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1
Introduction

This chapter presents my motivations for working on numerical methods involving
model uncertainty in financial markets. These motivations are accompanied with a brief
introduction on the state-of-the-art theory of financial risk management and derivative
pricing under model uncertainty. A thorough literature review will be given at the
beginning of each chapter. The topics of the thesis are introduced at the end of this
chapter.

1.1 State of the art and motivations

Probabilistic models for financial markets play a crucial role in financial economics.
These models can take the form of probability distributions or stochastic processes.
The first continuous-time model for a stock price process can be traced back to the
Brownian motion model proposed by Louis Bachelier in his PhD thesis in 1900. Arguing
that prices should remain positive, Samuelson [150] proposed to model a stock price
process with a geometric Brownian motion in 1965. Working with this model, Black
and Scholes [24] and Merton [132] opened the door for derivative pricing with the no-
arbitrage approach in 1973. Thereafter, the last more than four decades has witnessed
tremendous advance in financial modelling, which both shaped and were shaped by
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the revolutionary changes in the structure of world financial markets and institutions.
Nowadays, there are various kinds of probabilistic models for risky asset prices, such
as jump-diffusion models (see e.g. [133]), stochastic volatility models (see e.g. [103])
and so on. A natural question is how to select a probabilistic model to quantitatively
predict the future states of financial markets or an asset price process. The philosophical
story behind this natural question is whether we can base a financial decision on the
quantitative analysis with a single probabilistic model.

Due to the immutability of nature’s laws, pure mathematical logic can often yield
useful insights about physical phenomena, and mathematical models can often precisely
predict the evolvement of a physical system. On the contrary, mutable financial markets
are mixed up with heterogeneous believes of investors and their decisions. Investors
make financial markets so complex that any single probabilistic model can hardly be
capable of quantitatively characterizing the whole picture of financial markets in the
future. Otherwise, the single model characterizing the whole picture of financial markets
allows the investor to fully control her risk position, and financial markets would have
become much less complex than what they are. A prudential and experienced risk
manager can easily acknowledge this limitation of using any single probabilistic model.
Because of the conflict between the limited capability of any single model and the
complexity of financial markets, model ambiguity comes on stage. Philosophically
speaking, model ambiguity is ubiquitous whenever a probabilistic model is used in
financial economics.

Except for the philosophical arguments for model ambiguity in financial markets,
both the empirical facts and the simulation issues in applications of stochastic models
do highlight model ambiguity in financial economics. For a given kind of stochastic
model, its parameters can be calibrated by getting the model to match the market prices
of liquidly traded derivatives (also called benchmark derivatives). This procedure is
usually referred to as model calibration (see the Appendix of Chapter 6). There are two
issues with model calibration: first, different kinds of models can be perfectly calibrated
to the same market data [151]; second, different calibration methods may yield different
estimations for each parameter of a specific model [91]. These empirical facts, together
with a limited knowledge of the market dynamics, confront an agent with ambiguity
about which model is the best one to value a target derivative, especially when the
well-calibrated models may lead to quite different values for the target derivative. In
addition, in the simulation of semimartingale models, different approaches can be used
to approximate the stochastic systems driven by jumps with infinite mass in the tail [115].
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In this setting, it is necessary to investigate whether the hedging strategies are robust with
respect to the selection of approximation approaches.

Although philosophical arguments, empirical facts and simulation issues show
that model ambiguity is ubiquitous in financial economics, it is not the impasse of
probabilistic models for risk management and derivative pricing. One of the key ideas
to select a probabilistic model is, not to expect a precise prediction, but to capture more
uncertainties of interest, because any candidate model typically exhibits multiple levels
of uncertainty. The premise of successfully implementing any model is to recognize
its key characteristics and the boundaries of its validity. From this point of view, a
set of plausible models, rather than a single model, can be simultaneously employed
to make a robust investment decision. As for model ambiguity characterized by a
set of plausible models, Knight [117] further categorized model ambiguity into two
groups: model risk and model uncertainty. Model risk is associated with the setting
in which the probabilities of the candidate models to be true are known, while model
uncertainty arises from a lack of knowledge of the probabilistic information on these
models. Parameter risk and parameter uncertainty can be defined in the similar way. In
this thesis, we focus on model (parameter) uncertainty in the sense of Knight [117].

In academia, model uncertainty has been pioneered by several intellectual giants.
Lars Peter Hansen, a Nobel laureate in 2013, and his coauthors proposed to use entropy
to select a set of probabilities to capture the uncertainty of returns when investigating
macroeconomics (see, e.g. [96–98]). Lyons [126], Avellaneda, Levy and Parás [11]
proposed the famous volatility uncertainty model in the context of financial derivative
design. The nonlinear expectation theory (g-expectation and G-expectation [143])
proposed by Shige Peng is a general framework to investigate volatility uncertainty as
well as drift uncertainty. Especially, the G-Brownian motion defined on a sublinear
expectation space can be used to characterize volatility uncertainty, including the
volatility uncertainty model in [11, 126] as special cases. Denis and Martini [60]
proposed the capacity-based framework for volatility uncertainty. We refer to [58] for
the strong link between the capacity-based framework and the G-expectation framework.
These frameworks all involve the functional Ẽ defined on some special space L of
random variables,

Ẽ[X] := sup
Q∈Q

EQ[X] , X ∈ L,

where EQ is the classical mathematical expectation under the probability measure Q.
The set Q of probability measures represent different models for the risk factor X .
Compared with employing one model Q for the risk factor X , selecting a set Q of
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plausible models forX captures its model uncertainty. Different approaches can be used
to select the set of models to account for model uncertainty. Hansen and Sargent [97]
employed relative entropy to selectQ, the elements of which are not far from a reference
model P. The probability measures in Q are absolutely continuous with respect to P
in this setting, which is similar as the framework of g-expectation accounting for drift
uncertainty of a risk factor [41]. However, in the framework of G-expectation, there is
no reference probability measure P that dominates all probability measures in Q. The
elements in Q are singular with each other [72]. Due to the limited information about
risk factors, volatility uncertainty is a realistic situation in financial economics [72,173].
The singularity among probability measures in the setting of volatility uncertainty makes
the related stochastic analysis more difficult than that in the setting of drift uncertainty.
The theory of stochastic analysis in a nonlinear expectation space is attracting more and
more attention in academia. In a more abstract setting than the G-expectation framework,
module-based approach may provide another approach for stochastic analysis under
model uncertainty (see e.g. [79, 93]).

Quantifying model uncertainty is not only an interesting topic in academia, but also is
of great importance in financial industry. The financial crisis of 2007–2009 has aroused
the financial industry and regulation sectors to take model uncertainty into account, see
e.g. the regulations set by the Federal Reserve Board [78] and the Basel II market risk
framework [23]. The interplay between theory and practice stimulates a fast growing
literature on risk management and derivative design under model uncertainty (see e.g.
[17,18,22,31,42,48,54,59,71–73,98,100,101,114,121,138,139,173]). In this literature,
a financial analysis is usually carried out with relatively simple models accounting for
model uncertainty, in which setting the corresponding financial problems admit analytic
solutions. However, in some sophisticated models with parameter uncertainty (see e.g.
[91, 151]), the financial problems may no longer admit analytical solutions. One issue
is how to quantify model uncertainty in more realistic and practical models, in which it
may be difficult to derive some analytical results.

Except for directly selecting a set of plausible models for the risk factors with the
aforementioned entropy method [97], drift and volatility method [143] and calibration-
based method [91, 151], distorted expectation provides an indirect way to account for
model uncertainty. Distorted expectation is defined by

EΨ[X] :=

∫ +∞

−∞
xdΨ(FX(x)) = inf

Q∈QΨ

EQ[X],

where QΨ is a set of probability measures associated with a concave distortion function
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Ψ. Note that −EΨ[−X] = sup
Q∈QΨ

EQ[X]. Hence, an agent can work with −EΨ[−X], if

she has to use the supreme of the expectation of X over a set of probability measures.
QΨ accounts for model uncertainty. In this setting, calculating distorted expectations
is the key point to quantify model uncertainty. However, there is no analytical formula
for the distorted expectation because the distorted probability density function does not
admit an analytical formula in the general case. Hence, we have to rely on numerical
methods to calculate distorted expectations. An efficient numerical method for distorted
expectations can find extensive applications, because the distorted expectation is not
only associated with model uncertainty but also risk measures [80], conic finance [68,
69, 127–131]), behavioural finance [99] and so on.

Up to now, we have introduced the background on model uncertainty in financial
markets, and the key issues to quantify model uncertainty. Note that we presumed
that the agent had a reference probabilistic model for the asset price process in
the aforementioned settings. From the contrary point of view, if no parametric
model is used, we will not come across model uncertainty at all. A few literature
investigates the model-free pricing and hedging method for financial derivatives (see,
e.g. [39, 40, 52, 84, 105–107]). These approaches assume that an agent has enough data
of the market prices of derivatives written on the same or correlated underlying asset as
the derivative of interest. The hedging strategies usually correspond to the solution of
an optimization problem, which also provides value bounds for the target derivative. If
the spread between the upper and lower value bounds is small enough, it is reasonable to
use these value bounds to approximate the target derivative value. Otherwise, these value
bounds have some limitation in applications. Hence, an interesting question is what we
can get from the comparison between the model-based quantities and their model-free
counterparts.

Motivated by the aforementioned computational issues related to model uncertainty
in financial markets, we will focus on numerical methods to quantify uncertainty in
financial markets. This theme relates the thesis to the following literature [5, 13, 49, 89,
94], as well as the related literature on the theories involving model uncertainty.
Arai and Suzuki [5] derived an integral representation, without implementable numerical
method, of the local risk-minimizing (LRM) strategy for vanilla options, Asian options
in a class of semimartingale models. In Chapter 3, under similar models, we formulate
the LRM strategies with backward stochastic differential equations and propose an
implementable numerical method to simulate these LRM strategies. In addition, we
will investigate the robustness of the LRM strategies with respect to model uncertainty.
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Cont [49] proposed a coherent uncertainty measure on model uncertainty embedded in
a derivative price in terms of its value bounds. We are interested in how to calculate
these values bounds in general cases. Chapter 4 presents an efficient method which
can be used to calculate not only the value bounds of a derivative in general cases, but
also the entropy of the derivative value. In [13, 94], the authors proposed the so-called
robust calibration methods based on pricing error and Bayesian approach, respectively.
These two calibration methods generate a large ensemble of model parameters, and the
derivative price should be calculated with each realisation of model parameters. This
procedure is usually time-consuming. However, it can be accelerated by our method
proposed in Chapter 4.
Glasserman and Xu [89] proposed a Monte Carlo method to calculate risk measures
under the worst-case probability measure within a constrained set of probability
measures. In Chapter 5 we propose an analytical approximation method for distortion
risk measures as long as the density function of the risk factor can be calculated under
the probability measure of interest, such as the worst-case probability measure. We
show that our method is more efficient than the Monte Carlo method when calculating
distortion expectations.

More precisely, this thesis covers the following topics on numerical methods for
quantifying model uncertainty, reducing model uncertainty and detecting model mis-
specifications:

1. Quantifying model uncertainty when a parametric stochastic model is used.

- Discretising locally risk-minimising (LRM) strategies for some derivatives
in a class of semimartingale models, and investigating the robustness of the
LRM strategies with respect to model uncertainty.

- Quantifying model uncertainty embedded in financial derivatives in the
general setting.

- Calculating distorted expectations in an efficient way.

2. Reducing the impact of model uncertainty on the derivative value when the Monte
Carlo method has to be used in derivative pricing.

3. Detecting model mis-specification by comparing model-free quantities and the
model-based quantities of Asian options.
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1.2 Outline of the thesis

The previous section presents the motivations for selecting model uncertainty as the
theme of my thesis. A thorough literature review and motivations concerning the studied
topics can be found at the beginning of each chapter. The topics of the following chapters
can be summarized as follows.

Chapter 2 introduces some preliminaries on stochastic calculus, Malliavin calculus
and derivative pricing.

Chapter 3 formulates, using backward stochastic differential equations, local risk-
minimizing (LRM) strategies for Asian options, spread options and basket options in
a class of semimartingale models. We propose a discretising method for the LRM
strategies and investigate its convergence. We also investigate the robustness of the
LRM strategies with respect to model uncertainty.

Chapter 4 proposes an efficient numerical method to quantify uncertainty embedded
in financial derivatives. We focus on parameter uncertainty, which is characterized by
intervals for the model parameters. Each parameter can take any value in its interval.
Based on the Monte Carlo method and the Smolyak algorithm, the proposed method
can be used to efficiently calculate an ensemble of the derivative prices associated with
a given ensemble of the model parameters. The ensemble of the derivative prices can
be used to calculate a coherent uncertainty measure [49] and the entropy measure. The
entropy measure works as an auxiliary measure of uncertainty in this context.

Chapter 5 proposes an efficient analytical approximation method for distorted
expectations, the so-called T-COS method. It is about 2500 times more efficient than the
standard Monte Carlo method. Since distorted expectations are crucial tools in model
uncertainty, risk management, insurance, behavioural finance and so on, the proposed
T-COS method could find extensive applications in these areas.

Chapter 6 empirically investigates whether the weighted Monte Carlo method can
reduce the impact of model uncertainty. Given different calibrated Heston models, we
compare the weighted Monte Carlo method with the standard Monte Carlo method in
terms of the implied volatilities of vanilla options and the prices of exotic options. The
results confirm that the weighted Monte Carlo method can effectively reduce the impact
of model uncertainty on the derivative prices.

Chapter 7 proposes an efficient numerical method to accelerate the calculation of
the comonotonocity upper bounds for discrete arithmetic Asian options. Then, we
empirically investigate how to detect model mis-specification by comparing the model-
based (optimal) value bounds with their model-free counterparts of a discrete arithmetic
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Asian option. We address some practical issues, such as the non-uniqueness of the
marginal distribution for the underlying asset in the model-free setting.

Chapter 8 concludes the main contents of this thesis and looks into the future of some
promising topics on uncertainty in financial markets.

Summaries in English and Dutch are presented at the end of this thesis.



2
Preliminaries

This chapter presents some preliminaries on stochastic calculus, Malliavin calculus and
derivative pricing. The readers familiar with these theories may skip this chapter. We
refer to [64,110,159] for the details of these theories. Most of the notations and theorems
in this chapter are based on these three books, unless it is stated otherwise.

2.1 Stochastic calculus

We assume as given a complete probability space (Ω,F ,P) equipped with a filtration
F := (Ft)0≤t≤T≤+∞, which consists of a family of σ-algebras satisfying Fs ⊂ Ft if
s ≤ t.

Definition 2.1. A filtered complete probability space (Ω,F ,F,P) is said to satisfy the
usual hypotheses if

(i) F0 contains all the P-null sets of F;

(ii) Ft =
⋂
s>t Fs, all t, 0 ≤ t <∞; that is, the filtration F is right continuous.

We always assume that the usual hypotheses hold in this thesis.
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A stochastic process X on (Ω,F ,P) is a family (Xt)0≤t≤∞ of R-valued or Rd-
valued random variables. The process is said to be adapted if Xt is Ft-measurable for
each t. One property of the processX is said to hold almost surely, abbreviated as a.s. if
it holds with probability one. A stochastic process X is said to be càdlàg if all its paths
are right-continuous ( lim

s→t,s>t
Xs = Xt) and have left limits, a.s. ( lim

s→t,s<t
Xs = Xt−).

For a càdlàg process X , we define the jump at time t as ∆Xt := Xt −Xt−.
On the set Ω × [0, T ], we define two σ-fields O and P generated by the adapted

and càdlàg processes and the adapted and continuous process, respectively. On the set
Ω̃ := Ω× [0, T ]×Rd, we consider the σ-field Õ = O⊗B(Rd) (resp. P̃ = P ⊗B(Rd)),
where B(Rd) is the Borel σ-field on Rd.

Definition 2.2. A process or a random set is called an optional (resp. predictable)
process (resp. random set) if the process (resp. random set) is O (resp. P)-measurable.

Definition 2.3. A function W on Ω̃ that is Õ (resp. P̃)-measurable is called an optional
(resp. predictable) function.

Definition 2.4. A random variable τ : Ω→ [0,∞] of the filtration F is a stopping time
if the event {τ ≤ t} ∈ Ft for t ∈ [0,∞] .

2.1.1 (Semi)martingales

Denote by Lp(Ω,F ,P) the set of real-valued random variables X satisfying E[|X|p] <
∞, for p ∈ [1,∞).

Definition 2.5. A real-valued, adapted process X = (Xt)0≤t<∞ is called a martingale
(resp. supermartingale, submartingale) with respect to the filtration F if

(i) Xt ∈ L1(Ω,F ,P);

(ii) if s ≤ t, then E[Xt|Fs] = Xs, a.s. (E[Xt|Fs] ≤ Xs, E[Xt|Fs] ≥ Xs).

Definition 2.6. A processM is a local martingale if there exists an increasing sequence
(τn) of stopping times such that limn τn = ∞ a.s. and such that each stopped process
Mτn := Mt∧τn is a martingale.

We denote by L all local martingales and by V the set of all real-valued processes A
with A0 = 0 that are càdlàg, adapted and for which each path t → At(ω) has a finite
variation over each finite interval [0, t]. The variation of A is given by

∫
|dAs|.



CHAPTER 2 11

Definition 2.7. A process X is called to be a semimartingale if it has the following
decomposition

X = X0 +M +A,

where X0 is finite-valued and F0-measurable, M ∈ L and A ∈ V . The decomposition
is called the canonical decomposition.

Definition 2.8. A special semimartingale X is a semimartingale which admits the
unique decompositionX = X0+M+A such thatM ∈ L and thatA ∈ V is predictable.

Due to Theorem I 4.18 in [110] on the decomposition of local martingales,
a semimartingale X with decomposition X = X0 + M + A admits an unique
decomposition of the following form

X = X0 +M c +Md +A,

whereM c andMd are the continuous part and pure jump part of the local martingaleM ,
respectatively. In this setting, we denote by Xc := M c and Xd := Md the continuous
local martingale part and the discontinuous local martingale part of a semimartingaleX .

We introduce the following sets to be used in the following sections:

• H2: all square-integrable martingales M such that sup
t∈R+

E[M2
t ] <∞.

• H2
loc: all locally square-integrable martingales.

• S: the set of all semimartingales.

• S2: the set of all square-integrable semimartingales.

• V+: the set of all real-valued adapted and increasing processes A with A0 = 0.

• A+: the subset of all A ∈ V+ that are integrable: E[A∞] <∞.

• A: the subset of all A ∈ V that have integrable variation: E[V ar(A)∞] <∞.

• Aloc (resp. A+
loc): the localized class constructed from A (resp. A+).

Definition 2.9. Let A ∈ Aloc. The compensator of A under a probability measure
P, denoted by Ap, is the unique predictable process such that A − Ap is a P-local
martingale.
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Definition 2.10. A random measure on R+×Rd is a family µ = (µ(ω; dt, dx : ω ∈ Ω))

of non-negative measures on the Blackwell space (R+ × Rd,R+ ⊗ E) satisfying
µ(ω; {0} × Rd) = 0.

The integral W ∗ µ(ω) of an optional function W with respect to a random measure
µ can be defined as follows

W ∗ µ(ω) =

t∫
0

∫
Rd

W (ω, s, x)µ(ω; ds,dx),

if the right hand is finite; otherwise W ∗ µ(ω) = +∞.

Theorem 2.11 ( [110]). Let µ be an optional P̃-σ-finite random measure. There exists
a random measure, called the compensator of µ and denoted by µp, which is unique
up to a P-null set, and which is characterized as being a predictable random measure
satisfying either one of the two following equivalent properties:

(i) E[W ∗µp∞] = E[W ∗µ∞] for every nonnegative P̃-measurable function W on Ω̃.

(ii) For every P-measurable functionW on Ω̃ such that |W |∗µ ∈ A+
loc, then |W |∗µp

belongs to A+
loc, and W ∗ µp is the compensator of the process W ∗ µ.

Moreover, there exists a predictableA ∈ A+ and a kernelK(ω, t; dx) from (Ω×R+,P)

into (Rd,B(Rd)) such that

µp(ω; dt, dx) = dAt(ω)K(ω, t; dx).

Now we are ready to define an integer-valued random measure µ associated with the
jumps of X

µ(dt,dx) =
∑
s

1{∆Xs 6=0}δ(s,∆Xs)(dt, dx), (2.1)

where 1 is the indicator function and δa denotes the Dirac measure at point a.
An important random measure is the Poisson measure, which is used to count the

jumps of specified size associated with a stochastic process.

Definition 2.12. A Poisson measure on R+ × B(Rd0) (Rd0 := Rd − {0}) , relative to a
filtration F, is an integer-valued random measure N such that

(i) the positive measure m on R+ × B(Rd0) defined by m(A) = E[µ(A)] is σ-finite;
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(ii) for every s ∈ R+ and every A ∈ B(R+)⊗B(Rd0) such that A ⊂ (s,∞)×Rd0 and
m(A) <∞, the variable µ(·, A) is independent of the σ-field Fs.

(iii) m({t} × Rd0) = 0 for each t ∈ R+.

The measure m is called the intensity measure of N . If m(dt, dx) = `(dx)dt, where `
is a positive σ-finite measure on (Rd,B(Rd0)), then N is called a homogeneous Poisson
measure.

Proposition 2.13 ( [110]). Let N be a Poisson measure on R+ × Rd0, relative to the
filtration F, with intensity measure m. Then its compensator Np(ω, ·) = m(·).

2.1.2 Stochastic integral

We denote by S the set of all processes of the form:{
either H =Y 1[[0]], Y is bounded F0-measurable,

or H =Y 1]]r,s]], r < s, Y is bounded Fr-measurable,

where ]]r, s]] := {t ∈ R+ : r < t ≤ s}, [[0]] = {0} and 1B is an indicator function on a
set B.

Given a process H ∈ S and a semimartingale X , we can define the integral process
H ·X as

(H ·X)t ,

t∫
0

Hs dXs :=

{
0 if H = Y 1[[0]],

Y (Xs∧t −Xr∧t) if H = Y 1]]r,s]].
(2.2)

Theorem 2.14 ( [110]). Let X be a semimartingale. The map H  H ·X defined on
S as (2.2) has an extension, still denoted by H  H · X , to the space of all locally
bounded predictable processes H . H · X is called the stochastic integral of H with
respect to X .

Definition 2.15. Let X,Y be semimartingales. The quadratic variation process of X ,
denoted be [X,X] = ([X,X]t)t≥0, is defined by

[X,X] = X2 − 2

∫
X− dX = X2 − 2X− ·X,

(recall that X0− = 0). The quadratic covariation of X,Y , also called the bracket
process of X,Y , is defined by

[X,Y ] = XY −
∫
X− dY −

∫
Y− dX = XY −X− · Y − Y− ·X.
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Definition 2.16. The predictable quadratic covariation of two semimartingales X,Y
is the compensator of the quadratic covariation [X,Y ]. It is denoted by 〈X,Y 〉 and
therefore also called the angle brackets of X and Y . The short hand notation 〈X〉 will
be used for the angle bracket 〈X,X〉.

For a given local P-martingale X , we denote by L2(X) the space of all Rd-valued
predictable processes S such that

||S||L2(X) :=

E
 T∫

0

S?t d[X]tSt

1/2

<∞,

where (·)? is the transpose of a matrix.

Proposition 2.17 ( [156]). Let X is a local P-martingale. For any S ∈ L2(X),
the process

∫
S dX is well-defined and in the space M2

0(P) of square-integrable P-
martingales null at 0.

Definition 2.18. Two P-semimartingales X and Y are called orthogonal under a
measure P if [X,Y ] is a local martingale under P. Hence the angle bracket 〈X,Y 〉 = 0.

Denote by Hdt the class of all functions h : Rd → Rd which are bounded and satisfy
h(x) = x in a neighbourhood of 0. For a given semimartingale X and h ∈ Hdt , we can
define a special semimartingale

X̃(h)t =
∑
s≤t

[∆Xs − h(∆Xs)]

X(h) = X − X̃(h).

The canonical decomposition of X(h) is

X(h) = X0 +M(h) +B(h), where M(h) ∈ Ld, B(h) ∈ Vd. (2.3)

Definition 2.19. Let h ∈ Ld be fixed. the characteristicsof a semimartingale X is the
triplet (B,C, ν) which are defined as follows:

(i) B = (Bi)i≤d is a predictable process defined in (2.3).

(ii) C = (Cij)i,j≤d is a continuous process in Vd×d, namely,

Cij = 〈Xi,c, Xj,c〉,

where Xc is the continuous martingale part of X .
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(iii) ν is the compensator of the random measure µ (2.1) associated with the jump of a
semimartingale X .

Theorem 2.20 (Itô’s formula [110]). Let X be a d-dimensional semimartingale, and f
is a function of class C2 on Rd. Then f(X) is a semimartingale and

f(Xt) =f(X0) +
∑
i≤d

f
′

i (X−) ·Xi +
1

2

∑
i,j≤d

f
′′

ij(X−) · 〈Xi,c, Xj,c〉

+
∑
s≤t

f(Xs)− f(Xs−)−
∑
i≤d

f
′

i (Xs−)∆Xi
s

.
In terms of the characteristic triplet (B,C, ν) of a semimartingaleX , Itô’s formula takes
the following form

f(Xt) =f(X0) +
∑
i≤d

f
′

i (X−) ·Xi +
1

2

∑
i,j≤d

f
′′

ij(X−) · C

+

t∫
0

f(Xs− + x)− f(Xs−)−
∑
i≤d

f
′

i (Xs−)x

µs(dx).

2.2 Malliavin calculus

The Malliavin derivative of a random variable F = F (ω), ω ∈ Ω, on a completed
probability space (Ω,F ,P) can be regarded as the derivative with respect to ω. It
plays a critical role in investigating the regularity of solutions of stochastic differential
equations. We introduce the preliminaries of Malliavin calculus in the Brownian motion
case. In this case, there are several ways to define the Malliavin derivative. Here we
follow the approach based on the chaos expansion. One may refer to [64, 137, 144] for
more details.

2.2.1 The Wiener–Itô chaos expansion

Fix T > 0. Let W (t) = W (t, ω), t ∈ [0, T ], ω ∈ Ω be an one-dimensional
Wiener process (Brownian motion) on the complete probability space (Ω,F ,P) such
that W (0, ω) = 0, P-a.s. .

For any t ∈ [0, T ], Let Ft be the σ-algebra generated by W (s), 0 ≤ s ≤ t,
augmented by all the P-zero measure events. The corresponding filtration is denoted
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by F,
F = {Ft, t ∈ [0, T ]},

which satisfies the usual conditions.

Definition 2.21. A real function f : [0, T ]n → R is called symmetric if

f(tσ1
, tσ2

, . . . , tσn) = f(t1, t2, . . . , tn)

for all permutations σ = (σ1, σ2, . . . , σn) of (1,2,. . . ,n).

Denote by L2([0, T ]n) the standard space of square integrable Borel real functions
on [0, T ]n such that

||g||2L2([0,T ]n) :=

∫
[0,T ]n

g2(t1, t2, . . . , tn) dt1dt2 · · · dtn <∞.

Let L̃2 ([0, T ]n) ⊂ L2 ([0, T ]n) be the space of symmetric square integrable Borel real
functions on [0, T ]n.

Let

Sn = {(t1, t2, . . . , tn) ∈ [0, T ]n : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T}.

Note that the set Sn occupies the friction 1
n! of the whole n-dimensional box [0, T ]n.

Therefore, if g ∈ L̃2 ([0, T ]n), we have g|Sn ∈ L2(Sn) and

||g||2L2([0,T ]n) = n!

∫
Sn

g2(t1, t2, . . . , tn) dt1dt2 · · · dtn = n!||g||2Sn ,

where ||·||L2(Sn) is the norm induced by L2 ([0, T ]
n
) on L2 (Sn), the space of the square

integrable functions on Sn.

Definition 2.22. Let f be a deterministic function defined on Sn (n ≥ 1), such that

||g||2Sn :=

∫
Sn

g2(t1, t2, . . . , tn) dt1dt2 · · · dtn <∞.

Then we can define the n-folder iterated Itô integral as as

Jn(f) :=

T∫
0

tn∫
0

· · ·
t3∫

0

t2∫
0

f(t1, . . . , tn) dW (t1)dW (t2) · · · dW (tn−1)dW (tn).



CHAPTER 2 17

The n-folder iterated Itô integral is well-defined because at each Itô integration with
respect to dW (ti) the integrand is Ft-adapted and square integrable with respect to
dP× dti, 1 ≤ i ≤ n.

If g ∈ L̃2([0, T ]n), we can define

In(g) :=

∫
[0,T ]n

g(t1, . . . , tn) dW (t1)dW (t2) · · · dW (tn) = n!Jn(g).

Theorem 2.23 (The Wiener–Itô Chaos Expansion [64]). Let ξ be an FT measurable
random variable in L2(P). Then, there exists an unique sequence {fn}∞n=0 of functions
fn ∈ L̃2 ([0, T ]n) such that

ξ =

∞∑
n=0

In(fn),

where the convergence is in L2(P). Moreover, we have the isometry

||ξ||2L2(P) =

∞∑
n=0

n!||fn||2L2([0,T ]n).

2.2.2 The Malliavin derivative

Although several ways can be used to define the Malliavin derivative (see e.g. [64]), we
introduce the Malliavin derivative with the chaos expansion, because this approach can
also be used to define the Malliavin derivative in the Lévy spaces [144].

Definition 2.24. Let F ∈ L2(P) be FT -measurable with the chaos expansion

F =

∞∑
n=0

In(fn),

where fn ∈ L̃2 ([0, T ]n), n = 1, 2, . . ..

1. We say that F ∈ D1,2 if

||F ||2D1,2
=

∞∑
n=0

nn!||fn||2L2([0,T ]n) <∞.

2. If F ∈ D1,2, we define the Malliavin derivative DtF of F at time t as the
expansion

DtF =

∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ],
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where In−1(fn(·, t)) is the (n − 1)-fold iterated integral of fn(t1, . . . , tn−1, t)

with respect to the first n− 1 variables t1, . . . , tn−1 and tn = t left as parameter.

Example 2.25 ( [64] ).

Dt

T∫
0

f(s) dW (s) = f(t), f ∈ L2 ([0, T ]) . (2.4)

Theorem 2.26 (Chain rule [64]). Let F1, . . . , Fm ∈ D1,2. Suppose that φ ∈ C1(Rm),
DtFi ∈ L2(P), for all t ∈ R, and ∂φ

∂xi
(F )DtFi ∈ L2(P × λ) for i = 1, . . . ,m, where

F = (F1, . . . , Fm) and λ is the Lebesgue measure on [0, T ]. Then, φ(F ) ∈ D1,2 and

Dtφ(F ) =

m∑
i=1

∂φ

∂xi
(F )DtFi.

Let 0 = t1 ≤ t2 ≤ · · · ≤ tm+1 = T and

Fi =

T∫
0

fi(t) dW (t), i = 1, . . . ,m,

where

fi(t) =

{
1 t ∈ [ti, ti+1),

0 others.

That is,
Fi = W (ti+1)−W (ti) := ∆Wi, i = 1, . . . ,m.

Suppose that φ(F ) ∈ D1,2, by the chain rule and (2.4), we have

Dtφ(F ) = Dtφ(∆W1, . . . ,∆Wm) =

m∑
i=1

∂φ

∂xi
(∆W1, . . . ,∆Wm)fi(t). (2.5)

Remark 2.27.

1. From (2.5), we can see that Dtφ(F ) is a random variable, which depends on the
whole path of the Wiener process W . That is, (Dtφ(F ))0≤t≤T is a stochastic
process, but not an adapted one.

2. From an intuitive point of view, (2.5) shows that the Malliavin derivative Dtφ

represents the derivative of φ with respect to the increments of W at time t, if we
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take the Wiener process as the canonical process, i.e.,W (t, ω) = ωt. Actually, the
Malliavin derivative characterizes the change of a random variable with respect
to the change of the elementary event ω ∈ Ω at time t in the general case. Taking
the limiting case (m → ∞) in (2.5), we can intuitively depict the change of the
elementary event in the following figure:

t T0

ω

2.3 Financial market models

The solution of a financial problem involving capital markets mostly relies on the
prediction of the states of nature. The word “nature” is referred to as a generic and
abstract description of the combination of all factors which may affect the evolvement
of financial markets. The relations among these factors are so complex that we cannot
exactly know what will happen in the future financial markets even in a short-time
horizon. To account for this ambiguity about the future, one may use probability theory
to describe the predictions of the nature states. In the simplified setting that the nature
has finite states, the nature state ω and its probability pω constitute a pair (ω, pω) to
characterize one prediction. So, the prediction of nature can be summarized as a finite
probability space (Ω,P), where Ω is the space of finite states and P is a probability
measure. In the setting of infinite states, we cannot define probabilities for each state,
but define probabilities for events and construct a probability space (Ω,F ,P).

Mathematically speaking, the factors in a financial problem are nothing but functions
defined on (Ω,F ,P), the so-called random variables. Hence, whenever a random
variable is used in financial models, we implicitly select a probability space (Ω,F ,P).
One should keep it in mind that we assume that we have enough information to determine
the probability of each event under P. Otherwise, the story will be quite different1. In

1One may refer to Peng [143] for an introduction on stochastic calculus in a nonlinear expectation space
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this section, we restrict ourself to the probability framework. Obvious, when a stochastic
process is used to model a process in financial problems, we formulate the information as
the filtration F = (Ft)0≤t≤T , where Ft represents the information available up to time
t and 0 ≤ T ≤ +∞. In mathematical finance, stochastic models are usually defined on
a stochastic basis (Ω,F ,F,P).

Stochastic processes defined on a stochastic basis (Ω,F ,F,P) can be used to model
the price processes of stocks or underlying assets of derivatives. It is well-known that
Louis Bachelier made the first attempt to describe the evolution of a stock price S =

(St)t≥0 by a Brownian motion in his thesis in 1900. Arguing that prices should remain
positive, Samuelson [150] proposed to model a stock price process with a geometric
Brownian motion in 1965. Working with this model, Black and Sholes [24] and Merton
[132] opened the door to calculate a fair value for options with the arbitrage arguments
in 1973. This pricing method is the so-called no-arbitrage approach.

2.3.1 Arbitrage-free market

Absence of arbitrage is a fundamental assumption for financial markets. Arbitrage
means that an investor can make some strictly positive wealth out of nothing by a
nonnegative total portfolio of investable securities. The nonnegativity of the investor’s
portfolio is legally enforced by his or her limited liability. The economic rationale behind
this assumption is that in a liquid financial market, there is no such opportunity as a “free
lunch”. Hence, a mathematical model of a financial market should be designed in such
a way that it does not permit arbitrage.

