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English summary

Often in nature different systems interact, like fluids atmdctures, heat and elec-
tricity, populations of species, etc. It is our aim in thigsis to find, describe
and analyze solution methods to solve the equations regudittbm the mathemat-
ical models describing those interacting systems. Evenwvfgsful solvers often
already exist for problems in a single physical domain (stgictural or fluid prob-
lems), the development of similar tools for multi-physicsfdems is still ongoing.
When the interaction (or coupling) between the two systensgrisig, many me-
thods still fail or are computationally very expensive.

Approaches for solving these multi-physics problems cabroadly put in two
categories: monolithic or partitioned. While we are not mliaig that the parti-
tioned approach is panacea for all coupled problems, weonll focus our at-
tention in this thesis on studying methods to solve (strgngbupled problems
with a partitioned approach in which each of the physicabjms is solved with
a specialized code that we consider to be a black box soleeofwhich the Ja-
cobian is unknown. We also assume that calling these blaxksbis the most
expensive part of any algorithm, so that performance isgddgy the number of
times these are called. In 2005 Vierendeels presented amglireg procedure for
this partitioned approach in a fluid-structure interactiontext, based on sensitiv-
ity analysis of the important displacement and pressureasiadich are detected
during the iteration process. This approach only uses ioptgut couples of the
solvers (one for the fluid problem and one for the structuralbfem). In this thesis
we will focus on establishing the properties of this methond show that it can be
interpreted as a block quasi-Newton method with approxénjatobians based on
a least squares formulation. We also establish and inegst@her algorithms that
exploit the original idea but use a single approximate Jacob

The main focus in this thesis lies on establishing the akljelproperties of the
methods under investigation and not so much on the best imgpitation from a
numerical point of view.

The work is organized as follows.

After an introductory chapter (chapter 1), where we givesadmical overview and

introduce the established terminology, we give, in chaptehe most useful def-
initions. Lemmas and theorems that are used in later clagterestablished and
proven in chapter 2.

In chapter 3 an overview is given of existing linear solveiththe main focus on
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Krylov methods in general and GMRes in particular.

In chapter 4 a similar overview is given of existing non-aneolvers with a fo-
cus on quasi-Newton methods in general and those using eorakipdate form
in particular. Methods of particular interest are Broydefgood” and “ bad”
method, the Column-Updating Method and Inverse Columndtipd Method.
In chapter 5 we extend the idea of the quasi-Newton methodtévacting sys-
tems of non-linear equations and formulate four approablased on the origi-
nal quasi-Newton method. These are the Interface Quastdte(dQN) method,
Interface Quasi-Newton method with Inverse Jacobian (IQNinterface Block
Quasi-Newton method (IBQN) and Interface Quasi-Newtonhoetwith Com-
posed Jacobian (IQN-C). The construction of the Jacobiarbeadone based on
existing methods, or with the Least Squares approach whittvéstigated in de-
tail and forms the main topic of this thesis.

In chapter 6 we formalize the method for constructing apipnake Least Squares
Jacobians proposed by Vierendeels and co-workers and inppijre quasi- New-
ton methods established in the previous chapter. This rdesizased on available
input-output pairs of a function, which will allow us to appimate the Jacobian
of that function. Basic properties of this construction eséablished and proven,
like the possibility to re-arrange the input data; thiswhaus to orthogonalize the
input vectors and, hence, improve the conditioning of thérices involved in the
construction. The resulting methods with this particulamstruction of the appro-
ximate Jacobian will be called IQN-LS, IQN-ILS, IBON-LS algN-CLS.

In chapters 7 and 8, which form the main body of this work, wiadish and
prove the properties of the quasi-Newton methods with L8gstares Jacobian(s)
for non-linear and linear systems respectively. In chaptee re-write the orig-
inal formulation of the method of Vierendeels and co-woskemd its newly es-
tablished variants, in a rank-one update formulation. Weank that the method
bears some similarities to the Broyden methods. We furtbbéish that these
Least Squares method satisfy a generalized secant pragadta Least Change
Secant Update property; these properties formally bried_#ast Squares method
within the framework of other well-established quasi-Nemwinethods. Further in
chapter 7, the equivalence between the four methods istigaésd in detail; it is
shown that IQN-LS and IQN-CLS are algebraically identi¢@IN-LS and IBQN-
LS are only identical if one of the black box solvers représam affine mapping.
Finally, attention is given to the possibility of singukées and methods to deal
with them.

Chapter 8 includes a detailed comparison between GMResvamaftthe new
guasi-Newton methods when applied to linear systems. hasva that for affine
mappings all of the Least Squares quasi-Newton methodsHmexact solution
after at most: + 1 matrix-vector products, in exact arithmetie peing the size
of the solution-vector); singularities cannot occur beftine solution has been
reached. It is proven that IQN-LS, IQN-ILS and GMRes shagghme Krylov
search subspace, but not the subspace of constraints. $bistzown that under
certain hypotheses the quasi-Newton Least Squares megindaedransformed to
a method that is mathematically identical to GMRes withdwet heed for extra
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matrix-vector products.

In chapter 9 we discuss various possibilities to enhancdahebian for problems
originating from (time-dependent) ordinary and partidfegdential equations. For
the Least Squares method in the original formulation thimsed on adding input-
output couples from previous time-steps. For quasi-Newtethods in a rank-one
update form this is either based on the re-use of the finahlac®f the previous
time-step or on the construction of an initial Jacobian onarser grid.

In chapters 10 and 11 the algorithms discussed in this wark@mpared against
each other on two non-linear and three linear problems otisply. The non-
linear problems are one-dimensional flow in a flexible tuketare one-dimensional
heat equation with temperature-dependent coefficientesd tests show the po-
tential of the Least Squares methods and the proposed nseihoetuse data from
previous time-steps. The linear tests are taken from tbmtiire and are meant to
illustrate the possible adaptation of IQN-LS and IQN-IL&tform that is equiva-
lent to GMRes, as shown in chapter 8.

Finally, we finish by drawing the most important conclusions






Nederlandse samenvatting
—Summary in Dutch—

In de natuur komt het vaak voor dat systemen met elkaar oeeea, zoals flui-
da en structuren, hitte en electriciteit, bevolkingsgeepetc. In deze thesis is
het onze bedoeling om oplossingsmethoden te vinden en thiijesn die toe-
laten de vergelijkingen op te lossen die voortkomen uit dekumdige modellen
die deze interagerende systemen beschrijven. Zelfs adrestr reeds krachtige
oplossingstechnieken voor problemen in een enkel fysisaoheih (bv. structuur-
of fluidumproblemen), dan blijft de ontwikkeling van gehjardige middelen voor
multi-fysica problemen nog steeds een domein van actied¢i@ogk. Wanneer de
interactie (of koppeling) tussen de systemen sterk isnfatey steeds veel metho-
den of vragen ze erg veel rekentijd.

Voor de aanpak van dergelijke multi-fysica problemen kam gebruiker meestal
kiezen uit monolitische of gepartitioneerde methoden. Gldieweren we niet dat

de gepartitioneerde aanpak een zaligmakende oplossitagiszullen we ons in
deze thesis enkel toespitsen op dit soort methoden om Ygtekioppelde proble-
men op te lossen, waarbij we er vanuit gaan dat elk deelpeoblgordt opgelost
met een beschikbare oplossingsmethode die beschouwd aleekn zwarte doos

en waarvan hijgevolg de Jacobiaan niet gekend is. We gaagréenook van uit

dat het aanroepen van de oplossingsmethode voor een ddefrorekenkundig

het duurste deel is van elk koppelingsalgoritme; bijgevotden we de performan-

tie van een methode aan de hand van het aantal keer dat dederve@ngeroepen.

In 2005 presenteerde Vierendeels een nieuw koppelingsahgovoor de geparti-
tioneerde oplossing in de context van vloeistof-struciateractie, gebaseerd op
de analyse van de gevoeligheden van de belangrijkste et¢spigs- en drukmo-
des, die tijdens de iteraties werden waargenomen. Dezeakagbruikt enkel
invoer-uitvoer koppels van de oplossingsmethoden (die heo fluidum en die
voor de structuur) en bouwt voor elk een Jacobiaan. In dezsigtspitsen we
onze aandacht toe op het formuleren van de eigenschappeatezammethode en
tonen dat ze kan geterpreteerd worden als een blok quasi-Newton methode met
een benaderde Jacobiaan gebaseerd op het principe varimdg¢edevadraten. We
formuleren en onderzoeken ook andere algoritmes die hepomkelijke idee ex-
ploiteren, maar di@en enkele Jacobiaan gebruiken. De aandacht in deze thesis
gaat vooral uit naar de algelisahe eigenschappen van de onderzochte methoden,
en niet zozeer naar de optimale numerieke implementatie.
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Het werk is als volgt georganiseerd.

Na een inleidend hoofdstuk (hoofdstuk 1), waar een histbrisverzicht en de
geijkte terminologie worden gegeven, vindt men de belgkgje definities gefor-
muleerd in hoofdstuk 2. Lemma’s en theorema’s die in lateddstukken zullen
worden gebruikt, worden vermeld en bewezen.

In hoofdstuk 3 vindt men een overzicht van bestaande oplgst&chnieken voor
lineaire problemen, met particuliere aandacht voor Krgiethoden, meer bepaald
GMRes.

In hoofdstuk 4 wordt een gelijkaardig overzicht gegevenrvoet-lineaire proble-
men. Dit betreft quasi-Newton methoden in het algemeen ea deet een rang-
€én aanpassing in het bijzonder. Specifieke methoden dientdelthworden zijn
Broyden’s “goede” en “slechte” methode, de Kolom-AanpagsimethodeEng:
Column-Updating Methgden de Inverse Kolom-AanpassingsmethoHad: In-
verse Column-Updating Methpd

In hoofdstuk 5 breiden we het idee van de quasi-Newton methdcaar intera-
gerende systemen van niet-lineaire vergelijkingen. Wméderen vier methoden
gebaseerd op de oorspronkelijke quasi-Newton methodee Bigrde Raakvlak
Quasi-Newton Methodeeng. afk. IQN, Raakvlak Quasi-Newton Methode met
Inverse Jacobiaafefg. afk. IQN-), Raakvlak Blok Quasi-Newton MethodErfg.
afk. IBQN en Raakvlak Quasi-Newton Methode met Samengestelde idacob
(Eng. afk. IQN-Q. De constructie van de Jacobiaan kan gebeuren aan de hand va
bestaande methoden of met de Kleinste Kwadraten methode dietail wordt
bestudeerd en de hoofdmoot uitmaakt van deze thesis. Ird$toéf6 formali-
seren we de methode voor de constructie van de Kleinste Katexddacobiaan,
zoals voorgesteld door Vierendeels en medewerkers, ermpags ze toe op de
guasi-Newton methoden uit het vorige hoofdstuk. Deze nusthe gebaseerd op
invoer-uitvoer koppels van een functie, die ons zullenatel een benaderde Ja-
cobiaan van die functie op te bouwen. De voornaamste eipappen van deze
methode worden gegeven en bewezen, zoals de mogelijkh@idatrgegevens te
herschikken. Dit laat ons toe de invoervectors te ortholigeran en zo de condi-
tionering van de betrokken matrices te verbeteren. Detegsulde methoden met
deze Jacobiaan krijgen de Engelse afkortingen IQN-LS, 1B-IBQN-LS en
IQN-CLS mee.

In hoofdstukken 7 en 8, die de kern van dit werk vormen, stavede belangrijk-
ste eigenschappen van de quasi-Newton methoden met Kdmsidraten Jaco-
bi(a)n(en), respectievelijk voor niet-lineaire en limeasystemen. In hoofdstuk 7
herschrijven we de oorspronkelijke methode van Vierersdleelmedewerkers, en
de nieuwe varianten, in een raBgn aanpassing formulering. We merken op dat
de methoden gelijkenissen vertonen met de Broyden methodéenstaven ver-
der dat de Kleinste Kwadraten methode een veralgemeendatssggenschap en
een Kleinste Wijziging Secant Aanpassirign@). Least Change Secant Update
eigenschap vertoont. Deze eigenschappen brengen de t€lémsadraten me-
thode formeel binnen het kader van een type quasi-Newtohadetdat reeds in
het verleden uitgebreid werd onderzocht. Verder in hootd3twordt de gelijk-
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waardigheid tussen de vier methoden onderzocht; er wotdogd dat IQN-LS en
IQN-CLS algebrésch identiek zijn en dat IQN-LS en IBQN-LS identiek zijn op
voorwaarde dat een van beide zwarte doos functies een dffsersformatie voor-
stelt. Finaal wordt er aandacht besteed aan de mogelijkagidingulariteiten en
oplossingen ervoor.

Hoofdstuk 8 bevat een gedetailleerde vergelijking tusskiR&s en twee van de
nieuwe quasi-Newton methoden wanneer ze worden toegepdsteaire syste-
men. Er wordt aangetoond dat voor affiene transformatiesddinste Kwadraten
guasi-Newton methoden de exacte oplossing vinden na makima 1 matrix-
vector producten, op numerieke fouten naijnde de dimensie van de oplossings-
vector); singulariteiten kunnen niet voorkomen alvoremsplossing is bereikt. Er
wordt aangetoond dat IQN-LS, IQN-ILS en GMRes een Krylovkzdeelruimte
delen, maar niet de deelruimte van beperkingen. Er wordtazoigetoond dat
onder bepaalde hypothesen de quasi-Newton Kleinse Kvaadraethode omge-
vormd kan worden tot een methode die wiskundig identiek is@&IRes zonder
de nood voor extra matrix-vector producten.

In hoofdstuk 9 bespreken we verschillende mogelijkhededemitiele Jacobiaan
te verbeteren wanneer het op te lossen probleem afkomstamnisen (mogelijks
tijdsafhankelijke) gewone of paélie differentiaalvergelijking. Voor de Kleinste
Kwadraten methode in de originele formulering is dit gelead@p het toevoegen
van invoer-uitvoer koppels van vorige tijd-stappen. Vooasj-Newton methodes
in rang€én aanpassing formulering wordt dit gedaan door ofwel dstedacobi-
aan van de vorige tijd-stap te nemen of door eenéldtdacobiaan op te bouwen
op een groffer rooster.

In hoofdstukken 10 en 11 worden de algoritmes die we eerdgutieerden met
elkaar vergeleken op respectievelijk twee niet-lineairelge lineaire problemen.
De niet-lineaire problemen zijn d&n-dimensionale stroming in een flexibele buis
en degén-dimensionale hittevergelijking met temperatuursaifietijke cafficienten.
Deze tests tonen het potentieel aan van de Kleinste Kwadragthoden en de
voorgestelde methoden om gegevens van vorige tijd-stajgpeerbruiken. De li-
neaire tests werden genomen uit de literatuur en zijn bddw®l de aanpassing
van IQN-LS en IQN-ILS naar een vorm equivalent met GMResltstiteren, zo-
als opgesteld in hoofdstuk 8.

Uiteindelijk eindigen we met de belangrijkste conclusies.






Introduction and problem-statement

Often in nature different systems interact, like fluids atmdctures, heat and elec-
tricity, populations of species, etc. It is our aim to findsdebe and analyze
solution methods to solve the equations resulting from tathematical models
describing those interacting systems.

From the growing number of conferences, publications arftivace releases it
is clear that in silico simulations of these kinds of coupdgdtems are becoming
ever more important in the engineering community. Exampéesbe found in

e aeronautics; e.g. [66,68-71,71,123,177,211];
e bio-medical science; e.g. [13,17,35,59, 61,89, 110, 135,227];
e civil engineering; e.g. [21,64,79,115,120,176, 187, 238, 240];

to name but a few.

Often powerful solvers already exist for problems in a @rgtysical domain (e.qg.
structural or fluid problems). Even so, development of s@imibols for multi-
physics problems is still ongoing and the paths followedlitam such a solver
can be broadly put in one of the following categories:

e Monolithic or simultaneous solutionthe whole problem is treated as a
monolithic entity and solved simultaneously with a spez&dad hocsolver.
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e Partitioned solutionthe physical components are treated as isolated entities
that are solved separately. Interaction is modeled asrfgrigrms and/or
boundary conditions.

The relative merits of these methods are very problem degpend

The advantage of the monolithic approach is the enhancéditstdl156]. This
comes at a cost, however, as specialized software has toitbenwior each type
of interaction problem, which can result in very large syste Furthermore, it
can be inappropriate to use the same basic formulation for types of prob-
lems. It also forces the user to treat non-linearities indduime way for all com-
ponents. Still, the monolithic approach has shown to be g pepular method,
e.g.[14,17,23,111,186,213].

The partitioned approach allows for the use of availablecigfized solvers for
each physical component (structure, fluid, ...), on the tmmdthat the coupling
effects can be treated efficiently. The latter is often fglasior problems where
the systems only weakly interact. Strongly coupled prolsleom the other hand,
still pose a real challenge. Many articles can be found otitigenied methods in
the literature, e.g. [21,46, 73,150,151, 153,174,177].225

We will give a simple example of both approacheginl.2 after which we will
solely focus on the partitioned approach, as the main airhisfwork is to study
the properties of a partitioned method first proposed byevideels and coworkers
in 2007 [227]. We are not concerned with the solution prooéske constituent
physical problems as these are assumed to be handled bglgeztsolvers which
we assume to blelack boxoperations of which no specific details can be modified
or even assessed.

1.1 Problem-statement

1.1.1 Non-linear systems of equations

In general we are interested in non-linear coupled problbatscan be mathemat-
ically stated in the following form:

F(g) = p (1.1a)
Sp) = g (1.1b)
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where
F:Dp Cc R™! 5 R™ g F(g)

and
S:Dg C R — R™ 1 pis S(p).

Each equation describes (the discretized equations ofysigai problem that is
spatially decomposed. (E.g7(g) = p could give the pressure on the wall of

a flexible tube for a given geometgy while S(p) = ¢ could give the deformed
geometry of that same wall under influence of the pressurgezken it by the
fluid.)

We limit p andg to values on the interface between the two physical prohlems
In this way the physically decoupled nature of the problemxisloited. This ap-
proach can be regarded as a special casetgrogeneous domain decomposition
methodg54] and limits the number of variables the coupling techeiquill be
dealing with, even though the black box solvers that gitg) and S(p) might
use a substantially higher number of internal variablesirfstance in the case of
a fluid-structure interaction problem where the pressupassed from the fluid to
the structure, the fluid velocity is an internal variable ttoe flow solver as are all
nodal values of the pressure that are not on the interface.

Alternatively, (1.1) can be written as the fixed point prable

F(S(p))=H(p) = »p (1.2)

or the root-finding problem

H(p)—-p=K(p) = 0. (1.3)

Using (1.2) or (1.3) means that we have actually lumped bgstesnsF and S
together into one system (eith&r or K), which in general has a lower number of
variables than the sum of the number of variables of bothtttarst systemg”
andsS.

We assume that, S, H and K satisfy the following hypotheses, which are typical
when working with Newton and quasi-Newton type methods [166

Hypothesis 1.1. F', resp. S, H, K, is continuously differentiable in an open set
Dp,resp.Dg, Dy, Dy .

Hypothesis 1.2. K(p) = 0 has one solutiop* in D.

Hypothesis 1.3.(K’(p))~! exists and is continuous in an open set containing
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We assume the operatiofiqg) and.S(p) (and henceH (p) and K (p)) are black
box systems, representing the propriety solvers, with la tagnputational cost and
of which nothing is known about the Jacobian; neither do w&eressumptions
about this Jacobian like sparseness, symmetry, etc. Foraason we count the
performance of a method by the number of tinfég)) or S(p) are executed, a
process we will call dunction call Requirements like actual cpu-time or storage
are not taken into consideration.

Remark 1.1. While we write the equations in (1.1) in explicit form, thesanly

for convenience; any form is usable as long as for a givenevaly (resp. p) a
corresponding value gf (resp. g) can be computed that satisfies equation (1.1a)
(resp. (1.1h)).

Remark 1.2. Some of the solution methods that we will present in thisgtveid
be specifically aimed at solving (1.3) irrespective of the that it stems from a
coupled problem or not.

Remark 1.3. We could have used (and sometimes will use)
S(F(9)) = g (1.4)
instead of (1.2). The choice between both can depend on
e practical implementation issues due to the solvers used;

e the relative sizes of andm. If n < m, resp. n > m, the use of (1.2),
resp. (1.4), will result in a problem that is defined on a spaié the lowest
dimension.

1.1.2 Linear systems of equations

Besides being easier to analyze, linear problems are sitegen their own right.
They also give a valuable insight into the behavior and ptegeof weakly non-
linear systems. Moreover, when we are sufficiently closezera of a non-linear
function, its behavior is mainly linear.

WhenF, S, H and/orK represent affine mappings then we will write

F(g) = Apg-—br (1.5a)
S(p) = Asp—1bs (1.5b)
H(p) = App—bnu (1.5c)
K(p) = Agp-— bk, (1.5d)
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where Ar € R™™ Ag € R™*", Ay, Ax € R™™™, bp,by,bg € R,
bs € R™*!, We assume thatr, Ag, Ay andAg are non-singular.
Obviously the following relations hold:

Ag = Ards

by = Apbs+bp
Ax = Ag—1
b = by

Just as ir1.1.1 we assume that we have no prior knowledgd pf(A4s,...) or
br (bs, ... ) whatsoever, but are able to form eithérx (Agy,...) or Apz — bp
(Agy — bg,...)forall z € R™*! (y € R"*1)L. We also assume that it is impos-
sible to form eithetdALx (ALy,...) or ALz — bp (ALy — bs,...).

We count the performance of a method by the number of timestexavactor
product is computed, which we assume to be the dominant é@styosolution
method.

The simplicity of the linear case also allows us to give ameletary example of
the difference between the monolithic and partitioned aaphes.

1.1.2.1 Example: monolithic approach

If the coupled problem is derived from the discretizatiom skt of partial differen-
tial equations, we can choose between two different tectesign the monolithic
approach. The firstis to discretize the ensemble of all gladifferential equations
as a whole. This will, in general, result in a system of equegiwith a number
of variables that is vastly superior to the sum of the numlbeadables contained
in p andg (equation (1.1)); i.e. all the internal variables of botlygibhal domains
have to be treated by the solver. The advantage is that noefucbnstraints are
imposed on the use of the best discretization method or thé@omethod for the
resulting system.

Alternatively, the domain decomposition technique coutdused, resulting in a
set of discretized equations using only the variables orirttegface between the
physical domains, as done in (1.1). We illustrate this fdinafmappings, for
which (1.1) can then be written as

IMost often it will be Apz — by, etc., as this is the affine equivalent Bf(z), etc; we tacitly
assume that this is the case, unless otherwise stated.
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Apg—br = p (1.7a)
Asp—bs = 4g. (l?b)

If we write (1.7) as an aggregated system

Az = b, (1.8)

with

_ I 7AF _ P _ 7bF
g R M

then (1.8) can be solved with any of the well-known lineavend, like Richardson,
GMRes,... As we do not explicitly exploit the componeAts and A g of A or limit
ourselves to a solution process based solely on functids E¢) and.S(p), this
is an example of a monolithic solution method.

We will discuss neither of these approaches any furthera$otus of our study
lies in the study of partitioned methods.

1.1.2.2 Example: partitioned approach

Alternatively, we could keep the segregated nature of (arfij use a separate
solver for each constituent equation. This forms the basthe partitioned ap-
proach.

While we will discuss the partitioned approach in more dstailthe following
chapters, we give an illustrative example applied to lirsgstems.

One way to solve (1.8) is

I O Ds+1 O Ap Ds bp
= — . 1.9
E S P I O R T B
(I represents the identity matrix aiddlthe zero matrix.) We see that in (1.9) the
following equations ensueis 1 = Args — bp(= F(gs)) andgsy1 = Agps —
bs(= S(ps)). This shows the possible use of solvers that yig(g) and.S(p).
Note that the resulting method is equal to the block Jacopiageh applied to

(1.8), which shows the possible similarities between bptbreaches. The block
Gauss-Seidel method would give
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A M kI R B
i.e. S(ps) = gs andF(gs) = ps+1-

Equation (1.9), resp. (1.10), also gives a clear illustratif the conditional stabil-

ity of this method, as the convergence of the iteration issgosd by the spectral
O Ar] o[ L O ‘1[0 Ap

As O |’ | —Ag I O O

inferior to unity and which will mainly depend on some measaf the “size” of

Ar andAg, i.e. the coupling matrices.

radius of , which should be

1.1.3 Series of related coupled systems

When (1.1) is derived from a physical problem, it often repres the equations
obtained after discretizing the continuous equationsnretand space, and thus
only represents the evolution over one time-step. This isxample of how we
could be presented with a series of related problems.

In this context we can write (1.1) as

Fip1(9,p0,90) = p (1.11a)
Siv1(p,pe,9e) = g, (1.11b)

where the subscrigt+ 1 (¢t = 0, 1, .. .) denotes the time-level at which the prob-
lem is solved. The solution of (1.11) will give the valuespodind g at that time-
level (p;11, resp.g:+1); the extra arguments, andg; are added to show that the
solution at the next time-level depends on the values atrigqus time-level,

In what follows we will almost always simply writ€'(g) and.S(p) and assume it
is clear from the context that this either describes antedlproblem or a problem
solved over one time-step. The only time we will use the stpsis in chapter 9
when we will use data from various time-steps.

In time-dependent problems, two coupling approaches caisbiaguishedweak
couplingand strong coupling Weak coupling means that (1.11) is only solved
approximately, while in the strong coupling method (1.Xl36lved up to conver-
gence (se€l.2.2 for further details).

2|t is possible that it depends on more than one of the previmeslevels.
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1.2 Solution methods

As the focus of this study lies on partitioned methods, arelspecific partitioned
method in particular, we will no longer treat monolithic fnetls from hereon and
assume we are solving a single coupled problem in eitheotine &f (1.1) or (1.3),
unless otherwise noted.

In this section we give a brief outline of three possible olumethods.

1.2.1 Quasi-Newton methods

A classical solution method for the nonlinear problénip) = 0 is Newton’s
method. However, as we have assumed we don’t have access jadbbians of
F, S, H or K, we will resort to quasi-Newton methods, which we apply eitto
the single equation

K(p)=0
or the system

F(g) = p

Sp) = g

Classical quasi-Newton methods [49] replace the Jacolbidue avell-known New-
ton method for the non-linear equatidn(p) = 0 by an approximation. The way
this approximation is constructed differentiates theipaldr methods. (Seg4.2
for more details.)

In this thesis we will also consider slightly different appches that use approxi-
mate Jacobians of bothand £ in

F(g) = p
Sp) = g

based on ideas first formulated by Vierendeels and cowoikd®27]. Whatever
the way we construct the Jacobian(s), we will distinguiglr feolution methods:
Interfac€ Quasi-NewtonInterface Quasi-Newton with Composed Jacobikanr
terface Block Quasi-Newtoand Interface Quasi-Newton with Inverse Jacohian
We will go into more detail on these methods in chapter 4.

Quasi-Newton methods have been used intensively for splvirear and non-
linear systems and for minimization problems [145]. Themimattraction is

3“Interface” refers to the fact that we only use values on fiterface between the two coupled
problems. This term will be dropped from the name of the methdhefequations do not originate
from an interaction problem on the interface.
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that they avoid the cumbersome computation of derivatieesttie Jacobians.
Recently, interest in quasi-Newton methods has waned, tasnatic differenti-

ation has become available [58, 126] except for a recentitthgo by Eirola and

Nevanlinna [63, 85] and the research performed by Deuflhaugl (55, 57]) and
Brown [22].

We are mainly interested in quasi-Newton methods because

e we do not have access to the Jacobian as we are working witk btax
systems, which also makes automatic differentiation irajtdes;

e the cost of a function evaluation is sufficiently high so thanerical differ-
entiation becomes prohibitive. For this reason we will jgggrformance of
the method by the number of function evaluations it needsdorergence.

We will also extensively study the proposed methods whetiegpfo linear sys-
tems of equations. Studying quasi-Newton methods for tipezblems is not only
important because many problems are linear or nearly liealso because the
properties of a method in the linear case often define the tmravergence beha-
vior of the method in the non-linear case. This can be undedsby observing
that close to a solution ok’ (p) = 0 where the Jacobian is non-singular, the lin-
ear approximation of{(p) tends to be dominant. Hence, the generated iteration
sequence tends to behave like in the linear case. This is &l nr@ason why the
local convergence of Newton’s method is quadratic [166].

If the problem is time-dependent, solving a single timgystéh the quasi-Newton
method until convergence is reached, represents a strapdjreg technique, as we
assume the exact solution is obtained.

In the following paragraphs we will briefly sketch other wietlown strongly cou-
pled partitioned methods.

1.2.2 lIterative Substructuring Method

The fixed point method applied to (1.3) gives fterative substructuring method
(ISM) [3,37,135, 161, 183]. The method is given below in aidon 1.2.1.
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Algorithm 1.2.1 (Iterative substructuring method - ISM)

1. Startup:
a. Take an initial value,,.
b. Sets = 0.
2. Loop until sufficiently converged:
a. Computgys = S(ps).
b. Computeys 11 = F(gs)'
d. Sets = s + 1.

If the problem is time-dependent, solving a single timgsstéth the ISM repre-
sents a strong coupling technique.

As the lines 2.a and 2.b of algorithm 1.2.1 can be re-writeema; = H(ps) itis
clear that the iterative substructuring method can be searfiged point iteration
applied to equation (1.2) ISM can also be interpreted as a preconditioner which
compresses the coupled problem onto a smaller subspaca bétter distribution

of the eigenvalues [156].

The main drawback of this method is its conditional stapilithich has been
widely studied, e.g. [34, 53, 127, 135, 156-158, 165, 236{ @& is well-known
that the approach fails for problems where the interactetwben the two solvers
is strong [156, 219].

The conditional stability is not difficult to see from the lfaking example. We
havep,11 = H(ps), which, if all mappings are affine, translatespio,; =
Agps —by. As Ay = Ap Ag itis thus clear that convergence will depend on the
spectral radius ofl ;y and hence ol and Ag. (Also see the examples §1.1.2
and§10.1.5.)

Remark 1.4. Doing only a single iteration of the ISM for a time-dependeoib-
lem results in one of the best known weak coupling technjgadled the staggered
solution method [67,79,158,170,175,176,252]. The metiwibusly only gives
good results when the interaction between the two systenus itso strong, as the
solution does not necessarily satisfy (1.11).

40Other names can be given to this type of iteration: nonlinéeinddson iteration, Picard iteration
or method of successive substitution [127].
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1.2.3 Fixed-point iteration with stationary or dynamic relax-
ation and vector extrapolation

An improvement over ISM is the tHexed-point iteration with dynamic relaxatipn
which in its most general form is given in algorithm 1.2.2.

Algorithm 1.2.2 (Fixed-point iteration with dynamic relaxatian)

1. Startup:
a. Take an initial value,.
b. Sets = 0.
2. Loop until sufficiently converged:
a. Computgys = S(ps).
b. Computeys1 = (1 — ws)ps + ws F(gs), With w, a suitably chosen relaxation factg
d. Sets = s + 1.

D

Another way to write the resulting iterationjis,; = ps + ws K (ps).
Fixed-point iteration with stationary relaxatios obtained by simply setting, =
w, fors=1,2,....

This approach falls under the general label(\actor) acceleration techniques
about which a vast literature is available, e.g. [87,1190,129, 158, 235].
Perhaps the best known is Aitker#$ method studied by Aitken [2] and Lubkin
[137]. (See also [118,129,157,158], and variants, e.@8][13

In this methodw, is defined recursively by

<K(ps_1),K(ps) - K(p§—1)>
<K(ps) - K(p571)7K ps) - K(psfl»'

(1.12)

Ws41 = —Ws

Generalized versions of Aitken’s method have been devdldyeWynn [241—
244], and Graves-Morris [95]. All of these are part of whatadled theLozenge
algorithm family[15, 16, 109].

Other acceleration techniques have been proposed: thensliftolynomial Ex-
trapolation (MPE) of Cabay and Jackson [30]; the Modified iktial Polynomial
Extrapolation (MMPE) of Sidi et al. [203], Brezinski [20] dffugachev [182]; the
Reduced Rank Extrapolation (RRE) of Eddy andda [62, 154].

Polynomial extrapolation methods are closely related tddrmethods [191,192,
194,203, 238].

A survey of these method can be found in [121,207].

In this work we will not go into details about these methods.

=
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1.3 Outline of the study

While we are not claiming that the partitioned approach isapaa for all coupled
problems, we will only focus our attention in this thesis oudying methods to
solve (strongly) coupled problems with a partitioned appfioin which each of
the physical problems is solved with a specialized codewmatonsider to be a
black box and of which the Jacobian is unknown. We also asghatecalling
these black boxes is the most expensive part of any algargbrthat performance
is judged by the number of times these are called.

In 2007 Vierendeels [227] presented a new coupling pro@efiburthis partitioned
approach in a fluid-structure interaction context, basedeamsitivity analysis of
the important displacement and pressure modes which agetddtduring the it-
eration process. This approach only uses input-outputleswy the solvers (one
for the fluid problem and one for the structural problem).

In this thesis we will focus on establishing the propertieths method and show
that it can be interpreted as a block quasi-Newton methadd agproximate Jaco-
bians based on a least squares formulation. We also establisinvestigate other
algorithms that exploit the original idea but use a singleregimate Jacobian.
These methods fall within a well-established frameworkudg-Newton methods
that can be written in a rank-one update form and belong tdaimély of Least
Change Secant Update quasi-Newton methods.

We establish the relationship between the variants and efigting quasi-Newton
methods.

When applied to affine operators, the method shares a Krylrelsubspace with
GMRes and, with a mild assumption on the nature of the blaglsbbvers, can be
modified to be analytically identical to GMRes.

We stress that throughout this work we will mainly be coneerabout the beha-
vior of the algorithms in exact arithmetic, more than abouplementation issues
and/or numerical stability.

This work is organized as follows.

In chapter 2 we start with formulating the most useful defins. Lemmas and
theorems that are used in later chapters are given.

In chapter 3 an overview is given of existing linear solveithwhe main focus on
Krylov methods in general and GMRes in particular.

In chapter 4 a similar overview is given of existing non-ansolvers with a focus
on quasi-Newton methods in general and those using a ramkspdate form in

particular.

In chapter 5 we extend the idea of the quasi-Newton methatteecting systems
of non-linear equations.
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In chapter 6 we formalize the method for constructing apipnaxe Least Squares
Jacobians proposed by Vierendeels and coworkers [227]@plyl & to the quasi-
Newton methods established in the previous chapter.

In chapters 7 and 8, which form the main body of this work, widsh and
prove the properties of the quasi-Newton methods with L8gstres Jacobian(s)
for non-linear and linear systems respectively. Chaptds@ iacludes a detailed
comparison between GMRes and two of the new quasi-Newtohadstwhen
applied to linear systems.

In chapter 9 we discuss various possibilities to enhancddbebian for problems
originating from (time-dependent) ordinary and partidledential equations.

In chapters 10 and 11 the algorithms discussed in this warka@ampared against
each other on non-linear and linear problems respectively.

Finally, we finish by drawing the most important conclusions
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CHAPTER 1




Introductory definitions and theorems

In this chapter we give the definitions that are most commentountered in this
work. We also establish and prove a number of theorems anmusmipon which
later properties are based. Theorems and proofs that wenel fia the literature
are stated as such.

Most of the properties apply to the single system of (nomefir equations as given
in (1.3).

2.1 Definitions

We will use p* and g* for the exact solution of (1.1) and/or (1.3); when using
an iterative process to solve the equation we will ese= p, — p* for the error

at thes-th iterate. (We do not use an error measure for the iterdtes.oThe
residual of this iterate for (1.3) will be defined by = K (ps), which equals
(Ag — I)es = Akes if H is an affine operator, i.6d(p) = Ayp — by.

We will also use the notatiofps = psy1 — ps(= des = es11 — e5) anddgs =
gs+1 — Gs-

Definition 2.1. A“natural” (or “ induced) matrix norm is a matrix norm induced
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by a vector norm in the following manner (willf € R"*™ z € R™*!):

M
0] = sup 12221 @1
220 |17
or equivalently
[ M]] = Sup [ M|, (2.2)
or
[M]| = sup [[Mz]|. (2.3)
[lz][<1

Definition 2.2. The Frobenius norm of a matrix is defined in the following neann
(with M e R™*"™):

n m

M| = /TEMMT) = | [ DD (IM])? |, (2.4)

i=1 j=1

where Tr denotes the trace of a matrix ajid];; is the element on théth row
and j-th column ofMMf.

Note that the Frobenius norm is not a natural matrix norrhoalgh it is compati-
ble with the Euclidean norm.

Definition 2.3. Anyn + 1 vectorsz,, z1,...,z, € R™*! are in “general posi-
tion” if the vectorsz,, — z; (j = 0,...,n — 1) are linearly independent.

Definition 2.4. The “Moore-Penrose generalized matrix inverse” or “pseudo
inverse’ QT ¢ R"*™ [18,173] for a real matrixQ € R™*" is uniquely defined
by the following four properties:

1.QRTQ=0;

2. QTQQT =Q;
3. (QQN)" =QQ;
4. (QTQ)"=Q"Q.

1This is also sometimes called thgeneral reciprocal’ and written asQ’, e.g. [113].
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Remark 2.1. WhenQ is full rank the pseudo-inverse can be computed easily.

e Form > nwe have™ = (QTQ)~1QT. It will be mainly this case we will
be interested in.

e Form < nwe haveQt = Q7 (QQT)~ .

Remark 2.2. If @ is not full rank we can use the SVD decompositiorjoto
compute its pseudo-inverse. We can write the singular va&empositiof of

Q as@Q = LSRT, where the singular values are given by (i = 1,...,s).
According to the conventions of the singular value decoitipasve haveS];; =

o; and[S];; = 0 wheni # j. Both L and R are orthogonal matrices.

Thenwe have tha&)™ = RST LT, whereS* € R"*™ is defined byS+];; = 0;1
and[S*];; = 0 when: # j. If a certain singular value is zero, which happens
whenq@ is not full rank, then its inverse if ™ is replaced by zero.

Remark 2.3. We also have that = Q*y is the least squares solution to the
problemQz = y.

Definition 2.5. We define thefange’ R of M € R"*™ as

R(M) = {Mz|zecR™ '} (2.5)

Definition 2.6. We define theriull space or “ kernel’ N of M € R™"*™ as

N(M) = {zeR™ | Mz=0). (2.6)

Definition 2.7. LetV be a subspace of the vector sp&e<!. The “orthogonal
complemeritof V is the set of vectors which are orthogonal to all elements.of
We write this agV)*.

Definition 2.8. A vectorv € C"*1 \ {0} is a “generalized eigenvectbof A €
R™*™ corresponding to the eigenvaluec C if 3k € N\ {0} such that(A —
)z = 0[10].

Some properties of eigenvalues and generalized eigemget® given below [10,
195, 230].
2Different conventions exist for the singular value deconims(SVD). We will use the one where

L e Rm*m § e R™*" R € R™*™ and where the singular values are ordered in a non-incigasin
way.
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e The multiplicity of an eigenvalug of A is defined to be the dimension of the
subspace spanned by the generalized eigenvectors cardasgdo ) and is
equal to the multiplicity of\ as a root of the characteristic polynomial, i.e.
its algebraic multiplicity.

e The geometric multiplicity of an eigenvalueis the dimension of the sub-
space of (ordinary) eigenvectors bof

e The geometric multiplicity of an eigenvalue is smaller tlmrequal to its
algebraic multiplicity.

Definition 2.9. Letu,v € R™*!. We define afank-one matrix by uv’.

Definition 2.10. A mappingK : Dy C R™*! — R"*! s called “affine” on D
if there existsd € R™*" andb € R"*! such thatK () = Az — b, Vo € Dg.

Definition 2.11. If P? = P (P € R™*") we say thatP is a “projection matrix..

Some properties of a projection matrix are given below [193]

e P defines a projection ont&(P) parallel toN (P).

e If P is a projection matrix, then so {[§ — P).

e N(P)=R(I - P).

e N(P)® R(P) = R"*! where® denoted the direct sum of two subspaces.

e Let P be of ranks, {v1,...,vs} a basis forR(P) and{wy, ..., w,} a basis
for (V(P))*.
IfV =1[v1]...|Jvs], W = [wy]...|ws], then

P=vWwTv)-twT,

Definition 2.12. If P is a projection matrix such thaR(P) = (N (P))*, then
we say thatP is an “orthogonal projection matrix. If a projection matrix is not
orthogonal, we say it is oblique.



INTRODUCTORY DEFINITIONS AND THEOREMS 19

In [193] it is shown that a real projection matrix is orthogbif and only if it is
symmetric.

Note that the ternorthogonal projection matrixs not to be confused witbrthog-
onal matrixwhich is a matrix for whichP” P = 1.

Definition 2.13. [193] Let ), and Z, be two subspaces &"*! of dimensions

(s < n).

A “projection method for solving the linear system given in (1.3) (i.&(p) =
Axp — bx = 0) is a method in which an approximate solutipnis found in
an affine subspacg, + V. (Wherep, is an initial guess) and in which a Petrov-
Galerkin condition is imposed:

F=Agp—blZ,. 2.7)

We callp, + Y, the “search subspaceand Z, the “subspace of constraints
If Y, = Z, we say the projection method istthogonal’ 3, otherwise we say it is
“ oblique’ 4.

If {v1,...,vs}isabasis foZ,, {w,...,w} abasis fo); and
V = [v1]...|vs], W = [wy]...|ws], then a projection method defined above (de-
finition 2.13) will result in the approximatiop given by

p=po—WVTALW) VT, (2.8)

if VT AxW is non-singular [193].
VT AW is guaranteed to be non-singular if one of the following dtads holds
[193]:

1. Ak is positive-definite anc, = );

2. Ak isnon-singular an&, = Ax)s, whereAx ), = {Axx|z € Vs }.

Definition 2.14. We define a Krylov subspace of dimensior” generated by
M € R™*™ andv € R"*! as

K {M;v} = spa{v, Mv, M?v,..., M* v} (2.9)

If there is no confusion possible we will refer ko, { M; v} askC, for short.
Ks{M;v} is the subspace of all vectoss € R™*! that can be written as =
gs—1(M)v whereg;_1 (M) is a polynomial inM of degrees — 1 or less.

