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JARA, D-52425 Jülich, Germany,
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The widespread popularity of density-functional theory has given rise to a

vast range of dedicated codes to predict molecular and crystalline proper-

ties. However, each code implements the formalism in a different way, raising

questions on the reproducibility of such predictions. We report the results of

a community-wide effort that compares 15 solid-state codes using 40 differ-

ent potentials or basis set types, assessing the quality of the Perdew-Burke-
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Ernzerhof equations of state for 71 elemental crystals. We conclude that pre-

dictions from recent codes and pseudopotentials agree very well, with pair-

wise differences comparable to those between different high-precision experi-

ments. Older methods, on the other hand, show less precise agreement. Our

benchmark provides a framework for users and developers to document the

precision of new applications and methodological improvements.

Scientific results are expected to be reproducible. When the same study is repeated indepen-

dently, it should reach the same conclusions. Nevertheless, some recent articles have shown

that reproducibility is not self-evident. A widely resounding Science article (1) has dramati-

cally demonstrated a lack of reproducibility of published psychology experiments. Although

the more exact sciences are believed to perform better in this respect, concerns about repro-

ducibility have emerged in these fields as well (2–4). The issue is of particular interest when

computer programs are involved. Undocumented approximations or undetected bugs can lead

to entirely wrong conclusions (5). In areas where academic codes compete with commercial

software, unavailability of source code can hinder assessment of the relevance of the conclu-

sions (6, 7).

Density-functional theory (DFT) calculations (8, 9) are a prominent example of a field that

entirely depends on the development and appropriate use of complex software. With rigor-

ous foundations in the quantum theory of matter, DFT describes the structure and properties of

molecules and solids at the atomic scale. Over the years, many academic groups have developed

implementations of DFT in computer codes, and several of these have been adopted by large

user communities. Commercial alternatives are entering this area as well. At present, more

than 15.000 papers are published each year that make use of DFT codes (10), with applications

varying from metallurgy to drug design. Moreover, DFT calculations are nowadays used to

build large databases (11, 12), or in multi-scale calculations where DFT codes are one part of

4



the tool chain (13, 14). It is no exaggeration to state that the precision of DFT codes underlies

the scientific credibility and reproducibility of a substantial fraction of the current natural and

engineering sciences, and thus reaches far beyond the traditional electronic-structure commu-

nity.

The main idea of density-functional theory is to solve the intractable many-particle Schrö-

dinger equation by replacing the complete electron wave function by the much simpler ground-

state electron density as fundamental variable. Although this reformulation is in principle exact,

it is not fully known how the interaction between individual electrons should be transformed.

As a result, the specific form of the unknown part of the interaction energy, the exchange-

correlation functional, has been the focus of many investigations, leading to a plethora of avail-

able functionals in both solid-state physics (15–19) and quantum chemistry (15, 20–23).

Once a particular exchange-correlation functional has been chosen, the mathematical prob-

lem is completely specified as a set of so-called Kohn-Sham equations, whose solution yields

orbitals and energies from which the total electronic energy can be evaluated. A variety of such

numerical solution schemes have been implemented in different computer codes. Comparisons

of their performance are much less frequent or extensive than those of exchange-correlation

functionals, however (21, 24–29). One might reasonably expect that as they solve the same

equations they all produce similar answers for a given crystal structure, but a glance at the liter-

ature shows that this assumption is by no means always true. Fig. 1 demonstrates that even for

a well-studied material like silicon, predictions from different codes (the “precision”) vary by

the same order of magnitude as the deviation from the 0 K experimental value (26) (the “accu-

racy”) (30). Because all codes depicted in Fig. 1 treat silicon at the same level of theory, using

the same exchange-correlation functional, they yield the same accuracy by definition. However,

the particular predictions vary from one code to another due to approximations unrelated to the

exchange-correlation functional. These approximations decrease the computational load, but
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limit the precision.

