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Many benchmarks of density-functional theory with respect to experiment suggest the error on
predicted equilibrium volumes to scale with the volume. Relative volume errors are therefore often
used as a decisive argument to select one exchange-correlation functional over another. We show
that the error on the volume (after correcting for systematic deviations) is only approximately
relative. A simple analytic model, validated by rigorous Monte Carlo simulations, reveals that a
more accurate error estimate can be derived from the inverse of the bulk modulus. This insight is not
only instrumental for the selection or design of suitable functionals. It also calls for a new attitude
towards computational errors: to report computational errors on electronic-structure calculations,
identify systematic deviations and distinguish between relative and absolute effects.
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I. INTRODUCTION

Over the last few decades, powerful computers and
advanced computational approaches have revolutionized
materials science. Whereas first-principles methods were
originally limited to a posteriori analyses of experimen-
tally studied compounds, they now make it possible to
investigate materials prior to experiment and at signifi-
cantly lower costs. As a result, computational materials
design has become a research discipline in its own right.
However, a compromise between accuracy and available
resources is inevitable. Applied methods vary from very
approximate yet cheap (e.g. classical force fields1,2) to
nearly exact yet terribly expensive (e.g. full configura-
tion interaction3). A popular middle ground is density-
functional theory (DFT)4,5, which produces qualitatively
acceptable predictions at a reasonable cost for many sys-
tems, provided a good choice is made for the so-called
exchange-correlation functional. Nevertheless, the ob-
tained results are still approximate, and the accuracy of
the DFT calculations is determined by the selected func-
tional. Understanding the expected deviations between
DFT and experimental values is therefore essential to
assess the reliability of a prediction and choose an ap-
propriate functional correspondingly.

Several benchmark studies in the literature seek to
evaluate the differences between DFT predictions and
experimental results. Although these kind of studies are
mainly limited to molecular systems7–11, a number of ex-
haustive solid-state tests are available as well.11–16 How-
ever, conclusions drawn in these works may be signifi-
cantly affected by the choice of the error model.17 This is
nicely illustrated by the equilibrium volume, or equiva-
lently the lattice parameter. Most benchmarks list both
absolute (mean error, mean absolute error) and relative
differences with respect to experiment (mean relative er-
ror, mean absolute relative error),12–15 while other arti-
cles express the community intuition that errors should
scale in a relative way (i.e. smaller errors on smaller

volumes) and only mention the latter11,16. The vol-
ume of beryllium (7.8 Å3/atom experimentally), for ex-
ample, is thus expected to be predicted more accurately
with DFT than that of sodium (37.2 Å3/atom) or bar-
ium (62.3 Å3/atom).6 In addition to these relatively sim-
ple approaches, some authors also assessed DFT errors
more rigorously. Some of the present authors6,18, for ex-
ample, applied a linear regression between experimental
and DFT results to distinguish between systematic and
residual deviations. In the current article, a systematic
error denotes the predictable over- or underestimation of
DFT compared to experiment, which can be corrected
for by means of a regression analysis. The remaining un-
predictable (yet deterministic) fluctuation is denoted as
residual error. In References 6 and 18, we did not ob-
serve the residual errors on the volume to behave in a
purely absolute or relative way (see Figure 1(a)). Pernot
et al.19 applied a more general Bayesian Model Selec-
tion to determine the most appropriate polynomial de-
gree to describe the systematic bias between predictions
with several functionals and experiment. They also found
a linear relationship to be most suitable, and expressed
the remaining discrepancies in terms of method inade-
quacy and parametric uncertainty of the fit, using a vir-
tual measurement framework.20 In this way, they found
the prediction uncertainty on lattice parameters to in-
crease as a function of the lattice parameter itself. Fi-
nally, Mortensen et al.21 extracted error estimates per el-
ement by varying the generalized-gradient approximation
(GGA) functional itself according to a Gaussian distri-
bution. This distribution was tuned to a least-squares fit
of DFT-GGA cohesive energies to experimental results.
Although the resulting error bars were found to scale
nicely with the deviation from experiment, the study did
not provide a definite answer on the nature of the volume
error either.

