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1. Introduction

Generalized quadrangles were introduced by Tits in [48] as a subclass of the
generalized polygons, the natural geometric modules of the groups of Lie type
of (relative) rank 2. Tits showed that generalized polygons are the corner
stones of buildings, and in a famous work [49], he classified all spherical
buildings of rank at least 3. Classifying the rank 2 examples — which are
exactly the generalized polygons — is not possible due to the existence of
free constructions, so there one has to impose extra properties in order to
pursue such a goal. In higher ranks, Tits showed that buildings satisfy the
so-called “Moufang condition”, so a natural approach would be to endow the
rank 2 examples with this property. It is certainly not the goal here to survey
the (global) Moufang condition (this has been done elsewhere in much detail).
Let us just mention that all Moufang polygons were classified by Fong and
Seitz [13, 14] in the finite case, and by Tits and Weiss [50] in general. (Some
more information will also appear below.) Endowing a generalized polygon
with a strong condition such as the Moufang condition does not come at
little cost: the high amount of symmetry which is the result leads to the
classical examples (associated to classical or algebraic groups). Even in the
finite case, and especially for the gonalities three and four, the fact that many
nonclassical examples exist — examples which do not admit any global group
action at all — asks for the need of more general conditions or theories in
which these examples can also be described, and perhaps classified. In the
planar case, the introduction of translation planes was a good example of
such a condition. A Moufang plane is easily shown to be a translation plane
for any line, and in fact, the translation plane definition precisely expresses
the fact that the plane is Moufang “at the translation line”.
In this paper, we will consider properties for generalized quadrangles which
express the fact that locally, the quadrangle is Moufang.

2. Some combinatorics

For definitions not given here, we refer to the monographs [32, 37].
A generalized quadrangle (GQ) of order (s, t) is a point-line incidence struc-
ture S = (P,B, I) in which P and B are disjoint (nonempty) sets of
objects called points and lines respectively, and for which I is a symmetric
point-line incidence relation satisfying the following axioms:

• two distinct points are incident with at most one line;
• each point is incident with t + 1 lines (t ≥ 1);
• each line is incident with s + 1 points (s ≥ 1);
• if p is a point and L is a line not incident with p, then there is a unique

point-line pair (q, M) such that pIMIqIL.

There is a map D which sends a GQ S = (P,B, I) of order (s, t) to S D =
(B,P, I), a GQ of order (t, s) which is called the point-line dual of S . The
presence of this map is called “point-line duality”; for GQs of order (s, t), in
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any definition or theorem the words “point” and “line” can be interchanged
and also the parameters s and t, to obtain the dualized version.
Let S = (P,B, I) be a finite generalized quadrangle of order (s, t), and
suppose p −I L, (p, L) ∈ P × B. Then by projLp, we denote the unique
point on L collinear with p. Dually, projpL is the unique line incident with p

concurrent with L. Let A ⊆ P; then by A⊥ we mean ∩a∈Aa⊥ (here a⊥ is the
set of points of P collinear with a, including a). We write A⊥⊥ for (A⊥)⊥.
Clearly, if x and y are noncollinear points, |{x, y}⊥⊥| ≤ t + 1; if equality
holds, we say that {x, y} is regular. The point x is regular provided {x, y} is
regular for every y ∈ P \ x⊥.
If the order of S is (t2, t), and {U, V,W} is a line triad, that is, three distinct
lines mutually nonintersecting, then |{U, V,W}⊥| = t + 1 [32, 1.2.4].