What precision can we now achieve? Discussion of precision-related issues is uncommon in

reports of solid-state DFT studies. The reproducibility of predictions is sometimes checked by

cross-validation with other codes (21,24–28), but we are not aware of any systematic assesments

of precision (also called “verification”) even though such studies would underpin confidence in

practical DFT calculations. As a group of 69 code developers and expert users, we determine

the error bar on energy-versus-volume (E(V )) predictions of elemental solids, running the same

benchmark protocol with various DFT codes. Parameters of these equations of state (EOS), such

as the lattice parameter or the bulk modulus, are commonly used for accuracy assessments (15–

19). By considering elemental solids, we establish a broad and comprehensive test for precision.

Elemental solids exhibit a wide range of chemical environments, and constitute a reasonable

first approximation to sample the huge compositional space of multicomponent systems. Our

effort has resulted in 18 602 DFT calculations, which we aimed to execute with a rigorously

determined precision. This exercise might seem simple, but each code tackles the Kohn-Sham

equations and subsequent energy evaluation in its own way, requiring different approaches to

deal with difficulties in different parts of the computational procedure.

Kohn-Sham solution techniques

The Kohn-Sham equations describe a many-electron system in terms of a density built from

single-particle wave functions. By expressing these wave functions as a linear combination of

predefined basis functions, the Kohn-Sham equations reduce to a matrix equation, which can

in principle be solved exactly. Their solution should yield identical results irrespective of the

form of the basis functions, provided the basis set is complete. However, achieving technical

convergence of the complete Kohn-Sham problem is not feasible in practice. Consider silicon,

whose electronic structure is schematically illustrated in Fig. 2. The Aufbau principle requires
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first populating the lowest energy level, which for silicon is the 1s band. This is much lower

in energy than the valence and conduction bands, and the localization of the orbitals close to

the nuclei demands high spatial resolution. These core electrons do not contribute directly to

chemical bonding, so they can be separated out and represented using a different basis, better

suited to describe localized atomic-like states. Core orbitals may either be computed in an iso-

lated atom environment and their effect on valence transferred unaltered to the crystal, or be

relaxed self-consistently in the full crystal field. They can moreover be treated using a relativis-

tic Hamiltonian, essential for core electrons in heavy atoms. Different relativistic schemes may

lead to differences in the predicted E(V ) curves.

To stitch together a complete solution, the wave functions of the semi-core and valence

electrons (2s 2p and 3s 3p, respectively, in the case of silicon) must be constructed to include

the effect of orthogonality to the core electrons. This central problem can be solved in a num-

ber of different ways depending on the choice of numerical method. For methods based on

plane-wave expansions or uniform real-space grids, the oscillatory behaviour near the nucleus

cannot be accurately represented due to the limited spatial resolution. The need for unman-

ageably large basis sets can be mitigated by adding a carefully designed repulsive part to the

Kohn-Sham potential, a so-called pseudopotential. This pseudopotential affects only a small

region around the nuclei (grey zones in Fig. 2) and may conserve the core-region charge (norm-

conserving pseudopotentials (31, 32)), giving rise to an analytically straightforward formal-

ism, or break norm conservation by including a compensating augmentation charge (ultrasoft

pseudopotentials (33)), allowing for smoother wavefunctions and hence smaller basis sets. Al-

ternatively, the projector-augmented wave (PAW) approach defines an explicit transformation

between the all-electron and pseudopotential wavefunctions using additional partial-wave basis

functions (34,35). This allows PAW codes to obtain good precision for small numbers of plane

waves or large grid spacings, but choosing suitable partial-wave projectors is not trivial. We
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will refer to both pseudopotential and PAW methods as pseudization approaches. In contrast,

all-electron methods explicitly construct basis functions that are restricted to a specific energy

range ((L)APW (36–39), LMTO (40)), or treat core and valence states on equal footing, e.g.,

by using numerical atomic-like orbitals (41, 42). Dealing with the full potential enables better

precision, but inevitably increases the computation time. In these codes, the ambiguity in solv-

ing the Kohn-Sham problem shifts from the choice of the pseudization scheme to the choice of

the basis functions. This choice lead to a variety of methods as well, which, despite solving the

same Kohn-Sham equations, differ in many other details. Because each of these methods has

its own fundamental advantages, it is highly desirable to achieve high precision for all of them.