Denote by S = (S0, S1, . . . , Sn) the tradable assets in the financial market
consisting of one risk-free asset S0 (bank account) and n risky assets (S1, . . . , Sn).

A model for S is assumed to be defined on a stochastic basis (Ω,F ,F,P). Given
a fixed investment horizon T ∈ R+, we call a Rn+1-valued predictable process δ =

(δ0
t , δ

1
t , . . . , δ

n
t )0≤t≤T a strategy if the Itô integral∫ t

0

δ?s dSs

is well defined for t ∈ [0, T ]. δjt , j = 0, . . . , n, is the number of units of the jth asset
held at time t in the portfolio Sδ = (Sδt )0≤t≤T . The value Sδ of the portfolio at time t

(Ω,F , Ê), which is tailored to financial applications under model uncertainty.
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is given by

Sδt =

n∑
i=0

δitS
i
t .

A strategy δ and the corresponding portfolio Sδ are said to be self-financing if

dSδt =

n∑
i=0

δit dSit

for t ∈ [0, T ]. This means that all changes in portfolio value are due to gains or losses
from trading assets.

Definition 2.28. A self-financing portfolio is an arbitrage if the value process Sδ

satisfying

1. Sδ0 = 0;

2. P(SδT ≥ 0) = 1, P(SδT > 0) > 0.

One condition to guarantee that a financial market model does not permit an arbitrage
is usually called the first fundamental asset pricing theorem, which involves the concept
of risk-neutral probability measure.

Definition 2.29. Let (D̂t := 1/S0
t )0≤t≤T be a discounting process. A probability

measure P̂ is said to be risk-neutral if

1. P̂ and P are equivalent, i.e. , for every A ∈ F , P(A) = 0 if and only if P̂(A) = 0.

2. under P̂, the discounted risky asset price process (D̂tS
i
t)0≤t≤T , i = 1, . . . , n, is a

martingale.

For a given mathematical model for S, it is easy to see that under a risk-neutral
probability measure P̂, the risky asset has the same average rate of return as that of the
risk-free asset. Hence, under P̂, the average rate of return of the portfolio is also the
same as that of the risk-free asset, and the discounted portfolio value is a martingale
with respect to P̂. This fact plays a key role in the theory of risk-neutral pricing.

Theorem 2.30 (First fundamental asset pricing theorem). If a market model has a risk-
neutral probability measure, then it does not admit arbitrage.

We refer to [159] for the proof of this theorem, and [57] for other versions of this
fundamental theorem in more general cases.
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2.3.2 Market completeness

Let VT be an FT -measurable random variable, which represents the payoff of a financial
derivative. We wish to choose the amount of initial capital Sδ0 and a portfolio process δ
in order to hedge a short position in the derivative, i.e.

SδT = VT , a.s. (2.6)

The key objective of risk-neutral valuation is to calculate the initial capital Sδ0
and a portfolio process δ such that (2.6) holds. Once it has been done, the fact that
(D̂tSt)0≤t≤T is a martingale under a risk-neutral probability measure P̂ implies

D̂tS
δ
t = EP̂[D̂TS

δ
T ] = EP̂[D̂TVT ].

The value Sδt of the hedging portfolio is the capital needed at time t to completely hedge
the short position of VT . Hence, we can define the value Vt of the derivative with payoff
VT at time t as

D̂tVt = EP̂[D̂TVT ], for 0 ≤ t ≤ T. (2.7)

That is, (D̂tVt)0≤t≤T is a martingale under P̂. It is this insight that provides the idea
to prove the existence of the hedging portfolio and to calculate the hedging strategy
(see [159] for the details).

The formula (2.7) is the so-called risk-neutral pricing formula. This formula
requires a premise that the market model should admit a risk-neutral probability
measure. When the asset prices are driven by Brownian motions, the existence of risk-
neutral probability measure amounts to the existence of the market price of risk equations
(see [159]).

The second fundamental theorem for asset pricing concerns the uniqueness of risk-
neutral probability measures. It is related to the completeness of the market model.

Definition 2.31. A market model is complete if every derivative security can be hedged.

Theorem 2.32 (Second fundamental asset pricing theorem [159]). Consider a market
model that has a risk-neutral probability measure. The model is complete if and only if
the risk-neutral probability measure is unique.

If a financial market model permits multiple risk-neutral measures, a financial
derivative has more than one value, and the position in this derivative cannot be fully
hedged. One may select other hedging strategies for a financial derivative, such as the
(locally) risk-minimising strategies investigated in the next chapter.



3
Model uncertainty and discretisation of

locally risk-minimising strategies

In an incomplete market model, the locally risk-minimising (LRM) strategy is an
important hedging strategy for financial derivatives. The goal of the LRM strategies
is to minimise the variance of the cost process at any time t, while the value of the
hedging portfolio at time T recovers the payoff of a contingent claim at time T .

Considering vanilla options, Asian options, spread options and basket options in
a class of jump-diffusion models, we formulate the corresponding LRM strategies as
solutions of backward differential equations (BSDEs). Using the discretisation scheme
and the convergence results on BSDEs as studied in Khedher and Vanmaele [115], we
can not only simulate the LRM strategies but also show that the LRM strategies are
robust towards the choice of the model.

3.1 Introduction

In this chapter, we investigate the LRM strategies for vanilla options, Asian options,
spread options and basket options in a class of jump-diffusion models. The LRM
strategies are formulated as the solution of a forward-backward stochastic differential
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equations of the following form

S(t) = S(0) +

t∫
0

S(s)a(s) ds+

t∫
0

S(s−) dζ(s) ,

V (t) = h(S(T )) +

T∫
t

ϕ(s, S(s), V (s),Υ(s)) d〈ζ〉s

−
T∫
t

Υ(s) dζ(s)− L(T ) + L(t) ,

(3.1)

where (ζ(t))0≤t≤T is a càdlàg martingale, 〈ζ〉t is the predictable compensator of the
quadratic variation of (ζ(t))0≤t≤T , and (L(t))0≤t≤T is a martingale orthogonal to
(ζ(t))0≤t≤T . h, ϕ, and a have to fulfil certain conditions that we specify in the following
sections. For the existence and uniqueness of the solution of such FBSDE, we refer to
Carbone et al. [32].

In the sequel, the forward SDE in (3.1) models the asset price process, where
we choose (M(t))0≤t≤T to be given by a sum of continuous and jump noises. The
solution of the backward SDE which is given by a triplet (V (t),Υ(t), L(t))0≤t≤T

models respectively the value of the portfolio, the amount of wealth invested in the
risky assets, and the remaining risk in a locally risk-minimising (LRM) strategy. We
refer to [63, 111] for a rigorous study of the relation of FBSDEs to quadratic hedging
strategies.

We note that quite few papers investigated the LRM strategies for Asian options
or spread options in incomplete market models. Wang and Wang [176] investigated
the LRM hedging strategy for discretely monitored geometric Asian call options under
exponential Lévy models. Benth et al. [20] derived an integral representation of
the variance-optimal hedging strategy for Asian-type options on energy with trading
constricts in the BN-S model and an exponential additive model. Under a similar model
as the one that we consider in this chapter, Arai and Suzuki [5] derived an integral
representation of the LRM strategy for vanilla call options, Asian options, and lookback
options. However, they did not provide an implementable method to calculate the
integral representation of the LRM strategy derived therein.

Using the discretisation scheme and the convergence results on BSDEs as studied by
Khedher and Vanmaele [115], we will simulate the LRM strategies and show that these
LRM strategies are robust towards the choice of the model.
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3.2 Preliminaries of locally risk-minimising Strategies

In an incomplete market model, a position of a derivative cannot be hedged with self-
financing strategies (see e.g. [159] for a proof). The locally risk-minimising (LRM)
strategy is a popular criterion for hedging and pricing in incomplete financial markets.
We present the preliminaries of the LRM strategy for a contingent claim written on one
risky asset and multiple assets, respectively. These results are mainly provided in a
series of papers such as Föllmer and Sondermann [82], Schweizer [153,157], Choulli et
al. [46] and so on. The LRM strategies are characterized by the position in the underlying
asset(s). If there is one underlying asset, the corresponding LRM strategy is called a
one-dimensional LRM strategy in this thesis. Otherwise, it is called a multi-dimensional
LRM strategy.

Let (Ω,F ,P) be a complete probability space. Fix T > 0. Denote by S the asset
price which is adapted to a filtration F = (Ft)0≤t≤T satisfying the usual conditions.

3.2.1 One-dimensional LRM strategies

Föllmer and Sondermann [82] proposed the so-called risk-minimising strategy in the
sense that it minimises the remaining risk in terms of the cost process. Under the
assumption that the discounted asset price is a square-integrable martingale under the
original probability measure, Föllmer and Sondermann [82] proved the existence and
uniqueness of the risk-minimisation strategy for a contingent claim H ∈ L2(P).

However, if the underlying asset is a semimartingale, the model may not admit a risk-
minimising strategy, as illustrated by an example in [153]. Schweizer [153] extended
the theory of risk minimisation to the setting where the underlying risky asset S is a
semimartingale. The semimartingale S is assumed to have a decomposition

S = S(0) +M +A,

whereM is a square-integrable martingale withM(0) = 0 andA is a predictable process
of finite variation with A(0) = 0. In this setting, the resulting strategy is called the
locally risk-minimising strategy in the sense that the risk is formulated in a local manner.

By the assumptions ofM in the decomposition of S, we can define a measure PM :=

P× 〈M〉 on the product space Ω× [0, T ] with the product σ-algebra of predictable sets.
An expectation EM associated with PM is defined by

EM [α] =
E[(α · 〈M〉)T ]

E[〈M〉T ]
,
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where α is an integrable process with respect to 〈M〉 .

Definition 3.1. Assume S = S(0) +M + A is a semimartingale under the measure P.
A couple ϕ = (ξ, η) is called a trading strategy if

• ξ is a predictable process,

• ξ satisfies

E

 T∫
0

ξ2
ud〈M〉u +

 T∫
0

|ξudSu|

2
 <∞,

• η is adapted,

• the process V (ϕ) := ξS+η has right-continuous paths and E[V 2
t ] <∞ for every

t ∈ [0, T ].

The process V (ϕ) is called the value process of the trading strategy ϕ. A strategy is
called admissible with respect to a contingent claim H or H-admissible, if its value
process has terminal value H , P-a.s. .

Definition 3.2. Given a trading strategy ϕ and the value process V (ϕ), we can define
the cost process C(ϕ) as the right-continuous square integrable process given by

Ct(ϕ) := Vt(ϕ)−
t∫

0

ξudSu, 0 ≤ t ≤ T. (3.2)

If the cost process is a square-integrable martingale, the strategy is called a mean-self-
financing strategy. The risk process R(ϕ) is the conditional mean square error process

Rt(ϕ) := E[(CT (ϕ)− Ct(ϕ))
2|Ft].

To formulate what is locally risk-minimising strategy, we first explain the notion of
small perturbation [152].

Definition 3.3. A trading strategy ∆ = (δ, ε) is called a small perturbation if it satisfies
the following conditions:

• δ is bounded,

•
t∫

0

|δudAu| is bounded,
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• δT = εT = 0.

To investigate the local behaviour of a trading strategy, we consider partitions τ =

(ti)0≤i≤N of the interval [0, T ]. These partitions satisfy

0 = t0 < t1 < · · · < tN = T,

and their mesh |τ | := maxti,ti+1∈τ (ti+1 − ti). A sequence (τn)n∈N is called increasing
if τn ⊂ τn+1 for all n; it is called 0-convergent if limn→∞ |τn| = 0. If ∆ = (δ, ε) is a
small perturbation and (s, T ] a subinterval of [0, T ], we define the small perturbation

∆|(s,t] := (δ1(s,t], ε1[s,t)).

Now we are ready to define what is a locally risk-minimising strategy.

Definition 3.4. For a trading strategy ϕ, a small perturbation ∆ and a partition τ of
[0, T ], the risk quotient rτ [ϕ,∆] is defined as

rτ [ϕ,∆] :=
∑

ti,ti+1∈τ

Rti(ϕ+ ∆|(ti,ti+1])−Rti(ϕ)

E[〈M〉ti+1
− 〈M〉ti |Fti ]

1(ti,ti+1](t).

A trading strategy ϕ is called locally risk-minimising if

lim inf
n→∞

rτn(ϕ,∆) ≥ 0, PM -a.s.

for every small perturbation ∆ and every increasing 0-convergent sequence (τn) of
partitions of [0, T ].

The risk quotient is a measure for the total change of riskiness if the trading strategy
ϕ is locally perturbed by the perturbation ∆ along the partition τ . To calculate the locally
risk-minimising strategy, we need additional assumptions on S.

Assumptions 3.5.

(A1) For P-almost all ω, the measure on [0, T ] induced by 〈M〉(ω) has the whole
interval [0, T ] as its support.

(A2) A is continuous.

(A3) A is absolutely continuous with respect to 〈M〉 with a density λ satisfying

EM [|λ| log+ |λ|] <∞.
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Under the Assumptions 3.5, the next proposition furnishes us with the key step to
calculate the locally risk-minimising strategies.

Proposition 3.6 (see Schweizer [153]). Let the special semimartingale S satisfies
Assumptions 3.5. Let H ∈ L2(P) be a contingent claim and ϕ an H-admissible trading
strategy. The following statements are equivalent:

(1) ϕ is locally risk-minimising.

(2) ϕ is mean-self-financing and the martingale C(ϕ), the cost process defined in
(3.2), is orthogonal to the martingale part M of the special semimartingale S.

Proposition 3.6 allows us to calculate the locally risk-minimising strategy with the
famous Föllmer-Schweizer decomposition.

Definition 3.7 (Föllmer-Schweizer decomposition [81]). AnFT -measurable and square-
integrable random variableH admits a Föllmer-Schweizer decomposition (FS-decompo-
sition hereafter) if there exist a constant H0, an S-integrable process ξFS and a square-
integrable martingale LFS , such that [LFS ,M ] is a local martingale and

H = H0 + (ξFS · S)T + LFST .

We refer to Choulli et al. [46] for the proof of the existence and uniqueness of the
FS-decomposition in the general setting. On the basis of some conditions and arguments
concerning the minimal martingale measure, the FS-decomposition directly provides the
locally risk-minimising strategy ϕ in the following way:

ϕt = (ξFSt , H0 +

t∫
0

ξFSu dSu + LFSt − ξFSt St).

We refer to Vandaele [170] and Choulli et al. [47] for a thorough analysis and calculation
methods of the FS-decomposition. In some specific settings, the LRM strategy could be
computed using the Fourier transform techniques as described in Cont and Tankov [51]
and Hubalek et al. [108].

3.2.2 Multi-dimensional LRM strategies

Schweizer [157] generalized the theory of one-dimensional LRM strategies to the
setting with multiple underlying assets. Let S be a d-dimensional square integrable
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semimartingale under P adapted to a filtration F. Then S can be decomposed as
S = S(0)+M +A, where M is a d-dimensional locally square integrable P-martingale
starting in 0 and A is a d-dimensional predictable process of finite variation also starting
in 0. We also assume that S satisfies the following structure conditions:

Assumptions 3.8.

(A) A is absolutely continuous with respect to 〈M〉 in the sense that

A(t) :=

t∫
0

d〈M〉s λ(s) , (3.3)

where λ is Rd-valued predictable process.

(B) The mean variance tradeoff (MVT) process

K(t) :=

t∫
0

λ?(s) d〈M〉s λ(s) , (3.4)

is uniformly bounded P-a.s. for all t ∈ [0, T ]. (·)? denotes the transpose of a vector
or matrix.

These structural conditions are related to an absence-of-arbitrage condition [154,
157]. We denote by L(S), the S-integrable processes. That is the class of predictable
processes for which we can determine the stochastic integral w.r.t. S. We define the
space Θ by

Θ :=

θ ∈ L(S)

∣∣∣∣∣∣∣E
 T∫

0

θ?(s) d〈M〉s θ(s) +

 T∫
0

|θ?(s) dA(s)|

2
 <∞

 .

Let ξ be a square integrable contingent claim and denote by V the value process of the
LRM strategy to hedge ξ.

Under Assumptions 3.8 we have the following unique decomposition for the value
process written under the real world measure P (see Schweizer [157] for a proof)

V (t) = V (0) +

t∫
0

(
χFS

)?
(s) dS(s) + LFS(t), 0 ≤ t ≤ T , (3.5)



30 MODEL UNCERTAINTY AND DISCRETISATION OF LRM STRATEGIES

where LFS is a square integrable P-martingale such that [LFS ,M ] is a P-martingale
and χFS ∈ Θ. For t = T , the latter equation is the FS-decomposition of ξ. In fact, the
components χFS(t) and C(t) := LFS(t) + V (0) represent respectively the number of
risky assets and the cost process in an LRM strategy at time t ∈ [0, T ] (see Proposition
3.4 in Schweizer [156]).

To conclude the section, we would like to outline some notations to be used in the
following sections.
NOTATIONS. Let W (t) = (W (1), . . . ,W (d))(t), t ∈ [0, T ] be a d-dimensional
standard Wiener process with W (i) and W (j) being independent for i 6= j and Ñ =

Ñ(dt,dz), (t, z) ∈ [0, T ]×R be a d-dimensional vector consisting of independent one-
dimensional centered Poisson random measures, i.e. Ñ(dt,dz) = N(dt,dz)− `(dz)dt,
where ` is the Lévy measure and N(dt, dz) is the Poisson random measure such that
E[N(dt,dz)] = `(dz) dt. Define B(R) as the σ-algebra generated by the Borel sets
Ū ⊂ R. We assume that the Lévy measure has finite activity, i.e. `j(|z| ≤ 1) <∞, j =

1, . . . , d and that the jump measure has a finite second moment, i.e.
∫
R z

2`j(dz) < ∞ .
We specify the P-augmented filtration F = (Ft)0≤t≤T by

Ft = σ

W (s),

s∫
0

∫
A

Ñ(du,dz), s ≤ t, A ∈ B(R)

 ∨N , (3.6)

where N represents the set of P-null events in F . An element x ∈ Rd will be identified
with a column vector with ith component xi and Euclidean norm |x|. We define the
following spaces:

• L2
T : the space of all FT -measurable random variables X : Ω→ R such that

‖X‖2 = E[X2] <∞ .

• S2
[0,T ]: the space of all F-adapted, càdlàg processes γ : Ω× [0, T ]→ R such that

‖γ‖2S2
[0,T ]

= E[ sup
0≤t≤T

|γ2(t)|] <∞ .

• H2
[0,T ]: the space of all F-predictable processes φ : Ω× [0, T ]→ Rd , such that

‖φ‖2H2
[0,T ]

= E

 T∫
0

|φ(t)|2 dt

 <∞ .
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• Ĥ2
[0,T ]: the space of all F-predictable mappings θ : Ω × [0, T ] × R → Rd , such

that

‖θ‖2
Ĥ2

[0,T ]

= E

 T∫
0

d∑
j=1

∫
R

|θj(t, z)|2`j(dz) dt

 <∞.
• C1

b (Rd): the space of continuously differentiable functions with bounded deriva-
tives in all the variables.

3.3 Discretisation of LRM strategies for vanilla and
Asian options

3.3.1 Continuous-time model: one-dimensional jump-diffusion

In the sequel we specify a one-dimensional continuous-time model for the stock price
process and we compute the LRM strategy in this setting. We consider the following
continuous-time model

X(t) := X(0) +

t∫
0

δ(s) ds+

t∫
0

b(s) dW (s) +

t∫
0

∫
R

γ(s, z)Ñ(ds,dz) , (3.7)

where δ(t), b(t), γ(t, z) ∈ R , for t ≥ 0, z ∈ R . X is a process with independent
increments. Its parameters are assumed to satisfy the following assumptions.

Assumptions 3.9.

(A) γ(t, z) is assumed to be of the following form,

γ(t, z) = g(z)γ̃(t) ,

for which we impose ∫
R
g(z) `(dz) <∞,

and for some ε > 0 ,

G2(ε) :=

∫
|z|≤ε

g2(z) `(dz) <∞ . (3.8)

(B) δ, b and γ̃ are Lipschitz.
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We need the parameters of the processX to be Lipschitz on the one hand to guarantee
the existence of the LRM strategy and on the other hand for our convergence study of
the discretisation scheme. We define the process S(1) to be the stochastic exponential of
X (see, e.g., Chapter II in Protter [146]). That is

S(1)(t) := S(1)(0)E(X)t = S(1)(0) +

t∫
0

S(1)(s−) dX(s) ,

where S(1)(0) is a positive constant. For S(1) to be positive, we assume γ(t, z) > −1 for
(t , z) ∈ [0, T ]× R. Notice that the process S(1) is a square integrable semimartingale.

Let S(0) denote the riskless asset. It is given by

dS(0)(t) = S(0)(t)r(t) dt, S(0)(0) = 1 ,

where the short rate r is Lipschitz and r(0) = 0 . Let S(1) be the undiscounted price
process of the risky asset. We assume that S = S(1)/S(0) is the discounted stock price
process. Its dynamics is thus given explicitly by

dS(t) = S(t−)

a(t) dt+ b(t) dW (t) +

∫
R

γ(t, z) Ñ(dt,dz)

 , (3.9)

where a(t) = δ(t) − r(t), t ∈ [0, T ]. Since δ and r are Lipschitz, a is also Lipschitz.
Define

κ(t) := b2(t) +

∫
R

γ2(t, z) `(dz) , t ∈ [0, T ]. (3.10)

The assumption that b and γ̃ are Lipschitz, together with (3.8), implies that

C1 ≤ κ(t) ≤ C2 , t ∈ [0, T ] . (3.11)

where C1 and C2 are positive constants.
We can decompose S into a square integrable martingale M starting at zero in zero

and a predictable finite variation process A, with A(0) = 0, where

M(t) =

t∫
0

S(s−)b(s) dW (s) +

t∫
0

∫
R

S(s−)γ(s, z) Ñ(ds,dz) .

Thus the predictable process λ defined in (3.3) and associated with the process S is given
by

λ(t) =
a(t)

S(t−)κ(t)
, 0 ≤ t ≤ T
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and the MVT process defined in (3.4) and associated with the process S is given by

K(t) =

t∫
0

a2(s)

κ(s)
ds , 0 ≤ t ≤ T .

Notice that condition (3.11) and the boundedness of a imply that the MVT process is
uniformly bounded in t by a constant C.

Let the contingent claim be given by ξ whose discounted value is ξ̃ = ξ/S(0)(T ),
an FT -measurable square integrable random variable. Recall the FS-decomposition in
(3.5). Substituting the dynamics (3.9) of S in (3.5) and considering the discounted value
of the portfolio Ṽ = V/S(0), we get for all t ∈ [0, T ]

dṼ (t) = Υ̃(t)a(t) dt+ Υ̃(t)b(t) dW (t) +

∫
R

Υ̃(t)γ(t, z) Ñ(dt,dz)

+ dLFS(t),

Ṽ (T ) = ξ̃ ,

(3.12)

where the predictable process Υ̃ defined as Υ̃(t) = χFS(t)S(t−) is the amount of
wealth to invest in an LRM strategy. From the FS-decomposition in the LRM strategy we
know that Υ̃ ∈ Θ and that LFS is a square integrable P-martingale such that [LFS ,M ]

is a P-martingale. The integral form of (3.12) is given by

Ṽ (t) = ξ̃ −
T∫
t

Υ̃(s)a(s)

κ(s)
d〈ζ〉s−

T∫
t

Υ̃(s) dζ(s)− LFS(T ) + LFS(t) , (3.13)

where

ζ(t) =

t∫
0

b(s) dW (s) +

t∫
0

∫
R

γ(s, z) Ñ(ds,dz) . (3.14)

Note that (3.13) is a BSDE of the type studied in Khedher and Vanmaele [115].
To study the time-discretisation of the LRM strategies, we use the approach in this latter
paper. Before invoking the conclusions within that framework, we have to check whether
all the conditions therein are satisfied for our model. We also have to adapt some proofs
therein to our setting. Hereto we first use the representation theorem (see Kunita and
Watanabe [119]) for the FT -measurable square integrable random variable LFS(T ) and
recall that LFS is a P-martingale being zero at zero to get the following representation
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for the process LFS

LFS(t) =

t∫
0

Y FS(s) dW (s) +

t∫
0

∫
R

ZFS(s, z) Ñ(ds,dz) , (3.15)

where Y FS ∈ H2
[0,T ] and ZFS ∈ Ĥ2

[0,T ] (see Section 3 in Di Nunno et al. [63] for more
details). Next, we introduce the following classical BSDE

−dṼ (t) = f (t, Y (t),Γ(t)) dt− Y (t) dW (t)−
∫
R

Z(t, z) Ñ(dt, dz) ,

Ṽ (T ) = ξ̃ ,

(3.16)

where Γ(t) =
∫
R
Z(t, z)γ(t, z)`(dz) and ξ̃ ∈ L2

T is FT -measurable. Under the standard

assumptions on f : [0, T ] × R2 → R, Tang and Li (1994) prove that the BSDE (3.9)
admits an unique solution (Ṽ , Y, Z) ∈ S2

[0,T ] × H2
[0,T ] × Ĥ2

[0,T ] . In the following
proposition, we relate the BSDE (3.12) to a BSDE of the classical form. We do not
present the proof since it follows similar lines as the proof of Lemma 4.1 in Di Nunno
et al. [63].

Proposition 3.10. Let (Ṽ , Υ̃, LFS) be the solution of the BSDE (3.12). Let the
Assumptions 3.9 hold. Then, the BSDE (3.12) with LFS represented by (3.15) can be
rewritten as a classical BSDE (3.16), where

Y (t) = Υ̃(t)b(t) + Y FS(t) ,

Z(t, z) = Υ̃(t)γ(t, z) + ZFS(t, z) ,

f(t, y, z) = −a(t)

κ(t)
(b(t)y + z) . (3.17)

We recall that Assumptions 3.9 imply the estimate (3.11). Further we notice that
in the proof of the latter proposition, it is shown that f is Lipschitz to guarantee the
existence and uniqueness of the solution to the BSDE.

We consider vanilla and Asian options in which cases the discounted payoff is
formulated as follows

ξ̃ =



h(S(1)(T ))

S(0)(T )
, vanilla options,

h(SA(T ))

S(0)(T )
, with SA(T ) =

1

T

T∫
0

S(1)(s) ds , Asian options,
(3.18)
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where h is Lipschitz on R. In the sequel, without loss of generality, we assume that
h(0) = 0. Otherwise, we can work with ĥ = h − C , for h(0) = C , where C is a
constant.

Denote by πn the regular time grid

πn := {0 = t0, . . . , ti, . . . , tn = T} , ti =
iT

n
, n ∈ N . (3.19)

The statement of Proposition 3.10 will allow us to exploit estimates on solutions of
classical BSDEs and to translate them to the solution of our BSDE (3.12). This is the
purpose of the next theorem. Notice that these estimates are important for our robustness
study later.

Theorem 3.11. Let (Ṽ , Υ̃, LFS) be the solution of the BSDE (3.12) and ξ̃ be as in (3.18)
with h being Lipschitz and h(0) = 0. Under Assumptions 3.9, we have

max
i<n

E

[
sup

t∈[ti,ti+1]

|Ṽ (t)− Ṽ (ti)|2
]

+ E

n−1∑
i=0

ti+1∫
ti

|Υ̃(s)− Υ̃(ti)|2 ds

 ≤ C

n
,

where C is a positive constant.

Proof. The estimate for Ṽ follows immediately from Theorem 2.1 in Bouchard and
Elie [26] and Proposition 3.10 in this chapter. Here we focus on the estimate for Υ̃.

We first show that f is in C1
b (R2). The derivative of f defined in (3.17) w.r.t. u is

given by

∂uf(u,Γ(·)) = −a(t)
b(t)

κ(t)
.

Since a, b, and κ are bounded above and below, it follows that ∂uf is bounded above by
a positive constant. On the other hand, the partial derivative of f w.r.t. z is given by

∂zf(t, y, z) = −a(t)

κ(t)
.

The boundedness below and above of a and κ imply that fz is uniformly bounded above
by a positive constant. That is, f has continuous and bounded partial derivatives in (y, z),
and this property holds uniformly in t. To simplify notations, we abbreviate f(t, y, z) to
ft(y, z), and define∇ft(y, z) := (∂yf, ∂zf) .

Assuming that h ∈ C1
b (R), the statement of the theorem for vanilla options follows

the statement of Theorem 2.3 in Khedher and Vanmaele [115]. To prove that the
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statement holds for h being Lipschitz, we use an approximation argument that we present
later.

Now we proceed to prove the statement in the setting of Asian options. We first
derive estimates for Y and Z. Then, by using an approximation argument as in the proof
of Theorem 2.1 in Bouchard and Elie [26], we can prove that these estimates hold when
h is Lipschitz. Based on these estimates for Y and Z, the estimate for Υ̃ will be derived
in the end.

Integrating (3.16) and considering ξ̃ = h(SA(T ))/S(0)(T ), we have

Ṽ (t) =
h(SA(T ))

S(0)(T )
+

T∫
t

fs(Y (s),Γ(s))ds−
T∫
t

Y (s)dW (s)

−
T∫
t

∫
R

Z(s, z)Ñ(ds,dz),

(3.20)

where h is assumed to be in C1
b (R) at the moment. The aim is to obtain first an estimate

for the process Y . For this purpose, we consider a representation for the process Y using
the Malliavin derivative as it is done in Bouchard and Elie [26] (see also Zhang [184]
who first studied this type of representations for solutions of continuous BSDEs). Let
D denote the Malliavin derivative operator w.r.t. the Brownian motion W where we
consider the Malliavin operator introduced in Petrou [144] (see also Nualart [137] for
an overview about the Malliavin derivative for continuous diffusions). Then taking the
Malliavin derivative on both sides of (3.20), we get

DsṼ (t) =
hx(SA(T ))

S(0)(T )
·DsSA(T ) +

T∫
t

∇fr(Y (r),Γ(r)) ·Ds(Y (r),Γ(r))dr

−
T∫
t

DsY (r)dW (r)−
T∫
t

∫
R

DsZ(r, z)Ñ(dr, dz). (3.21)

Moreover, considering the variation of V w.r.t. the initial condition, we have

∇Ṽ (t) =
hx(SA(T ))

S(0)(T )
· ∇SA(T ) +

T∫
t

∇fr(Y (r),Γ(r)) · ∇(Y (r),Γ(r))dr

−
T∫
t

∇Y (r)dW (r)−
T∫
t

∫
R

∇Z(r, z)Ñ(dr, dz). (3.22)
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Observe that the Malliavin derivative for the process SA is given by (see Theorem 3 and
Proposition 7 in Petrou [144] for more details)

DsSA(T ) =
1

T

T∫
0

DsS
(1)(r)dr =

1

T

T∫
0

b(s)S(1)(s)

∇S(1)(s)
· ∇S(1)(r)Is≤rdr

=
b(s)S(1)(s)

∇S(1)(s)
· 1

T

T∫
s

∇S(1)(r)dr.

On the other hand,

∇SA(T ) =
1

T

T∫
0

∇S(1)(r) dr.

Hence, (3.22) is equivalent to

∇Ṽ (t)−

 1

T

s∫
0

∇S(1)(r)dr

 · hx(SA(T ))

S(0)(T )

=
hx(SA(T ))

S(0)(T )
· 1

T

T∫
s

∇S(1)(r)dr +

T∫
t

∇fr(Y (r), Z(r, ·)) · ∇(Y (r), Z(r, ·))dr

−
T∫
t

∇Y (r)dW (r)−
T∫
t

∫
R

∇Z(r, z)Ñ(dr, dz). (3.23)

From (3.21) and (3.23) we have

DsṼ (t) =
b(s)S(1)(s)

∇S(1)(s)

∇Ṽ (t)−

 1

T

s∫
0

∇S(1)(r)dr

 · hx(SA(T ))

S(0)(T )

 . (3.24)

Noting that

Ṽ (t) = Ṽ (0)−
t∫

0

fs(Y (s),Γ(s))ds+

t∫
0

Y (s)dW (s) +

t∫
0

∫
R

Z(s, z)Ñ(ds,dz) ,

we obtain

DtṼt = Y (t).
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Hence, (3.24) leads to

Y (t) =
b(t)S(1)(t)

∇S(1)(t)

∇Ṽ (t)−

 1

T

t∫
0

∇S(1)(r)dr

 · hx(SA(T ))

S(0)(T )


=
b(t)S(1)(t)

∇S(1)(t)

hx(SA(T ))

S(0)(T )

 1

T

T∫
t

∇S(1)(r)dr


+

T∫
t

∇fr(Y (r),Γ(r)) · ∇(Y (r),Γ(r))dr

−
T∫
t

∇Y (r)dW (r)−
T∫
t

∫
R

∇Z(r, z)Ñ(dr, dz)

 .
Then following the same arguments as in the proof of Proposition 4.5 in Bouchard and
Elie [26], we get

E

n−1∑
i=0

ti+1∫
ti

|Y (s)− Y (ti)|2 ds

 ≤ C

n
. (3.25)

The estimate for the process Z follows as well the same arguments as in Bouchard and
Elie [26] in which the authors used the relation of the BSDE of type (3.20) to partial
integro-differential equations and showed

E

n−1∑
i=0

ti+1∫
ti

∫
R

|Z(s, z)− Z(ti, z)|2 `(dz) ds

 ≤ C

n
. (3.26)

If h is Lipschitz continuous with a Lipschitz constant K such that h(0) < K, we
can use a so-called approximation argument to get the same estimations for Y and Z as
in (3.25) and (3.26). We consider a C∞b (R) density q with compact support, and set

hk(x) = k

∫
R

h(x̄)q (k(x− x̄)) dx̄ ,

where k is a positive real number. For large k, hk(0) is bounded by 2K. Moreover,
these functions hk are K-Lipschitz in C1

b (R) and converge pointwise to h. We denote
by (V k, Y k, Zk) the solution of (3.16) where ξ̃ is given in (3.18) with h replaced by
hk. By Lemma A.2 in Bouchard and Elie [26], (V k, Y k, Zk) converges to (V, Y, Z) in
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S2
[0,T ] ×H

2
[0,T ] × Ĥ

2
[0,T ]. Since the estimation (3.25) for Y k holds uniformly in k, then

the estimate (3.25) holds for Y when h is Lipschitz continuous. Along the same lines of
proof, we show that the estimate (3.26) for Z holds when h is Lipschitz continuous.

Finally, proceeding as in the proof of Theorem 2.3 in Khedher and Vanmaele [115],
we prove the statement for the amount of wealth Υ̃ in LRM strategies in the setting of
Asian payoffs.

3.3.2 Discrete-time model

In this section, we consider a discrete-time version of the process S. Then we compute
the LRM strategy related to the discrete-time model and write down the associated
BSDE. Finally, we propose a backward iteration scheme to solve numerically the
obtained BSDE.