3. Global viewpoint

In the global viewpoint, we consider rank 2 geometries M = (P,B, I) that
admit an automorphism group K ≤ Aut(M ) which acts transitively on a
set C of substructures of S of the same isomorphism type. (Recall that an
automorphism of M is a permutation of P ∪B which preserves P, B and
incidence. The set of all automorphisms naturally forms a group by compo-
sition, and is denoted as Aut(M ).) More precisely, we want C to consist of
subgeometries of M such that for Γ,Γ′ ∈ M , Γ is isomorphic to Γ′, and if Γ′′

is a subgeometry of M isomorphic to any member of C , we require it also
to be a member of C . (Note that the isomorphisms are initially only defined
between the members of C — a priori they are not related to automorphisms
of M .) To make sense of this definition, one also wants to require that the
elements of C are “sufficiently general”; good examples are C = P, C = B,
C = {(u, V )|(u, V ) ∈ I}, or C = {(ordered) subquadrangles of order (1, 1)},
etc.

3.1. The Moufang condition

Already in the 1960’s, Tits started a program to obtain all Moufang gen-
eralized n-gons, and much later, Tits and Weiss [50] eventually finished the
classification of (finite and infinite) Moufang generalized n-gons. For the finite
case, this result was already obtained by Fong and Seitz in [13, 14], the most
difficult case being the case n = 4 by far, and for this latter case, there is also
a geometrical proof which is a culmination of work by Payne and Thas [32,
Chapter 9], Kantor [23] and the author [38]. We refer to the author and Van
Maldeghem [46] for a survey on old an new results on Moufang generalized
quadrangles. We also refer to [37, Chapter 11], and especially [36] on that
matter.
After the work of Fong and Seitz, the importance of local Moufang conditions
became obvious — not only numerous characterizations of known classes of
generalized quadrangles came out, also the theory of translation generalized
quadrangles defined below essentially arose from it, and the abstraction to
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elation generalized quadrangles eventually lead to many new classes of gen-
eralized quadrangles.

3.2. Moufang quadrangles

A root of a GQ S = (P,B, I) is a triple

(x, L, y) ∈ P ×B ×P for which xILIy and x 6= y.

The dual notion is a dual root. A root-elation with root (x, L, y) = γ is an
element α of Aut(S ) which fixes x and y linewise, and L pointwise. We also
write α ∈ Aut(S )[γ], or α ∈ Aut(S )[(x,L,y)]. So Aut(S )[γ] is the group of
all root-elations with root γ. By [32, 8.1.1], α cannot fix points of P \L, nor
lines of B\L⊥. The same can easily be proven in the infinite case. Let U 6= L
and UIu, where u is one of x, y. The root γ is Moufang if Aut(S )[γ] acts
transitively on the points of U \ {u}. We define dual Moufang roots dually.
A GQ is Moufang if all roots and dual roots are Moufang. We already men-
tioned that all Moufang quadrangles are classified by Tits and Weiss [50].
Let Γ be a thick, not necessarily finite, Moufang quadrangle, and let x be any
point of Γ. Let z be a point which is not collinear with x, and let U and V be
distinct lines incident with x. Let u = projUz and v = projV z. Let A be the
group of root-elations with root (x,U, u), B the group of root-elations with
root (x, V, v), and C the group of dual root-elations with dual root (U, x, V ).
Define

K := 〈A,B, C〉. (3.1)
Let α ∈ A and γ ∈ C; then [α, γ] = α−1γ−1αγ ∈ A ∩ C = {1}. So AC and
BC are (normal) subgroups of K, and K = ABC. Note that K/AC acts
sharply transitively on U \{x} and similarly, K/BC acts sharply transitively
on V \{x}. So K is a group of elations with center x; if ` ∈ K would fix some
point y 6∼ x, it would have to fix projUy and projV y, so that U and V are
fixed pointwise by `. As ` fixes x (and y) linewise, it must be the identity.
The fact that K acts transitively on the points not collinear with x is left to
the reader as an easy exercise.