The ∆ matrix

The case study for silicon (Fig. 1) demonstrates that different approaches to the potential or basis

functions may lead to noticeably varying predictions, even for straightforward properties like

the lattice parameter. There is no absolute reference to compare these methods against; each

approach has its own intricacies and approximations. To determine whether the same results

can be obtained irrespective of the code or (pseudo)potential, we instead present a large-scale,

pair-wise code comparison using the ∆ gauge. This criterion was formulated by Lejaeghere et

al. (26) to quantify differences between DFT-predicted E(V ) profiles in an unequivocal way.

They proposed a benchmark set of 71 elemental crystals and defined for every element i the

quantity ∆i as the root-mean-square difference between the equations of state of methods a and

b over a±6 % interval around the equilibrium volume V0,i. The calculated equations of state are

lined up with respect to their minimum energy and compared in an interval symmetrical around
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the average equilibrium volume (see Fig. 3):

∆i(a, b) =

√√√√√√√
1.06V0,i∫
0.94V0,i

(Eb,i(V )− Ea,i(V ))2 dV

0.12V0,i

(1)

A comparison of ∆i values allows the expression of EOS differences as a single number, and

a small ∆i automatically implies small deviations between equilibrium volumes, bulk mod-

uli or any other EOS-derived observables as well. The overall difference ∆ between methods

a and b is obtained by averaging ∆i over all 71 crystals in the benchmark set. Alternative

definitions of ∆ have recently appeared as well (27, 28), and essentially render the same infor-

mation. In this work, we apply the original ∆ protocol to 40 DFT implementations of the PBE

functional (43). Appropriate numerical settings were determined for each method separately,

ensuring converged results. In all calculations, valence and semicore electrons were treated on

a scalar-relativistic level, as not all codes support spin-orbit coupling. This is not a limitation, as

the aim is to compare codes to each other rather than to experiment. We do not elaborate much

on speed and memory requirements, for which we refer to the documentation of the respective

codes.

Fig. 4 presents an overview of the most important ∆ values categorized into all-electron,

PAW, ultrasoft pseudopotential and norm-conserving pseudopotential methods. Approaches

with a similar intrinsic precision are in this way clustered together. Both the full results and the

most important numerical settings have been included in Tables S3–S42. A complete specifi-

cation would have to include code defaults and hard-coded values, so a reasonable compromise

was chosen. A full specification could be realized by recent endeavours towards full-output

databases (44, 45) or workflow scripting (46, 47), but this is not yet available for several of the

codes treated here. We have however tried to provide generation scripts for as many methods

as possible (48), and emphasize the need for such tools as an important future direction.
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Comparing all-electron methods

Although the definition of ∆ does not favour a particular reference, it is most instructive to first

have a closer look at the ∆ values with respect to all-electron methods (Fig. 4). They generally

come at a computationally larger cost, but all-electron approaches to DFT are often considered

to be a gold standard, as they implement the potential without pseudization. By comparing

pseudopotential or PAW methods to all-electron codes, we therefore get an idea of the error

bar on each pseudization scheme. The ∆ values between different all-electron methods, on

the other hand, reflect the remaining discrepancies, such as a different treatment of the scalar

relativistic terms or small differences in numerical methods.