3This is also called the “Ritz-Galerkin approach” [222].
4This is also called the “Petrov-Galerkin approach” [222].
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Definition 2.15. [193] A “ Krylov subspace methdds a projection method (defi-
nition 2.13) where for the-th iteratep, we have), = K, {Ax;r,} when solving
the linear systeml xp = b .

It follows thatp, will be an approximation of .'bx such that

Ps = Po + qs—1(Ax)r, Wheregs_1 (Ak) is a polynomial ind i of degrees — 1
or less.

The choice ofZ, defines the type of Krylov method within the broader class.

Definition 2.16. Let {z,}.cn be a sequence with, andz* € R™*!, We say that
the sequencézx,} converges towards* with g-ordera > 1 if

AC,N > 0,Vs > N : ||zs41 — 2| < C|las — ™|, (2.10)

for a given norm| - || in R™*1,

Definition 2.17. Let{x,},cy be a sequence with, andz* € R"*!, We say that
the sequencéz, } converges superlineafitowardsz* if

lim w1 —a™|| _ 0 (2.11)

s=oo ||z — o

for a given norm| - || in R™*1,

Definition 2.18. Let f : Q ¢ R™*! — R™*!, fis Lipschitz continuous of® if
3C > 0 (the Lipschitz constant ) such that

Vp1,p2 € Q2 |[f(p1) — f(p2) Il < Cllpr — p2l|- (2.12)

IfC <landf:Q — Qthenf is called a contraction mapping with respect to
the chosen norm.

2.2 Conventions

All matrix norms that are used are natural matrix norms, sstgherwise stated.
(-,-) denotes the standard scalar product between vectors deBrfetlows:

Yo,y € RV (z,y) = zTy.

5These definitions are based on “g-superlinearity” as oppase‘r-superlinearity” which is a
weaker type of convergence rate [52]; as we only use thisa§penvergence criteria, we will simply
use the term “superlinear”, etc.
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Orthogonality of vectors or vector spaces will be expressil respect to this
scalar product unless noted otherwise.
We use the symbaf to denote a vector subspace.

2.3 General theorems

Theorem 2.3.1. [Fundamental Theorem of Linear AlgelSta
Let@Q € R™*™ thenNV(Q) = (R(QT))* .

For a proof of this theorem we refer to [212].
Lemma 2.3.1. Vu,v € R™*1 : det(I + uwv?) = 1 + (u,v).

Proof. LetP = I +uv”.

Foru = 0 orv = 0 the proof is trivial.

If u,v # 0 and(u,v) # 0, then any vector orthogonal tois a right eigenvec-
tor of P (corresponding to an eigenvalue 1) and any multiple & also a right
eigenvector ofP (corresponding to an eigenvalle+ (u,v) # 0). As there are
n — 1 vectors orthogonal to, and as the algebraic multiplicity of an eigenvalue is
larger than or equal to its geometric multiplicity, we seattthe algebraic multi-
plicity of the eigenvalue 1 is at least— 1. As there is another eigenvalue different
from 1, the algebraic multiplicity of the eigenvalue 1 mustdgual ton — 1. As
the determinant of a matrix equals the product of its eigel@&g we have that
det P =1+ (u,v).

If u,v # 0 and(u,v) = 0thenl + (u,v) = 1. But then

(P—1)? = (ww")? = wwTuw’ = 0.

So the space of generalized eigenvectors correspondirftgteigenvalue 1 has
dimensionn. Hence the algebraic multiplicity of the eigenvalue Liand
det P = 1. O

Remark We like to point out that the property given in lemma 2.3.1 barfiound
in most reference works on linear algebra but that this isfitlsé time, to our
knowledge, that a complete proof is given that also takesdantount the case for
u,v # 0 and{u,v) = 0.

8Also known as Fredholm’s Theorem.
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Lemma 2.3.2. LetV € R™** be a matrix with rank-, then
Vvt =c,LF (2.13)

with £, = [Ly|Ly| ... |L,] € R™*", whereLy is the k-th left (normalized)
singular vector oft 7.

Proof. LetV = LSRT be the singular value decompositioniof Then
VvVt = (LSR™)(RSTL")
LSSTLT.

Because of the special structureaindS* (see definition 2.4) we hawgS+ =
I, wherel, , =diag1,1,...,1,0,0,...,0). Hence
S—— —

rtimes n—rtimes

vvt = LI, L.
We can further reduce this expression by introducihg= [Li|L»| ... |L.],
whereL;, is thek-th left singular vector of/:

VvVt =,.LT,
which completes the proof. O

Note thatVV+ = £L£7 is an orthogonal projection matrix on the rangelof
(definition 2.11 and 2.12).

Lemma 2.3.3. Let V' € R"™*% be a matrix with rank- and M ¢ R™*", then,
using the notation of lemma 2.3.2,

NMLL™y > (R(V)*H (2.14a)
NM(LLT —1) > R(V). (2.14b)
If M has rankn, then
NMLLehy = (R(V)*E (2.15a)
NM(LLT — 1) = R(V). (2.15b)

"The firstr singular vectors o/ form an orthonormal basis for the rangelof
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Proof. (2.14) is an immediate consequence of lemma 2.3.2 as

Ve e R(V): LLTx =z andVy € (R(V))* : LLTy = 0.

To prove (2.15b) we note that from = = 0 it follows thatz = 0 if the rank of M
isn . FromM (LLT — I)x = Oitfollows that LTz = x € R(V).

We now prove (2.15a). IM LLTz = 0 then it follows thatC L7z = 0, such that
Vy e R 0= (LLT 2, Vy) = (VIVV 2, y).

Using the properties of the SVD decomposition of the MooeewBse generalized
inverse (definition 2.4) we obtain

0= (VIVVTz,y) = (VTz,y) = (z,Vy)

and hencer € (R(V))+. O

Lemma 2.3.4. If ACBCR™*! then||M Py4|| < ||M Pg||, wherePy4, resp. Pg, is
an orthogonal projection matrix on, resp.3 and M € R™*"™,

Proof. Letz € R™*!, with ||z|| < 1. Then we have P,z| < 1
andP4z = PgP4z. Hence

IMPaz|| = |MPg(Paz)|| < sup  [[MPgz|| = |[MPsg].

R X[z <1

From this it follows that

[MP4ll = sup  [[MPgz|| <|[MPg]|.

2€Rn x|z <1

Theorem 2.3.2. Let Ty, T, € R™*". Let{X,}.cn ) be an arbitrary sequence
of vectors , € R"*') that are linearly independen{V, },c[ ,, be a sequence
defined by, = [X1] Xo| ...| X,] and let{Qs},cp1,n) be a sequence defined by
Qs =TWV,V;H —Ty;

then

[Qs+1 — (T1 = To)|| < Qs — (Th — T2, (2.16)
fors=1,2,...,and

Qn=T1—T>. (2.17)
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Proof. We first note that the rank df; is s and that fors = n we will have
Qn = 111‘/n‘/nJr =Ty =T — Ty, (218)

and hencé{@,, — (11 — T)|| = 0, which proves (2.17).
Fors < nlemma 2.3.2 gives us

Qs = T1/33£Z =Ty, (219)
whereL; = [Li|Ls| ... |Ls], with {L;};_, an orthonormal basis for the range
of V.

Hence
Qs — (T —T) = Ti(L,LE—1) (2.20)

Qs.1— (11 —T3) Ti(Ls1 L, — ). (2.21)

Introducing P;, resp. P, as the orthogonal projection matrix ¢®(V5))*,
resp.(R(Vi41))*, we obtain

Qs— (1 —Ty) = TiP, (2.22)
Qi1 — (T —T) = TiPyy. (2.23)

As (R(Viy1)) T C(R(V4))* we can use lemma 2.3.4 to obtain

||T1P3+1H < HTlPsH (2-24)
1Qss1 — (Th = To)|| < Qs — (T1 — T2)|| (2.25)
which completes our proof. O

Theorem 2.3.3. Sherman-Morrison Theorem [201]
Let@ € R™*™ be non-singular, and let, v € R"*! be vectors such that’ Q' #
—1, then@ + uv™ is non-singular and

QfluvTQfl

Q-+ uUT)71 =Q ' - m (2.26)

Proof. The non-singularity ofQ + uv? follows from lemma 2.3.1:det(Q +
w?l) = det(Q)det(I + (Q~'uvT); equation (2.26) is easily verified by mul-
tiplying both sides by + uv’. O
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This theorem is also sometimes called the Sherman-Morgoodbury theorem
[52], although strictly speaking this is a generalized teaogiven in the following
form [113].

Theorem 2.3.4. Sherman-Morrison-Woodbury Theorem

Let@ € R™*™ and S € R™*™ be non-singular, and lat/, V' € R"*™ (m < n),
then(Q — USVT) is non-singular and there exists a non-singular matiix €
R™>™ such that

QQ-usvhH=t = Q@ '-QluwviQ, (2.27)
wherelV is defined implicitly by
wlest = vIQTlu. (2.28)

Theorem 2.3.5. Assume we are solvindxp — b, = 0 with bx € R™*! and
A € R™ ™ non-singular. If the minimal polynomial of x has degree, then
the solution of the system is contained in the subspadel; b ).

A proof of this theorem is an immediate consequence of thaitiefi of the min-
imal polynomial [117].

This theorem explains the main strength of Krylov methodbat (in exact arith-
metic) the solution will be found in at mostiterations, and possibly less, depend-
ing on the degree of the minimal polynomial of the system ixatr

Theorem 2.3.6. Assume we are solvindxp — bx = 0, with A € R™*™ an
arbitrary matrix; assume that we haw&, = Ax ), defined as in definition 2.13.
Then a vectop is the result of an oblique projection method optporthogonally
to Z, with the starting iterate, if and only if it minimizes the Euclidean norm of
the residual vectof = Agp — bx overp € p, + Vs.

For a proof of this theorem we refer to [193].

Theorem 2.3.7. Let Ax € R™*"™ be an arbitrary matrix. Le{p be the appro-
ximate solution teAxp — bxg = 0, obtained from a projection process oriia
orthogonally toZ, = AxY, (Vs and Z, defined as in definition 2.13) and let
7 = Agp — bx be the associated residual vector. Then

i = (I—P)r, (2.29)

whereP denotes the orthogonal projection matrix onto the subsgace
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For a proof of this theorem we refer to [193].
The class of methods respecting theorem 2.3.7 is calleititraksprojection me-
thods”.



Solution methods for a single system
of linear equations

While, in general, we are interested in solving the non-lirggtem of equations
(1.1), a substantial part of the analytical study of the latd& algorithms will be

performed assuming that eith&l(g), S(p) and/orH (p) are affine operators. We
therefore include a small overview of the most importargdinsolvers known in
the literature.

In this chapter the system of equations we are trying to selve

Ap = b, (3.1)

wherep, b € R"*1, A € R"*", (We will drop the subscriptA™” when no confu-
sion is possible for ease of reading.)

Readers with a good knowledge of this matter can skip thipteina

3.1 Legacy solvers: Richardson, Jacobi, Gauss-Seidel
and SOR

As no introduction about linear solvers can be complete autimentioning the
most elementary of them, we briefly summarize four of the -kastvn linear
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solvers, even though they are no longer competitive withezurKrylov subspace
methods.

For more details we refer to any of the handbooks on numeaigebra like [72],
[98], [101], [127], [226] and [247], to name but a few.

3.1.1 Richardson iteration

In the Richardson method the iteration can be written in oh&he following
forms:
pse1 = (I —wsA)ps + wsb (3.2a)
Ps+1 = DPs — WsTs, (32b)
wherew, € R, is a relaxation parametef, is the identity matrix and-, is the
residual ofp, defined asdp, — b.
If wy varies from iteration to iteration we speak of a non-statigrRichardson
iteration; ifw, = w, is fixed, then we speak of a stationary Richardson iteration.

Note that the Richardson iteration is essentially idehta@the fixed point iteration
with dynamic relaxation (algorithm 1.2.2).

3.1.2 Jacobi iteration

In the Jacobi method the iteration can be written in one ofdhewing forms:
psy1 = DD —Ap,+D'b (3.3a)
pss1 = ps—D7lrg, (3.3b)

whereD is defined by

- 0 for i#j
[D}Z] B { [A]ij for 1 :]

Often an under-relaxation parameteris added:
Psir1 =ps —wsDlrgfors =0,1,....

(3.4)

3.1.3 Gauss-Seidel iteration

In the forward Gauss-Seidel method the iteration can beemrih one of the fol-
lowing forms:

psy1 = (D+L)"YD+L—Aps+(D+L)""b (3.5a)
Pst1 = Dps—(D+L) 'y, (3.5b)
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wherelL is defined by

_ 0 for i>j

In the backward Gauss-Seidel method this becomes:

ps1 = (D+U) N DHU—-Aps +(D+U)"'b (3.7a)
Pst1 = Dps— (D+U) " r, (3.7b)

whereU is defined by

0 for i<y

Ul = { [A];; for i>j (3.8)

3.1.4 Successive Over-Relaxation (SOR)

The forward SOR method is a parametrized version of the fah@auss-Seidel
method, given by:

psr1 = (D4+wL) (1 —w)D —wU)p, +w(D+wL)"'b, (3.9)

wherew € R is a relaxation parameter.
By analogy one can also start from the backward Gauss-Smielislod to obtain
the backward SOR method:

psr1 = (D+wU) (1 —w)D —wL)ps +w(D +wU)"'b. (3.10)

3.2 Krylov subspace methods

Krylov subspace methot§131] have been defined in definitions 2.13-2.15. They
have been developed as linear solvers for systems of thedbequation (3.1).
The choice of the search subspaget- ), and subspace of constrairfs defines
the particular method within this class.

In these methods the system matrix does not need to be stofedred; only a
routine for matrix-vector productdz is needed/z € R™*!. For that reason these
methods are also known asatrix-freé methods.

We will briefly describe some of the best known Krylov methadthe following
paragraphs and mention their applicability to our framéwdior further reading
we refer to the excellent book by Van der Vorst [222].

1Also known as “Krylov projection methods” and “Krylov methdder short.
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3.2.1 The Full Orthogonalization Method

The “Full Orthogonalization Method” or FOMis a Krylov subspace method de-
fined by)s = Z, = K,(A;r,); itis thus an orhogonal projection method.

It is intended for general non-Hermitian matricésnd, in exact arithmetic, con-
verges in at most steps [193].

Variants of the method include “restarted FOM” where thehuodtis stopped after
a number of iterations and the iterate at that point is thexd @s an initial iterate
for a new iteration loop.

Another variant is the “Incomplete Orthogonalization Mathor IOM where only

a limited number of the last basis vectors of the search sudesand subspace of
constraints are kept.

3.2.2 The Generalized Minimal Residual Method (GMRes)

GMRes [192,193,222], which is a generalization of the MisRlgorithm of Paige
and Saunders [167] and based on the Arnoldi orthogonadizatiocess [7,190], is
perhaps the best known Krylov subspace method for genenaHeomitian matri-
cesA. ltis defined by = K4(A;r,) andZ, = AKs(A;r,) when solving (3.1);
it is thus an oblique projection method (definition 2.13) aneksidual projection
method (see theorem 2.3.7).

Asps € po + Ks(A;r,) impliesrs € 1, + AK(A;r,), and asrs LAK(A;1,),
it results thatp, is the unique value in the search subspace that mininlizgs
(which denotes the Euclidean normiQ}.

Hence, another way to look at GMRes is the following: we carcét

Ps =Do+ Y wid g (3.11)
i=1

with coefficients{w; }{=$ chosen such that

K3

Irslla = llro + > wiA'ro|ls (3.12)

i=1

is minimal.

Well known properties of GMRes [98,222] are:

2Sometimes called “Arnoldi method” [7, 193], although this temore correctly refers to the or-
thogonalization procedure contained in the FOM.
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e GMRes generates a residual € r, + AKX {A;r,}, at which point it has
useds + 1 function calls, corresponding to matrix-vector productghe
linear casé

e GMRes will converges im iterations or less (in exact arithmetic) corre-
sponding ta: + 1 function calls (or less).

e The convergence of GMRes (measured by the Euclidean nortreakesi-
dual) is strictly non-increasing. This does not necessarngan the residual
decreases as it can stagnate for maximalyl iterations (see [96] for more
details).

¢ In exact arithmetic the method will not encounter any siagties (cfr. de-
finition 2.13 [193]).

e When used in Newton iterations anddifs the initial guess, GMRes offers
descent directions for minimizing K [23]) and monotone errors [31].

These properties all suppose that the operations are pertbin exact arithmetic.
For the behavior of GMRes in the context of finite precisioithanetic see [5, 60,
97,98]. Other properties can be found in [127,222] and esfess therein.

We can use GMRes to solve (1.3) when it represents a lineatgmo As we are
only dealing with variables on the interface between thedwamstituent problems
S andF, the terminterface GMRes$s sometimes used in this context.

Variants of GMRes include “restarted GMRes” or GMRéswere the method is
stopped after a number of iterations and the iterate at thiat [ then used as an
initial iterate for a new iteration loop. This variant doest keep the property of
convergence in at moststeps [193].

Another variant is “quasi-GMRes” (or “truncated GMRes”) vk only a limited
number of the last basis vectors of the search subspace bsjlsge of constraints
are kept.

As recent developments of GMRes we mention GMBack, MinRR31124, 125]
and “‘simplerGMRes” [233].

A variant working with affine operators will be describecg®2.2.2.

3.2.2.1 Elementary implementation of GMRes

In the GMRes method it is assumed that for every R™*! we are able to form
Ap, which differs from what we have assumed in chapter 1, i.e. naenally

3We recall that the reason for counting function calls is thathave assumed that these constitute
the dominant computational cost of any algorithm.

4Also called GMRES) [127,192,222] wheren indicates the number of iterations before a restart
is performed; Van der Vorst uses “GMRESR” for a particularecakpreconditioned GMRes.
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assume we can for (p), K (p) etc., which corresponds tép — b.
In its most basic form GMRes can be written as in algorithm13.2

Algorithm 3.2.1. GMRes method

1. Take a starting valug,;
To = Apo —b;
s =1.

2. Loop until sufficiently converged:
a. Computed®r,.

S
b. Find coefficient§w; }{=5 that minimize|r, ||, withr, = r, + Z%‘Airo.
s i=1
c. Optionally:ps = p, + Z@Ai—1%_

i=1
d. Sets = s+ 1.

Note that the computation @f; in 2.c is optional, and is normally only performed
when the algorithm has sufficiently converged.

Most of the analysis of GMRes that will be done in this workgslan analyti-

cal point of view, meaning that we will not use GMRes in thenfothat is the

most numerically stable as can be found in most textbooks o methods,

e.g.[12,98,127,193,222,232].

The most common modification is an orthogonalization of thgi®vectors of the
Krylov search subspace; this orthogonalization can be &nlyose discussed in
§3.2.4.

3.2.2.2 Adaptation of GMRes to our framework

When we want to solve (1.3) whéefi(p) is an affine (black box) operator, we are
only able to formH (p) = Agp — by Vp € R™*! without explicitly knowingb g,
according to our framework as outlined in chapter 1.

Most formulations of GMRes however assume that the user haslkdge of the
right hand sidehy; (= bx) and can compute the matrix-vector prodigty —
I)p = Agp for any givenp € R"*! as outlined above.

Within our self-imposed constraints constructing= Agp, — by — p, POSES
no problem, but findingd%.r, (i = 0,...,s) does. In [218] an algorithm was
proposed that circumvents this problem. The idea behirglthé following: the
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exact solution ofd xp = b would be given by

p* = Po _A;(lrov (313)
——

which could be seen as a single (exact) Newton iterationafRaiging the terms
we get

ro + Axdp = 0. (3.14)

As A is not available, we approximate by c{ps € spafd1,02,...,05} (s =
1,2,...),whered; = ds—d,, d, = p, andd; 1 = H(d;). p* is thus approximated
by the iteratep, = p, + dp, to which corresponds the residual which we can
write as

ro+ Ax > wibi = 1o+ Ak > w;(d;—d,)
i=1 i=1
= To+zwi (AKdifAKdo)
i=1

= 7,+ Zwi ((di+1 — dl) — To) .
i=1

Pi

According to (3.14), should ideally be zero; coefficients,, ...,ws are thus
computed that minimizér, + Y7, w;pi|2.

It is easy to show that

i—1 .
pj=Aero =Y <£) (=) py, (3.15)

k=1

and thus that, + sparf{pi,...,ps} = 7o + Ax Spare, A7, ..., A5 1.},
which shows that the resulting method is indeed analytige#ntical to the clas-
sical implementation of GMRes.

The resulting algorithm is given in 3.2.2.
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Algorithm 3.2.2. GMRes - affine variant [218]

1. Take a starting valug,;
Setdo = Do,
computed; = H(d,) = Agd, — by;
To = dl - d()y
s=1.
2. Loop until sufficiently converged:
a. Computel; 1 = H(ds) = Apds — by
b. 6, =ds — d,.
C.ps = (dsy1 —ds) — To-
d. Find coefficient§w; }:=% that minimize||r, || withry = r, + Y7, wip;.
e. Optionally:p, = p, + >_0_, @;6;.
f. Sets = s + 1.

Note that the computation @f, in 2.e is optional, and is normally only performed
when the algorithm has sufficiently converged.

Our experience with this variant of GMRes is that it exhilpiteor numerical sta-
bility. In [218] a remedy was proposed in which the(s = 1,2, ... ) were orthog-
onalized. As, in our view, it is mainly the conditioning ofetp, (s = 1,2,...)
which causes the instability in 2.d of algorithm 3.2.1, weedoonly a slight im-
provement with this modification as it does not guarantelgogdnality (or indeed

a better conditioning) ofs (s = 1,2,...).

As we have not found a better alternative in the literaturetlverefore propose to
use standard GMRes (e.g. [193, 222]) after findind= by ) with a function call

K (0). If the initial iterate isp, = 0 then this invokes no additional cost; otherwise
an extra function call needs to be spent.

Remark 3.1. In chapter 8 £8.2.1) we will show that GMRes can also be written
as a quasi-Newton method.

3.2.3 Other Krylov subspace methods

We only briefly outline some of the other Krylov subspace rod#) either because
they cannot immediately be applied to the framework as dtatechapter 1 or
because they are variants of the Krylov subspace methoés gibove that are
algebraically identical to GMRes.
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3.2.3.1 The Lanczos Method, Conjugate Gradient Method (CG), GNR,
LSQR, CGLS, CGNE, OrthoRes and GENCG

The Lanczos, resp. Conjugate Gradient, method [112, 124 & be viewed as
the Full Orthogonalization Method applied to (3.1) wheris symmetric, resp.
symmetricpositive definite (spd). This allows to simplify the algorithm [193].

In our framework we do not assume this condition for

An extension of CG is the CGNR (“Conjugate Gradient on themhmdrequations
to minimize the Residual”) and CGNE (“Conjugate GradientlmNormal equa-
tions to minimize the Error”) methods. In CGNR [65, 81, 11&@3]L(also known
as LSQR [168] or CGLS [222]) the original probleAp = b is transformed to
AT Ap = ATb and as4A” A is a spd matrix CG can then be applied. Similarly, in
CGNE [39, 81, 163] the CG method is applied4el”y = b with x = ATy.

The disadvantages of CGNR, LSQR, CGLS and CGNE are that twioxwactor
product are needed per iteration: one wittand one withA”. Not only is this
expensive in our framework, but we also assume that a maéier product with
AT is unavailable.

Methods that are analytically equivalent to FOM are Orth®R2] and the Gen-
eralized Conjugate Gradient Method (GENCG or GCG) [38, 292, 237].

For further reading about these methods we refer to [93]1][26d [222].

Remark An interesting discussion about the classical argumeh@BaNE, LSOQR,
CGLS and CGNR cannot be competitive because the squaringeofdndition
number ofA by eitherA” A or AA” (and other arguments against these methods)
can be found in [98].

3.2.3.2 The Generalized Conjugate Residual Method (GCR), Aefsson’s method,
OrthoDir, OrthoMin, GENCR and MinRes

The Generalized Conjugate Residual method [65] is matheafigtequivalent to
GMRes, but with double the amount of storage required and B@¥& arithmetic
operations per step compared to GMRes [193].

Axelsson’s method [8], Orthodir [122], Orthomin [229] an@&RCR [65] are four
other Krylov methods that are analytically identical to Gb#Rout differ in their
implementation.

MinRes [167] is the resulting method when GMRes is appliedystems with a
symmetric matrix.
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3.2.3.3 Bi-Conjugate Gradients (Bi-CG), Conjugate Gradiat Squared (CGS),
Bi-CGStab, QMR and TFQMR

Other methods for general, non-symmetric systems have tewrioped, all of
which need two matrix-vector produéts

It is well documented that these methods can be faster instefriterations than
GMRes, but at a cost of a higher number of matrix-vector pctsjuwhich makes
them uneconomical in our framework [98, 127], and will notdigcussed further
for that reason.

For further reading we refer to [29,77,82,83,98,127,188,220,222].

3.2.4 Orthogonalization procedures

A key ingredient of Krylov methods is the construction of aisdor the Krylov
subspaces. As the conditioning of the basis of the searcépaugb has a major
impact on the numerical stability of the algorithms, andtes tectors,, Ar,,
A?r,, ... point more and more in the direction of the dominant eigetore@n
orthogonalization procedure is almost invariably addethéomethod [193, 222].
We will briefly discuss several orthogonalization procesdun this paragraph.

The best-known orthogonalization procedure is the Grahadt (GS) method.
Inits original form it is not numerically stable [193] andigerefore better replaced
by the Modified Gram-Schmidt method (MGS), although both agebraically
identical.

These methods are typically implemented in the Arnoldi méthin which the
(modified) Gram-Schmidt method is applied to the basiserscof IC, (A, r,),
storing the scalar products of the GS method in an upper lHbssg matrix.

Even with the MGS method numerical instabilities can degwelbhis can happen
when the new basis vector has only a very small componentighathogonal
to the previous basis vectors. A solution, that is known tokweell, is to re-
orthogonalize a basis-vector if this occurs [193].

An even more stable algorithm, albeit at a higher cost, istbieseholder-Arnoldi
method which uses reflection matrices, as proposed by WgRéf.

The typical implementation of GMRes (and most other Krylogthods) also in-
cludes an orthogonalization process, as found in [193] 2] &or instance.

5Some of the methods require a matrix-vector product with



Solution methods for a single system
of non-linear equations

In this chapter we give an overview of the most commonly entened quasi-
Newton solvers.

4.1 Newton’s method

Probably the best known solution method for (systems of}lim@ar equations is
Newton’s method [164], also known as Newton-Raphson’s nwtfiL9, 33, 166,
184], which for the solution of (1.3) is given by:

Ps+1 = Ps — (K/(ps))_lK(ps)a (41)

whereK’(p,) represents the Jacobian &fevaluated ap;.

The hypotheses 1.1, 1.2 and 1.38ih1.1 ensure that there exists an openiget
which contains the solutiopi* such that for any initiah, € D the Newton iterates
are well-defined, remain il and converge superlinearly 16 as specified by the
Newton attraction theorem [166]. K'(p) is also Lipschitz continuous for gl

1Actually, Newton only developed the method for single equragj it was Simpson that extended
it to systems of equations [248]. Raphson was responsibléhéopractical implementation of the
algorithm as we know it today [184].
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close enough tp* then the convergence is quadratic. (For more details s&3.)16

The main disadvantages of the method are that it require®a ipdial guess,
and the possible cost of computing the Jacobian. If therlateot immediately
available it can be replaced by a finite difference approkimngrequiringn func-
tion evaluations in general) or it can be kept constant duainumber of iterations.
In the context of this study we assume that this Jacobiardesid unavailable and
that it is too expensive to compute it by finite differencesr that reason we turn
our attention to quasi-Newton methods in the next section.

Note that in actual computations the inverse of a matrixnsost never explicitly
computed; for instance (4.1) is most often replaced by

K'(ps)d = —K(ps) (4.2)
Dst1 = Ds+0. (4.3)

The solution of (4.2) can be obtained with any linear solifahis linear solver is
a Krylov method, the resulting method is called a Newtonibrye.g. Newton-
GMRes) method, based on the naming convention in [166] ad@][2

If (4.2) is only solved approximately by the linear solvee tterm ‘Inexact or
“Truncated Newton method is also used.

The disadvantage of Newton-Krylov methods for non-lineabpems lies in the
number of function evaluations needed. For these methagliotion evaluation
is needed for each outer and inner iteratiaile for a quasi-Newton method one
function evaluation is needed per outer evaluation. (Thene inner iteration.)

4.2 Quasi-Newton methods

When the Jacobian dt is unavailable, or too expensive to compute, we can re-
place the true Jacobian of Newton’s method by an approxamatiesulting in
what is called auasi-Newton metho@@N method). While, strictly speaking, any
approximation would result in a quasi-Newton method (elge ¢hord method,
Jacobi iteration etc.), the term is generally reserved pecgic methods. Other
names have been used in the literature likariable metric methodvariance
method modification methodandsecant update methotlve will reserve the des-
ignatorsecant methotbr a specific subclass of quasi-Newton methods which we
will discuss below.

2By “outer iteration”, or “Newton step”, we mean equation (4.®hile by “inner iteration’ we
mean an iteration needed to solve (4.2).
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A particular new development that can be considered to basi-dgiewton method
is that where the Jacobian of a set of equations, descritphgsgical phenomenon,
is approximated by the Jacobian of a simpler, though relaibgsical phenom-
enon (e.g. [88, 89]).

Historically, most quasi-Newton methods have been deeeldp solve non-linear

equations resulting from a minimization problem and thuguine a symmetric

(possibly positive-definite) Jacobian; we will only briefiyention these methods
in this chapter, as we have not made this assumption aboutattehian for the

problems we are trying to solve (see chatex.

Quasi-Newton methods can take two forms and are either dilfiye

Ps+1 = Ps — (K;)_lK(ps) (44)

or

Ps+1 = Ps — M;K(ps)» (45)

(s = 0,1,2,...) where{ K’ },cn is a sequence of approximationsid(p,) and
{M!},cn is a sequence of approximations(i’ (p,)) .

Sometimes an iteration parameter is added to (4.4) and, @iS)parameter can
be a fixed value, or based on line-searches. We refrain frentatter as a line-
search invokes a high number of function calls, which we hawesidered very
expensive. For that reason, we will only use a fixed undexxeglon parameter
in the first time-step to avoid excessive divergence of taaitons, which would
hamper further convergence (see chapter 10). Furthersdismuabout the use of
relaxation parameters in linear problems can be fouri®i8.

Again, the inverse of the approximate Jacobian is rareljigip computed. As
for the Newton method a linear system is solved instead.

If K(p) represents an affine mapping (p) = Axp — bx) then the resulting error
(s4+1 = ps+1 — p*), resp. residuah(,+; = K(ps4+1)), for equation (4.4) is

est1 = es— (KLt Age, (4.6)
Fep1 = 75— Ag (KDl 4.7)

3When, in the remainder of this study, we write a matrix inverseill always tacitly assume that
this represents a concise notation for the correspondiegtisystem to be solved.
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while for (4.5) it is

esi1 = es— M Axe, (4.8)
Ts41 = TS—AKMQTS. (4.9)

For the quasi-Newton methods we are interested in, thegexipgations are con-
structed in a way that theecant equatich

K(ps = ps—1) = K(ps) = K(ps—1), (4.10)
or
Ps — Ps—1 = M;(K(ps) - K(psfl))a (411)
is respected for a = 1,2, .... We call methods that respect the secant equation

secant methoddgollowing the nomenclature of [52]. The origins of theseaset
equations are to be found in a first order Taylor expansiofi of

K(ps) =~ K(ps—1)+K'(ps)(ps — ps—1) (4.123)
K(ps) ~ K(ps—1)+ KL(ps —ps—1). (4.12b)

In one dimension, equation (4.12b) uniquely defif(egs(or M;), but in more than
one dimension it leaves an infinite choice of approximateldans, as (4.12b)
represents an underdetermined system of equations, tlowara) for different
methods, some of which we will discuss in the following paegdns.

Remark 4.1. While the Richardson, Jacobi, Gauss-Seidel and SOR metreds
rarely counted among the class of quasi-Newton method2h)3(3.3b), (3.5b),
(3.7b), (3.9) and (3.10) can be seen to correspond to theidiaston formula
(4.4) with an approximate Jacobiaﬁiig equal toresp(r,I)~', D, D+ L, D+U,

w (D —wL) andw™ (D — wU) when applied to linear systems.

Similarly, the Iterative Substructuring Metho#ll(2.2) and “Fixed-point iteration
with dynamic relaxation” §1.2.3) can be written as a quasi-Newton method with
an approximate Jacobian equal tol and —w,I respectively.

Remark 4.2. The study of the convergence behavior of quasi-Newton mieiko
still a field of ongoing research (e.g. [32]).

4The secant equation is sometimes catteglfundamental equation of quasi-Newton methods.
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4.3 Least change secant updates

Most quasi-Newton methods respect the underlying ideatlieadpproximate Ja-
cobian must not change “too much” from one iteration to aegtivhich translates
into an update using a rank-one or rank-two matrix or a maiitlx minimal norm,
but still satisfying the secant equation.

Definition 4.1. Least Change Secant Update (LCSU)

We define a Least Change Secant Update (LCSU) method as a seetod

where, of all possible new approximations of the Jacobidmmafrom a given
set, the difference between the new and old approximatitreismallest in some
norm, i.e. K, resp.M!_,, is the solution of

min{|K’ — K|, K’ € Ok},
resp.
min{|| M’ — M!||,M' € Qu},

with the choice of matrix norfrand Q to be specified [50].

The mostimportant properties of LCSU methods can be foufsbin52,140,141].
One of the most important conclusions from these studi¢mid i{CSU algorithms
are well-defined, converge to a solution while the rate offeagence is superlinear
[28,140-142].

Remark 4.3. For ease of reading in the remainder of this chapter, we hénsen
not to add a subscript or other indication to the approximd&eobian referring
to the method used. It should be clear from the context whethaoa this approx-
imation refers to.

4.4 Rank-one update quasi-Newton methods

Rank-one update quasi-Newton methods are characterizégt fgct that the dif-
ference betweei’, | and K (or betweenV/ , and M) is given by a rank-one
matrix (definition 2.9), i.e.

SFor most known methods this is the Frobenius norm.
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Ju,v € R K = K +uw” (4.13)

or

FJu,v € R™ ML = ML+ wo”. (4.14)

(4.13) and (4.14) are called rank-one update formulae. titedy (4.13), resp.
(4.14), can be transformed to an update (far,) !, resp. (M.)~!, by applying
the Sherman-Morrison theorem (theorem 2.3.3).

In the majority of existing quasi-Newton methods the ranke-opdate has a par-
ticular form:

(6K, — K'0ps)cT

K =K
s+1 S+ <CS’5pS> ’

(4.15)

resp.

(0ps — MLSK,)dT
(ds, 0Ky

M., =M + (4.16)

wheredps = ps+1 — ps andd K = K(ps+1) — K(ps). The use of either (4.15)
or (4.16) and the choice of the vectqror d, then defines the particular method.
We will discuss some of the best known methods in the remaioicis section.

We will also need the following definition.

Definition 4.2. LetV € R#>r2 W e RHs*H2 5 < i and V' be of rankus,.
Define the set of “interpolating matrices” betwe&hand W as
AV, W) ={A e Ris*r W = AV}

4.4.1 Broyden’s first or “good” method

Broyden’s first or good meth8dalso abbreviated as “BG”) [24, 25, 49, 50] is a
guasi-Newton method that uses equations (4.4) and (4.18)péart of the family

SMost often simply calledBroyden’s method.
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of LCSU methods [50,84], where the approximate Jaco!il’gljn1 is chosen as the
solution of the following minimization problem:

min{||K’ — K’ ||p,, K’ € A(6ps, 0K,)}. (4.17)

In other words, it gives a hew approximate Jacobian thabisadt to the previous
one in the Frobenius norm and that satisfies the secant eguati
The solution of (4.17) leads to the following rank-one ugdat

., (6K, —K'6p,)opT

K., = K + 4.18

+ (72 002) (4.18)
o K(Ps+1)5PT

K sreses 4.19

(672 0p3) (4.19)

This means that, using the form of equation (4.15), we have p;.
The methods starts from an educated guess

The following property is an immediate consequence of (1.17

Theorem 4.4.1. Let Q be an arbitrary matrix inA(dp,, 0K,). If K, and K
are defined by Broyden’s good update, then

1K1 = Qller < IKL — Q| (4.20)

Proof. SinceQ lies in the affine subspad®(dps, d Ks) and since by construction
the matrixK? , , is the orthogonal projection df”, onto this subspace we have

IK. = QI3 = KL — K3 + KL — QI3 (4.21)
IK. = QI3 = KLy — Q3. (4.22)
O

The above proof can also be found in [49], but as later thes@mm based on this
theorem we have copied it here for clarity.

In the linear case we havE (p) = Axp — by and henceK’(p;) = Ax with

A € A(dps, 0K5), Vs. As a consequence of theorem 4.4.1 we then have that the
sequence of approximate Jacobia[tfé;}seN will converge to the true Jacobian
Ak in a monotone way.

Interpreting Broyden’s good method differently, we coudy shat
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o K., isthe projection w.r.t. the Frobenius normist onto A (dp,, 6K ;) of
matrices that satisfy the secant equation at iterationt ;

e no change occurs betweéi‘gJrl and K, on the orthogonal complement of

Ops, ie. (K. — K!)z = 0if (z,0p,) = 0.
We also have the following properties of this method:

1. This method can also be directly applied(f§’)~!, using the Sherman-
Morrison theorem:
R . KN-1K T ()1
( Zq+1)_1 _ (K;)_l _ ( s) (prrl)(sps( s)
(0ps, (K)~10K,)

(4.23)

if (0ps, (K])"'6K,) # 0.

2. For linear problems, the method is known to show supetisenvergence
[127] and it needs at mo&k iteration to reach* (Gay’s theorem [86]).

3. No guarantee can be given that the approximate Jacobiam®a-singular.
4. Convergence is hot monotone.

5. Broyden’s good method does not preserve the semi-pagliinite struc-
ture of the Jacobian.

4.4.2 Broyden’s second or “bad” method

Broyden’s second or bad method (also abbreviated as “BH"§2quasi-Newton
method that uses equations (4.5) and (4.16). It is also paénedamily of LCSU
methods [50, 84], where the approximate Jacomfﬁgql is chosen as the solution
of the following minimization problem:

min{||M’ — M!||pr, M' € A(SK,,5ps)}; (4.24)

i.e. it gives a new approximation of the inverse of the Jaamobhat is closest to
the previous one in the Frobenius norm and that satisfieettens equation.
The solution of (4.24) leads to the following rank- one updat

(6ps — MIOK,)6KT
(6K, 0K,)

M., =M.+ (4.25)
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This means that, using the form of equation (4.16), we liave ¢ K.
The methods starts from an educated gug$s

The following property is an immediate consequence of (4[24]:

Theorem 4.4.2. Let @ be an arbitrary matrix inA (6K, dp). If M., and M
are defined by Broyden’s bad update, then

M.y = Qllpr < ||M. = Qllp (4.26)

The proof of this theorem is analogous to that of theorenil4 W a similar way
we can conclude that in the linear case the sequénég}scn will converge to
AZ" in a monotone way.

Interpreting Broyden’s bad method differently, we coulg gzat

o MQH is the projection w.r.t. the Frobenius norm &f, onto A(6K, dps)
of matrices that satisfy the secant equation at iterationt ;

e no change occurs betweéiﬂ;+1 and ! on the orthogonal complement of
0K, ie. (M, , —M)z=0if (z,0K,) =0.

Broyden himself [24] admitted that this formulation of higa@rithm didn’t func-
tion properly. The reasons for the “good” or “bad” behavior are not well @md
stood, and it is quite possible that in some instances thertsdod outperforms
the good method. It is believed, however, that the good niethbetter whenever
the Jacobiarf%'; of Broyden’s good method “underestimates” the true Jacobia
(see [145] for more details and other differences).

We also have the following properties of this method:

1. For linear problems, the method is known to show supetigenvergence
[127] and it needs at mo&k iteration to reach* (Gay's theorem [86]).

2. No guarantee can be given that the approximate Jacobi@an®a-singular.
3. Convergence is not monotone.

4. Broyden’s bad method does not preserve the semi-poditifiite structure
of the Jacobian.

"This is the reason the method is called “bad”
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4.4.3 Column-Updating Method

The Column-Updating method (CUM) is a quasi-Newton methad tvas intro-
duced by Martinez [139,144,145]. It uses equations (4.dY4r15). The rank-one
update of this method is such that the column of the appraeid@cobian corre-
sponding to the largest coordinate of the latest incremént € ps1 — ps) IS
replaced in order to satisfy the secant equation (4.10)ct iaration.

The resulting method to update the approximate Jacobiagfiisadl as follows:

(0K, — IA(géps)ijK

K, =K + o (4.27)
i <7’jK,s75pS>
whereu;,. _ is chosen such that
Jr,s = Argmax{|(z;,dps);j =1,...,n}. (4.28)
({1;;7 = 1,...,n} is the canonical (orthonormal) basis f&f**.)

This can be viewed as a rank-one update, where only theth column of the
approximate Jacobian is altered.
It also means that, using the form of equation (4.15), we have ;.. ..

The methods starts from an educated guess

The properties of this method have been investigated in1[34,144]. It has to
be noted that this method does not belong to the family of tB8WU methods, but
it satisfies the hypotheses of Gay’s theorem [86] such thée faonvergence is
reached in at mo&n iterations.

Remark 4.4. This method can also be directly applied ¢é’;)‘1, using the
Sherman-Morrison theorem if;,. ., (K.)"'0K,) # 0.