3.3. The Knarr condition

Although we have shown that U and V indeed define an elation group K
forcing Γx to be a so-called “elation quadrangle” (formally defined in the next
section), there is not much indication to think that the same group would
be obtained for different U and V . (Still, if W (x) is the group of elements in
Aut(Γ) fixing x linewise, then K � W (x).) If Γ is a Moufang quadrangle, the
group M(x) generated by all root-elations and dual root-elations with (dual)
root containing x is known to be an elation group, so in that case, we have
a “canonical” way to associate an elation quadrangle to each point of the
GQ. But in general, it is not clear as to whether the group M(x) couldn’t be
larger. In the finite case, the answer was obtained by the author:

Theorem 3.1 (K. Thas [41]). Let Γ be a finite GQ with a point x such that
any root and dual root containing x is Moufang. Define M(x) as above. Then
M(x) fixes all lines incident with x and acts sharply transitively on the points
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not collinear with x; moreover, M(x) is a p-group and so the parameters of
Γ are powers of p.

Norbert Knarr [25] was the first to consider the local Moufang properties
considered in the previous theorem, and in fact, the theorem answered a
question posed by him in the 1990’s [25]. In the infinite case, the question
remains unsolved, although much progress has been recently made by the
author.

4. Local viewpoint

To incorporate as many classes of examples as possible in one unified the-
ory, we introduce the “local point of view”: impose local (group theoretical)
conditions on, in this case, a generalized quadrangle, such that (hypotheti-
cal) classification would lead to both classical and nonclassical examples. In
particular, we think of automorphism groups fixing a point, or a line, etc.,
having an interesting action on the quadrangle.

4.1. EGQs and STGQs

For a GQ S = (P,B, I), we call a point x an elation point, if there is an
automorphism group H ≤ Aut(S ) that fixes x linewise and acts sharply
transitively on P \ x⊥ (the group is called “elation group”). If a GQ has
an elation point, it is called an elation generalized quadrangle or, shortly,
“EGQ”. We will frequently use the notation (S x,H) to indicate that x is an
elation point with associated elation group H. (Sometimes we also write S x

if we don’t want to specify the elation group.)

Theorem 4.1 (D. Frohardt [15]). For a thick finite EGQ of order (s, t) with
s ≤ t, we have that st is a prime power, so that the elation group is a p-group.

Suppose (S x,H) = (P,B, I) is an EGQ of order (s, t), s, t ∈ N \ {0, 1}, and
let z be a point of P \ x⊥. Let L0, L1, . . . , Lt be the lines incident with x,
and define ri and Mi by LiIriIMiIz, 0 ≤ i ≤ t. Put Hi = HMi , H∗

i = Hri

and F = {Hi|0 ≤ i ≤ t}, F∗ = {H∗
i |0 ≤ i ≤ t}. Then |H| = s2t and F is a set

of t+1 subgroups of H, each of order s. Also, for each i, H∗
i is a subgroup of

H of order st containing Hi as a subgroup. Note that if one chooses an other
point for z, F and F∗ rest unchanged up to conjugation by an element of H.
The following two conditions are satisfied:

• HiHj ∩Hk = {1} for distinct i, j and k;
• H∗

i ∩Hj = {1} for distinct i and j.
If H is a group of order s2t and F (respectively F∗) is a set of t+1 subgroups
Hi (respectively H∗

i ) of H of order s (respectively of order st), and if the
aforementioned conditions are satisfied, then the H∗

i are uniquely defined by
the Hi, and (F,F∗), or just F, is said to be a Kantor family or 4-gonal family
of type (s, t) in H. Using a (now) standard group coset geometry construction,
one can then construct a GQ S (F,F∗) which is an EGQ with elation group
H; moreover, if we start from S as above, then S ∼= S (F,F∗) [22, 28].
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If x is a regular point, it can be shown that H contains a subgroup S of
order t consisting of automorphisms which fix each point of x⊥ [45]. Such
automorphisms are called symmetries with center x, and x is a center of
symmetry since t is the maximal amount of symmetries with center x. We
then say that S x is a skew translation quadrangle (STGQ). We call the
STGQ central if S is contained in the center Z(H) of H. As [45] points out,
centrality is the key to classifying STGQs.