To gain some intuition into typical values of ∆, we should first establish which values for ∆

can be qualified as ‘small’, leading to results that can be considered equivalent. A first indication

comes from converting differences between high-precision measurements of equation-of-state

parameters into a ∆ format. Comparing the high-quality experimental data of Holzapfel et al.

for Cu, Ag and Au (49) to those of Kittel (50) and Knittle (51), for example, marks a small

difference ∆exp of 1.0 meV/atom. Since the average all-electron ∆ for these materials is only

0.8 meV/atom, this implies that the precision of many DFT codes outperforms experimental

precision. Secondly, we also break down the differences between codes in terms of commonly

reported equation-of-state parameters. The 1.0 meV/atom maximum ∆ between all-electron

codes (Fig. 4, top) corresponds to an average volume deviation of 0.14 Å3/atom (0.38 %) or a

median deviation of 0.05 Å3/atom (0.24 %) over the entire 71-element test set. For the bulk

modulus the average deviation is 1.6 GPa (4.0 %) and the median deviation 0.8 GPa (1.6 %).

Compared to the scatter on experimental values, amounting to up to 35 % for the bulk moduli

of the rare-earth metals, for instance (52), these values are very small. The difference between

equations of state obtained by independent all-electron codes is hence smaller than the spread
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between independent experimental equations of state. We conclude that, unless some elements

deviate significantly from the overall trend, codes with a mutual ∆ of 1 or even 2 meV/atom can

be deemed to yield indistinguishable equations of state for all practical purposes.

The above-mentioned differences correspond to the best attainable precision for each all-

electron code, using highly converged or ‘ultimate’ computational settings. It is important to

realize, however, that particular choices of these settings may still slightly change the ∆ val-

ues. Conversely, it is not always necessary to set such stringent requirements, as efficient codes

are able to perform well with less-than-perfect settings. Nevertheless, the difference between

default- and ‘ultimate’-precision equations of state may sometimes reach a few meV/atom (see

Table S2). To eliminate the effect of numerical convergence altogether, we tested for the os-

mium crystal whether it was possible to obtain exactly the same result with different codes.

Rather than aiming for the best representation of the ideal PBE results, as in the rest of this

work, the goal was now to choose input settings as consistently as possible (using the same

basis functions, grids and other parameters). Comparing four APW+lo calculations in this way

yielded the results in Table 1. While numerical noise in various subroutines gives rise to fluc-

tuations of only 0.02-0.04 meV/atom, the larger deviation of approximately 0.2 meV/atom in

comparisons with respect to exciting can partly be attributed to a different scalar-relativistic

treatment of the valence electrons in this code. Indeed, there is no single, universal method to

account for the relativistic change of the electron mass in the kinetic energy. exciting uses

the infinite-order regular approximation (IORA) (53), while the other three APW+lo codes use

the Koelling-Harmon scheme (54). A third possibility is to use the atomic zero-order regular

approximation (atomic ZORA), as was done in FHI-aims (42, 55) (see Tables S5–S7).
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Comparing (pseudo)potential libraries

In comparison to all-electron codes, pseudization approaches are generally faster, as fewer

states are considered and explicit construction and diagonalization of the Hamiltonian matrix is

avoided. Among these, PAW and ultrasoft pseudopotentials require fewer basis functions than

the norm-conserving variety, but advanced features such as linear response theory or hybrid

functionals may sometimes not be available due to the increased complexity of the implemen-

tation. However, they all perform remarkably well in terms of precision when compared with

all-electron results (see Fig. 4). For equations of state, the precision of current potentials is able

to compete with that of all-electron methods, yielding ∆ values of about 1 meV/atom, with a

low approaching 0.3 meV/atom. This has not always been the case. As suggested by the exam-

ple of silicon (Fig. 1), the available potentials have improved considerably over time. In Table 2

it can be seen that for several codes the ∆ value is smaller for newer potential sets. More-

over, older potentials like the Troullier-Martins FHI98pp/ABINIT norm-conserving set, the

Vdb2/DACAPO ultrasoft set and the Vdb/CASTEP ultrasoft set all have a substantially larger

∆ (Fig. 4). This evolution is evidence of internal quality control mechanisms used by devel-

opers of potentials in the past, as well as more recently, of additional efforts based on the ∆

gauge (e.g., the JTH and SSSP potential libraries). The striking difference with the older poten-

tials, even for the predefined structures in this relatively simple test set, provides a compelling

argument to only use the most recent potential files of a given code.