We consider the FBSDE consisting of (3.9) and (3.12) but now in discrete time.
Throughout this paper we shall use the notation

∆H(ti+1) = H(ti+1)−H(ti) , i = 0, . . . , n− 1 ,

for any process H .
Time-discretisation of the forward equation. The discrete-time version of the process

S is denoted by Ŝ and defined as

Ŝ(ti+1) := Ŝ(ti) + Ŝ(ti)
(
a(ti) ∆ti + ∆ζ̂(ti)

)
, i = 0, . . . , n− 1 ,

Ŝ(0) = S(0) ,
(3.27)

where

∆ζ̂(ti+1) :=

ti+1∫
ti

b(ti) dW (t) +

ti+1∫
ti

∫
R

g(z)γ̃(ti) Ñ(dt,dz) , (3.28)

for a, b, and γ̃ as in (3.7) and to which we impose Assumptions 3.9. Recall κ in (3.10).
The discrete-time specification of the predictable process λ defined in (3.3) is denoted
by λ̂ and is thus given by (see Schweizer [155])

λ̂(ti+1) =
∆Â(ti+1)

∆〈M̂〉ti+1

=
a(ti)

Ŝ(ti)κ(ti)
,
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and the discrete-time specification of the MVT process K defined in (3.4) is given by

K̂(ti+1) =
∑

0≤k≤i

a2(tk)∆tk+1

κ(tk)
.

Note that (3.11) and the boundedness of a are sufficient conditions for the process K̂ to
be uniformly bounded in ti by a constant.

Time-discretisation of the backward equation. Let ξ̂ be the discrete approximation
to the discounted payoff, i.e.,

ξ̂ =


h(Ŝ(1)(T ))/Ŝ(0)(T ) , vanilla options,

h(ŜA(T ))/Ŝ(0)(T ) , with ŜA(T ) =
1

n

n−1∑
i=0

Ŝ(1)(ti) , Asian options,

(3.29)
where h is Lipschitz on R and h(0) = 0. A discrete-time version of the process Ṽ in
(3.12) is given by, for all i = 0, . . . , n− 1,{

V̂ (ti) = V̂ (ti+1)− Υ̂(ti)a(ti) ∆ti+1 − Υ̂(ti)∆ζ̂(ti+1)−∆L̂FS(ti+1) ,

V̂ (T ) = ξ̂ ,
(3.30)

where Υ̂(ti) = χ̂FS(ti)Ŝ(ti) is the amount of wealth to invest in an LRM strategy
associated with the discrete-time model (3.27).

Note that L̂FS in (3.30) is necessary for the existence of the solution since the
predictable representation property does not hold in the discrete case (see e.g. Chapter
4 in Protter [146]). We cannot write the BSDE (3.30) as a time-discrete BSDE driven
by a Brownian motion and jumps as we did in the continuous case in Proposition 3.10.
Hence, we would stress that the BSDE (3.30) associated with a discrete-time model
for the underlying asset price process is a discrete-time counterpart of (3.12), not just a
numerical approximation for (3.12), although it is called the time-discretisation of the
backward equation.

Backward iteration scheme. To obtain a backward iteration scheme for (3.30), we
first take the expectation conditionally on Fti on both sides in (3.30) to arrive at the
expression for V̂ (ti) (second equation in (3.31)). Then we multiply both sides in (3.30)
by ∆ζ̂(ti+1), take conditional expectation w.r.t. Fti , and solve for Υ̂(ti) using (3.30)
and the fact that [L̂FS , M̂ ] is a P-martingale, to find the system for i = n− 1, . . . , 0

Υ̂(ti) =
n

Tκ(ti)
E
[
V̂ (ti+1) ∆ζ̂(ti+1)

∣∣∣Fti

]
,

V̂ (ti) = E[V̂ (ti+1)|Fti ]−
Ta(ti)

n
Υ̂(ti) .

(3.31)
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As for L̂FS , being zero at zero, we have from (3.30)

L̂FS(T ) = V̂ (T )−
n−1∑
i=0

[
Υ̂(ti)a(ti) ∆ti+1 + Υ̂(ti)∆ζ̂(ti+1)

]
− V̂ (0) . (3.32)

Note that the process L̂FS does not appear in the algorithm (3.31) and is computed
afterwards. However the importance of L̂FS is that it represents the remaining risk in
the time-discretised version of the LRM hedging strategy which cannot be hedged away
by trading in the underlying Ŝ and that it is needed to compute the cost process.

3.3.3 L2-convergence of the discretisation scheme

In this section we study the convergence, in a space we specify, of the LRM strategy
related to the time-discrete model to the LRM strategy related to the continuous-
time model. Moreover, we compute rates for the convergence results. We will call
this convergence study also a robustness study of the LRM strategy when using time
discretisation since we are indeed comparing two models and two solutions of BSDEs.

In the following theorem we state the discretisation error of the approximation of
(3.9) by (3.27). We refer to Platen [145] for a proof.

Theorem 3.12. Recall the dynamics of S and Ŝ as in (3.9) and (3.27) respectively.
Under Assumptions 3.9, we have

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣S(t)− Ŝ(ti)
∣∣∣2] ≤ C

n
,

for a positive constant C independent of the number of steps.

Using the Lipschitz property of the payoff function h we derive a convergence rate
of the order of the time-step for the final value of the hedging portfolio.

Proposition 3.13. Let Ṽ and V̂ be solutions of (3.12) and (3.30), and ξ̃ and ξ̂ be as in
(3.18) and (3.29) with h being Lipschitz and h(0) = 0. Under Assumptions 3.9, we have

E
[
|Ṽ (T )− V̂ (T )|2

]
= E

[
|ξ̃ − ξ̂|

2
]
≤ C

n
,

for a positive constant C independent of the number of steps.
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Proof. For vanilla options, we get

E[|ξ̃ − ξ̂|2] = E

∣∣∣∣∣h(S(1)(T ))

S(0)(T )
− h(Ŝ(1)(T ))

Ŝ(0)(T )

∣∣∣∣∣
2


= E

∣∣∣∣∣h(S(1)(T ))Ŝ(0)(T )− h(Ŝ(1)(T ))S(0)(T )

S(0)(T )Ŝ(0)(T )

∣∣∣∣∣
2
 .

Since 0 < r(t) < C, for all t ∈ [0, T ], where C is a constant, it holds that S(0)(T ) > 1

and Ŝ(0)(T ) > 1. Hence, we find

E[|ξ̃ − ξ̂|2] ≤ E
[∣∣∣h(S(1)(T ))Ŝ(0)(T )− h(Ŝ(1)(T ))S(0)(T )

∣∣∣2]
≤ C

{
E
[∣∣∣h(S(1)(T ))

∣∣∣2]E [∣∣∣Ŝ(0)(T )− S(0)(T )
∣∣∣2]

+ E
[∣∣∣h(S(1)(T ))− h(Ŝ(1)(T ))

∣∣∣2]E [∣∣∣S(0)(T )
∣∣∣2]} .

≤ C
{
E
[∣∣∣S(1)(T )

∣∣∣2]E [∣∣∣Ŝ(0)(T )− S(0)(T )
∣∣∣2]

+ E
[∣∣∣S(1)(T )− Ŝ(1)(T )

∣∣∣2]E [∣∣∣S(0)(T )
∣∣∣2]} .

The last inequality results from the assumption that h is Lipschitz and h(0) = 0. The
statement follows by using Lemma 3.2 in Benth et al. [21] and applying the analogue of
Theorem 3.12 to S(0) and S(1).

In the setting of Asian options, the proof follows the same lines as for vanilla options.
We obtain

E[|ξ̃ − ξ̂|2] ≤ C
{
E
[
|SA(T )|2

]
E
[∣∣∣Ŝ(0)(T )− S(0)(T )

∣∣∣2]
+ E

[∣∣∣SA(T )− ŜA(T )
∣∣∣2]E [∣∣∣S(0)(T )

∣∣∣2]} ,
thus we only have to prove that

E[|SA(T )|2] = E


 1

T

T∫
0

S(1)(t)dt

2
 <∞ , (3.33)
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and

E

∣∣∣∣∣SA(T )− 1

T

n−1∑
i=0

Ŝ(1)(ti) ∆ti+1

∣∣∣∣∣
2
 ≤ C

n
. (3.34)

On the one hand, since S(1) is a square integrable semimartingale and Fubini’s
theorem is applicable we find

E


 1

T

T∫
0

S(1)(t)dt

2
 ≤CE

 T∫
0

(
S(1)(t)

)2

dt


≤C

T∫
0

E
[(
S(1)(t)

)2
]

dt <∞.

Hence, (3.33) holds. On the other hand, by introducing the piecewise constant function

S
(1)

(s) =

n−1∑
i=0

Ŝ(1)(ti)I[ti,ti+1](s),

and recalling (3.18), we find

E

∣∣∣∣∣SA(T )− 1

T

n−1∑
i=0

Ŝ(1)(ti) ∆ti+1

∣∣∣∣∣
2


=
1

T 2
E


∣∣∣∣∣∣
T∫

0

S(1)(s)ds−
∫ T

0

S
(1)

(s)ds

∣∣∣∣∣∣
2


≤ CE

n−1∑
i=0

ti+1∫
ti

∣∣∣S(1)(s)− Ŝ(1)(ti)
∣∣∣2ds

 .
Hence, the estimate (3.34) holds due to the analogue of Theorem 3.12 for S(1) and the
statement follows for Asian options.

To study the convergence of the time-discrete scheme, we consider a continuous-time
version of the process ζ̂ (3.28) as follows

ζ1(t) = ζ1(ti) +

t∫
ti

b(ti)dW (s) +

t∫
ti

∫
R

γ(ti, z)Ñ(ds,dz) , ζ1(0) = 0 .
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Now consider the Fti+1 -measurable random variable

ξ(ti+1) := V̂ (ti+1)−
ti+1∫
ti

Υ̂(ti)a(ti) ds .

We know from the GKW decomposition (see, e.g., Ansel and Stricker [3]) that there
exists a predictable process Υ1 ∈ H̃2

[ti,ti+1] such that

ξ(ti+1) = E [ξ(ti+1) |Fti ] +

ti+1∫
ti

Υ1(s) dζ1(s) + ∆L1(ti+1) ,

where L1 is a square integrable P-martingale such that [ζ1, L1] is a P-martingale. From
the latter equation and the second equality in (3.31), we deduce

V̂ (ti+1) =V̂ (ti) +

ti+1∫
ti

Υ̂(ti)a(ti) ds+

ti+1∫
ti

Υ1(s) dζ1(s)

+ ∆L1(ti+1) . (3.35)

We define a continuous version of V̂ as follows

V̂ (t) := V̂ (ti+1)−
ti+1∫
t

Υ̂(ti)a(ti) ds−
ti+1∫
t

Υ1(s) dζ1(s)

− L1(ti+1) + L1(t) . (3.36)

The latter is an “intermediate” time-continuous BSDEJ which is needed for the
convergence study later on. Since we are in a time-continuous setting, we can apply
the classical martingale representation to L1 to find

L1(ti+1) = L1(t) +

ti+1∫
t

P1(s) dW (s) +

ti+1∫
t

∫
R

Q1(s, z) Ñ(ds,dz) ,

where P1 ∈ H2
[ti,ti+1] and Q1 ∈ Ĥ2

[ti,ti+1]. Substituting the latter in (3.36) for the

continuous version of V̂ leads to

V̂ (t) := V̂ (ti+1)−
ti+1∫
t

Υ̂(ti)a(ti) ds−
ti+1∫
t

Y1(ti, s) dW (s)
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−
ti+1∫
t

∫
R

Z1(ti, s, z) Ñ(ds,dz) , (3.37)

where
Y1(ti, s) = Υ1(s)b(ti) + P1(s) ,

Z1(ti, s, z) = Υ1(s)γ(ti, z) +Q1(s, z) .
(3.38)

Using the fact that [ζ1, L1] is a P-martingale, we deduce, for i = 0, ..., n− 1 ,

Υ1(s) =
1

κ(ti)

b(ti)Y1(ti, s) +

∫
R

Z1(ti, s, z)γ(ti, z) `(dz)

 , ti ≤ s ≤ ti+1.

(3.39)

Multiplying by ∆ζ1(ti+1) in both sides in (3.35) and taking conditional expectation
with respect to Fti , we obtain

E
[
V̂ (ti+1)∆ζ1(ti+1) |Fti

]
= κ(ti)E

 ti+1∫
ti

Υ1(s) ds |Fti

 ,
where κ is as in (3.10). Comparing the latter to the first equality in (3.31), we get

Υ̂(ti) =
n

T
E

 ti+1∫
ti

Υ1(s) ds |Fti

 .
In the following two propositions, we compute estimates which we use later in the proofs
of the convergence results.

Proposition 3.14 ( [115]). Let Υ̃ and Υ1 be respectively as in (3.12) and (3.35). Let
Assumptions 3.9 hold and assume that a, b, and γ̃ are Lipschitz. Introduce the notation

δY (t) = Y (t)− Y1(ti, t) , δZ(t, z) = Z(t, z)− Z1(ti, t, z) , (3.40)

where Y, Z are as in (3.16) and Y1, Z1 are as in (3.38). Then
ti+1∫
ti

E
[
|Υ̃(s)−Υ1(s)|2

]
ds ≤ K

n2
+ C

ti+1∫
ti

E
[
|δY (s)|2

]
ds

+ C

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds ,

where K and C are positive constants.
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Proposition 3.15 ( [115]). Let Υ̃ and Υ̂ be respectively as in (3.12) and (3.30). Let
Assumptions 3.9 hold and assume that a, b, and γ̃ are Lipschitz. Then we have

ti+1∫
ti

E
[
|Υ̂(ti)− Υ̃(s)|2

]
ds

≤ K

n2
+ C

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds+ C

ti+1∫
ti

E
[
|δY (s)|2

]
ds

+ C

ti+1∫
ti

E
[
|Υ̃(s)− Υ̃(ti)|2

]
ds ,

where K and C are positive constants and δY and δZ are as in (3.40).

Theorem 3.16. Assume that the conditions of Theorem 3.11 hold. Let the triplets
(Ṽ , Y, Z) and (V̂ , Y1, Z1) be respectively the solutions of (3.16) and (3.37). Then, it
holds

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣Ṽ (t)− V̂ (t)
∣∣∣2]+

n−1∑
i=0

E

 ti+1∫
ti

|Y (s)− Y1(ti, s)|2 ds


+

n−1∑
i=0

E

 ti+1∫
ti

∫
R

|Z(s, z)− Z1(ti, s, z)|2 `(dz) ds

 ≤ C

n
, (3.41)

where C is a positive constant.

Proof. Set δṼ (t) = Ṽ (t) − V̂ (t) , δa(t) = a(t) − a(ti) , δΥ̃(t) = Υ̃(t) − Υ̂(ti).
Recall the notations δY and δZ in (3.40). In the sequel, C denotes a positive constant
independent of i and n and may take different values from line to line. Applying Itô’s
Lemma, we get

A(t) := E[|δṼ (t)|2]− E[|δṼ (ti+1)|2] + E

 ti+1∫
t

|δY (s)|2 ds


+ E

 ti+1∫
t

∫
R

|δZ(s, z)|2 `(dz) ds

 (3.42)
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= E

 ti+1∫
t

2δṼ (s)
(
−a(s)Υ̃(s) + a(ti)Υ̂(ti)

)
ds


≤ E

 ti+1∫
t

|2δṼ (s)δΥ̃(s)a(ti)|ds

+ E

 ti+1∫
t

|2δṼ (s)Υ̃(s)δa(s)|ds

 .
Using 2ab ≤ αa2 + b2/α , for some α > 0, and a, b, γ̃ are Lipschitz, we get

A(t) ≤ αE

 ti+1∫
t

|δṼ (s)|2 ds

+
CT

n
E

 ti+1∫
t

2|δṼ (s)Υ̃(s)|ds


+
C

α
E

 ti+1∫
t

|Υ̃(s)− Υ̂(ti)|2ds


≤ 2αE

 ti+1∫
t

|δṼ (s)|2 ds

+
C

αn2
E

 ti+1∫
t

|Υ̃(s)|2 ds


+
C

α
E

 ti+1∫
t

|Υ̃(s)− Υ̂(ti)|2ds


≤ 2αE

 ti+1∫
t

|δṼ (s)|2 ds

+
C

αn2
E

 T∫
0

|Υ̃(s)|2 ds


+
C

α
E

 ti+1∫
t

|Υ̃(s)− Υ̂(ti)|2ds


≤ 2αE

 ti+1∫
t

|δṼ (s)|2 ds

+
C

n2
+
C

α
E

 ti+1∫
t

|Υ̃(s)− Υ̂(ti)|2ds

 (3.43)

Recall the expression of A in (3.42). We deduce from (3.43)

E[|δṼ (t)|2] ≤ E[|δṼ (t)|2] + E

 ti+1∫
t

|δY (s)|2 ds


+ E

 ti+1∫
t

∫
R

|δZ(s, z)|2 `(dz) ds

 (3.44)
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≤ Cα
ti+1∫
t

E
[
|δṼ (s)|2

]
ds+Bi ,

where

Bi =
C

n2
+ E

[
|δṼ (ti+1)|2

]
+
C

α
E
[
|Υ̃(s)− Υ̂(ti)|2

]
ds .

Thus applying Gronwall’s lemma to (3.44), we get

E
[
|δṼ (t)|2

]
≤ Bi exp

{
Cα

n

}
, ti ≤ t < ti+1 , i = 0, ..., n− 1 ,

which plugged in (3.44), implies

E[|δṼ (t)|2] +

ti+1∫
t

E
[
|δY (s)|2

]
ds+

ti+1∫
t

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds

≤ Bi
(

1 + α
C

n

)
. (3.45)

Taking t = ti and applying Proposition 3.15, we get

E[|δṼ (ti)|2] + E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
(

1 + α
C

n

) C

n2
+ E

[
|δṼ (ti+1)|2

]
+
C

α

ti+1∫
ti

E
[
|Υ̃(s)− Υ̃(ti)|2

]
ds

+
C

α

ti+1∫
ti

E
[
|δY (s)|2

]
ds+

C

α

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds

 .

For α sufficiently larger than C, we deduce

E[|δṼ (ti)|2] +
1

2
E

 ti+1∫
ti

|δY (s)|2 ds

+
1

2
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
(

1 +
C

n

) C

n2
+ E

[
|δṼ (ti+1)|2

]
+ C

ti+1∫
ti

E
[
|Υ̃(s)− Υ̃(ti)|2

]
ds

 .
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Iterating the last inequality we get

E[|δṼ (ti)|2] +
1

2
E

 ti+1∫
ti

|δY (s)|2 ds

+
1

2
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤ C

(
1 +

C

n

)n 1

n
+ E

[
|δṼ (T )|2

]
+

n−1∑
j=i

tj+1∫
tj

E
[
|Υ(s)−Υ(ti)|2

]
ds

 . (3.46)

Using the estimates in Lemma 3.11 and Proposition 3.13, we have

E
[
|δṼ (ti)|2

]
+ E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds

 ≤ C

n
.

(3.47)

Taking t = ti in (3.45), summing up, and using Proposition 3.15, we arrive at

n−1∑
i=0

E[|δṼ (ti)|2] + E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
n−1∑
i=0

(1 + α
C

n

) C

n2
+ E

[
|δṼ (ti+1)|2

]
+
C

α
E

 ti+1∫
ti

|δY (s)|2 ds


+
C

α
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds

+
C

α
E

 ti+1∫
ti

|Υ̃(s)− Υ̃(ti)|2 ds

 ,
which implies[

1− C
α

(
1 + αC

n

)]∑n−1
i=0

(
E

[
ti+1∫
ti

|δY (s)|2 ds

]
+ E

[
ti+1∫
ti

∫
R
|δZ(s, z)|2 `(dz) ds

])

≤
(

1 + α
C

n

)
C

n
+

(
1 + α

C

n

)
E
[
|δṼ (T )|2

]
− E

[
δṼ (t0)|2

]
+ α

C

n

n−1∑
i=1

E
[
δṼ (ti)|2

]
+

(
1 + α

C

n

)
C

α

n−1∑
i=0

E

 ti+1∫
ti

|Υ̃(s)− Υ̃(ti)|2 ds

 .
Using Proposition 3.13, the latter implies that for α sufficiently larger than C, we obtain

n−1∑
i=0

E

 ti+1∫
ti

|δY (s)|2 ds

+

n−1∑
i=0

E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


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≤ C

 1

n
+

1

n

n−1∑
i=1

E
[
δṼ (ti)|2

]
+

n−1∑
i=0

E

 ti+1∫
ti

|Υ̃(s)− Υ̃(ti)|2 ds

 (3.48)

and the statement for the last two terms in (3.41) follows using (3.47) and Lemma 3.11.
Finally, observe that

E

[
sup

ti≤t≤ti+1

|Ṽ (t)− V̂ (t)|2
]

≤ K

E
[
|Ṽ (ti+1)− V̂ (ti+1)|2

]
+ E

 ti+1∫
ti

∣∣∣Υ̃(s)a(s)− Υ̂(ti)a(ti)
∣∣∣2 ds


+ E

 sup
ti≤t≤ti+1

∣∣∣∣∣∣
ti+1∫
t

δY (s) dW (s)

∣∣∣∣∣∣
2


+ E

 sup
ti≤t≤ti+1

∣∣∣∣∣∣
ti+1∫
t

∫
R

|δZ(s, z)|2 Ñ(ds,dz)

∣∣∣∣∣∣
2

 .

Then using Burkholder’s inequality, and iterating as we did to get (3.46), we deduce the
result applying (3.48).

Theorem 3.16 implies that Theorem 4.4 in Khedher and Vanmaele [115] holds.
Hence, the robustness results for the LRM strategy in Khedher and Vanmaele [115] can
be applied in the current setting. The following robustness results are direct applications
of Theorem 4.4, Theorem 4.5, and Theorem 4.6 in Khedher and Vanmaele [115].

Theorem 3.17. Let Ṽ and V̂ be respectively defined by (3.12) and (3.30). Under the
Assumptions 3.9 on the parameters of the model, and the assumptions that h is Lipschitz
and h(0) = 0, it holds that

max
i<n

E

[
sup

t∈[ti,ti+1]

|Ṽ (t)− V̂ (ti)|2
]
≤ C

n
,

where C is a positive constant.

The robustness of the amount of wealth in an LRM strategy follows in the next
theorem.
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Theorem 3.18. Let Υ̃ and Υ̂ be the amount of wealth defined as in (3.12) and (3.30).
Under the conditions of Theorem 3.17 it holds that

E

n−1∑
i=0

ti+1∫
ti

|Υ̃(s)− Υ̂(ti)|2 ds

 ≤ C

n
,

where C is a positive constant.

We state the robustness of remaining risk LFS in the following theorem.

Theorem 3.19. Let the processes LFS and L̂FS be as defined in (3.12) and (3.30).
Under the conditions of Theorem 3.17, we have for all 0 ≤ i ≤ n− 1,

E
[∣∣∣LFS(ti+1)− L̂FS(ti+1)

∣∣∣2] ≤ C

n
,

where C is a positive constant.

Notice that this latter result implies the robustness of the cost process in an LRM
strategy. Indeed the cost processes in an LRM strategy related to the price processes
S and Ŝ are respectively given by C(t) = LFS(t) + V (0), t ∈ [0, T ], and Ĉ(ti) =

L̂FS(ti) + V̂ (0), i = 0, . . . , n. Then applying Theorems 3.17 and 3.19, we get for all
i = 0, . . . , n,

E[|C(ti)− Ĉ(ti)|2] ≤ CE[|LFS(ti)− L̂FS(ti)|2] + E[|V (0)− V̂ (0)|2] ≤ C

n
.

3.3.4 Robustness study

In the previous subsections, we imposed that the jumps deriving the asset price process
has finite activity, i.e. `(|z| ≤ 1) < ∞, where ` is the Lévy measure such that
E[N(dt, dz)] = `(dz) dt. It is easy to simulate the jumps in this setting. However, if the
Lévy measure has infinite activity, i.e. `(|z| ≤ 1) = ∞, simulation of these jumps is a
demanding task. Asmussen and Rosinsky [7] proposed to shift from a model with small
jumps to another where those variations are represented by some appropriately scaled
continuous component. The idea is to approximate the small jumps in the martingale
ζ (3.14) by a Brownian motion B which is scaled with the stand deviation of the small
jumps. That is, we will approximate ζ by ζε,

ζε(t) =

t∫
0

b(s) dW (s) +

t∫
0

G(ε)γ̃(s) dB(s) +

t∫
0

∫
|z|>ε

γ(s, z) Ñ(ds,dz) . (3.49)
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Then, we enlarge the filtration F = (Ft)0≤t≤T to G = (Gt)0≤t≤T with the information
of the Brownian motion B, i.e.

Gt = σ

W (s), B(s),

s∫
0

∫
A

Ñ(du,dz), s ≤ t, A ∈ B(R)

 ∨N , (3.50)

where N represents the set of P-null events in F . We define the process Sε as follows

dSε(t) = Sε(t−) (a(t) dt+ dζε(t)) , (3.51)

where a is the same as that in (3.9). If Sε is selected as a model for the underlying asset
price process, the LRM strategy can also be formulated as the solution to a BSDE{

dṼε(t) = Υ̃ε(t)a(t) dt+ Υ̃ε(t) dζε(t) + dLFSε (t),

Ṽε(T ) = ξ̃ε ,
(3.52)

where ξ̃ε is the discounted payoff and the G-predictable process Υ̃ε defined as Υ̃ε(t) =

χFSε (t)Sε(t−) is the amount of wealth to invest in the LRM strategy.
Recall that the SDE (3.9) can be re-written as

dS(t) = S(t−) (a(t) dt+ dζ(t)) .

Notice that by scaling the Brownian motion with the standard deviation of the small
jumps, both processes S and Sε have the same variance when ε goes to zero. It
means that (Sε(t))0≤t≤T converges to (S(t))0≤t≤T in an L2-sense when ε goes to zero.
However, S and Sε are indeed two different models for the underlying assets.

From a modelling point of view, the difference of the two models could lead to model
uncertainty, since it is difficult to confirm whether the jump process has finite activity or
infinite activity. Hence, the issue is whether the induced LRM hedging strategies from
Sε converge to the LRM strategies from S . From a simulation point view, the issue
is whether the simulated LRM strategy Υ̂ε with the scheme proposed in Section 3.3.2
converges to Υ̃. In this setting, we are actually confronted with model uncertainty in the
discrete-time models.

Theorem 5.7 in Khedher and Vanmaele [115] states that the numerical solution of
the BSDE (3.52) with the proposed scheme in Section 3.3.2 converges to the original
solution of the BSDE (3.12) in an L2-sense. It means that in the present model setting,
the LRM strategies for vanilla and Asian options are robust with respect to model
uncertainty in both continuous-time and discrete-time senses.
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Remark 3.20. Except for the approximation method (3.49), an alternative approxima-
tion method is to ignore the small jumps (see Di Nunno et al. [63]). The numerical
solution of the induced BSDE with the proposed scheme in Section 3.3.2 also converges
to the solution of the BSDE (3.12) in an L2-sense [115].

3.4 Discretisation of LRM strategies for spread and
basket options

Taking the correlation between different risk factors into account, we investigate the
LRM strategies for spread and/or basket options and we propose an Euler discretisation
method for the simulation of such strategies. For this purpose we first extend the
approach by Bouchard and Elie [26] to allow for options written on two correlated asset
prices. Then we exploit the results by Khedher and Vanmaele [115] for the study of the
convergence rates.

In the analysis below we consider for the ease of the exposition d = 2 but it can be
extended to the case of a general d(≥ 2) using matrix notations. For the application of
spread options d = 2 is sufficient but for basket options one could think of baskets of
dimensions d > 2.

3.4.1 Continuous-time model: two-dimensional jump-diffusion

Let the riskless asset S(0) be as in (3.3.1) and S(·) := (S(1), S(2)) be a two-dimensional
price process with corresponding discounted price process S := (S1, S2) having
dynamicsdS1(t) = S1(t−)a1(t) dt+ S1(t−)dζ1(t) , S1(0) = s1 ≥ 0 ,

dS2(t) = S2(t−)a2(t) dt+ S2(t−)dζ2(t) , S2(0) = s2 ≥ 0 ,
(3.53)

where ai(t) = δi(t)− r(t), t ∈ [0, T ], i = 1, 2 and

dζi(t) = bi(t)dWi(t) +

∫
R

γi(t, z)Ñi(dt,dz) , i = 1, 2 . (3.54)

We impose Assumptions 3.9 on the parameters δi, r, bi, γi, i = 1, 2 . Moreover,
we assume that W1 and W2 are two correlated standard Brownian motions such that
dW1(t) dW2(t) = ρdt, t ∈ [0, T ], ρ ∈ (−1, 1), and Ñ1 and Ñ2 are two independent
centred Poisson random measures. Notice that there exist two independent Brownian
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motions W (1) and W (2) such that W1 = W (1) and W2 = ρW (1) +
√

1− ρ2W (2).
Thus the σ-algebra generated by S1 and by S2 is the σ-algebra (Ft)0≤t≤T defined in
(3.50) .

From (3.53), it is easy to verify that S can be decomposed into the two-dimensional
square integrable martingale M starting in 0 and a predictable finite variation process
A, with A(0) = 0 and such that 〈M〉 is a 2 × 2-dimensional process with components
〈Mi,Mj〉, i, j ∈ {1, 2}, given by

d〈Mi〉t = κi(t) (Si( t))
2dt , i = 1, 2

d〈Mi,Mj〉t = κ12(t)S1(t)S2(t)dt , i 6= j, i, j = 1, 2

where

κi(t) := b2i (t) +

∫
R

γ2
i (t, z)`i(dz) and κ12(t) := b1(t)b2(t)ρ . (3.55)

Assumptions 3.9 for bi and γi imply

κ(t) := κ1(t)κ2(t)− κ2
12(t) ≥ C , (3.56)

for a strictly positive constant C. Then the predictable process λ defined in (3.3) and
associated with the process S (3.53) is given by

(λ1(t), λ2(t)) =

(
κ2(t)a1(t)− a2(t)κ12(t)

κ(t)S1(t−)
,
κ1(t)a2(t)− a1(t)κ12(t)

κ(t)S2(t−)

)
, (3.57)

for 0 ≤ t ≤ T . The MVT process defined in (3.4) and associated with the process S
(3.53) is given by

K(t) =

t∫
0

κ1(s)a2
2(s) + κ2(s)a2

1(s)− 2a1(s)a2(s)κ12(s)

κ(s)
ds . (3.58)

Assumptions 3.9 for ai, bi and γi imply condition (3.56) and hence that K is uniformly
bounded in t by a constant.

We consider payoffs of the form h(S(·)(T )), where h is assumed to satisfy h(0, 0) =

0 in the sequel. Otherwise, we can work with ĥ = h − C , for h(0, 0) = C , where C
is a constant. In addition, h is assumed to be a Lipschitz function written on the two-
dimensional process S(·) = S(0)S determined by (3.53). h can be for example a payoff
of a spread or a basket option (see Carmone and Durrleman [33] and Xu and Zheng
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[179] for more about pricing such options respectively in continuous and jump-diffusion
setting). Let the contingent claim be given by ξ = h(S(·)(T )) and its discounted value
by ξ̃ = ξ/S(0)(T ), which is assume to be square integrable. The FS-decomposition
(3.5) written under the real world measure P for the two-dimensional price process S
leads to the following BSDE for Ṽ

Ṽ (t) = Ṽ (T )−
T∫
t

{
Υ̃1(s)a1(s) + Υ̃2(s)a2(s)

}
ds−

T∫
t

Υ̃1(s) dζ1(s)

−
T∫
t

Υ̃2(s) dζ2(s)− LFS(T ) + LFS(t) ,

Ṽ (T ) = ξ̃ ,

(3.59)

where Υ̃i(t) = χFSi (t)Si(t−) is the amount of wealth invested in the risky asset Si,
for i = 1, 2. Moreover, from the FS-decomposition in the LRM strategy we know that
Υ̃ = (Υ̃1, Υ̃2) ∈ Θ and LFS is a square integrable P-martingale such that [LFS ,M1]

and [LFS ,M2] are P-martingales. Since LFS(T ) is anFT -measurable square integrable
random variable, then applying the representation theorem for the process LFS , we get

LFS(t) =

t∫
0

P (s)dW (1)(s) +

t∫
0

Q(s)dW (2)(s) +

t∫
0

∫
R

R1(s, z)Ñ1(ds,dz)

+

t∫
0

∫
R

R2(s, z)Ñ2(ds,dz) ,

(3.60)

where P,Q ∈ H2
[0,T ] and R1, R2 ∈ Ĥ2

[0,T ]. We introduce the following classical BSDE

−dṼ (t) = f(t, Y (t), Z(t),Γ1(t),Γ2(t))dt− Y (t)dW (1)(t)− Z(t)dW (2)(t)

−
∫
R

U1(t, z)Ñ1(dt, dz)−
∫
R

U2(t, z)Ñ2(dt, dz) ,

Ṽ (T ) = ξ̃ ,
(3.61)

where Γi(t) =
∫
R
Ui(t, z)γi(t, z)`i(dz) (i = 1, 2) and ξ̃ ∈ L2

T is FT -measurable. Under

the standard assumptions on f : [0, T ] × R4 → R, Tang and Li (1994) prove that the
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BSDE (3.61) admits a unique solution (Ṽ , Y, Z, U1, U2) ∈ S2
[0,T ] ×H

2
[0,T ] ×H

2
[0,T ] ×

Ĥ2
[0,T ]×Ĥ

2
[0,T ]. As we did in Section 3.3, we investigate the relation of the BSDE (3.59)

to the classical BSDE (3.61) in the following proposition.

Proposition 3.21. Let (Ṽ , Υ̃1, Υ̃2, L
FS) be the solution of the BSDE (3.59). Under

the Assumptions 3.9, the BSDE (3.59) with LFS given by (3.60) can be rewritten as the
classical BSDE (3.61) where

Y (t) = Υ̃1(t)b1(t) + Υ̃2(t)b2(t)ρ+ P (t) , Z(t) = Υ̃2(t)b2(t)
√

1− ρ2 +Q(t) ,

U1(t, z) = Υ̃1(t)γ1(t, z) +R1(t, z) , U2(t, z) = Υ̃2(t)γ2(t, z) +R2(t, z)

and

f(t, y, z, u1, u2)

=−
{
a1(t)

κ2(t)b1(t)− κ12(t)b2(t)ρ

κ(t)
+ a2(t)

κ1(t)b2(t)ρ− κ12(t)b1(t)

κ(t)

}
y

+

{
a1(t)

κ12(t)b2(t)
√

1− ρ2

κ(t)
− a2(t)

κ1(t)b2(t)
√

1− ρ2

κ(t)

}
z

− a1(t)κ2(t)− a2(t)κ12(t)

κ(t)
u1 −

a2(t)κ1(t)− a1(t)κ12(t)

κ(t)
u2 .