4.4.4 Inverse Column-Updating Method

The Inverse Column-Updating method (ICUM) is a quasi-Newmoethod that
was introduced by Martinez and Zambaldi [136, 143]. It uspsagions (4.5) and
(4.16). The rank-one update of this method is such that therooof the approx-
imation of the inverse of the Jacobian corresponding to dingelst coordinate of
0K = K(pst+1) — K (ps) is replaced in order to satisfy the secant equation (4.11)
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at each iteration.

The resulting method to update the approximate Jacobiagfiisedl as follows:

(0ps — M;(SKS)@;‘-FMYS

M., = M, 4.29
st s <ZjM,576KS> ' ( )

whereu;,, . is chosen such that
Jm,s = Argmax{|(1;,0Ks)|;j=1,...,n}. (4.30)

This can be viewed as a rank-one update, where only the-th column of the
approximate inverse Jacobian is altered.
It also means that, using the form of equation (4.16), we kave ;,, ..

The methods starts from an educated gug$s
The properties of this method have been investigated in][1BGe method does

not belong to the family of the LCSU methods, but it satisfles iypotheses of
Gay's theorem [86] such that finite convergence is reachatrmstn iterations.

4.4.5 Symmetric Rank-One update (SR1)

The symmetric rank-one (SR1) update method of Davidon [4@8]Murtagh and
Sargent [162] uses equations (4.4) and (4.15) with theviafig update formula:

. ., (6K, — K!0p,) (6K, — K'6ps)T

K., = K + - 4.31

i (0K, — K.0ps. 6p,) (@31
T

= &4 BOe)Epe) (4.32)

(K (ps+1), 0ps)

Thus, using the form of equation (4.15), we haye= 6K — f(;éps.

As the rank-one update in (4.32) is symmetric, this methaahig to be used when
the Jacobian is symmetric too. For that reason it will notiseussed further.
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4.4.6 Pearson’s Method

Pearson’s method [172] uses equations (4.4) and (4.15)thétfollowing update
formula:

K(ps—l-l)(sK;T

K ., =K! 4.33
s+1 s + <6KS, (5])3) ( )

Thus, using the form of equation (4.15), we haye= § K.

Pearson’s method is only valid whetY (p*) is symmetric positive definite (spd)
and needs to start from an initial guess that is spd. For #gstan it will not be
discussed further.

4.4.7 McCormick’'s method

McCormick’s method [152,172] uses equations (4.5) ands{dudth the following
update formula:

(6ps — M[SK,)opT
<5p3a 6Ks>

M., = M+ (4.34)

Thus, using the form of equation (4.16), we have= Jp;.

Mc Cormick’s method is only valid wheR”(p*) is spd and needs to start from an
initial guess that is spd. For that reason it will not be désad further.

4.4.8 The Eirola-Nevanlinna method

In 1989 Eirola and Nevanlinna [63] proposed a quasi-Newt@thod to solve
linear systenfsof the type of equation (3.1), where the approximau’étg to the
inverse of the Jacobian was updated with a rank-one matjaf@n (4.14)).

For this algorithm we need to define the “residual opera®j'as

O =1— A M/, (4.35)

such thats+; = OLr, (see equation (4.9)).
The argument to arrive at this algorithm starts from the iregoent that the resi-
dual operator for quasi-Newton methods must respect tt@nfivlg relationship:

8As it was proposed as a quasi-Newton method it is includedisnctiapter and not in the chapter
on linear solvers, although no reference to its use on nw®ti problems was found so far.
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Oi 1 =U~- eSeST)(’)g (4.36)

for some unitary vectar, € R™*!, which can be interpreted as a projectiorf
onto the orthogonal complement of sgan;}.

If we write the linear problem to be solved dscp = bx and if we require that
rep1 = Oy 15 = 0, then the resulting update would be defined by

us = A Olrg andvg = 7(?14);5?;

Unfortunately,A;Q is not known, and hencé{; is used as a proxy. This results in
the following algorithm, in its basic form:

Algorithm 4.4.1. Eirola-Nevanlinna method [63]

1. Startup. Take a starting valyg and M’_l.
Sets = 0.
2. Loop until sufficiently converged:
a. Computes = K(ps) = Axps — bk
b. us = M/(I — Ag M!)rs.
I—(Ax M) Arcus
C.vs = ( A( HII(“AK;)bH)Q Koe

e. M =M _| +un?l.
e. Quasi-Newton stepis1 = ps — Mlrs.
d. Sets = s + 1.

Its main properties are, M; does not become singular [63]:

e 07, isthe orthogonal projection onto the subspace spann¢d @y, . .., Axus};

1051 ller < O] 70

the singular values a®; do not increase;

the method gives the solution in at massteps;

e the algorithm is invariant under unitary transformatiorcobrdinates.
The main drawbacks of this method, in its original form am&th

e two multiplications byA i are needed per iteration, which in our self-imposed
conditions are very costly;

e we need to be able to computecx for a givenz € R™*!, which is not
always immediately available in our framework, as we oftesuane we can
only computed iz — by for a givenz € R™*! although it might be possible
that a way can be found to work around this;
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e we must either form4KM; and transpose it, which is costly, or be able to
computeA% z for a givenz € R"*!, which we can't. In [63] an alternative
formulation is given that seemingly avoids this requiretmem condition
thatc, is given.

As far as is known, the first drawback cannot be avoided, antevwalumerical
tests with the algorithm show that it has indeed very nicevemyence properties,
when counted as a function of the iteration count, its oV@eiformance is quite
poor when measured against the number of function callsrigpagctor multi-
plications). For that reason we have not investigated tlethod beyond some
elementary test-cases. Furthermore it can be shown that wieasured against
the number of function calls, the residual of the Eirollavhia@inna method cannot
be smaller in the Euclidean norm than that of GMRes [231].

It is unknown how this algorithm behaves when used in theeodrdf non-linear
problems.

Further developments of this algorithm can be found in [85].

4.5 Rank-two update quasi-Newton methods

Other quasi-Newton methods use rank-two updates, i.e. iffezethce between
two consecutive approximations is a matrix of rank two. Téason for this ap-
proach is to preserve the symmetrical structure of the aqypiade Jacobian. It is
thus not surprising that these methods are not meant asmear-kolvers but used
to solve minimization problems. We will only touch upon thesbknown very

briefly; for a good survey of these and other methods we refgt45, 250].

4.5.1 Powell symmetric Broyden (PSB) method
The PSB method [181] is defined by the following rank-two upda

K(ps+1)5PsT + 5psK(ps+1)T
<6psa 6ps>
T T
(K (pst1) 5ps)<§ps5ps _ (4.37)
(dps, 6ps)
The PSB method is only valid whéei’ (p*) is spd and needs to start from an initial
guess that is spd.

K, = K, +
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4.5.2 Davidon-Fletcher-Powell (DFP) method

The Davidon-Fletcher-Powell method [41,75] is defined teyftilowing rank-two
update:

W g KW)IKT 4 0KK(p)" (K (p)"0p.)0K KT
- ; (0K, 0ps) (0K, 0p,)*

(4.38)

The DFP method is only valid whek’(p*) is spd and needs to start from an initial
guess that is spd.

4.5.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

The Broyden-Fletcher-Goldfarb-Shanno method [26, 76198) is defined by the
following rank-two update:

(K.ops)opT (KL)T | 0K, 0KT

= . 4.39
(s K1ops) | 0Py, 0K,) (4.39)

-1 T
Kerl_Ks_

The BFGS method is only valid wheK’(p*) is spd and needs to start from an
initial guess that is spd.

4.5.4 Greenstadt's method
Greenstadt's method [99] is defined by the following rank-typdate:

M;GK(ps+1)6KZ + 5K5(M§7GK(PS+1))T
(0K, 0Ks)

(KT M K (ps+1)) 5K 0K

(0K, 0K)? '

rl _ rl
Ms—i—l,G - MS,G -

(4.40)

4.6 Quasi-Newton methods preserving the structure
of a matrix

Some quasi-Newton methods have specifically been devefopptbblems where
the Jacobian has a certain structure and impose this steustuthe approximate
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Jacobian. For sparse matrices Schubert [27,147,196] vatoged the Schubert
or sparse Broyden algorithm.

Symmetric secant updates for sparse matrices have beelopledeby Marwil
[146], Shanno [199] and Toint [214—216]. An overview of sggguasi-Newton
methods can be found in [132]

We will not go into further detail about these methods.



Solution methods for two systems of
non-linear equations

As stated in chapter 1 we are interested in solving probleheyevtwo systems of
non-linear equations interact via their interface (edquafil.1)):

Flg) = p (5.1a)
S(p) = g (5.1b)

One way to do this is to pass to equation (1.3):
F(S(p))—p=H(p)-p=K(p) = 0, (5.2)

which transforms (5.1) into a single system of non-linearagipns. At that point
the solvers of chapter 4 can be put to use. If the single syseaitained in this
manner we will indicate it in the name of the non-linear salNaterface Newton
method Interface quasi-Newton methgQN), etc.

As we have already stated that we assume that the true Jaéshiaavailable, we
will only focus on quasi-Newton type methdds

Apart from methods that work on the single system of nondinequations of
equation (5.2) we will also propose other approaches thatitdo account the two
constituent systems and build an approximate Jacobiarafidr ef them [104].

1All the methods proposed in this chapter can be easily tramsfd to Newton type methods by
replacing the approximate Jacobians with their real values.
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5.1 Interface quasi-Newton methods (IQN and IQN-
1)

Thelnterface quasi-NewtoiQN) method, resplnterface quasi-Newtomethod
with Inverse JacobiarflQN-1), is identical to the ordinary quasi-Newton method
of chapter 4 (equation (4.4), resp. (4.5)) applied to (5.2he only distinction
between the algorithms in this section (algorithms 5.1.d a.2) and those in
chapter 4 is the origin of the equation (5.2).

Algorithm 5.1.1 (IQN).

1. Startup:
a. Take an initial value,.
b. Computer; = (1 — w)p, + wH (p,).
c. Sets = 1.
2. Loop until sufficiently converged:
a. Computei (p).
b. Construct the approximate Jacobiﬁﬁ.
c. Quasi-Newton stepi, 1 = ps — (K.) 71K (ps).
d. Sets = s + 1.

In this algorithm (and the following) represents a relaxation parameter, which
we apply to avoid excessive initial divergence. (For furttiscussion, seg3.3.)
The actual construction of the approximate Jacobi’f;’;rcan be based on those in
chapter 4 (seg5.4 below for more details) or given by the Least Squaresiguas
Newton method specified in chapter 6.

As already shown in chapter 4 we can also approximate thesewd the Jacobian.
If we choose to do so, we will use the teitnterface quasi-Newtomethod with
Inverse JacobiaiflQN-I) as given in algorithm 5.1.2.

Algorithm 5.1.2 (IQN-1).

As algorithm 5.1.1 but
2.b. Construct the approximate inverse Jacobidf.
2.c. Quasi-Newton stepi,; = ps — M/ K (ps).

Again, the actual construction of the approximate invebianM; can be
based on those chosen from chapter 4 or given by the Leastedqyaasi-Newton
method given in chapter 6.



TWO SYSTEMS OF NONLINEAR EQUATIONS 55

5.2 Interface quasi-Newton method with Composed
Jacobian (IQN-C)

We recall that’{ (p) = H(p) — p = F(S(p)) — p and that as such

K/(ps) = F/(S(ps)) ’ Sl(ps) - I (5.3)

We could therefore replac®’ (S(ps)) andS’(ps) by their own approximate Jaco-
bian and write the approximation #’(p;) as

K, = FS.—1I (54)

The resulting method is callelhterface quasi-Newtomethod withComposed
Jacobian(IQN-C) and can be described as in algorithm 5.2.1.

Algorithm 5.2.1 (IQN-C).

1. Startup:
a. Take an initial value,,.
b. CompUteJo = S(po) andp1 = (1 - oJ)po + WF(QO)'
c. Sets = 1.

2. Loop until sufficiently converged:

. Computegys = S(ps).

b. Construct the approximate Jacobié?@.

QO

c. ComputeH (ps) = F(gs)-

d. Construct the approximate Jacobiﬁi;).

e. Quasi-Newton stepi, 41 = ps — (F/S" — 1)~ (H(ps) — ps).
f. Sets = s + 1.

The actual construction of the approximate Jacobi%shands*fq will be specified
in §5.4 or, for the Least Squares quasi-Newton methods, in ehépt

5.3 Interface block quasi-Newton method (IBQN)

In [227] another approach was proposed to couple (5.1) withapproximate Ja-
cobians. In this approach we look at each equation in (5{darsgely and write a
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block Newton method in which we insert the approximate Jeowh

The method starts from the block Newton method for the systieequations (5.1),
written as

F(g)—p = 0 (5.5a)
S(p)—g = 0. (5.5b)
We define the block Newton method as
F/(QS) =1, :| |: 0gs :| l: F(QS) — DPs :|
= — 3 5-6
|: —I, S/(ps) 5173 S(ps) —Js ( )

Whereags = 0gs+1 — Gs and(sps = Ps+1 — Ps-
Replacing the exact Jacobians by approximate Jacobianshtam

E —1I, dgs F(gs) — Ds
s " E— . 5.7
I: -1, Sg :| [ Jps ] |: S(ps) — s ( )
Solving (5.7) forps;1 andg,,1 we obtain

Fl(ges1—9s) = —F(gs) +Dpeta (5.8a)
S;'(ps+1_ps) = _S(p(s)+gs+1§ (58b)

Re-arranging both equations gives us

Fl g1 —pey1 = —Flgs)+ Flgs (5.9a)
Sl Dst1 —gst1 = —S(ps) + Sips; (5.9b)

Multiplying (5.9a) to the left byS” and (5.9b) byF” we obtain

SUFL g = Slpen = SU(<Flo)+ Flg.)  (5.100)
FIS{-pors — Fl-gus = FL(=5(p)+Sp.).  (5.10b)
Inserting (5.9a) in (5.10b) and (5.9b) in (5.10a) we get
SUFL - gor1 — gspr +S(ps) — Slps = 5] (—F(gs) + Fs’gs) (5.11a)
IS payr —pei1 + Flgs) — Flgs = F (—S(ps) + S’Q:DS) :(5.11b)

‘gert = —=S(p) + 5L (~Flg.) + Flg. +p,) (5.12a)

)
(FLSE=1)-pea = —Flg)+ FL(=5(p) + Sipi +9.) - (5.120)
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Re-arranging the terms we finally obtain

gs+1 = (I - S’;Fs/)_l (S(ps) + S; : (F(gs) - Fsl " 9s _ps)) (513&)
Pt = (L= FIS)™ (Flg) + FL- (S(p) = S, -ps — 94) ) -(5:13b)
Up till now, we have assumed that we are solving the equafang . ; andp 1
in parallel (i.e. a block Jacobi approach). We could alseesohe of the equations
first and afterwards use the available information to upta¢esecond equation

(i.e. a block Gauss-Seidel approach).
If we solve the equation fgy,, 1 first we obtain

gst1 = (I— S;HF;)A (S(szrl) + §;+1 < (F(gs) — Fs/ " Js —ps+1))

psy1 = (I—FS)™! (F(gs)JrFé-(S(ps)—s’é-ps—gs))-

The resulting method can be found in algorithm 5.3.1 andllsaénterface block
guasi-Newtormethod (IBQN).

Algorithm 5.3.1 (IBQN).

1. Startup:
a. Take an initial value,,.
b. CompUt@o = S(po) andp1 = (1 - w)po + WF(go)'
c. Setgy = S(p1).
d. Construct the approximate Jacobié*lﬁ.
e. Sets = 1.
2. Loop until sufficiently converged:
. Computef'(gs).
. Construct the approximate Jacobiﬁtj.

. Setpin = (1= 1807 (F(g) + FL- (S(p) =S4 pe = 92) ).

. ComputeS (ps41)-

. Construct the approximate JacobiéQH.

Setge1 = (I = Sy F) 7 (S(pesa) + Sl - (F(g.) = FL- g0 = pas) ).
g. Sets = s + 1.

T Qo

- DO QO O

The actual construction of the approximate Jacobi%shands*; will be specified
in §5.4 or, for the Least Squares quasi-Newton methods, in ehépt
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5.4 Construction of the approximate Jacobians for
two systems of non-linear equations

For the construction of the approximate JacobiansSfoF’, H and/or K we can
base ourselves on existing methods as described in secfion 4

In this section we will only discuss methods based on exjstichniques. Another
construction, the Least Squares approximate Jacobiachwtill form the main
topic of our study, will be discussed in chapter 6 and follogvi

5.4.1 Broyden’s good and bad method for the Interface quasi-
Newton approach

If the mappingK in (5.2) is derived from two interacting systems as in (5t
Broyden’s good method4.4.1) can be applied straightaway [103, 104], in which
case we call the resulting method timerface quasi-Newton method with “Broy-
den good” Jacobiaror IQN-BG (cfr. algorithm 5.1.1).

Similarly, Broydens's bad method4.4.2) can be applied, which we then call
Interface quasi-Newton method with “Broyden bad” JacobtanQN-BB (cfr. al-
gorithm 5.1.2).

We point out that Broyden’s bad method falls under the lalbéht@rface quasi-
Newton methods with Inverse Jacobigb.(l), so we might as well have used the
label IQN-IB for that methotl

We recall that the only difference with Broyden’s good and baethod of54.4.1
and§4.4.2 is the origin of the equation to be solved.

We propose to extend the idea of Broyden’s good method taisolunethods
using 2 Jacobians, cfr. algorithms 5.2.1 (IQN-C) and 5.BQ{), and construct
S’ andF! in a similar way to (4.18):

o (88, — 5.6p.)spT

o= S+ 5.15

s+1 < <5P575Ps> ( )
. . (6F, — F!5g5)6gT

F'., = F'+ (OF, = F109,)99. , 5.16
s+1 < <6gs,6gs> ( )

Where(sps = Ps+1 — DPs, 698 = Y9s+1 — Gs» 08 = S(ps—H) - S(ps), and
0Fs = F(gs+1) — F'(gs)-

The methods start from an educated gulsg; and £, .

2When doing so, the label IQN-B would be more logical for the Riely good method.
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5.4.2 Column-Updating and Inverse Column-Updating method
for the Interface quasi-Newton approach

Just as for Broyden’s method we can apply the Column-Updatiethod §¢4.4.3)
to (5.2) if it is derived from (5.1). In that case we call theukiing method thén-
terface quasi-Newton method with “CUM” Jacobian IQN-CUM (cfr. algorithm
5.1.1).

Similarly, the Inverse Column-Updating methagd (4.4) can be applied, which we
then callinterface quasi-Newton method with “Inverse CUM” JacobianIQN-
ICUM (cfr. algorithm 5.1.2).

We recall that the only difference with CUM and ICUM $4.4.3 anct4.4.4 is the
origin of the equation to be solved.

As in §5.4.1 we extend the idea of the Column-Updating Method tatsni me-
thods using 2 Jacobians, cfr. algorithms 5.2.1 (IQN-C) ar&l15(IBQN), and
constructS’ andF” in a similar way to (4.27):

) R (6Ss — S’5ps)z
/ _ / Js,s 17
s+1 Ss + <Z]s ;35p5> (5 )
, . (0Fs — F’égs)é ir
Fly, = Fl+ T o) (5.18)
JF,s? S

and where; _, resp./;,.  is chosen such that

jS,s = Argmax{‘<7'j7 6p5>|7j = 17 cee an} (5193)

Jrs = Argmax{|({;,égs);5=1,...,m}, (5.19b)
where{s;;j = 1,...,n} is the canonical (orthonormal) basis % <! and{¢;; j =
1,...,m} is the canonical (orthonormal) basis faf*** .

The methods start from an educated guslss,;,, andF ..
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Least Squares Jacobian

6.1 Construction of the Least Squares Jacobian

In this chapter we show how an approximate Jacobian for angreetor-valued
function @ can be constructed using a Least Squares approach basedwn kn
input-output pairs.

Letd : R™*! — R™¥1: gz ®(x).
Assume that fold we haves + 1 (s < n) input-output pairs(z;, ®(z;)) (i =

0,...,s)tatour disposal. This allows us to constre@iput modes\z{ = z,—x;
(¢=0,...,s — 1) and an equal number olutput moded\®; = &(x;) — O(z;)
(i=0,...,s —1). We assume;,, z1,...,x s are in general position (definition
2.3).

We defineVe?® = [AzS_, ... Azs] andWZ® = [ADS | ... A®3)2.

When we have a new input,,, of which the output is not known, but want to
make an approximation &b (zs;), we writex,1 — z, as a linear combination

1These input-output pairs can be created in an ad hoc manreesr from computations that arise
in an iterative process.

2Strictly speakingv#® does not depend of; it is included in the notation, however, for consis-
tency withW2® and to emphasize that it will be used in the construction obffferoximate Jacobian
of ®.
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of the input modes plus a rest-teem

s—1

LTs41 —Ts = Z ak:sz +¢, (61)
k=0

whereay, (k= 0,...,s — 1) represents the coordinates:xaf, ; — x with respect
to the input modes andthe part ofr, . ; — x, that lies outsid&R (V?). If we use
a=las1...a,)T, thenz,yy — 2y = VE%a +c.

If we wante to be minimal in the Euclidean nofinwe imposes L R(V?) with
respect to the standard scalar product.

This leads to
(VEN e = (VI (we1 —2s) = V) =0 (6.2)
a = (VETVER) TN VER) (weg1 — as) (6.3)
= (V&) (o1 — ), (6.4)

where(V=®)* represents the Moore-Penrose generalized inverggdfi.e.
(Vo) = (V) Tvee) = (Vo). (6.5)

We now make a prediction on the output by writing the samealim®mbination
with respect to the output modes:

ADy = P(xgy1) — P(ay)
(I)@S-&-l)

WePa = WIP(VE) (2441 — z4) (6.6)
(zs) + W:q)(v;xq))+($s+l —x5). (6.7)
—_———

P’

s

Q

%

We see that the expressiorz® (V2®)* thus fulfills the role of the approximate
Jacobian ofb with respect tac. We will call this approximation the Least Squares
(LS) approximate Jacobia®, of the true Jacobia®’(z;):

®o= WV THVEN)T (6.82)

S

= Wrrven* (6.8b)

If s = n then (6.8) become®’, = W®(Vx®)~1,

3In other words: we want a least squares approximation,gfy — .
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To generalize the construction fer> n we use the following formulae:

Ax; = zg—x; (i=n,...,s—1) (6.92)
VP = [Az_, Az, ... Azi] € Rmxmin{sn) (6.9b)
AP = B(x,)—B(z) (i=1,...,5—1) (6.9¢)
WP = [AGS_ ADS_, ... AdZ] e R™™nsnt - (5.9d)

wheren = max{0,s — n}.

Note that the Jacobian that we construct in this manner {@ougb.8)) is a matrix
that “interpolates” between the columnsiaf® and those of¥/?®; such a matrix
is not unique as long as the rankiaf® is inferior ton.

To formalize this notion for use in later chapters, we usenditédn 4.2.

Remark 6.1. The above description is a generalization of a method firstdeed
in [227]. Originally this construction was called “Reducé&arder Model” (ROM),
but as the “reduced” aspect only refers to the use of intezfaariables and to the
low number of input-output modes used, we have changed the t@“Interface
guasi-Newton Method with Least Squares Jacobian.”

Remark 6.2. Another way to interpret this construction is to look at itaasaffine
approximation tob:

d(x) ~ B(z) = (x,) + Dl(z — x4), (6.10)
such that
®(x) = d(z) forz e {za, Tis1, ... ,Ts} (6.11)
This approach only leads to a unique valuéﬁdgfif s>nandif{xs, Tit1, ... , T}

are in general position.

Remark 6.3. If ® is an affine mapping, i.e®(x) = Az — b, then (6.8) be-
comesd’, = AVF®(V*®)*, which, according to lemma 2.3.2, corresponds to
O, = ALT®(L£2®)T where£2® = [Ly®|Lg®| ... |L2®], with {L#®};_, an or-
thonormal basis for the range &f*®.

Remark 6.4. Note that the approximation d&f®(x ) in equation (6.6) not nec-
essarily represents the least squares approximatiocA®fz, ;) in R(W2?).
This is easy to illustrate in the case whdrés an affine mapping®(xz) = Az —b.
LetA®, = Wr®(VE®)+ Az, + n (see equation (6.6)).
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If We®(Ve®)+ Az, were to be a least square approximationA@, in R(Wz®),
then we would need thatL R(W=?), or in other words

(W)= (W2)T . (AD, — WP (VE2) T Ax,) = 0. (6.12)
As for an affine mapping we have tHat*® = AV=?, this leads to
(Ve P ATA (1= Vs (V)T ver] T (et ) Ay =0, (6.19)
which is only satisfied if either
o 5=n;

e dkeR: AT A = kI.

6.2 Orthogonalization and re-arrangement of input—
ouptut modes

As the following theorem will show, we can re-arrange theiomhs of V2% with-
out changing the algorithm. This means we can orthogona#igzecolumns of
V% which improves the condition number of the matfix*®)” V*® that needs
to be inverted in the construction of the approximate Jaobf the Least Squares
methods (cfr. equation (6.8).

Theorem 6.2.1. Consider the approximate Jacobiéyg constructed in equation
(6.8). If we replacé/#® by VZ®T andW*® by Wz® T, whereT is a non-singular
matrix € R***, the resulting Jacobian remains the same.

Proof. Let

O = WV TV (6.14)

and
oL = WIPT((VIRT)TVERT) TNV T)” (6.15)

then
oLy = WIPT(TT(VE) VT T T (V)T (6.16)
= WIPTT N ((VEHTVES)THT) T TR (V)T (6.47)
= WV TVt (6.18)
= @ (6.19)

which proves the assertion. O
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Not only will this theorem allow us to orthogonalize the aoius of V%, it also
allows the use of any linear combination of the columns ag las the rank is
maintained; in other words, as long &{V*?) is not altered. This means, for
instance, that we could have used

Az} = mip1—a; (i=n,...,s—1) (6.20a)
VEY = [Azi Aziyy ... Azd_ ] € Rxmin{sn) (6.20b)
AP = P(xi41) — P(zi) (i=mn,...,s—1) (6.20c)
WP = [A®AD;,, ... AD- | e Rm™mintent 0 (6.20d)

instead of the conventions in (6.9).
To see this it suffices to multiply2® andWz® in (6.9) by

0O 0 - - -1 1

T=1 0o -1 1 0 0
1 1 0 0 0

1 0 0 0 0

to obtain the expressions in (6.20). (Note tfais a non-singular matrix.)

If we use (6.20) then we have, fer< n, thatVz® = [VZ% | Az$ ;] andW2® =
(W2® | Axs_,]. This property will be useful for analyzing the algorithms.

Remark 6.5. If V% is given by (6.9) or (6.20) theR(V=®) = R(VZ®T) for
s=0,1,...,if 7T is a non-singular matrixe R**.
The proof of this property is straightforward.

Theorem 6.2.2.For s < n: A(VZ®, W2®) ¢ A(V2E, WEP).

Proof. As we have seen in theorem 6.2.1 we can re-arrange the colofims®
and W% without changing the construction of the approximate Jacohin this
proof we will use the form given in (6.20).
VA € A(VZ% W=®)) we have that

AVES = W (6.21)

or, alternatively,

AAzf = ADS fori=n,...,s—2. (6.22)
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VA € A(VF®, W*®) we have that

AAzS = A®S fori=n,...,s—1. (6.23)

K3

We can conclude thatd e A(VZ®, Wr®) : A e A(VZ%, Wr®)), which proves
the theorem. O

Theorem 6.2.3.ConsiderV*?® given by (6.9) or (6.20). TheR (V%) C R(V?)
for s < n.

Proof. We will prove the theorem for the formulation (6.20).

For that formulation the proof is straightforward B§® = [V2% | Az$_,].

With remark 6.5 in mind we see that the same holds for the ftatimn of (6.9).
O

Remark 6.6. Orthogonalization can be performed with any available metfcfr.
§3.2.4).

Remark 6.7. From the construction o, it is obvious thatb’, € A(VZ® Wr®),
and if @ is an affine mapping®(z) = Az —b), then4 € A(V*® W2?®), Vs € N.

6.3 Applying the Least Squares approximate Jaco-
bian to quasi-Newton type methods
When solving (1.3), i.e.K(p) = 0, we can apply the approximate Jacobian of

§6.1 to the quasi-Newton type methods of chapters 4 and 5 aslivshaw in this
section.

6.3.1 IQN-LS

When we apply the Least Squares approximate Jacobian cotstrof 6.1 to
the Interface quasi-Newton (IQN) method .1 (algorithm 5.1.1) we obtain the
IQN-LS method.

We first point out that the method described§th1 will result in a Jacobian of
rank s (< n), which clearly poses a problem if we want to use it straiglatato
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approximate the Jacobian &f in a quasi-Newton method, as we need to invert
this matrix (equation (4.4)p,41 = ps — (K')"'K(p,)). We therefore sek’ =

H! — I, based on the fact thdt = H — Z, where we defind as the identity
functionZ : R"*! — R™ ! : z — Z(x) = « and whereHl’ is the approximate
Jacobian forH,

We then construcﬁ; according to the least squares formulatiory®f1.:

H, = wrHph (6.24)

and thus
K, = wririht -1, (6.25)

where

Apf = ps—pi (i=0,...,5-1) (6.26a)
VPH = [ApS ApS , ... Api] e Rmin{sn} (6.26b)
AH? = H(ps)—H(p;) (i=n,...,s—1) (6.26¢)
WP = [AH: | AH:_, ... AHZ] e Rvmin{sn} - (6.26d)

In chapter 7 we will show that, if we construat’ in this manner, it will not be-
come singular for affine mappings before the solution has beached, which
justifies our choice.

Note that (6.24) can only be used for> 1, becausaflg cannot be constructed
earlier. Oftenp; = H(p,) will be used, which can be seen as settfﬁg = -]

in equation (4.4) or settinﬁ; equal to zero, which is as good as any guess, as we
don’t know anything about the Jacobian a priori.

Alternatively, we could use under-relaxation, as alreagntioned in algorithm
5.11ip1 = (1 —w)po + wH(p,) (w € Ry).

We will go into more detail about the use of a relaxation fagtachapter 8 8.3).

Remark 6.8. Note that for an affine mapping (p) = Auyp — by we have
K= AgVPH (V)T 1. (6.27)

Remark 6.9. Note that in (6.26)ApS_; = ps — ps—1 = 0ps—1. We will use
both notations, wherép,_; is used to denote the difference of two consecutive
iterates andAp?_, for an input-mode. As we have seert@?2, input modes can
be defined in various ways; hence the distinction in notation
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6.3.2 IQN-ILS

When we apply the Least Squares approximate Jacobian cotnstrof 6.1 to
the Interface quasi-Newton method with Inverse Jacobi@iN{I) of §5.1 (algo-
rithm 5.1.2) we obtain the IQN-ILS method.

If we defineM : R™*! — R"¥! : w — M(w) such thatM —! = K then

we have that K'(M(w)))~t = M’(w). A logical choice for the Jacobian to

be approximated by the least squares approach would beftiddtlny means of
WM (ywMy+ Unfortunately, just as i§6.3.1, the Jacobian that we obtain in this
manner would be singular fer< n, which means that in the quasi-Newton step of
equation (4.5) we would have that,; — p, lies in the range of this singular Jaco-
bian, which is equal to the range Bf’. As R(W M) equals spafps —pi}i—o

(for s < n) it follows that all consecutive iterates will be linear chimations of

Do, P1,- - - Ps- Unlessp™ lies in the subspace spanned by these vectors, there is no
hope to achieve convergence.

To avoid singularity ofMg we will use the procedure described below, which is
similar to the one ir§6.3.1. Just as for IQN-LS we will show in chapter 7 that the
approximate inverse Jacobiafm; obtained in this manner will not become singu-
lar for affine mappings before the solution has been reachibith justifies our
choice.

Let G(w) = H(K~(w)), then

Gw) —ZT(w) = H(K *w))—ZI(w) (6.28)
H(K ™ (w)) = K(K™H(w)) (6.29)

= (H-K)(K '(w) (6.30)

= (K Yw)) (6.31)

= K Yw). (6.32)

It follows that (K 1) (w) = G'(w) — I = (K'(K~1(w)))~%.
Hence, to approximatgk’ (K ~!(w)))~! we can use the approximationGf(w),
using the same technique described6ril. We obtain

V,SwG _ [Aw‘;,l Aw§72 . Awg] c Rnxmin{s,n} (633b)
AGE = G(w,)—Gw;) (i=1,....s—1) (6.33¢)

VrE = [AGS  AGE_, ... AGE e R min{snl - (5.33d)
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G, = Wrero)t (6.34)
— G G
(K1), = wWrowro)t -1, (6.35)

SettingK ~!(w;) = p; fori = 0,1,... (i.e.w; = K(p;) andG(w;) = H(K Y (w;)) =
H (p;)) and modifying the notation accordingly we get

—/ ~
(K, =M, = WrHVEHT -1, (6.36)
where
AK] = K(ps)—K(p;) (i=n,...,s—1) (6.37a)
VI = [AK: , AKD , ... AKg e RmM™snE o (6.37h)
AH? = H(ps)—H(p;) (i=n,...,s—1) (6.37¢c)
WEH  — [AH: | AH? , ... AHE] e Rvmintsnl o (6,37d)

Remark 6.10. Note that for affine mappingd (p) = Agp—bu, K(p) = Axp—
bx we have

My = Ap(Ag) 'VEHVEDT -1 (6.38)
= (A + N VEHWEDT 1. (6.39)

6.3.3 IQN-CLS

When we apply the Least Squares approximate Jacobian cotstrof 6.1 to
the Interface quasi-Newton method with Composed Jacobi@d-C) of §5.2 (al-
gorithm 5.2.1) we obtain the IQN-CLS method.

To do this we construck” and$’, as follows:

EL = Wt (6.40a)
S o= WrSrS)*, (6.40b)

where
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Agd = go—gi (i=0,...,s—1) (6.41a)
VIF = [Agi_, Agl, ... Agi] e Rmxmintsn} (6.41b)
AFS = F(gs)—F(g;) (i=1n,...,5s—1) (6.41c)
W = [AF: | AF: ., ... AF?] € Rrxmin{sn} (6.41d)
Ap; = ps—p; (i=1n,...,8—1) (6.41¢e)
VIS = [Apiy Api_y ... Apj] e Rrxminta (6.41f)
AS] = S(ps)—Spi) (i=n,...,s—1) (6.419)
WP = [ASS_ | AS:, ... ASi] e Rmxmintsn} o (6.41h)

6.3.4 IBQN-LS

When we apply the Least Squares approximate Jacobian cotistrof §6.1 to
the Interface Block quasi-Newton method (IBQN) 4.3 (algorithm 5.3.1) we
obtain the IBQN-LS method.

F’ andS’, are constructed as §6.3.3.



Properties of IQN-LS, IQN-ILS,
IQN-CLS and IBQN-LS for non-linear
mappings

In this chapter we will establish some important propetigbe four Least Squares
algorithms discussed in chapter 6 (IQN-LS, IQN-ILS, IQN<¥knd IBQN-LS),
when the mapping&’, H, S andF' are non-linear.

This chapter is broadly organized as follows.

In §7.1 we re-write the construction of the Least Squares ajpmate Jacobian

in a Rank-One Update form; we discuss the generalized secapérty for the
Least Squares quasi-Newton methodgr2 and the Least Change Secant Update
property for IQN-LS and IQN-ILS ir7.3. In§7.4.1 we will show that IQN-LS is
algebraically equivalent to IQN-CLS; #' is an affine mapping then both are also
equivalent to IBQN-LS, as shown §7.4.2. Finally, in§7.5, we tackle the problem
of possible singularities in the construction of the apprate Jacobian.

In this chapter we will often use the following notation (ad in lemma 2.3.2):
L, which represents a matrix containing, in its columns, ahasrormal basis
for the range of**. The “wildcard” superscript “* ” will be replaced with the

appropriate letters as first used in chapter 6; e.g. for tipecagmate Jacobian of
H this become$’P and £P, for that of S we write V.95 and £9°, etc.

For the theoretical analysis we will assume that the orthmab bases are con-
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structed such thaf:’, = [£:*|L:%,] (s < n) whereL?7:, is the newly added
basis vector for the range of’,. We recall that, according to theorem 6.2.3,
R(VE®) C R(VES) for s < n.

Note that for this convention we have that

(L) = L) + L (L) (7.1)

Unless otherwise stated we assume that no singularities,doee all matrices that
need to be inverted are of full rahkAs we will show later, this assumption can be
guaranteed wheh' S, H and/orK are affine mapping$8.1).

7.1 Re-writing IQN-LS and IQN-ILS with a Rank-
One Update formula

In this section we will show that the approximate JacobiathefIQN-LS, resp.
IQN-ILS, method ((;H, resp. M§+1) can be obtained by applying a rank-one
update tok”, resp. M’ (cfr. §4.4) [107].

For IQN-CLS and IBQN-LS a similar procedure is available.

We like to stress that these rank-one formulations do noaghahe actual algo-
rithms algebraically, although they can influence them mically and can reduce

the computational cost of the actual implementation.

7.1.1 IQN-LS

Theorem 7.1.1.Suppose thak’, is constructed as in the IQN-LS methé.@8.1),
thenK  , is linked toK”, by the following expression (far < n):

VA € AVELWIR) Kl = Ko+ AgLEL ()T, (7.2)
whereL"", is the(s + 1)-th column of£?%, (which is a matrix containing in its
columns an orthonormal basis for the rangewgﬁ)z.

Proof. YAy € A(VPI, WPl ¢ A(vpH, WrH) (theorem 6.2.2) we have that

WrH = Ay veH andWPl = Ay VPHL It follows that, according to lemma

1We point out that inverses are rarely computed in real apjies, but replaced by the computation
of the solution of the corresponding linear system.

2See definition 4.2 for the meaning vaﬁ, Wfﬁ).
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2.3.2, we have

Ki =K = (Agcl (220)" = 1) = (Ap L2 (£eM)7T — 1)
(7.3)
= Ap(Ch(Lsd)T — 2" (eeh”). (7.4)
Using equation (7.1) we get

Lo — KL o= AP (IPE)T, (7.5)

which completes our proof. O

Corollary 7.1.1. Suppose that (fos < n) f(; is constructed as in the IQN-LS
method ¢6.3.1) and thaty Ay € A(VZ, WPl), we have

(LT (R AL, £ -1, (7.6)
thenf(;rl is non-singular and

SiN—1%  FpH (FpH 1y —
(K;) 1AHL€+1(L€+1)T(K;) !

1+ (ngl)T(k;)_thz’gfl

(K" = (K™= . (1)

whereL”", is the(s + 1)-th column ofc?",.

Proof. To prove this theorem we apply theorem 2.3.3 (Sherman-gtamriheo-
rem) where we puf) = K/, u = Ay L,.1,v = L,.1. Then according to theorem
7.1.1we have<!,; = @ + w’ and (7.7) follows. O

The results from theorem 7.1.1 and corollary 7.1.1 imply tieacan use equation
(7.2) to updatek’ and equation (7.7) to updat&” )", if (7.6) is satisfied.

Note thatA; L2, (L2}],)" is a matrix of rank 1, and that as a consequence (7.2)
can be considered as a rank-one update appliddtto obtaink”, ; (definition

2.9 and equation (4.13)). Based on (7.2) and (7.7) we can ooelede that we
are able to formf(;Jr1 and(f(gﬂ)—1 using only matrix-vector and scalar products
if we are able to computt?-fs’f’1 andﬁlHE’s’ff1 from the available data.

We show that this is indeed possible and that we do not neeattbal knowledge
of a matrixAy € A(VZE, WP!) to compute the rank-one update.
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The new basis vectcfn?ﬁf1 can be computed using

_ _ rpH pH\T
16ps — L5 (L5™) " 0ps]|

which can be done based on the available dgta & ps11 — ps), while for the
computation of?lHEfol we can use the following relationships.

ApDt, = Ay £ (L) b,
lops — L5 (LE)Tops||
Apdps — A L27 (L2 6p,
[6ps — L2 (L) T op |
§H, — AgVrH (V)T sp,
16ps — L2 (L) Top,||
6H, — Ay VPE(VPET 5, — 6p, + 0ps
[ps — L2 (L) Top||
§H, — 8ps — (Ag VP (VPH)T — I)p,
[6ps — L2 (L) T op |
6K, — K'op,
[6ps — L2 (LT op |
K(pss1) — K(ps) — K{op,

p— 3 7-9
[6ps — LET (L2 T 5ps | (79

whered K, = K(pst+1) — K(ps). Note that all the terms in (7.9) are available
from the algorithm.

We can write the resulting update (fox n) as

Ry (OKs = Kidpo) (1 = LRH(LRT))opy )T
T BT e (1~ LB (LR )

As (I — LeH(LpEYINT( — cpH(LpENTY — [ — £PH(LPHYT this simplifies to

(7.10)

Ry = g g 0K = Kiop (= L8 (LET))op,)T
" : (0ps, (I = L2 (LE™)T)op)

(7.11)

Using the fact thap., = ps — (K;)*lK(ps) we can write equation (7.11) as

K — R K(psy1)((I - L”S’H(U;H)T)(Sps)T.
a ) (Ops, (I — L2 (LEYT)ops)

(7.12)
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Remark 7.1. We will go into more details about possible singularitie§m5.

Remark 7.2. If H is an affine mappingH (p) = Aup — by) then an obvious
choice forA is Ag.

For the update fronk”, to K;LH matters are slightly more involved.
For the derivation we will use the formulation given in (620e. K/, is formed
with VP2 andWPH as follows.

‘/7;LDH = [pl —Po|p2—p1\ \pn—pn_l] € R"*"
WrH = [H(p1) — H(po)| H(p2) — H(p1)| ... |H(pn) — H(pn—1)] € R™*™;
K, = wpipht—1.