It therefore remains unclear whether the error on V0
should be an absolute or a relative one. The error on the
volume is indeed larger for Ba than for Be, for example,



2

but not larger than for Na (Figure 1(a)). Nevertheless,
insight in the error is critical for the comparison, rank-
ing and construction of high-accuracy functionals. The
present study aims to answer that question, based on the
properties of a solid-state equation of state. After formu-
lating our primary ansatz, we will approach the problem
from both an analytic and a numerical (Monte Carlo)
point of view. In each case, we will assume that system-
atic deviations (such as the 4 % volume overestimation6

(a)

(b)

Figure 1. (Colour online) Absolute values of the difference be-
tween DFT predictions and thermally corrected experimental
values for (a) the equilibrium volume, plotted as a function
of the DFT volume and (b) the cohesive energy, plotted as
a function of the DFT cohesive energy.6 Three example ma-
terials are highlighted in red. All DFT quantities were cor-
rected for systematic deviations from experiment by means
of a linear regression, following the procedure described by
Lejaeghere et al.6. For the volume no obvious absolute (dot-
dashed line) or relative behaviour (dashed line) is observed,
while the cohesive energy is characterized by an absolute error
bar (dot-dashed line).

by the PBE functional) have been corrected for, allow-
ing for a better stochastic description of the remaining
errors.

II. ANSATZ

Before dealing with the equilibrium volume, we first
focus on the energy. Indeed, besides electron densities
or wave functions, the basic quantities in first-principles
methods are cohesive energies or, more precisely, cohe-
sive energy differences. They are used to evaluate the
relative stability of two configurations, such as in for-
mation energies. In addition, many other properties are
derived from energy differences. Think of elastic mod-
uli, for example, which represent second derivatives of
the total energy with respect to deformation. Since the
equilibrium volume relates to the absolute minimum of
the potential energy surface, this quantity too depends
on energy differences.

The primary ansatz of this study is that after correct-
ing for systematic deviations, the error bar on cohesive
energy (differences) per atom is absolute, i.e. not propor-
tional to the cohesive energy (difference) itself. Indeed, a
relative error is unlikely, as small cohesive energy (differ-
ences) may arise from the cancellation of large energetic
contributions, thus not necessarily giving rise to smaller
errors. The assumption of an absolute error bar is also
consistent with observed distributions of cohesive ener-
gies (see Figure 1(b)) and formation energies.22,23. When
assessing a large and diverse set of materials, the errors
may then be considered to assume a Gaussian distribu-
tion, and only the elimination of systematic deviations
makes it possible to treat all materials on equal footing.
Note that each type of cohesive energy difference is char-
acterized by its own error bar. The energy difference
between two almost identical structures will always be
small, and hence the error will be too. This is the case
for two slightly different volumes of the same material,
for example. We account for this dependency of the error
on the volume, as will be discussed later.

If the fundamental error is an error on energy differ-
ences, the errors on derived quantities, such as the vol-
ume, must depend on it. Whether the error on the vol-
ume should be absolute or relative hence follows from the
absolute character of the energy error. The easiest way
to determine the relation between the volume error and
the energy error, is by looking at the inverse problem:
rather than starting from a certain energy error and in-
vestigating what volume changes yield equations of state
(EOS) within that error bar, it is more straightforward
to directly evaluate the energy change associated with a
change in equilibrium volume. We first treat this prob-
lem in an analytic yet approximate way, ascertaining the
most important trends. Afterwards, we apply a more
rigorous numerical method based on a Monte Carlo pro-
cedure.
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III. ANALYTIC APPROXIMATION