Proof. Recall κ1, κ2, and κ12 in (3.55). The fact that [LFS ,M1] and [LFS ,M2] are
P-martingales yields

κ1(t)Υ̃1(t) + κ12(t)Υ̃2(t) = b1(t)Y (t) +

∫
R

γ1(t, z)U1(t, z) `1(dz) ,

κ12(t)Υ̃1(t) + κ2(t)Υ̃2(t) = b2(t)ρY (t) + b2(t)
√

1− ρ2Z(t)

+

∫
R

γ2(t, z)U2(t, z) `2(dz) .

(3.62)

Recall κ(t) in (3.56). Solving (3.62) for Υ̃1(t) and Υ̃2(t), we get

Υ̃1(t) =
κ2(t)b1(t)− κ12(t)b2(t)ρ

κ(t)
Y (t)− κ12(t)b2(t)

√
1− ρ2

κ(t)
Z(t)

+
κ2(t)

κ(t)

∫
R

γ1(t, z)U1(t, z) `1(dz)− κ12(t)

κ(t)

∫
R

γ2(t, z)U2(t, z) `2(dz) ,

(3.63)
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Υ̃2(t) =
κ1(t)b2(t)ρ− κ12(t)b1(t)

κ(t)
Y (t) +

κ1(t)b2(t)
√

1− ρ2

κ(t)
Z(t)

− κ12(t)

κ(t)

∫
R

γ1(t, z)U1(t, z) `1(dz) +
κ1(t)

κ(t)

∫
R

γ2(t, z)U2(t, z) `2(dz)

(3.64)

and noting that f(t, Y (t), Z(t),Γ1(t),Γ2(t)) = −a1(t)Υ̃1(t)− a2(t)Υ̃2(t) the expres-
sion for f follows. The fact that this function f is Lipschitz is easily seen. In fact, by
Assumptions 3.9, the functions ai, bi, and γi are uniformly bounded in [0, T ] and hence
also the functions κi, κ12 , i = 1, 2. Therefore the lower bound (3.56) holds.

The estimates for the value of the portfolio and the amounts of wealth invested in
the risky assets are derived in the following theorem for options written in the two-
dimensional price process S. These results are the analogues of those in Theorem 3.11.

Theorem 3.22. Let (Ṽ , Υ̃1, Υ̃2, L
FS) be the solution of the BSDE (3.59). Under

Assumptions 3.9 and the assumptions that h is Lipschitz and h(0, 0) = 0, we have

max
i<n

E

[
sup

t∈[ti,ti+1]

|Ṽ (t)− Ṽ (ti)|2
]

+

2∑
j=1

E

n−1∑
i=0

ti+1∫
ti

|Υ̃j(s)− Υ̃j(ti)|2 ds


≤ C

n
,

where C is a positive constant.

Proof. The estimate for Ṽ follows immediately from Theorem 2.1 in Bouchard and
Elie [26] and Proposition 3.21 in this chaper. Here we focus on the estimate for Υ̃1

and Υ̃2 . We proceed to prove the statement in the setting of options written in the
two-dimensional price process S given in (3.53). To simplify the notation, we define
Λ(s) := (Y (s), Z(s),Γ1(s),Γ2(s)) , s ∈ [0, T ], fs(y, z, u1, u2) := f(s, y, z, u1, u2)

and ∇ft(y, z, u1, u2) := (∂yf, ∂zf, ∂u1
f, ∂u2

f) . Integrating (3.61) we get

Ṽ (t) =
h(S(·)(T ))

S(0)(T )
+

T∫
t

fs(Λ(s)) ds−
T∫
t

Y (s) dW (1)(s)−
T∫
t

Z(s) dW (2)(s)

−
T∫
t

∫
R

U1(s, z) Ñ1(ds,dz)−
T∫
t

∫
R

U2(s, z) Ñ2(ds,dz). (3.65)
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Following the same steps as in the proof of Theorem 3.11, we derive estimates for the
processes Y and Z using the Malliavin derivative under an additional assumption that
h ∈ C1

b (R2), and generalize these estimates to the setting that h is Lipschitz using an
approximation argument. Let D(1) denote the Malliavin derivative operator w.r.t. the
Brownian motion W (1). Then taking the Malliavin derivative D(1) on both sides of
(3.65), we get

D(1)
s Ṽ (t) =

∇h(S(·)(T ))

S(0)(T )
·D(1)

s (S1(T ), S2(T )) +

T∫
t

∇fr(Λ(r)) ·D(1)
s (Λ(r)) dr

−
T∫
t

D(1)
s Y (r) dW (1)(r)−

T∫
t

D(1)
s Z(r) dW (2)(r)

−
T∫
t

∫
R

D(1)
s U1(r, z) Ñ1(dr, dz)−

T∫
t

∫
R

D(1)
s U2(r, z) Ñ2(dr, dz),

(3.66)

where h is assumed to be inC1
b (R2) at the moment. Note that ft ∈ C1

b (R4) for t ∈ [0, T ]

since the partial derivatives of ft can be obtained in a similar way as in the proof of
Theorem 3.11. Observe that the Malliavin derivative for the process S is given by (see
Theorem 3 and Proposition 7 in Petrou [144] and Theorem 2.2.1 in Nualart [137] for
more details)

D(1)
s S1(T ) =

b1(s)S1(s)

∂s1S1(s)
· ∂s1S1(T )Is≤T = b1(s)S1(T )Is≤T ,

D(1)
s S2(T ) =

b2(s)ρS2(s)

∂s2S2(s)
· ∂s2S2(T )Is≤T = b2(s)ρS2(T )Is≤T .

Hence, (3.66) is equivalent to

D(1)
s Ṽ (t)− hy(S(·)(T ))

S(0)(T )
b2(s)ρS2(T )Is≤T

=
hx(S(·)(T ))

S(0)(T )
b1(s)S1(T )Is≤T +

T∫
t

∇fr(Λ(r)) ·D(1)
s (Λ(r)) dr

−
T∫
t

D(1)
s Y (r) dW (1)(r)−

T∫
t

D(1)
s Z(r) dW (2)(r)
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−
T∫
t

∫
R

D(1)
s U1(r, z) Ñ1(dr, dz)−

T∫
t

∫
R

D(1)
s U2(r, z) Ñ2(dr, dz) . (3.67)

Moreover, considering the variation of Ṽ w.r.t. s1, we get

∂s1 Ṽ (t) =
hx(S(·)(T ))

S(0)(T )
· ∂s1S1(T ) +

T∫
t

∇fr(Λ(r)) · ∂s1(Λ(r)) dr

−
T∫
t

∂s1Y (r) dW (1)(r)−
T∫
t

∂s1Z(r) dW (2)(r)

−
T∫
t

∫
R

∂s1U1(r, z) Ñ1(dr, dz)−
T∫
t

∫
R

∂s1U2(r, z) Ñ2(dr, dz) . (3.68)

From (3.67) and (3.68), we deduce

D(1)
s Ṽ (t) =

hy(S(·)(T ))

S(0)(T )
b2(s)ρS2(T )Is≤T + s1b1(s)∂s1 Ṽ (t)Is≤T . (3.69)

Noticing that D(1)
t Ṽ (t) = Y (t), (3.69) leads for t ∈ [0, T ] to

Y (t) =
hy(S(·)(T ))

S(0)(T )
b2(t)ρS2(T )It≤T + s1b1(t)∂s1 Ṽ (t)It≤T

=
hy(S(·)(T ))

S(0)(T )
b2(t)ρS2(T ) + s1b1(t)

hx(S(·)(T ))

S(0)(T )
· ∂s1S1(T )

+
T∫
t

∇fr(Λ(r)) · ∂s1(Λ(r)) dr −
T∫
t

∂s1Y (r) dW (1)(r)−
T∫
t

∂s1Z(r) dW (2)(r)

−
T∫
t

∫
R

∂s1U1(r, z) Ñ1(dr, dz)−
T∫
t

∫
R

∂s1U2(r, z) Ñ2(dr, dz)

 .
Then following the same arguments as in the proof of Proposition 4.5 in Bouchard and
Elie [26], we get

E

n−1∑
i=0

ti+1∫
ti

|Y (s)− Y (ti)|2 ds

 ≤ C

n
. (3.70)
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Considering the Malliavin derivative w.r.t. the Brownian motion W (2), we get by the
same type of argument the following representation for the process Z for t ∈ [0, T ]

Z(t) = s2b2(t)
√

1− ρ2

hy(S(·)(T ))

S(0)(T )
· ∂s2S2(T ) +

T∫
t

∇fr(Λ(r)) · ∂s2(Λ(r)) dr

−
T∫
t

∂s2Y (r) dW (1)(r)−
T∫
t

∂s2Z(r) dW (2)(r)

−
T∫
t

∫
R

∂s2U1(r, z) Ñ1(dr, dz)−
T∫
t

∫
R

∂s2U2(r, z) Ñ2(dr, dz)

 .
Thus the estimate for the process Z follows the same arguments as in Bouchard and
Elie [26] and we get

E

n−1∑
i=0

ti+1∫
ti

|Z(s)− Z(ti)|2 ds

 ≤ C

n
. (3.71)

By relating the BSDE (3.61) to partial integro-differential equations as in Bouchard and
Elie [26] we show the following estimates for U1 and U2

E

n−1∑
i=0

ti+1∫
ti

∫
R

|Uj(s, z)− Uj(ti, z)|2 `(dz) ds

 ≤ C

n
, j = 1, 2 . (3.72)

By the same approximation arguments used in the proof of Theorem 3.3, we get that the
estimates (3.70), (3.71) and (6.5) for Y , Z and Uj (j = 1, 2) hold when h is Lipschitz.

Using the expressions for Υ̃1 and Υ̃2 in terms of Y , Z, U1, and U2 (see (3.63) and
(3.64)), we obtain the statement following the same lines of proof as in Theorem 2.3 in
Khedher and Vanmaele [115].

3.4.2 Discrete-time model

In the sequel, we consider a time-discretisation of the two-dimensional price process S
and we compute the associated LRM strategy.

Time-discretisation of the forward equation. The discrete time version of the process
S defined in (3.53) is given for i = 0, . . . , n− 1 by Ŝj(ti+1) := Ŝj(ti) + Ŝj(ti)

(
aj(ti) ∆ti + ∆ζ̂j(ti)

)
, j = 1, 2 ,

Ŝj(0) = Sj(0) , j = 1, 2 ,
(3.73)
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where for j = 1, 2 ,

∆ζ̂j(ti+1) :=

ti+1∫
ti

bj(ti) dWj(t) +

ti+1∫
ti

∫
R

g(z) γ̃j(ti) Ñj(dt, dz) ,

for aj , bj , and γ̃j as in (3.53)-(3.54) and to which we impose Assumptions 3.9. The
discrete-time version of the predictable process λ in (3.57) is denoted by λ̂ and is given
by

(λ̂1(ti+1), λ̂2(ti+1)) =
(
κ2(ti)a1(ti)−a2(ti)κ12(ti)

κ(ti)Ŝ1(ti)
, κ1(ti)a2(ti)−a1(ti)κ12(ti)

κ(ti)Ŝ2(ti)

)
.

The discrete-time specification of the MVT process K defined in (3.58) is given by

K̂(ti+1) =
∑

0≤k≤i

κ1(tk)a2
2(tk) + κ2(tk)a2

1(tk)− 2a1(tk)a2(tk)κ12(tk)

κ(tk)
∆tk+1,

and due to the assumptions on the model parameters is uniformly bounded in ti by a
constant.

Time-discretisation of the backward equation. Considering a discretisation of the
BSDE (3.59), we get

V̂ (ti) = V̂ (ti+1)−
(

Υ̂1(ti)a1(ti) + Υ̂2(ti)a2(ti)
)

∆ti+1

−Υ̂1(ti)∆ζ̂1(ti+1)− Υ̂2(ti)∆ζ̂2(ti+1)−∆L̂FS(ti+1) ,

V̂ (T ) = ξ̂ ,

(3.74)

where ξ̂ = h(Ŝ(·)(T ))/Ŝ(0)(T ), Υ̂j(ti) = χ̂FSj (ti)Ŝj(ti), j = 1, 2, is the amount of
wealth invested in the asset Ŝj , j = 1, 2, in an LRM strategy.

Backward iteration scheme. Denote

ςj(ti) := E[V̂ (ti+1)∆ζ̂j(ti+1) | Fti ] , j = 1, 2 .

To obtain a backward iteration scheme for (3.74), we first take the expectation
conditionally onFti on both sides in (3.74) to arrive at the expression for V̂ (ti). Then for
j = 1, 2 we multiply both sides in (3.74) by ∆ζ̂j(ti+1) and take conditional expectation
w.r.t. Fti to find the system for i = n− 1, . . . , 0

ς1(ti) =
(

Υ̂1(ti)κ1(ti) + Υ̂2(ti)κ12(ti)
)

∆ti+1 ,

ς2(ti) =
(

Υ̂2(ti)κ2(ti) + Υ̂1(ti)κ12(ti)
)

∆ti+1 ,

V̂ (ti) = E[V̂ (ti+1) | Fti ]−
(
a1(ti)Υ̂1(ti) + a2(ti)Υ̂2(ti)

)
∆ti+1 .
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Solving the latter for Υ̃1 and Υ̃2, we get for i = n− 1, . . . , 0



Υ̂1(ti) =
n

Tκ(ti)
(κ2(ti)ς1(ti)− κ12(ti)ς2(ti)) ,

Υ̂2(ti) =
n

Tκ(ti)
(κ1(ti)ς2(ti)− κ12(ti)ς1(ti)) ,

V̂ (ti) = E[V̂ (ti+1) | Fti ]−
(
a1(ti)Υ̂1(ti) + a2(ti)Υ̂2(ti)

)
∆ti+1 .

(3.75)

As for L̂FS , being zero at zero, we have from (3.74)

L̂FS(T ) = V̂ (T )−
n−1∑
i=0

(
Υ̂1(ti)a1(ti) + Υ̂2(ti)a2(ti)

)
∆ti+1

−
n−1∑
i=0

Υ̂1(ti)∆ζ̂1(ti+1)−
n−1∑
i=0

Υ̂2(ti)∆ζ̂2(ti+1)− V̂ (0) .

3.4.3 L2-convergence of the discretisation scheme

In the sequel we study the L2-convergence of the LRM strategy related to the time-
discrete model to the LRM strategy related to the continuous-time model where we
consider the two-dimensional setting. Moreover, we compute rates for the convergence
results.

The result of Theorem 3.12 is applied to the two-dimensional setting providing us
with a convergence rate of the order of the time step for the approximation of Sj in (3.53)
by Ŝj in (3.73) for j = 1, 2 .

The analogue of Proposition 3.13 in the present setting is

Proposition 3.23. Let Ṽ and V̂ be solutions of (3.59) and (3.74), with a payoff function
h being Lipschitz and h(0, 0) = 0. Under Assumptions 3.9, we have

E
[
|Ṽ (T )− V̂ (T )|2

]
= E

[
|ξ̃ − ξ̂|

2
]
≤ C

n
,

for a positive constant C independent of the number of steps.

Proof. Following the lines of the proof of Proposition 3.13 we easily arrive at

E[|ξ̃ − ξ̂|2] = E

∣∣∣∣∣h(S(·)(T ))

S(0)(T )
− h(Ŝ(·)(T ))

Ŝ(0)(T )

∣∣∣∣∣
2

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≤ C


2∑
j=1

E
[∣∣∣S(j)(T )

∣∣∣2]E [∣∣∣Ŝ(0)(T )− S(0)(T )
∣∣∣2]

+

2∑
j=1

E
[∣∣∣S(j)(T )− Ŝ(j)(T )

∣∣∣2]E [∣∣∣S(0)(T )
∣∣∣2]
 .

The statement follows by using Lemma 3.2 in Benth et al. [21] and applying the analogue
of Theorem 3.12 to S(0), S(1), and S(2).

We adapt the results of Khedher and Vanmaele [115] to BSDEs driven by two
correlated martingales. That is to a value process Ṽ solving

Ṽ (t) =Ṽ (T )−
2∑
j=1

T∫
t

Υ̃j(s)
aj(s)

κj(s)
d〈ζj〉s −

2∑
j=1

T∫
t

Υ̃j(s) dζj(s)

− LFS(T ) + LFS(t) .

In order to extend the corresponding proofs in Khedher and Vanmaele [115] to our
setting, we need to show that the coefficients in the expressions (3.63)-(3.64) of Υ̃j ,
j = 1, 2 are Lipschitz. Under Assumptions 3.9 the functions bj , j = 1, 2, are Lipschitz
and (3.56) holds, hence it is sufficient to show that κj , j = 1, 2 and κ12 are Lipschitz.
The latter also immediately follows from the Assumptions 3.9 for bj and γj , j = 1, 2 .

Theorem 3.22, the analogue of Theorem 3.12, and Proposition 3.23 guarantee that
the conditions of Theorem 4.4 in Khedher and Vanmaele [115] adapted to our setting
hold. This statement can be confirmed by following the same lines as the proof of
Theorem 3.16. Hence, the corresponding robustness results for the LRM strategy can
be applied in the current setting. The following robustness results are applications of
Theorem 4.4, Theorem 4.5, and Theorem 4.6 in Khedher and Vanmaele [115].

Theorem 3.24. Let Ṽ and V̂ be respectively defined by (3.59) and (3.74). Under the
Assumptions 3.9 on the parameters of the model and the assumptions that h is Lipschitz
and h(0, 0) = 0, it holds that

max
i<n

E

[
sup

t∈[ti,ti+1]

|Ṽ (t)− V̂ (ti)|2
]
≤ C

n
,

where C is a positive constant.

The robustness of the amount of wealth in an LRM strategy follows in the next
theorem.
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Theorem 3.25. Let Υ̃ and Υ̂ be the amount of wealth defined as in (3.59) and (3.74).
Under the conditions of Theorem 3.24 it holds that

2∑
j=1

E

n−1∑
i=0

ti+1∫
ti

|Υ̃j(s)− Υ̂j(ti)|2 ds

 ≤ C

n
,

where C is a positive constant.

We state the robustness of the remaining risk LFS in the following theorem.

Theorem 3.26. Let the processes LFS and L̂FS be as defined in (3.59) and (3.74).
Under the conditions of Theorem 3.24, we have for all 0 ≤ i ≤ n− 1,

E
[∣∣∣LFS(ti+1)− L̂FS(ti+1)

∣∣∣2] ≤ C

n
,

where C is a positive constant.

Notice that this latter result implies the convergence of the cost process in an LRM
strategy. Indeed the cost processes in an LRM strategy related to the price processes
S and Ŝ are respectively given by C(t) = LFS(t) + V (0), t ∈ [0, T ], and Ĉ(ti) =

L̂FS(ti) + V̂ (0), i = 0, . . . , n. Then applying Theorems 3.24 and 3.26, we get for all
i = 0, . . . , n,

E[|C(ti)− Ĉ(ti)|2] ≤ CE[|LFS(ti)− L̂FS(ti)|2] + E[|V (0)− V̂ (0)|2] ≤ C

n
.

3.5 Numerical examples

In this section, we consider a specification of the model class presented in Section 3.3.
Algorithm 3.1 presented in the sequel gives an outline how the hedging strategy can be
calculated in our model setup.

For the Euler-scheme, we consider the setup from Section 3.3.2. Recall the
equidistant time grid πn as in (3.19) and the discrete version of the stock price process
as in (3.27). The simulation of the forward Euler-scheme is well-known and easy to
implement. However, the calculation of the hedging strategy is not that straightforward
because one has to deal with the backward scheme (3.31).

Algorithm for the LRM strategy. The crucial part in solving (3.31) is to calculate
the conditional expectations appearing in the formula. This cannot be done analytically
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and should therefore be estimated in a sensible manner. There are different methods
in the literature dealing with the problem of numerical computation of conditional
expectations. One approach is to use Monte Carlo as in Bally et al. [12] and Daveloose
et al. [55] where a Malliavin approach and a conditional density method were considered
to express the conditional expectations in terms of regular expectations without any
conditioning. Another method is to use a regression-based ansatz as in Longstaff and
Schwartz [123]. For a nice overview of various regression-based approaches to solve
numerically conditional expectations, we refer to Kohler [118]. In this chapter we use
this latter approach.

By applying such a regression-based method, one implicitly assumes a Markovian
property for the conditional expectations. In our case it means, that the conditional
expectations

E

 V̂ (ti+1)

b(ti) ∆W (ti+1) +

∫
R

γ(ti, z)Ñ ((ti, ti+1],dz)

∣∣∣∣∣∣Fti


and

E
[
V̂ (ti+1) |Fti

]
are estimated by functions of Ŝ(ti), namely

αi(Ŝ(ti)) := E

 V̂ (ti+1)

b(ti) ∆W (ti+1) +

∫
R

γ(ti, z)Ñ ((ti, ti+1],dz)

∣∣∣∣∣∣ Ŝ(ti)


and

βi(Ŝ(ti)) := E
[
V̂ (ti+1)

∣∣∣ Ŝ(ti)
]
.

In Algorithm 3.1, we choose αi and βi to be piecewise linear by performing more than
only one regression in each time step.

Algorithm 3.1 (Calculation of the LRM strategy).
Let m denote the number of Monte-Carlo-paths and let w ∈ N.

1. Draw m × n normal distributed random variables representing the increments
of the Brownian motion and m × n random variables from a distribution
corresponding to the increments of the jump process.
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2. Derive m paths of the asset price process Ŝ according to equation (3.27).

3. Calculate for each Monte-Carlo-path the expressions V̂ (tn) = ξ̂, where ξ̂

represents the payoff at time T , as defined in Section 3.3.2.

4. For i in {n− 1, n− 2, . . . , 1} do:

(a) Compute for each path V̂ ′(ti+1) := V̂ (ti+1)∆ζ̂(ti+1) .

(b) Sort the paths by the realisations of Ŝ(ti) in an ascending order and obtain
a sorted list of path s1, s2, . . . , sm.

(c) For j in {0, 1, . . . , w − 1} do:

i. Select a subset of paths, namely I :=
{
sm
w j+1, smw j+2, . . . , sm

w (j+1)

}
.

ii. Perform a linear regression with explanatory data {si}s∈I and the
V̂ ′(ti+1)-values corresponding to these paths as endogenous data. This
yields a linear function αij(x) = α

(0)
ij + α

(1)
ij x.

iii. Define for all s ∈ I the value for Υ̂(ti) by αij(s(ti))n
Tκ(ti)

.

iv. Perform a linear regression with explanatory data {s(ti)}s∈I and the
V̂ (ti+1)-values corresponding to these paths as endogenous data. This
yields a linear function βij(x) = β

(0)
ij + β

(1)
ij x.

v. Define for all s ∈ I the value for V̂ (ti) by βij(s(ti))− T
n a(ti)Υ̂(ti).

5. Define Υ̂(t0) as the average over all paths of the following values:

V̂ (t1)

κ(t1)

n

T
∆ζ̂(t1) .

6. Define V̂ (t0) as the average over all paths of the following values:

V̂ (t1)− T

n
Υ̂(t0)a(t0).

7. Compute for each Monte-Carlo-path the path of the hedging error L̂FS following
equation (3.32).

Due to the division into subsets in step 4c of Algorithm 3.1, the approximating
functions α and β are piecewise linear. Hence, the structure of α and β is flexible in
the sense that it can approximate an arbitrary function quite good as long as w is large
enough. An alternative approach can be created by widening the set of basis functions
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for the regression, e.g. one could use polynomials of higher order than just one. Then,
if one can guess how the functions α and β look like and the basis functions are chosen
reasonably, one can omit the division of the paths. However, it is often difficult to choose
a sensible set of basis functions, especially in case of the function α, which is the reason
for considering a piecewise linear ansatz to achieve a general setup.

In the sequel, we investigate numerical examples to show the accuracy of Algo-
rithm 3.1 and to consolidate the theoretical results in this chapter. In this context,
we consider vanilla and spread options for our numerical examples. Notice that
Algorithm 3.1 can be immediately applied to vanilla options. In the case of spread
options, the conditional expectations appearing in Equation (3.75) are approximated by
conditioning on Ŝ1(ti) − Ŝ2(ti). Hence, to apply Algorithm 3.1 to spread options, one
has to simulate two different asset price processes and the linear regressions in step 4c are
performed with respect to the difference of these two prices. To assume the Markovianity
in the case of Asian options, we need to condition on the current asset value Ŝ(ti) and on
the average value ŜA(T ) as defined in (3.29). Therefore, the regression based method is
not suited for Asian options, since a regression with two-dimensional explanatory data
becomes numerically involved. Thus, other numerical methods for the simulation of the
conditional expectations are called for. One for example can use Monte Carlo methods
as in Daveloose et al. [63], where a Malliavin derivative approach is used to express the
conditional expectations in terms of regular expectations without any conditioning. We
choose not to present this approach in this chapter and focus on the regression based
method. Next we present the stock price model that we consider for our numerical
examples.
Model setup. We assume that the dynamics of the discounted stock price process S is
given by a two-dimensional Merton model. That is S is as in (3.53), where ζ = (ζ1, ζ2)

is given by

dζi(t) = bi(t) dWi(t) + d

Ni(t)∑
j=1

Ji(j)−
cit

ηi

 , i = 1, 2 . (3.76)

We impose Assumptions 3.9 on the parameters of the model. Moreover, we assume
that the Brownian motions W1 and W2 are correlated with correlation coefficient ρ ,
Ni , i = 1, 2 , is a Poisson process with intensity ci, and {Ji(j)}j∈N , i = 1, 2 , is a
sequence of independent exponentially distributed random variables with parameter ηi .
The Poisson processes N1 and N2 are independent.
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3.5.1 Vanilla option

In this subsection we compute the LRM strategy for hedging vanilla options. For this
purpose, we consider a European call option with strikeK = 1.15 and maturity T = 0.5

year, i.e.,

ξ = (S(0.5)− 1.15)
+
,

where S is the one-dimensional version of (3.53) with ζ being as in (3.76). For
simplicity, we assume the interest rate r = 0 and we consider the following parameter
setting

a(t) = 0.04, w = 20, c = 5,

b(t) = 0.3, η = 40, S(0) = 1.

To test the accuracy of Algorithm 3.1 which results from the discretisation scheme
(3.31), we compare it to the Fourier approach as suggested in Hubalek et al. [108]. Thus
we first present the expressions for the amount of wealth and the value of the portfolio
using the Fourier approach. Then we perform our comparison study.

3.5.1.1 Fourier approach

Let S be as described above. Then according to Theorem 5.1.6 in Applebaum [4],
there exists a Lévy process L such that S(t) = S(0) exp(L(t)) and where the cumulant
function of L(1) is given by

%(u) = logE(euL1)

= u(a− c

η
− 1

2
b2) +

1

2
b2u2 − c+ cη

∞∫
0

(1 + y)
u
e−ηy dy.

By Proposition 3.1 in Hubalek et al. [108] we know that the number of assets and the
value of the hedging portfolio can be expressed as follows

χFS(t) = SR−1(t−)K1−R

2π

∫
R
eη̄(R−iu)(T−t)

(
K

S(t−)

)iu
µ̄(R−iu)

(R−iu)(R−iu−1) du,

Ṽ (t) = V (t) =
K1−RSR(t−)

2π

∫
R

(
K

S(t−)

)iu
eη̄(R−iu)(T−t)

(R− iu)(R− iu− 1)
du,

(3.77)
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where R > 1 is a damping factor, K is the strike of a vanilla call option, and

µ̄(R− iu) :=
%(R− iu+ 1)− %(R− iu)− %(1)

%(2)− 2%(1)
,

η̄(R− iu) := %(R− iu)− µ(R− iu)%(1) .

As one can observe from the formulas (3.77), the idea in the Fourier approach is to
exploit the cumulant function of the driving process L which is known for a big class
of Lévy processes. This explains our choice for constant parameters a and b. This is
not necessary for the applicability of the BSDE approach. Later on when we apply our
discretisation scheme to spread options we choose linear functions in t for the parameters
of the model.

3.5.1.2 Accuracy of the BSDE method

We compare χFS(ti)S(ti−), V (ti−) calculated by the Fourier transform techniques
(3.77), with Υ̂(ti), V̂ (ti) calculated by the BSDE technique (3.31), respectively. The
integrals in (3.77) are calculated with the T-COS method as introduced in Sun et
al. [162], which is a FFT-based method combined with the approach of Fang and
Oosterlee [76] based on the Fourier-cosine expansions.

The integral interval R is truncated into [−40, 40] and the integrand is approximated
by a truncation of its Fourier cosine expansion with 211 terms. We refer to Sun et
al. [162] for the details on the implementation. Fifty thousands (m = 50 000) paths
are used in the Algorithm 3.1 and the stepsize is set to be 0.05. The FFT-based method
totally costs about 448 s while the Algorithm 3.1 totally costs 36 s. The implementations
are done in MATLAB2014b (processor: Intel i5 2.5GHz, RAM:4GB). Unless the
parallelization computation technique is used in the FFT-based algorithm, it is more
efficient to use the Algorithm 3.1 to calculate the sample average of the four errors.
However, if one only considers a specific path of the value process, the wealth process
or the hedging error, then it is obviously efficient to use the FFT-based scheme as it only
needs a specific path of the asset price. In the sequence, whenever the sample average is
involved, we use Algorithm 3.1.

The comparison over all the simulated paths is summarized in Table 3.1. Since the
T-COS method is an accurate numerical method to calculate an integral with a smooth
integrand, this comparison confirms that the numerical results with the BSDE approach
are consistent with the numerical results using the Fourier transform approach.
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terms value

max
i=0,...,n

E
[(
Ṽ (ti)− V̂ (ti)

)2
]

2.8457e-06

max
i=0,...,n

E
[(

Υ̃(ti)− Υ̂(ti)
)2
]

5.4924e-04

max
i=0,...,n

E
[(
LFS(ti)− L̂FS(ti)

)2
]

1.6712e-05

Table 3.1: Overview of comparison between the Fourier transform approach and the BSDE
approach. The stepsize is set to be 0.05.

3.5.1.3 Convergence study

To consolidate the convergence results in Section 3.3.3, we have to do another numerical
test. We treat the numerical results for a large n as the solution of the continuous BSDE-
problem1. Indeed, we choose a daily step size to be seen as the exact solution, which
means n = 128. Then, we compare this solution to numerical results coming from
bigger step sizes, i.e. n ∈ {1, 2, 4, 8, 16, 32, 64}. Table 3.2 gives an overview of the
approximation errors for the stock price, the value process, the amount of wealth process
and the hedging error. These results are depicted in Figure 3.1 (left), from which one
can see that the four errors are linear functions of the step-size. The slope of these linear
functions is approximately one. This confirms our theoretical statements in Section 3.3
that the L2-convergence of the proposed numerical method is of the order of the time
step.

3.5.2 Spread option

In this subsection, we aim at hedging a call spread option with strike K = 0.15 and
maturity T = 0.5 year, i.e

ξ = (S1(0.5)− S2(0.5)− 0.15)
+
.

The parameter setting is given by

a1(t) = 0.02 + 0.01 t, b1(t) = 0.04− 0.01 t, c1 = 3, η1 = 30,

1Due to the aforementioned lower efficiency of the FFT-based scheme in the setting of calculating the
sample average, we did not use this scheme here.
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number of steps 1 2 4 8 16 32 64

max
i<n

E

[
sup

t∈[ti,ti+1]

(
S(t)− Ŝ(ti)

)2
]

512 259 129 62.5 29.2 14.1 6.51

max
i<n

E

[
sup

t∈[ti,ti+1]

(
Ṽ (t)− V̂ (ti)

)2
]

113 73.9 41.6 21.7 10.6 4.70 2.11

E

[
n−1∑
i=0

ti+1∫
ti

(
Υ̃(s)− Υ̂(ti)

)2

ds

]
608 326 173 89.2 45.0 21.5 9.81

E
[(
LFS(T )− L̂FS(T )

)2
]

38.6 21.1 11.9 6.31 3.25 1.59 0.78

Table 3.2: Overview of the errors for a vanilla call depending on the number of steps. All errors
are given in basis points, i.e. a percent of a percent.

a2(t) = 0.04 + 0.005 t, b2(t) = 0.03− 0.05 t, c2 = 5, η2 = 40,

T = 0.5 S1(0) = S2(0) = 1 w = 20, m = 1 000 000.

We consider a similar robustness study as for the vanilla option. Thus we choose a
daily step size to be seen as the exact solution and we compare this solution to numerical
results coming from bigger step sizes. The results are summarized in Table 3.3 and
depicted in Figure 3.1(right). From Figure 3.1(right), we can see that for small step sizes
the discretisation error related to the LRM strategy for the call spread option is a linear
function of the time stepsize. Again this confirms an L2-convergence of the order of the
time step as claimed in our theoretical statements in Section 3.3.

3.6 Conclusion

In this chapter we studied the L2-convergence of the discrete-time LRM strategy to the
continuous-time version using BSDEs driven by càdlàg martingales. We obtained a
convergence rate of the order of the time step for the value of the portfolio, the amount
of wealth invested in the risky asset, and the risk process in a LRM strategy for vanilla,
Asian, and spread options.

The proposed discretisation scheme provides an implementable numerical method
to simulate the LRM strategies for the mentioned options. We presented two numerical
examples. In these examples we considered LRM strategies related to vanilla and spread
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Figure 3.1: Convergence order for the asset price, the value process, the amount of wealth process
and the hedging error for a vanilla call option (left) and a call spread option (right). The slop of
the dashed red line is 1.

options written in a jump-diffusion model. Our theoretical results were consolidated
with the numerical examples.
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number of steps 1 2 4 8 16 32 64

max
i<n

E

[
sup

t∈[ti,ti+1]

(
S1(t)− Ŝ1(ti)

)2
]

778 397 199 96.6 45.4 21.5 9.49

max
i<n

E

[
sup

t∈[ti,ti+1]

(
S2(t)− Ŝ2(ti)

)2
]

474 236 116 56.4 26.3 12.3 5.71

max
i<n

E

[
sup

t∈[ti,ti+1]

(
Ṽ (ti)− V̂ (ti)

)2
]

199 126 68.8 35.2 17.1 7.52 2.56

E

[
n−1∑
i=0

ti+1∫
ti

(
Υ̃1(s)− Υ̂1(ti)

)2

ds

]
706 394 220 124 71.8 40.9 18.2

E

[
n−1∑
i=0

ti+1∫
ti

(
Υ̃2(s)− Υ̂2(ti)

)2

ds

]
339 196 112 66.5 41.0 25.3 14.0

E
[(
LFS(T )− L̂FS(T )

)2
]

77.4 46.9 27.4 16.3 10.1 6.17 3.09

Table 3.3: Overview of the errors for a call spread depending on the number of steps. All errors
are given in basis points, i.e. a percent of a percent.