K1, is formed withV,*, andW?", as follows

fol = [p2 —pil p3s —p2| .- [Pnt1 — pn) €R™
WEE = [H(p2) — H(p1)| H(ps) = H(p2)| ... [H(pns1) — H(pn)] € R

IA{;L+1 = Wﬁfl(vf-{-{l)+_l'

Additionally, we introduce the following matrices:

Vo= [p2 — p1l ps —p2| -+ |Pn — Pr—1] c Rnx(n=1)
W = [H(ps)— H(p)| H(ps) — H(p2)| ... |H(py) — H(pn_1)] € R™*(~D;
K = wWW)t-rL

(We have chosen to drop most superscripts from the newlgdatred entities in
this section, as we believe this does not hamper undersigirttiese will only ap-
pear in this section.)

It is clear from these conventions that

VPR = [p1 — po|V] (7.16)
VP = [Vipasa — pal- (7.17)

As such, using theorem 6.2.3, we see R&V') C R(VH) andR (V) C R(VPE).
pH

We will be usingZrH, resp.L, 1, L, for the matrix containing in its columns an

orthonormal basis foR (V,P1), resp.R(V,,ffl), R(V). Contrary to previous con-

ventions we will construct the bases such that
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et = (LML) (7.18)
ol = (LR (7.19)

By analogy with the results of theorem 7.1.1 we arrive at

K, = K'+ Ay, " @r")" (7.20)
Khy = K+ Apga L (L2, (7.21)

where LY = (I — LLT)dp,, L, = (I — LLT)op,. A, is any matrix in
A(VPH WrH) and Ay 1 is any matrix inA (V2 wE).
From this we see that

K’:L-‘rl - fqb = AH,H-&-liﬁlf-l (iﬁlf-l)T - AH,HETH(E{)H)T- (7-22)

Pointing out that?” = Efﬁl becaus¢R(V))* is only a subspace of dimension
1, we obtain
Ko~ Kl = (Agpgr — Apn) I (IET, (7.23)

which represents a rank-one update. In gen?ﬂrj@ln #+ AHWH, unlessH is an
affine mapping. ( In that case it is clear that the update wbalthe zero matrix.)
We will show in chapter 8§8.1), that this is a logical consequence for affine map-
pings, as in that instance convergence will have been rdache

By analogy with (7.11), and using

: = (6K, — K'op,)((I — LLT)bp,)"

K = K+ — 7.24
" (0po, (I — LLT)dp,) ( )
Ky = &+ OEn = KO (T — LLT)opn)" (7.25)

a (8pn, (I — LLT)5py) ’

(7.23) can be re-written as
Rl _ IA(/ + (5Kn - f(lépn)(({j EiT)apn)T
n+1 n <5pn, (I - ££T)5Pn>

7l _ ppT T

_ (5K0 K 5]70)((] ‘C‘C )5p0) , (726)

(0po, (I — LLT)5p,)
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which equals

(I — LLYop,)T
(0pn, (I — LLT)opy)
(7.27)

K = K+ (0K~ K'dpa) = (6K, — K'ép.))

Unfortunately (7.27) cannot be computed becalisis never explicitly formed.
However, we can show that (7.27) can be re-arranged to a foahig very similar
to (7.12):

(5Kn - IA{;L(Spn)((I B EET)(spn)T

K, ., =K + —
an (8pn, (I — LLT)5p,,)

(7.28)

To show this equality we repladé’,’l in (7.28) by (7.24). Re-arranging the terms
then yields (7.27).

7.1.2 IQN-ILS

Theorem 7.1.2.Suppose thaﬂg is constructed as in the IQN-ILS meth@é 3.2),
thenM;rl is linked toMg by the following expression (far< n):

VAy € AVEL wEIy N = M+ Ay LEE(LEDT, (7.29)
whereLEH is the(s + 1)-th column ofCXE /.
Proof. VA, € A(VEY WEH) ¢ A(VEH WEH) (theorem 6.2.2) we have

that WK = A, VEH and WXL = A, VEH. It follows that, according to
lemma 2.3.2, we have

Ml — M, = (AuCERLEDT 1) — (Ap LK (LT - 1)
(7.30)
= Ay (CEH(CERT — cKH (LT, (7.31)

Using equation (7.1) we get
M., — M, = AyLEHLEET (7.32)

which completes our proof. O
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Theorem 7.1.2 implies that we can use (7.29) to updi&teNote thatd ,, LXH (LEH)T
is a matrix of rank 1, and that as a consequence (7.29) camiséeoed as a rank-
one update applied tﬂff; to obtainM;H (definition 2.9 and equation (4.14)).

Just as with the matrix”, of the IQN-LS method we have to find a convenient
way to compute. X and A, LE!] from the available data.

The new basis vectar’” can be computed using

s (1= LEHEETT)6K,

1 = s : 7.33
w1 (= CEA(CET TSR, (739
while AMEﬁ’{ can be computed, in similar fashion§d.1.1, as
o - 6ps — MK,
Ay LEH = : s__° . 7.34
e [V LT (7:39
As a result, we can write the rank-one update as
. o (Ops — MISK,) (I — LEH(LEIT s
AP G o VU = LEUET)TDKS) 7 46
‘ ‘ (0K, (I = LEF(LET)T)K,)
o MK (psir) (I — CEH(LEITY s )T

(0K, (I = LEA(LE)T)IKS)

Remark 7.3. We will go into more details about possible singularitie§ 5.

Remark 7.4. If H is an affine mappingH (p) = Aup — by) then an obvious
choice for4,, is Ag(Ag — )7t = A}l + I. (This follows from the fact that
Hép; = Agdp; = A AR 6K, = Ag(Ag — I)"'0K;, fori=1,...,s.)

Remark 7.5. A corollary similar to corollary 7.1.1 can be written, evemough
no actual need exists to know the inverséf, ;.

Remark 7.6. Similar results as for IQN-LS are found for the update frof to

/
n+1

7.1.3 IQN-CLS and IBQN-LS

In the IQN-CLS and IBQN-LS method we use two approximate Biets, which
each can be obtained with a rank-one update formula, as belew.
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o : (0ps, (I — LE5(L25)T)op,)
B oy OF = Fg (I = £47(£4")T)dg,)" (7.38)
o ) (6gs, (I — LIF (LT TYogs)

wheredS; = S(ps+1) — S(ps), 0Fs = F(gs+1) — F(gs)-

We note that we will actually need the inversefdf,, S, ; — I for the IQN-CLS
method and the inverses bf- I/ | S;,, ; andl — S, , | F for the IBQN-LS method
(algorithms 5.2.1 and 5.3.1 respectively). In order to He &bapply the Sherman-
Morrison theorem to these expressions, we would like toanthiese as a rank-one
update with respect to the previously known values.

For IQN-CLS the updates to be computed are the following:

F;S/e -1 — Fs/+1‘§;+1 —1I.
If we useAF, resp.AS for the respective rank-one updatesiifand S’ (equa-
tions (7.37) and (7.38)) we see that

FL Sy —1 (FL+AF)(S;+AS) 1
= F'S' T+ F/AS+AFS +AFAS.

Q)
The part marked witt{x) is thus the update of the whole expression. The three
terms of(x) are each rank-one matrices. In general, this does not irhphytheir
sum, i.e(x), is a rank-one matrix. This means that we cannot use the Simerm
Morrison theorem straight away, but would need to use therdm three times,
once for each rank-one matrix.
However, as we will show i§7.4, IQN-LS and IQN-CLS are algebraically identi-
cal, and thus
(¥) = (F1 1Sty — 1) — (FIS. — 1) = FIAS + AFS! + AFAS
is indeed a rank-one matrix.
We point out that this conclusion is generally not applieatal the Jacobians of
the other quasi-Newton methods that were summarized intehdpsee;7.4 for
more details.

For IBQN-LS the updates to be computed are the following:
I-8F — I-8 F

I_Fs/gg-rl - I_Fs/-i-lg;-i-l-



80 CHAPTER7

Using the same approach as for the IQN-CLS method we obtain:

[-8 F = I-SF -ASF!
N——
(%)
I— Fs/+1‘§;+1 = I- A;S;-q-l —AFSQ,
N——

(k)

where the parts marked with«) and(x * %) are rank-one matrices. As such, the
Sherman-Morrison theorem can be applied if required.

Remark 7.7. Similar results as for IQN-LS are found for the update fr@tpand
F/toS) ,andF] ;.

7.1.4 Conclusions

From the results in this section, we see that IQN-LS cornedpdo the rank-one
update form of equation (4.15), i.e.
(60K, — K'dps)cT

(cs,0ps) 7

with ¢, = (I — £PH(L£PH)T)5p,, while IQN-ILS corresponds to the form of
equation (4.16), i.e.

Ky =K+

(0ps — MLOK,)dT

M ., =M
s+1 s + 015,6I(5> ’

with d, = (I — CEH(LEITYSK,.

Furthermore, we see that the vectan equation (4.13), resp. (4.14), respects the
condition that{v, dps_1) = 0, resp.{v, 6 Ks_1) = 0, for IQN-LS, resp. IQN-ILS.
Convergence properties of rank-one update secant methatlseespect this con-
dition have been well-studied [145].

We also see, from (7.12), that we have that
Vzl (I — ﬁé’H(EfH)T)(YpS : K;+1z = K;z, (7.39)

i.e. the approximate Jacobian only changes in the directfdhe newly added
orthogonal basis-vectdd — L2 (L2H)T)5p, of R(VE).

For every directionr L R(VPH) we haveK’z = —z. The latter can be interpreted
as setting the approximate Jacobiarfbéqual to zero in every direction of which
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no information is available.

Similarly, for IQN-ILS we see, from equation (7.36), that have that
Vel (I — LEH(LEITYSK, © M.l 2= M.z (7.40)

i.e. the approximate Jacobian only changes in the directfdhe newly added
orthogonal basis-vectdd — LX7 (LEH)T)5 K, of R(VELT).

For every direction: LR (V") we haveMz = —z. The latter can again be in-
terpreted as setting the approximate Jacobiaki efjual to zero in every direction
of which no information is available.

These results show that IQN-LS and IQN-ILS possess a nuntfb&miarities
with resp. Broyden’s good and Broyden’s bad methiti4.1 anc4.4.2).
For Broyden’s good method we have

Vzlops K;+1z =K'z (7.41)

This closely links IQN-LS with Broyden’s good method. Théelience being that
Broyden does not change the Jacobian in the orthogonal eomepit of the last
directiondp,, while we do not change the Jacobian in the orthogonal cammgate
of the new directiodp, after orthogonalizing it w.r.t. all previous directionshi$
means that we keep our Jacobian the same for all previousitedidirections,
while Broyden doesn’t. This can be both an advantage andaalvhstage. The
advantage being that we keep information about more dimestintact. On the
other hand, we are “locked-in” by our previous directionjck may no longer
be accurate, while Broyden does not have this restriction.

One of the most important advantages of our method over Bragds the fact
that in exact arithmetic IQN-LS convergesrint 1 iterations for affine mappings,
while Broyden’s good method only converge2n iterations. (Se€8.1 for more
details.) Itis believed that this advantage is carried tw@reakly non-linear prob-
lems.

For Broyden’s bad method we have
VeldK, Mé’._Hz = Méz (7.42)

The relationship between Broyden’s bad method and IQN-#.&alogous to the
one between Broyden’s good method and IQN-LS.

Similar conclusions hold for IQN-CLS versus IQN-CBG and IBQS and IBQN-
BG.
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7.2 The generalized secant property

In this section we will show that the IQN-LS and IQN-ILS algbms not only
respect the secant equation given in (4.10) and (4.11), lgyenaralized secant
equatiort (of orders), which we define as

K;(ps—j-l-l - ps—j) = K(ps—j-‘rl) - K(ps—j)7 (743)
resp.

Ps—jr1 — Ps—j = MUK (pe_ji1) — K(ps—j)), (7.44)
forj=1,2,...,0,(c <min(s,n)).
7.2.1 1QN-LS

Theorem 7.2.1. The IQN-LS method;6.3.1) is a generalized secant method of
ordermin{s,n} (equation (7.43)).

Proof. From the construction of the Jacobiang®13.1 we know that there exists
a non-singular matrig € R**® such that

VPH = pat1 — palpa — Pa1|-- - [Ps — Ps—1]
= VrHT

WP = [H(pas1) — H(pa)|H(pa) — Hpa_1)| ... |H(ps) — H(ps—1)]
= wprHT,

(See equation (6.20).)

Then, according to theorem 6.2.1, we have that
K, = WrH (VP Tve - (v T — 1.

It follows that

K;[Ps —Psf1|P571 —P572| e |Pﬁ+1 —Pﬁ] = f(;f/spH
WrH (VPP ypt
WSpH _ Vng

= [K(ps) —K(Psf1)|K(psf1) —K(p5,2)|,,,

K (pav1) — K(pa)l,

3Also known asextended secant conditi¢246].
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which proves (7.43). O

Corollary 7.2.1. If K is an affine mapping, then for the IQN-LS meth§6l8.1)
the following property holdsvz,y € R™*! such thatr — y € R(VFH) we have
that

Kli(z—y) = K(z) - K(y). (7.45)

Proof. The proof is an immediate consequence of lemmas 2.3.2 ar?l 2.3
As K = Ay £PH (£PH)T — [ and ascr™ (£PP)T is an orthogonal projector on
R(VPH) we have

Va,y e Rz —y € R(VPH) .

Ki(z—y) = Ap(x—y)—(z—y) (7.46)
= ((Ax — Dz —bx) — (Ax — 1)y — bx)
(7.47)
= K(x) - K(y), (7.48)
which proves (7.45). O

Corollary 7.2.2. For the IQN-LS method;6.3.1) the following expression holds:
K(psi1) = (I = KLy (K™K (ps)- (7.49)

Proof. We have thap,,, = p, — (K’)~*K(p,) (from the quasi-Newton iteration
(4.4)) and (from theorem 7.2. K (ps+1) = K (ps) +K;+1(ps+1 —ps). From this
(7.49) follows.

O

Corollary 7.2.3. For the IQN-LS method;6.3.1) the following property holds (for
s < n):

VA € AVIL,WER) 2 K(poa) = An L2 (E0) ops, (7.50)

with §ps = psi1 — ps and L2%| the (s + 1)-th column ofc?Y,.



84 CHAPTER7

Proof. From theorem 7.1.1 we hawel; € A(VZ, WP):

Kl (K)™ = I+ AgLP (LP)T(K)~ (7.51)

Inserting this in (7.49) gives

K(ps1) = —AgLiE (L) (KD K(ps) (7.52)
= AP (LX) T ops, (7.53)
which completes our proof. O

Remark 7.8. From the arguments in theorem 7.2.1 it follows that IQN-LSoal
respects a generalized secant equation, if it were written a

K{(ps = ps—j) = K(ps) = K(ps—y), (7.54)
forj=1,2,...,0, (c < min(s,n)).

Remark 7.9. Corollary 7.2.2 can be extended fer> n by using the arguments
in §7.1.

7.2.2 IQN-ILS

Theorem 7.2.2. The IQN-ILS method6.3.2) is a generalized secant method of
ordermin(s, n) (equation (7.44)).

The proof is analogous to the one of theorem 7.2.1.

Corollary 7.2.4. If K is an affine mapping, then for the IQN-ILS meth&6.8.2)
the following property holdsvz, y € R"*! such thatr — y € R(V.XH) we have
that

z—y = M|(K(z) - K(y)). (7.55)

The proof is analogous to the one of corollary 7.2.1.
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Corollary 7.2.5. For the IQN-ILS method;6.3.2) the following expression holds:

K (ps1) = (I — (M) MK (ps). (7.56)

The proof is analogous to the one of corollary 7.2.2.

Corollary 7.2.6. For the IQN-ILS methods6.3.2) the following expression holds
(for s < n):

YAy € AVES WEHY  5p oy = Ay LEH(LENT K (py),  (7.57)
wheredp, 1 = psi2 — Psy1-

The proof is analogous to the one of corollary 7.2.3.

7.2.3 1QN-CLS and IBQN-LS

The notion of the (generalized) secant property can be dgtkto the approximate
Jacobians” andF” used in IQN-CLS and IBQN-LS:

SL(Ps—ji1 — Ps—j) = S(Ps—js1) — S(ps—;) (7.58)
Fl(gs—j+1 — 9s—j) = F(gs—j+1) — F(gs—;)s (7.59)

forj=1,2,...,0, (c < min(s,n)).

Using the same methods as for IQN-LS and IQN-ILS in the prteviections, one
can prove that the Least Squares Jacobﬁmdﬁg respect a generalized secant
property of ordeinin(s, n)*.

For IQN-CLS the approximate Jacobian figris F;S; — 1. By using the fact that

it is algebraically identical to IQN-LS (which we will show £7.4.1) it is obvious
that this Jacobian also respects (7.43).

4Using this terminology, we can say that the Jacobians of IBGCOQN-CCUM, IBQN-BG and
IBQN-CUM respect a generalized secant property of order 1.
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7.2.4 Comment

We would like to point out that other methods that respecgémeralized secant
equation (7.43), resp (7.44), of ordein{s, n} can be constructed that differ from
IQN-LS, resp. IQN-ILS, as this condition only providegn{s,n} x n equations
for then? unknowns of the approximate Jacobian and is thus underraigied for

s < n.

7.3 The Least Change Secant Update property

Lemma 7.3.1. Leta € R, z,v,w,, wr,...,w, € R (B < p), withv ¢
Spar{w07w17"' 7wk}1 if

(v,2) =a , (7.60)
(wj,z) =0 forj=0,....k, (7.61)

then the unique solution tain || z|| is

a(l =P

min = ———————, 7.62
i = 0 (1= P)) (762
whereP is an orthogonal projector on the span ., . . ., wg }.
Proof. Let the dimension oV=spaqwy, ..., w;} bev, and let{ey, ..., e, } be
an orthonormal basis foV. We complete this basis witfe, 1, ..., e, } to obtain
an orthonormal basis fak**!; in other words{e, 1, ..., e, } is an orthonormal
basis forW+.
As (wj,z) =0(j =0,1,...,k), we haver € W+. Hence, we can then write
12
r = Z ZTi€; (7.63)
1=v+1
and
I
vo= Zviei. (7.64)
i=1

I

The condition(v,z) = « then becomesz v;z; = . S0, in order to find
1=v—+1

x € R™*! that satisfies (7.60) and (7.61) and which minimiZed, we have to
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findz,41, ..., x, which minimizes the function
n
f@osn, o wn) = Y af, (7.65)
1=v—+1

with the additional constraint

m
9(@yir,. ) = Z viz; —a = 0. (7.66)

i1=v+1

The solution of (7.65-7.66) with the method of Lagrangedsel

av;

T, = S 2 (7.67)
i=v+1 z
and hence
Tmin = Z avlel (768)
i=v+1 1 V+1 1
a(l —P)v
= — (7.69)
(I = P)v|?
all =P
= — 7.70
v, (L= P)) (7:79)
O

We also present an alternative proof for this lemma [223].

Proof. Fora = 0 the proof is trivial {,in = 0).

Assumea # 0 and letWW=spafwy, ..., wr}. Then there are unique vectors
v; € W andv, € W such that = vy + vs.

From the condition(z,w;) = 0 (i = 0,1...,k) we havez € W+ and as a
consequence = (x,v) = (x, va).

Asz € W, we are also able to write = z; + 25 wherez; = Bv, (8 € R) and
x9 € (W + spanug)t. As (x5, v2) = 0 it follows that

a = (x,v2) = (x1,v2) = B{v2,vs) (7.71)

and hencgg = —2 2>.
The vector: = Tonoy V2 + T2, with arbitraryz, € sparfvy)* satisfies (7.60) and
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(7.61).
To minimize||z||? = ||x1]|? + ||z2]|? it suffices to taker, = 0. It follows that
xr = T = ng (7.72)
(va, v2)
all =P
= —. 7.73
o, (T~ P 7
O

The following proof is a generalization of the one in [50].

Theorem 7.3.1.LetY € R™™, @y oo Tk s Yk - - - Yk, € R and
kain? M 7mk7max # 0 (kmax - kmin S n— 1)
Then the unique solution to

min s = Y| pr With T € A (X,f:sfl, Yk’f:;ix*l) , (7.74)
T*EA(X;EHIHX Ykklnax

min *min

whereX? = [z|zi1]. .. |z;] andY? = [yilyita| . - |y;], is

Ykmax = Tman) (L = P)hn)”
T, =714 F== e B 7.75
: e U — P (779
whereP is an orthogonal projector on the span oty . ..., Tk, .. —1}-
Proof. We first defineAy = Y, — 1.
We have forj = kyin, - - - kmax —1:
T*LL'J‘ = T.”L‘j + AT.’L'J‘ (7.76)
yj = Yy +Axrz; (7.77)
Axyz; = 0. (7.78)
Forj = kumax We have
T*kaax = T'Tk?max + A’rkaax = ykmax' (779)
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We can thus restate the problem as

min  ||Avy|Fr (7.80)
ATGRan
subject to
ATkaax = ykmax - Tkaax (781)
Ayzj = 0 forj = kmin, - -+ kmax — 1. (7.82)

If we write [Ay]; for the i-th row of Ay then the original problem becomes
disjoint problems{=1,...,n)

i Ax)illzr 7.83
A I[Ax]ill» (7.83)
subject to
(AT)] b)) = Yo = Vi (7.84)
<[ATE’17xj> = 0 forj:kminw"vkmax_l
(7.85)
Finally, according to lemma 7.3.1 we have<{ 1,...,n)

T
Ap = Wrnae = Thine) (1= P)h) (7.86)

<'rk'max7 (I - P)kaax>

and thus

Yo — Thp) (L= Py, )"
A max max max 7 . 87
- <‘kaax7 (I - P)fk ' ( )

max>

which completes our proof. O
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7.3.1 IQN-LS
Using theorem 7.3.1 and equation (7.12) we see that for I@Nale have that

K, is the solution of

min 1K = Ko o
K. GA([ép]fnax{O,s—n+l}7[6K]fnax{0,s—n+l}
i % s—1 s—1
with Kg €A ([5p]max{07sfn+l}’ [6K]max{0,sfn+1}) ’ (788)

Where[ép]'g = [§pi|6pi+1| e |(5pj] and[éK}f = [5AKi|6Ki+1| Ce |6KJ},
i.e. of all possible rank-one updates appliedif¢ that respect the generalized
secant equation (7.43) of orderin{s, n} the update used in the IQN-LS method
results in a value omf(;H — K!||p, that is minimal. The method is thus part of
the LCSU family £4.3).
We can compare this with Broyden’s good method, théggl is solution of
min  |K, — K.

K.€A(dps,0Ks)
This finding re-iterates the notion that IQN-LS respects regalized secant con-
dition whereas Broyden’s good method only respects thaargisecant condition
(i.e. a generalized secant condition of order 1).

Similarly to theorem 4.4.1 we have the following property:

Theorem 7.3.2. Let Q be an arbitrary matrix in
A ([5p]fnax{0_’sfn+1}, [5K]fnax{0’sfn+1}). If K., and K’ are defined by the
IQN-LS update, then

1K1 = Qllpr < IKL — Qlpy (7.89)

7.3.2 1QN-ILS
Using theorem 7.3.1 and equation (7.36) we see that for ICBwe have that

min | M, — M| g,

M. GA([SK]inax{O,sf'nnkl} ’[ﬁp]ﬁnax{ﬂ,sf'n«Fl}

with Mg €A ([5K];;}c{0,s—n+l}7 wp]fn_a}c{o,s—n-&-l}) ) (790)

i.e. of all possible rank-one updates appliedl\i[@ that respect the generalized
secant equation (7.44) of orderin{s, n} the update used in the IQN-ILS method
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results in a value off M., — M| r, that is minimal. The method is thus part of
the LCSU family £4.3).
For Broyden’s bad methodl/ , is solution of

min M. — D .
M, eA(SK,,0p,)

This finding re-iterates the notion that IQN-ILS respectenagalized secant con-
dition whereas Broyden’s bad method only respects the argisecant condition.
Similarly to theorem 4.4.2 we have the following property:

Theorem 7.3.3. Let @ be an arbitrary matrix in

A (PR (0 -ns1) 0P san o5 sy )+ 1f Miyy and AT, are defined by the

IQN-ILS update, then

HM;-Q—I - Q”Fr < ”Mé - QHFT (791)

7.3.3 IQN-CLS and IBQN-LS

Similarly to IQN-LS and IQN-ILS we see that the approximameQbiansF; and
S’ of the IQN-CLS and IBQN-LS methods respect a Least Changar&ipdate
principle.

7.4 Equivalence between the different Least Squares
methods

7.4.1 Equivalence between IQN-LS and IQN-CLS

In this section we show that IQN-LS and IQN-CLS are algelaificidentical,
although we will keep both methods to see if they behave theesaumerically.
To see this we note that for IQN-LS the approximate Jacolsi@omnstructed as

K{ = wrAvenTveR =t (vt — 1,
while for IQN-CLS this is
K, = FS.—1
= (WEF[(VIE)TVIE Y (VIn)T) (WES((v)TVES| L (VES)T) — I
Noting that, for this scheme, = S(p,), we getW?S = V9F and thus
K{=FS~1 = WISV (vES)T — 1.
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As H(ps) = F(g) this also givedV 9" = WPH; as we also hav&’?® = VPH
this shows the equivalence between IQN-LS and IQN-CLS.

Another way to prove this equivalence is based on the fotiguiheorem.

Theorem 7.4.1. Consider the following algorithms:

¢ the IQN method§5.1) with a rank-one update of the Jacobian given by (for
s=0,1...)

2 2 + (5Ks - Kgéps)vz

! = K , (7.92)
FLIQN (3D, v3)

with vy € R*<1;
e the IQN-C methods6.2) with a rank-one update of the Jacobians given by

., (0F, — Flogs)wT

Fl,, = Fl+ Gorm) (7.93a)

. . 895 — S8 6pg)zT

A (7.930)
and

K—;+1,IQNfC = Fl,Si-1, (7.94)

with w, € R™*! andz, € R™*1.

A sufficient condition so that the IQN-C method produces #émesapproximate
Jacobian forK as the IQN method (and hence are algebraically identicahmoes)
is

1. v, = 2, for K1 (i.e. for s = 0);

2. vy = 2, andeTS‘; =0 for K;—H (s >1).

Proof. This proof will be done by induction.
Fors = 0 we have, from chapter 5 thay, andS’ are zero matrices and] = —1.
Equations (7.93-7.94) then become

. o (0F, = Fydgo)wg \ (o (650 — S40po)zs
& _ Iy (0F, 0090)W, 14 \UP0 " PoBlo)%0 |\ g
HeN=e ( o <6g<)7 wo> SO - <6p07 ZU>
5Foon6Sozg

= — 1.
<5gO7 wo> <5Po, Zo>



NON-LINEAR PROPERTIES OHQN-LS ET AL. 93

As for IQN-C we have thad I, = dH, anddgs = 055 (s = 0,1...), and as
(690, wo) = wldg, this becomes

§H,2T
<§p07 ZO>

For IQN we have, from equation (7.92),

(0K, — Kgépo)vg

Ki,IQN = K; + <5p07vo>
T
L Gl
(0po, Vo)

AsOK, =0H, — opsfors =0,1,..., we obtain

(§H, — 0p, + 6po)vl
<5p07 Uo>

SH,vl

Opo,00) —1I. (7.96)

Hence we see that (7.95) equals (7.96)if= v, i.e. K| ;on = K| jon_c If
Zo = Vg

Fors > 1 we start from the assumption thAt, ;o n_c = K. on = K. and
prove that, | ;on_c = Kiy1 108 = Kgfl follows.

IntroducingA Koy o = Koy ron—c — K3) we obtain for IQN-C, from equa-
tions (7.93-7.94), that

AKion—c
_ < oy OF— g )ul\ (o (05— 80p)el | e
’ (0gs, ws) ’ (0ps, 25) e
_ (6F, — Fisgo)w] o 4 (98 = Stops)zT
(0gs,ws) T (0P zs)
(6F, — F16gs)wT (685 — S.ops)2T
<6937 ws> <5psa Zs> '

We recall that we are proving that = z, andeTS*; = 0 are sufficient conditions
for the equivalence. Hence, using S, = 0 and asig, = 6.5, the expression for
AKGqoy_ o becomes

(005 = 80po)2f | (OF, — Fdg,)widgs=!

S

<5p5a Zs> <5gsv ws> <5ps, Zs>

AK}QN—C =

S
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Using(dgs, ws) = wl dg, this expression can be simplified to
. o (6gs — 8L0ps)zT  6F2T — Flog,zT
AK/ _ — FS/( S S S)~s S5~s S S5~s
fen-¢ <5p87 ZS> <5ps, Zs>
[ FiSiops OF. \

(0ps,zs)  (Opsizs) |

As F'S! = K/ + I andéF, = 6H,, we obtain

—(K! +1)éps 4+ 0H, o

((5HS — 0ps — Kgéps) 2T
= . 7.98
<6p83 ZS> ( )
For IQN we obtain
AIA{}QN = IA{;+1,IQN - IA(Q
(0K, — K’;éps)vz
<6p87 v8> .

AsoK, = dH, — ops, we finally obtain
(5HS — Ops — K;éps) vl
<5ps, 'Us>

We see that (7.99) equals (7.98):f = v, andw? S’ = 0, i.e. K§+1,1QN _
K:;H,IQN—C if z, = vy andw? S’ = 0.

AKjoy = (7.99)

We conclude that, under the assumptions of the theorem, Caxtd IQN are
algebraically identical. O

Corollary 7.4.1. IQN-LS and IQN-CLS are algebraically identical methods.

Proof. Note that for IQN-LS and IQN-CLS in theorem 7.4.1 we have

vs = (I = LEM(LET)T)ops = (I — LBF(LE%)T)ops = 2

and

ws = (I = L7(LI7)T)dgs.

As 5, = WrS((VpS)Tvps)=1(Vp$)T, and for IQN-C thatVrs = V¥, we
have that

wl' S, = wl (VIF (VP9 Tvrs) =1 (ves)T). (7.100)
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As, by constructiony; is orthogonal to every column 9% we have that” S’ =
0, and that, hence, IQN-LS and IQN-CLS are identical. O

Worthy of mention in the proof of corollary 7.4.1 is that nondition 27 £/ = 0
needs to be imposed for the equivalence to hold.

Remark Although theorem 7.4.1 is only a sufficient condition for theorem
to hold, a simple example suffices to show that IQN-BG and IQBG, resp.
IQN-CUM and IQN-CCUM, which do not satisfy this sufficientratition, are not
identical.

7.4.2 Equivalence between IQN-CLS and IBQN-LS wherF is
an affine mapping

In this section we show that IQN-CLS (and hence IQN-LS) i®hlgically iden-
tical to IBQN-LS if F' is an affine mapping. As always, we assume that no singu-
larities occur in either algorithm.

We recall that the iterations for the IBQN-LS algorithm are

per1 = (I—FS)™ (F(gs) + FY(S(ps) — Stps — gs)) (7.101)
gort = (I=SLF) ™ (Spes) + 81 (Flgs) = Flgs = por))
(7.102)

If Fis an affine operatorH(p) = Arp — br) we will show that both algorithms
are equivaleritin the sense that they give the same iteration valueg ford the
same approximate Jacobia§§ and F; but different iteration values fay. The
proof of the equivalence will be done by induction.

We will use subscripts “C” for values related to IQN-CLS af&} for those related
to IBQN-LS.

e s=0,1.
We first remark thab,, g, = S(po,),p1 = F(g,) andg; = S(p1) are
identical for both IBQN-LS and IQN-CLS. This is the startupage, where
we have assumed we do not use an initial relaxation parametetlows
thatS‘i andF{ are also identical as the input-output pairs are identical.

5No such requirement is imposed 6h
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o 5s=2.

We now prove thap, for IBON-LS, which we will callp, gz, is identical to
p2 for IQN-CLS, which we will callp; . We have

pop = (I—FS) " (F(g1) + F{S(p) — F{Sipr — Flg1).
(7.103)

As g1 = S(p;1) this becomes
pep = (I—F8) " (F(g) — FISip). (7.104)

For IQN-CLS we have

prc = p—(F{S =) (F(g1) —p1) (7.105)

poc = pi+ - FS) N F(q1) — (p1 — F{Sp1) — F{Sip1)
(7.106)

prc = (I—FS) ' (F(g) - F1Sip), (7.107)

and hences p = p2 c = p2 andS“g is identical for both algorithms.
We now look intogs 5. From (7.102) we obtain

g8 = Sp2)+ S4(F(g1) — Flgi — p2 + Flg2,8), (7.108)

while go ¢ = S(p2).
We know from lemma 2.3.2 that

VAg € A(VPS WP §) = AgLh¥(£2%)T. (7.109)

As £5°(£5%)T is an orthogonal projector on the range &, which is
the space spanned lfy, — p1) and(p2 — po), we have thatz € R™*1,
Jo, B €eR:

L2 (L5 x = a(ps — p1) + Blp2 — po) = VPl BT, (7.110)
and as a consequence

Sta = AV la BT = WE%la BT = alga.c — g1) + B(g2.c — 9o),
(7.111)

becauseS(p;) = gi,c (i =0,1,2).
There thus exist coefficients , v that allow us to write (7.108) as

g2, = S(p2) + (92,0 — 9o) +72(92,c —91)  (7.112)
92,8 = g2.0+m(92,0c— 90) +72(92,c — 91)- (7.113)
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We are now able to compai; ; and ' .. By applying lemma 2.3.2 to
both we can write

VApc € A(VSE, WEE) + Fjo=Apclic(L3ic)T (7.114)
VApp € AVSE. WEE) + B p=AppLys(L£55)". (7.115)
From (7.113) we get

92.8—9 = (M +1)(92,c—90)+72(92.c —9g1) (7.116a)
goB—91 = 7(92.c—90) + (v2+1)(92,0c — g1). (7.116Db)

We thus see that? € R?*? : V{/j, = V(. T, with T non-singular if both
IQN-CLS and IBQN-CLS are non-singular.
If Fis affine, then we also hav&’y;; = Wy (.7 and thus, using theorem

6.2.1 we have thak} .. = F} 5.

® 5> 2.
To complete the proof of the equivalence between IQN-CLSIB@N-LS
we assume that, and S; are identical for both algorithms and that from
this it follows thatp, 1 andS“;Jrl are identical as well.
Under the above assumption we can show fi{ais also identical for both
schemes, in analogy to the procedure in equations (7.708)-4) used for
FQ’. From equation (7.102) we have

95,8 = S(ps)+ S;,B(F(gs—l,B) - Fé—lgs—l,B —Ps + F§—1gs,B)~
(7.117)

Knowing thatS’ , = S, . = S, we see that, in the manner of equation
(7.113),y; (: =1, ..., s) can be found such that z can be written as

gs,B = Ysc*t Z'yi(gs7c — giﬂc). (7.118)
=0

In an analogous way as in the first part of this argument weltaus
A(Vfg,ng) = A(Vsﬁg,wgg) andF, p = F. . = F} follows. From
this last equation we can also derive thaty € A(VI5, ng) we have

Fl(gsp —9s0) = ArLIGLI)"T Y vilgsc — gi,0)(7.119)
i=0

Ap Y 7ilgsc — gic)- (7.120)

=0
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As we have assumed thAtis affine we have

Fl(gep —gsc) = F (Z i(gs,c — 9@0)) (7.121)
1=0
FS/QS,B - FS/QS,C = F(gs,B - gs,C) = F(QS,B) - F(QS,C)-
(7.122)

Then we have for IBQN-LS, using equation (7.101),

perrp = (I—FES)"YF(gsep)+ Flgec — F!Sps — Flg. p)
(7.123)

and using (7.122)

P = (I—F.S) Y (F(gsp)+ Flgsc — F'S'ps — Flgs p)
(7.124)
psi1s = (I—FS)  (Flgs.c) — FSps)- (7.125)

For algorithm IQN-CLS we also have
pstre = (= FS) T (Flgsc) - FiSips),  (7.126)

which shows the equivalence.

7.5 Avoiding singularity

In this section we will discuss two type of singularities @MN-LS in the rank-one
update form and one for the original form @f6(3.1). For the other three Least
Squares quasi-Newton methods similar arguments hold.

7.5.1 Avoiding singularity for the original formulation ( §6.3.1)

Although we will show in§8.1 that singularities in the construction of the appro-
ximate (inverse) Jacobian cannot occur when the mappirgafine and when
working in exact arithmetic, it is quite possible that thduzons of VPH, VPS5,
etc. become linearly dependent of one another when the mggpre non-linear.
When this happens, the construction of the approximate dacebll fail, as the
Moore-Penrose generalized inverse can no longer be cotedirusing equation
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(6.5). We will solve this problem by applyingdR-filtering. We will illustrate
the principle o/,

Note that the procedure below is a reworked version of anfidgaused in [45].
We apply the “economy size” QR-decompositionf! :

VP = QuR,, (7.127)

whereQ, € R™** such that)”Q = I, and R, € R*** is an upper triangular
matrix8.

This corresponds to a Gram-Schmidt orthogonalization ggeapplied to the
columns ofV# starting from the first column.

When, during the orthogonalization process, but before tinmalization step, an
orthogonalized column df?* is smaller thar10~® times the norm of the original
column of VP (i.e. the column which we are orthogonalizing), then thiticates
that the column was (nearly) linearly dependent of the previcolumns. We then
discard this column ot/?#, and the corresponding column Bf?’, and restart
the orthogonalization procedure. A column is also disaaiifieafter orthogonal-
ization, its norm is smaller that0—'® times the largest norm of the previously
orthogonalized vectors. We do this until all orthogonalizectors are sufficiently
large.

As the most recent input and output modes are leftmo$tiff and WP this
means that we will discard the oldest conflicting modes.

Note that after filtering we have obtained

v = (v e e - men Gz

7.5.2 Avoiding singularity for the rank-one update formulation

A first type of singularity can occur wheE@fl in (7.2) is zero. For this to happen
(I — LrH(Lr)T)5p, needs to be zero, which means that € R(VPH).

Both in the rank-one update formula (7.12) and in the fortata(56.3.1) this
would lead to a singularity oK™, ;.

In the rank-one update formulation we cannot just use thequhare described in
§7.5.1 as we do not storé? and WP, (If we did, we could apply the QR-
filtering.)

We therefore propose to keébg+1 = K! in these circumstances.

SFor ordinary QR-decomposition we haga € R™*™ andR, € R™*5.



100 CHAPTER7

A second type of singularity has already been mentiong¥ i, i.e. the occur-
rence where

(L) TR A LY, = 1, (7.129)

for Ay € A(VPH WrH), in which case the approximate Jacobigh, , for IQN-
LS becomes singular.

Again we could propose to keeiﬁﬁigJrl = Kg if this occurs. Unfortunately, doing
so would cause the loss of the secant property as in gef(ér(@lsﬂ —ps) #

K(pst1) — K(ps).
To satisfy the secant property as closely as possible, wid ase a convex average
Kl = (1-0)K,+0, (f(; + ﬁHiifl(E{;fl)T) . (7.130)

whered; is chosenc [0, 1]. We choose the value closest to unity that keeps the
absolute value of the determinamét(K;+1) above a certain threshold (say
0.001 det(f(g)). To help us choosg,, we turn to lemma 2.3.1 to obtain

Kl = KL(T+0,R) 7 Au DR (E2)T) (7.131)
det(K!,,) = det(K!) (1+95<(k;)*1}1HE§f17E§f1>). (7.132)
For the update of the inverse approximate Jacobian thistheso
s+1

1+ 0, (L2 T (K))~ A LEY
(7.133)

\—=19 7FpH (7pH 1\ —1
(KL = (-8 +0, <(K;)(KS) A L) UG )

Note that a similar modification is not possible for the figgie of singularity as
" does not exist.

Tests have shown that the modifications for both types ofutémijies are ade-
quate.



Properties of IQN-LS, IQN-ILS,
IQN-CLS and IBQN-LS for linear
mappings

In this section we assumg, H, F' and/orS are affine mappings, i.eK(p) =
Agp — by, etc., withAg etc. non-singular. We study the properties of the four
Least Squares quasi-Newton methods described in chaptedes this assump-
tion. We recall that, as shown in chapter 7, under this assomQN-LS, IQN-
CLS and IBQN-LS are algebraically identical.

This chapter is organized as follows.

In §8.1 we show that the approximate Jacobians for IQN-LS andlicBNexhibit
monotone convergence in the affine case, and that for affip@imgs singularities
cannot occur before the solution has been reached (in esitohatic).

In §8.2 we establish the relationship between IQN-LS and IQE-tin one hand
and Krylov methods on the other and write GMRes as a quasitdiemethod;
we observe similarities between the three methods; finalfjgi3 we discuss the
possibilities of using step-length parameters for the t. 8aglares quasi-Newton
methods.

In §8.4 we modify the IQN-LS and IQN-ILS methods to make them latgeally
identical to GMRes.

Most of the material in this chapter can be found in [106] at@h].
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8.1 Non-singularity and convergence of the approxi-
mate Jacobian for IQN-LS and IQN-ILS

We show in the next theorems that, in exact arithmetic, thpeagmate Jacobian
for the IQN-LS and IQN-ILS methods never become singulaoteethe solution
has been reached, if the mappings are affine.

These results can then be extended to IQN-CLS and IBQN-L$édnie equiva-
lent, under the above assumptions, as showj7id.1 and;7.4.2.

Theorem 8.1.1.Let K be an affine mapping. Consider the IQN-LS meti6d3.1).
Let s be the first value for whichps1 (= pz+2 — pz+1) is linearly dependent on
dDo, Op1, - - -, Opg, thenpg o is the solution ofK (p) = 0.