4.2. TGQs

If the elation group H of an EGQ S x is abelian, we call S x a translation
generalized quadrangle with translation group H (and translation point x). In
that case it can be shown that it is elementary abelian (cf. [32, Chapter 8],
[37, §3.4]), and that s ≤ t [32, Chapter 8], [37, §3.3], if the order of S x is
(s, t) and S x is finite. Note that H is uniquely defined — see [37, Theorem
3.3.10]. Let (F,F∗) be the associated Kantor family, and suppose the TGQ
is finite. By [32, §8.5], see also [37, §3.4], the ring of endomorphisms of H
preserving each element of F ∪ F∗ is a field Fq, over which H can be seen
as a vector space. Seeing the elements of F as subspaces (over Fq) of the
corresponding projective space P, it appears that if s 6= t or if s = t is odd,
one can construct another TGQ (S x)∗ by interpreting (F,F∗) in the dual
space of P, see [32, Chapter 8], or [37, §3.9, §3.10]. The TGQ (S x)∗ is the
translation dual of S x, and has the same order.

5. Classification of STGQs

Up to the Hermitian quadrangles in 4 dimensions and Payne derived examples
(which we will meet formally in the last section of this paper), all known finite
generalized quadrangles are STGQs up to duality. Even more, except for the
T3(O)D examples where O is a Suzuki-Tits ovoid of PG(3, q), all of them
satisfy the Knarr condition at the elation point (see [43, 45]).
Dirk Hachenberger [18], and independently X. Chen, see [43], obtained a first
step in classifying STGQs:

Theorem 5.1 (D. Hachenberger [18], X. Chen — see [43]). The parameters of
a thick STGQ are powers of the same prime.

The author is preparing a classification of STGQs [45] (which will hopefully be
finished soon), in which centrality is a basic feature; once one knows that the
symmetries about the elation point are in the center of the elation group, an
STGQ already satisfies some fairly strong Moufang conditions which permit
us to develop a strong structural theory.
In odd characteristic, for instance, we already have the following result when
the number of points equals the number of lines:

Theorem 5.2 (K. Thas [45]). An STGQ of odd order s is isomorphic to W(s).
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The latter theorem has strong consequences for groups as well (characterizing
semifield groups, that is, Sylow p-subgroups of PSL3(q) with q = ph and p
odd). Many more results can be found in [45], but here, we restrict ourself
only to the following section, which reflects the flavor of parts of [45].

6. STGQs and forms

In the last few decades, the most fruitful way to construct finite generalized
quadrangles was through the detection of certain Kantor families (arising
from a so-called “q-clan”) in the 2-dimensional general Heisenberg group
H2(q) over some finite field Fq. All these examples are so-called “flock quad-
rangles”. In [30], Payne constructed from the Ganley flock quadrangles new
quadrangles (“Roman quadrangles”) which appeared not to arise from flocks,
but still arise via a Kantor family construction (in some group G of the
same order as H2(q)). The fundamental question (first asked by Payne in
op. cit., see his excellent account [31]) then arose as to whether H2(q) ∼= G .
In [19], Havas et al. showed that for the Roman quadrangles with parame-
ters (729, 27), and using a computer program, the corresponding groups are
not isomorphic. In [20], they obtained the result for all Roman quadrangles.
The proof consists of showing that noncentral elements in H2(q) and G have
nonisomorphic centralizers.
The construction of Payne appears to be a special case of a more general one.

Theorem 6.1 (K. Thas [40]). Each flock quadrangle S = S (F ) for which
the dual S D is a translation generalized quadrangle gives rise to another
generalized quadrangle (which is the dual of the translation dual (S D)∗)
which is in general not isomorphic to S D, and which also arises from a
Kantor family.

Denote the class of such flock quadrangles by C . (By reasons to explain later,
we only consider odd characteristic.)