4
Uncertainty quantification of derivative

instruments

In this chapter, we focus on model uncertainty resulted from model calibration. Model
uncertainty is characterized by a finite set of plausible models of different types, while
parameter uncertainty is characterized by specifying each parameter in an interval. Each
parameter can take any value from its value interval. Cont [49] proposed to quantify the
uncertainty embedded in a derivative value in terms of its worst-case values. From this
point of view, we only have to consider a special type of these models. Otherwise, we
can calculate the worst-case values under the models of each type and find the bounds
of these worst-case values. Hence, without loss of generality, we focus on parameter
uncertainty in this chapter. In this setting, the key issue is how to efficiently calculate
a large ensemble of the derivative value associated with a given large ensemble of the
model parameters.

Combining the Monte Carlo method and the Smolyak interpolation algorithm, this
chapter proposes an accurate and efficient numerical method to calculate a derivative
value for any given realisation of the model parameters. The proposed method can be
used to calculate the coherent uncertainty measure [49] and the entropy of the derivative
value. It can also be used to accelerate the procedure of robust calibration (see e.g.
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[13, 66, 94]).

4.1 Introduction

In the context of pricing and hedging of exotic, over-the-counter (OTC) derivatives, the
price process of the underlying asset can be modeled by a set of parametric models
of different types, such as local volatility models, stochastic volatility models, and
Lévy models. The parameters of these models can be estimated by model calibration.
However, there are two issues with model calibration: first, different kinds of models
can be perfectly calibrated to the same market data [151]; second, different calibration
methods may yield different estimations for each parameter of a specific model [91].
These empirical facts, together with a limited knowledge of the market dynamics,
confront an agent with ambiguity about which model is the best one to value a target
derivative, especially when the well-calibrated models may lead to quite different
results. Model and parameter ambiguities are ubiquitous whenever a parametric model
is employed. These ambiguities include two different categories according to Knight
[117]: risk and uncertainty. Model (parameter) risk relates to the setting in which the
probabilities of the candidate models (parameter realisations) are known, while model
(parameter) uncertainty arises from a lack of knowledge of the probabilistic information
on these models (parameter realisations). This chapter focuses on the model (parameter)
uncertainty, and the aim is to numerically quantify its impact on a derivative value.

Uncertainty quantification is a growing concern from the point of view of regulation
and risk management. According to the regulations set by the Federal Reserve Board
[78] and the recent updates of the Basel II market risk framework [23], it is compulsory
to assess and quantify the uncertainty embedded in a target derivative instrument. This
procedure could provide financial institutions with the information to assess the need
for valuation adjustments and mitigate the risk associated with their trading activities.
Essentially, this information is very important for keeping agents informed when they
bargain over the price of a derivative in the OTC market. Since the final price is based
on bargaining (see e.g. [67]), we use the term ‘value’ rather than ‘price’ of a derivative
in this chapter.

To account for model uncertainty, it is robust to consider a finite set of plausible
models. At the parameter level, it is difficult to differentiate the well-calibrated models,
under which the model prices of benchmarks lie between the corresponding bid-ask
prices quoted in liquid markets. Hence, the confidence interval of each model parameter
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can be employed for option pricing. To our knowledge, this idea was first proposed
by [11] and [126]. In these settings, an agent may have no preference for the candidate
models or the parameter realisations. As noted by the authors of [148], traders and
institutions attack model uncertainty through a worst-case approach, for example, by
stress testing of portfolios.

Following a worst-case approach, Cont [49] proposed an uncertainty measure,
namely the spread between lower and upper bounds of the target derivative value when
a set of plausible models are employed. This measure is not only consistent with the
worst-case approach for option pricing, but also takes into account the hedgeable and
unhedgeable risk. Although it satisfies a set of meaningful axioms, little attention
has been paid on how to efficiently calculate it for exotic derivatives under complex
parametric models. This chapter proposes an accurate and efficient numerical method to
fill this gap.

The proposed method can be used to efficiently calculate a large ensemble of the
derivative value with a given ensemble of the model parameters. The ensemble of the
derivative value can be used to calculate the value bounds of the derivative value as well
as the entropy, which is a complement to Cont’s uncertainty measure.

4.2 Worst-case valuation and uncertainty quantification

This section is to introduce the worst-case value of a derivative instrument and the
uncertainty measures, when a set of pricing models are employed to account for an
agent’s uncertainty about the pricing model.

4.2.1 Pricing models and uncertainty

Generally speaking, when the price process of an underlying asset is modeled by a
stochastic system, this parametric model implicitly specifies a probability distribution on
the future state of the underlying asset. Hence, a parametric model can be characterized
by a probability measure Qθ, where θ represents the vector of model parameters. A
pricing model corresponds to a risk-neutral measure Qθ, under which the discounted
asset price (St)t∈[0,T ] is a martingale with respect to its own history (Ft)t∈[0,T ].

The parameters θ of a pricing model Qθ can be estimated by calibrating the
model to the prices of the benchmark instruments which are liquidly traded in markets.
This procedure is the so-called model calibration. Denote the payoffs of benchmark
instruments by (fi)i∈I and their observed market prices by (Ci)i∈I , where I denotes a
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set of benchmarks. In most cases the market price of a benchmark instrument is quoted in
terms of the bid-ask prices, that is, (Cbid

i , Cask
i ). When a parametric model Qθ is given,

the model price of a benchmark instrument is denoted by PQθ (fi). Model calibration is
to estimate θ̄ such that

Cbid
i ≤ PQθ̄ (fi) ≤ Cask

i , ∀i ∈ I. (4.1)

It is unrealistic to expect that there exists a unique solution to the calibration problem
(4.1). In addition, different optimization methods may lead to different estimations for
each parameter of a parametric model, even if an agent is to calibrate a parametric model
to the middle prices of the bid-ask pairs (Cbid

i , Cask
i )i∈I [91]. To account for uncertainty

about the model parameters, the agent could specify each model parameter in an interval,
as long as the model prices of the benchmarks are consistent with (Cbid

i , Cask
i )i∈I .

These intervals could be the confidence intervals estimated with statistical methods from
the market information (see e.g. [66, 74, 94]).

Let Q = {Qθ1
, . . . ,QθJ} be a finite set of plausible pricing models whose

parameters are specified in terms of boxes, that is, θj ∈ Dj for j = 1, . . . , J . These
boxes Dj account for parameter uncertainty while Q accounts for model uncertainty
and parameter uncertainty. Since the size of Q is finite, we only have to consider one
type of these models with parameters in a box. Otherwise, we can consider different
types of these models one by one, and then integrate the results of uncertainty measures
introduced in the next sections. Hence, we focus on parameter uncertainty in this chapter.
Actually, if we interpret the models with different parameter values as different models,
parameter uncertainty is also a kind of model uncertainty. Note that, in this setting, the
elements in Q are not necessarily equivalent measures.

4.2.2 Worst-case valuation under parameter uncertainty

Intuitively, an uncertainty-aversion decision maker is concerned about what will happen
in the worst and best cases when a set of candidate pricing models are available. If the
difference of the results in two extreme cases is negligible, there is little uncertainty.
Otherwise, the decision maker has to take uncertainty into account and make a robust
decision. The idea of worst-case valuation is not only used in derivative pricing (see
e.g. [11, 126]) but also in macroeconomics (see e.g. [96]) and other areas. We will
introduce the worst-case approach and the numerical methods for the worst-case value
in this subsection.
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In fact, the worst case for the seller is the best case for the buyer, and vice versa.
So, the worst-case approach consists in calculating the value bounds of a derivative. The
upper and lower value bounds of a derivative instrument can be defined as

P (f) = sup
Q∈Q

PQ(f) and P (f) = inf
Q∈Q

PQ(f), (4.2)

where f is the well-defined payoff function of the target derivative and PQ is the value
function under a pricing measure Q. Note that PQ(f) is a nonlinear function of the
model parameters θ. We assume that PQ(f) is a smooth function of θ for each type of
candidate models. In fact, this assumption should be a premise whenever a parametric
model is employed to price exotic derivatives. Otherwise, there is an additional risk
when the model parameters are not estimated with high accuracy.

If Q includes all the market-consistent martingale measures Q, such that PQ(f) is
consist with the market price of each benchmark instrument with payoff f , the worst-
case value calculation is the dual problem of searching for a semi-static super-hedging
strategy when the payoff function satisfies some conditions (see e.g. [19,165]). Different
from the prime-dual approach, our idea is to directly calculate the worst-case value of a
derivative with a set of market-consistent martingale measures Q.

The nonlinearity of the optimization problem (4.2) requires a global optimization
method. In addition, an ensemble of derivative values is needed to quantify the
uncertainty embedded in a target derivative. Hence, the Monte Carlo method can be used
to solve the optimization problem (4.2). The basic idea of the direct Monte Carlo method
is to search for the solution for the optimization problem by calculating the derivative
value under each martingale measure Q. It not only provides the global solution of the
optimization problem, but also the ensemble of derivative values.

Since we are ambiguous about the model parameters and have no preferences over
the realisations of the model parameters, a large ensemble of the model parameters can
be generated according to the uniform distribution in each parameter direction. From
another point of view, according to the principle of maximum entropy, if nothing is
known about a distribution except that it belongs to a certain class, then the distribution
with the largest entropy could be chosen as the default. The uniform distribution is the
maximum entropy distribution among all continuous distributions which are supported
in a finite interval [142]. Hence, we could choose the uniform distribution as an auxiliary
distribution to generate a large ensemble of the model parameters on their support
intervals. Thus, the upper and lower value bounds in (4.2) can be approximated by

P (f) ≈ max
Q∈Q̄

PQ(f) and P (f) ≈ min
Q∈Q̄

PQ(f), (4.3)
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where Q̄ is a set of the model parameter realisations. The larger the size of Q̄ is, the
better (4.3) can approximate (4.2) because a small number of the realisations of model
parameters may yield local optimal estimations for P (f) and P (f).

The basic idea of the Monte Carlo method for an optimization problem is straightfor-
ward, but it can be time-consuming if the original pricing problem has to be solved with
a large ensemble of the model parameters, since the calculation of the exotic derivative
value can be time-consuming under each realisation of the model parameters. If the value
function is smooth enough with respect to the model parameters, it can be approximated
by an interpolation formula. We can get the ensemble of the derivative values by
substituting an ensemble of the model parameters into the interpolation formula. The
interpolation-based method could greatly alleviate the computational burden. There is a
rich body of literature on univariate interpolation. However, the choice of interpolation
nodes in the multivariate case is more difficult. The sparse grid constructed in the
Smolyak algorithm is one of the efficient ways to break the curse of dimensionality,
a phrase that refers to the deterioration of the convergence rate and the explosion of
computational effort as the dimension of the model parameters increases. This algorithm
will be detailed in Section 4.3.

4.2.3 Uncertainty measures

Given the worst-case value of a target derivative, [49] proposes to measure the impact of
parameter uncertainty on a derivative value by

µQ(f) = P (f)− P (f). (4.4)

µQ is a coherent uncertainty measure, verifying the following axioms [49]:

1. P , P assign values to the benchmark derivatives compatible with their market
bid-ask prices:

∀i ∈ I, Cbid
i ≤ P (fi) ≤ P (fi) ≤ Cask

i , (4.5)

where I is a set of benchmarks. Denote their payoffs as (fi)i∈I and their observed
market prices by (Ci)i∈I . In most cases a unique price is not available; instead,
we have a range of prices Ci ∈ [Cbid

i , Cask
i ].

2. For liquid (benchmark) instruments, model uncertainty reduces to the uncertainty
on market value:

∀i ∈ I, µQ(fi) ≤
∣∣Cask
i − Cbid

i

∣∣ . (4.6)
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3. Effect of hedging with the underlying:

∀φ ∈ S, µQ

(
f +

∫ T

0

φt·dSt

)
= µQ(f), (4.7)

where (St)0≤t≤T is the price process of the underlying and S is the set of well-
defined admissible trading strategies. In particular, the value of a contingent claim
which can be replicated in a model-free way by trading in the underlying has no
model uncertainty:[

∃f0 ∈ R,∃φ ∈ S, ∀Q ∈ Q, Q

(
f = f0 +

∫ T

0

φt·dSt

)
= 1

]
⇒µQ(f) = 0.

4. Convexity: model uncertainty can be decreased through diversification.

µQ (λf1 + (1− λ)f2) ≤ λµQ(f1) + (1− λ)µQ(f2), (4.8)

for ∀f1, f2 ∈ C,∀λ ∈ [0, 1], and where C is a set of well-defined contingent claims
under all pricing models Q.

5. Static hedging with traded options:

∀f ∈ C,∀u ∈ Rk, µQ

(
f +

k∑
i=1

uifi

)
≤ µQ(f) +

k∑
i=1

∣∣ui (Cask
i − Cbid

i

)∣∣.
(4.9)

In particular, for any payoff that can be statically replicated with traded options,
model uncertainty reduces to the uncertainty on the cost of replication:[

∃u ∈ Rk, f =

k∑
i=1

uifi

]
⇒ µQ (f) ≤

k∑
i=1

|ui|
∣∣(Cask

i − Cbid
i

)∣∣. (4.10)

µQ not only measures the impact of parameter uncertainty on derivative pricing, but
also can be used to define the model risk ratio:

MR(f) =
µQ(f)

Pm(f)
, (4.11)

where Pm(f) could be the price of an option with the payoff function f or a position
f in options. A high ratio MR(f) indicates that the risk of model mis-specification is a



82 UQ OF DERIVATIVE INSTRUMENTS

large component of the risk of a position in the option or the portfolio [49]. Hence, it’s
of great importance to explicitly calculate µQ in the context of risk management.

The uncertainty measure µQ defined by (4.4) only uses the maximum and minimum
of an ensemble of the target derivative values. We propose to explore more information
from the ensemble of the derivative values beyond the uncertainty measure µQ. In
the field of information, it is broadly accepted that entropy represents the lack of
information about the state of a system observed by an outsider [28]. The information
is decreasing while entropy increases. Hence, to assess how much information we get
from an ensemble of the option values, we will use entropy of the ensemble of the target
derivative values to measure its information extent. This quantity is complementary
to the coherent uncertainty measure µQ. If two derivatives have the same value of the
uncertainty measure for a given ensemble of the model parameters , the one with smaller
entropy embeds less uncertainty because its ensemble provides more information.

Definition 4.1 (Shannon Entropy [158]). The Shannon entropy H(X) of a discrete
random variable X with distribution p(x) is defined as:

H(X) =
∑

i
p(xi) log

1

p(xi)
. (4.12)

In this chapter, we use the empirical distribution to calculate the entropy of a
derivative value. We do not claim that the empirical distribution of the derivative
value is the posterior distribution, because the uniform distribution is not the posterior
distribution of the model parameters. This artificial distribution is only used to
characterize the uncertainty of the derivative value when each combination of the model
parameters is equally treated.

4.3 The Smolyak algorithm and Monte Carlo-based met-
hod

Based on the Smolyak algorithm, a Monte Carlo-based method is proposed to quantify
the uncertainty embedded in the value of an exotic derivative.

4.3.1 The Smolyak algorithm

LetD ⊂ RN be aN -dimensional bounded domain. Without loss of generality, hereafter
we assume that D is a box

D = [−1, 1]N , N ≥ 1. (4.13)
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Let f : D → R be a smooth function to be interpolated by a set of orthogonal basis
functions using a finite number of support interpolation nodes. In the setting of a one-
dimensional interpolation (N = 1) or in each parameter direction i ∈ {1, . . . , N}, the
interpolation formula for the objective function f is given by

Ii(f) =

mi∑
m=1

f(yim)aim (4.14)

based on nodal sets
Θi = {yi1, . . . , yimi} ⊂ [−1, 1], (4.15)

where {aim}m=1,...,mi are interpolation basis functions which satisfy the discrete
orthogonality property aij(y

i
k) = δjk.

In the multivariate case (N > 1), a straightforward approach to approximate f on
D is to construct a full tensor product interpolation by tensor products of the univariate
ones. However, this method suffers from the the curse of dimensionality, because the
number of interpolation nodes grows rapidly in high dimensions. An efficient approach
is the Smolyak algorithm, which is given by

I(f) =
∑

k+1≤|i|≤N+k

(−1)
N+k−|i| ·

(
N − 1

N + k − |i|

)
·
(
Ii1 ⊗ · · · ⊗ IiN

)
(f)

=: A(N + k,N)(f) (4.16)

where i = (i1, . . . , iN ) ∈ NN is a multi-index with |i| =
N∑
l=1

il, the integer k denotes

the level of the construction and the tensor product rule is defined by

(
Ii1 ⊗ · · · ⊗ IiN

)
(f) =

mi1∑
k1=1

· · ·
miN∑
kN=1

f(yi1k1
, . . . , yiNkN ) · (ai1k1

⊗ · · · ⊗ aiNkN ). (4.17)

It is clear that the Smolyak algorithm is a linear combination of tensor product operators
on the subsets (sparse grids) of the full grids. To set up A(N + k,N), we only need to
evaluate the objective function on the sparse grids

ΘN ≡ H(N + k,N) =
⋃

k+1≤|i|≤N+k

(Θi1 × · · · ×ΘiN ). (4.18)

We refer to [177] for the detailed derivation of (4.16).
In the implementation of the Smolyak algorithm (4.16), different strategies can

be used to select the interpolation basis functions and the interpolation nodes in each
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direction. However, there is usually no explicit formula for the total number of
interpolation nodes. But, when the nodal sets in each direction are nested, i.e., Θi ⊂ Θj ,
∀i < j, the total number of interpolation nodes can reach a minimum. The Lagrange
polynomials and the piecewise linear basis functions are two commonly used bases and
the corresponding nodal sets are nested.

If the objective function to be interpolated is known to be very smooth, univariate
Lagrange polynomial interpolation at the extrema of the Chebyshev polynomials is
recommended to construct the Smolyak formula. The nodes are defined as

yij =


0 mi = 1, j = 1

− cos
π(j − 1)

mi − 1
, mi > 1, j = 1, . . . ,mi.

(4.19)

where m1 = 1 and mi = 2i−1 + 1 for i > 1. The univariate Lagrange polynomial basis
functions associated with Θi are

aij(y) =


1 i = 1
mi∏
k=1
k 6=j

y − yik
yij − yik

i > 1, j = 1, . . . ,mi.
(4.20)

Barthelemann et al. [16] derive the error bound of high-order polynomial interpola-
tion with the Smolyak algorithm.

Theorem 4.2 ( [16]). In the space F lN defined by {f : [−1, 1]N → R | ∂|m|f is
continuous, mi ≤ l, ∀i}, where m ∈ NN0 , l ∈ N0 and ∂|m| is the usual N -variate
partial derivative of order |m|, the interpolation error is

||f −A(N + k,N)(f)||∞ ≤ CN,l ·M−l · (logM)
(l+2)(N−1)+1

,

where M = dim(H(N + k,N)) ≈ 2k

k!N
k is the number of interpolation points.

Compared with the Lagrange polynomial which has a global support, the piecewise
linear basis function has a local support. Hence, if one is not quite sure about
the smoothness of the objective function, piecewise linear interpolation at equidistant
support nodes is recommended. The equidistant support nodes are defined by

yij =


0, mi = 1, j = 1,

2
j − 1

mi − 1
− 1, mi > 1, j = 1, . . . ,mi,

(4.21)
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where m1 = 1 and mi = 2i−1 + 1 for i > 1. Correspondingly, the piecewise basis
functions are defined as a1

1(y) = 1 for i = 1, and for i > 1

aij(y) =

 1− mi

2
|y − yij |, if |y − yij | <

2

mi

0, otherwise,
(4.22)

where j = 1, . . . ,mi.
The error bound of piecewise linear interpolation with the Smolyak algorithm was

derived by Klimke and Wohlmuth [116].

Theorem 4.3 ( [116]). In the space F 2
N defined by {f : [−1, 1]N → R | ∂|m|f is

continuous, mi ≤ 2, ∀i}, where m ∈ NN0 and ∂|m| is the usual N -variate partial
derivative of order |m|, the piecewise linear interpolation error is

||f −A(N + k,N)(f)||∞ ≤ CN ·M−2 · (log2M)
3·(N−1)

,

where M = dim(H(N + k,N)) ≈ 2k

k!N
k is the number of interpolation points.

Except for the Lagrange interpolation and the piecewise interpolation, one may refer
to [134] and references therein for other strategies to choose the interpolation basis
functions and the interpolation nodes.

4.3.2 Monte Calo-based method

Based on the Smolyak algorithm, the Monte Carlo(MC)-based method to quantify the
uncertainty of a derivative value can be summarized as follows:

1. set up the interpolation formula (4.16) for the target value function,

2. get a huge ensemble of the target derivative value by substituting a huge ensemble
of the model parameters into (4.16),

3. calculate the uncertainty measures (4.4) and (4.12).

In fact, once the interpolation formula (4.16) is set up, the computation will only
involve interpolation basis functions (e.g. polynomials and piecewise linear functions).
So, the computational cost is very small. Most of the attention goes to setting up the
interpolation formula (4.16). The cost depends on the number of interpolation nodes
and the computational cost of the value function on these nodes. Since the selection of
the interpolation nodes is independent of the value function, we can select these nodes
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beforehand and compute the value function on these nodes in a parallelized way. Note
that either setting up the interpolation formula (4.16) or working with the classical Monte
Carlo method requires calculations of the value function on a set of realisations of the
model parameters. These calculations can be done in a parallelized way in each case.
However, we calculate the derivative value on the fixed nodes in the former case while
on the random nodes in the latter case. On the other hand, compared with the classical
Monte Carlo method, the construction of the interpolation formula (4.16) requires far
less nodes. Essentially, the MC-based method greatly reduces the computational cost
since it avoids solving the original pricing problem for each combination of the model
parameters, as is done in the standard Monte Carlo method for uncertainty quantification.

Since a large ensemble of the derivative values are calculated, the proposed Monte
Carlo-based method is actually a global optimization method. It provides not only
the maximum and minimum of the derivative value but also additional information to
calculate the entropy measure. In addition, a trivial further application of the proposed
method is to calculate the weighted average of the derivative value in the setting of
parameter risk.

Remark 4.4. The multivariate interpolation can be generalized to quantify the statistics
of the solution of differential equations with random inputs, including random parame-
ters, random boundary/initial conditions (see e.g. [178]).

4.4 Numerical examples

In this section, we use the MC-based method to quantify the uncertainty embedded
in Bermudan and Barrier options under the Heston model with parameter uncertainty.
Parameter uncertainty is characterized by value intervals for each parameter.

4.4.1 Pricing models and target derivatives

In practice, the Heston model [103] is one of the most popular stochastic volatility
models, especially in the equity market. Under this model, the asset price process (S)

and the variance process (v) under a risk-neutral probability measure Q evolve according
to the following system of stochastic differential equations,{

dSt = rSt dt+
√
vtSt dWt, S0 > 0,

dvt = κ(η − vt) dt+ σ
√
vt dW̃t, v0 = σ2

0 > 0,
(4.23)
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where (Wt)0≤t≤T and (W̃t)0≤t≤T are correlated Brownian motions satisfying dWtdW̃t = ρdt.
The parameter η is the long-term average variance, while κ is the speed of the mean-
reversion of the variance. The parameter σ is referred to as the volatility of variance
since it scales the diffusion term of the variance process. r is the risk-free interest rate.

The price monotonicity of European vanilla options in the parameters of Heston’s
model has been investigated by Ould Aly [141]. However, it is difficult to know the
monotonicity of the value function of an exotic derivative with respect to each parameter
in the Heston model. For example, the monotonicity of an American or Bermudan put
option value is one of the difficult cases. Assing et al. [8] proved the monotonicity of
an American option value with respect to the initial values of the underlying price and
the volatility process under two-dimensional models, including the Heston model. It
is, however, unknown whether the value function of an American option is monotonic
with respect to the other model parameters. Because of the nonlinearity of the value
function with respect to the model parameters, it is difficult to check the corresponding
monotonicity. In addition, to the best of our knowledge, the monotonicity of the value
function of Barrier options under the Heston model is also unknown.

On the other hand, there is no analytical form for the value function of the American
or Barrier options under the Heston model. The pricing problem has to be solved
with numerical methods, such as PDE-based methods (see e.g. [45,95, 109]), analytical
approximation methods (see e.g. [77,183]) and Monte Carlo methods (see e.g. [88]). It
is too time-consuming to use these numerical methods to solve the pricing problem for
thousands of times in the setting of uncertainty quantification.

In this section, we take Bermudan put options and the down-and-out put options
as illustrating examples to show how to use the MC-based method to quantify the
uncertainty of these options under the Heston model. When more candidate models
are added, the worst-case value may become worse, i.e., lower bound becomes lower
while upper bound becomes higher.

It is interesting and important to theoretically investigate the smoothness of Bermu-
dan or Barrier option value functions under the Heston model. However, that is out of
the scope of the thesis. Instead of checking the smoothness of the value function, we will
check the accuracy of the interpolation formula for each option in the numerical tests. A
PDE-based method will be employed to calculate the option value on the interpolation
grids in the parameter space.

Let P (s, v, t; Z) be the fair value of an option under the Heston model with a
parameter set Z if at t time units before the given maturity time T the underlying asset
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price equals s ≥ 0 and the variance equals v ≥ 0. The Heston spatial differential
operator A is defined as

A :=
1

2
s2v

∂2

∂s2
+ ρσsv

∂2

∂s∂v
+

1

2
σ2v

∂2

∂v2
+ rs

∂

∂s
+ κ(η − v)

∂

∂v
− r. (4.24)

A can be applied to P to define the valuation problem for American put options and
down-and-out options.

1. American and Bermudan options

The holder (buyer) of an American option has the right to exercise the option at
any time before the expiration. The potential earlier exercise makes an American
option more expensive than its counterpart of European style, which can only
be exercised on a single date. Compared with an American option, a Bermudan
option can be exercised only on predetermined dates.

The valuation problem for American put options under the Heston model is
reduced to solve the following so-called partial differential complementarity
problem (PDCP): 

∂P

∂t
≥ AP, P ≥ φ

(P − φ)

(
∂P

∂t
−AP

)
= 0,

(4.25)

for s > 0, v > 0, 0 < t ≤ T and where φ = max(K−s, 0),A is defined in (4.24)
and P (s, v, t), an abbreviation of P (s, v, t; Z), is the option value. The initial
condition and boundary conditions on the truncated domain [0, Smax]× [0, vmax]

for the PDCP (4.25) are given by

P (s, v, 0) = max(K − s, 0), (4.26a)

P (0, v, t) = K, (4.26b)
∂P

∂s
(Smax, v, t) = 0, (4.26c)

∂P

∂v
(s, vmax, t) = 0, (4.26d)

where Smax and vmax are set to be 14K and 5, respectively. The Heston PDCP
problem (4.25) is implicitly assumed to be fulfilled at v = 0. Since this problem
is solved on discrete temporal grid points, we actually calculate the Bermudan
option value.
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2. Down-and-out put options

Given the lower bound B of a down-and-out put option, its value on the truncated
domain [B,Smax]× [0, vmax] satisfies the following PDE

∂P

∂t
= AP (4.27)

with the initial and boundary conditions:

P (s, v, 0) = max(K − s, 0), (4.28a)

P (B, v, t) = 0, (4.28b)
∂P

∂s
(Smax, v, t) = 0, (4.28c)

∂P

∂v
(s, vmax, t) = 0, (4.28d)

where A is defined in (4.24) and P (s, v, t), an abbreviation of P (s, v, t; Z), is the
value of the down-and-out put option. It is assumed that (4.27) holds at v = 0,
and Smax and vmax are set to be 14K and 5, respectively .

Assume r is a constant and let Z = (v0, λ, η, κ, ρ) be the other model parameters in
the Heston model. Without loss of generality, we assume that the other model parameters
lie in the interval [−1, 1], that is, Z ∈ D = [−1, 1]5. Otherwise, [−1, 1] can be scaled
into the confidence interval of each parameter. Then the worst-case values (4.2) are
given by

P (S0, V0, T ; Z, r) = sup
Z∈D

P (S0, v0, T ; Z, r),

P (S0, v0, T ; Z, r) = inf
Z∈D

P (S0, v0, T ; Z, r),
(4.29)

where P is the solution of (4.25) or (4.27) with corresponding conditions for American
put options or down-and-out put options, respectively. In both cases, we presume that
P (S0, V0, T ; Z, r) is smooth in Z. Thus, in (4.29) sup and inf are max and min,
respectively. Given the option parameters and r, P (S0, v0, T ; Z, r) as a function of
Z is approximated by the Smolyak interpolation formula, denoted by P̃ (Z). To set up
P̃ (Z), we use the ADI scheme ( [95, 109]) to solve the original pricing problem with
the model parameters given by the interpolation nodes. Instead of the ADI scheme, one
may use other numerical methods to calculate the fair values of the American or Barrier
options. A comparison of these methods is out of the scope of this chapter.

The steps to quantify the uncertainty of a Bermudan put option (down-and-out put
option) are as follows:
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1. select a number (M) of interpolation nodes {zj}j=1,...,M in the parameter space,

2. calculate P (S0, v0, T ; zj , r) for j = 1, . . . ,M in a parallelized way with the ADI
scheme,

3. code up P̃ (Z) according to the approximation formula (4.16),

4. generate a huge ensemble with size M ′, {ẑi}i=1,...,M ′ of the model parameters
according to the uniform distribution1 on the support interval in each parameter
direction,

5. substitute {ẑi}i=1,...,M ′ into P̃ (Z) to generate the ensemble {P̃ (ẑi)}i=1,...,M ′ of
Bermudan put option (down-and-out put option) values,

6. find the maximum and minimum of {P̃ (ẑi)}i=1,...,M ′ ,

7. measure the uncertainty of the value function with the coherent uncertainty
measure (4.4) and the entropy measure (4.12).

4.4.2 Data set

The interval for each parameter represents the agent’s uncertainty about this parameter.
From this point of view, it is subjective to specify these intervals. Their specification
relies on how much information the agent has. If the agent had perfect information to
believe in a model and the estimated parameters, the spreads of these intervals would
be zero. Otherwise, the parameter interval may be specified by the maximum and the
minimum of the parameter estimations with different calibration methods, or by the
Bayesian methods as in the references mentioned in Section 4.2.

According to the data of the calibrated Heston model to the market data in [91], κ
and ρ vary over relatively big ranges compared with the ranges of the other parameters,
if different calibration methods are used. So we assume the intervals corresponding to
the model parameters’ best estimations are given in the Table 4.1. We will use these
model parameters to price Bermudan put options and down-and-out put options.

1One may refer to Section 4.2.2 for the explanations of our motivation of using the uniform distribution.
M ′, the size of the ensemble, can be a very large positive integer. If the Bayesian method is used to calibrate a
model to the market data, a large number of the realisations of the model parameters can be generated with the
Markov Chain Monte Carlo method (see e.g. [94]). From this point of view, it is much clear that our method
can be used in the setting of model risk.
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The other parameters of Bermudan put options are given by

r = 0.04, T = 0.25 year, S0 = 100, K = {80, 100, 110},
] exercise times: 60.

(4.30)

which cover the in-the-money, out-of-the-money and at-the-money put options. The
parameters of down-and-out put options are

r = 0.04, T = 0.25 year, S0 = 100, K = {80, 100, 110}, B = 70. (4.31)

Z min max
v0 0.015 0.025
κ 0.7 2
λ 0.15 0.25
η 0.01 0.02
ρ −1 −0.5

Table 4.1: Heston’s model parameters under uncertainty

4.4.3 Efficiency and accuracy

To set up the Smolyak interpolation formula, we could choose the Lagrange interpolation
or the piecewise linear interpolation according to the smoothness of the objective
function. In fact, they require the same number of interpolation nodes at the same
level. However, the smoothness of a derivative value function usually is not available
beforehand. Informally speaking, compared with the out-of-the-money options, the
at-the-money and in-the-money option are more sensitive to volatility (see e.g. [38]).
Thus, we select Lagrange polynomial interpolation to approximate the out-of-the-money
options while the at-the-money and in-the-money options are approximated by piecewise
linear interpolation. Theorem 4.2 and Theorem 4.3 show that it is better to choose a high
level to set up the Smolyak interpolation formula if high accuracy is required. To select
an accurate enough approximation formula, we set up the Smolyak interpolation formula
at level k = 2 and k = 3 for the target options.

The number of interpolation nodes is outlined in Table 4.2. It means that we only
have to solve the original pricing problem on the sparse grids in a parallelized way. So,
it’s quite practical and efficient. Of course, the total computational cost of setting up the
interpolation formula relies on the computational cost of the pricing problem on each
interpolation node.
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Level2 (] grid points: 61) Level3(] grid points: 241)
Derivatives Strike AbsError RelError AbsError RelError

Bermudan put 80 0.0928·10−3 0.5758·10−2 0.0047·10−3 0.3004·10−3

100 2.7975·10−3 0.1194·10−2 0.6668·10−3 0.2839·10−3

110 1.8079·10−3 0.1808·10−3 0.9100·10−3 0.0910·10−3

Down-and-out put 80 0.1322·10−3 0.2256·10−2 0.0044·10−3 0.3365·10−3

100 3.3613·10−3 0.1470·10−2 0.7861·10−3 0.3418·10−3

110 2.0383·10−3 0.2247·10−3 0.4477·10−3 0.0493·10−3

Table 4.2: Number of grid points and the mean value of the error of the approximation formula
for Bermudan and down-and-out put options

To check the accuracy of the interpolation formulas, we follow four steps:

1. Fifty realisations of the model parameters are randomly generated which are
distributed according to independent uniform distributions on the candidate
intervals of the model parameters. These model parameters will be used to
calculate the value of all target options in the following two steps.

2. Each combination of the model parameters is substituted into the corresponding
interpolation formula (k = 2, 3) for the target option value. That is, an ensemble
of option values P̃i (i = 1, . . . , 50) can be calculated in an efficient way.

3. Correspondingly, a reference value P̂i (i = 1, . . . , 50) of a target option is
calculated with the ADI scheme for each combination of the model parameters.

4. The accuracy can be measured by the the absolute error (AbsError, |P̃i − P̂i|) or
the relative error (RelError, |P̃i − P̂i|/P̂i ).

Table 4.2 summarizes the mean value of the absolute error and the relative error of the
approximation formula for each target option. Compared with the interpolation formulas
at level 2 (k = 2), the approximation formulas at level 3 (k = 3) are accurate enough
for the target options, they will be selected to calculate the uncertainty measure in the
next subsection.