Proof. If dpz.1 is linearly dependent ofp,, 0p1, . . ., 0ps then

opsy1 = Y kiop; (8.1)
j=0
and
K 10psin = Y kKl 0p;. (8.2)

j=0

Then we have, according to theorem 7.2.1, that

Ki 1 0psyr = Y kjAxop; (8.3)
7=0
= AgOpsi1- (8.4)
We then have

K(psy2) = K(ps+1)+ K(dpst1) (8.5)
= K(ps+1) + Axopsi1 (8.6)
= K(ps+1) + KLy 10pssa. (8.7)

Because, 2 = ps+1 — (K7, 1)~ K(ps+1) we finally have
K(psy2) = Agps42 —b = 0, (8.8)

which shows thapz - is the solution ofK’(p) = 0 (equation (1.3)). O
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Theorem 8.1.2.Let K be an affine mapping and ldtx be non-singular. Consider
the IQN-ILS methods6.3.2). Lets be the first value for whichK s, (= Kzq2 —
K;14) is linearly dependent ohK,, K1, ...,0Ks, thenpg o is the solution of
K(p) =0.

Proof. If § Kz, is linearly dependent of,, 0K, ...,dK3 then

0Kipn = Y koK, (8.9)
7=0
and
M 0K = Y kM 0K;. (8.10)
j=0

Then we have, according to theorem 7.2.2, that

M 0K = Y kjAR' K, (8.11)
7=0
= A 0Kgi. (8.12)
Also

Ds+2 = Ds41 — M§+1K(P§+1) (8.13)
K(pst2) = K(psy1) — AxM  K(psyq). (8.14)

We also have
K(psy2) = K(pst1)+ 0Ksq1. (8.15)

Using (8.12) in (8.15) we obtain

K(psi2) = K(psy1)+ AxM, 6K (8.16)
Combining (8.16) and (8.14) we get

AgML 0Kgpn = —ArML K(psi1) (8.17)
AgM{ K (psy2) = O, (8.18)

and asMgJrl and Ag are non-singular it follows thak (pz;2) = 0 and thatz»
is the solution ofK’(p) = 0 (equation (1.3)). O



104 CHAPTER 8

Theorem 8.1.3.If K is an affine mapping, then the approximate Jacobfé.jﬁ
of the IQN-LS method;6.3.1) converges to the true Jacobidrn in a monotone
way, i.e.

K.y — Akl < | K. — Ax| (8.19)

(s=0,1,2,...).

Proof. For the proof of this theorem we apply theorem 2.3.2 in agitéorward
manner.
As, for an affine mapping, we have(equation (6.27))

K. = AgvrH|(vrh)TypH =t (ypiyT T, (8.20)

andAx = Ay — I, it suffices to replacé), in theorem 2.3.2 b)f(;, Ty by Ay
andT; by I, to prove equation (8.19). O

Theorem 8.1.4.If K is an affine mapping, then the approximatiﬁﬂ of the
inverse of the Jacobian for the IQN-ILS meth@®.8.2) converges to the true
inverse Jacobiam ;' in a monotone way, i.e.

ML, — AR < (1ML — AR (8.21)

(s=0,1,2,...).

Proof. For the proof of this theorem we apply theorem 2.3.2 in agitéorward
manner.

As, for an affine mapping, we have

M = Ay (Ag) " TWEA[(VEH)TYKHZL(VEIT - ] (equation (6.39)),
andAg A — I = AR, it suffices to replac€), in theorem 2.3.2 b/, Ty by
Ap Ay andTy, by I, to prove equation (8.21). O

As a general conclusion we can see tl%fétt resp.]\?[,’l, will correspond to the exact
Jacobian, resp. inverse of the exact Jacobian (theorer 2@uation (2.17)) and
that hencep,,.1 will be the exact solution for both IQN-LS and IQN-ILS, when
the operators are affine.

This compares very favorable against Broyden'’s good andrgdbdods, the Column-
Updating method and the Inverse Column-Updating methodhytdccording to
Gay'’s theorem, converge in at mast iterations for affine operators (cf§4.4.1,
§4.4.2,84.4.3 andi4.4.4). For that reason, we will only investigate properfiar
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which s < n further in this chapter.

Unfortunately monotone convergence of the approximate(se) Jacobians does
not necessarily imply monotone convergence of the itetatesfor IQN-ILS M;
converges towardzﬂ;(1 in a monotone manner and as it is the inversd gfthat is
needed in the iteration (equations (4.1) and (4.4)) thisvsttbat IQN-ILS is more
likely to exhibit monotone convergence than IQN-LS.

It is believed that this advantage in convergence speedigdaver to weakly
non-linear problems.

As IQN-CLS is algebraically equivalent to IQN-LS and equeévd to IBQN-LS
for affine operators, these conclusions extend to these wibads.

We would also like to point out that respecting the geneedlizecant property

of ordermin(s,n) (equations (7.43) or (7.44)), i.e. for all previous itemtes
clearly a good idea if< is an affine mapping as judged from theorems 8.1.3 and
8.1.4. However, this matter should be investigated in metaifor non-linear
systems, as secant properties obtained with points thdaafiem the actual so-
lution might not be representative of the actual tangenergiane and thus might
actually hamper convergence.

8.2 Comparison between IQN-LS, IQN-ILS and GM-
Res

At first sight Newton-GMRes and the various quasi-Newtonhoés have little in
common. Newton-GMRes is an inexact Newton method, meahiaigthe linear
system (4.2) in the exact Newton equation (4.1) is only sbh@proximately. This
is different from quasi-Newton methods where an approxionadf the Jacobian
is used in the Newton equation, but the resulting systenmesiadxactly.
Nevertheless, &tinas [32] has shown in an abstract framework that ineMXaet-
ton methods are equivalent to quasi-Newton methods. Irstugon we will show
the relationship between the Least Squares quasi-Newttimooie and Newton-
GMRes in more detail.

We also note that for the affine mappings we are studying INgeiton-GMRes
actually becomes “plain” GMRes if we solve the first Newtogpsexactly by GM-
Res. We will make this assumption further on in this section.

1An illustration of this can be found in chapter 11.
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8.2.1 Writing GMRes as a Quasi-Newton method

We will show how GMRes can be interpreted as a quasi-Newtothadewhen
applied to the linear equatiodxp — bx = 0. We will start our derivation from
the elementary formulation given §3.2.2.1.

(We recall that in the GMRes method it is assumed that foryeveg R™*! we
are able to formA iz, which does not correspond to our notion of “function call”,
defined ad((z) = Axz — bk.)

As we have seen if3.2.2, the GMRes method constructs

Ps =Po+ [To AxTo. .. AST 1o [@1,5 Wos ... @s,6] " (8.22)
such that

rs =70 + [AKTo A%(ro AR, o .(DS’S]T (8.23)

is minimal in the Euclidean norm (theorem 2.3.6). As a res@thave (theorem
2.3.7):

P, = (I _ygeM ((VSGM)TVSGM)_l (VSGM)T) ro (8.24)
and

Ps = po — WEM ((VSGM)TVSGM)_l (VEMTy. (8.25)
whereVEM = [Agr,| A%r,|...|A%r,] and

WEM = [r,| Agrol. .. |A§(_1ro] = AI}lVSGM.
Using lemma 2.3.2 we see that

VG]VI ((VG’M)TVG]\/I)71 (VG]W)T _ L:G]W(ﬁGM)T (826)
and
) I\ —1 _
WSGJ\I ((V'SGM)TV—SGZM) (‘/SGM)T _ AKlﬁfM(ESM)Ty (827)

where the columns of¢M form an orthonormal basis for the rangelaf™ as
shown in lemma 2.3.2.

Using theorem 2.3.2, witli;, = A,}l andT; equal to the zero matrix, we see that
for s — n (8.27) converges monotonically mf}l; similarly, (8.26) converges
monotonically tol.
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GMRes can thus be written as

Post = po— AZLLEM(LGM)T,
Ag(psy1 —po) = —LM(LITr,
Ag (o1 — Po) — Ax(ps —po) = —LIM(LE) v, — Ak (ps — po)
Ag(popr —ps) = —LIMELI)V v, — Ak (es — €o)
LEM(LEMYTr, — (ry —1,).

As (ry —r,) € R(VEM) and henceCSM (LM (ry — 1r,) = (ry — 7,) this
becomes

Ag(psp1 —ps) = LML)y, (8.28)
and we can thus write GMRes as
R LS (LM

Ps+1 = Ps— A Ts,y (829)

N

s

WhereM; can be seen as an approximationﬁlt@l. (8.29) corresponds to the form
of (4.5) and hence GMRes can be considered as a quasi-Neveihrodhapplied
to (1.3).

Also note that (8.25) corresponds to (2.8) and that the aqupiade Jacobian is
guaranteed to be non-singular due to the properties of agrop method (defini-
tion 2.13).

Theorem 8.2.1. GMRes, applied to the linear systdif(p) = Axp — bx =0, Is
a generalized secant method of ordein (s, n) (equation (7.44)).

Proof. For GMRes we have that, — p, € R(WEM) (equation (8.25)), for
s =0,1,.... As from theorem 6.2.3 we have thR{W ) c R(WEM), for
j=0,1,...,s, we have thap; — p, € R(WM) c R(WEM), and hence that
Ps —Pj € R(WSGM)

It follows that A (ps — p;) € R(VEM), i.e.

LEM(LINT A (ps — pj) = Ar(ps — 1), (8.30)
from which we obtain that
AL LML Ak (ps —pj) = ps—py (8.31)

We know that, for GMRes in the form of equation (8.29), theragpnate inverse
Jacobian can be written a¢, = A £LGM (£LEM)T . We finally obtain
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M(K(ps) — K(pj)) = ps— D) (8.32)

which completes our proof. O

Theorem 8.2.2. Suppose thaMs’ is constructed as in the GMRes method, applied
to the linear problen¥ (p) = Agp — bx = 0. ThenM__, is linked toM. by the
following expression (fog < n):

M.y =M+ AZ LM (LT, (8.33)
whereL&? is the(s + 1)-th column ofC&? .

The proof of this theorem is analogous to that of theoremd. add 7.1.2.

8.2.2 Kirylov subspaces for IQN-LS

In this section we apply the Quasi-Newton Least Squaresaddtha single linear
systemA g p—bx = 0. We will show that the iterates of this method share the same
Krylov search subspace as those of GMRes, but not the subspaonstraints.

Theorem 8.2.3. Consider the IQN-LS methogg.3.1). Assume thdf(; is non-
singular® and thatK is an affine mapping. Then the following relations hold:

Vo e R(VIT) : (K)) ' Ak =1, (8.34)
(j=0,1,...,s),and

Vi e{0,1,...,s}:

(I - (K)"Ax)(es—¢j) = 0 (8.35a)
est1 = e — (KL) T Age; (8.35b)
Ts41 = Tj— AK(K;)ilT‘j (835C)
psi1 = pj— (K K(p)). (8.35d)

2As shown in theorem 8.1.1, this assumption is always satifgieaffine mappings.
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Proof. As, from theorem 6.2.3yj € {0,1,....s} : R(V/") c R(VPH),

lemma 2.3.3 allows us to writéz € R(V/"), j =0,1,...,s:
(AgPH (T DN = (Ag — Dz (8.36)
x o= (Agl (T —I)TH (A — Dz (8.37)
r = (K)‘Agz, (8.38)

which proves (8.34). It follows that
(I —(K)'Ag)z = o. (8.39)

We can conclude thak (V") is part of the null space dff — (K”)~ (A — 1))

(it equals the null-space #l i is non-singular).

Ases —ej = ps — p; We have(e; — e;) € R(VPH) from the definition oft’?1.

By replacingz in (8.39) by(e,; — ;) we obtain (8.35a). Equations (8.35b), (8.35c¢)
and (8.35d) follow immediately. O

Note that this theorem can be extended to non-linear mapgipgeplacingA g
with Ay € A(VPH WrH),

From this theorem we see that the previous iterates onlyibaoi to the solution
process by creating a better approximate Jacoﬁ’l’gnThis can be seen from equa-
tion (8.35d) which shows that we can use any previous itdoatine construction
of the new iterate as long as the most recent approximatdizecis used.

Corollary 8.2.1. Consider the IQN-LS methodg.3.1). Assume thd%’; is non-
singular, thatK (or H) is an affine mapping and that the iterations start from an
initial guessp, = 0. Then the quasi-Newton iteration can also be written as

Pes1 = (A L2 (LT — 1) Mbye (s > 1), (8.40)
and the errorez 4 is given by

est1 = ((Ag L (LT — )™ — (Ay — 1)) bk (s >1).
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Proof. If we start fromp, = 0, thene, = —A;QbK, as the exact solutiop* is
given byp* = A bx. From equation (8.35b) we get

eap1 = —(I— (KL YAg) A bk (8.42)

= ((K)™ = Ak, (8.43)

AsK! = Ay crH(£rH)T _TandAy —1I = Ag, equation (8.41) has been proven.
ASpst1 = p* + es41 We get

psy1 = (Ag—I)7"bg + (K)™' = (Ag — 1) bk,  (8.44)

from which (8.40) follows. O

Note that (8.41) can also be written, from (8.43) as

ever = (KD = (K' () 7") b, (8.45)
where(K'(p,))~' = A"
Corollary 8.2.2. Consider the IQN-LS method§.3.1). Assume thdﬁ; is non-

singular and thatK is an affine mapping. Then = Age,, 11 = Agr, and for
s > 1, there exist{~1 s4+1,72,541, - - - » V5,541 C R, such that

ess1 = Aneo+An Y vispi(ei —eo) (8.46)

=1

res1 = Auro+ A Y iss1(ri —7o). (8.47)

i=1

Proof. From theorem 8.2.3 it follows that

et = o~ (K)7H(Ap — e,
(AHﬁgH(ﬁgH)T —I)(es41—€) = —(Ag —1I)e,
esp1 = AgLPH(LPEY (e) —e,) + Ape,.
As LPH (£pH)T is a projection operator on the span{ef — e, ea — €5, ..., €5 —

€0}, the latter expression can be written as

€s+1 = Ape, +An Z ’Yi,s+1(€i - eo), (8-48)

i=1
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which proves (8.46).
To prove (8.47) we start from (8.46), and re-arrange it as

S S
ess1 = Axeoteot+ Ak Y Yistr(ei — o)+ Yisp1(ei — €)
i=1

i=1

S S
= Toteot Y Vi1 (ri—7o) + Y Visrr(ei — o)
i=1

i=1

S S
Agec1 =7op1 = Agto+1o+ A Y Vi1 (ri = 7o) + Y Vis1 (i — 70)
i=1 =1

S
= Apr,+Apn Z%,sﬂ(ri —To),

i=1

which completes our proof. O

We will now show that IQN-LS shows some similarities with Ky subspace
methods (definition 2.15) as at theth iterate we have, € ), with ), =
Ks{Ak;r,}, which is the same search subspace as GMRes; on the othewkand
havers | Z,_1 = (AL)"1K,_1{Ak;7,}, which is different from GMRes where
TSJ_AK]CS{AK; 7’0}.

Theorem 8.2.4. Consider the IQN-LS metho§g.3.1) and assumg is an affine
mapping. Assum&’_, is non-singular. Then we have that

es € eo+ K{Ak;ro} (8.49a)
Ps € pot+K{Ar;ro} (8.49b)
rs € T+t AKICS {AKy ro}- (849C)

Proof. LetP; = {¢(z) € R[z] : q(z) = Zle k;x'}, i.e. the space of real poly-
nomials of degreé, or lower, with zero constani(A k) represents a polynomial
in Ag,i.eq(Ax) = Zle kAL for g(z) = Zle Kixt

We first note thaP;, overR is a vector-space of dimensiénand that as such

th(l’),tg(l') € Pk,val,ag S R . Oéltl(fﬂ) + Oégtg(l’) € Pk,

andthatvl < k : P, C P,.
We will now give our proof by induction.
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We know that
e1 = Apeo=¢eo+ (Ag —I)eo = eo + q1(Ax)eo, (8.50)

whereq; € P, andAx = Ag — I. We know (from corollary 8.2.2) that

1

e2 = Ay vialei—eo) + Ane, (8.51)
i=1

Agyiz2(er —eo) + Ame, (8.52)

= Apmper — Agmie, + Ame, (8.53)

Ase; = Age, We obtain

e2 = Yi2ApAge, — Agvize, + Ame, (8.54)
M2An(Ag — e, + Ane, (8.55)

= maoApAxe,+m2(Axe, — Axe,) + Ape, + (o — €,) (8.56)

= Y24k Ake, +N24Ke, + Axe, + e (8.57)

= m2d%eo+ (11,2 + 1) Ake, + € (8.58)

= €0+ q2(Ak)eo, (8.59)

wheregs € P>. We now prove that, if we have

ex = eo+ qp(AK)eo, (8.60)
fork =1,2,...s — 1, whereg, € Py, it follows that

es = e+ qs(Ax)eo, (8.61)

whereg, € Ps.

We have (from corollary 8.2.2) that

s—1

es = Apge,+ Ag nyk,s(ek —€) (8.62)
k=1
s—1

= Apeo+An Y Yrs(a(Ax)eo). (8.63)
k=1

Knowing thatVk < s — 1 : qx € Py = qr € Ps_1 and sinceP,_, is a vector-
space oveR, we can write

€s = AHQS—I(AK)BO + AHem (864)
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whereg,_1 € Ps_1. We also have that

es = (Ar)is—1(Ak)eo +ds—1(Ar)eo + (Ax)eo +e,.  (8.65)

AsVq(x) € Py : zq(x) € Pry1 and ase € Py1 we can finally write

€s = €t qs (AK)eoa (866)

whereg; € Ps.

Thusesy1 € e, + spaf{ Axe,, A% o, Adceo, ...y ASceo )

Noting that

spa{ Axeo, A% e, Adeo, ..., Afveot = Spa{ry, AxTo, A%To, ... ,A‘}'{lro}
we have proven (8.49a).

Equations (8.49b) and (8.49c) follow immediately. O

Theorem 8.2.5. Consider the IQN-LS methoff.3.1) and assum& is an affine
mapping. Assumg’_, is non-singular. Then we have thatL (AZ) "' Ks_1{Ax; 70}

Proof. From corollary 7.2.3 we know that, = Ay LPH (LPH)T5p, ;.
If we write (LPH)T6p,_1 = k € R then we have, = k Ay LPH.
AsVy € R(VPE) - (LrH ) = 0, it follows that

Yy € R(VPH) : (rs, (AL)1y) = 0. (8.67)
From the definition of/2* and equation (8.49b), we see thRatV"" ) = K1 {Ax; 70}

if V" is of ranks — 1.
rs is thus orthogonal toA%) =11 {Ak; 7.} O

Remark 8.1. Asr, is only orthogonal to as — 1-dimensional subspace, it is not
a Krylov subspace method in the classical sense.
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8.2.3 Krylov subspaces for IQN-ILS

We will show that the iterates of this method share the sanydokisearch sub-
space as those of GMRes (and hence of IQN-LS), but not thepaab=f con-
straints.

Theorem 8.2.6. Consider the IQN-ILS method§.3.2). Assume thdﬂ; is non-
singular® and thatK is an affine mapping. Then the following relations hold:

Vi e{0,1,...,s}:

(I —AgM)(rs—7;) = 0 (8.68a)
esy1 = e5— M Age, (8.68b)
rey1 = 1j— AgMlr; (8.68c)
psi1 = pj — MK(p)). (8.68d)

Proof. (The proof is similar to the one in theorem 8.2.3.)
As, from theorem 6.2.37j € {0,1,...,s} : R(V/") c R(VH), lemma 2.3.3

allows us to write, using equation (8.34%); € R(V,*"), j =0,1,...,s:
Mz = Az (8.69)
(I —AgM)z = 0. (8.70)

Asry —1; = K(ps) — K(p;) we have(rs — ;) € R(VEH) from the definition
of VX and the theorem follows. O

From this theorem we see that the previous iterates onlyibaoie to the solution
process by creating a better approximate inverse Jacadljajust as for the IQN-
LS method.

Corollary 8.2.3. Consider the IQN-ILS method®.3.2). Assume thaf{; is non-
singular, thatK (or H) is an affine mapping and that the iterations start from an
initial guessp, = 0. Then the quasi-Newton iteration can also be written as

psr1 = (A + DLET(LENT — Dbge (s>1), (8.71)

3As shown in theorem 8.1.2, this assumption is always satifidihear systems.
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and the errore,, 1 is given by

esi1 = (A" + 1) (LEH(LENT — 1) by (s>1). (8.72)

The proof is analogous to the one in corollary 8.2.1.

Note that (8.72) can also be written as
e = (N = (K (9.) ") bic, (8.73)

where(K'(ps)) ™' = Ax'.
Comparing this withe,; = ((f(’)—l - (K'(ps))_l) b for IQN-LS and taken

S

into account thaf//! converges in a monotone manner towargs' for IQN-ILS,
whereag K’)~! for IQN-LS does not, would indicate that IQN-ILS would most
likely exhibit better convergence.

Corollary 8.2.4. Consider the IQN-ILS method®&.3.2). Assume thdb‘?l‘; is non-
singular and thatX is an affine mapping. Then = Age,, r1 = Agr, and for
s > 1, there existdy1 s+1,72,5+1 - - - » ¥s,s+1} C R, such that

res1 = Auro+ Ay Vispr(ri — 7o) (8.74)

i=1

es+1 = Ape,+ Ag Z'Yi,s+1(ei —€o). (8.75)
i=1

Proof. From theorem 8.2.6 it follows that

res1 = ro— AxMlr, (8.76)

= 1r,— Ag [(Ax + DA LEF (LENT — 1] 7, (8.77)

= 1o~ (LILINT + A (I - LI (LI ))ro (8.78)

= (Ag + DI = LI (L)), (8.79)

= Apr, — AgLEH (LEANTy (8.80)

As LEH(LEH)T i5 g projection operator on Span — r,,72 — o, - -, Ts — To }

the latter expression can be written as

rsy1 = Apro+ An Z Vi,s+1(Ti — To). (8.81)

i=1
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To prove (8.75) it suffices to multiply both sides of (8.81)114@1 and re-arrange
the terms as follows:

rer1 = (Ax +1Dro+ (Ax + 1) Z%‘,sﬂ(ﬁ‘ — 7o)
i=1
A;(1r5+1 =es41 = A;(l (Axg + D)ro + A;} (Ax +1) Z%,SH(H — 7o)
i=1

= (I + Ao+ (I + AZ Z%m i = To)

(I+ A Ake, + (I + AR AKny”H i —eo)

S
= Apeo+An Y ispilei — €o),
i=1

which completes our proof. O

We will now show that IQN-ILS shows some similarities withyav subspace
methods (definition 2.15) as at tkeh iterate we haves € Vs = K {Ak; 7o},
which is the same search subspace as GMRes; on the other bdvad&v, | Z,_ 1,
whereZ, 1 = (AL) YA Ks—1{Ak;7,}, which is different from GMRes and
IQN-LS.

Theorem 8.2.7.Consider the IQN-ILS method@.3.2) and assumg is an affine
mapping. Assumﬁf[;_1 is non-singular. Then we have that

es € e+ K{Ak;ro} (8.82a)
Ps € po+Ks{Ar;iro} (8.82b)
ry € T'O+AK]CS{AK;T‘O}. (8820)

Proof. LetP;, = {q(x) € R[z] : q(z) = Zle k;x'}, i.e. the space of real poly-
nomials of degreé, or lower, with zero constani( A ) represents a polynomial
in Ak, i.eq(Ax) = Zle kAL for g(z) = Zle kit

We first note thaP;, overR is a vector-space of dimensiénand that as such

Vi1 (), ta(x) € Py, Vai,as € R: ayty(z) + asta(x) € Py,
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andthatvl < k : P, C Py..
We will now give our proof by induction.

We know that
e1 = Apeo=¢eo+ (Ag —I)eo = eo + q1(Ax)eo, (8.83)

whereq; € P; andAx = Ay — I. We know (from corollary 8.2.4) that

1
e = Ay Z%‘,Q(ei —eo,) + Aneo (8.84)
i=1
= Awumaler —eo) + Ane, (8.85)
= yi2(Ag —DPeo+ (1 +mp2)(Ag —Deo+e,  (8.86)
= eo+ q2(Ak)eo, (8.87)

whereqs € P,. (The derivation is similar to the one in theorem 8.2.4.) We/n
prove that, if we have

er = eo+ qr(AK)eo, (8.88)
fork=1,2,...s — 1, whereg, € Py, it follows that

es = eo+qs(Ax)eo, (8.89)
wheregs € Ps.

We have (from corollary 8.2.4) that

s—1

es = Ape,+ Apy Z’Yk,s(ek - 60) (890)
k=1
s—1

= Apeo+An Y Yrs(a(Ax)eo). (8.91)
k=1

Knowing thatvk < s —1: qx € P = qr € Ps_1 and sinceP,_, is a vector-
space oveR, we can write

€s = AH(jsfl(AK)eo + AHem (892)

wheregs_1 € Ps_1. We also have that

es = (Am—1)Gs—1(Ax)eo + Gs—1(Ak)eo + (Ax)eo +e,. (8.93)
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AsVq(x) € Py : zq(x) € Pryq and ase € Py1 we can finally write

€s = €+ QS(AK)eov (8.94)
whereg, € Ps.
Thusesy1 € e, + spaf{ Axeo, A% ep, Adceo, ...y Afceo}
Noting that
spa{ Axeo, A%eo, A3, ..., Afceo s = Spary, Ao, A%To, ... 7A§;17“0} we
have proven (8.82a).
Equations (8.82b) and (8.82c) follow immediately. O

Theorem 8.2.8. Consider the IQN-ILS method@.3.2) and assumg is an affine
mapping. Assum&/’_, is non-singular. Then we have thatl (A%) ' A K, 1 {Ak;70}.

Proof. From (4.9) we know that

re = Te_1—AgM _|r._1, (8.95)
and hence
re = 7Teo1— Ag(Ag A LER (LK Iy (8.96)
= req — (T4 Ag)CLEH(LEIT _ A yr, (8.97)
= I+ Ar)I = L (LD )rs (8.98)
= Ap(I — LEH( LENTY. . (8.99)

Hencer, = Agz, with z = (I — LEH(LEINT)r | € (R(VEID))L.
AsVz € (R(VEH)L vy € R(VEHR) : (z,y) = 0, it follows that

Yy € R(VEH) : (ry, (Af) " 'y) = 0. (8.100)

From the definition of X and equation (8.82c), we see that
R(VEI) = AxKs_1{Ak;r,} if VEI is of ranks — 1.
7 is thus orthogonal toAT,) " A K1 {Ak; 7o} O

Remark 8.2. Asr; is only orthogonal to as — 1-dimensional subspace, it is not
a Krylov subspace method in the classical sense.
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8.2.4 Further discussion

While IQN-LS and IQN-ILS share the same Krylov search subspacthe iterates
we need to stress some subtle differences.

First of all, IQN-LS and IQN-ILS were developed based on tion calls” which
in the case of affine mappings correspond4() = Auyp — by = K(p) + p,
while GMRes has been developed based on matrix vector piodug. Variants
of GMRes exist that work with function call& (p) or K(p) instead of matrix-
vector products (e.g§3.2.2.2 [218]), but these exhibit poor numerical stahility
Experience has shown that the most stable way to use GMRed basfunction
calls is to computéx (= by ) explicitly, thus requiring an extra function call.

As we have showryp,, 1 (or an earlier iterate) will be the solution of the system
for both IQN-LS and IQN-ILS (starting from,), at which pointn 4+ 1 function
calls will have been spent. For GMRgs (or an earlier iterate [222]) will be the
solution. Nevertheless, at that point we will also have used1 function calls,
as the residuat,, = K(p,) needs to be computédIn IQN-LS and IQN-ILS,
however, we have no knowledge of the final residyal,, even though we are
sure that, in exact arithmetic, it is zero. If we were to cotegy for convergence
verification when working in finite precision, then an exteanétion call would
need to be spent.

Combining this last argument with the one before we see Wiagn we base our
methods on function calls, GMRes needs at most2 function calls (for a stable
version) and so do IQN-LS and IQN-ILS (if we want to verify theal residual).

8.3 The effect of step-length parameters

We could consider modifying the basic quasi-Newton itera{4.4), resp. (4.5),
with a step-length parametet € R:

Pyt = po—wo(KL) M, (8.101)
resp.
Psi1 = D5 — wMlrs. (8.102)
The resulting error and residual equations are

esp1 = es—ws(K!) T Ake, (8.103)
r5+1 - Ts _wsAK(Kg)_l'rs, (8104)

4ltis this variable that is optimized.
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resp.

est1 = es—wsM.Age, (8.105)
Ts41 = Ts— WSAKM;T5~ (8106)

We now show that the effect of the step-length parametemigdd to the current
iterate whenk is an affine mapping.

Theorem 8.3.1.Let K be an affine mapping. Consider the IQN-LS metl§6d3.1),
using a relaxation factor as in equation (8.101), then theich ofw, € R\ {0}
is irrelevant for the value of,2°.

Proof. We have, by posing; = e, || + e 1, Wheree, | € R(VPH) | es ) €
(R(VPH))+ and using theorem 8.2.3, that

esi1 = s —ws(K) M Age, (8.107)
= eq |t es 1 —ws(KY) T Ages 1 —wsey (8.108)
(1 —ws)es | + et —ws (K1) Ages 1 (8.109)
= (1-wyes + (1 —wy)es L —ws(K)) " Apest (8.110)
= (1=w) (eag Feas + (KD Ageqr) = (K) " Anes, 1

(8.111)

The new column vector added to update” to Vfﬁ will depend omipy = psy1—
Ps = 0es = €541 — €.

des = —ws (es,“+65,J_+(K;)_1AH€S,J_)- (8.112)

We can thus conclude that the directiondef is independent of,,. We see that
es+1 has a part that is parallel t&@, (part(x) in equation (8.111)) and a remaining
part that is independent af, (part (x)).

(x) will be eliminated completely at the next iteration, acéogito theorem 8.2.3,
as itlies inR(ijl). We can thus conclude that will have no effect at the next
iteration. O

This theorem shows that, for linear problems, line-searcivbich are often part
of a (quasi-) Newton method, do not improve the long-termveagence of our

5The value ofp;+1 will be affected however.
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algorithm, but can improve the instantaneous convergeWdale classical line-
searches [6,91,202] require supplemental function etials(which we consider
to be very expensive), we will discuss a cheap and easy atteerin§8.4.

This does not mean that the use of a relaxation parametet mogjbe beneficial in
the non-linear case. Nevertheless, methods that deteth@melaxation parameter
based on extra function calls might not be economical duleedigh cost of these
function calls. For that reason we will only use a fixed retetaparameter in
the first iteration, where it is meant to avoid excessivedhdivergence that might
impair the later convergence.

Remark 8.3. Theorem 8.3.1 extends jg by settingf{; =—1.

Remark 8.4. Similar properties hold for IQN-ILS (equation (8.102)) aloglana-
logy with IQN-LS also for IQN-CLS and IBOQN-LS.

8.4 Modifying IQN-LS and IQN-ILS to make them
algebraically identical to GMRes

8.4.1 Re-writing the quasi-Newton algorithm for matrix-vector
products

As we have shown i§8.2, IQN-LS and IQN-ILS (and by extension IQN-CLS and
IBQN-LS) share the same Krylov search subspace for thadé®ifithe operators
are affine. This means that, theoretically, we can modifyLthest Squares quasi-
Newton methods to make them algebraically identical to GBReve can find a
suitable linear combination of the basis vectors of thecdeanbspace.

In this section we will show that this is indeed possible whencan formA iz,

Vo € R™*!, as opposed té (x), for those quasi-Newton methods. We will also
show that this can be done without the need for supplementatsix-vector prod-
ucts (which are the equivalent of function calls in this &o).

(In chapter 11 we will verify this claim with the help of nuneal experiments.)

To do this, we first re-write the general quasi-Newton metpven in (8.101),
resp. and (8.102), as in algorithm 8.4.1, resp. 8.4.2, basédeas in [55].
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Algorithm 8.4.1 (Alternative form 1 of the IQN algorithms with approximatecd-
bian).

1. Startup.
Take a starting valug,,;
computer, = Axp, — bx;
choosek™.
Sets = 0.

2. Loop until sufficiently converged
a.A, = (K)'r,
b. Ps+1 = Ps — wsAs

C.qs = A A,
d. Ts4+1 =Ts — Ws(s
T
e. K’ _ K/ (q8 — TS)CS
s+1 S + <A37Cs>
f. Sets = s+ 1.

Algorithm 8.4.2 (Alternative form 1 of the IQN algorithms with approximate-
verse Jacobian)

1. Startup.
Take a starting valug,;
computer, = Axp, — bx;
choosel!.
Sets = 0.

2. Loop until sufficiently converged
a. A = Mb’,rs
b. Ps+1 = Ps — wsAs
C.qs = A A,
d. Ts4+1 =Ts — Ws(s

Vi T
e. ]\;[;4_1 _ Mé . ]V[s(qs rs)ds
<QS7 ds>

f. Sets = s + 1.

(We assumey, # 0 with s =0,1,2,....)
The definitions of:5 andd, in these algorithms are the same as those usédl.4h
and define the specific quasi-Newton method.

For IQN-LS we use the following in algorithm 8.4.1:
° f((/) = 1.

A, .
[P

° |fS:OZCS:[_£+1:
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o FpH _ (I—£pRert)Tya,
else:cs = Loty = [ zimeimymya
_ - p,pH _ 7pH .
o If s =0: L0, = L,

else: L2, = [£pM|L2Y].
For IQN-LS we use the following in algorithm 8.4.2:
o M =—1I.

— 0 Jd — TKH _ 4 -
o =0:ds = =
If s=0:ds = L34 AR

. FKH _ (I-LFFELET T,
elseid; = Loy = qr=zkmzkmmyg.T-

o If s =0: LEH = [KI:

else:LEH = [LEH|LEH],

We recall that using the parametey(+# 0) does not change the search subspace
and the long-term convergence, but can improve the instantes convergence of
the algorithm (cfr§8.3).

Settingws = 1 in both algorithms yields the standard IQN-LS and IQN-ILS-me
thods in rank-one update form.

8.4.2 Optimal step-length

If we use the formulation of the IQN-LS method given in algiom 8.4.1 we can
find the value ofu, that minimizes-, in the Euclidean norm. To do so, we impose

T5+1 J— gs, (8113)

with rs11 = rs — wsqs. This leads to

<7's+17q(9> = <Ts - Ws‘]sv‘]s> = 0
oy = ATeds) (8.114)
(95, qs)

For IQN-ILS we obtain the same expression.

If we compare the resulting variant of IQN-LS and IQN-ILS WwiEMRes, we see
that both still share the same Krylov spacesifpandr,. When using the optimal
step-length parameter in (8.114) IQN-LS and IQN-ILS sedochhe smallest re-
sidualrs inr, + AxK{Ak; 7.}, but only along the directiog,_,. Even though
this will improve convergence (in exact arithmetic), it Wil general result in a
larger residual than for GMRes, as the latter searches éositiallest residual in
ro + AxK{Axk;r.}, butin all directions contained in that subspace.
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8.4.3 Multiple parameters

In §8.4.1 and;8.4.2 we have only added a single iteration parameter touhsig
Newton methods. While an optimal value for that parametelrnegult in better
convergency it does not allow us to obtain algorithms that are algeltbiequi-
valent to GMRes.

If we want to obtain an algorithm that is algebraically e@lént to GMRes, we
should add multiple parameters, as done in algorithm 8.4.3.

Algorithm 8.4.3 (Alternative form 2 of the IQN algorithms)
As algorithms 8.4.1 and 8.4.2 , but with

2. b.ps+1 =DPs — Zes,iAi

1=0

2. d.Ts+1 =Ts— ies,iqi

=0

(We assuméd; ; # 0withs =0,1,2,....)

We now show, in the following theorem, that adding these ipatars does not
change the search subspace (i.e. the subspace in whicbkridtes are found).

Theorem 8.4.1. The IQN-LS method implemented as in algorithm 8.4.3 retains
the same search subspace as the unmodified algorithm (waiches obtained by
settingd, , = 1 andf, ;+, = 0,fors =0,1,...).

Proof. We will proof this theorem recursively, based on the resofttheorem
8.3.1.
We see that

p1 = po_eo,o(f(:))ilK(po) (8115)
0o = —000(K) " K (po) (8.116)

corresponds to the form of theorem 8.3.1 by setting= 6, ,.
For p, we write

P2 = p1—01o(K) T K (p,) — 611 (K7) T K (p1) (8.117)
. 010
p2 = p1—91,1(K{)_1K(p1)+01’ 0po. (8.118)

()

6As always, in exact arithmetic.
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We can apply theorem 8.3.1 to the part markedby settingv; = 67 ;. We obtain

A ~ 9 o
(1= 010)(er + (K7) ™ Ager,1) — (K7)Ager 1 + L0 e,

€y =
90,0
(8.119)
N 01,
Sep = —O11(er + (K)) " Ager )+ “L05e,. (8.120)

00,0

We thus see that, has a part that is parallel tz; (marked(xx)), a part parallel

to de, (marked(x  x)), and a part that is independent of the iteration parameters
(marked(x * x)). As (xx) and(x x *) will be eliminated in the next iteration, we
see that there is no long term effect of the iteration paramset

We also see thaie, andde; are linear combinations of the valueséef, andde;

that would be obtained by settifg , = 1 andf, ;+;, = 0, fors = 0,1,... (i.e.

the unmodified algorithm). This means that the subspacengpidnydc, andde;

is not altered.

Applying this reasoning recursively proves the theorem. O

Remark 8.5. A similar proof holds for the IQN-ILS algorithm.

We now compute the optimal values of the parameters, i.sethat minimize the
residual in the Euclidean norm. We defie = [05, 651 ... 0573]T and impose

rey1 Lo (8.121)
(1 =0,1,...s). By analogy with (8.114), this leads to
0, = (Q"Q)'Q"r,, (8.122)

whereQ = [go g1 ] - - |gs)-

As {A;};_, span the same Krylov subspace as the unmodified algorithtitef
orem 8.4.3), they form a basis for the Krylov subsp&td Ax;r,}. As Ak is
assumed to be non-singular, it follows tHat}?_ form a basis for the Krylov sub-
spaceAx Ks{Ax;r,} to whichr,,, is now orthogonal. It follows that the IQN-
LS and IQN-ILS method, implemented as in algorithm 8.4.2 algebraically
identical to GMRes (cf§3.2.2).

Note that the modifications to obtain algorithms 8.4.1,Bahd 8.4.3 do not de-
mand extra matrix-vector products, and only conceptuafferdrom the original
formulation in their ability to formA iz for all z € R**! as opposed td gz —b.
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Improving the Jacobian for discretized
time-dependent and grid-based
problems

Sometimes we are presented with a series of related propfemastance time-
related problems; this was briefly mentionedinl.3.

We will write
Fy(g;pt-1,9t-1) = p (9.1a)
Se(pipt-1,9t-1) = g, (9.1b)
or
Ki(p;pi-1,91-1) = 0, (9.2)

(t =1,2,...) for this type of problem. (The subscript denotes the problégthin
the series, i.e. most often the time-level.)

By this we mean: “solve (9.1) fgy andg, with known values ofy;_;, andp;_1",
resp. “solve (9.2) fop with known values of;;_; andp; 1". p;—1 andg,_| are
the values op andg at the previous time-level; if exact values are not avadabl
we will use the final values of the iterative process used ligcegbe problem at the
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previous time-level.

The solution of (9.1) or (9.2) will give the values pfand/org at the new time-
level (p;, resp.g;).

When we solve these equations iteratively, the iterategittions for time-level
t will be written asp; ; andgs ., etc.

While there are many problems of different origins that cawhb#en in this form,
we assume that from here on we are dealing with discretiregltiependent ordi-
nary or partial differential equations, and that the sups¢idenotes the time-level
for which we are solving the resulting algebraic system.

9.1 Recovery of data from previous time-levels

9.1.1 Recovery methods based on input-output pairs

The following method can be applied to all of the Least Sguaneasi-Newton
methods when using the formulation 6.3 (i.e. when not in rank-one update
form). We will use IQN-LS as an example.

If we assume that the input-output pairs of previous timeleare representative
enough for the current time-level, we might think of enhagcihe Jacobian by
adding these to the formulation §b.3. For the proposed method we might re-use
the data as follows.

pH pH H H
Vg,t = [V:%p,t ‘ V;)inal,tfl | ce ‘ V;]inal,tf'r]
H H H H
Wf,t = [Wsp,t | Wj[”)inal,tfl ‘ te | W){)inal,tf‘r]’

WhereVs?ff and Wff are constructed at the current time-leveind current it-
erations as in (6.26),Vf£al i andW}’ﬁ’fial ,_; (i =1,...,7) are the input and

output matrices constructed as in (6.26) at the end of thatioe process at time-
levelt — i andr is a parameter that determines how many time-levels are kept

The Jacobian at iterationof time-levelt is then constructed as in (6.25):

K., = W2vrih+ 1. (9.3)

Experience has shown that creating input-output pairs bypeding the difference
over different time-levels (€.Qu + —Pfinal,+—1) IS NOt @ good idea. One reason be-
ing that the difference taken over different time-levelgastially a time-derivative,
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which is not present in the Jacobian we are approximating.

We start the first iteration of a new time-level¥ 1) by computing

Pit = Zzo,t - (K}mal,tfﬂith(po,t),

whereK?,, ., is the approximate Jacobian at the last iteration of theipusv
time-level; this means we sét,, = K},,,,, ;. (For the first time-level we

implicitly used f(;,l = —1, possibly combined with under-relaxation.) A first
input-output pair for the new time-level can then be comgiiased op; ; — p, ;

andHt(th) — Ht(po,t)-
Do+ IS Obtained by linear extrapolation basedQ,q;,:—1 andp fina,:—2 (if avail-
able), which are the last iterates at time step1 andt — 2 respectively.

We will now establish some properties that result from tloisstruction. The first
is an extension of theorem 7.1.1, showing that the methodsttube written in
rank-one update form.

Theorem 9.1.1.Suppose thaf(;,t is constructed as in (9.3), thdﬁ;H’t is linked
to f(;t by the following expression (fer< n):

° H H > > % FpH (7
VAp € A(Vf—&-l,tvwf—&-l,t) : K;-i-l,t = K;,t + AHL€+1,t(L€+1,t)Ta (9-4)

whereL?, | is the(s + 1)-th column ofL2}, , and L2}, , is a matrix of which

the columns form an orthonormal basis fﬁlffu.