To analytically assess the relation between errors on
the energy and on the EOS parameters (such as the equi-
librium volume), we examine how the shape of the EOS
influences the energy difference between two fixed vol-
umes, E(αV ′0)−E(V ′0) ≡ ∆E(α), with V ′0 a volume close
to the equilibrium volume and α close to 1 (see coloured
vertical lines near the E axis in Figure 2(a)). We use the
Birch-Murnaghan EOS with zero reference energy:

E(V ) =
9V0B0

16
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where V0 represents the equilibrium volume, B0 the bulk
modulus and B1 the pressure derivative of the bulk mod-
ulus. To first order, the uncertainty on ∆E(α) can be
written as:

δ(∆E(α)) =
∂∆E(α)

∂V0
δV0 +

∂∆E(α)

∂B0
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∂∆E(α)
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(2)
To get a first crude estimate of the sensitivity of the
equation-of-state parameters to errors on the energy, we
will consider one error on an EOS parameter at a time
while the other ones are omitted from the error propaga-
tion. In that case, the following expressions are obtained:
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Evaluation at V ′0 = V0 then leads to:
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Although none of the δX is found to be proportional to
X, we need to take into account that in reality, it is im-
possible to vary only one EOS parameter at a time. On
the contrary, for real materials V0 and B0 are correlated:
a material with a large equilibrium volume usually has
a much smaller bulk modulus, and vice versa (Fig. 3).
When assuming an inverse proportionality, we see that
the errors on the volume and the bulk modulus become
approximately relative. The error on B1 remains abso-
lute, on the other hand, as B1 is largely unrelated to V0
and B0 (see the Supplementary Material).

IV. MONTE CARLO APPROACH

The preceding analytic approach gives a first impres-
sion of how the errors on the EOS parameters are inter-
dependent. Do note, however, that none of these conclu-
sions takes into account the occurrence of mixed changes,
such as δV0 δB0, or higher-order terms in δV0. The exact
behaviour can be validated using a Monte Carlo (MC)
approach (see Figure 2(b)). In that case, all parame-
ters of a reference EOS are varied simultaneously (yet
independently) and in a random fashion according to
a Metropolis algorithm.24,25 By only accepting changes
that are consistent with an error model for the energy
differences, the observed spread (standard deviation) on
the EOS parameters can be interpreted as an error mea-
sure. Note that this procedure improves on the efficiency
and statistical rigour of the method previously applied
by some of the present authors,26 where a slightly dif-
ferent approach was used to derive uncertainties on EOS
parameters from the E(V ) fitting error.

In this study, we investigate the effects within the
0.94V0 to 1.06V0 interval, as this is also the volume range
in which E(V ) or P (V ) data from DFT are typically fit-
ted.6,11–13,15 Because we are now dealing with an entire
volume range – the previous analytic treatment only con-
sidered the energy difference between two fixed volumes
– it is necessary to properly take into account the volume
dependence of the energy error. As mentioned earlier, we
expect the error for a particular material to increase as
the individual energy terms in the many-body Hamilto-
nian become larger in magnitude. For the cohesive en-
ergy, this implies that errors will grow as the volume de-
creases, since the interaction between the different atoms
is then stronger. As a first approximation, we therefore
assume the energy error to directly scale with the particle
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(a) (b)

Figure 2. (Colour online) (a) Analytic and (b) Monte Carlo determination of the error bar on equation-of-state parameters.

(a) Shifting the parameters of an EOS by (δV0, δB0, δB1), i.e. from (V0, B0, B1) to (Ṽ0, B̃0, B̃1), causes the energy difference
between V0 and αV0 to change by δ(∆E(α)) (see Equation (2)). (b) By randomly shifting the parameters of an EOS and only
accepting changes in accordance with the error distribution of the pressure (grey area), we can store the parameters of the
accepted EOS curves and assess their distributions (number of accepted EOS parameters per bin, # ac, in the histograms on
the right). The standard deviations of these distributions then allow the definition of corresponding error bars (δV0, δB0 and
δB1). The figure shows how two proposed changes are accepted (dashed line) or rejected (dot-dashed line) depending on how
the pressure change ∆P relates to the pressure error δP . The parameters of the accepted and the rejected EOS are indicated
with the same line style in the histograms.

