFX];
WFX=[WF WFX];

[VFX WFX] =DoQR(VFX,WFX,QRthreshold);

DF=WFX* ((VFX’ * VFX)\VFX’);

elseif R1U_type==’L’
deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

if min(size(LF))<1
LFnew =(deltaG) /norm(deltaG);
ALFnew=(deltaF - DF * deltaG)/norm(deltaG );

else
LFnew =(deltaG-LF * LF’ * deltaG)/norm(deltaG-LF * LF’ * deltaG);
ALFnew=(deltaF-DF * deltaG) /norm(deltaG-LF * LF’ * deltaG);

end

R1UF = ALFnew* LFnew’;
DF=DF+R1UF;

LF=[LF LFnew];
LF=LF(:,max(1,size(LF,2)-N+2):size(LF,2));

if max(max(isnan(LF)))==1
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fcf=inf;
break

end

elseif R1U_type==’B’
deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

R1UF =(deltaF - DF * deltaG) * deltaG’/dot(deltaG,deltaG);
DF=DF+R1UF;

elseif R1U_type==’C’
deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

[aa kk]=max(abs(deltaG));
ej=zeros(M,1);
ej(kk)=1;
R1UF=(deltaF - DF * deltaG) * ej’/dot(ej,deltaG);
DF=DF+R1UF;

end

global P
P(:,s+1)=(eye(N,N)-DF * DS)\(Fg(:,s) +...

DF* (Sp(:,s) - DS * P(:,s) - G(:,s)));

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break

end

[Sp(:,s+1) fval flowflag]=fsolve(Sfun_gen,[G(:,s)],op tions);
fcs=fcs+1;

if R1U_type==’0’
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Sptemp=Sp(:,max(1,size(Sp,2)-N):size(Sp,2)-1);

VS=(P(:,s+1) * ones(1,size(Ptemp,2)))-fliplr(Ptemp);
WS=(Sp(:,s+1) * ones(1,size(Sptemp,2)))-fliplr(Sptemp);

VSX=[];
WSX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VSX=[VVS(:,1:FCF(kk)-1,kk) VSX];
WSX=[WWS(:,1:FCF(kk)-1,kk) WSX];

end
end

VSX=[VS VSX];
WSX=[WS WSX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);

DS=WSX* ((VSX’ * VSX)\VSX’);

elseif R1U_type==’L’
deltap= P(:,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

if min(size(LS))<1
LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS * deltap)/norm(deltap );

else
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LSnew =(deltap-LS * LS’ * deltap)/norm(deltap-LS * LS’ * deltap);
ALSnew=(deltaS-DS * deltap) /norm(deltap-LS * LS’ * deltap);

end

R1US = ALSnew* LSnew’;
DS=DS+R1US;

LS=[LS LSnew];
LS=LS(:,max(1,size(LS,2)-N+2):size(LS,2));

if max(max(isnan(LS)))==1
fcf=inf;
break

end

elseif R1U_type==’B’
deltap=P(:,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

R1US=(deltaS - DS * deltap) * deltap’/dot(deltap,deltap);
DS=DS+R1US;

elseif R1U_type==’C’
deltap=P(:,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;
R1US=(deltaS - DS * deltap) * ej’/dot(ej,deltap);
DS=DS+R1US;

end

global G
G(:,s+1)=(eye(M,M)-DS * DF)\(Sp(:,s+1) +...

DS* (Fg(:,s) - DF * G(:,s) - P(:,s+1)));

if max(max(isnan(G)))==1
fcf=inf;
fcs=inf;
break

end
end

A.10 IQN-I solver: QN solver IQNI.m
[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],opti ons);
fcs=fcs+1;

global G G(:,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],op tions);
fcf=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 * N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
case{Basic}

Ptemp=Fg(:,1);
global P
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P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

case{Addcolumns,PreviousJacR1U}
if timelabel==1

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

else
global P
P(:,2)=P(:,1)-DK\Kp(:,1);

end
case{MG1,MG2}

global P
if gridsize==’c’

Ptemp=Fg(:,1);
global P
P(:,2)=omega * Ptemp+(1-omega) * P(:,1);
clear Ptemp

elseif gridsize==’f’
P(:,2)=P(:,1)-DK\Kp(:,1);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main (outer) iteration loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for s=2:itmax

[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],op tions);
fcs=fcs+1;

global G
G(:,s)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(:,s)],op tions);
fcf=fcf+1;

Fg(:,s) =fg(1:N);
U(:,s+1) =fg(N+1:2 * N);

Kp(:,s)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break

end

if R1U_type==’0’
Kptemp=Kp(:,max(1,size(Kp,2)-N):size(Kp,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

V=(Kp(:,s) * ones(1,size(Kptemp,2)))-fliplr(Kptemp);
W=(Fg(:,s) * ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VX=[];
WX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1

VX=[VV(:,1:FCF(kk)-2,kk) VX];
WX=[WW(:,1:FCF(kk)-2,kk) WX];

end
end

VX=[V VX];
WX=[W WX];
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[VX WX] =DoQR(VX,WX,QRthreshold);

DM=WX* ((VX’ * VX)\VX’)-I;

elseif R1U_type==’L’
deltaK=Kp(:,s)-Kp(:,s-1);
deltap=P(:,s)-P(:,s-1);

if min(size(L))<1
Lnew =(deltaK) /norm(deltaK);
ALnew=(deltap - DM * deltaK)/norm(deltaK );

else
Lnew =(deltaK-L * L’ * deltaK)/norm(deltaK-L * L’ * deltaK);
ALnew=(deltap-DM * deltaK) /norm(deltaK-L * L’ * deltaK);

end

R1U = ALnew* Lnew’;
DM=DM+R1U;

L=[L Lnew];
L=L(:,max(1,size(L,2)-N+2):size(L,2));

if max(max(isnan(L)))==1
fcf=inf;
break

end

elseif R1U_type==’B’
deltap=P(:,s)-P(:,s-1);
deltaK=Kp(:,s)-Kp(:,s-1);

R1U =((deltap - DM * deltaK) * deltaK’/dot(deltaK,deltaK));
DM =DM+R1U;

elseif R1U_type==’C’
deltap=P(:,s)-P(:,s-1);
deltaK=Kp(:,s)-Kp(:,s-1);
[aa kk]=max(abs(deltaK));
ej=zeros(N,1);
ej(kk)=1;

R1U =(deltap - DM * deltaK) * ej’/dot(ej,deltaK);
DM =DM+R1U;

end

global P
P(:,s+1)=P(:,s)-DM * Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break

end
end
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