The proof is similar to the one of theorem 7.1.1.

Justasirg7.1.1 we can re-write (9.4) so that the rank-one update caoin@uted
from available data.

The new basis vectcfv’s’fl’t can be computed using

H /v pH
FpH Ops,t — Lg,t (Lg,t )Tépsyt
s+1,t — H v pH )
’ H(Sps,t - Lg,t (Lz,t )Téps,t”

(9.5)

which can be done based on the available d&ta{ = ps+1.+ — ps,c), While for
the computation oﬂHEffM we can use the following relationships.

1We assume that at the last iteration convergence has bedredeac



130 CHAPTER9

5ps,t - Lflti (Lgf)T(Sp&t
16ps,e = L (LE) T 0ps.l
AH(;ps,t - ﬁHLif(Li’f)T@s,t
16pse = LE S (LET) T 5ps o
5Hs,t - AHVE,?(VE,}:&I)T5P5¢
16ps.¢ = LY (LE)Tops.c|
OH, — AHVSE(ng)T(SPs,t — 0ps,t + Ops,t
16ps,e — L (LE)T 5ps.cl
0H,; + 0ps,e — (AHVS,IZI(VZS),?)T —1)ops.s
16ps.¢ — LY (LE)Tops o
0K — K;’téps,t
16ps.¢ — LY (LL)Tops o
Ki(ps+1.4) — Ki(pst) — KL 10pss
165 = LE (LE)T0psc|

whered K, s = Ki(psi1,t) — Kt(ps,e)-

o —pH o
AHLs+1,t AH

)

We can write the resulting update as follows.

o K — Ko, ) (- L2 (L2 )dp, )"

K; 1,t = Kst+ 7(96)
i ’ (0py o (T = L2 () T)op, )
which can be simplified to
R R K (ps I — P (rhTys, T
Kk/‘;_‘_l’t _ K;ﬂg + t(p +1,t)(( s,t( s,t) ) ps,t) . (97)

(0,0 (I = LET(LET)T)dpy )
Equation (9.7) shows that the Jacobian does not change orttiegonal comple-
ment of the space spanned@y-L2" (L2)7)ép, ,, where(I—L2F (L) T)dp, ,
is the direction of the component &b, , that is orthogonal to all previously visited
directions (including those of previous time-levels). ther words

Kl .z = K.,z whenzL(I - L2 (@LHT)op,, (9.8)

S

H H
(I - Lg,t (Lls),t )T)5ps,t

Some caution is needed when using this method.
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e The choice of the parameteris difficult, as it is not always clear a priori
how many time-levels can be kept, i.e. how long old data vélrépresen-
tative for the problem at the current time-level.

e If we add a column tdfgf which is linearly dependent on other columns,
then the method will break down. This problem can be solved)R¢
filtering to VP! | as explained if§7.5.1.

s,t 1

Remark 9.1. When the operators are affine, e, (p) = Au,p — bu . €tc., then
in general we will haved; ; ¢ A(fo,Wff), forj = 1,2,...,t, even though
Ay € AVET WP

Remark 9.2. A similar approach with similar results exists for IQN-ILN-CLS
and IBQN-LS.

9.1.2 Recovery methods based on the rank-one update formu-
lation

Another approach to re-using data is based on the rank-odateformulation
established ir§7.1. This can be applied to all quasi-Newton methods in rank-
one update-form, e.g. the Least Squares methods, Broyohetisods, CUM and
ICUM [105]. Again we will use IQN-LS as an example.

In this approach we will keep the final approximate Jacobfaheprevious time-
Ievelf(}mw_1 and use it af(;,t (cfr. asin§9.1.1). If the Jacobian of the previous
time-level is representative enough for the current timell than this will result
in a better initial Jacobian, which improves convergence.

This means that for the first iteration of the new time-levelvave

Pre = Pot — (K} ) " K (Pot) = Pot = (Kipars 1) ™ Ki(por)-

Again, p, ; is obtained by linear extrapolation basedg#,q; -1 andp tinar,t—2

(if available).

Starting with the input-output pains, ; — po and Hy(p1,1) — He(po,.) we will
apply a rank-one update f&ig after the manner described§i.1:

’ (0Kt — R:/e,tép&t)((l - Eff(ﬁif)Tﬁps,t)T
s+1,t

(0ps.t, (1 — L2 (LENT)ops s)
Ki(pss10) (I — L2 (L2 T )ops )T
(0ps,ts (I — L33 1 (L571,)T)0ps t)

- Kg’t_;- (9.9)

= K;,t +

, (9.10)
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Whereﬁfjf is a matrix of which the columns form an orthonormal basisi/fﬁrﬁ,t,

althoughVSpﬁ’t is not explicitly constructed. We recall thla(fﬁ,t only contains
input pairs of the current time-level as in (6.26).

Equations (9.7) and (9.10) show the main difference betwleemethod ir$9.1.1
and the method in this section.

From equation (9.7) we have concluded that the update opgéves in the direc-
tion of the component ofp, , that is orthogonal to all previous directions, inclu-
ding those of previous time-levels, while (9.10) teachethasfor this method the
update happens in the direction of the componenipof, that is orthogonal to all
previous directions of the current time-level only.

Thus for the method of this section the directions in theenirtime-level have a
larger influence on the approximate Jacobian than in theodethsection 9.1.1.
Also, if the directiondp, ; has already occurred in a previous time-level then the
old data will be simply over-written, while for the method§8.1.1 a singularity
would occur, which needs to be removed by QR-filtering.

A theorem similar to theorem 7.1.1 is no longer valid, i.e.deenot have that
vIlle € A(Vfﬁ,ta Wfflt) : f(;-{-l,t = k;t + AHigfl,t(ngl,t)Ta (9.11)

for s < m, wheref(;’t is constructed as in the IQN-LS method described in this
section and wheré”Y, , is the (s + 1)-th column of 2%, ,. (£?, , is a matrix

of which the columns form an orthonormal basis t@’ﬂyt.)

This can be shown by a simple example.

AssumeK,(p) = Ax.p — b, Hi(p) = Am,p — bu,., then we have

(5K0,t - Kc/),t‘SPO,t)(‘SPO,t)T
<5po,t7 5po,t>
(AK,t - Ké,t)épo,t ( 5Po,t >T
16P0,¢ [[6P0,¢l
= IA{(/)f + (AK,t - Ké,t)f’ff(f’ff)T'

K{,t = Kc/),t+

= K;,t +

Asingeneralk/, , # —1I, and thusAg; — K, , # Ay, we have that

fq,t # f((/),t + AH,tiff(Eff)T- with Ay € A(Viﬁ,tv Wfflt)

Nevertheless, the (9.10) clearly shows that the methodllissank-one update
method.

Remark 9.3. A similar approach with similar results exists for IQN-ILN-CLS
and IBQN-LS.
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Remark 9.4. The extension of this approach to Broyden’s good and badadeth
the Column-Updating Method and the Inverse Column-Updatiethod (chapter
4) is straightforward.

9.2 Creating a better initial approximate Jacobian
from a coarser grid

When the problem that needs to be solved is a discretizeddpatifferential
equation defined on a mesh, we can solve the same problem aarseconesh
and use the input-output pairs on the coarse mesh to cre@éiahJacobian on
the fine mesh [105]. The method presented below can only Heedpip the Least
Squares methods. (Note that the problem to be solved nossedly needs to be
time-dependent.)

After solving the problem on the coarse grid, the input-atitpodes created dur-
ing the solution process on that grid are prolongated to tiedrid and used to
create the initial Jacobian on the fine grid after which therrad rank-one updates
are performed. The prolongation is shown schematicallyginré 9.1.

We illustrate this for the construction &f’, in the IQN-LS method.

— Fine grid

1 | | | | | | |

1 | | 1 | | 1 ]

2/3 1/3 /X/:.; 1
| | |

I | I

Figure 9.1: Schematic representation of prolongation from coarse tafiide

— Coarse grid

Let 3/ be the prolongation (interpolation) matrix used to go fréva@ toarse to the
fine grid. We construct the initial approximate Jacohighon the fine grid as

2 ~ H,c/~ H, ~ H,c1—1/~ H,
Ko = 3IWy ol (3IVE ) 3V Gl =1 (9.12)

Wherevﬁf&‘; andW}’g;fl are defined as in (6.9) at the end of the solution process
on the coarse grid.



134 CHAPTER9

Afterwards the usual rank-one update is applied #rl).

The initial iterate on the fine grid can be obtained by pro#ian of the final solu-
tion on the coarse grid or by extrapolating the solutionefgrevious time-levels
when the problem is time-dependent (just a§drl.1 anc9.1.2).

We recall that we are only considering valyesndg on the interface between
the domains of the interacting problems described by thetims F' andS. The
number of variables on the interface might be several oldersr than the (inter-
nal) variables involved in computing(g) or S(p). Computations with a reduced
number of interface variables will thus be substantiallgayer, hence the con-
struction of the initial approximate Jacobian in this marieeelatively cheap.

The main difficulty with this method is the choice of the ratibthe number of
variables on the coarse and fine grids, which is a trade-offdeen computational
cost and accuracy.

Remark 9.5. A similar approach with similar results exists for IQN-ILN-CLS
and IBQN-LS.
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Numerical experiments with non-affine
operators

We have so far mainly focused on the theoretical propertig¢seovarious quasi-
Newton methods. In this chapter we will test these method&onvell-understood
test-cases: one-dimensional flow in a flexible tube and tleedimensional heat
equation with variable coefficients.

In the former, the interaction is between the pressure alotity of a fluid and the

geometry of a structure. In the latter, the temperatureacts with density, heat
capacity and thermal conductivity.

For the fluid-structure interaction problem we perform aadetl Fourier analysis
and show the conditional stability of a simple fixed pointat&®n method.

Both problems are solved with approaches discussed inetsapt6 and 9.

10.1 One-dimensional flow in a flexible tube

10.1.1 Preliminary remark about notations

In this section we will use continuous variables, discegtizariables, non-dimensional
discretized variables and Fourier coefficients. To avoitfasion we give a brief
overview of the notation that will be used.
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pu, g continuous variables: pressure, velocity,
cross-sectional area,;
Piiq, P, etc. discretized variables (vectors) at resp. time-step

[Piy1]iy [P, etc.

[P]inr [P]out, etc.

Di+1, Pt €LC.
[pe+1liy [pe)i, ete.

Ds,t+1+ Ps,t, €1C.

t + 1 andt: pressure, etc.;

i-th component of discretized variables at

resp. time-step + 1 and¢: pressure, etc.;

discretized pressure at inlet, resp. outlet, etc.;
discretized non-dimensional variables (vectars) a
resp. time-step + 1 andt: pressure, etc.;

i-th component of non-dimensional discretized variables
at resp. time-step+ 1 andt: pressure, etc.;
discretized non-dimensional variables (vectarsgsp.
time-stept + 1 andt ands-th iteration: pressure, etc.;
error component in Fourier analysis (vector);

i-th component of;

amplitude of/-th Fourier mode at iteratios

solution for discretized, non-dimensional equation:
pressure, velocity, cross-sectional area.

10.1.2 Analytical description of the problem

L

—5

Figure 10.1: One-dimensional flow in a flexible tube.

This test-case describes one-dimensional unsteady flowierible tube of length

L.

The fluid is incompressible and inviscid and gravity is netgd. The governing
equations are the conservation of mass and momentum, waithe written in

1This can be thought of as a much simplified model of pulsating ffoani artery.
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conservative form as
Jg | Ogu _

e (10.1a)
ogu Ogu® 1 (dgp .0g\
o o o lar Pa.) =0 (10.1b)

with g the cross-sectional area of the tubéhe velocity along the axis of the tube
and% the time derivativex is the spatial coordinate,is the density of the fluid
andp the pressure. We will write = p/p for the kinematic pressure.
If the elastic wall of the tube has a constitutive law of thenfiqgy = g(p), with
the cross-sectional area only a function of the local kin@snmessuréand if its
inertia is neglected then (10.1) can be rewritten in thefwihg form
ap op 5 0u
a + ua? +c % =
Ogu  Ogu?  Ogp dg

0 (10.2a)

ot + Ox + Ox p@x - (10.2b)
where the wave speeds defined by
c=1 (10.3)
dp
The velocity at the inlet of the tube is imposed as
Uy . 2
u(t) = u,+ 1o 5i® (mt), (10.4)
whereu, is a reference velocity.
A non-reflecting boundary condition is prescribed at theetut
ou 10p
— = 10.5
ot c ot ( )

The behavior of the flexible tube wall is described with a Heak constitutive
relation. The structure model contains no mass, as thdanafrthe tube wall is
neglected with regards to that of the fluid.

An axisymmetric model is used in the coordinate systemd), with ¢ the inner
radius of the tube and the angle in the cross-sectional plane. The stress in the
tube wall in the circumferential directian,, is approximated as

t—t,

opp = F + 0o, (10.6)

o

2We will use a long-standing abuse of notation in thaind g will both refer to functions as to the
corresponding pressure and geometrical variables. Signikalwill be writing bothg for the function
g1 : R —R:pw gi(p)andge : R? — R : (z,t) — go(x,t); the latter meaning o p with
p:R%2 =R (z,t) — p(z,t).
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with E Young’s modulusy, the radius where 44 = o, ando, a reference value.
Other stress components are assumed to be zero. This mtmbed ahly radial
motion of the tube wall.
Under the assumption that only pressure forces act on tledtuicture interface,
the force balance reads

ﬁt = O'¢¢h, (107)

with h the thickness of the tube wall.
By substituting (10.6) and the definition of the kinematiegsure in (10.7), the
following relation is obtained:

E
h(t - to) =+ toPo, (108)

th = -~

with p, andp,, defined byp,t, = o,h. This can be rewritten as

o — 22 .
g=10o (’; — 20;”’“) (10.9)

mk

by usingg = 7t? (andg, = 7t,) and by introducing the constasny,;, (the Moens-
Korteweg wave speed), given by

Eh
2 = . 10.1
Crmk 2pto ( 0 0)
The wave speed according to definition (10.3) thus becomes
2=, P (10.11)

2

10.1.3 Discretizing the equations

The flow equations (10.1) are discretized on a one-dimeabmxuidistant mesh
with n cells and mesh sizAz. The fluid velocity and pressure are stored in the
mesh nodes. Central discretization of all terms in the owoiitiy and momentum
equations is used, except for the convective term in the mtumeequation which

is discretized with a first-order upwind scheme. The timerditzation scheme is
backward Euler and the time-step is indicated with The conservation of mass
and momentum in a control volume around nads expressed by the following
system of equations:

Az

At ([Gl: = [Gili) + [U]i+1/2[G]i+1/2 - [U]i—l/Q[G]i_l/Q =0 (10.12a)
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% ([ULIG): = [Ue)ilGi]i) + [U)i[Ulig1/2[Glit1/2 — [Ui1[U)i=1/2[Gli1/2
+ [Plis1/21Glix1/2 — [Pli—1/2[Gli—12 — [Pli ([Glis1/2 — [Gli—12) =0,
(10.12b)

for[U]; > 0 (i = 1,...n). The subscripts i+ 1 and: — 1 indicate the mesh nodes
(i = 1,...,n)% The subscript + 1/2 signifies the values calculated at the cell
interfaces[U]; 1> = 1/2([U]i—1 + [U);) and [U]i 1172 = 1/2([U); + [Ui41),
etc. The subscript denotes the previous time-level; the subsctipt 1 for the
new time-level is omitted. A pressure stabilization terradsled in the continuity
equation (10.12a) to prohibit pressure wiggles due to ekdtscretization of the
pressure in the momentum equation (10.12b) :

2 (161~ 609 + Wlis2lGliryja — UhsjolClics o
— a([Pliy1 = 2[P]; + [Pli—1) =0 (10.133)
% ([UL:[Gli = [U)ilGels) + [ULi[U]ig1/2(Gliv1y2 = [U]i-1[U]i=1/2[Gli-1/2
+ % ([Glis1/2([Plis1 — [Pli) + [Gli—1/2([P); — [Pli—1)) = 0, (10.13b)
. G, . - )
with o = —————. U is the initial flow velocity.
o T At

The pressure at the inlet and the velocity at the outlet aeally extrapolated from
neighboring values as

[Plin = 2[P]1 —[P]2 (10.14a)
[U] = 2[Ul, = [Uln-1- (10.14b)

out

The velocity at the inlet is imposed and the pressure-cmmdét the outlet (equa-
tion (10.5)) is discretized as

2
[Plout =2 (c?wk — ( A2 - [Ptiout _ [Ulout :1 [Ut]out> ) . (10.15)

which takes into account the variation @fvith p given by (10.11) when integra-
ting from time-levelt to time-levelt + 1.

3The subscript 8" is used to indicate a reference value. No confusion shorikkavith nodal
values which use a subscript' (¢ = 1,...,n) ast cannot take the value 0. Hendé, should not be
interpreted as he “0-th” node.
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The geometrical discretization of the elastic problem éniital to that of the flow
problem to avoid errors in the data transfer between the 8odithe structure:

—92¢2 \?
(Gl = G, (M) . (10.16)

10.1.4 Non-dimensionalizing the equations

The non-dimensional parameters and nodal variables areededis

_ (G _ [Pl _ G
o) =G i =25 p=a
. Az
[u]z = [U]Z uo = % DO = ﬁ’
Co Co Co
fori = 1,...,n, whereu, represents the Courant-Friedrichs-Lewy (CFL) num-
ber [44]. Note that} = .

For (10.13a) the non-dimensionalized equation becomesr @if/ision byG,c,),
fori=1,...,n,

Do ([gi = [9¢)i) + [wliv1/2[9liv1y2 — [Wliz1/2(gliz1/2
—B(pliv12[pli — [pli-1) = 0. (10.17)

For (10.13b) the non-dimensionalized equation becomésr @iision byG ,c2),
fori=1,...,n,

D, ([uli[gli — [utlilgeli) + [u]i[u]i+l/2[g]i+1/2 - [U]i—l[u]iq/z[g]iﬂ/z

+1 (I9)i41/2([plis1 — [Pi) + lgli—1/2([pli — [pli-1)) = 0.

2
(10.18)

For the right boundary condition (10.15) we obtain the follog equation (after
division byc?), fori = 1,...,n,

2
c < [ptlout  [Wout — [utlout
out = 2 mk _ mk out ou ou .
Plout (cg ( c2 2 4

As ‘e =1+ B2 (equation 10.11) this becomes

C

[p]out =2+p,— (\/ 2+po — [pt]out - [U]out + [ut]out)2 . (10.19)



NUMERICAL EXPERIMENTS WITH NON-AFFINE OPERATORS 141

Asp = 2(c2, — ¢®) andp, = 2(c2,, — ¢2) (equation 10.11), we obtain for the
structural equation (10.16)

[G]i = G, [P]i_chnk
& 3 )
9], = _—2
o g”([p]iz(w;o))
9 2
[g]i = Yo (M) . (10.20)

10.1.5 Fourier error analysis

As already mentioned ifl.2.2, fixed-point iterations, like the Iterative Substruc
turing Method, are only conditionally stable.

We will illustrate this by a Fourier analysis of this one-@nsional fluid-structure
interaction problem.

The Iterative Substructuring Method (algorithm 1.2.1) barimplemented as fol-
lows, based on the non-dimensional equations, with thedirsscript indicating
the coupling iteration and the second the time-level.

1. Solve the flow equations (10.17 - 10.18 - 10.19) for thecsigl@nd pressure
attime-level+1 with a fixed geometry, ;41; assignis1 ¢+1 andps41 141
to this solution.

When we are only interested in the pressure, we can write shis a
Fii1(gs,t+1, D¢, 9t) = Ps+1,4+1, Which corresponds to the definition Bf,,
used in (9.1a).

2. Compute the geometry at time-levell from the structural equation (10.20)
given the previously calculated presspte; ;1; assignysyi ¢+1 to this so-
lution. We can write this aSi 11 (ps+1,t4+1) = gs+1,t+1, Which corresponds
to the definition ofS;. ; used in (9.1b); note that in this particular cate
is no function ofg; or p;.

3. Increase and return to step 1 until convergence is obtained.

The stability of this simple iterative method is now invgstied with Fourier analy-
sis [44]. Every unknown in equations (10.17), (10.18) ariiZQ) is written as the
sum of the coupled solution (indicated with an asterisk) tredremaining error
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(indicated with a hat):

us = u*+ U (10.21a)
ps = P +DPs (10.21b)
gs = 9"+ s, (10.21¢)

where we have dropped the subsctipt 1.

All non-linear combinations in the error terms are negléced the equations
satisfied by the coupled solution are subtracted from thgeat®ns. A constant
velocity, pressure and section along the tube is chosen @sphet solution:

u; = U, (10.22a)

pi = Do (10.22b)

97 = 9o, (10.22c)
fori=1,...,n, with u, the mean velocity ang, andg, defined previously. Itis

clear that (10.22) satisfies the equations for the coupledisn.
This results in the following equations for the error terms.

ty : 9o

Do[gs]i + 5 ([Qsh_ﬂ - [gs]i—l) + D) ([ﬁs+1h+1 - [ﬁ5+1]i—1)
- 5(U§S+1]i+1 - 2[235+1]7; + [ﬁs+1]i—1) =0 (10.23a)

'LL2
Do (uogsli + [ts41]i) + = ([9s)i+1 — [9s)i-1)

2
+ gy ([fs1)it1y2 + [ssli — [Gsg1liorja — [@sr1)io1)
+ % ([Pst1li+1 — [Ps+1]i—1) =0 (10.23b)
[9s+1)i = [Psr1li- (10.23c¢)

(Note that, according to our choice of non-dimensional pet@rsg, = 1.)

The error terms are expanded as an infinite sum of Fourier snolle equations
(10.23) are linear in the error terms, every Fourier moda wigiven spatial pulsa-
tion @, (w; = 2%, 1 € [-%, %]) can be studied separatélyThe following sub-

stitutions are performed in equations (10.23):

[is); —  [as)'e™™1AT (10.24a)
s, — [Ps]'e?™A" (10.24b)
[0s);, — [3s)' ™7, (10.24c)

4This definition ofcz; should not be confused with the relaxation parametesed in other chapters
and is only used in this way in this section.
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with y = /—1 and! the index of the Fourier modes. With = w;Az, the
following non-dimensional modal equations are obtained.

Dy[gs)" + to[gs]'ysin(9) + [@s+1)g5in(01) — 28[Bs41]' (cos(d) — 1) = 0

(10.25a)
Douo{és]l + D, [aerl]l + u?) [gs]lj Sin(ﬁl)
+us1] (g5in(r) +1 =€) + [Boya]'gsin(d;) = 0
(10.25b)
[Gs1]' = [Pss]- (10.25c)

At every iteration the component of the error with spatiaigiuencyw; for the
cross-section and for the pressure is amplified by

[§s+1]l _ [ﬁs+1]l —1_ ’U,g(l — €_j19l)j sind; + b1 D, + by

[9s)! [Ds]! b

with by = D, + uo(1 4 jsind; — e=7Y) andby = (sin;)? — 2b; B(cos ) — 1).
This amplification factor is function af; (and thusn), u, and D, only. In order
to have a stable method the norm of this amplification fadtousl not be larger
than one, i.e.

., (10.26)

[Gs-+1]" ‘ [Ps+1]' ’
P L hat i <1, (10.27)
‘ [9s)! [Bs]!
foralll e [-%, §].
We introduce two new parameters:
Eh P,
_ 1 N 201, 2 and N UO N UoAt
Tw T U, "D L

As we mainly varyE andAt, these can be seen as a dimensionless structural stiff-
ness and a dimensionless time-step respectively. Thet eff¢lce reference flow
velocity U, can be seen by modifying andr such that: remains constant. Ap-
proximate values for a human artery are= 100 andr = 0.01 [44].

Figures 10.2 and 10.3 show that the error amplification emes for decreasingy,
meaning that the lowest frequencies are those that are msisthle. The mode for
¥ = 0 is always unstable. (Note that this mode is normally notgmes actual
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implementations due to the presence of boundary condijions

As can be seen in figure 10.2, the instability grows when theedsionless stiff-
nessx decreases. For an infinitely stiff tube & oo or u, = 0) the amplification
factor in equations (10.26) and (10.27) is zero for all Feumodes, excepl; = 0.
Figure 10.3 illustrates that a smaller valueraf(i.e. a smaller dimensionless time-
stepr and/or a lower number of node$ increases the amount of instability.
While bothTrn andx affect the stability of the iterations, the effect:ofs generally
greater than that ofn. « determines the vertical position of the curve white
modifies both its shape and positiam influences the stability significantly in the
bottom graph of figure 10.3 whereis small (< = 10) but not in the top graph of
figure 10.3. An increase of by some factor has the same effect on the curve as
an increase of with the same factor, i.e. on the ratio of unstable modestti to
number of modes.

The main difference between an increase aihd an increase of lies in the fact
that for the latter the total number of modes increases (ntfmmce%—f between
¥ andd;,; decreases, far € [, ]), and hence that for a given ratio of un-
stable modes the total number of unstable modes will inerelmsfigure 10.4 we
show this effect in detail. The influence ofis mainly felt for a flexible structure
and a small time step. Thus, while reducingill raise the relative number of
modes that are unstable, it also reduces the total numbeodssn both effects
counteract each-other.

Particular results are given below.

e Forx = 1000 and7 = 0.0001: there is never more that)% of the modes
that are unstable.

For x = 1000 andT = 0.01: there is never more tha20% of the modes
that are unstable.

Forx = 10 andr = 0.0001: all frequencies are unstable as longias 512.

Forx = 10 and7 = 0.001: all frequencies are unstable as longas 51.

Forx = 10 andr = 0.01: there is never more thatt% of the modes that
is unstable.

(A more detailed study of this problem can be found in [44].)

10.1.6 Results with the quasi-Newton solvers

In this section we will solve the problem of one-dimensidiak in a flexible tube
by means of the quasi-Newton methods described in chapted 6:a
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Figure 10.2: Error amplification for various values gfandrn = 10 (top) ortn = 0.1
(bottom).

e IQN-BG, IQN-CBG, IBQN-BG, IQN-BB for the Broyden methods;

e IQN-CUM, IQN-CCUM, IBQN-CUM, IQN-ICUM for the ()CUM me-
thods;

e IQON-LS, IQN-CLS, IBON-LS, IQN-ILS for the Least Squares metls,
both in the original formulation and in rank-one update falation.
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Figure 10.3: Error amplification for various values @f. andx = 1000 (top) orx = 10
(bottom).

For this time-dependent problem, the approaches from eh8pire used:

e Extrapolating the pressure to obtain an initial iterate stagting from a new
Jacobian at every time-step.

e Extrapolating the pressure to obtain an initial iterate athding input-output
modes from previous time-steps to the original formulaicin §9.1.1).
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Number of unstable Fourier modes as a function of total number of Fourier modes
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Figure 10.4: Ratio of number of unstable Fourier modes to total numbEowarier modes
as a function of: for various values ok and .

e Extrapolating the pressure to obtain an initial iterate stadting from the

final approximate Jacobian of the previous time-step in &-tare update
formulation (cfr.§9.1.2).

e Extrapolating the pressure to obtain an initial iterate argting an initial
Jacobian based on data from a coarser grid §6f2).

e Constructing an initial iterate based on a coarser grid aeatimg an initial
Jacobian based on data from a coarser grid §6f2).

We will use test-cases with = 100 andn = 1000 nodes, except for the two-grid
methods, where the fine grid will have 1000 nodes and the eapid 334 nodes.
Values ofr ranging from10~" to 10~* and values of; ranging from10 to 1000
will be used. (As shown in the Fourier study, more unstabldesawill be present
for lower values of both- andx, which will translate into the need for more cou-
pling iterations.)

For the first iteration of the first time-step a relaxationtéaco is used, the value

of which is given in the tables.
We define the relative residual ("Relres”) fﬁgjjiz:% (for IQN, IQN-C

and IQN-I) or asher@es1pe.90) —peris (for IBQN) and use Relres: 1077 as a
Fi11(go,t+1,Pt,9t) —Po,t+1

convergence criterium. The performance measure we use isutmber of fluid-
solver calls FC) at the fine grid and (if applicable) at the coarse grid. Weakre
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off the iteration afted 00 function calls if no convergence has been achieved at that
point.

In tables 10.1-10.20 we give the number of iterations neéaletthe first time-step

as well as the average over the first ten time-steps.

Remark 10.1. All tests were performed using Matlab 7.0 on an Intel Xeo0GHz
dual-core processor.

Remark 10.2. The Matlab source code for these tests can be found in appendi
A.

10.1.6.1 No re-use of data from previous time-steps

As we can see in tables 10.1-10.8, there is little differandfe performance of
the IQN, IQN-C, IBQN and IQN-I methods for the Least-Squai®oyden and
CUM methods, although the IBQN variants show a slightly Iowemerical sta-
bility for low values ofr and«.

We see that the Least Squares methods (tables 10.1, 1062ari®10.6) outper-
form the Broyden methods (tables 10.3 and 10.7) and CUM ndstftables 10.4
and 10.9), by a margin that grows asndx become smaller. For the more diffi-
cult test-cases the gain can be of the ordei08t, while for the smallest values of
7 andx the Broyden and CUM methods fail. Also note that the CUM mdthare
slightly inferior to the Broyden methods.

Between the Least Squares methods in original formulatedsigs 10.1 and 10.5)
and in rank-one update formulation (tables 10.2 and 10e8ktts little difference.
Worthy of notice is that Broyden’s “bad” method is not thatahd'worse” than
Broyden’s “good” method, although it is somewhat less galfThe same com-
ment can be made of IQN-ICUM with respect to IQN-CUM.)

We also remark that there is little difference between tHeesaforn = 100 and
n = 1000, unless for low values of and x, which is in accordance with the
findings of the Fourier analysis.
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[ [ 7 [ w [ 1ON-LS [ IQN-CLS | IBQN-LS [ IQN-ILS |
1000 [ 10~ | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 1072 4-4.0 4-40 4-40 4-40
1000 | 10=% [ 1073 8-7.1 8-7.1 div 8-7.1
100 | 10°T | 1072 4-4.0 4-4.0 4-40 4-40
100 | 1072 | 10~ 2 5-4.1 5-4.1 5-4.1 5-4.1
100 | 1073 | 1072 8-7.2 8-7.2 8-7.2 8-7.2
100 | 107* | 10~° 19-175] 19-175 div 19-17.8
10 10T [ 1072 5-5.3 5-5.3 5-5.3 5-5.3
10 10-2 | 1071 9-74 9-74 9-73 9-72
10 10°2 | 107° 19-17.1| 19-17.1 | 25-18.0 | 19-17.2
10 10-% [ 107% || 36-31.2| 37-345 div 34-30.3

Table 10.1:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Least Squares quasi-Newton type in original (i.e. nhon rank-oate) formulation;
n = 100; "div"= divergence or non-convergence after 100 function calls.

[« [ 7 [ w [ IQN-LS(RIU) | IQN-CLS (R1U) [ IBQN-LS (R1U) | IQN-ILS (R1U) |
1000 [ 10~ T | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 10~° | 1072 4-40 4-40 4-40 4-40
1000 | 10=% | 1073 8-7.1 8-7.1 div 8-7.1
100 | 1071 | 1072 4-40 4-40 4-40 4-40
100 | 1072 | 10~ 2 5-4.1 5-4.1 5-4.1 5-4.1
100 | 1072 [ 10~ 2 8-7.2 8-7.2 8-7.2 8-7.2
100 | 107 | 1077 19-17.5 19-175 div 19-17.8
10 | 107" | 1072 5-5.3 5-5.3 5-5.3 5-5.3
10 | 1072 | 1071 9-7.4 9-74 9-73 9-7.2
10 10°2 | 107° 19-17.1 19-17.1 19-17.2 19-17.1
10 10-% [ 10°© 37-314 37-31.4 div 38-33.6

Table 10.2:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Least Squares quasi-Newton type in rank-one update formulatien;100; "div’=
divergence or non-convergence after 100 function calls.
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[ [ 7 [ w [ 1QN-BG | IQN-CBG | IBQN-BG | IQN-BB |
1000 [ 107 | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 1072 5-5.0 5-5.0 5-5.0 5-5.0
1000 | 10=% [ 1073 9-9.0 10-9.0 div 11-9.4
100 | 10°F | 1072 4-40 4-40 4-4.0 4-40
100 | 1072 | 10~ 2 5-5.0 5-5.0 5-5.0 5-5.0
100 | 1072 | 1072 9-8.9 10-9.0 9-8.9 11-9.4
100 | 107* [ 1072 || 37-34.8| 39-36.3 div 75 - div
10 10T [ 1072 6-55 6-5.7 6-55 6-5.7
10 10-2 | 1071 10-9.0 10-9.0 10-9.0 10-9.1
10 10=2 | 107° [| 37-35.0| 40-39.4 | 36-355 div
10 10-% ] 10°° div div div div

Table 10.3:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Broyden typen = 100; "div’= divergence or non-convergence after 100 function

calls.

[ [ 7 [ w ] ION-CUM | IQN-CCUM [ IBQN-CUM | IQN-ICUM |
1000 [ 10=F | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 4-39 4-39 4-39 4-4.0
1000 | 1073 | 1072 6-5.1 6-5.1 6-5.1 6-5.1
1000 | 10=% [ 1073 11-9.9 15-10.5 div 41-155
100 | 10°F | 1072 4-42 4-42 4-4.2 4-4.2
100 | 1072 | 10~ 2 6-5.3 6-5.9 6-5.9 6-6.0
100 | 107° | 1072 11-9.9 12-10.4 12-10.3 13-11.4
100 | 10=%F | 1072 40 - 38.0 94-72.2 div div
10 10-1 | 1072 6-6.3 6-6.4 6-6.4 6-6.3
10 | 1072 [ 1071 12-10.6 13-115 15-11.1 14-12.9
10 10°2% | 107° 41-39.3 87-74.0 div div
10 10-% ] 10°° div div div div

Table 10.4:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Column-Updating type; = 100; "div’= divergence or non-convergence after 100
function calls.
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[ [ 7 [ w [ 1ON-LS [ IQN-CLS | IBQN-LS [ IQN-ILS |
1000 [ 10~ | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 10~ | 10~ 2 5-4.1 5-4.1 5-4.1 5-4.1
1000 | 10=% [ 1073 8-7.0 8-7.0 div - 8-6.9
100 | 10°T | 1072 4-4.0 4-4.0 4-40 4-40
100 | 1072 | 10~ 2 5-5.0 5-5.0 5-5.0 5-5.0
100 | 107° | 1072 8-7.1 8-7.1 8-7.1 8-7.0
100 | 107* [ 102 |[ 19-15.8| 19-1538 div 19-15.8
10 10T [ 1072 5-55 5-55 5-55 5-55
10 10-2 | 1071 9-7.9 9-7.9 9-7.9 9-7.9
10 10°2 | 107° 21-16.9 | 21-16.9 | 21-16.7 | 22-16.5
10 10-% [ 107 || 57-51.3 | 57-50.6 div 58-51.8

Table 10.5:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Least Squares quasi-Newton type in original (i.e. nhon rank-oate) formulation;
n = 1000; "div’= divergence or non-convergence after 100 function calls.

[« [ 7 [ w [ IQN-LS(RIU) | IQN-CLS (R1U) [ IBQN-LS (R1U) | IQN-ILS (R1U) |
1000 [ 10~ T | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 10=° | 1072 5-4.1 5-4.1 5-4.1 5-4.1
1000 | 10=% | 1073 8-7.0 8-7.0 div 8-6.9
100 | 1071 | 1072 4-40 4-40 4-40 4-40
100 | 1072 | 10°? 5-5.0 5-5.0 5-5.0 5-5.0
100 | 107° | 1072 8-7.1 8-7.1 8-7.1 8-7.0
100 | 107% [ 1072 19-15.8 19-15.8 div 19-15.8
10 [ 107t | 1072 5-55 5-55 5-55 5-55
10 | 1072 | 1071 9-79 9-79 9-79 9-79
10 10°2 | 107° 21-16.9 21-16.9 22-16.6 22-16.5
10 10-% [ 10°© 57-51.3 57-51.3 div 59-53.2

Table 10.6:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Least Squares quasi-Newton type in rank-one update formulatien; 000; "div’=
divergence or non-convergence after 100 function calls.
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[ [ 7 [ w [ I1QN-BG | IQN-CBG | IBQN-BG | IQN-BB |
1000 [ 107 | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 1072 5-5.0 5-5.0 5-5.0 5-5.0
1000 | 10=% [ 1073 9-8.7 9-87 div 9-87
100 | 10°T | 1072 4-41 4-41 4-41 4-4.1
100 | 1072 | 10~ 2 5-5.0 5-5.0 5-5.0 5-5.0
100 | 107° | 1072 10-9.1 10-9.1 10-9.1 10-9.1
100 | 10T [ 1072 || 36-34.9 | 38-36.4 div div
10 10T [ 1072 6-5.6 6-5.7 6-5.6 6-5.7
10 10-2 | 1071 11-9.7 11-9.8 11-9.7 | 12-10.7
10 103 [ 107° || 38-36.0| 42-43.6 | 39-38.6 div
10 10-% ] 10°° div div div div

Table 10.7:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtdbevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Broyden typen = 1000; "div'= divergence or non-convergence after 100 function

calls.

[« [ 7 [ w [ ION-CUM | IQN-CCUM [ IBQN-CUM | IQN-ICUM |
1000 | 10~ | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 1072 4-40 4-40 4-40 4-40
1000 | 10=° | 1072 6-5.6 6-5.9 6-5.9 6-6.0
1000 | 10=% | 1073 11-10.1 12-10.3 div 14-11.6
100 | 107% | 1072 4-42 4-42 4-42 4-42
100 | 1072 | 1072 6-6.0 6-6.0 6-6.0 6-6.0
100 | 1072 | 1072 11-10.4 14-11.2 16-11.6 14-12.1
100 | 107% [ 1073 41-37.4 75-67.6 div div
10 10T | 1072 6-6.4 6-6.5 6-6.4 6-6.4
10 1072 | 10717 13-11.3 14-12.4 15-12.6 15-14.0
10 1072 | 10°° 44 -44.0 div div div
10 10-% ] 10°° div div div div

Table 10.8:FC required for convergence of the one-dimensional FSI problem if oely th
pressure is extrapolated over the time-steps and the Jacobian resdtabevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Column-Updating type; = 1000; "div’= divergence or non-convergence after 100
function calls.

10.1.6.2 Re-use of data from previous time-steps

In this section we look into the data-recovery methods ferdhiginal formulation
of the Least Squares method®(1.1) and the data-recovery method for quasi-
Newton methods in rank-one update methods ¢&rl.2). The latter includes the
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Least Squares method, the Broyden methods and the CUM nsethod

For the original, non-rank-one update, form of the Leasta®es algorithm we
see that keeping the input-output pairs of the ten previous-steps (when avail-
able) gives better results than only keeping those of theique five time-steps
(tables 10.10 and 10.12 versus tables 10.9 and 10.11). W'eginkedata from
ten time-steps the gain (in the average number of itergtiaiith respect to the
approach without re-us€10.1.6.1) is in the order af5% for the highest values
of 7 andx and in the order o80% for the lowest values of andx. When using
data from five time-steps these gains asé; and 70% respectively. Also note
that this average is only taken over 10 time-steps; as thdauof iterates for the
first time-step is the same with and without re-use, this finsé-step will weigh
rather heavily on the average. Also, the full potential e te-use of data from
the previous ten time-steps only comes in full force at tinehti¢ime-step. To give
a clearer indication of the potential gain, we point out thiathe tenth time-step
for 7 = 10~* andx = 10 the number of iterations with re-use of the previous ten
time-steps is abow5% lower than without re-use.

For the Least Squares methods in rank-one update formulétbles 10.13 and
10.16) the gain is also substantial (uprtys), although slightly inferior to that of
the original formulation with the re-use of input-outputingeof the previous ten
time-steps.

The Broyden and CUM methods also profit from the re-use of &wellian, but
to a lesser extent than the Least Squares methods (tablieg 10.15, 10.17 and
10.18). Gains up t60% are recorded. The CUM methods are still slightly slower
than the Broyden methods, and both are inferior to the Leqishi®s methods.
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[ [ 7 [ w [ 1ON-LS [ IQN-CLS | IBQN-LS [ IQN-ILS |
1000 [ 10~ % [ 1072 3-22 3-22 3-22 3-3.1
1000 | 10~ 2 | 10~ 2 3-22 3-22 3-22 3-3.1
1000 | 10=° | 1072 4-24 4-24 4-24 4-33
1000 | 10=% [ 1073 8-3.4 8-3.4 div 8-4.1
100 | 107 % | 1072 4-33 4-31 4-65 4-37
100 | 1072 | 1072 5-2.6 5-2.6 5-25 5-35
100 | 1073 | 1072 8-3.3 8-3.3 8-3.1 8-3.8
100 | 107% [ 1073 19-5.9 19-59 div 19-7.2
10 10°T | 1072 5-42 5-45 5 - div 5-53
10 10-2 | 1071 9-36 9-37 9-37 9-5.4
10 10°2 | 107° 19-5.8 19-5.8 25-6.6 19-7.9
10 | 100% | 107% || 36-11.9 | 37-11.3 div 34-125

Table 10.9:FC required for convergence of the one-dimensional FSI problem wieen th
pressure is extrapolated over the time-steps and input-output modez@fibus
time-steps (non-R1U formulation) are kept, when available; values forrgigifhe-step
and average over the first 10 time-steps; solvers are of Least 8gjgaasi-Newton type in
original (i.e. non rank-one update) formulation;= 100; "div’= divergence or
non-convergence after 100 function calls.