Figure 3. (Colour online) Experimental bulk modulus in GPa
versus the experimental equilibrium volume in Å3/atom, dis-
played for the pure elemental crystals.6 Three example ma-
terials are highlighted in red. An approximately inversely
proportional relation is observed.

interaction, following the common 1/r behaviour:

δEcoh(V ) = ε

(
V0
V

)1/3

(13)

Note that we now use the notation δX for the error on
property X in a more general sense: rather than indi-
cating one particular change in X, δX now denotes an
overall measure of the error distribution. Equation (13)
causes the error on the cohesive energy to become zero
for V →∞ (since the cohesive energy is then zero by def-
inition), while for V = V0, an error bar of δEcoh(V0) = ε
is found. This allows us to tune the error bar to previ-
ously established cohesive energy errors.6 We will later
show that the exact shape of the error function does not
much affect the MC error estimates.

Equation (13) corresponds to the expected error on
energy differences with the crystal at infinite volume.
However, in our Monte Carlo approach, we only consider
volumes in a limited interval, and do not possess infor-
mation on the energy of infinitely separated atoms. We
hence need to translate the equation of state into an en-
ergy difference inherent to the studied volume range, and
determine the corresponding error. Rather than choos-
ing an arbitrary reference state in that volume range,
to which the EOS energies can be compared, we choose
to transform the energy-based EOS to a pressure-based
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one. Indeed, each pressure intrinsically corresponds to
an energy difference, without the need for one particular
reference energy:

P (V ) = −∂E
∂V

(14)

The energy error then translates into:

δP (V ) = − ∂

∂V
δEcoh(V ) =

ε

3V0

(
V0
V

)4/3

(15)

In our MC simulation, we therefore accept changes in
the EOS parameters based on how the resulting pressure
change ∆P relates to δP (see Figure 2(b)).

To perform the Monte Carlo calculations in a statisti-
cally sound way, we express this acceptance criterion in
terms of a continuous distribution function rather than
a rigorous cutoff. Assuming a normal distribution of the
energy errors, the squared sum of normalized pressure
changes at three different volumes should follow a χ2

3 dis-
tribution. We therefore use this to define the acceptance
criterion for each step in the Markov chain. More details
on the acceptance criterion, as well as on each of the in-
dividual Monte Carlo calculations, can be found in the
Supplementary Material.

We now apply this approach to a Birch-Murnaghan
equation of state. In that case, the pressure is given by:

P (V ) =
3B0

2

[(
V0
V

)7/3

−
(
V0
V

)5/3
]

×

{
1 +

3

4
(B1 − 4)

[(
V0
V

)2/3

− 1

]}
(16)

We impose an energy error ε of 0.15 eV/atom, which is
of the order of magnitude of the expected difference be-
tween DFT-PBE and experiment.6 In this way, we ob-
tain the error bars for V0, B0 and B1 depicted in Fig-
ure 4 for 64 different initial EOS parameter sets. This
reveals a number of interesting trends. δV0 is largely
independent of the volume and the bulk modulus deriva-
tive, but scales inversely with the bulk modulus. δB0 is
largely independent of the bulk modulus and the bulk
modulus derivative, but scales inversely with the equi-
librium volume. δB1 is largely independent of the bulk
modulus derivative, but scales inversely with the product
of the bulk modulus and the equilibrium volume. Each
of these conclusions was already derived analytically in
Equations (6), (7) and (8) for independent variations of
V0, B0 and B1, and is now confirmed for the general case.