S ∈ C
D−→ S D ∗−→ (S D)∗ D−→ ((S D)∗)D

↓ ↓ [40]

H2
?−→ G

In [42], we resolved the question of Payne for the complete class C , by showing
that flock quadrangles are characterized by their groups (in any character-
istic), a question which was open for quite some time. As an application of
the main result, the special case of prime q yields an alternative proof of the
main result of [2].

Theorem 6.2 (K. Thas [42]). Let S be an EGQ of order (q2, q), q any prime
power, with elation group H2(q). Then S is a flock quadrangle.

In terms of Kantor families, this result reads as follows:
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Theorem 6.3 (K. Thas [42]). A Kantor family of type (q2, q) in H2(q) arises
from a q-clan.

Passing from the latter theorem to the solution of Payne’s question goes as
follows.

Theorem 6.4 (K. Thas [42]). Let S = S (F ) be a flock GQ of order (q2, q)
for which the dual S D is a TGQ, q odd. Let G be defined as in the diagram
above. Then G ∼= H2(q) if and only if F is a Kantor-Knuth flock if and only
if S ∼= ((S D)∗)D.

If S (F ) is the Ganley flock quadrangle, the dual of (S D)∗ is the Roman
quadrangle (which is not isomorphic to a Kantor-Knuth quadrangle), yielding
thus the result of Havas et al. [19, 20]. If S = S (F ) is a flock GQ of order
(q2, q) for which the dual S D is a TGQ, and q is even, S ∼= H(3, q2) (cf.
N. L. Johnson [21], [6] or [37, Theorem 5.1.11]). In that case, the analogous
question is reduced to the main results of [33, 39]. Other implications can be
found in [42].
In the rest of this section, we provide some more details.

6.1. The general Heisenberg group

The general Heisenberg group Hn(q) (sometimes also written as Hn if we
don’t want to specify q) of dimension 2n + 1 over Fq, with n 6= 0 a natural
number, is the group of square (n + 2)× (n + 2)-matrices with entries in Fq,
of the following form (and with the usual matrix multiplication): 1 α c

0 In βT

0 0 1

 ,

where α, β ∈ Fn
q , c ∈ Fq and with In being the n × n-identity matrix. The

group Hn is isomorphic to the group {(α, c, β)|α, β ∈ Fn
q , c ∈ Fq}, where the

group operation ◦ is given by

(α, c, β) ◦ (α′, c′, β′) = (α + α′, c + c′ + αβ′
T
, β + β′).

The following properties hold for Hn (defined over Fq).
• Hn has exponent p if q = ph with p an odd prime; it has exponent 4 if

q is even.
• The center of Hn is given by Z = Z(Hn) = {(0, c, 0)|c ∈ Fq}.
• [Hn,Hn] = Z = Φ(Hn) and Hn is nilpotent of class 2 (Φ(Hn) is the

Frattini subgroup of H, that is, the intersection of all its maximal sub-
groups).

The following (very important) property is less well-known [22, 24].
• Let V be the elementary abelian p-group H2(q)/Z. The map χ

χ : V × V 7→ Fq : (aZ, bZ) 7→ [a, b]

defines a bilinear alternating nonsingular (BAN-) form over Fq ≡ Z. So
V can be seen as a 4-dimensional space over Fq, and in the corresponding
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projective 3-space over Fq, χ defines a symplectic polar space W(q) of
rank 2 (projective index 1).

Note that we already met H1(q) in the previous section.

6.2. Flock quadrangles and q-clans

Let F be a flock of the quadratic cone K in PG(3, q) with equation X0X1 =
X2

2 ; so F is a partition of K without the vertex consisting of irreducible
conics. Then it was noticed in [34] that the equations of the planes (with
respect to a suitable reference system) generated by the conics define a Kantor
family of type (q2, q) in H2(q); that is, to F corresponds an EGQ S x =
S (F ), called flock quadrangle, of order (q2, q) with elation group H2(q).
Also, it happens to be an STGQ with respect to x, and Kantor families
in H2(q) that give rise to flock quadrangles are precisely those related to
“q-clans”, see [6, 37].
One of the corollaries of the main result of [42] is that Kantor families in
H2(q) always are of this type.
We finally mention that if S (F ) is a flock quadrangle of order (q2, q), and
its dual is a TGQ, then S (F ) ∼= H(3, q2) if q is even. If q is odd, the TGQ
S (F )D is isomorphic to its translation dual if and only if F is a Kantor-
Knuth semifield flock. We refer to [21, 6, 37] for further details.