[« | 7 [ w [ IQN-LS [ IQN-CLS [ IBOQN-LS | IQN-ILS |
1000 [ 1071 | 1072 3-22 3-22 3-22 3-3.0
1000 | 1072 | 1072 3-22 3-22 3-22 3-3.1
1000 | 107% | 1072 4-24 4-24 4-24 4-33
1000 | 10~% | 1073 8-3.2 8-3.2 div 8-4.1
100 | 107 [ 1072 4-32 4-32 4-84 4-35
100 | 1072 | 1072 5-2.7 5-2.7 5-2.7 5-35
100 | 1073 | 1072 8-2.9 8-2.9 8-2.9 8-3.7
100 | 107T | 1072 19-47 | 19-47 div 19-6.0
10 10-1 [ 1072 5-4.1 5-4.6 5 - div 5-52
10 1072 [ 1077 9-3.6 9-3.6 9-35 9-56
10 10°° [ 1077 19-40 | 19-4.0 25-4.9 19-6.0
10 10-% [ 107F 36-81| 37-7.8 div 34-10.6

Table 10.10:#C required for convergence of the one-dimensional FSI problem wteen th
pressure is extrapolated over the time-steps and input-output modégaé\dious
time-steps (non-R1U formulation) are kept, when available; values forr8idifne-step
and average over the first 10 time-steps; solvers are of Least 8gjgaasi-Newton type in
original (i.e. non rank-one update) formulation;= 100; "div’= divergence or
non-convergence after 100 function calls.
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[ [ 7 [ w [ 1ON-LS [ IQN-CLS | IBQN-LS [ IQN-ILS |
1000 [ 10~ % [ 1072 3-22 3-22 3-22 3-3.1
1000 | 10~ | 10~ 2 3-22 3-22 3-22 3-3.1
1000 | 10~ 2 | 10~ 2 5-24 5-24 5-24 5-34
1000 | 10=% [ 1073 8-3.3 8-3.3 div 8-4.1
100 | 10°T | 1072 4-32 4-31 4-32 4-35
100 | 1072 | 1072 5-27 5-27 5-2.6 5-35
100 | 1073 | 1072 8-2.8 8-2.8 8-2.8 8-3.8
100 | 107% [ 1073 19-6.2 19-6.2 div 19-6.9
10 10°T | 1072 5-4.4 5-53 5 - div 5-5.0
10 102 [ 10717 9-3.6 9-3.6 9-3.6 9-55
10 10°2 | 107° 21-59 21-59 21-6.0 22-82
10 | 100% | 107% || 57-17.1] 57-16.8 div 58-21.4

Table 10.11:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and input-output modez@fibus
time-steps (non-R1U formulation) are kept, when available; values forrgigifhe-step
and average over the first 10 time-steps; solvers are of Least 8gjgaasi-Newton type in
original (i.e. non rank-one update) formulation;= 1000; "div'= divergence or
non-convergence after 100 function calls.

[~ | 7 [ w [ IQN-LS | IQN-CLS | IBQN-LS [ IQN-ILS |
1000 [ 107 | 1072 3-22 3-22 3-2.2 3-3.0
1000 | 1072 | 1072 3-22 3-22 3-2.2 3-3.1
1000 | 107% | 1072 5-2.4 5-24 5-24 5-3.3
1000 | 107% [ 1073 8-3.1 8-3.1 div 8-4.0
100 | 107 | 1072 4-3.1 4-31 4-31 4-34
100 | 1072 | 1072 5-2.7 5-2.7 5-2.8 5-35
100 | 1073 | 1072 8-2.8 8-2.8 8-2.8 8-3.8
100 | 1071 [ 1073 19-5.0 19-5.1 div 19-53
10 10T [ 1072 5-4.3 5-5.2 5 - div 5-5.0
10 1072 [ 10717 9-35 9-35 9-35 9-5.6
10 107% [ 10°° 21-4.4 21-4.4 21-4.8 22-6.5
10 10-% [ 107% [[ 57-11.9| 57-11.9 div 58-16.0

Table 10.12:FC required for convergence of the one-dimensional FSI problem wteen th
pressure is extrapolated over the time-steps and input-output modégaé\dious
time-steps (non-R1U formulation) are kept, when available; values forr8idifne-step
and average over the first 10 time-steps; solvers are of Least 8gjgaasi-Newton type in
original (i.e. non rank-one update) formulation;= 1000; "div'= divergence or
non-convergence after 100 function calls.
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[« [ 7 [ w [ IQN-LS(RIU) | IQN-CLS (R1U) [ IBQN-LS (R1U) | IQN-ILS (R1U) |
1000 [ 10~ T | 1072 3-26 3-26 3-27 3-26
1000 | 1072 | 1072 3-24 3-2.4 3-2.4 3-2.4
1000 | 10=° | 1072 4-27 4-27 4-27 4-27
1000 | 101 | 1073 8-3.6 8-3.6 div 8-3.7
100 | 1071 | 1072 4-31 4-31 4-31 4-31
100 | 1072 | 1077 5-3.0 5-3.0 5-2.7 5-3.0
100 | 1072 | 1077 8-35 8-35 8-35 8-3.5
100 | 10°T [ 1072 19-5.0 19-4.9 div 19-75
10 10-1 | 1072 5-4.1 5-4.1 5-4.0 5-39
10 10-2 | 1071 9-37 9-4.0 9-4.0 9-4.0
10 10°2 | 107° 19-5.0 19-55 19-5.2 19-7.0
10 | 100% | 10°° 37-115 37-12.4 div 38-37.3

Table 10.13:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fovdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Least Squasss-ewton type in
rank-one update formulation; = 100; "div’= divergence or non-convergence after 100
function calls.

[ [ 7 [ w [ I1QN-BG | IQN-CBG | IBQN-BG | IQN-BB |
1000 [ 10~ | 1072 3-26 3-26 3-26 3-26
1000 | 102 | 1072 3-2.4 3-2.4 3-2.4 3-2.4
1000 | 1072 | 1072 5-2.8 5-2.8 5-3.0 5-2.8
1000 | 10=% [ 1073 9-4.9 10-5.5 div 11-7.0
100 | 107 | 1072 4-33 4-33 4-33 4-33
100 | 1072 | 10~ 2 5-3.4 5-35 5-35 5-3.4
100 | 107° | 1072 9-4.6 10-5.1 9-5.2 11-6.4
100 | 10=% [ 1072 || 37-10.3| 39-10.9 div 75 - div
10 10-1 | 1072 6-4.9 6-5.0 6-5.0 6-5.0
10 | 1072 [ 1071 10-5.1 10-5.5 10-5.3 10-6.2
10 10°2 | 107° 37-10.5| 40-10.8 | 36-10.4 div
10 10-% ] 10°° div div div div

Table 10.14:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fovdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Broyden type;100; "div’=
divergence or non-convergence after 100 function calls.
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[ [ 7 [ w [ ION-CUM | IQN-CCUM [ IBQN-CUM | IQN-ICUM |
1000 [ 107 | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 1072 | 102 4-30 4-30 4-3.1 4-3.0
1000 | 1073 | 1072 6-4.3 6-4.5 6-4.3 6-45
1000 | 10=% [ 1073 11-6.9 15-13.3 div 41-12.1
100 | 10°F | 1072 4-34 4-34 4-3.4 4-3.4
100 | 1072 | 10~ 2 6-4.4 6-4.7 6-4.7 6-4.7
100 | 107° | 1072 11-6.6 12-7.3 12-7.2 13-9.5
100 | 107*% [ 10~° 40-22.2 94 - div div div
10 10T [ 1072 6-5.1 6-5.0 6-5.2 6-5.3
10 10°2 | 1071 12-7.0 13-7.7 15-8.0 14-12.7
10 10-2 | 107° 41-17.1 87-34.1 div div
10 10-% [ 107° div div div div

Table 10.15:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fovdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Column-Updatpeg ty= 100;
"div’= divergence or non-convergence after 100 function calls.

[« | 7 [ w [ IQN-LS(RIU) [ IQN-CLS (RIU) [ IBQN-LS (R1U) | IQN-ILS (R1U) |
1000 [ 1071 | 1072 3-26 3-2.6 3-27 3-26
1000 | 1072 | 1072 3-24 3-24 3-24 3-24
1000 | 10~° | 1072 5-25 5-25 5-25 5-25
1000 | 10~% | 1073 8-3.6 8-3.6 div 8-3.6
100 | 107 [ 1072 4-30 4-30 4-31 4-30
100 | 1072 | 1072 5-2.9 5-29 5-2.7 5-2.9
100 | 1072 | 1072 8-3.4 8-3.4 8-3.4 8-3.4
100 | 107T [ 1072 19-45 19-45 div 19-5.9
10 10-1 [ 1072 5-4.1 5-4.0 5-4.2 5-4.0
10 1072 [ 1077 9-38 9-39 9-39 9-44
10 10°% [ 1077 21-52 21-53 22-52 22-7.0
10 10-% [ 107F 57-11.2 57-11.7 div 59-21.5

Table 10.16:FC required for convergence of the one-dimensional FSI problem wteen th
pressure is extrapolated over the time-steps and the initial Jacobian fowvdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Least Squasgss-ewton type in
rank-one update formulation; = 1000; "div’= divergence or non-convergence after 100
function calls.
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[« [ 7 [ o [ ION-BG | IQN-CBG | IBQN-BG | IQN-BB |
1000 [ 107 | 1072 3-26 3-26 3-26 3-2.6
1000 | 102 | 1072 3-2.4 3-2.4 3-2.4 3-2.4
1000 | 1072 | 1072 5-2.9 5-3.0 5-35 5-3.4
1000 | 10=% | 1073 9-47 9-5.0 div 9-5.9
100 | 1071 | 1072 4-33 4-33 4-33 4-33
100 | 1072 | 10~ 2 5-35 5-3.6 5-35 5-4.0
100 | 107% | 1072 10-4.7 10-5.4 10-4.8 10-5.5
100 | 10=% [ 1073 36-9.4 | 38-105 div div
10 10T [ 1072 6-4.9 6-5.0 6-4.9 6-4.9
10 10-2 | 1071 11-5.4 11-5.6 11-54 12-7.0
10 10-° [ 10°° 38-9.3 | 42-105 39-9.8 div
10 10-% ] 10°° div div div div

Table 10.17FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fovdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Broyden type;1000; "div’'=
divergence or non-convergence after 100 function calls.

[« [ 7 [ w [ ION-CUM | IQN-CCUM [ IBQN-CUM | IQN-ICUM |
1000 [ 10~ | 1072 3-3.0 3-3.0 3-3.0 3-3.0
1000 | 10~ 2 | 10~ 2 4-32 4-32 4-32 4-32
1000 | 10=° | 1072 6-4.4 6-3.8 6-4.7 6-4.4
1000 | 10~ % | 1072 11-6.5 12-7.1 div 14-10.3
100 | 107 | 1072 4-34 4-34 4-3.4 4-34
100 | 1072 | 1072 6-4.6 6-4.7 6-45 6-4.7
100 | 1072 | 1072 11-7.0 14-75 16-8.6 14-12.2
100 | 107% [ 1073 41-16.5 75 - div div div
10 10T | 1072 6-5.1 6-5.3 6-5.2 6-5.2
10 1072 | 10717 13-7.7 14-85 15-8.6 15-14.9
10 1072 [ 10°° 44-17.3 div div div
10 10-% ] 10°° div div div div

Table 10.18:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fovdime-step is
taken as the final Jacobian from the previous time-step; values for thérfieststep and
average over the first 10 time-steps; solvers are of Column-Updatpeg ty= 1000;
"div’= divergence or non-convergence after 100 function calls.

10.1.6.3 Initial Jacobian from a coarser grid

In this approach we use two grids as describeg9r2. The fine grid will have
1000 nodes and the coarse grid 334 nodes.
The validity of this approach is confirmed by the Fourier gturd§10.1.5, which
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shows that the most unstable modes are those with the loregstehcy. It will be
exactly those modes that we will be able to capture on theseagid.

Comparing these results with those of the previous sectodsficult, however,
because

1. the initial residual can be different with this method,emtthe initial iterate
is obtained from a coarser grid, instead of being extrapdl&ibm previous
time-steps (we recall that we have based our convergentegicn on the
reduction of the relative residual);

2. itis not obvious to put an exact cost on the iterations enfiie grid, al-
though it is roughly one third of the cost on the fine grid, lohea the
relative number of nodes on the fine and coarse grid.

From tables 10.19 and 10.20 we see that an initial iteratthfopressure obtained
by extrapolating from the previous time-steps gives be#sults than when it is
obtained from the coarser grid, even for this relativelyhhigtio between the num-
ber of nodes of the coarse and fine grid.

Compared with the results in tables 10.5 and 10.61df.1.6.1, we see that the
two-grid method with an extrapolated initial iterate giwefar lower value of the
number of iterations for the first time-step for low valuesraindx. The actual
gain is largely off-set, however, when counting an iteratm the coarse grid for
one third of an iteration on the fine grid. For high values-@ndx we can even
speak of a net loss.

Compared with the results §10.1.6.2 (tables 10.11,10.12 and 10.16) there is no
net gain to be obtained with this method, neither for low galofr andx or for
high values.
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[+ T EEl IQN-LS I IQN-CLS I BON-LS | IQN-ILS ]
1000 [ 10~ T [ 1072 3-3.0/3-3.0 3-3.0[/3-3.0 3-3.03-30 3-3.0[3-3.0
1000 [ 1072 [ 1072 3-3.0/3-3.0 3-3.0[3-3.0 3-3.0[3-3.0 3-3.0[3-3.0
1000 [ 1073 [ 1072 4-4.0]4-40 4-4.0[4-4.0 4-4.0[4-4.0 4-4.0[4-4.0
1000 | 10=% | 1077 4-4.0]8-7.2 5-4.8(8-7.2 div 5-4.7(8-7.2
100 | 107" [ 1072 3-3.0/4-4.0 3-3.2[4-4.0 3-3.2[4-4.0 3-32[4-4.0
100 | 1072 [ 102 4-4.0]5-5.0 4-4.0[5-5.0 4-405-5.0 4-4.0]5-5.0
100 | 107% | 1072 5-43[8-7.1 6-52[8-7.1 6-52[8-7.1 6-52|8-7.1
100 | 10-F | 1077 7-7.8]20-20.4 7-8.3]20-20.4 div 7-8.1]20-20.8
10 [ 1077 [ 1077 4-37/5-55 4-42|5-55 4-425-55 4-42]|5-55
10 [ 1072 ] 1071 5-42[9-7.9 6-51/9-7.9 6-51/9-7.9 6-51/9-7.9
10 [ 1072 [ 10°° 8-8.4|21-20.4 8-8.3|21-204 | 9-86(24-20.8| 8-7.9]21-205
10 | 107% | 107° || 27-33.0]57-50.3 | 29-31.956-51.0 div 36-35.7| 54 - 52.0

Table 10.19:FC required for convergence of the one-dimensional FSI problem wleen th
pressure is extrapolated over the time-steps and the initial Jacobian fowvdime-step is
based on computations on a coarser grid at every time-step; valuesgfdirshtime-step
and average over the first 10 time-steps on fine and coarse gridategly; solvers are of
Least Squares type; 1000 nodes on fine grid and 334 nodes oreagrads "div’=
divergence or non-convergence after 100 function calls.

[« T o IQN-LS I IQN-CLS [ BON-LS | IQN-ILS ]
1000 [ 1071 | 102 3-3.0[3-30 3-3.0[3-30 3-3.1[3-30 3-3.0[3-30
1000 | 10°2 | 102 3-3.0[3-30 3-3.0[3-30 3-3.0[/3-30 3-3.0[/3-30
1000 | 1073 | 1072 3-3.3|4-4.0 3-3.9]4-4.0 3-3.9(4-4.0 3-3.9]/4-4.0
1000 [ 10=% [ 1073 div div div div
100 | 1077 | 1072 3-3.0/4-38 4-37|4-38 4-36|4-38 4-37|4-38
100 | 1072 | 102 3-3.8/5-4.9 4-40|5-4.9 4-4.0(5-4.9 4-4.0]|5-4.9
100 | 1073 | 1072 5-4.3/8-7.3 5-5.0[/8-7.3 5-5.0[8-7.3 5-51[8-7.1
100 | 107% | 1073 8-10.720-17.7 | 8-10.9/20-17.8 div 8 - div | 20 - div
10 | 1077 [ 1072 3-3.7|5-55 4-43|5-55 4-42|5-55 4-43]5-55
10 [ 1072 ] 107 5-4.3/9-7.9 5-52/9-7.9 5-51/9-8.1 5-52]/9-8.0
10 | 1072 [ 1077 14-9.4/21-19.2 | 15-9.2|21-19.2 div 13-9.5/21-19.5
10 | 107% [ 107° || 30-31.5/57-45.2 | 31-40.4 56 - 45.2 div 33-42.3)54-45.9

Table 10.20:FC required for convergence of the one-dimensional FSI problem wteen th
initial value for the pressure and the initial Jacobian for a new time-step aseth@n
computations on a coarser grid at every time-step; values for the firstdtepand
average over the first 10 time-steps on fine and coarse grid resplgctoévers are of
Least Squares type; 1000 nodes on fine grid and 334 nodes oreagrdds "div’=
divergence or non-convergence after 100 function calls.
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10.2 One-dimensional heat equation

10.2.1 Analytical description of the problem
The heat equation in one dimension without heat source éndiy:

or 0

pC’E ~ % (k:) =0. (10.28)
In this equatiori” is temperaturey is density,C' is heat capacity, anklis thermal
conductivity. The length. of the domain is set equal to 1000. The material we are
working with is air. We assume we only have a linear solveiotges(10.28) with
an imposed value gf, C andk that may vary in space.
If we want to take dependency pfC andk on T into account, we need to do this
outside the solver for (10.28). They can be obtained by theing interpolation
polynomials (based on values between 0 and® 3D [253]):

E = 7.0277-107°T +2.4388 - 1072 (10.29a)
C = 4.3004-10777T% +1.1850 - 10~°T + 1.0048 (10.29b)
p = 5.3641-107°7T2 —3.7809-1073T +1.2781.  (10.29¢)

We use a finite differencing schemewequidistant nodes for the solver of (10.28),
with spacingAx, and an implicit time-discretization with time-stéyt. We as-
sume that at the start of the test we have a uniform temperafudf, = 150° C.
The right boundary is kept &f,, while the left boundary condition is a function of
time, defined ag, = T, + Lo sin (£%).

After discretization we obtain the equations{= 1, ..., n):

2 [HICTATY, ~ [110) — (Klisa + BTl
+ ([klit1 + 2[k]s + [k]i-1)[T): — (k)i + [K]i-1)[T],_; =0, (10.30)

wherey = AAJQ. The subscripts, i + 1 and: — 1 indicate the mesh nodes. The
subscriptt denotes the previous time-level; the subsctipt 1 for the new time-
level is omitted. For ease of notation the same symbol is tmeithe continuous
and discretized variabl€, as the brackets and indices for the discretized variable
clearly indicate the difference between continuous ancreied variables.

We will useg to denote the ensemble of discretized constantsandk expressed

as functions ofl"; discretization is done using a one-to-one relationshifp @i

We will define the heat and coefficient solver by the followamnventions.

o Fii1(gsu+1,Ti) = Tst1.4+1: solve the heat equation (10.30) for the tem-
perature at time-level + 1 with a fixed set of coefficients, ;1; assign



162 CHAPTER 10

Ts+1,++1 to this solution.
This corresponds to the definition éf; used in 9.1a; note that in this
particular casé; . 1 is no function ofy;.

o Sit1(Tst1,041) = gs+1,.41: compute the new coefficients at time-levell
from (10.29) given the previously calculated temperatliye; ;1; assign
gs+1,t+1 to this solution.

This corresponds to the definition 6f,; used in (9.1b); note that in this
particular case; 1 is no function ofg, or T;.

Remark Even though (10.30) is a linear equatiorifinF;, ; is not linear, i.e. the
relationship between andT is not linear. This can be easily seen by the fact that
a doubling of the values af does not double the corresponding value% of

10.2.2 Results with the quasi-Newton solvers

In this section we will solve the problem of the one-dimensideat equation with
variable coefficients by means of the quasi-Newton methedsribed in chapter
5 and 6:

e IQN-BG, IQN-CBG, IBQN-BG, IQN-BB for the Broyden methods;

e IQN-CUM, IQN-CCUM, IBQN-CUM, IQN-ICUM for the (I)CUM me-
thods;

e IQON-LS, IQN-CLS, IBON-LS, IQN-ILS for the Least Squares metls,
both in the original formulation and in rank-one update falation.

For this time-dependent problem, the following approadnes chapter 9 are
used:

e Extrapolating the temperature to obtain an initial iterate starting from a
new Jacobian at every time-step.

e Extrapolating the temperature to obtain an initial iteratel adding input-
output modes from previous time-steps to the original fdation (cfr. §9.1.1).

e Extrapolating the temperature to obtain an initial iteeatd starting from the
final approximate Jacobian of the previous time-step in &-tare update
formulation (cfr.§9.1.2).
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We will use test-cases with = 100 andn = 1000 nodes.
Values ofAt ranging from10~7 to 1 will be used.

For the first iteration of the first time-step a relaxationtésc = 0.1 is used.
We define the relative residual ("Relres”) iiﬁﬁiﬁi?? (for IQN, IQN-C and

IQN-I) or as fz1lgerer.T)=perir (for IBQN) and use Relres: 10~ as a con-
" Fii1(9o,t+1,Tt)—Pot+1 -

vergence criterium. The performance measure we use is thbenof heat-solver

calls (FC). We break off the iteration aftei00 function calls if no convergence

has been achieved at that point.

In tables 10.21-10.32 we give the number of iterations néddethe first time-

step as well as the average over the first 10 ten time-steps.

Remark All tests were performed using Matlab 7.3 on an Intel Xeon®E350GHz
quad-core processor.

10.2.2.1 No re-use of data from previous time-steps

This problem is clearly an easy problem where a low numbeeadiions is needed
and most methods have a very similar performance.

As we can see in tables 10.21 and 10.23, all the Least Squath®ds have the
same performance, with the difference that for= 100 and At = 10~7 the
original formulation diverges, while the rank-one updatetimod converges in a
low number of iterations. The same is true fore= 1000 andAt € {10=7,10~°}.
All the Broyden and CUM methods also share the same perfarengables 10.22
and 10.24); while they are a little bit faster than the meshiod the highest value
of At whenn = 100, they diverge for the smallest valua{ = 10~7). For
n = 1000 their performance is identical to that of the Least Squarethads in
the original formulation.

Note that convergence is actually faster#foe= 1000 than forn = 100.
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’ At H QN ‘ QN ‘ BON ‘ QN ‘ QN ‘ QN ‘ BON ‘ QN
s | -cLs | -Ls LS | -LS(R1U) | -CLS (R1U) | -LS(R1U) | -ILS (R1U)

107 |[ 3-div | 3-div | 3-div | 3-div 3-3.0 3-3.0 3-3.0 3-3.0
10°° || 3-30 | 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10°° || 3-30 | 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10°% || 3-30 | 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10° || 3-31| 3-31| 3-32 | 3-31| 3-3.1 3-3.1 3-3.1 3-3.1
102 || 3-30 | 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10" || 4-40 | 4-40| 4-40 | 4-40 | 4-40 4-40 4-40 4-4.0

i 6-51] 6-51| 6-51| 6-51| 6-51 6-51 6-51 6-5.1

Table 10.21FC required for convergence of the one-dimensional heat equation iftbaly

temperature is extrapolated over the time-steps and the Jacobian resdtabevery new

time-step; values for the first time-step and average over the first 10stieps; solvers are

of Least Squares type; = 100; "div’= divergence or non-convergence after 100 function
calls.

At IQN IQN IBQN QN IQN ION IBQN IQN
-BG | -CBG | -BG -BB | -CUM | -CCUM | -CUM | -ICUM
10-7 [ 3-div [ 3-div [ 3-div [ 3-div [ 3-div [ 3-div | 3-div | 3-div
10 % [ 3-30| 3-30| 3-30 | 3-30 | 3-30| 3-30 | 3-3.0| 3-3.0
10~° |[ 3-30| 3-30| 3-30 | 3-3.0 | 3-3.0| 3-30 | 3-3.0| 3-3.0
10-* [ 3-30| 3-30| 3-30 | 3-30 | 3-3.0| 3-30 | 3-3.0| 3-3.0
102 [ 3-31| 3-31] 3-31| 3-31| 3-31| 3-31 | 3-31 | 3-31
102 [ 3-30| 3-30| 3-30 | 3-3.0 | 3-3.0 | 3-30 | 3-3.0| 3-3.0
10" || 4-40| 4-40| 4-40| 4-40 | 4-40| 4-40 | 4-40| 4-40
T 5-50| 5-50 | 5-50 | 5-50 | 5-50| 5-50 | 5-5.0 | 5-5.0

Table 10.22FC required for convergence of the one-dimensional heat equation iftbaly

temperature is extrapolated over the time-steps and the Jacobian resétabevery new

time-step; values for the first time-step and average over the first 10stieps; solvers are

of Broyden and Column-Updating type;= 100; "div’= divergence or non-convergence
after 100 function calls.
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At QN QN | 1BON | QN QN TON BON QN
.Ls | -cLs | -Ls LS | -LS(R1U) | -CLS (R1U) | -LS(R1U) | -ILS (R1U)

10 7 || 3-div | 3-div | 3-div | 3-div 3-3.0 3-3.0 3-30 3-3.0
10 ° || 3-div | 3-div | 3-div | 3-div 3-3.0 3-3.0 3-3.0 3-3.0
10° || 3-30| 3-30| 3-30 | 3-30| 3-30 3-3.0 3-3.0 3-3.0
10 % || 3-30| 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10 ° || 3-30| 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10 2 || 3-30| 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
10" || 3-30| 3-30| 3-30 | 3-30| 3-3.0 3-3.0 3-3.0 3-3.0
I A-40| 4-40 | 4-40 | 4-40| 4-40 A-40 1-40 1-40

Table 10.23:FC required for convergence of the one-dimensional heat equation iftbaly
temperature is extrapolated over the time-steps and the Jacobian resdtabevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Least Squares type; = 1000; "div’= divergence or non-convergence after 100
function calls.

] e | oo | 5o | 56 | b | cfu | S | ichu

-BG | -CBG | -BG BB | -CUM | -CCUM | -CUM | -ICUM
10~7 [ 3-div [ 3-div [ 3-div [ 3-div [ 3-div | 3-div | 3-div | 3-div
10-% || 3-div | 3-div | 3-div | 3-div | 3-div | 3-div | 3-div | 3-div
10~° |[ 3-30| 3-30| 3-30 | 3-3.0 | 3-3.0 | 3-30 | 3-3.0| 3-3.0
10~ [ 3-30| 3-30| 3-30 | 3-30 | 3-3.0| 3-30 | 3-3.0| 3-3.0
10~ [ 3-30| 3-30| 3-30 | 3-3.0 | 3-3.0 | 3-30 | 3-3.0| 3-3.0
102 [ 3-30| 3-30| 3-30 | 3-3.0 | 3-3.0 | 3-30 | 3-3.0| 3-3.0
10" |[ 3-3.0| 3-30] 3-30 | 3-30 | 3-3.0 | 3-30 | 3-3.0| 3-3.0

1 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40

Table 10.24FC required for convergence of the one-dimensional heat equation iftbaly
temperature is extrapolated over the time-steps and the Jacobian resdtabevery new
time-step; values for the first time-step and average over the first 10stieps; solvers are
of Broyden and Column-Updating type;= 1000; "div’= divergence or
non-convergence after 100 function calls.

10.2.2.2 Re-use of data from previous time-steps

For the Least Squares methods in original formulation wetlsaethe strategy to
re-use data from previous time-steps, as discussed inat@ponly pays off for
small values ofAt (tables 10.25-10.28). For large valuesf the method is ac-
tually slower than for a method without re-use of data.

Forn = 100 the re-use of data from 5 time-steps is identical for smdiles

of 7 and better for large values dft when compared with the re-use of data over
10 time-steps. The opposite is true for= 1000, although by a very small margin.
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For methods in rank-one update formulation we also see tigairais only ob-
tained for small values oA\t (tables 10.29-10.32). For large values the methods
performs worse than without re-use. A notable exceptiohadBQN-LS method
which diverges forAt = 10~* whenn = 100 and forAt € {10~7,10~2} for

n = 1000. The rank-one update methods with recovery perform somieiditer
than the LS methods in original formulation with recoverydata.

For the Broyden and CUM methods (tables 10.30 and 10.32) wehss their
performance is improved by the re-use of the Jacobian ofiqueutime-steps for
small values ofAt; for larger values the performance is identical or mardynal
better.

With respect to the Least Squares methods the Broyden and i@klikods have a
slightly better performance.

[ At ][ IQN-LS [ IQN-CLS [ IBQN-LS [ IQN-ILS |
10~7 3-2.1 3-2.1 3-2.1 3-2.1
10°6 3-2.1 3-2.1 3-2.1 3-2.1
10°° 3-2.1 3-2.1 3-2.1 3-2.1
1071 3-2.1 3-2.1 3-22 3-2.1
10-3 3-2.8 3-27 3-5.4 3-3.0
1072 3-2.8 3-27 3-3.1 3-3.1
1071 4-45 4-42 4-59 4-40

1 6-6.7 6-7.4 6-83 6-5.38

Table 10.25:FC required for convergence of the one-dimensional heat equation thieen
temperature is extrapolated over the time-steps and input-output mo8ge®fious
time-steps (non-R1U formulation) are kept; values for the first time-std@aarage over
the first 5 time-steps; solvers are of Least Squares quasi-Newtomtgpiginal (i.e. non
rank-one update) formulatiom; = 100; "div’= divergence or non-convergence after 100
function calls.
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[ At ][ 1QN-LS [ IQN-CLS [ IBQN-LS | IQN-ILS |
107 3-21 3-21 3-21 3-21
10~ 9 3-21 3-21 3-21 3-21
10~ ° 3-21 3-21 3-21 3-21
10— 7T 3-21 3-21 3-26 3-21
102 3-29 3-29 3-9.2 3-3.0
10~2 3-3.0 3-3.0 3-3.0 3-3.0
10~ 1 4-42 4-45 4-58 4-41

T 6-6.8 6-7.6 6-115 6-59

Table 10.26FC required for convergence of the one-dimensional heat equation thieen
temperature is extrapolated over the time-steps and input-output modéspoévious
time-steps (non-R1U formulation) are kept; values for the first time-std@earage over
the first 10 time-steps; solvers are of Least Squares quasi-Newteintgpiginal (i.e. non
rank-one update) formulation; = 100; "div’= divergence or non-convergence after 100
function calls.

[ At ][ IQN-LS [ IQN-CLS [ IBQN-LS [ IQN-ILS |
10~7 3-2.1 3-2.1 3-2.1 3-2.1
10°6 3-2.1 3-2.1 3-2.1 3-2.1
10°° 3-2.1 3-2.1 3-2.1 3-2.1
1071 3-2.1 3-2.1 3-2.1 3-2.1
10-3 3-2.1 3-2.1 3-24 3-2.1
1072 3-27 3-238 3-3.0 3-3.0
1071 3-3.0 3-3.0 3-3.1 3-3.1

1 4-41 4-42 5-7.1 4-41

Table 10.27:FC required for convergence of the one-dimensional heat equation thieen
temperature is extrapolated over the time-steps and input-output mo8ge®fious
time-steps (non-R1U formulation) are kept; values for the first time-std@aarage over
the first 10 time-steps; solvers are of Least Squares quasi-Newteintgpiginal (i.e. non
rank-one update) formulation; = 1000; "div’= divergence or non-convergence after
100 function calls.
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[ At ][ 1QN-LS [ IQN-CLS [ IBQN-LS | IQN-ILS |
107 3-21 3-21 3-21 3-21
10~ 9 3-21 3-21 3-21 3-21
10~ ° 3-21 3-21 3-21 3-21
10— 7T 3-21 3-21 3-21 3-21
102 3-21 3-21 3-25 3-21
10~ 2 3-27 3-3.0 3-6.1 3-3.0
10~ 1 3-3.0 3-3.0 3-3.0 3-3.0

T 4-41 4-43 5-6.1 4-41

Table 10.28FC required for convergence of the one-dimensional heat equation thieen
temperature is extrapolated over the time-steps and input-output modéspoévious
time-steps (non-R1U formulation) are kept; values for the first time-std@earage over
the first 10 time-steps; solvers are of Least Squares quasi-Newteintgpiginal (i.e. non
rank-one update) formulation; = 1000; "div’= divergence or non-convergence after
100 function calls.

[ At ][ IQN-LS [ IQN-CLS [ IBQN-LS [ IQN-ILS |
10~7 3-2.1 3-2.1 3-2.1 3-2.1
10°6 3-2.1 3-2.1 3-2.1 3-2.1
10°° 3-2.1 3-2.1 3-2.1 3-2.1
1071 3-2.1 3-2.1 3 - div 3-2.1
10-3 3-3.0 3-3.0 3-3.0 3-3.0
1072 3-3.0 3-3.0 3-3.0 3-3.0
1071 4-40 4-40 4-40 4-40

1 6-5.1 6-5.1 6-55 6-5.4

Table 10.29:FC required for convergence of the one-dimensional heat equatiorigirob
when the temperature is extrapolated over the time-steps and the initialidadolb a new
time-step is taken as the final Jacobian from the previous time-step; valube fiirst
time-step and average over the first 10 time-steps; solvers are of Eqaares type in
rank-one update formulatiom; = 100; "div’= divergence or non-convergence after 100
function calls.
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At ION [QN | 1BQN | QN QN QN BQN | QN
-BG | -CBG | -BG -BB | -CUM | -CCUM | -CUM | -ICUM
107 || 38-21] 3-21] 3-21 | 38-21| 3-21] 3-21 | 3-21| 3-21
100 || 38-21] 3-21| 3-21 | 3-21 | 3-21| 3-21 | 3-21 | 3-21
10° || 38-21 ] 3-21| 3-21 | 3-21 | 3-21| 3-21 | 3-21 | 3-21
10°% || 38-21] 3-21| 3-21 | 3-21 | 3-21| 3-21 | 3-22 | 3-21
10° || 3-30 | 3-30| 3-30 | 3-3.0 | 3-30| 3-30 | 3-30 | 3-3.0
102 || 3-30 | 3-30| 3-30 | 3-3.0 | 3-30| 3-30 | 3-30| 3-3.0
10" || 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40 | 4-40
1 5-50 | 5-50 | 5-50 | 5-50 | 5-50| 5-50 | 5-50 | 5-50

Table 10.30:FC required for convergence of the one-dimensional heat equatiorigrob
when the temperature is extrapolated over the time-steps and the initialidadolb a new
time-step is taken as the final Jacobian from the previous time-step; vatlube fiirst
time-step and average over the first 10 time-steps; solvers are ofl@ncgnd
Column-Updating typep = 100; "div’= divergence or non-convergence after 100
function calls.

[ At ][ IQN-LS [ IQN-CLS [ IBQN-LS [ IQN-ILS |
10~7 3-2.1 3-2.1 div 3-2.1
10°6 3-2.1 3-2.1 3-2.1 3-2.1
10°° 3-2.1 3-2.1 3-2.1 3-2.1
1071 3-2.1 3-2.1 3-2.1 3-2.1
10-3 3-2.1 3-2.1 3 - div 3-2.1
1072 3-3.0 3-3.0 3-3.0 3-3.0
1071 3-3.0 3-3.0 3-3.1 3-3.0

1 4-39 4-39 5-4.7 4-4.0

Table 10.31:FC required for convergence of the one-dimensional heat equatiorigrob
when the temperature is extrapolated over the time-steps and the initialidadolb a new
time-step is taken as the final Jacobian from the previous time-step; valube fiirst
time-step and average over the first 10 time-steps; solvers are of Eqaares type in
rank-one update formulation; = 1000; "div’= divergence or non-convergence after 100
function calls.
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] 56 | oo | %6 | S | cbw | ocw | Gm | scou |

-BG -CBG -BG -BB -CUM | -CCUM | -CUM | -ICUM

107 3-21|3-21|3-21|3-21| 3-21| 3-21 | 3-21| 3-21
10°° 3-21|3-21|3-21|3-21| 3-21| 3-21 | 3-21| 3-21
10°° 3-21|3-21|3-21|3-21| 3-21| 3-21 | 3-21| 3-21
107 3-21|3-21|3-21|3-21| 3-21| 3-21 | 3-21| 3-21
10-3 3-21|3-21|3-21|3-24| 3-21| 3-21 | 3-25| 3-21
102 3-30| 3-30| 3-30| 3-30| 3-30| 3-30 | 3-3.0| 3-3.0
101 3-30| 3-30| 3-30| 3-30| 3-30| 3-30 | 3-3.0| 3-30
1 4-39 ] 4-39 | 4-39| 4-40| 4-39 | 4-39 | 4-39 | 4-40

Table 10.32:FC required for convergence of the one-dimensional heat equatiorigirob
when the temperature is extrapolated over the time-steps and the initialidadolb a new
time-step is taken as the final Jacobian from the previous time-step; vatlube fiirst
time-step and average over the first 10 time-steps; solvers are ofl@ncgnd
Column-Updating typep = 1000; "div’= divergence or non-convergence after 100
function calls.

10.3 Conclusion

The tests in the previous paragraphs have shown that theé-Maagon Least
Squares methods give very good performance on the non-lomeadimensional
flexible tube problem, when compared to Broyden’s methodstha Column-
Updating methods. The gains increase when the problem Ectimrder”, i.e.
when more iterations are needed. Methods to further entthrgeerformance by
re-using data from previous time-steps also show greanfiatéo improve the
performance.

On the one-dimensional heat equation with variable coefitsi which can be
considered a fairly easy problem to solve, the gains areoletspoken, and Broy-
den’s methods and the Column-Updating methods can eveerdoitm the Least
Squares methods.
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Numerical experiments with linear
operators

This chapter will serve as an illustration to the variantshef Least Squares me-
thods discussed if8.4, where we have shown that we can make IQN-LS and
IQN-ILS? analytically identical to GMRes if we can foragz, Vo € R?*1,

We will present three test-cases found in the literaturecamdpare the following
methods [107].

e GMRes in the numerically stable form given by Barrett and adwers [12];

e IQN-LS as given in algorithm 8.4.1 using, = 1 (i.e. analytically equiva-
lent to the standard IQN-LS method);

e IQN-ILS as given in algorithm 8.4.2 using, = 1 (i.e. analytically equiva-
lent to the standard IQN-ILS method);

e IQN-LS as given in algorithm 8.4.1 using the optimal valueugfgiven by
(8.114);

e IQN-ILS as given in algorithm 8.4.2 using the optimal valde.g given by
(8.114);

e IQN-LS as given in algorithm 8.4.3.;

1Technically, we would need to use “QN-LS” and “QN-ILS”, iead of “IQN-LS” and “IQN-ILS”
as the problems presented in this chapter are defined (p) = 0 without any relation to interface
problems. We will refrain from doing so to keep a uniform nomence.
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e IQN-ILS as given in algorithm 8.4.3.

11.1 Test matrix from the MATRIX MARKET REPOS
ITORY

In this test we take for x a square non-spd matrix R32*32 from the MATRIX
MARKET REPOSITORY[148] called IBM32.

For the vectob we chooséb]; =1 (i =1,...,n).

All iterations will start fromp, = [0 0 ... 0]T. As a convergence requirement
we take a relative reduction of the residl%i;?lg 10~5 and measure the number of
matrix-vector products necessary to obtain convergence.

As seen in figure 11.1 the addition of an optimal value of theupeterw, im-
proves the convergence of the IQN-LS method. Initially taene happens for
IQN-ILS (figure 11.2) but the effect is short lived, and evems into a slight
worsening of the convergence at the end.

The second alternative form of both IQN-LS and IQN-ILS résin a convergence
pattern that is identical to that of GMRes (as predicted bpth) until the very last
iterations where numerical differences start to be fel§4QS having the smallest
deviation with respect to GMRes.

Figure 11.3 shows that IQN-ILS has a more monotone conveggitan IQN-LS
when settingus, = 1, which is also in accordance with theoretical findings. (We
recall that for IQN-ILSM converges in a monotone manner towards' while
for IQN-LS f(; converges in a monotone manner towartg; for more details
sees8.1.)

When using the optimal value af; (figure 11.4) both IQN-LS and IQN-ILS are
almost identical except for the last iterations. This samify is even more pro-
nounced for the second alternative form (figure 11.5). (Boghanalytically iden-
tical for this formulation.)

11.2 One-dimensional advection-diffusion equation

In [55] the following ODE boundary value problem was prombas a test-case:

d?u

du
—@—kﬁ% = 0 on]0,1] (11.1a)

u(0) = 1 (11.1b)
u(l) = 0. (11.1c)
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Comparison of GMRes and the IQN-LS variants
10 T T T T

Relative residual

—+Alternative form 1 of IQN-LS with 0, =1

.=.=.Alternative form 1 of IQN-LS with optimal SN

10+ -0~ Alternative form 2 of IQN-LS
—GMRes

107® I I I I I I

0 5 10 15 20 25 30
Number of matrix—vector products

Figure 11.1: Convergence history of the different variants of IQNah& of GMRes for the
IBM32 matrix test-case.

Equation (11.1) describes a one dimensional advectidosiiiin problem and is
discretized on a uniform grid with step-size= %—&-1 using first-order finite dif-

ference upwind discretization for the advection term arubsd order central dis-
cretization for the diffusion term. This leads to a lineasteyn that can be written
asK(p) = Agp—b=0.

For 3 we take the valued0~!; as in [55] we taken = 50. p, is chosen as
po=[11...1].

The convergence criterion is a relative reduction of thédred of 10~° and as a
performance measure the number of matrix-vector prodaeised.

In figures 11.6, 11.7 and 11.8 we see that for this test-caiteendéQN-LS nor
IQN-ILS with ws = 1 show monotone convergence. Using the optimal value
wy initially yields better convergence but results in a staigmeof the convergence
(figures 11.6, 11.7 and 11.9). The cause was found in lingteclgehavior, due to
extremely small values af, after about%n iterations.

Figures 11.8 and 11.9 show that IQN-ILS exhibits better eog@nce performance
than IQN-LS forw, = 1 and for the optimal value af,. No difference can be
seen between IQN-LS and IQN-ILS in the second alternativen fand GMRes
(figure 11.10).