We can also take a closer look at the behaviour of the
error bars. Figure 5 displays a number of 1D cross sec-
tions for the 3D data sets presented in Figure 4. We
readily recognize the above mentioned trends again, but
more subtle dependencies appear as well. δV0, for ex-
ample, is not only inversely proportional to B0, but it
increases very slightly as V0 rises. In the same way, δB0

not only drops steadily with volume, but also decreases

slowly as a function of B0. Both trends are found to fol-
low from a shift in the average EOS parameters during
the course of the Monte Carlo simulation. Indeed, due to
the skewed distribution of V0 and B0, their averages do
not coincide with the original reference values. Instead,
starting from a larger B0 leads to distributions with a
larger average V0, and a large initial V0 gives rise to a
smaller average B0 (see Figure 6). The observed depen-
dencies are therefore in line with the trends mentioned
earlier.

Another noticeable trend is the slight increase of δB0

for larger B1 values. Contrary to the dependencies of δV0
and δB0 on V0 and B0, respectively, changes in the mean
values are not responsible for this phenomenon. Because
this behaviour is also not found analytically, it must be
due to correlations between changes in the three EOS
parameters.

Finally, the dependencies of δV0 and δB1 on B1 are not
significant: repeating the same MC simulation several
times yields fluctuations that are at least as large. We can
therefore conclude that the errors are mostly decoupled,
and that the analytically derived behaviour reproduces
the most important trends.

We could wonder whether the above conclusions are
also valid for another volume dependence of the energy
error, or for other equations of state. We therefore redo
the analysis for a Birch-Murnaghan equation of state
with constant pressure error δP (V ) = δP and for a Vinet
equation of state:

P (V ) = 3B0

(
V

V0

)−2/3 [
1−

(
V

V0

)1/3
]

× exp

{
3

2
(B1 − 1)

[
1−

(
V

V0

)1/3
]}

(17)

with the error in Eq. (15). Full data are available in the
Supplementary Material.

When using a constant pressure error, we find that the
resulting error bars are almost identical to the original
ones: less than 3 % difference between a constant pressure
error and a volume-dependent one. This indicates that
the exact volume dependence of the error bar has only a
limited influence on our results. Substantial deviations
are only possible when both the volume and the bulk
modulus are small (up to 16 % in δB1). In that case, a
shallow equation of state with a large pressure error bar
is obtained (see Eq. (15)), so the effect of the volume
dependence of the error bar becomes more pronounced.

Most observed error bars are largely the same when us-
ing a Vinet EOS: 76 % of them vary by 5 % or less from
the Birch-Murnaghan results. However, the remaining
error bars are significantly larger. This is because a Vinet
P (V ) curve is inherently less sensitive to its EOS param-
eters. Indeed, its exponential form (17) ensures a smooth
transition between the zero pressure at the equilibrium
volume and the asymptotic one at infinite volume. As a
consequence, Vinet curves with quite large changes in V0
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Figure 4. (Colour online) Error bars δV0 (in Å3/atom), δB0 (in GPa) and δB1 (dimensionless) as a function of the equilibrium
volume, bulk modulus and bulk modulus derivative of a Birch-Murnaghan EOS. All results were obtained from 2 · 107-step MC
simulations.

(a) (b) (c)

Figure 5. (Colour online) Error bars for the equilibrium volume (right y axis), bulk modulus and bulk modulus derivative
(left y axis) of a Birch-Murnaghan EOS (a) as a function of the volume and with B0 = 200 GPa, B1 = 2.5, (b) as a function
of the bulk modulus and with V0 = 10 Å3/atom, B1 = 2.5, and (c) as a function of the bulk modulus derivative and with
V0 = 20 Å3/atom, B0 = 100 GPa. All results were obtained from 2 · 107-step MC simulations. The error bar symbols depict
the standard deviation over 4 equivalent MC runs.

or B1 can still yield reasonable pressures, especially when
the pressure error bar was large to begin with (i.e., when
V0 is small) or the EOS shallow (i.e., when B0 is small).
The Vinet error bars may be 20 % up to even 60 % larger
than the Birch-Murnaghan ones in those cases. Neverthe-
less, except maybe for δV0 as a function V0, which suffers
from huge error bars, the trends observed in Figure 5 are
retained.