In addition to a comparison with all-electron codes, it is also interesting to assess how differ-

ent codes implement the same PAW or pseudopotential recipes. When both GPAW and ABINIT

use the GPAW 0.9 PAW set, for example, they agree to within a ∆ of 0.6 meV/atom. A similar

correspondence is found for the Schlipf-Gygi 2015-01-24 ONCVPSP norm-conserving pseu-

dopotentials (0.3 meV/atom between QUANTUM ESPRESSO and CASTEP), the GBRV 1.4
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ultrasoft pseudopotentials (0.3 meV/atom between QUANTUM ESPRESSO and CASTEP) and

the GBRV 1.2 set (0.7 meV/atom between PAW potentials in ABINIT and ultrasoft potentials

in QUANTUM ESPRESSO). Here too, the small ∆ values indicate a good agreement between

codes. This agreement moreover encompasses varying degrees of numerical convergence, dif-

ferences in the numerical implementation of the particular potentials and computational differ-

ences beyond the pseudization scheme, where the latter are expected to be of the same order of

magnitude or smaller than the differences between all-electron codes (1 meV/atom at most).

Conclusions and outlook

Solid-state DFT codes have evolved tremendously. The change from small and personal codes

to widespread general-purpose packages has pushed developers to aim for the best possible

precision. Whereas DFT-PBE literature on the lattice parameter of silicon displayed a spread of

0.05 Å in the past, the most recent versions of the implementations discussed here agree on this

value by 0.01 Å (see Fig. 1 and Tables S3–S42). By comparing codes on a more detailed level

using the ∆ gauge, we have indeed found most recent methods to yield nearly indistinguishable

equations of state, with the remaining error bar comparable to that between different high-

precision experiments. This underpins the validity of recent DFT EOS results and ensures that

correctly converged calculations yield reliable predictions. The message moreover impacts all

of the multi-disciplinary set of fields that build upon DFT results, ranging from physical to

biological sciences.

In spite of the absence of one absolute reference code, we were able to improve and demon-

strate the reproducibility of DFT results by means of a pair-wise comparison of a wide range of

codes and methods. Any new methodology development can now verify whether it can reach

the same precision, and new DFT applications can show to have used a method and/or poten-

tials that were screened in that way. The data generated in the framework of this paper serve as
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a crucial enabler for such a reproducibility-driven paradigm shift, and future updates of avail-

able ∆ values will be presented at http://molmod.ugent.be/deltacodesdft. The reproducibility

of reported results also provides a sound basis for further improvement of the accuracy of DFT,

i.e. the investigation of new DFT functionals, or for the development of new computational

approaches. This work might therefore speed up methodological advances in solid-state DFT

substantially.

There is scope for future work to check the reproducibility of different codes even further.

This might consider larger benchmark sets (describing different atomic environments per el-

ement), other functionals, an exhaustive comparison of different relativistic treatments, and a

more detailed account of computational differences (using databases or scripts, for example).

The precision of band gaps, magnetic anisotropies and other non-EOS properties would also

be of interest. However, the current investigation of equation-of-state parameters provides the

most important pass/fail test to the quality of different implementations of Kohn-Sham theory.

A method that is not able to reach an acceptable precision with respect to the equations of state

of the elemental crystals, will likely not fulfill even more stringent demands.
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31. D. R. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev.

Lett. 43, 1494 (1979).

32. L. Kleinman, D. M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev.

Lett. 48, 1425 (1982).

17



33. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formal-

ism, Phys. Rev. B 41, 7892 (1990).
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38. E. Sjöstedt, L. Nordström, D. J. Singh, An alternative way of linearizing the augmented

plane-wave method, Solid State Commun. 114, 15 (2000).

39. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization
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Fig. 1. Historical evolution of the predicted equilibrium lattice parameter for silicon. All

data points represent calculations within the DFT Perdew-Burke-Ernzerhof (PBE) framework.

Values from literature (15,16,18,56–65) are compared both to the predictions of different codes

within this paper (data points from 2016 and inset; older methods or calculations with lower

numerical settings have been depicted by empty symbols) and to the experimental value extrap-

olated to 0 K and corrected for zero-point effects (red line) (26). The concepts of precision and

accuracy (see text) are illustrated graphically.

Fig. 2. Electronic states in solid silicon. The valence states are delocalized over the solid

(green line), as the wave functions overlap from one atom to the next. The lowest-energy 1s

state (red) is at an energy two orders of magnitude lower than the valence states, and is strongly

localized near the nucleus with no overlap between the atoms. The grey regions around the

atoms indicate approximately where the wavefunction, density and potential are smoothed in

pseudized methods.

Fig. 3. Graphical representation of the ∆ gauge. The black line depicts the quadratic energy

difference between two equations of state, and ∆i corresponds to the root-means-square aver-

age. This is demonstrated by the shaded area, which is equally large above and below the ∆2
i

line.

Fig. 4. ∆-values between the most important DFT methods considered (in meV/atom).

Comparison of all-electron (AE), PAW, ultrasoft (USPP) and norm-conserving pseudopotential

codes (NCPP) to all-electron results, listed in alphabetical order per category. The tags stand

for code, code/specification (AE) or potential set/code (PAW/USPP/NCPP),

and are specified in full in Tables S3–S42. The colour code ranges from green over yellow to

red (small to large ∆ values). The mixed potential set SSSP was added to the ultrasoft category,

in agreement with its prevalent potential type. Both the code settings and the DFT-predicted

equation-of-state parameters behind these numbers have been included in Tables S3–S42, and
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a full ∆ matrix for all methods mentioned in this article is available in Fig. S1.

Table 1. Agreement between osmium crystal predictions at nearly identical settings. (Top)

∆i values for the osmium crystal (in meV/atom) when four APW+lo calculations tried to mimic

the same settings as well as possible. These settings are therefore different from the ones used

for Fig. 4 and reported in Tables S3–S4, S8 and S15. (Bottom) The corresponding equilibrium

volumes V0, bulk moduli B0 and bulk modulus derivatives B1.

Table 2. Precision evolution of PAW and pseudopotential sets over time. The ∆-values are

expressed as an average over the all-electron methods (in meV/atom) and are listed chronolog-

ically per code. Both the corresponding code settings and the DFT-predicted equation-of-state

parameters have been listed in Tables S17, S19–S26, S30–S31 and S33. The most recent po-

tentials are the ones used to generate the data shown in Fig. 4.
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Elk FLEUR WIEN2k exciting
∆(Elk) – 0.03 0.02 0.20
∆(FLEUR) 0.03 – 0.04 0.22
∆(WIEN2k) 0.02 0.04 – 0.18
∆(exciting) 0.20 0.22 0.18 –
V0 (Å3/atom) 14.276 14.276 14.276 14.274
B0 (GPa) 397.5 397.9 397.6 397.4
B1 (–) 4.86 4.89 4.83 4.82
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year 〈∆〉 vs AE
JTH01/ABINIT 2013 1.1
JTH02/ABINIT 2014 0.6
Vdb/CASTEP 1998 6.5
OTFG7/CASTEP 2013 2.6
OTFG9/CASTEP 2015 0.7
GPAW06/GPAW 2010 3.6
GPAW09/GPAW 2012 1.6
PSlib031/QE 2013 1.7
PSlib100/QE 2013 1.0
VASP2007/VASP 2007 2.0
VASP2012/VASP 2012 0.8
VASPGW2015/VASP 2015 0.6
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