6.3. Property (G) and flock GQs

Let x be a point of a GQ S of order (t2, t), and let U, V be distinct lines
incident with x. Then S satisfies Property (G) at the pair {U, V } if any triad
of lines {V,W,Z} in U⊥ is 3-regular, which means that

|{V,W,Z}⊥| = |{V,W,Z}⊥⊥| = t + 1.

Note that the definition is symmetric in U and V . The flag (x, L) has Property
(G) if all pairs {L,M} of distinct lines incident with x have Property (G).
One says that x has Property (G) if all pairs {U, V } incident with x have
Property (G).
It can be shown that if S x is a flock quadrangle, the point x satisfies Property
(G) [30].
The following theorem was first obtained in odd characteristic in [35], an-
swering a fundamental conjecture of Payne’s essay [30]. In the case of even
characteristic, relying on [35], it was obtained only much later by M. R.
Brown [5]. (In odd characteristic, only one flag was required in [35]; later it
was shown that one pair of intersecting lines was sufficient [3].)

Theorem 6.5 ([35, 5]). A GQ of order (t2, t) satisfying Property (G) at two
distinct flags (u, L) and (u, M) for some point u is isomorphic to a flock GQ.

6.4. Special groups and alternating forms

Let H be a special group [16, p. 183] of order qm, m ∈ N0,1 = N\{0, 1}, with
q = ph a power of the prime p, for which

Z(H) = Φ(H) = [H,H]
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is (elementary abelian) of order q.
The exponent of H is easily seen to be p or p2 if p is odd, and 4 if p = 2.
Define a bi-additive map χ as follows:

χ : V × V 7→ Fq : (aZ(H), bZ(H)) 7→ [a, b],

where we see H/Z(H) as a vector space V over Fp, and identify Z(H) with
Fq. We assume that χ defines a BAN-form over Fq ≡ Z(H), that is, the
commuting structure of χ is a symplectic polar space W(2n−1, q) of rank n−1
over Fq. The polar space then occurs in the projective space PG(2n − 1, q)
associated to V , with m = 2n + 1.

Observation 6.6 (K. Thas [42]). If H admits a Kantor family of type (s, q),
then s ∈ {q, q2}, and so |H| ∈ {q3, q5}.

The main theorem of [42] is the following.

Theorem 6.7 (K. Thas [42]). Suppose H is a special p-group of order q5 for
which Z(H) = Φ(H) = [H,H] is elementary abelian of order q. Suppose H
admits a Kantor family of type (q2, q), and suppose χ defines a BAN-form
over Fq. Then H ∼= H2(q), and the corresponding generalized quadrangle S
of order (q2, q) is a flock quadrangle.

The generalization of the theorem of Havas et al. [19, 20] was already treated
in the introduction of this section.

6.5. Elation quadrangles of order (s, p), p a prime

In the aforementioned paper [2], the following theorem, which complements
the result of Bloemen et al. [4] classifying EGQs of order (p, t), p a prime,
was obtained.

Theorem 6.8 (Bamberg et al. [2]). An EGQ (S x,H) of order (s, p) with p a
prime, is either isomorphic to W(p), or to a flock quadrangle, in which case
s = p2.

In [42], the main result is applied to obtain an alternative and very short proof
of Theorem 6.8. It also corrects a mistake which is contained in a lemma of
[2] (cf. [42] for details).