4.4.4 Uncertainty measures

By the accurate interpolation formulas at level k = 3 for the Bermudan put options and
the down-and-out put options, it is efficient to get a large ensemble of the target option
values by substituting a huge ensemble of the model parameters into the approximation
formula.
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Different ensembles of the model parameters are firstly generated. The ensemble
size of the model parameters starts from 2500, increases by 50 each time and ends with
7500. Since the computation of the option value with the approximation formula only
involves the computation of simple basis functions, one may enlarge the ensemble size
to get more accurate results. This is the advantage of the proposed MC-based method.

Each ensemble is substituted into the approximation formula for the target options,
and the resulting ensemble of option values will be used to calculate the uncertainty
measure. We first calculate the coherent uncertainty measure by searching for the
maximum and minimum values of the target options in different ensembles.

In each ensemble, the interval between the minimum and maximum values is
separated into 20 subintervals of the same size. The frequencies of the option value
falling into these subintervals work as the probability distribution to calculate the entropy
measure (4.12). For each option, we calculate the entropy and spread between the
maximum and minimum option values of each ensemble (total 150).

1. Coherent uncertainty measure

The left three sub-figures in Figure 4.1 show the impact of parameter uncertainty
on the Bermudan put options. Qualitatively speaking, parameter uncertainty has
much bigger impact on the at-the-money Bermudan put option than that on the
Bermudan put options with K = 80, 110. This is also the case for down-and-out
put options, as shown in the left three sub-figures in Figure 4.2.

One may note that the value bounds of the options do not change too much
when the size of ensemble increases. Informally speaking, if we only use two
realisations of the model parameters, one of them may be accidently consistent
with the global maximum and the other one may accidently correspond to the
global minimum of the option value. Adding more realisations will not change
the value bounds. However, we do not know beforehand what is the appropriate
size of the ensemble to provide results of high accuracy. It is conservative to
use a large ensemble, after all the computation mainly involves the simple basis
functions after the interpolation formula (4.16) has been set up.

2. Entropy measure

The sub-figure for entropy measure in Figure 4.1 shows that among the three
Bermudan put options, the entropy value of the at-the-money option is the largest
while that of the option with K = 80 is the smallest one.
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In Figure 4.2, the sub-figure for entropy measure shows that at-the-money down-
and-out put option has the largest value of the entropy measure while the entropy
values of options with K = 80, 110 are similar.

Table 4.3 summarizes the average values of the coherent uncertainty measure (4.4)
and the entropy measure (4.12) for the target options. These quantitative results
are consistent with our qualitative observations in Figure 4.1 and Figure 4.2. For
both, Bermudan put options and down-and-out put options, the values of the coherent
uncertainty measure and of the entropy measure for the at-the-money option are larger
than those for the other two options. It means that parameter uncertainty has more
impact on the at-the-money Bermudan (down-and-out) put option. Based on the value
of the coherent uncertainty measure (4.4), the model risk ratio (4.11) can be used to
assess the risk of misusing a model when one takes a position in an option with a given
price.

One may also compare the value of the uncertainty measure for different types of
target options, such as Bermudan put option and down-and-out put option. According
to the coherent uncertainty measure, parameter uncertainty under the Heston model has
more impact on the Bermudan put options with strike K = 80, 100 than that on the
down-and-out put options with the same strike as the former one. However, compared
with the Bermudan put option with strike K = 110, the down-and-out put option with
the same strike is much more impacted by the parameter uncertainty under the Heston
model. On the other hand, we can use the entropy measure to characterize how much
information we get from the ensemble of option values. It is a complementary quantity
to measure the impact of parameter uncertainty if two options have the same value for
the coherent uncertainty measure, In our numerical experiments, we do not find two
options with the same value spread. Hence, in our illustrating experiments, we assess the
impact of parameter uncertainty on options of different types according to the coherent
uncertainty measure. Nevertheless, we can assess the extent of the information provided
by the ensemble according to entropy. Although parameter uncertainty has more impact
on the Bermudan put option with strike K = 80 than that on the down-and-out put
option with the same strike according to the coherent uncertainty measure, the ensemble
of the former provides more information than the information provided by the ensemble
of the latter one according to the average value of entropy.

Overall, these numerical results provide an agent with the following information.
First, if the Heston model is chosen as the candidate model to value Bermudan options
and down-and-out put options, the bid-ask spread of the at-the-money option could be
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strike spread entropy
Bermudan put 80 0.0460 3.6935

100 0.7323 4.1843
110 0.0164 1.8967

Down-and-out put 80 0.0269 3.8468
100 0.7226 4.1598
110 0.4559 3.9207

Table 4.3: Mean value of uncertainty measures for Bermudan put options and down-and-out put
options

higher than those of the options with the other moneyness. Second, compared with the
Bermudan put option with strike K = 110, the bid-ask spread of the Bermudan put
option with strike K = 80 could be higher, because more uncertainty is embedded in
this option in terms of coherent uncertainty measure and the entropy measure. However,
the bid-ask spread of the down-and-out put option with strike K = 80 could be smaller
than that of the down-and-out put option with strike K = 110. Third, the bid-ask spread
of Bermudan put options with strikeK = 80, 100 could be bigger than their counterparts
of down-and-out put options, whereas the value spread of the Bermudan put option with
strike K = 110 could be smaller than that the down-and-out put option with the same
strike. The final market price is left to a bargaining process in the OTC market.

4.5 Discussion

For a given stochastic model of a specific type, we proposed the interpolation approxi-
mation formula (4.16) for the calculation of a derivative value for any realisation of the
model parameters.

The proposed method shares some similarity with the Monte Carlo method in the
sense that both of them need to calculate the derivative value with some realisations
of the model parameters. However, we should note their differences. When setting up
the approximation formula (4.16), we only have to calculate the derivative value with
a small number of pre-selected realisations of model parameters. Thereafter, a large
ensemble of the derivative values can be calculated by substituting a large ensemble of
parameters into the approximation formula (4.16). The Monte Carlo method provides
a large ensemble of the derivative values by solving the original pricing problem with
each realisation of the model parameters. Since solving the original pricing problem is
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Figure 4.1: Coherent uncertainty measure and entropy measure of Bermudan put options.

usually time-consuming, our method is more efficient than the Monte Carlo method.

The proposed method is a reusable simulation infrastructure in the sense that



CHAPTER 4 97

0 0.05 0.1
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500
K=80

E
n

s
e

m
b

le
 s

iz
e

Price

 

 
MAX

MIN

1.5 2 2.5 3
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500
K=100

E
n

s
e

m
b

le
 s

iz
e

Price

 

 
MAX

MIN

8.5 9 9.5
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500
K=110

E
n

s
e

m
b

le
 s

iz
e

Price

 

 
MAX

MIN

3.5 4 4.5
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500
Barr ier  opt ion 

E
n

s
e

m
b

le
 s

iz
e

Entropy

 

 
K=80

K=100

K=110

Figure 4.2: Coherent uncertainty measure and entropy measure of down-and-out put options

the interpolation formula (4.16) can be used in a reproducible manner if all model
parameters are taken into consideration. Except for quantifying uncertainty embedded
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in derivative value, it can also be used in a model validation procedure [102] and the
robust calibration (see e.g. [13, 66, 74, 94]).

In 2015, Gaß et al. [87] proposed to interpolate the derivative value in the
parameter space with the tensorized Chebyshev polynomials, while we set up the
interpolation formula for a derivative value with the Smolyak algorithm. Independent
of [87], we came up with this idea and presented our method at conferences and
workshops2. Compared with the interpolation approximation with the tensorized
Chebyshev polynomials, the Smolyak approximation is an interpolation approximation
with a smaller number of interpolation nodes, especially in the high-dimensional setting
(see e.g. [178]).

2 (1)Stochastic calculus, Martingales, and Financial modeling, June 29 July 06, 2014, Saint Petersburg,
Russia
(2)Summer School: Model Uncertainty in Economics and Finance - Advances in Stochastic Calculus July 7
July 18, 2014, Bielefeld University, Germany



5
Analytical approximation for distorted

expectations

The distorted expectation of a random variable X is defined by

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)),

where FX is the cumulative distribution function of X , and Ψ is a distortion function.
The distorted expectation is a non-linear expectation, which is extensively used in
behavioural finance, conic finance, insurance, financial risk management (see e.g.
[2, 15, 44, 62, 99, 125, 128, 168, 174, 175, 181], to name a few).

Generally speaking, a distorted expectation does not admit an analytical formula.
One of the difficulties to derive such an formula lies in that there is no analytical formula
for the distorted probability density function of X . Although the Monte Carlo method
can be used to calculate distorted expectations, it can be time-consuming if sophisticated
models have to be simulated. In this chapter, an efficient analytical approximation is
proposed as an alternative to the Monte Carlo method. The proposed method can be
about 2500 times more efficient than the Monte Carlo method. The main results of this
chapter were published in Sun et. al. (2015).
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5.1 Introduction

Distributions of risk factors are cornerstones in quantitative risk management, portfolio
selection and pricing of financial derivatives. These distributions can be specified
in the form of a probability distribution function or a parametric model. However,
model uncertainty is ubiquitous whenever a parametric model (distribution) is used.
Since decision making is the last step in risk management, portfolio selection and
derivative pricing in an incomplete market model, model uncertainty in these fields can
be interpreted from the point of view of decision theory under uncertainty.

Multiple priors, which is related to the Choquet expected utility, provide a powerful
tool to model uncertainty in decision theory (see e.g. [75] for a review). This approach
characterizes a random variable with a set of probability measures, which are candidate
distributions of the random variable. There is no rule of thumb to select such a set of
probability measures to account for model uncertainty. In Chapter 4, we have seen that
these multiple priors can be selected through calibration. “Distance” measures such
as relative entropy [97] can be used to specify multiple priors for a risk factor. In
addition, distortion of a probability measure is another way to select a set of probability
measures. It induces a distorted expectation, which is the worst-case expectation of a
random variable under a set of probability measures, i.e.

EΨ[X] =

∫ +∞

−∞
x dΨ(FX(x)) = inf

Q∈QΨ

EQ[X],

where QΨ is a set of probability measures associated with a concave distortion function
Ψ. These probability measures, termed as test measures in [34], represent the candidate
distributions of X .

The distorted expectation is not only related to model uncertainty but also risk
measures (see e.g. [62, 90, 174, 175, 181]). When the distortion function is concave, the
distorted expectation EΨ[·] can be used to define a coherent risk measure ρ(·) := −EΨ[·]
(see e.g. [80] for the details). Employing the fact that a coherent risk measure is related
to an acceptability set of risks, Cherny and Madan [44] proposed several acceptability
indexes, which are further used to define the bid and ask prices in the framework of conic
finance [68, 69, 127–131].

If the distortion function Ψ is of S-shape, the corresponding distortion function is
related to the cumulative prospect theory (CPT) [169]. The CPT framework allows
different weighting functions for gains and for losses. It corresponds to an agent who is
more sensitive to losses than gains. Since this framework is consistent with experimental
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evidence, it has been used in portfolio theory (see e.g. [99]), insurance (see e.g. [36]) and
so on (see [14] for a literature review on applications of the CPT theory).

Although distorted expectations are extensively used in finance, insurance and many
other areas, if any, quite few models for the risk factorX admit an analytical formula for
the distorted expectation with respect to a distortion function in the general setting. The
Monte Carlo (MC) method is a standard way to calculate the distorted expectations. If
{x1, . . . , xN} is a set of MC realisations of the risk factor X , or its sample from market
data, the value of the distorted expectation EΨ[X] can be estimated by

EΨ[X]
.
=

N∑
n=1

x(n)

(
Ψ
( n
N

)
−Ψ

(
n− 1

N

))
, (5.1)

where x(1), . . . , x(N) are the values of x1, . . . , xN in the increasing order [44]. To
achieve high accuracy, a large ordered sample of the risk factor is required. This
procedure can be time-consuming under complex models for the risk factor, such as
the Heston model [103]. On the other hand, some efficient numerical methods for the
standard expectations, such as the COS method [76] and the Carr–Madan method [35],
can hardly be used to calculate the distorted expectations, because there is no analytical
formula for the distorted characteristic function in most of the realistic cases.

To overcome these difficulties, we propose an analytical approximation method, as
an alternative to the MC method, for a class of distorted expectations. In applications,
the parametric model for the risk factor X usually admits the density function fX or
the characteristic function φX in an analytical form. Then, the distribution function
FX can be numerically calculated or recovered from its characteristic function. In this
chapter, we denote the distorted density function f̃X by (Ψ′ ◦ FX) · fX with f̃X(x) =

Ψ′(FX(x))fX(x), x ∈ R. The fast Fourier transform (FFT) algorithm is used to set
up an approximation for f̃X with a truncated sum of its Fourier-cosine series expansion
on a finite interval. The resulting truncation approximation immediately provides an
analytical approximation for the distorted expectations. The proposed method can be
about 2500 times more efficient than the Monte Carlo method.

5.2 Preliminaries

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space. Denote by L2(Ω,F , P ) the
collection of square-integrable random variables representing the profits and losses of a
financial position. The risk of a random variable X ∈ L2(Ω,F , P ) can be quantified
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with a risk measure ρ, a functional defined on L2(Ω,F , P ). Probability distortion
provides a large class of risk measures.

5.2.1 Distorted expectations

Definition 5.1. Let Ψ : [0, 1] → [0, 1] be a continuous increasing function such that
Ψ(0) = 0 and Ψ(1) = 1. The set function cΨ defined by

cΨ(A) = Ψ(P (A)), A ∈ F ,

is called the distortion of the probability measure P with respect to the distortion
function Ψ.

With a probability distortion function Ψ is associated another probability distortion
function Ψ̂ given by

Ψ̂(x) = 1−Ψ(1− x), x ∈ [0, 1].

Given a probability distortion Ψ, we can define the Choquet integral EΨ[X] of X ∈
L2(Ω,F , P ) by

EΨ[X] =

∫ ∞
0

(1− cΨ({X ≤ x})) dx−
∫ 0

−∞
cΨ({X ≤ x}) dx. (5.2)

We assume that
∫ 1

0
Ψ(y) dy

2y
√
y < ∞ and the probability space (Ω,F , P ) is atomless

throughout this chapter. Then, according to [17], EΨ[X] is finite for any X ∈
L2(Ω,F , P ) when Ψ is concave and continuous on [0, 1].

Let FX be the distribution of X . We can rewrite EΨ[X] as

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)). (5.3)

EΨ refers to a distorted expectation associated with a distortion function Ψ. If Ψ(x) = x,
EΨ is the standard expectation E.

For any X ∈ L2(Ω,F , P ), the distorted expectation EΨ[X] associated with a
concave and continuous distortion function Ψ admits a robust representation

EΨ[X] = inf
Q∈QΨ

EQ[X], (5.4)

where

QΨ =
{
Q ∈MP : Ψ̂(P (A)) ≤ Q(A) ≤ Ψ(P (A)) for all A ∈ F

}
,

with MP being the collection of all probability measures absolutely continuous with
respect to P [130].
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5.2.2 Coherent risk measures

Definition 5.2. A coherent risk measure on L2(Ω,F , P ) is a map ρ : L2(Ω,F , P )→ R
satisfying the following properties:

1. (subadditivity) for X,Y ∈ L2(Ω,F , P ), ρ(X + Y ) ≤ ρ(X) + ρ(Y );

2. (monotonicity) If X ≤ Y a.s., then ρ(X) ≤ ρ(Y );

3. (positive homogeneity) ρ(λX) = λρ(X) for λ ∈ R+;

4. (translation invariance) ρ(X +m) = ρ(X)−m for m ∈ R;

A coherent risk measure ρ defined on the space L∞(Ω,F , P ) of all bounded random
variables (a.s.), has a robust representation [6]

ρ(X) = sup
Q∈Q

EQ[−X] = − inf
Q∈Q

EQ[X], for X ∈ L∞(Ω,F , P ), (5.5)

where Q is a subset of M1,f (Ω,F), the set of all finitely additive normalized set
functions Q : F → [0, 1]. Q can be chosen as a convex set for which the supremum
or infimum is attained (Proposition 4.15 of [80]). This robust representation can be
generalized to the risk measures defined on the space L0(Ω,F , P ) of all random
variables [43]. Recalling the robust representation of the distorted expectation (5.4)
defined onL2(Ω,F , P ), we can identify the relation between risk measures and distorted
expectations as follows:

ρ(X) := −EΨ[X], X ∈ L2(Ω,F , P ),

is a coherent risk measure if Ψ is concave and continuous on [0, 1]. The Average Value
at Risk (AV@R) is an example of the distortion risk measures [80].

Example 5.3 (Average Value at Risk). Let Qλ be the class of all probability measures
Q � P whose density dQ/dP is bounded by 1/λ for some fixed parameter λ ∈ (0, 1).
The coherent risk measure

AV@Rλ(X) := sup
Q∈Qλ

EQ[−X]

is so-called the Average Value at Risk. Actually,

AV@Rλ(X) = − 1

λ

∫ λ

0

qX(t) dt,
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where qX is the quantile function ofX . Induced by a distorted expectation,AV@Rλ(X)

= −EΨλ [X] where

Ψλ(x) =
(x
λ

)
∧ 1, x ∈ [0, 1].

To complete this section, we outline some other risk measures induced by their
corresponding distortion functions (see e.g. [44, 80] for details) .

1. For λ > 0, MINV@R is induced by

Ψλ(x) = 1− (1− x)λ+1.

For any integer λ, we have Ê[X] = E[Y ], where

Y
law
= min{X1, . . . , Xλ+1}

and {X1, . . . , Xλ+1} are independent draws of X .

2. For λ > 0, MAXV@R is induced by

Ψλ(x) = x
1

1+λ .

For any integer λ, we have Ê[X] = E[Y ], where

max{Y1, . . . , Yλ+1}
law
= X,

where {Y1, . . . , Yλ+1} are independent draws of Y .

3. For λ > 0, MAXMINV@R [44] is induced by

Ψλ(x) =
(

1− (1− x)
λ+1
) 1

1+λ

, x ∈ [0, 1]. (5.6)

For any integer λ, we have EΨ[X] = E[Y ], where Y is a random variable with
the property

max{Y1, . . . , Yλ+1}
law
= min{X1, . . . , Xλ+1},

where {X1, . . . , Xλ+1} being independent draws ofX and {Y1, . . . , Yλ+1} being
independent draws of Y .

4. For λ > 0, MINMAXV@R [44] is induced by

Ψλ(x) = 1−
(

1− x
1

λ+1

)λ+1

, x ∈ [0, 1]. (5.7)
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For any positive integer λ, we have EΨ[X] = E[Y ], where Y is a random variable
with the property Y

law
= min{Z1, . . . , Zλ+1}

max{Z1, . . . , Zλ+1}
law
= X

where {Z1, . . . , Zλ+1} are independent draws of Z.

5.2.3 Recovering the probability density function or the cumulative
distribution function from the characteristic function

The probability density function (or density function, PDF), and the cumulative
distribution function (or distribution function, CDF) of a random variable play a crucial
role in the definition and the calculation of a distorted expectation (5.3). However,
we may know the characteristic function of a random variable rather than its density
function or distribution function in an analytical form. Hence, it is necessary to recover
the density function or the distribution function from the corresponding characteristic
function of a random variable.

Inspired by the idea of the COS method [76], we present an efficient approximation
method for the distribution function of a random variable when its characteristic function
is given in an analytical form. The derivation of this approximation method follows three
steps.

1. Truncate the support of a density function into an finite interval.

Let f be the density function of a random variableX whose characteristic function
φ is defined by

φ(ω) =

∫
R
eiωxf(x)dx. (5.8)

As a density function, f , decays to zero at ±∞, the integration range in (5.8) can
be truncated in a large enough interval [a, b] ⊂ R such that

φ1(ω) =

∫ b

a

eiωxf(x)dx ≈ φ(ω). (5.9)

2. Approximate the density function f with an approximation of an auxiliary
function f1, defined by f1(x) = f(x)1[a,b](x), where 1[a,b] is an indicator
function and x ∈ R.
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Since the function f1 is supported on a finite interval [a, b], its Fourier-cosine
series expansion is

f1(x) =
∑′∞

k=0
Ak · cos

(
kπ
x− a
b− a

)
, (5.10)

where
∑′

indicates that the first term in the summation is weighted by one-half,
and the cosine series coefficients Ak are given by

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx (5.11)

≡ 2

b− a
Re

{
φ1

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
where Re{·} denotes the real part of the argument. Due to (5.9), Ak can be
approximated by Fk,

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
. (5.12)

Hence, f1 can be approximated by f2,

f2(x) =
∑′∞

k=0
Fk · cos

(
kπ
x− a
b− a

)
. (5.13)

Then, f2 can be approximated by a truncated summation f3,

f3(x) =
∑′n

k=0
Fk · cos

(
kπ
x− a
b− a

)
. (5.14)

The resulting error in f3(x) consists of two parts: a series truncation error from
f2(x) to f3(x) and the error from approximating Ak by Fk. We will present the
truncation error in the next section, while we refer to [76] for an error analysis
related to the approximation error.

3. Approximate the distribution function

Given the approximations in the previous steps, we approximate the distribution
function FX on the finite interval [a, b] in the following way,

FX(x) =

∫ x

−∞
f(s)ds
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≈
∫ x

a

f3(s)ds

=

∫ x

a

∑′n

k=0
Fk · cos

(
kπ
s− a
b− a

)
ds

=
∑′n

k=0
Fk

∫ x

a

cos

(
kπ
s− a
b− a

)
ds

=
x− a
b− a

+
∑n

k=1
Fk ·

b− a
kπ

· sin(kπ
x− a
b− a

) (5.15)

where Fk is given in (5.12).

To conclude, if the characteristic function φ, rather than the density function f , of a
random variable X is explicitly given in an analytical form, its distribution function FX
can be approximated by F̂X :

F̂X(x) =


1, if x ≥ b,
x− a
b− a

+
∑n

k=1
Fk ·

b− a
kπ

· sin(kπ
x− a
b− a

), if x ∈ (a, b),

0, if x ≤ a,

(5.16)

where a and b are chosen such that∫ b

a

eiωxf(x)dx ≈
∫
R
eiωxf(x)dx,

and

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
.

In practice, a can be sufficiently small, while b is sufficiently large.

5.3 T-COS method for distorted expectations

Since the density function of the risk factor X can be estimated with statistical methods
or recovered from its characteristic function, without loss of generality, we assume the
density function fX is given in its analytical form. Then, its distribution function can be
calculated either by numerical integration methods or recovered from its characteristic
function (see Section 5.2.3 or [140, 164]). Hence, we actually assume that both the
density function and the distribution function are known when formulating the proposed
approach.
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Given the distribution function FX and the distortion function Ψ, we can, theoreti-
cally, derive the distorted distribution function F̃X and the distorted density function f̃X
as {

F̃X(x) = Ψ (FX(x)) , x ∈ R,

f̃X(x) = Ψ′ (FX(x)) fX(x), x ∈ R.
(5.17)

However, due to the complexity of (5.17), it can hardly lead to an analytical formula for
the distorted expectation (5.3). On the other hand, the COS method [76] cannot be used
in this setting, because we do not know the analytical form of the distorted characteristic
function of a random variable.

Truncating the support of a density function into a finite interval is one of the key
ideas behind the COS method. Inspired by this idea, we first truncate the integration
interval of the distorted expectation into a finite interval [a, b] such that∫

(−∞,a)∪(b,+∞)

xf̃X(x) dx < ε, for a given tolerance error ε > 0.

Define f̂X = f̃X1[a,b], where 1[a,b] is an indicator function. For the convenience
of formulating an algorithm in the following text, we present the Fourier-cosine series
expansion of f̂X as

f̂X(x) =
∑∞

k=0
F̂k · cos

(
kπ
x− a
b− a

)
. (5.18)

Note that this formulation is equivalent to (5.10). However, we cannot approximate the
series coefficients in terms of the distorted characteristic function, as we do in the COS
method (see (5.11) and (5.12)). Before giving the calculation method for these series
coefficients in (5.18), we propose to approximate the f̂X by the truncated sum f̄X of a
Fourier-cosine series expansion, i.e.,

f̂X(x) ≈ f̄X(x) =
∑K

k=0
F̂k · cos

(
kπ
x− a
b− a

)
. (5.19)

The following two propositions characterize the approximation error and conver-
gence order of the truncation approximation (5.19). Their proofs can be found in Chapter
2 of [27].

Proposition 5.4. The error in approximating f̂X(x) (5.18) by the partial sum f̄X(x)

(5.19) is bounded by the sum of absolute values of all the neglected coefficients. That is,∣∣∣f̂X(x)− f̄X(x)
∣∣∣ ≤∑∞

k=K+1
|F̂k|, x ∈ [a, b].
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Proposition 5.5. If f̂X is infinitely differentiable with nonzero derivatives on [a, b], its
Fourier-cosine series expansion has geometric convergence, i.e.,

F̂k ∼ O(k−n exp(−γk)),

where γ is determined by the location in the complex plane of the singularities nearest
to the expansion interval, and n is determined by the type and strength of the singularity.
Otherwise, the convergence of Fourier cosine series is algebraic, i.e.,

F̂k ∼ O(1/kn),

where n is at least as large as the highest order of derivative that exists or is nonzero.

Proposition 5.5 implies that the right (left) truncation bound b (a) should not be
too large (small). Otherwise, f̂X may have zero derivatives, and the accuracy of the
truncation approximation may be decreased. We suggest to check the tails of the original
density function before selecting the truncation interval [a, b].

The key procedure to set up the truncation approximation (5.19) is to calculate the
coefficients F̂k, which can be calculated with the FFT algorithm as follows (see e.g. [86]
for a theoretical derivation).

Algorithm 5.1 (The FFT algorithm for F̂k).

1. Calculate the value Y = (Y0, . . . , YK) of the distorted density function on the
interpolation points y = (y0, . . . , yK), i.e.,

Y = Ψ′ (FX(y)) fX(y), with yk = a+ (b− a)k/K, k ∈ {0, 1, . . . ,K}.

2. Extend Y to Ỹ = (Y0, Y1, . . . , Yk−2, YK−1, YK , YK−1, YK−2, . . . , Y2, Y1).

3. Apply the FFT algorithm to Ỹ, and denote the Fourier transform of Ỹ by Ȳ, a
2K-dimensional vector.

4. Then the coefficients are given by F̂k = Ȳk if k = 1, . . . ,K − 1; F̂0 = 0.5Ȳ0;
F̂K = 0.5ȲK .

After (5.19) is set up, the distorted expectation EΨ[X] can be approximated by

EΨ[X] =

∫ ∞
−∞

xf̃X(x) dx ≈
∫ b

a

xf̄X(x) dx
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=

∫ b

a

x
∑K

k=0
F̂k · cos

(
kπ
x− a
b− a

)
dx =

∑K

k=0
F̂kVk, (5.20)

with

Vk =

∫ b

a

x cos

(
kπ
x− a
b− a

)
dx =

(b− a)2

(kπ)2
(cos(kπ)− 1), 1 ≤ k ≤ K;

V0 = 0.5(b2 − a2).

(5.21)

We call the truncated approximation (5.20) the T-COS approximation for the distorted
expectation EΨ[X].

The truncation approximation (5.19) can be easily extended to calculate the distorted
expectation of a combination of risk factors (X1, . . . , Xn) with joint characteristic
function φ(ω),

φ(ω) = E
[
ei(ω1X1+···+ωnXn)

]
, where ω = (ω1, . . . , ωn).

In fact, the characteristic function of a portfolio X = z1X1 + · · ·+ znXn is

φX(z) = E
[
eiz(z1X1+···+znXn)

]
= φ(ω), with ω = (zz1, . . . , zzn). (5.22)

Hence, the density function and the distribution function can be recovered from the
characteristic function φX with the COS method (see Section 5.2.3 or [140, 164]).

5.4 Numerical examples

The Heston model [103] is one of the most popular stochastic volatility models in the
equity market, where the equity price (St)0≤t≤T is modeled bydSt = rSt dt+

√
vtSt

(√
1− ρ2 dW

(1)
t + ρdW

(2)
t

)
, S0 > 0,

dvt = κ(θ − vt) dt+ σ
√
vt dW

(2)
t , v0 = σ2

0 > 0,
(5.23)

where W (1) and W (2) are independent Brownian motions defined on (Ω,F ,F, P )1.
Although the Heston model does not admit the analytical density function or distribution
function, the log-asset price has the following characteristic function [103]

φ(ω, t) := E [exp (iω log(St)) | S0, v0] = exp(A+B + C), (5.24)
1Obviously, the Heston model formulated as (5.23) is equivalent to the form (4.23). To make it easier to

read, we present this model again in this section. This model will be used in Section 6.3 and Section 7.4.1.2
where it will be presented again for the convenience in reading the text.
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where

A = iω (log(S0) + (r − q)t),
B = θκσ−2

(
(κ− ρσωi+ d) t− 2 log

((
1− gedt

)
/(1− g)

))
,

C = v0σ
−2(κ− ρσωi+ d)(1− edt)/(1− gedt),

d =

√
(ρσωi− κ)

2
+ σ2(ωi+ ω2),

g = (κ− ρσωi+ d)/(κ− ρσωi− d).

Given the model parameters

κ = 1.15, θ = 0.0348, σ = 0.39, r = 0.04,

T = 1, v0 = 0.0348, S0 = 10,
(5.25)

we first recover the density function flogS1
and the distribution function FlogS1

from the
characteristic function (7.17) with the COS method. The truncation interval is set to be
[−10, 5], and 210 terms are used in the approximation formula for the density function.
flogS1

and FlogS1
work as the original density function and the distribution function,

respectively. Sequentially, due to

FS1
(x) = FlogS1

(log x) and fS1
(x) =

1

x
flogS1

(log x), (5.26)

we can calculate the density function fS1
and the distribution function FS1

of S1.
The truncation approximation (5.19) is set up for the distorted density function

induced by the distortion functions (5.6) and (5.7) with λ = 1, respectively. The
truncation interval for S1 is set to be [0.01, 40], and the number (K) of the terms in
(5.19) varies among {25, 26, 28}. The computation time and the values of the distorted
expectations are reported in Table 5.1. On the other hand, ten million paths of the Heston
model are simulated with the balanced Milstein scheme [113] at the step-size 0.01. The
simulation costs about 37 seconds. The ordered sample of the terminal value can be
saved and reused to calculate distorted expectations under different distortion functions.
However, it still costs about 0.1 seconds to calculate the distorted expectations with
the saved paths, while the T-COS method costs less than 0.1 milliseconds. It means
that the T-COS method is still far more efficient than the MC method with saved paths,
when the distortion function or its parameters vary. When the number (K) of terms
in the truncation approximation (5.19) increases, the increase in computation time is
negligible2. Since the values of the distorted expectations corresponding to K = 26

2When the truncation interval for S1 is enlarged to be [0.01, 50], the changes in computation time and the
distorted expectations are also negligible. We do not report them here.



112 ANALYTICAL APPROXIMATION FOR DISTORTED EXPECTATIONS

and K = 28 are the same up to the current accuracy, we recommend to set K = 26

in this setting. In other applications of the T-COS method, one may do the same test to
choose an appropriate value forK. Since the T-COS method and the MC method provide
quite similar values for the distorted expectation, the T-COS method is recommended
for its extraordinary efficiency. The implementations are done in MATLAB (2014b)
(Processor: Intel Core(TM) i7-3770 CPU @ 3.4GHz, RAM: 8GB).

distortion method time DE
MC 37 s 8.105682

MAXMIN K = 25 0.04 ms 8.104594
(5.6) T-COS K = 26 0.05 ms 8.105569

K = 28 0.07 ms 8.105569
MC 0.1 s † 7.588375

MINMAX K = 25 0.04 ms 7.587122
(5.7) T-COS K = 26 0.04 ms 7.588247

K = 28 0.07 ms 7.588247
†Calculated with the saved sample in the increasing order

Table 5.1: Distorted expectations EΨ1 [S1] (DE)

To show the effect of the distortion function, we plot the distorted expectations under
the distortion functions (5.6) and (5.7) with different values of λ. As shown in Figure
5.1, the distorted expectation decreases with the distortion parameter λ. The higher the
value of λ is, the higher the stress level is. Note that different distortion functions lead
to different approximations for the distorted expectation, especially at high stress levels.

5.5 Discussion

In this chapter, we proposed an analytical approximation, as an alternative to the Monte
Carlo method, for the distorted expectations in the setting where the density function or
the characteristic function of the risk factor is given in its analytical form.

The proposed method, the so-called T-COS method, is based on a truncated sum
of the Fourier-cosine series expansion for the distorted density function on a finite
interval. The coefficients of the terms in the truncation approximation can be calculated
with Algorithm 5.1 based on the FFT algorithm. Then, the resulting approximation
for the distorted density function provides an analytical approximation for the distorted
expectation.
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Figure 5.1: Distorted expectations EΨλ [S1] associated with MINMAX and MAXMIN distortion
functions at different stress levels λ.

Numerical examples show that the T-COS method is about 2500 times more efficient
than the standard Monte Carlo method in the Heston model. This comparison is based
on the saved and ordered pathes from the Monte Carlo simulation, and the assumption
that the density function is known in an analytical form. From this point of view, the
advantage of the T-COS method in efficiency is not restricted to the Heston model, but
it holds in the general setting.

Distorted expectations are associated with distortion risk measures, which play an
important role in risk management. The T-COS method can be used to quantify the
risk of portfolios, as well as a single risk factor, with the risk measures beyond V@R
and Expected Shortfall [140]. They also arise in portfolio optimization, conic finance,
behavioural finance and so on. The problems involving distorted expectations in these
areas can be solved with the T-COS method under realistic model assumptions.





6
Weighted Monte Carlo method and its

application

As presented in the previous chapters, model uncertainty is ubiquitous whenever a
parametric model is used in pricing and hedging of derivatives. In this chapter, we
empirically confirm that the weighted Monte Carlo method can reduce the impact of
model uncertainty on a derivative price.

6.1 Introduction

The current price of a risky asset should reflect the market belief (a sum of participants’
subjective believes) about its future price performances. Economically, competitive
market prices keep the market as a whole in the state of maximum uncertainty toward
its future performances. Otherwise, it implies that some useful information could be
utilized and the price will move up or down until the uncertainty is at its maximum. Since
entropy could work as an uncertainty index of a random variable, there is an equivalence
between maximizing entropy of the future price of a risky asset and maximizing market
uncertainty towards its future price. Only if the market is efficient enough, calculating
the maximum-entropy distribution is an alternative method for constructing risk-neutral
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probabilities even in a incomplete market. This is the basic intuition of the entropy
pricing theory which coincides with Efficient Market Hypothesis. For more details, we
refer to [92] and references therein.