35

of
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Comparison of GMRes and the IQN~-ILS variants
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Figure 11.2: Convergence history of the different variants of IQS-8nd of GMRes for
the IBM32 matrix test-case.

11.3 Two-dimensional advection-diffusion equation

We propose the following PDE boundary as a test-case:

-

X-Vu(z,y) —vViu(z,y) = f(r,y) onQ =] —1,1[x] —1,1]
(11.2a)
u(z,y) = 0 onof. (11.2b)

(11.2) describes a two-dimensional advection-diffusigobfem and is discretized
using a residual distribution scheme on an unstructuraddrilar mesh with 441
nodes (361 interior nodes) [43,102]. This leads to a lingstesn that can be writ-
tenasK (p) = Axkp—b=0.

We takeX = (1,1), v = 0.1, f(z,y) = (22 — 1)(y*> — 1)2. We start from
po=1[00 ... 0]T.

The convergence criterion is a relative reduction of thédred of 10~° and as a
performance measure the number of matrix-vector prodaeised.

35

For this test-case IQN-LS witla, = 1 shows very erratic convergence behavior

and eventually diverges (figures 11.11 and 11.13), whil¢ffersamev, IQN-ILS
converges in a monotone way (figures 11.12 and 11.13).
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Comparison of alternative form 1 of IQN-LS and IQN-ILS
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Figure 11.3: Convergence history of the first alternative form of IG&and IQN-ILS with
ws = 1 for the IBM32 matrix test-case.

Both IQN-LS and IQN-ILS show good performance when using ftret alter-
native form with the optimal value ab,, with IQN-ILS slightly outperforming
IQON-LS (figures 11.11, 11.12 and 11.14).

For the second alternative form no difference between IG\#QN-ILS and GM-
Res could be discerned (figures 11.11, 11.12 and 11.15).

11.4 Conclusion

This chapter served as an illustration for the theoreticalifigs in chapter 8. The
tests that were chosen allow us to confirm that IQN-LS and IQ®8lean be trans-
formed to a method that is algebraically equivalent to GMBRgsIising multiple
parameters but without incurring the cost of extra matexter products. Another
variant with a single parameter, as treated in chapter 8ysbaly slight improve-
ments, if at all, and suffers from poor numerical stability.

35
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Comparison of alternative form 1 of IQN-LS and IQN-ILS with optimal 0,
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Figure 11.4: Convergence history of the first alternative form of IG&and IQN-ILS with
optimalw, for the IBM32 matrix test-case.
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Comparison of GMRes and the IQN-LS variants

©
>
h=]
1%
<
g
= -8
§10 | f
[}
o 10 —+—Alternative form 1 of IQN-LS with 0, =1
10 f
.=.=.Alternative form 1 of IQN-LS with optimal W,
1071 -6~ Alternative form 2 of IQN-LS -
—GMRes
107147 _
107 | | | | | |
0 10 20 30 40 50 60 70

Number of matrix—vector products

Figure 11.6: Convergence history of the different variants of IQNah& of GMRes for the

one-dimensional advection-diffusion problem.
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Comparison of alternative form 1 of IQN-LS and IQN-ILS
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Figure 11.8: Convergence history of the first alternative form of IG&and IQN-ILS with
ws = 1 for the one-dimensional advection-diffusion problem.
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Figure 11.9: Convergence history of the first alternative form of IGand IQN-ILS with
optimalw, for the one-dimensional advection-diffusion problem.
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o Comparison of alternative form 2 of IQN-LS and IQN-ILS
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Figure 11.10: Convergence history of the second alternative form NfLQ and IQN-ILS
for the one-dimensional advection-diffusion problem.
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Comparison of GMRes and the IQN-ILS variants
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Comparison of alternative form 1 of IQN-LS and IQN-ILS with optimal 0,
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Conclusions

In this thesis we started from a partitioned coupling metfoodluid-structure in-
teraction problems proposed by Vierendeels earlier thisde. This method was
based on the construction of approximate Jacobians of {flaxksolvers with a
Least Squares approach. We formalized the method as belaglkeduasi-Newton
method (Interface Block Quasi-Newton method with Least&®gs Jacobian or
IBON-LS) and expanded the original idea of the Least Squawastruction of the
approximate Jacobian. Ensuing algorithms were IQN-LS®(fate Quasi-Newton
method with Least Squares Jacobian), IQN-CLS (Interfacas@Newton method
with Composed Least Squares Jacobian) and IQN-ILS (Irderfuasi-Newton
method with Inverse Least Squares Jacobian).

The four methods were analyzed from a theoretical point eiwand compared
with existing quasi-Newton method that are applicable @ ititerface problem
that was originally studied. These methods are Broyden&odg” and “bad”
method, the Column-Updating method and the Inverse Colupaiating method.
These are called IQN-BG, IQN-BB, IQN-CUM and IQN-ICUM restigely in
this context. These methods are also adapted to “block” aachposed form” re-
sulting in the new methods IQN-CBG, IBQN-BG, IQN-CCUM andQR-CUM.
From the theoretical analysis it is concluded that Least8pimethods share sim-
ilarities with their respective Broyden counterpartseaftaving re-written the for-
mer in rank-one update form. The methods also exhibit a géined secant prop-
erty and Least Change Secant Update property. For linedtgms it is shown
that convergence is guaranteed in at most 1 iterations ¢ being the dimension
of the solution vector) without the possibility of singutas. This compares very
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favorable to the Broyden and CUM methods which, for lineabpems, converge
in at most2n iterations.

IQN-LS and IQN-ILS are also transformed, by the addition oftiple parameters,
but without extra matrix-vector products, to a form thatlgedraically equivalent
to GMRes.

Approaches to further improve the performance of the Leaisa&s quasi-Newton
methods for a series of (time-dependent) problems are gindriested.

From the numerical experiments we have learned that thei-tjiexgton Least

Squares methods give very good performance on the non-lameadimensional
flexible tube problem, when compared to Broyden’s methodktha Column-

Updating methods. The gains increase when the problem kectimarder”, i.e.

when more iterations are needed. Methods to further entthegeerformance by
re-using data from previous time-steps also show greainpiaté¢o improve the

performance.

On the one-dimensional heat equation with variable coefitsi, which can be
considered a fairly easy problem to solve, the gains aredlespoken, and Broy-
den’s methods and the Column-Updating methods can eveerdortm the Least
Squares methods.

Tests on linear problems, which served as an illustratiothitheoretical findings
in chapter 8, allow us to confirm that IQN-LS and IQN-ILS cartfzmsformed to

a method that is algebraically equivalent to GMRes by usindfipie parameters
but without incurring the cost of extra matrix-vector pratki Another variant
with a single parameter, as treated in chapter 8, shows tight improvements,

if at all, and suffers from poor numerical stability.



A.1 Mainloop

clear all
close all
clc

global kappa

kappa= % Fill in value
global tau

tau= % Fill in value

% define grid: fine
gridsize="f’;

% CALL SCRIPT-FILE
first_init_ MGM

% CALL SCRIPT-FILE
second_init_MGM

% CALL SCRIPT-FILE
third_init_ MGM

Matlab Source code

for timelabel=1:timesteps % define number of time-steps

switch recovery

% if recovery type is MG then we first create
% an initial Jacobian from a coarser grid.
case{MG1,MG2} % define case-designator for Multi-Grid

% set grid to coarse

gridsize="c’;

% change all variables that change when grid is changed

second_init MGM

% create time-dependent BC for this grid

global UL

UL=Uo+Amplitude *Uox (sin(pi

*timelabel *tau2/PERIOD))"POWER;

% Restriction of initial variables to be used on
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% coarse grid

Ginit_f=Ginit;
Ginit=RestrictM * (Ginit);
Gprev_f=Gprev;

global Gprev
Gprev=RestrictM  * (Gprev);
Pinit_f=Pinit;

Pinit=RestrictN * (Pinit);
Pprev_f=Pprev;

global Pprev
Pprev=RestrictN  * (Pprev);
Uinit_f=Uinit;

Uinit=RestrictN * (Uinit);
Uprev_f=Uprev;

global Uprev
Uprev=RestrictN  * (Uprev);

% CALL SCRIPT-FILE
% resetting data for solver for start of each time-step
data_reset

% CALL SCRIPT-FILE
% solver
run(QN_solver_type) % Define QN-method
% Jacobian for fine grid built from fine grid
if fcf<itmax
% CALL SCRIPT-FILE
create_extrapolated_Jacobian
else
break
end

switch recovery

case{MG1}
% if recovery type MG1 then initial iterates are
% extrapolated from previous time-steps
gridsize="f’;
Ginit=Ginit_f;
Pinit=Pinit_f;
global Gprev
Gprev=Gprev_f;
global Pprev
Pprev=Pprev_f;
Uinit=Uinit_f;
global Uprev
Uprev=Uprev_f;

case{MG2}
% if recovery type MG2 then initial iterates
% are prolongated from coarse grid
gridsize="f’;
Ginit=ProlongM  *(G(:,end));
Gprev=Gprev_f;
Pinit=ProlongN = (P(;,end));
global Pprev
Pprev=Pprev_f
Uinit=ProlongN = (U(:,end));
global Uprev
Uprev=Uprev_f;

end

second_init_ MGM
% create time-dependent BC
global UL

UL=Uo+Amplitude *Uox(sin(pi *timelabel *tau2/PERIOD))"POWER;

% CALL SCRIPT-FILE
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% resetting data for solver for start of each time-step
data_reset

% CALL SCRIPT-FILE

% solver

run(QN_solver_type) % Define QNmethod

case{Basic,Addcolumns,PreviousJacR1U}
global UL
UL=Uo+Amplitude =*Uox(sin(pi *timelabel *tau2/PERIOD))"POWER;

% CALL SCRIPT-FILE
% resetting data for solver for start of each time-step
data_reset
% CALL SCRIPT-FILE
% solver
run(QN_solver_type) % Define QNmethod
end

%%%%%% %% %% %% % %% %% %% % % % %% % %% %% % %% %% %% % % % %% %
% storage of solution will run one index ahead
GFinal(:,timelabel+1)=G(:,end);
PFinal(:,timelabel+1)=P(:,end);
UFinal(:,timelabel+1)=U(:,end);

% resetting data from previous time step
global Gprev

global Pprev

global PRprev

Gprev=G(:,end);

Pprev=P(:,end);

PRprev=P(N,end);

global Uprev

Uprev=U(:,end);

% creating initial iterates for next loop
switch recovery
case{Basic,Addcolumns,PreviousJacR1U,MG1}
% extrapolation
if timelabel==1
Ginit=2 * GFinal(:,timelabel+1)-GFinal(: timelabel);
Pinit=2  * PFinal(;,timelabel+1)-PFinal(:,timelabel);
Uinit=2 * UFinal(: timelabel+1)-UFinal(:,timelabel);
else
Ginit=2.5 * GFinal(:,timelabel+1)...
-2 * GFinal(:,timelabel)+0.5 * GFinal(:,timelabel-1);
Pinit=2.5  *PFinal(:,timelabel+1)...
-2 * PFinal(:,timelabel)+0.5 * PFinal(:,timelabel-1);
Uinit=2.5 = UFinal(:,timelabel+1)...
-2 *» UFinal(:,timelabel)+0.5 * UFinal(:,timelabel-1);
end
end

%%%%%%% % %% %% % %% %% %% % % % %% %% % % % % %% %% % % % % %% %
% % recovery of Jacobian ?
switch recovery
case{Addcolumns}
InitialjacobianK=DK;
InitialjacobianM=DM,;
InitialjacobianS=DS;
InitialjacobianF=DF;
VV(1:size(V,1),1:size(V,2),timelabel)=V;
WW(1:size(W,1),1:size(W,2),timelabel)=W;
VVS(1:size(VS,1),1:size(VS,2),timelabel)=VS;
WWS(1:size(WS,1),1:size(WS,2),timelabel)=WS;
VVF(1:size(VF,1),1:size(VF,2),timelabel)=VF;
WWEF(1:size(WF,1),1:size(WF,2),timelabel)=WF;
case{PreviousJacR1U}
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InitialjacobianK=DK;
InitialjacobianM=DM;
InitialjacobianS=DS;
InitialjacobianF=DF;
VV=[|;
WW=];
VVS=[];
WWS=[];
VVF=[;
WWF=[[;

otherwise
InitialjacobianK=-1;
InitialjacobianM=-I;
InitialjacobianS=zeros(M,N);
InitialjacobianF=zeros(N,M);
VVS=[];
WWS=I];

end

if fcf==inf
break

end

if fcf==itmax
break

end

% END TIMELOOP
end

A.2 first_init _temp.m

Nf= % set value
contrac_fac = % set value
Nc=((Nf-1)/contrac_fac)+1;

Mc= % set value
Mf= % set value

% Number of time-steps to re-use
nnreuse=10;

% Max number of iterations allowed (outer loop per time-step
itmax=100;

% Initializing time
timelabel=0;

% Set #timesteps#
timesteps= % set value

V=[;

W=J;

VS=;

WS=[J;

VF=[];

WF=[];
VV=zeros(Nf,itmax,timesteps);
WW=zeros(Nf,itmax,timesteps);
VVS=zeros(Nf,itmax,timesteps);
WWS=zeros(Mf,itmax,timesteps);
VVF=zeros(Mf,itmax,timesteps);
WWF=zeros(Nf,itmax,timesteps);



MATLAB SOURCE CODE

189

% Setting initial relaxation factor
% Set #omega#
omega= % set value

% setting parameters for fsolve
options=optimset('MaxFunEvals’,10000,"MaxIter’,1000
eps,'TolX',eps,’'Display’,’off','Diagnostics’,’On’);

% clear solver calls over time-steps on fine and coarse grid
FCF=[J;
FCFc=[];

% Solution will contain u,p and g over time-steps
% clear converged solutions per time-step
PFinal=[J;

GFinal=[];

UFinal=[];

A.3 secondinit _temp.m

global N

if gridsize=="c’
N=Nc;

elseif gridsize=="f"
N=Nf;

end

global M

if gridsize=="c’
M=Mc;

elseif gridsize=="f"
M=Mf;

end

global 1

| = eye(N,N);
global O

O = zeros(N,N);

global Uo

Uo = 1/kappa;
global Do

Do = Uo/(tau *N);
global Go
Go=1,

global Po
Po=0;
Amplitude=0.1;
POWER=2;
PERIOD=1,;

relrestol=10"(-5);
QRthreshold=1e-8;

A.4  third _init _temp.m

% create restriction and prolongation matrices
RestrictN=zeros(Nc,Nf);

for k = 1:Nc
RestrictN(k,1+contrac_fac *(k-1))=1;

0, TolFun’,...
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end

ProlongN=zeros(Nf,Nc);

for k = 1:Nc
for row=1:contrac_fac
ProlongN(row+contrac_fac * (k-1),k)=...
(contrac_fac+1-row)/contrac_fac;
ProlongN(row+contrac_fac * (k-1),k+1)=...
(-1+row)/contrac_fac;
end
end

ProlongN=ProlongN(1:Nf,1:Nc);
RestrictM=zeros(Mc,Mf);
for k = 1:Mc

RestrictM(k,1+contrac_fac * (k-1))=1;
end

ProlongM=zeros(Mf,Mc);

for k = 1:Mc
for row=1:contrac_fac
ProlongM(row+contrac_fac * (k-1),K)=...
(contrac_fac+1-row)/contrac_fac;
ProlongM(row+contrac_fac * (k-1),k+1)=...
(-1+row)/contrac_fac;
end
end

ProlongM=ProlongM(1:Mf,1:Mc);

% Set values of previous time-step
global Gprev

Gprev=Go * ones(N,1);

global Pprev

Pprev=Po *ones(N,1);

global PRprev

PRprev=Pprev(N);

global Uprev

Uprev=Uo * ones(N,1);

Ginit=Gpreyv;
Pinit=Pprev;
Uinit=Uprev;

% Solution will contain u,p and g over time-steps
PFinal(:,timelabel+1)=Ppreyv;
GFinal(; timelabel+1)=Gprev;
UFinal(;,timelabel+1)=Uprev;

PFinalc(:,timelabel+1)=RestrictN * Pprev;
GFinalc(:,timelabel+1)=RestrictM *Gprev;
UFinalc(;,timelabel+1)=RestrictN *Uprev;

% Initialization of Jacobian & base for first time-step
InitialjacobianK=-1;

InitialjacobianM=-I;

InitialjacobianS=zeros(M,N);
InitialjacobianF=zeros(N,M);

InitialL=[];

InitialLS=[];

InitialLF=[];
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A.5 datareset.m

Residual=[];
Hp=[J;
Fo=[I;
Sp=[J;
Kp=[J;

d=[l;

deltap=[J;
deltak=[];
deltaG=[];
deltaS=[];

fcs=0;
fcf=0;

G=[J;

global G
G(:,1)=Ginit;
P=[l;

global P
P(:,1)=Pinit;
u=[;
U(:,1)=Uinit;

% Initial orthogonal base
L =InitialL;

LS=lInitialLS;
LF=InitialLF;

% Initial approx. Jacobian
if gridsize=="f
DM=lInitialjacobianM;
DK=InitialjacobiankK;
DF=InitialjacobianF;
DS=InitialjacobianS;
elseif gridsize=="c’
DM=-eye(Nc,Nc);
DK=-eye(Nc,Nc);
DF=zeros(Nc,Nc);
DS=zeros(Nc,Nc);
end

A.6 createextrapolated Jacobian.

if isempty(P)==0
P_prol=ProlongN  *P;
end

if isempty(G)==0
G_prol=ProlongM *G;
end

if isempty(U)==0
U_prol=ProlongN  *U;
end

if isempty(Hp)==0
Hp_prol=ProlongN  *Hp;
end
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if isempty(Kp)==0
Kp_prol=ProlongN  *Kp;
end

if isempty(Sp)==0
Sp_prol=ProlongM  * Sp;
end

if isempty(Fg)==0

Fg_prol=ProlongN  *Fg;
end

if QN_solver_type=="QN_solver_IQN_’

Ptemp_prol =...

P_prol(:;,max(1,size( P_prol,2)-N):size( P_prol,2)-1);

Fgtemp_prol=...

Fg_prol(:;,max(1,size(Fg_prol,2)-N):size(Fg_prol,2)- 1);
V_prol=( P_prol(:,s) *ones(1,size( Ptemp_prol,2)))- Ptemp_prol;

W_prol=(Fg_prol(:;,s) * ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
[ntemp mtemp] = size(W_prol);
V_prol=V_prol(1:ntemp,1:mtemp);

clear ntemp

clear mtemp

InitialjacobianK=W_prol *((V_prol'"  *V_prol)\V_prol')-eye(Nf,Nf);
elseif QN_solver_type=="QN_solver_IQNI'

Kptemp_prol=...

Kp_prol(:,max(1,size(Kp_prol,2)-N+1):size(Kp_prol,2 )-1);

Fgtemp_prol=...

Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);

V_prol=(Kp_prol(:,s) * ones(1,size(Kptemp_prol,2)))-Kptemp_prol;

W_prol=(Fg_prol(:,s) *ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;

V_prol=V_prol(:,max(1,size(V_prol,2)-N+1):size(V_pr 0l,2));

W_prol=W_prol(:,max(1,size(W_prol,2)-N+1):size(W_pr 0l,2));

InitialjacobianM=W_prol *((V_prol'"  =V_prol)\V_prol')-eye(Nf,Nf);
elseif QN_solver_type=="QN_solver_IQNC’

Ptemp_prol =...

P_prol(:;,max(1,size( P_prol,2)-N+1):size( P_prol,2)-1 );

Sptemp_prol=...

Sp_prol(:,max(1,size(Sp_prol,2)-N+1):size(Sp_prol,2 )-1);

Gtemp_prol =...

G_prol(:,max(1,size( G_prol,2)-N+1):size( G_prol,2)-1 );

Fgtemp_prol=...

Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);

VS_prol=( P_prol(:,s) *ones(1,size( Ptemp_prol,2)))- Ptemp_prol;

WS_prol=(Sp_prol(:,s) *ones(1,size(Sptemp_prol,2)))-Sptemp_prol;

VS_prol=VS_prol(:,max(1,size(VS_prol,2)-N+1):size(V S_prol,2));

WS_prol=WS_prol(:,max(1,size(WS_prol,2)-N+1):size(W S_prol,2));

VF_prol=( G_prol(:,s) *ones(1,size( Gtemp_prol,2)))- Gtemp_prol;

WF_prol=(Fg_prol(:,s) *ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;

VF_prol=VF_prol(:,max(1,size(VF_prol,2)-N+1):size(V F_prol,2));

WF_prol=WF_prol(:,max(1,size(WF_prol,2)-N+1):size(W F_prol,2));

InitialjacobianS=WS_prol *((VS_prol"  *VS_prol)\VS_prol’);

InitialjacobianF=WF_prol *((VF_prol' = VF_prol)\VF_prol’);

elseif QN_solver_type=="QN_solver_IBQN’
Ptemp_prol =...
P_prol(:,max(1,size( P_prol,2)-N+1):size( P_prol,2)-1 );
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end

Sptemp_prol=...

Sp_prol(:,max(1,size(Sp_prol,2)-N+1):size(Sp_prol,2 )-1);
Gtemp_prol =...

G_prol(:,max(1,size( G_prol,2)-N+1):size( G_prol,2)-1 );
Fgtemp_prol=...

Fg_prol(:,max(1,size(Fg_prol,2)-N+1):size(Fg_prol,2 )-1);
VS_prol=( P_prol(:,s) *ones(1,size( Ptemp_prol,2)))-Ptemp_prol;
WS_prol=(Sp_prol(:,s) *ones(1,size(Sptemp_prol,2)))-Sptemp_prol;
VS_prol=VS_prol(:,max(1,size(VS_prol,2)-N+1):size(V S_prol,2));
WS_prol=WS_prol(:,max(1,size(WS_prol,2)-N+1):size(W S_prol,2));
VF_prol=( G_prol(:,s) *ones(1,size( Gtemp_prol,2)))-Gtemp_prol;
WF_prol=(Fg_prol(:,s) *ones(1,size(Fgtemp_prol,2)))-Fgtemp_prol;
VF_prol=VF_prol(:,max(1,size(VF_prol,2)-N+1):size(V F_prol,2));
WF_prol=WF_prol(:,max(1,size(WF_prol,2)-N+1):size(W F_prol,2));
InitialjacobianS=WS_prol *((VS_prol"  *VS_prol)\VS_prol’);
InitialjacobianF=WF_prol *((VF_prol' = VF_prol)\VF_prol’);

if recovery==MG2

end

Ptemp=P(:,end);
Pinit_temp=ProlongN * Ptemp;
Gtemp=G(:,end);
Ginit_temp=ProlongM * Gtemp;
Utemp=U(:,end);
Uinit_temp=ProlongN * Utemp;

GFinalc(: timelabel+1)=G(:,end);
PFinalc(:,timelabel+1)=P(:,end);
UFinalc(:,timelabel+1)=U(:,end);

A.7 1QN solver: QN_solver IQN _.m

[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],0pti ons);
fcs=fcs+1;

global G
G(;,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],0p tions);
fef=fcf+1;

Fg(:,1)=fg(L:N);
uU(;,2) =fg(N+1:2 *N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery

case{Basic}
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;,1);
clear Ptemp
case{Addcolumns,PreviousJacR1U}
if timelabel==1
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) =*P(;,1);
clear Ptemp
else
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global P
P(:,2)=P(:,1)-DK\Kp(:,1);

end

case{MG1,MG2}

global P

if gridsize=="c’
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) =*P(;,1);
clear Ptemp

elseif gridsize=="f
P(:,2)=P(;,1)-DK\Kp(;,1);

end

end

%%%% %% %% %% %% % %% %% %% % % %% %% %% % % %
% Main (outer) iteration loop
9% %%%%%6%% % %%%6% % % % %% %% % % %% %% % %%

for s=2:itmax
[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],0p
fcs=fcs+1;

global G
G(:,8)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(;,s);U(:,s)],op
fef=fcf+1;

Fg(:,s) =fg(1:N);
U(;,s+1) =fg(N+1:2 *N);

Kp(:,8)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break
end

if R1U_type=="0" % LS in basic formulation
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

V=(P(;,s) *ones(1,size(Ptemp,2)))-fliplr(Ptemp);
W=(Fg(;,s) *ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VX=[];
WX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VX=[VV(;,1:FCF(kk)-2,kk) VX];
WX=[WW(:,1:FCF(kk)-2,kk) WX];
end
end

VX=[V VX];
WX=[W WX];

[VX WX] =DoQR(VX,WX,QRthreshold);
DK=WX((VX" *VX)\WVX)-I;

elseif R1U_type=="L’ % LS in R1U formulation
deltap=P(:,s)-P(:,s-1);
deltak=(Kp(:,s))-(Kp(:,s-1));

if min(size(L))<1

tions);

tions);
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Lnew =(deltap) /norm(deltap);
ALnew=(deltaK - DK =*deltap)/norm(deltap );
else
Lnew =(deltap - L L’ xdeltap) /norm(deltap - L * L » deltap);
ALnew=(deltaK - DK *deltap) /norm(deltap - L * L+ deltap);
end

R1U = ALnew Lnew’;
DK=DK+R1U;

L=[L Lnew];
L=L(:,max(1,size(L,2)-N+2):size(L,2));

if max(max(isnan(L)))==1
fcf=inf;
break

end

elseif R1U_type=="B’ % R1U Broyden
deltap=P(:,s)-P(:,s-1);
deltak=Kp(:,s)-Kp(;,s-1);

R1U =(deltaK - DK =deltap) =*deltap’/dot(deltap,deltap);
DK =DK+R1U;

elseif R1U_type=="C’ % R1U CUM
deltap=P(:,s)-P(:,s-1);
deltak=Kp(:,s)-Kp(:,s-1);
[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;

R1U =(deltaK - DK =xdeltap) =*ej/dot(ej,deltap);
DK =DK+R1U;
end

global P
P(:,s+1)=P(:,s)-DK\Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fes=inf;
break
end
end

A.8 IQN-C solver: QN_solver IQNC.m

[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],0pti ons);
fes=fes+1;

global G
G(:,1)=Sp(;,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(;,1)],0p tions);
fef=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 *N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
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case{Basic}
Ptemp=Fg(:;,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(:1);
clear Ptemp
case{Addcolumns,PreviousJacR1U}
if timelabel==1
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) =*P(;,1);
clear Ptemp
else
global P
P(:,2)=P(;,1)-DK\Kp(:,1);
end
case{MG1,MG2}
global P
if gridsize=="c’
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;,1);
clear Ptemp
elseif gridsize=="f"
P(:,2)=P(;,1)-DK\Kp(:,1);
end
end

%%%% %% % %% % %% %% % %% % %% %% % %% %% % %% % %% %% % %% % %% %% %%
% Main (outer) iteration loop

9%6%%%% %% %% % %% %% % %% %% % %% % %% %% % %% % %% %% % %% % %% %% % %
for s=2:itmax

[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],0p tions);
fcs=fcs+1;

global G

G(;,s)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(:,s)],op tions);

Fg(:,s) =fg(1:N);
U(;,s+1) =fg(N+1:2 *N);

Kp(:,8)=Fg(:;,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break
end

if R1U_type=="0" % LS in basic formulation
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Sptemp=Sp(:,max(1,size(Sp,2)-N):size(Sp,2)-1);
Gtemp = G(:,max(1,size( G,2)-N):size( G,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

VS=(P(:,;s) *ones(1,size(Ptemp,2)))-fliplr(Ptemp);
WS=(Sp(:,s) *ones(1,size(Sptemp,2)))-fliplr(Sptemp);
VF=(G(:,s) *ones(1,size(Gtemp,2)))-fliplr(Gtemp);
WF=(Fg(:,s) *ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VSX=[];
WSX=[];
VEX=[];
WFX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VSX=[VVS(;,1:FCF(kk)-2,kk) VSX];
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WSX=[WWS(:;,1:FCF(kk)-2,kk) WSX];
VFX=[VVF(;,1:FCF(kk)-2,kk) VFX];
WFEX=[WWF(:;,1:FCF(kk)-2,kk) WFX];
end

end

VSX=[VS VSX];

WSX=[WS WSX];

VFEX=[VF VFX];

WFX=[WF WFX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);
[VFX WFX] =DoQR(VFX,WFX,QRthreshold);

DS=WSX((VSX' *VSX)WSX’);
DF=WFX((VFX’ *VFX)\VFX";
DK=DF DS-;

elseif R1U_type=="L’ % LS in R1U formulation
deltap= P(:,s)-P(:,s-1);
deltaS=Sp(:,s)-Sp(:,s-1);

if min(size(LS))<1
LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS =*deltap)/norm(deltap);
else
LSnew =(deltap-LS LS’ *deltap)/norm(deltap-LS * LS’ » deltap);
ALSnew=(deltaS-DS =*deltap) /norm(deltap-LS * LS’ * deltap);
end

R1US = ALSnew LSnew’;
DS=DS+R1US;

deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

if min(size(LF))<1
LFnew =(deltaG) /norm(deltaG);
ALFnew=(deltaF - DF =*deltaG)/norm(deltaG );
else
LFnew =(deltaG-LF *LF *deltaG)/norm(deltaG-LF *LF" * deltaG);
ALFnew=(deltaF-DF *deltaG) /norm(deltaG-LF *LF" *deltaG);
end

R1UF = ALFnew LFnew’,
DF=DF+R1UF;
DK=DF DS-I;

LS=[LS LSnew];
LS=LS(:,max(1,size(LS,2)-N+2):size(LS,2));
LF=[LF LFnew];
LF=LF(:,max(1,size(LF,2)-N+2):size(LF,2));

if max(max(isnan(LS)))==1
fcf=inf;
break

end

if max(max(isnan(LF)))==1
fcf=inf;
break

end

elseif R1U_type=="B’ % R1U Broyden
deltap= P(:;,s)-P(:,s-1);
deltaS=Sp(:,s)-Sp(;,s-1);

R1U = (deltaS - DS =+deltap) *deltap’/dot(deltap,deltap);
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DS=DS+R1U;

deltaG=G(;,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

R1U =(deltaF - DF =xdeltaG) =*deltaG'/dot(deltaG,deltaG);
DF=DF+R1U;
DK=DF DS-I;

elseif R1U_type=="C’ % R1U CUM
deltap= P(:,s)-P(;,s-1);
deltaS=Sp(:,s)-Sp(;,s-1);
[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kk)=1;

R1U = (deltaS - DS =+deltap) = ej/dot(ejdeltap);
DS=DS+R1U;

deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);
[aa kk]=max(abs(deltaG));
ej=zeros(M,1);

ej(kk)=1;

R1U =(deltaF - DF =+deltaG) =*ej/dot(ej,deltaG);
DF=DF+R1U;
DK=DF DS-I;

end

global P
P(:,s+1)=P(:,s)-DK\Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break
end
end

A.9 [IBQON solver: QN_solver IBQN.m

[Sp(:,1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],0pti ons);
fcs=fcs+1;

global G
G(:,1)=Sp(;,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],0p tions);
fef=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 *N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery
case{Basic}
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;1);
clear Ptemp
case{Addcolumns,PreviousJacR1U}
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if timelabel==1
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) =*P(;,1);
clear Ptemp

else
global P
P(:,2)=(eye(N,N)-DF *DS)\(Fg(:,1) +...

DFx(Sp(;,1) - DS *P(,1) - G(;,1)));
end
case{MG1,MG2}

global P

if gridsize=="c’
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;,1);
clear Ptemp

elseif gridsize=="f"
P(:,2)=P(;,1)-DK\Kp(:,1);

end

end

[Sp(:,2) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],0pti
fcs=fcs+1;

global G G(;,2)=Sp(:,2);

if R1U_type=="0"
VS=P(:,2)-P(;,1);
WS=Sp(:,2)-Sp(:,1);
VSX=[];
WSX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VSX=[VVS(:,1:FCF(kk)-1,kk) VSX];
WSX=[WWS(:,1:FCF(kk)-1,kk) WSX];
end
end
VSX=[VS VSX];
WSX=[WS WSX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);
DS=WSX((VSX’' *VSX)\VSX);

elseif R1U_type=="L’
deltap=P(:,2)-P(:,1);
deltaS=Sp(:,2)-Sp(:,1);

LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS =*deltap)/norm(deltap);

R1US = ALSnew LSnew’;
DS=DS+R1US;
LS=[LS LSnew];

elseif R1U_type=="B’
deltap=P(:;,2)-P(:,1);
deltaG=G(:,2)-G(:,1);

R1US=(deltaG - DS =deltap) =*deltap’/dot(deltap,deltap);
DS=DS+R1US;

elseif R1U_type=="C’
deltap=P(:;,2)-P(:,1);
deltaG=G(:,2)-G(:,1);

ons);
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end

[aa kk]=max(abs(deltap));

ej=zeros(N,1);

ej(kk)=1;

R1US=(deltaG - DS =xdeltap) =*ej/dot(ej,deltap);
DS=DS+R1US;

%%%%%6%% %% %% % %% % %% %% % %% % %% %% % %%
% Main (outer) iteration loop

%%%% %% % %% % %% %% % %% %% % %% %% % %% % %%
for s=2:itmax

[fg fval flowflag]=fsolve(Ffun_gen,[P(;,s);U(:,s)],op
fef=fcf+1,

Fg(:,s) =fg(1:N);
U(;,s+1) =fg(N+1:2 *N);

Kp(:,8)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break
end

if R1IU_type=="0’
Gtemp = G(:,max(1,size( G,2)-N):size( G,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

VF=(G(:;,s) *ones(1,size(Gtemp,2)))-fliplr(Gtemp);
WF=(Fg(:,s) *ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VFX=);
WFX=J;

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VFX=[VVF(;,1:FCF(kk)-2,kk) VFX];
WFX=[WWF(:,1:FCF(KK)-2,kk) WFX];
end
end

VFX=[VF VFX];
WFX=[WF WFX];

[VEX WFX] =DoQR(VFX,WFX,QRthreshold);
DF=WFX((VFX' *VFX)\VFX";

elseif R1U_type=="L"
deltaG=G(;,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

if min(size(LF))<1

LFnew =(deltaG) /norm(deltaG);

ALFnew=(deltaF - DF =*deltaG)/norm(deltaG );
else

LFnew =(deltaG-LF *LF *deltaG)/norm(deltaG-LF

ALFnew=(deltaF-DF *deltaG) /norm(deltaG-LF
end

R1UF = ALFnew LFnew’,
DF=DF+R1UF;

LF=[LF LFnew];
LF=LF(:,max(1,size(LF,2)-N+2):size(LF,2));

if max(max(isnan(LF)))==1

tions);

*LF" x deltaG);
*LF" * deltaG);
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fcf=inf;
break
end

elseif R1U_type=="B’
deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

R1UF =(deltaF - DF =+deltaG) =*deltaG'/dot(deltaG,deltaG);
DF=DF+R1UF;

elseif R1U_type=="C’
deltaG=G(:,s)-G(:,s-1);
deltaF=Fg(:,s)-Fg(:,s-1);

[aa kk]=max(abs(deltaG));
ej=zeros(M,1);
ej(kk)=1;
R1UF=(deltaF - DF =xdeltaG) =*ej/dot(ej,deltaG);
DF=DF+R1UF;
end

global P
P(:,s+1)=(eye(N,N)-DF *DS)\(Fg(:,s) +...
DR« (Sp(:,s) - DS *P(.,s) - G(:9)));

if max(max(isnan(P)))==1
fcf=inf;
fcs=inf;
break

end

[Sp(:,s+1) fval flowflagl=fsolve(Sfun_gen,[G(:,s)],0p tions);
fcs=fcs+1;

if R1U_type=="0"
Ptemp = P(:,max(1,size( P,2)-N):size( P,2)-1);
Sptemp=Sp(:,max(1,size(Sp,2)-N):size(Sp,2)-1);

VS=(P(:,s+1) =*ones(1,size(Ptemp,2)))-fliplr(Ptemp);
WS=(Sp(;,s+1) =*ones(1,size(Sptemp,2)))-fliplr(Sptemp);

VSX=[;
WSX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VSX=[VVS(;,1:FCF(KK)-1,kk) VSX];
WSX=[WWS(:,1:FCF(kk)-1,kk) WSX];
end
end

VSX=[VS VSX];
WSX=[WS WSX];

[VSX WSX] =DoQR(VSX,WSX,QRthreshold);
DS=WSX((VSX" *VSX)\VSXY);

elseif R1U_type=="L’
deltap= P(:,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

if min(size(LS))<1
LSnew =(deltap) /norm(deltap);
ALSnew=(deltaS - DS =deltap)/norm(deltap );
else
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end

LSnew =(deltap-LS LS’ *deltap)/norm(deltap-LS * LS’ » deltap);
ALSnew=(deltaS-DS *deltap) /norm(deltap-LS * LS’ » deltap);
end

R1US = ALSnew LSnew’;
DS=DS+R1US;

LS=[LS LSnew];
LS=LS(:;,max(1,size(LS,2)-N+2):size(LS,2));

if max(max(isnan(LS)))==1
fef=inf;
break

end

elseif R1U_type=="B’
deltap=P(;,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

R1US=(deltaS - DS =+deltap) =*deltap’/dot(deltap,deltap);
DS=DS+R1US;

elseif R1U_type=="C’
deltap=P(;,s+1)-P(:,s);
deltaS=Sp(:,s+1)-Sp(:,s);

[aa kk]=max(abs(deltap));
ej=zeros(N,1);
ej(kik)=1;
R1US=(deltaS - DS =+deltap) =*ej/dot(ej,deltap);
DS=DS+R1US;
end

global G
G(:,s+1)=(eye(M,M)-DS *DF)\(Sp(;,s+1) +...
DS (Fg(:,s) - DF  *G(:,s) - P(;,st+1)));

if max(max(isnan(G)))==1
fcf=inf;
fcs=inf;
break

end

A.10 IQN-I solver: QN _solver IQNI.m

[SeC,

1) fval flowflag]=fsolve(Sfun_gen,[G(:,1)],0pti ons);

fcs=fcs+1;

global G G(:,1)=Sp(:,1);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,1);U(:,1)],0p tions);
fef=fcf+1;

Fg(:,1)=fg(1:N);
U(:,2) =fg(N+1:2 *N);

Kp(:,1)=Fg(:,1)-P(:,1);
Residual(1)=norm(Kp(:,1));

switch recovery

case{Basic}
Ptemp=Fg(:,1);
global P
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P(:,2)=omega *Ptemp+(1-omega) *P(:1);
clear Ptemp
case{Addcolumns,PreviousJacR1U}
if timelabel==1
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;,1);
clear Ptemp
else
global P
P(:,2)=P(:,1)-DK\Kp(:,1);
end
case{MG1,MG2}
global P
if gridsize=="c’
Ptemp=Fg(:,1);
global P
P(:,2)=omega *Ptemp+(1-omega) *P(;,1);
clear Ptemp
elseif gridsize=="f"
P(:,2)=P(:,1)-DK\Kp(;,1);
end
end

%%%% %% %% %% %% % %% %% %% % % % %% %% % % % %
% Main (outer) iteration loop
%9%%%%%%%% %% % %% % %% %% % %% %% % %% %% %0
for s=2:itmax
[Sp(:,s) fval flowflag]=fsolve(Sfun_gen,[G(:,s-1)],0p tions);
fes=fes+1;

global G
G(:,8)=Sp(:,s);

[fg fval flowflag]=fsolve(Ffun_gen,[P(:,s);U(;,s)],0p tions);
fef=fcf+1;

Fg(:,s) =fg(1:N);
U(:,s+1) =fg(N+1:2 *N);

Kp(:,s)=Fg(:,s)-P(:,s);
Residual(s)=norm(Kp(:,s));

if Residual(s)/Residual(1) < relrestol
break
end

if R1U_type=="0"
Kptemp=Kp(:,max(1,size(Kp,2)-N):size(Kp,2)-1);
Fgtemp=Fg(:,max(1,size(Fg,2)-N):size(Fg,2)-1);

V=(Kp(:,s) *ones(1,size(Kptemp,2)))-fliplr(Kptemp);
W=(Fg(:,s) *ones(1,size(Fgtemp,2)))-fliplr(Fgtemp);

VX=[];
WX=[];

if recovery==Addcolumns
for kk=max(1,timelabel-nnreuse):timelabel-1
VX=[VV(;,1:FCF(kk)-2,kk) VX];
WX=[WW(:,1:FCF(kk)-2,kk) WX];
end
end

VX=[V VX];
WX=[W WX];
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[VX WX] =DoQR(VX,WX,QRthreshold);
DM=WA((VX' * VX)WX)-I;

elseif R1U_type=="L’
deltak=Kp(:,s)-Kp(:,s-1);
deltap=P(:,s)-P(:,s-1);

if min(size(L))<1
Lnew =(deltaK) /norm(deltaK);
ALnew=(deltap - DM =*deltaK)/norm(deltaK );
else
Lnew =(deltak-L L’ »deltaK)/norm(deltak-L * L * deltaK);
ALnew=(deltap-DM *deltaK) /norm(deltaK-L * L * deltaK);
end

R1U = ALnew Lnew’;
DM=DM+R1U;

L=[L Lnew];

L=L(:,max(1,size(L,2)-N+2):size(L,2));

if max(max(isnan(L)))==1
fcf=inf;
break

end

elseif R1U_type=="B’
deltap=P(:,s)-P(:,s-1);
deltak=Kp(:,s)-Kp(:,s-1);

R1U =((deltap - DM =+deltaK) =deltaK’/dot(deltaK,deltaK));
DM =DM+R1U;

elseif R1U_type=="C’
deltap=P(:,s)-P(:,s-1);
deltak=Kp(:,s)-Kp(:,s-1);
[aa kk]=max(abs(deltaK));
ej=zeros(N,1);
ej(kk)=1;

R1U =(deltap - DM =xdeltaK) =*ej/dot(ej,deltaK);
DM =DM+R1U;
end

global P
P(:,s+1)=P(:,s)-DM *Kp(:,s);

if max(max(isnan(P)))==1
fcf=inf;
fes=inf;
break
end
end
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