Finally, we also check how the magnitude of the en-
ergy error ε influences our results. We therefore anal-
yse a single reference Birch-Murnaghan EOS – with
V0 = 20 Å3/atom, B0 = 50 GPa and B1 = 4.5 – and
vary ε in Eq. (15). The resulting δV0, δB0 and δB1 are
shown in Figure 7. We find the errors on V0, B0 and

B1 to scale linearly with ε, validating the main approx-
imation in our analytic approach. Because of the sim-
plicity of this relation, the results of the present study
may even straightforwardly be extrapolated to different
benchmark situations: only the energy error ε on the
method of interest is required to rescale the error bars
on the EOS parameters reported here. An explicit de-
termination of V0, B0 and B1 is not necessary. Such an
error bar rescaling approach is not only valid to assess
the difference between predictions of a particular level of
theory and experimental values, but for example also to
compare the predictions of different codes with respect
to the same level of theory.6,27
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(a) (b)

Figure 6. (Colour online) (a) Average value of B0 as a func-
tion of the volume, with B0 = 200 GPa, B1 = 2.5, and (b)
average value of V0 as a function of the bulk modulus, with
V0 = 10 Å3/atom, B1 = 2.5. All results were obtained from
2 ·107-step MC simulations. The error bar symbols depict the
standard deviation over 4 equivalent MC runs.

Figure 7. (Colour online) Error bars δV0 (in Å3/atom), δB0

(in GPa) and δB1 (dimensionless) as a function of ε for a
Birch-Murnaghan EOS with V0 = 20 Å3/atom, B0 = 50 GPa
and B1 = 4.5. All results were obtained from 2 · 107-step MC
simulations.

V. CONCLUSION

In conclusion, we have now elucidated the behaviour
of equation-of-state errors in first-principles predictions.
These errors are present because of inherent approx-
imations, such as the use of approximate exchange-
correlation functionals in DFT, leading to a less-than-
perfect agreement with experimental values. Systematic
deviations can be corrected for, but the character of the

remaining errors has remained elusive until now. The
mismatch between the theoretical and experimental vol-
ume of a crystal, for example, is described in literature in
terms of both absolute and relative errors, with a pref-
erence for the latter. We investigated this problem by
means of both an analytic treatment and a more accu-
rate Monte Carlo approach. By retracing the errors on
the equation of state to errors on energy differences, we
were able to demonstrate that the error on the equilib-
rium volume is actually neither absolute nor relative (see
Figure 1(a)), but inversely proportional to the bulk mod-
ulus (see Figure 8). Because large bulk moduli often go
hand in hand with small volumes, the error appears to
behave as a relative error over a large volume range. It
is therefore justified to report percentage errors on equi-
librium volumes – approximately 3 % on top of a 4 %
systematic overestimation for PBE – although better er-
ror estimates are derived from the inverse bulk modulus
– about 35/B0 for PBE (with δV0 in Å3/atom and B0

in GPa). When selecting one functional over another,
or when designing new functionals, such aspects need to
be taken into account. Indeed, Civalleri et al. showed
that the used method of error quantification may influ-
ence the outcome.17 Moreover, reporting the computa-
tional error bars may be considered a good practice for
any first-principles study. The PBE error bars reported
here are generally applicable, and similar measures can
be determined for other levels of theory using appropri-
ate benchmark results for V0, B0 and B1, or by rescaling
based on the error on the energy (see Figure 7).

In this work, we did not take into account experimental
error bars, which may certainly provide valuable insights
for materials properties that are harder to measure than
the volume. We did show this energy-based error assess-
ment also to be applicable to other EOS properties, in
particular the bulk modulus (with an approximately rel-
ative error bar) and the bulk modulus derivative (with
an absolute error bar). This opens new perspectives for
the large-scale use of first-principles methods, since such
an approach allows us to recognize which materials and
materials properties are most prone to deviations from
experiment, and which predictions are safe to use.
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performance of recent density functionals for bulk solids,”
Phys. Rev. B 79, 155107 (2009).
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