7. Local and global

In this final section, we want to consider a specific situation in which a local
group action on some GQ Γ, yields a global group action on another GQ
which is “derived” from Γ. By slight abuse of language it is very much alike
the situation in which the local group action of the translation group of a
translation plane induces a transitive action on the points of the correspond-
ing affine translation plane. Strangely enough, the obtained global action on
the derived quadrangle is by no means classical anymore (in the sense that
the derived quadrangle itself is not classical).
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7.1. Payne derived GQs

We recall Payne’s construction of GQs from [27]. Let Q be a finite GQ of
order s with a regular point x. Define the point-line incidence geometry P =
P(Q, x) as follows.

• The points of P are the points of Q not collinear with x.
• The lines of P are the lines of Q not through x together with all sets

of the form {x, r}⊥⊥ \ {x}, where x 6∼ r.
• Incidence is the natural one.

We have the following theorem.

Theorem 7.1 (S. E. Payne [27]). The point-line geometry P is a GQ of order
(s− 1, s + 1).

The GQ P is the so-called Payne-derived GQ or Payne derivative of Q (with
respect to x). In the case where Q ∼= W(q), every point of Q is regular [32,
Chapter 3], and all Payne derivatives are isomorphic, independent of the
regular point chosen. We will denote the Payne-derivative of W(q) therefore
simply by P(q).
For a point-line geometry M = (P,B, I), we call a Singer group (with
respect to points) a subgroup of Aut(M ) which acts sharply transitively on
P. The set of all Singer groups of M is denoted S(M ).
In [12] the known GQs admitting a Singer group were classified in a combina-
torial fashion. Through a different approach, using the recent classification of
regular subgroups of almost simple primitive groups [26], Bamberg and Giu-
dici [1] also obtained the classification of classical GQs admitting a Singer
group (having pointed out a small error in [12] which led to one extra exam-
ple being overlooked in [12]). By using [26] they independently obtained the
possible Singer groups that can act on a classical GQ. In their paper they also
provide some new examples of groups that act as a Singer group on P(q).
In this final section, we mention very recent work of De Winter and the author
[10], in which the authors obtain a classification of Singer groups of P(q),
starting from a handy criterion, and showing that contrary to earlier beliefs,
there are many such groups.

7.2. Criterion

Consider the following general situation. Suppose S is a thick finite GQ of
order s, and let x be a regular point of S . Suppose G is a Singer group of
P(S , x) with the following properties:

• it is induced by some automorphism group of S , that is, by some sub-
group G of Aut(S )x;

• G contains a group S of order s consisting of symmetries with center x.
Construct the standard affine plane Π(x) of order s from the regular point x
[32, 1.3.1]:

• its points are the sets {y, z}⊥⊥ with z 6∼ y, z, y ∈ x⊥,
• its lines are the elements of x⊥ \ {x}.
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Note that elements of Aut(S )x induce elements of Aut(Π(x)) via the follow-
ing map:

ξ : Aut(S )x 7→ Aut(Π(x)) : g 7→ gS. (7.1)
Note also that Aut(S )x faithfully induces a subgroup of Aut(P(S , x)).

Theorem 7.2 (S. De Winter and K. Thas [10]). We have that G/S is an
automorphism group of Π(x) which acts sharply transitively on its points.
Vice versa, let K be a subgroup of Aut(Π(x)) which acts sharply transitively
on its points, and suppose it is induced by some automorphism group K#

of S (which then has to fix x). Then K = 〈S,K#〉, the group obtained by
adjoining S to K#, induces a Singer group of P(S , x).

In particular, if K is a translation group of Π(x), then K is a (complete) ela-
tion group for S x. (Vice versa, an elation group of S x containing S induces
a translation group of Π(x).) If K is as such, s is of course a prime power.
In general, automorphisms of Payne-derived GQs are not induced by auto-
morphisms of the ambient GQ — cf. the discussion in [8]. For the classical
case, we have the following satisfying situation.

Theorem 7.3 (T. Grundhöfer, M. Joswig and M. Stroppel [17]). If q ≥ 5, any
automorphism of P(q) is induced by an automorphism of W(q) fixing x.