In the simulated market setting, searching for the maximum-entropy distribution
reduces to assigning a probability to each simulated path. The weighted Monte Carlo
(WMC) method is one of the ways to select such an entropy-based probability measure
by minimizing relative entropy of the target probability measure with respect to a
prior probability measure. This problem can be formulated as a convex optimization
problem subject to some market constraints. When the prior probability measure is
given by a uniform distribution, the optimization problem of minimizing relative entropy
is equivalent to maximizing entropy. In other cases, the WMC method also has its
economic grounds. There exists a one-to-one correspondence between the calibration
of a model starting with a prior probability measure and using a penalization function on
the space of probabilities and the calculation of state-prices via utility maximization [9].
Friedman et al. [83] proposed some new instances of the WMC method, employing
relative (U,O)-entropy, a generalization of the relative entropy, as the measure of
discrepancy between probability measures1.

Under the assumption that the prior estimation remains fixed, its sensitivity to the
benchmark prices has been investigated in [9]. In this chapter, we will fix the benchmark
prices, and use different models to simulate the paths of the underlying asset. That is,
we empirically investigate whether the weighted Monte Carlo can reduce the impact of
model uncertainty in terms of the implied volatility of vanilla options and the prices of
exotic options.

6.2 Entropy and the WMC method

Given the density function (g) of a random variable X , its uncertainty can be measured
by the entropy h(X) given by

h(X) = −
∫ ∞
−∞

g(x) log g(x) dx. (6.1)

Kullack–Leibler (KL) relative-entropy works as a measure of the similarity of two
probability measures. The KL relative-entropy H(Q | P) of a probability measure Q

1The generalized instances require to solve the corresponding connecting equation and are computationally
more expensive. So we will use the instance based on relative entropy to investigate the objectives of this
chapter.
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with respect to P is defined by

H(Q | P) =

∫ ∞
−∞

q(x) log
q(x)

p(x)
dx, (6.2)

where p and q are the density functions of P and Q, respectively.
From the information theory point of view, entropy can be used to select an Arrow–

Debreu probability of a risky asset, either in a model-independent way or model-
dependent way. There is a lot of literature on how to derive the maximum entropy
distribution in a model-independent way (see, e.g. [25, 30, 135, 147]). Here we focus on
the model-dependent way, especially in the setting of Monte Carlo simulation.

Usually the price of an underlying asset of a derivative is modeled by a stochastic
differential system or a stochastic differential equation (SDE). Before the model can
be used to price a target financial product, model parameters have to be estimated by
statistical methods or the model has to be calibrated to the market data. In fact, once the
model parameters are determined, a probability distribution of the underlying asset price
is determined simultaneously. If one is not quite confident with the current estimations,
adjustments could be made such that the estimations coincide with the market data and
the new probability measure is ‘close’ to the old one. So, one may minimize KL entropy
of a probability measure with respect to the prior probability measure to calibrate the
model to the market data. Here the market data is used twice, once to estimate the prior
probability and once to adjust it.

Assume that the price of an underlying asset follows the SDE

dSt
St

= σt dWt + r dt, t ∈ [0, T ], (6.3)

where r is the risk-neutral drift and (Wt)0≤t≤T is a Brownian motion defined on a
filtered complete probability space (Ω,F , {Ft}0≤t≤T ,P). If we assume r is known
and σt ∈ [σmin, σmax], there exists volatility uncertainty in the model [11]. Any
specification of σ determines a probability distribution, under which expectations are
denoted by Eσ[·]. In this case, the market constraints can be written as

Eσ[fi(ST )] = Ci, i = 1, 2, . . . ,M,

where fi and Ci (i = 1, 2, . . . ,M) represent the discounted payoff functions of the
market traded benchmark instruments and their prices, respectively. The objective of
minimizing relative entropy is essentially equivalent to minimizing the functional

Eσ
[∫ T

0

η(σ2
t ) dt

]
,
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where η is a strictly convex function which vanishes at the volatility of the prior
distribution [10, 149]. This is an example of the application of entropy in model
calibration. In fact, entropy has been extensively used in model calibration (see, e.g.
[50, 85]).

On the other hand, given a personal prior estimation on a model for (St)0≤t≤T , for
example, model (6.3), we can simulate its paths. Classical Monte Carlo methods assign
the same weight to each simulated path while the WMC method assigns a special weight
to each simulated path. That is, the sample of (St)0≤t≤T is uniformly distributed in the
classical Monte Carlo setting while it follows a special distribution characterized by a
probability distribution p in the WMC setting. Together with the market constraints, p
can be selected by minimizing the discrete version of (6.2)

H(p | p̂) =

N∑
i=1

pi log
pi
p̂i
, (6.4)

where N is the number of the simulated paths and p̂ is a prior probability distri-
bution of the sample. The resulting probability can be taken as an Arrow–Debreu
probability. The Arrow–Debreu prices (state prices) coincide with the marginal
utilities for consumption obtained by maximizing the expectation of the utility function
U(x) = − exp(−αx) (α > 0) by investing in a portfolio of the benchmark instruments
[9].

Problem 1 (the WMC method [83]). Assume there are a number (N) of simulated
paths of a model for the underlying asset and a set (M) of benchmark European options
with discounted payoff function fj , j = 1, 2, . . . ,M . The bid and ask prices of these
benchmark options are denoted by positive vectors b = (b1, b2, . . . , bM ) ∈ RM+ and
a = (a1, a2, . . . , aM ) ∈ RM+ , respectively. The WMC method can be formulated as
follows

(p∗, s∗) = arg min
p,s

{
H(p | p̂) +

d

2
s′s

}
subject to

bj ≤ Ep[fj ] ≤ aj , j = 1, 2, . . . ,M,

Ep[fj ]−
bj + aj

2
= sj , j = 1, 2, . . . ,M,

N∑
i=1

pi = 1,

pi ≥ 0, i = 1, 2, . . . , N,
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where Ep[fj ] =
N∑
i=1

pifj(S
i
T ) and (bj , aj) is the bid–ask price pair of the j-th

benchmark option. SiT is the price of the underlying asset on the i-th path at t = T . p̂ can
be chosen as 1/N , that’s, the prior distribution of the sample is a uniform distribution.
The objective function not only minimizes the relative entropy but also the difference
s = (s1, s2, . . . , sM ) ∈ RM between the model prices and the market mid-prices of the
benchmark options. The factor d works as a penalty factor.

Due to bid–ask spreads in the market data, the conditions of the optimization problem
only require the model prices of benchmarks to lie in the interval of the corresponding
bid and ask prices. In addition, there exists a simulation error when we discretize a
stochastic model. So, a weighted Monte Carlo calibration can lead to the maximum
entropy distribution which can work as a risk-neutral probability, but it need not to insure
that the re-weighted paths are completely consistent with a martingale measure. If the
bid–ask spreads are very large, synthetic securities could be added to the benchmark
data to enforce the martingale condition [70].

Even if there are a small number of benchmark options, it is not easy to directly
solve Problem 1 when thousands of paths are simulated. It can be solved through its
dual problem, which can be formulated as

Problem 2 (dual problem [83]). The dual problem of Problem 1 is to find

(α∗, β∗, ρ∗) = arg max
α≥0,β≥0,ρ

{
β′b− α′a− ρ′m− log(Z(α, β, ρ))− 1

2d
ρ′ρ

}
where

Z(α, β, ρ) =

N∑
i=1

p̂i exp((β − α− ρ)′f̄i) (6.5)

and f̄i =
(
f1(SiT ), f2(SiT ), . . . , fM (SiT )

)
∈ RM+ . α, β, ρ are M -dimensional column

vectors. Once we solve this problem, the solution of Problem 1 is given by

p∗i =
p̂i exp((β∗ − α∗ − ρ∗)′f̄i)

Z(α∗, β∗, ρ∗)
, i = 1, 2, . . . , N. (6.6)

Problem 2 can be easily solved with the optimization toolbox in Matlab or other
softwares. Now we are ready to price a target option with the simulated paths and the
probability measure p∗.
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6.3 Numerical Study

In this section, we work with the Heston model [103], in which the asset price
process (St)0≤t≤T and the variance process (vt)0≤t≤T follow the following risk-neutral
processes respectively,{

dSt = St(r − q) dt+
√
vtSt dWt, S0 > 0,

dvt = κ(η − vt) dt+ λ
√
vt dW̃t, v0 = σ2

0 > 0,
(6.7)

where (Wt)0≤t≤T and (W̃t)0≤t≤T are correlated Brownian motions defined on a filtered
complete probability space (Ω,F , {Ft}0≤t≤T ,P). The correlation coefficient between
W and W̃ is ρ, i.e. Cov(dWt,dW̃t) = ρdt. The parameter η is the long-term average
variance, while κ is the speed of the mean-reversion of the variance. The parameter λ is
referred to as the volatility of variance since it scales the diffusion term of the variance
process. Many numerical methods have been proposed to simulate the variance process
(see, e.g. [161]).

Calibration methods for the Heston model have been extensively investigated
in [91]. Generally speaking, calibration is referred to minimizing the discrepancy
f({Pi}, {P̂i}, A) between market prices Pi of benchmark instruments and the model
prices P̂i with model parameter set A. In practice, it is difficult to solve the optimization
problem of calibrating a parametric model to the market data, because the discrepancy
function may have some local minima. To overcome this problem, we may use some
global optimization algorithms, such as genetic algorithms, simulated annealing and
so on. Recently, Yang and Lee [180] proposed an efficient global calibration method
with enhanced discrete local search strategy. Assuming an efficient global optimization
method has been chosen, we are still confronted with model uncertainty if different
discrepancy functions are used in the calibration procedure [91]. Guillaume and
Schoutens [91] used three functions (RMSE,APE,ARPE) to measure the discrepancy
and calibrated the Heston model to the market data with a fully free parameter set
{v0, κ, η, λ, ρ} and five

{
EWMA,MW(TVIX = 0.5, 3, 5),VIX

}
reduced parameter

sets {κ, λ, ρ}. That is, eighteen methods were used in total. In the Appendix of
this chapter, we will present two instances in which RMSE and ARPE work as the
discrepancy functions accompanied with a fully free parameter set. We refer to [91]
for more details of these eighteen calibration methods.

Firstly, we test the sensitivity of the WMC method with respect to the prior
information of model parameters. The calibrated models in [91] can be taken as different
sets of prior model information. Then we will check to what extent the WMC method
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can reduce the calibration risk when pricing exotic options. The calibration risk can be
measured by the global risk measure defined by

maxPi −minPi

1
K

K∑
i=1

Pi

,

where Pi (i = 1, . . . ,K) are the model implied target option prices with different
calibration methods. Except for the quantitative standard, we can also get the first
impression of the impact of model uncertainty from the figure of the model-based prices
or their boxplot.

6.3.1 Sensitivity of the WMC method to the prior estimation

In general, all the eighteen methods in [91] can calibrate the Heston model well from the
implied volatility point of view. But comparatively speaking, some of the calibrations are
not good enough. We present the calibration results on two particular quoting days. The
date 31/10/2006 did not experience high market volatility while the date 11/12/2008

was experiencing the subprime mortgage crisis.
We simulated 10 000 paths of the calibrated models (eighteen cases) in [91] on the

chosen days using the Euler method for the price process and the balanced Milstein
method for the variance process (see the Appendix at the end of this chapter for more
information on simulation methods for the Heston model). The simulated period starts
from the quoting date to the longest expiration date of the benchmark options and
the stepsize is 1/365. Then, we calculated the implied volatilities of the benchmark
European calls with the simulated paths. They can be regarded as MC-implied
volatilities. On the other hand, we re-calibrated the simulated paths with the WMC
method and calculated the WMC-implied volatilities. In the procedure of re-calibrating,
we didn’t add synthetic securities to the market traded benchmarks, because the chosen
benchmarks have quite small bid–ask spreads relative to their mid-prices. The results
are shown in Figure 6.1 and Figure 6.2.

Figure 6.1(a) suggests that the combination of RMSE and EWMA leads to a
relatively larger implied volatility error, although the parameter set is the optimal one
calculated by this combination. The implied volatility errors from other combinations
seem very small. But Figure 6.1(b) shows that the WMC method can reduce the implied
volatility error. It can even correct the implied volatility from the parameter set of the
combination of RMSE and EWMA to a sound level. It is also the case in other parameter
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settings, as shown in Figure 6.1 and Figure 6.2. The most important observation is that
the WMC-implied volatilities under different parameter settings closely gather at the
market quoted implied volatility except the most deep out-of-money and in-the-money
call options as shown in Figure 6.1 and Figure 6.2. These empirical results confirm that
the WMC method is not sensitive to the prior estimation in terms of implied volatility
error.

On the other hand, since the option price is a non-linear function of the implied
volatility, a small deviation of the implied volatility from the market quoted implied
volatility means that the model prices may be out of the corresponding market bid–ask
spread. When 10 000 paths are used to price benchmarks with the classical MC method,
the number of benchmark options whose model prices lie out of the bid–ask spread
is more than half of the total number of benchmark options. Even when one million
paths are used to price the benchmarks with the classical MC method, the number of
benchmark options whose model prices lie out of the bid–ask spread is still more than its
counterpart calculated by the WMC method with 10 000 paths. In fact, the formulation
of the WMC method guarantees that the re-calibrated model is more market-consistent
than the classical MC method. The numerical results also confirm that.

One may argue that the implied volatility error of the MC method may be reduced
when more paths and kinds of control variate techniques are employed. Even if these
strategies could reduce the implied volatility error, simulating millions of paths is much
more time-consuming, compared with the time to solve the optimization problem for
the WMC method. When we use 18 call options as benchmarks and simulate 10 000
paths for the calibrated models on 31/10/2006, the optimization problems in the WMC
method can be solved in about 1.5 seconds with the help of the optimization toolbox
in Matlab(r2012a) (Processor: Intel Core(TM) i7-3770 CPU @ 3.4GHz). But it costs
about 60 seconds to simulate and store one million paths. Here we want to point out that
given the number of the benchmarks, the number of the decision variables in Problem 2
is then fixed. Compared with the time to find the direction of updating the variables in
Problem 2, the time to calculate (6.5) and (6.6) is negligible. So, more simulated paths
do not add a lot of computational burden. Even when 100 000 paths are used, the optimal
weight can be found in comparable time as that used by the model with 10 000 paths.
But additional paths add quite little extra value in reducing the implied volatility error.
From this point of view, the WMC method is computationally much cheaper.

We don’t make the comparison between the multi-level Monte Carlo method and the
weighted Monte Carlo method in terms of the implied volatility error in this chapter.
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The multi-level Monte Carlo method relies on the payoff function of the target payoff.
It is useless to store the multi-level paths when pricing European options, because the
simulated multi-level paths cannot be used to price exotic options, such as lookback
options and Asian options. But the calibrated model by the WMC method can be directly
used to price these exotic options.

6.3.2 Pricing exotic options with the WMC method

Since the WMC method can generate very similar implied volatilities under different
prior information settings, we are wondering whether it can lead to similar prices of
exotic options, i.e., whether it can reduce the impact of model uncertainty. To investigate
this problem, we use the re-calibrated model to price Asian options, one-touch barrier
options and lookback options in the Heston model.

The payoffs of continuous arithmetic average Asian calls and puts are given by

f̂1(S) =

(
1

T

∫ T

0

S(t)dt−K

)+

and f̂2(S) =

(
K − 1

T

∫ T

0

S(t)dt

)+

.

The discrete versions are given by

f1(S) =

(
1

N

N∑
i=1

S (ti)−K

)+

and f2(S) =

(
K − 1

N

N∑
i=1

S (ti)

)+

.

Under the risk-neutral measure Q, the prices of the Asian call and put can be calculated
by exp(−rT )EQ[fi] for i = 1, 2. We monitored at 10 time points between 31/10/2006

and its expiration date (T = 781/365 year) and 14 time points from 11/12/2008 to its
expiration date (T = 737/365 year)).

The initial prices of the lookback call and put options are given by

LC = exp(−rT )EQ [(ST −mS
T )+

]
and LP = exp(−rT )EQ [(MS

T − ST )+
]
,

respectively where mS
t and MS

t denote the minimum and maximum processes of the
process (St)0≤t≤T , i.e.

mS
t = inf {Sh, 0 ≤ h ≤ t} and MS

t = sup {Sh, 0 ≤ h ≤ t} .

The payoff of a one-touch barrier option depends on whether the underlying stock
price reaches the barrier H during the lifetime of the option. The prices of down-and-in
put (DIBP) and up-and-in call (UIBC) are given by

DIBP = exp(−rT )EQ
[
(K − ST )

+
1(mS

T ≤ H)
]
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Figure 6.1: Model implied volatility and market quoted volatility of call option expired on
20/12/2008 and quoted on 31/10/2006
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Figure 6.2: Model implied volatility and market quoted volatility of call option expired on
18/12/2010 and quoted on 11/12/2008
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and
UIBC = exp(−rT )EQ

[
(ST −K)

+
1(MS

T ≥ H)
]
.

Figure 6.3 suggests that the WMC method can reduce the calibration risk when
pricing Asian options on the two quoting dates 31/10/2006 and 11/12/2008. But
compared with Figure 6.4, its advantage is not very big in this case.

Figure 6.4 shows that the WMC method performs definitely better than the classical
MC method when pricing one-touch options, especially on 11/12/2008. The boxplots
in Figure 6.5 also show the capability of the WMC method in reducing the impact of
model uncertainty on the value of lookback options.

To quantify to what extent the WMC method can reduce the impact of model
uncertainty, we calculate the global risk for each option. The results can be found in
Table 6.1, Table 6.2 and Table 6.3. Even when the global risks from the WMC method
are relatively larger than those from the MC method in some cases of Asian call options
on 31/10/2006, they are all less than 1.1%. Except for these Asian call options, the
Asian put with strike 1000 on 31/10/2006 is the only case where the global risk from
the WMC method is relatively bigger than that from the MC method. But both of them
are larger than 100%. From Figure 6.3(b), we observe that the prices of the Asian put
with strike 1000 are nearly zero, no matter whether the WMC method or the classical MC
method is used. In fact, it holds in all of the cases in the present chapter that the impact
of model uncertainty is increasing when the option price tends to zero. In practice, such
options with price zero may not be traded at all.

If we ignore the cases where the classical MC calibration risk is less than 1%,
the WMC method can reduce the calibration risk by 78.00% on average for one-touch
barrier options, 38.53% for lookback options and 34.66% for Asian options quoted on
31/10/2006. These quantities are 94.25%, 24.23% and 31.71% for one-touch barrier
options, lookback options and Asian options quoted on 11/12/2008.

All of these quantities confirm that the WMC method could effectively reduce the
impact of model uncertainty on the derivative value, especially for the one-touch barrier
options.
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LC LP
WMC MC WMC MC

31/10/2006 0.123910 0.197294 0.246191 0.409411
11/12/2008 0.261358 0.329305 0.253876 0.351767

Table 6.3: Global risks of looback call (LC) and put options (LP)

1000 1200 1400 1600
0

50

100

150

200

250

300

350

400

Strike

A
si

an
 C

al
l (

W
M

C
)

31/10/2006

1000 1200 1400 1600
0

50

100

150

200

250

300

350

400

Strike

A
si

an
 C

al
l (

M
C

)

31/10/2006

(a)

1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

Strike

A
si

an
 P

ut
 (

W
M

C
)

31/10/2006

1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

Strike

A
si

an
 P

ut
 (

M
C

)

31/10/2006

(b)

600 800 1000 1200
0

50

100

150

200

250

Strike

A
si

an
 C

al
l (

W
M

C
)

11/12/2008

600 800 1000 1200
0

50

100

150

200

250

Strike

A
si

an
 C

al
l (

M
C

)

11/12/2008

(c)

600 800 1000 1200
0

50

100

150

200

250

300

350

Strike

A
si

an
 P

ut
 (

W
M

C
)

11/12/2008

600 800 1000 1200
0

50

100

150

200

250

300

350

Strike

A
si

an
 P

ut
 (

M
C

)

11/12/2008

(d)

Figure 6.3: Asian option price
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Figure 6.4: One-touch barrier option



130 WMC AND MODEL RISK

100

120

140

160

180

200

220

240

260

LC_WMC LC_MC  LP_WMC  LP_WC

31/10/2006

Lo
ok

ba
ck

 O
pt

io
n 

P
ric

e

(a)

300

320

340

360

380

400

420

LC_WMC LC_MC  LP_WMC  LP_WC

11/12/2008

Lo
ok

ba
ck

 O
pt

io
n 

P
ric

e

(b)

Figure 6.5: Lookback option price
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Appendix

1. Model calibration

Model calibration is a way to select those model parameters θ∗ = (κ∗, η∗,

λ∗, ρ∗, v∗0) that minimize the discrepancy f
(
{Pi}, {P̂i};θ

)
between the model

prices P̂i and the markets prices Pi of benchmark instruments. In this chapter, the
root mean square error (RMSE) is used to measure the discrepancy between the
model prices and the market prices of the benchmark options, i.e.,

f
(
{Pi}, {P̂i};θ

)
=

√√√√ M∑
i=1

(Pi − P̂i)
2

M
, (6.8)

where M stands for the number of benchmark instruments. Alternatively, this
discrepancy can also be measured by the average relative price error (ARPE), i.e.,

f
(
{Pi}, {P̂i};θ

)
=

1

M

M∑
i=1

|Pi − P̂i|
P̂i

. (6.9)

Guillaume and Schoutens [91] proposed other methods to measure the discrep-
ancy between model and market prices of SPX options and to estimate model
parameters with VIX data. Since different calibration methods lead to different
estimations for the model parameters, calibration methods have a significant
influence on the exotic option price. Calibration risk can be defined as the different
optimal parameter sets arising from the different specifications of the discrepancy
measures and the calibration methodology [91].

In Section 7.4.1.2, we use the calibrated models of [91] with a fully free
parameter set and with the RMSE (6.8) respectively ARPE (6.9) as the measure
of discrepancy between the model prices and the market prices.

2. Simulation methods for the Heston model

The variance process is always positive and zero is unattainable if 2κη > λ2.
However, even if this condition is satisfied, it is still possible to generate negative
values for the variance process when it is discretized with the Euler-Maruyama
scheme [185]. The balanced methods [113] can work well if 4κη ≥ λ2. If this
condition is still not satisfied, many practical methods have been proposed in the
literature (see [161] and references therein). In this chapter, the model parameters
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satisfy 4κη ≥ λ2. Hence, we choose the balanced Milstein scheme to simulate the
variance process and the Euler-Maruyama scheme to simulate the price process of
the underlying asset. The Monte Carlo simulation is performed with ten million
paths and a control variate.



7
Model-based and model-free upper

bounds for discrete arithmetic Asian
options

Confronted with model uncertainty, one may use the weighted Monte Carlo method
to reduce its impact on the derivative value. Another remedy is to avoid using any
parametric model. This model-free approach is immune to model uncertainty (see e.g.
[19, 40, 53, 104, 165]). In this chapter, we propose an efficient method to calculate the
comonotonicity-based value bounds for discrete arithmetic Asian options when the asset
price model admits an analytical characteristic function.

The comonotonicity-based value bounds can be calculated either in the model-based
framework or in the model-free framework. Quantities in the model-based framework
can be compared with their model-free counterparts to detect model mis-specification.
We address some practical issues.
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7.1 Introduction

Let S(t) be the price of an underlying asset at time t and r > 0 the risk-free interest rate,
which will be assumed to be constant. The payoff of an arithmetic Asian option matured
at T with strike K is then given by(

ξ

N∑
i=1

wiS(ti)− ξK

)+

,

where (x)
+

= max(x, 0)
N∑
i=1

wi = 1 and t1, t2, . . . , tN = T are the discrete monitoring

times. When ξ = 1, it is a call option; when ξ = −1 it is a put option. Such options
are difficult to be priced in the closed form even in the Black–Scholes market model.
Although the Monte Carlo method or PDE-based method can be used to numerically
calculate the Asian option price (see, e.g. [29, 172]), both approaches are rather time-
consuming. It is a competitive alternative to efficiently calculate the sharp bounds of
the option value. In [1, 37], the authors confirmed that the comonotonicity-based upper
bound is an accurate approximation for the Asian option value under different parametric
models. This value bound actually corresponds to the cheapest static hedging strategy
with European options (see, e.g. [1, 39, 40]).

Simon et al. [160] pioneered the comonotonicity-based approach for calculating the
value bound of this type of Asian options, and applied this approach in the Black–
Scholes setting. Then, Albrecher et al. [1] and Chen and Ewald [37] applied this
approach in the setting of exponential Lévy models and stochastic volatility models,
respectively. Essentially, a comonotonicity-based value bound is a weighted sum of
European option prices matured on each monitoring time with optimal strikes. To
calculate the optimal strikes of the hedging instruments, Albrecher et al. [1] numerically
built up the distribution function from the density function of the underlying asset
price, and its inverse is then found by a bisection method. This algorithm can be
computationally intensive, especially when the density function is complex and not given
in a closed form. By simulating the stochastic differential system for the underlying
asset price process, Chen and Ewald [37] approximated the distribution function of the
underlying asset with its empirical distribution. In this chapter, we propose to recover
the distribution function of the underlying asset price from its characteristic function by
using Fourier-consine series.

Instead of the optimal strikes, model-independent strikes for European options in the
hedging portfolio can also be used, such as the strikes proposed by Tchuindjo [167].
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However, these strikes will be shown to be non-optimal, although its computation cost is
very low in comparison with the scheme in [1]. Only for deeply in-the-money options,
the approximation proposed by Tchuindjo [167] can be accurate.

Generalizing the work of Simon et al. [160], Chen et al. [40] proposed a static
superhedging strategy consisting of a linear combination of the market-traded vanilla
options, whose strikes are the solutions of an optimization problem to search for the
cheapest superhedging strategy. This approach is model-free in the sense that it does
not involve any parametric model, but finite market data. The non-uniqueness of the
optimal static super-replicating strategy is discussed in [39]. Note that if the strikes do
not correspond to the cheapest static hedging strategy, the resulting upper bound can
be an arbitrage upper bound. As an illustrating example, the model-independent strikes
proposed by Tchuindjo [167] will be used to calculate the value bound of Asian options
in the model-free framework. We will show that these strikes lead to an arbitrage upper
bound for an arithmetic Asian option.

Both the model-based approach and the model-free approach have their own
advantages and shortcomings. The model-based approach can provide an exact value
of a derivative, but it cannot avoid model uncertainty. The model-free approach is free
from model uncertainty, but it may suffer from inaccuracy by approximating a derivative
value with its bounds. However, the comparison between model-based and model-free
(optimal) upper bounds can be used to detect model mis-specification. We will discuss
some practical issues when calculating the model-free optimal upper bound, and when
comparing it with the model-based optimal upper bound under the Heston model.

7.2 Comonotonic upper bounds and static super-replica
ting strategies

Consider a finite time horizon T > 0. The financial market is described via a filtered
probability space (Ω,F , (F(t))0≤t≤T ,P), which satisfies the usual technical conditions
of completeness and right-continuity, and where F0 contains all P-null sets of Ω. Price
processes of traded financial instruments are modelled as stochastic processes on that
probability space which are adapted to the filtration (F(t))0≤t≤T .
Market participants are assumed to have access to a number of European options with
maturities ti, i = 1, . . . N , with 0 = t0 < t1 < · · · < tN = T . More precisely, they
can trade in European calls and puts on the individual stocks. We in particular consider
an asset with a non-negative stochastic price process denoted by {S(t), 0 ≤ t ≤ T}
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that pays dividends continuously over time at a constant rate q per unit time. Further
we consider a discretely monitored arithmetic Asian option of European-style maturing
at T with strike price K. The pay-off at T depends on the underlying process S at the
times ti, i = 1, . . . N , weighted by corresponding positive weights wi, i = 1, . . . , N ,
which sum up to one: (

ξ

N∑
i=1

wiS(ti)− ξK

)+

,

where (x)
+

= max(x, 0). When ξ = 1, it is a call option, when ξ = −1 it is a put
option. Very often an equally weighted sum is used, i.e., all weights are chosen to be
equal to 1/N .
It is assumed that the financial market is arbitrage-free. In the model-based approach,
we further assume that there exists a pricing measure Q, equivalent to the physical
probability measure P, such that the current price of any pay-off at time ti, i ∈
{1, . . . , N}, can be represented as the expectation of the discounted pay-off. In this
price-recipe, the discounting factor is e−rti , where r is the continuously compounded
time-0 risk-free interest rate to expiration ti, whereas expectations are taken with respect
to Q. For simplicity in notation and terminology, we assume deterministic interest rates.
The case of a stochastic interest rate is covered in [39].
The price of an Asian call or put at time t ∈ [0, T ] with maturity T and strike K is given
by:

A(t, T,K; ξ) = e−r(T−t)E

(ξ N∑
i=1

wiS(ti)− ξK

)+ ∣∣∣∣F(t)

 . (7.1)

Note that without loss of generality we will assume that t < t1 in what follows. When
t1 < t < T , we absorb the known asset prices in the strike.

Let us further introduce the following notation for the weighted sum given the
information F(t), or in a Markovian setting given S(t):

S =

N∑
i=1

wiS(ti) | F(t), (7.2)

and for its corresponding comonotonic counterpart

Sc =

N∑
i=1

wi(F
t
S(ti)

)−1(U), (7.3)
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with U a uniform (0, 1)-random variable and F tS(ti)
the conditional cumulative distribu-

tion function (cdf) of S(ti) given the information F(t), or in a Markovian setting given
S(t), under the martingale measure Q:

F tS(ti)
(x) = Q(S(ti) ≤ x | F(t)).

The conditional cdf of Sc given the information F(t) is analogously denoted by F tSc .
When t = 0 we do not write the superscript.
Sc precedes S in the convex order sense, i.e.,

E[S] = E[Sc], E[(S − d)+] ≤ E[(Sc − d)+], ∀d ∈ R. (7.4)

Let f(d) = E[(Sc − d)+] − E[(S − d)+]. f(d) first increases as function of d, and
then decreases (from some c on) but remains non-negative [61]. Therefore, not for out-
of-the-money options or at-the-money options but for in-the-money options, it is much
more accurate to approximate the option value by the corresponding comonotonic upper
bound. Thus in the numerical experiments, we will focus on in-the-money options.

Before stating the main theorem about the optimal upper bound, we first recall here
some definitions of inverses of cumulative distribution functions. The usual inverse F−1

X

of the cdf FX of a random variable X is denoted by

F−1
X (p) = inf{x ∈ R | FX(x) ≥ p}, p ∈ [0, 1],

with inf ∅ = +∞, by convention. For any x ∈ R and p ∈ [0, 1], when FX is strictly
increasing, the following equivalence relation holds:

F−1
X (p) = x ⇔ p = FX(x).

However, when the cdf FX is not strictly increasing the inverse of the cdf is not uniquely
determined. We define the inverse F−1+

X as follows:

F−1+
X (p) = sup{x ∈ R | FX(x) ≤ p}, p ∈ [0, 1],

with sup ∅ = −∞, by convention. Any convex combination of F−1
X and F−1+

X is also
an inverse distribution function. As in [112] we define for any α ∈ [0, 1] the α-inverse
of the cdf FX as

F
−1(α)
X (p) = αF−1

X (p) + (1− α)F−1+
X (p), p ∈ (0, 1).

From the theory of comonotonic risks (see, e.g. [61, 112]), applied to Asian options
see, e.g. [1, 40, 122, 160], we state
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Theorem 1. The Asian option price at t ∈ [0, T ] defined by (7.1) with a strike K ∈(
(F tSc)

−1+(0), (F tSc)
−1(1)

)
is bounded above as follows

A(t, T,K; ξ) ≤ e−r(T−t)E
[
(ξSc − ξK)

+

∣∣∣∣F(t)

]
= e−rT

N∑
i=1

wiertie−r(ti−t)E
[
(ξS(ti)− ξKi)

+

∣∣∣∣F(t)

]

=: e−rT
N∑
i=1

wiertiE(t, ti,Ki; ξ), (7.5)

where the strikes Ki ≥ 0 are given by

Ki = (F tS(ti)
)−1(αi)(F tSc(K)), i = 1, . . . , N (7.6)

with the αi, i = 1, . . . , N , chosen in [0, 1] such that

N∑
i=1

wiKi = K.

Moreover, the comonotonic upper bound (7.5) is optimal in the sense that for any set of
strikes ki, i = 1, . . . , N , such that

∑N
i=1 wiki = K, it holds that

A(t, T,K; ξ) ≤
N∑
i=1

wie−r(T−ti)E(t, ti,Ki; ξ) ≤
N∑
i=1

wie−r(T−ti)E(t, ti, ki; ξ).

(7.7)

This upper bound corresponds to the infinite market case, where it is assumed that all
European option prices E(t, ti,K; ξ) for any maturity ti, i = 1, . . . , N , and any strike
K ≥ 0 are known. Knowledge of the prices E(t, ti,K; ξ) for all K ≥ 0 is equivalent
to the knowledge of the conditional cdf F tS(ti)

(x) for all x. This approach is a model-
based approach as it is based on a particular asset price model such as the Black–Scholes
model.
On the other hand when we assume that all these option prices are known because the
price of any put and call for any strike K ≥ 0 is observed in the market, we call this
approach model-free. No assumption concerning the pricing measure Q that is actually
used by the market is made in this case. The cdfs are as follows extracted from the
market:

F tS(ti)
(x) = δ1ξ + erti

∂E(t, ti, x+; ξ)

∂x
,
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where δ1ξ stands for the Kronecker delta.
Following a reasoning as in Theorem 3 of [122] it holds that in the model-free approach
an Asian call option can be super-replicated by trading in vanilla call options on the
underlying asset of the Asian option, while an Asian put option can be superhedged by
trading in vanilla put options on the underlying asset of the Asian option. Therefore, the
price inequality

A(t, T,K; ξ) ≤
N∑
i=1

wie−r(T−ti)E(t, ti,Ki; ξ)

holds without the explicit assumption that the involved option prices are expectations of
discounted pay-offs under some Q-measure. We only have to assume that all option
prices involved are traded prices in an arbitrage-free market, implying that a super-
replicating strategy for the Asian option is more expensive than the Asian option itself.
Notice however that in order to prove the equality

e−rT
N∑
i=1

wiertiE(t, ti,Ki; ξ) = e−r(T−t)E
[
(ξSc − ξK)

+

∣∣∣∣F(t)

]
we have to assume that option prices can be expressed as expectations of their discounted
pay-offs.

Assuming that vanilla call and put options for any strike K ≥ 0 are traded in the
market is not realistic. Therefore, we will briefly discuss the finite market case. For more
details and explanation of notations we refer to [40] and [122]. Assume that at time t
(in practice it will be at time t = 0) only the prices E(t, ti,Ki,j ; ξ), j = 0, 1, . . . ,mi,
i = 1, . . . , N , are observed for a set of strikes satisfying

0 = Ki,0 < Ki,1 < · · · < Ki,mi < Ki,mi+1,

and where the strikes Ki,mi+1 are defined by

Ki,mi+1 = sup {K ≥ 0 | E(t, ti,K; 1) > 0} .

Linders et al. [122] proposed a method to determine these Ki,mi+1, i = 1, . . . , N .
Notice that we assume that the sets of traded strikes for the call and put options are
identical. This assumption can be relaxed, see [122].