All known (counter) examples of automorphisms not coming from the ambi-
ent GQ exist in even characteristic (besides some small sporadic examples in
odd characteristic), see [8]. The most general result available is the following:

Theorem 7.4 (S. De Winter and K. Thas [8]). Let P(S , x) be Payne derived
from the thick finite GQ S of order s, with s odd and s ≥ 5. If x is a center
of symmetry, then any automorphism of P(S , x) is induced by an element
of Aut(S )x.

Let S be a GQ satisfying the conditions of the previous theorem, and suppose
K is a Singer group of P(S , x). Then by Theorem 7.4, and the criterion of
the previous paragraph, K is induced by an automorphism group K of S of
order s3 which induces a point-regular automorphism group of Π(x).

7.3. Classical case

Let K be a Singer group of P(q) inducing a sharply transitively group on
the points of Π(x), that is, let K ∈ SS(P(q)) (in the notation of [10]). In [10]
the authors classified those K (or K) for which the quotient K/S is abelian.
We provide some more details for the general case. First consider K; since it
is a p-group, it fixes some line LIx, whence K/S = T fixes a flag at infinity
of Π(x), say (`, [∞]), where [∞] is the line at infinity. We want to consider
those T which are contained in the group H(`) ∼= H1(q) which is generated
by the translation group A “of” [∞] and the translation group B “of” `. (If
T is abelian, this is always the case.) We will see in the next paragraph that
this assumption is natural, and that in many cases it is not even an extra
assumption.
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Theorem 7.5 (S. De Winter and K. Thas [10]). There is a natural injection
η from the set B(`) of subgroups of H(`)/Z(H(`)) of order q which intersect
trivially with B/Z(H(`)) to SS(P(q)).

Note that when q is odd, precisely q elements of B(`) give rise to elements of
SS(P(q)) with abelian quotients in S(Π(x)) (one of these elements yielding
the translation group of Π(x) and so the elation group of W(q)x); when q is
even, precisely one element does.

Corollary 7.6 (S. De Winter and K. Thas [10]). We have that

|B(`)| =
ph2 ∏2h−1

i=h+1(p
i − 1)

p− 1
≤ |S(P(q))|. (7.2)

The number of Singer groups with nonabelian quotients of P(q) coming from
η(B(`)) is

ph2 ∏2h−1
i=h+1(p

i − 1)
p− 1

− qp mod 2. (7.3)

Here
ph2 Q2h−1

i=h+1(p
i−1)

p−1 evaluated at h = 1 is set to be p.
Letting ` vary on [∞], and noting that |B(`) ∩B(`′)| = 1 for ` 6= `′, we have
that the total number of Singer groups with nonabelian quotients of P(q)
coming from η(

⋃
` B(`)) is

1 + (q + 1)(
ph2 ∏2h−1

i=h+1(p
i − 1)

p− 1
− 1)− ((q + 1)q)p mod 2

. (7.4)

7.4. Linear Singer groups, and the case (p, h) = 1

Suppose that q ≥ 5; then each Singer group of P(q) is induced by a subgroup
of Aut(W(q))x. Let K be a linear Singer group of P(q) (that is, induced
by some subgroup of PGSp4(q)x). Then one observes that K/(K ∩ S) is a
subgroup of H(`) for some `I[∞], and

(K/(K ∩ S)) ∩B ≤ Z(H(`)). (7.5)

So S ≤ K, and whence the map η defines a bijection from ∪`B(`) to the linear
Singer groups of P(q). Corollary 7.6 gives the precise numerical information.
If (p, h) = 1, any Singer group of P(q) is linear, so that we have a complete
classification.

Theorem 7.7 (S. De Winter and K. Thas [10]). When q ≥ 5, all linear Singer
groups are essentially known; in particular, if (p, h) = 1, we have a complete
classification of Singer groups of P(ph).
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