Theorem 2. In the finite market case, the Asian option price at t ∈ [0, T ] defined by
(7.1) with a strike K ∈ ((F tSc)

−1+(0), (F tSc)
−1(1)) is bounded above as follows

A(t, T,K; ξ) ≤
∑
i∈NK

wie−r(T−ti)E(t, ti,Ki,ji ; ξ)
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+
∑
i∈NK wie

−r(T−ti) (αKE(t, ti,Ki,ji ; ξ) + (1− αK)E(t, ti,Ki,ji+1; ξ))

(7.8)

=: UB(t, T,K; ξ)

where

NK =

{
i ∈ {1, . . . , N}

∣∣∣∣∣∃ji ∈ {0, . . . ,mi + 1} such that

F
t

S(ti)(Ki,ji−1) < F tSc(K) < F
t

S(ti)(Ki,ji)

}
,

NK =

{
i ∈ {1, . . . , N}

∣∣∣∣∣∃ji ∈ {0, . . . ,mi} such that

F tSc(K) = F
t

S(ti(Ki,ji)

}
,

with αK chosen in [0, 1] such that

(F tSc)
−1(αK)(F tSc(K)) = K.

Moreover, the upper bound (7.8) is optimal in the sense that for any set of strikes ki,
i = 1, . . . , N , such that

∑N
i=1 wiki = K, it holds that

A(t, T,K; ξ)

≤ UB(t, T,K; ξ)

≤
∑
i∈MK

wie−r(T−ti)E(t, ti,Ki,ji ; ξ)

+
∑
i∈MK

wie−r(T−ti) (βi,KE(t, ti,Ki,ji ; ξ) + (1− βi,K)E(t, ti,Ki,ji+1; ξ)) (7.9)

where

MK = {i ∈ {1, . . . , N} | ∃ji ∈ {0, . . . ,mi} : ki = Ki,ji}
MK = {i ∈ {0, . . . , N} | ∃ji ∈ {1, . . . ,mi} : Ki,ji < ki < Ki,ji+1},

and with βi,K chosen in (0, 1) such that

βi,KKi,ji + (1− βi,K)Ki,ji+1 = ki.

As an illustrating example of strikes ki, i = 1, . . . , N , different from the optimal
strikes in Theorem 1 and Theorem 2, which may provide a non-optimal upper bound,
we consider the model-independent strikes proposed by Tchuindjo [167] given by

ki =
Ke(r−q)(ti−t)∑N
j=1 wje

(r−q)(tj−t)
, i = 1, . . . , N, (7.10)
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where q is the dividend rate. According to (7.7) and (7.9), the value bound calculated
with the model-independent strikes (7.10) should not be smaller than the optimal value
bound calculated with the optimal strikes in both frameworks, the model-based one
and the model-free one. Since the optimal upper bound corresponds to an optimal
static super-replicating strategy for Asian options, any non-optimal upper bound may
lead to arbitrage. The non-uniqueness of the optimal static super-replicating strategy is
discussed in [39].

From the theory of increasing convex ordering, it immediately follows that the upper
bounds (7.8), respectively (7.9), in the finite market case will not be smaller than the
upper bound (7.5), respectively (7.7), in the infinite market case. This can also be seen
as follows. The option price curve is a convex function of the strike. In the finite market
case an approximate option price curve is defined as a linear interpolation of the curve
in the infinite market and hence the former lies above the latter.

As in the infinite market case, the approach is model-based when a particular price
model for the underlying asset is assumed. The upper bounds (7.8) and (7.9) are the
prices of static super-replicating strategies which are model-free when we do not assume
that the involved option prices are expected discounted pay-offs under some Q-measure.
The only assumption that we have to make is that the market is free of arbitrage.

It is known from the literature that the comonotonic upper bound is a rather rough
estimate for the option price, except for in-the-money option. Therefore, better model-
based bounds are searched for. Comonotonic lower bounds and improved upper bounds
based on conditioning are derived and discussed for Asian options and Asian basket
options (see, e.g. [56, 120, 124, 136, 171, 182]). These bounds are, however, out of the
scope of this thesis.

To conclude this section we derive a model-independent lower bound in terms of the
ti-forward prices at time t, with ti > t, given by

E[S(ti) | F(t)] = S(t)e(r−q)(ti−t). (7.11)

Applying Jensen’s inequality to the convex function (·)+ = max(·, 0) in (7.1) and using
(7.11), we easily arrive at the lower bound A(t, T,K; ξ):

A(t, T,K; ξ) := e−r(T−t)

(
ξ

N∑
i=1

wiS(t)e(r−q)(ti−t) − ξK

)+

≤ A(t, T,K; ξ).

(7.12)
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7.3 Acceleration of the computation of the model-based
optimal upper bound

The distribution function of the underlying asset at time ti and its inverse play an
important role in calculating the optimal strikes (7.6). Albrecher et al. [1] numerically
built up the distribution function from the density function of the underlying asset price,
and its inverse is then found by a bisection method. It is computationally intensive to
build up the distribution function from the density function, especially when the density
function is very complex or singular at some points, which is for example the case for
the density function, see [65], in the Heston model [103]. To accelerate the procedure
proposed by [1], we recover the distribution function from the characteristic function of
the log-asset price, which is available in a large class of stochastic models, such as Lévy
models [1] and Heston’s model.

We approximate the distribution function Flog(St) by F̂log(St),

F̂log(St)(x) =


1 if x ≥ b,
x− a
b− a

+
∑n

k=1
Fk,t ·

b− a
kπ

· sin(kπ
x− a
b− a

) if x ∈ (a, b),

0 if x ≤ a,

(7.13)

where n ∈ N is the number of the terms of Fourier-cosine series expansion for the
density function f , and a, b (−∞ < a < b < +∞) are chosen such that∫ b

a

eiωxf(x) dx ≈
∫
R
eiωxf(x) dx,

and

Fk,t =
2

b− a
Re

{
φ

(
kπ

b− a
, t

)
· exp

(
−i kaπ
b− a

)}
. (7.14)

In practice, we can set a to be sufficiently small while b is set to be sufficiently large.
The derivation of (7.13)-(7.14) is given in Section 5.2.3. One may refer to [76] for an
error analysis on the Fourier-cosine series expansion.

Correspondingly, the distribution function FSt can be approximated by F̂St , given
by

F̂St(x) = F̂log(St) (log(x)) .

Since F̂log(St) is given in closed form in terms of sine functions, its inverse can be easily
calculated with the bisection method. Hence, the computational cost of the optimal
strikes can be significantly reduced in the model-based framework.
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7.4 Numerical examples

In this section, we consider the Asian option value (7.1) at time zero and with equal
weights wi, i.e.

A(0, T,K; ξ) = e−rTE

( 1

N
ξ

N∑
i=1

S(ti)− ξK

)+∣∣∣∣S(0) = S0

 . (7.15)

The numerical experiments are first carried out to compare the quality of the upper
bounds calculated with the strikes (7.6) and (7.10) in the model-based framework. The
quality is assessed by their deviation from the model-independent lower bound (7.12)
and the model price calculated with the Monte Carlo method.

Then, real market data are employed to calculate the model-free optimal value bound
(7.8) and the model-free upper bound (7.9) with the strikes (7.10).

At last, we compare the model-free value bound with the optimal value bound based
on the well-calibrated Heston models. The comparison can be used to detect model
mis-specification, and some practical issues are discussed.

7.4.1 Model-based value bounds

According to Theorem 1, the comonotonic upper bound (7.5) should be smaller than or
equal to the upper bound (7.7) with the model-independent strikes (7.10). In addition,
the upper bound should not be less than the model price (MC-price) calculated with the
Monte Carlo method. The MC-price is used to assess the quality of the upper bounds
with the strikes (7.6) and (7.10). On the other hand, different pricing models may provide
different MC-prices and different value bounds for each target option. In addition, the
lower bound (7.12) can also work as a reference to assess the upper bounds for deeply
in-the-money options. In this subsection, we assess the upper bounds under different
models.

7.4.1.1 The Black–Scholes model and the Variance Gamma model

Here, we focus on assessing the quality of the model-based upper bounds in the Black–
Scholes model and the Variance Gamma model with strikes given by (7.6) and (7.10).
For an Asian put option we calculate the MC-prices and the value bounds with the same
model parameters as those used in [167]. The results are plotted in Figure 7.1 and Figure
7.2, and the data are summarized in Table 7.1 and Table 7.2, respectively. Note that the
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MC prices taken from Table VII and Table VIII in [167] are sometimes larger than the
corresponding upper bounds1. The remedy provided here is to reduce the variance with
a control variate2.

Figure 7.1 and Figure 7.2 depict that, in each model, the comonotonic upper bound
(7.5) is smaller than the upper bound (7.7) with the model-independent strikes (7.10).
Comparing the results of Table 7.1 and Table 7.2, we conclude that a different pricing
model for the underlying asset leads to different prices and model-based upper bounds
for the Asian option when they are not too deep-in-the-money. Thus, if no information is
available to differentiate the candidate models, one is confronted with model uncertainty.

On the other hand, as shown by [91], different calibration methods could yield
different estimations for each model parameter. Calibration risk can be defined as
the different optimal parameter sets arising from the different specifications of the
discrepancy measures and the calibration methodology in the procedure of model
calibration. We will investigate this problem with the well-calibrated Heston models
from [91].

7.4.1.2 Heston’s model

In the Heston model [103], the asset price process (S) and the variance process (v)

under a risk-neutral probability measure Q evolve according to the following system of
stochastic differential equations,{

dSt = (r − q)St dt+
√
vtSt dWt, S0 > 0,

dvt = κ(η − vt) dt+ λ
√
vt dW̃t, v0 = σ2

0 > 0,
(7.16)

where (Wt)0≤t≤T and (W̃t)0≤t≤T are correlated Brownian motions satisfying dWtdW̃t

= ρdt. The parameter η is the long-term average variance, while κ is the speed of
the mean-reversion of the variance. The parameter λ is referred to as the volatility of
variance since it scales the diffusion term of the variance process.

Different from the Lévy models used in [1] and [167], the density function of the
underlying is not immediately available in closed form in the Heston model [65]. It is
time-consuming to build up the distribution from the density function. However, the
characteristic function of the log-asset price is available and reads

φ(ω, t) := E [exp (iω log(St)) | S0, v0] = exp(A+B + C), (7.17)
1We refer to [163] for comments on those results.
2One may refer to the Appendix at the end of this chapter or [88] for more details on the technique of a

control variate.
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Figure 7.1: Spread between the (optimal) upper bound and the MC-price in the Black–Scholes
model and the VG model
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where

A = iω (log(S0) + (r − q)t),
B = ηκλ−2

(
(κ− ρλωi+ d) t− 2 log

((
1− gedt

)
/(1− g)

))
,

C = v0λ
−2(κ− ρλωi+ d)(1− edt)/(1− gedt),

d =

√
(ρλωi− κ)

2
+ λ2(ωi+ ω2),

g = (κ− ρλωi+ d)/(κ− ρλωi− d).

Hence, we can use the method proposed in Section 7.3 to approximate the distribution
function and calculate its inverse with a bisection method. The parameters in (7.13)
are set to be n = 214, a = −10, b = 2500. The implementation is done in
MATLAB (2014b) (Processor: Intel Core(TM) i7-3770 CPU @ 3.4GHz, RAM: 8GB).
The computational cost to calculate the approximation of the distribution function (7.13)
is less than 0.01s. Following the lines of [1], we also approximated the distribution
function by evaluating the integral of the density function with the integral function
of MATLAB. Its computational cost is about 9.5s. Hence, our method can efficiently
accelerate the computation of the model-based optimal upper bound.

With the well-calibrated Heston models from [91], we calculate the MC-prices and
the value bounds of the in-the-money Asian options monitored on the fourteen expiration
dates of the benchmark SPX options (see Table 7.5 in the next section). We refer to the
Appendix at the end of Chapter 6 for the computational aspects on model calibration and
the Monte Carlo methods for the Heston model. In the present case, we use the Asian
option value (7.15) with T = 737 days, N = 14 and

ti ∈ {1, 9, 20, 37, 72, 100, 110, 191, 201, 282, 293, 373, 555, 737}.

The continuously compounded interest rate (r) is set to be a constant 0.0153. The strikes
of Asian call options range from 500 to 860, while they range from 900 to 1200 for Asian
put options. The difference between two consecutive strikes is 20. The model-free upper
bounds of these options will be calculated in the next section.

The calculation of the optimal upper bound (7.5) and of the upper bound (7.7)
involves the calculation of European option prices with the optimal strikes Ki by
(7.6) and the strikes ki by (7.10), where the optimal strikes are computed using the
approximation of Section 7.3. The European option prices are calculated with the COS
method [76].

The results are reported in columns two to five, seven and eight of Table 7.3 and
Table 7.4. Besides the non-optimality of the upper bounds with the strikes (7.10), these



148 ASIAN VALUE UPPER BOUNDS

results confirm that although the well-calibrated models fit to the same data, they could
also lead to different prices and model-based upper bounds.

In a nutshell, these numerical results under different models confirm that compared
with the upper bound (7.7) with the model-independent strikes (7.10), the comonotonic
upper bound (7.5) is a better approximation for the Asian option value, although both
of them are good approximations for very deep-in-the-money options. The lower
bounds are model-independent, however, different pricing models provide different
upper bounds for the same option. The model-free upper bounds may work as a robust
alternative.
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7.4.2 Model-free value bounds

This subsection focuses on the model-free value bounds in the finite market case. Market
data on SPX options is employed to calculate the optimal upper value bound (7.8), the
upper bound (7.9) with strikes given by (7.10) and the lower bound (7.12) of arithmetic
Asian options written on the SPX. We refer to [40] and [122] for some computational
aspects for the comonotonic optimal upper bound. Here, we will point out some practical
issues when dealing with real market data.

7.4.2.1 Market data and target options

We use the market data on SPX options from [91]. These European vanilla options
were quoted on 2008/12/11 in terms of bid-ask prices. There are fourteen different
maturities ti, i = 1, . . . , 14 ranging from 1 day to 737 days. Options with strikes Ki,j ,
j = 0, 1, . . . ,mi are traded on each expiration date. The call and put options with the
same strike are traded in the market. The closing price (S0) of the SPX was 873.59
on 2008/12/11, and the one-year continuous dividend rate q was 0.0088. The summary
statistics are displayed in Table 7.5. The mid-price data of the benchmark options is used
to calculate the optimal upper value bound (7.8) and the upper bound (7.9) with strikes
given by (7.10). We filtered out the options whose mid-price violated the convexity of
the option value function on each date.

The target options are the same as (7.15).

7.4.2.2 Practical issues and results

The calculation of the optimal upper value bound (7.8) involves the marginal distribution
of the underlying asset price on each monitor date. Due to the call-put parity, the
marginal distribution recovered with the benchmark data from either call or put options
should be the same. However, the call-put parity is derived under the no friction
assumption paired with the law of one price. The existence of a bid-ask spread is not
consistent with these assumptions. Hence, the call-put parity does not strictly hold when
the mid-price is used. In order to deal with this, we recover two marginal distributions on
each monitor date: the first one is from the mid-prices of call options and the second one
is from the mid-prices of put options. That is, each Asian option has two comonotonic
optimal bounds. The mid-value of these two optimal bounds is plotted in Figure 7.3 and
the data is summarized in the column optimal upper bound/finite market in Table 7.3 and
Table 7.4.
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Maturity Strike Number of

( days) Kmin Kmax Options

1 825 1000 12
9 765 2000 54
20 525 1650 38
37 300 1500 74
72 200 1500 84

100 200 2000 76
110 500 1300 34
191 200 1900 84
201 600 1500 48
282 200 1500 80
293 500 1500 54
373 200 2500 74
555 200 1800 52
737 200 2000 62

Table 7.5: Summary statistics of SPX options quoted on 2008/12/11: S0 = 873.59

Figure 7.3 highlights that the optimal upper bound (7.8) is lower than the upper
bound (7.9) with strikes (7.10) in the model-free framework. In addition, these upper
bounds are larger than the lower bound (7.12). The corresponding values for theses
bounds can be found in the columns two, seven and ten of the Table 7.3 and Table 7.4.

In the finite market case, the marginal distribution function on each monitoring
date is constructed by means of a finite set of traded European options, and it is not
a strictly increasing function (thus a non-decreasing function). According to [39], the
set of optimal strikes is not unique in this setting, but the value of the optimal bound
is unique. However, the strikes defined in (7.10) are not optimal as confirmed by the
numerical results. This is in line with our expectations, since this latter set of strikes is
not found as a solution to an optimization problem.

As depicted in Figure 7.4, the spread between an upper bound and the lower bound
decreases as the moneyness goes to be far deep in-the-money for both Asian call and
put options. For far deep in-the-money options, although the upper bound is close to the
lower bound, the optimal upper bound is a better approximation. It is consistent with the
results in the model-based framework.

Compared with the computational cost of the model-free upper bound with the
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Figure 7.3: Upper bound, optimal upper bound and lower bound in the model-free framework

strikes given in (7.10), the computation of the model-free optimal upper bound requires
an additional cost to search for the optimal strikes. However, the search algorithm
proposed by [40] is quite efficient. We recommend to use the model-free optimal bound
to approximate the Asian option value.

7.4.3 Discussion on model-based and model-free (optimal) upper
bounds

Theoretically, if a pricing model is taken as the true dynamics of the underlying price
in the infinite market, the model-based optimal bound should not exceed the optimal
model-free upper bound in the finite market. Otherwise, the parametric model is mis-
specified. As noted in [107], the model-free optimal upper bound can be employed to
detect the model mis-specification. In practice, it is not necessary that the model-free
optimal bound should strictly exceed the model-based optimal bound. The estimation
method for the model parameters should be taken into account in this setting.

Model calibration is a popular method to estimate the model parameters which can
minimize the difference between the model-based price and the benchmark data. Since
it is an optimization problem for the difference, the calibrated model may not exactly
reproduce the benchmark data, but it can work as an approximation of the dynamics of
the underlying asset price process in the infinite market. It is reasonable that a well-
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Figure 7.4: Spread between (optimal) upper bound and lower bound in the model-free framework

calibrated model leads to an optimal upper bound which exceeds the model-free bound
with negligible difference. This rationale also holds if the upper bound with strikes
(7.10) is used to detect model mis-specification.

In this subsection, we compare the numerical results of the model-free upper bounds
in Section 7.4.2.2 with these reported in Section 7.4.1.2 under the calibrated Heston
models [91]. We illustrate how to detect model mis-specification under the Heston
model.

The numerical results summarized in Table 7.3 and Table 7.4 are plotted in Figure
7.5 and Figure 7.6. A simple criterion to detect model mis-specification is to compare the
MC price with the model-free optimal bound. As depicted in Figure 7.5 and Figure 7.6,
the Asian option prices under the calibrated Heston models are lower than their model-
free optimal upper bound. Since the comonotonic upper bound is a rough estimate for
the Asian option price, especially for around at-the-money options, it is not a strong
criterion to assess a candidate model by comparing the model-based MC price with the
model-free optimal upper bounds.

The model-based (optimal) upper bound is compared with the model-free (optimal)
upper bound. Figure 7.5 and Figure 7.6 show that the (optimal) upper bound given
by the first calibrated model (RMSE full) is close to, but not always lower than the
corresponding model-free (optimal) upper bound. However, the difference is negligible
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Figure 7.5: Comparison among model-based upper bounds, model-free upper bounds and MC
prices of Asian options
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between the model-based (optimal) upper bound based on the calibrated model (RMSE
full) and the corresponding one in the finite market. Although the (optimal) upper bound
given by the second calibrated model (ARPE full) is always lower than the model-
free (optimal) upper bound, it is not convincing to reject the first calibrated model
(RMSE full). Since the conclusion is the same from both perspectives, namely that of a
comonotonic optimal upper bound and that of an upper bound with model-independent
strikes, the upper bound is recommended to assess a pricing model. The model-based
optimal upper bound, after all, involves the calculation of the optimal strikes.

If the model has been calibrated well to the market data in time, it seems redundant
to detect model mis-specification with the approach based on these upper bounds.
However, if the model parameters are not updated in time according to the market
information, the model-free (optimal) upper bound can be employed to detect the
model mis-specification. For example, we assume the Heston model was calibrated
to the market data on some day before our benchmark data is available. However, the
parameters are not updated when our benchmark data is available. As shown in Table 7.3
and Table 7.4, the upper bound under the toy model is strictly higher than the model-free
upper bound.

Above all, the model-free optimal upper bound and the non-optimal upper bound
can be used to detect model mis-specification, and the non-optimal upper bound is
recommended. However, the estimation method for the model parameters should be
taken into account to assess a model.

Appendix: control variate

The control variate technique, see e.g. [88], is applied to reduce the variance of the
Monte Carlo estimator. In the present case of an Asian option, a possible control variate
is the sum of the asset prices at the dates ti, i = 1, . . . , N :

X =

N∑
i=1

S(ti),

with expected value, see (7.11) with t = 0,

E[X] =

N∑
i=1

E[S(ti)] = S(0)

N∑
i=1

e(r−q)ti .

For the experiments where the underlying is modelled by a geometric Brownian motion
with volatility σ, we also consider the geometric Asian option with strikeK and maturity
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date T as control variate:

G(t, T,K; ξ) = e−r(T−t)E


ξ( N∏

i=1

S(ti)

)1/N

− ξK

+ ∣∣∣∣F(t)


= e−r(T−t)+(r−δ)(T̃−t)E(t, T̃ ,K; ξ),

where the European option has maturity T̃ , strike K, interest rate r − δ, and dividend
rate q and is written on a price process modelled as a geometric Brownian motion with
volatility σ̃:

T̃ =
1

N

N∑
i=1

ti, σ̃2 =
σ2

N2T̃

N∑
i=1

(2i− 1) tN+1−i, δ =
1

2
σ2 − 1

2
σ̃2.





8
Conclusion

In financial markets, model uncertainty is a philosophical problem as well as a
technical problem. Philosophically speaking, model uncertainty is ubiquitous whenever
a probabilistic model is employed in financial economics. Although a model-free
approach can be employed to avoid model uncertainty, probabilistic models are still
extensively used in their own right. Hence, technically speaking, it is of great importance
to quantify model uncertainty, reduce the impact of model uncertainty on quantities of
interest and detect model mis-specification. These three topics constitute the theme of
my thesis. The main contributions of this thesis can be summarized as follows:

1. An implementable numerical method was proposed to calculate the locally-risk
minimising strategies for Asian options, spread options, basket options in a class
of semimartingale models. These strategies are shown to be robust with respect to
model uncertainty.

2. An efficient method was proposed to calculate the ensemble of the value of
a derivative associated with a large ensemble of the model parameters. The
ensemble of the derivative value allows us to quantify the uncertainty embedded in
the derivative value with respect to parameter uncertainty. The proposed method
can also be employed to accelerate the robust calibration procedure.
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3. The T-COS method was proposed to calculate distorted expectations. This method
can replace the Monte Carlo method to calculate distorted expectations if we know
the density function or the characteristic function of a risk factor. The T-COS
method can find extensive applications in finance, insurance and so on.

4. The weighted Monte Carlo method was empirically confirmed to be capable of
reducing the impact of model uncertainty on the derivative value.

5. An efficient method is proposed to accelerate the calculation of the comono-
tonicity-based upper value bound for a discrete arithmetic Asian option in the
models with the closed-form characteristic functions.

6. Some practical issues were addressed in detecting model mis-specification with
the comparison between model-based quantities and their model-free counterparts
of discrete arithmetic Asian options.

Based on the probabilistic models, financial economics has witnessed tremendous
advance in theory and applications in financial markets. However, reflecting my research
on model uncertainty, I find myself to be more ignorant of the essential mechanism
of complex financial markets. It is so amazing and critical to quantify and manage
uncertainty embedded in the whole markets. At the moment, the following topics are of
interest for future research:

1. Categorising an investor’s preference in the setting of model uncertainty.

2. Quantifying uncertainty embedded in the whole financial market.

3. Quantifying model uncertainty in the dynamic setting.

When these three topics are appropriately solved, theory on portfolio and derivative
pricing can be investigated in more realistic settings.



Summary

Probabilistic models for financial markets play a crucial role in financial economics.
The interplay between the theory of financial economics and its applications in financial
markets promotes the tremendous advance in financial modeling. However, the
complexity of financial markets and the limited capability of any single probabilistic
model lead to a philosophical and technical problem — Model Uncertainty.

This thesis covers three topics involving model uncertainty in financial markets:
numerical methods to quantify model uncertainty embedded in the pricing and hedging
of derivative instruments, numerical methods to reduce the impact of model uncertainty,
approaches to detect model mis-specification. Chapter 1 introduces the motivations
for selecting model uncertainty as the theme of this thesis. After introducing some
preliminaries of stochastic analysis and derivative pricing in Chapter 2, we present the
main contributions in Chapter 3 to Chapter 7. Chapter 8 concludes this thesis and looks
into the future of some promising topics on uncertainty in financial markets. The main
contributions and ideas of this thesis can be summarized in the following way.

Chapter 3 investigates the discretisation of locally risk-minimising (LRM) strate-
gies for vanilla options, Asian options, spread options and basket options in a class
of semimartingale models, as well as the robustness of the LRM strategies with
respect to model uncertainty.

We assume that the discounted stock price process S satisfies the stochastic
differential equation (SDE)

dS(t) = S(t−)

a(t) dt+ b(t) dW (t) +

∫
R

γ(t, z) Ñ(dt,dz)

 , (3.9)

where a is Lipschitz, W and Ñ are a Brownian motion and a centered Poisson
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random measure, respectively. Under some assumptions on the model parameters, the
locally risk-minimising hedging strategy for a vanilla option or an Asian option can be
formulated as the solution to a backward stochastic differential equation (BSDE),

dṼ (t) = Υ̃(t)a(t) dt+ Υ̃(t)b(t) dW (t) +

∫
R

Υ̃(t)γ(t, z) Ñ(dt,dz) + dLFS(t),

Ṽ (T ) = ξ̃ ,
(3.12)

where ξ̃ is the discounted payoff, Ṽ is the discounted value of the portfolio and the
predictable process Υ̃ defined as Υ̃(t) = χFS(t)S(t−) is the amount of wealth to invest
in an LRM strategy.

For spread options or basket options, the risky assets price processes Si, i =

1, 2, satisfy the SDEs of the form (3.9) driven by correlated Brownian motions.
Correspondingly, the counterpart of the BSDE (3.12) is

Ṽ (t) = Ṽ (T )−
T∫
t

{
Υ̃1(s)a1(s) + Υ̃2(s)a2(s)

}
ds−

T∫
t

Υ̃1(s) dζ1(s)

−
T∫
t

Υ̃2(s) dζ2(s)− LFS(T ) + LFS(t) ,

Ṽ (T ) = ξ̃ ,

(3.59)

where ξ̃ is the discounted payoff, Υ̃i(t) = χFSi (t)Si(t−) is the amount of wealth
invested in the risky asset Si, i = 1, 2, in the setting of two underlying assets.

We simulate the LRM strategies by numerically solving the corresponding BSDEs.
Using the discretisation scheme and the convergence results on backward stochastic
differential equations as studied in [115], we show that the LRM strategies are robust
towards the choice of the model and we derive an estimation of model uncertainty (see
Theorem 3.12, Theorem 3.17, Theorem 3.18, Theorem 3.19 and Remark 3.20, Theorem
3.24, Theorem 3.25, Theorem 3.26).

Chapter 4 proposes an efficient numerical method to quantify uncertainty embed-
ded in exotic derivatives.

Model uncertainty is characterized by a finite set of plausible models of different
types, while parameter uncertainty is characterized by specifying each parameter in
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an interval. Each parameter can take any value from its interval. Cont [49] proposed
to quantify the uncertainty embedded in a derivative value in terms of its worst-case
values. From this point of view, we only have to consider a special type of these models.
Otherwise, we can calculate the worst-case values under the models of each type and find
the bounds of these worst-case values. Hence, without loss of generality, we focus on
parameter uncertainty in this chapter. In this setting, the key issue is how to efficiently
calculate a large ensemble of the derivative value with a given large ensemble of the
model parameters.

Combining the Monte Carlo method and the Smolyak interpolation algorithm (4.16),
we propose an efficient numerical method to address the aforementioned key issue. With
the resulting ensemble of derivative values, we can quantify the uncertainty embedded
in these derivative values by at least two uncertainty measures.
The first one is the coherent uncertainty measure [49]

µQ(f) = P (f)− P (f) . (4.4)

where P and P are the upper and lower bounds of the derivative value, which are
approximated by

P (f) ≈ max
Q∈Q̄

PQ(f) and P (f) ≈ min
Q∈Q̄

PQ(f) , (4.3)

where Q̄ is a collection of pricing models.
The second measure is the entropy of the derivative value

H(P ) =
∑

i
p(xi) log

1

p(xi)
, (4.12)

where p is the empirical distribution of the derivative value.
Numerical examples are carried out to quantify parameter uncertainty embedded

in the Bermudan put options and the down-and-out put options in the Heston model.
The results show that for these two kinds of options, the at-the-money option (K =

100, S0 = 100) embeds more uncertainty than the same kind of option with other
moneyness. Comparatively speaking, more uncertainty is embedded in the in-the-money
Bermudan put option (K = 110, S0 = 100) than that in the out-of-the-money Bermudan
put option (K = 80, S0 = 100); it is the reverse order for the down-and-out put options.
In addition, model uncertainty impacts more on the out-of-the-money and at-the-money
down-and-out put options (K = 80, 100;S0 = 100) than the corresponding Bermudan
put options (K = 80, 100;S0 = 100), respectively. However, the impact of parameter
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uncertainty on the in-the-money down-and-out put option (K = 110, S0 = 100) is
stronger than that on the in-the-money Bermudan put option (K = 110, S0 = 100).
These results provide an investor with some necessary information to quote a derivative
in the OTC market.

Chapter 5 proposes an efficient numerical method to calculate distorted expecta-
tions.

The distorted expectation of a random variable X is defined by

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)),

where FX is the distribution function and Ψ is a distortion function. Distorted
expectations find extensive applications in finance and insurance.

Generally speaking, the distorted expectation does not admit an analytical formula,
because the distorted density function is usually not given in the closed form. The Monte
Carlo method is the standard approach to calculate distorted expectations. However,
the Monte Carlo method has low efficiency. We propose an analytical approximation
method for distorted expectations, the so-called T-COS method (Algorithm 5.1 and
(5.20)).

In the Heston model, the results show that the T-COS method is about 2500 times
more efficient than the standard Monte Carlo method with the saved and sorted paths.
Note that simulating the price process costs much more time than loading the saved
pathes. Hence, the numerical results highlight the advantage of the T-COS method over
the standard Monte Carlo method.

Chapter 6 empirically investigates whether the weighted Monte Carlo method can
reduce the uncertainty embedded in a derivative value.

The previous chapters mainly focus on how to quantify the impact of model
uncertainty. In this chapter, we use the weighted Monte Carlo method to reduce the
impact of model uncertainty on a derivative value.

Model uncertainty is characterized by the eighteen calibrated Heston models in [91].
Under each calibrated Heston model, we use the standard Monte Carlo method and the
weighted Monte Carlo method to calculate the implied volatilities of vanilla options.
The results are compared with the market data, respectively. The comparison shows that
compared with the standard Monte Carlo method, the weighted Monte Carlo method can
reduce the impact of model uncertainty in terms of implied volatility.
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In addition, under each calibrated Heston model, we use the standard Monte Carlo
method and the weighted Monte Carlo method to calculate the value of Asian options,
barrier options and lookback options. The results also confirm that the weighted Monte
Carlo method can reduce the impact of model uncertainty.

Chapter 7 proposes an efficient numerical method to calculate the comonotonicity-
based upper value bounds of arithmetic Asian options, and empirically investigate
how to detect model mis-specification.

Comonotonicity risk theory provides a super-replicating strategy and an upper value
bound for a discrete arithmetic Asian option. The super-replicating strategy consists of
trading European options with selected strikes, and the cost of this strategy corresponds
to an upper value bound. This upper value bound is optimal in some sense. Calculation
of the optimal strikes of the European options in the hedging portfolio is the key
procedure in setting up the super-replicating strategy and calculating the optimal value
bound. Recall that the super-replicating strategy can be set up either in the model-based
framework or in the model-free framework. Hence, these optimal strikes have to be
calculated in the model-based framework and the model-free framework with special
numerical methods.

In the model-based framework, Albrecher et al. [1] proposed to recover the
distribution function of the underlying asset price from its density function and use the
bi-section method to search for the optimal strikes. However, it may be time-consuming
to calculate the distribution function if the density function is not given in an analytical
form, such as in the Heston model [103]. In this chapter, we propose an efficient method
to accelerate the procedure of calculating the distribution function of the underlying asset
in the model-based framework (7.13). In the model-free framework, Chen et al. [40]
already proposed an efficient searching algorithm to calculate the optimal strikes. We
follow this method in the model-free framework.

We show how to detect model mis-specification by comparing the model-based value
bounds of Asian options with their model-free conterparts. We address some practical
issues, such as the non-uniqueness of the marginal distribution for the underlying asset
in the model-free setting.





Samenvatting

Probabilistische modellen voor financiële markten spelen een cruciale rol in de financiële
economie. De wisselwerking tussen de theorie van de financiële economie en de
toepassingen in financiële markten bevordert de enorme vooruitgang in de financiële
modellering. Echter, de complexiteit van de financiële markten en de beperkte capaciteit
van elk probabilistisch model afzonderlijk stimuleren de studie van een filosofisch
en technisch probleem – Modelonzekerheid. Dit proefschrift behandelt drie thema’s
met betrekking tot modelonzekerheid in financiële markten: numerieke methoden om
modelonzekerheid te kwantificeren die vervat zit in de prijsbepaling en het hedgen
van afgeleide producten, numerieke methoden om de impact van modelonzekerheid te
verminderen, technieken om verkeerde modelspecificatie te detecteren. Hoofdstuk 1
bevat de motivering waarom modelonzekerheid als onderwerp van deze scriptie gekozen
werd. Na het invoeren in hoofdstuk 2 van een aantal basisbegrippen uit de stochastische
analyse en de prijsbepaling van financieel afgeleide producten ook kortweg derivaten
genoemd, presenteren we de belangrijkste bijdragen in de hoofdstukken 3 tot en met 7.
Hoofdstuk 8 sluit dit proefschrift af en werpt een blik in de toekomst voor een aantal
veelbelovende thema’s betreffende onzekerheid in financiële markten. De belangrijkste
bijdragen en ideeën van dit proefschrift kunnen als volgt worden samengevat.

Hoofdstuk 3 onderzoekt de discretisatie van lokaal-risicominimiserende (LRM)
strategieën voor vanilla-opties, Aziatische opties, spread-opties en basket-opties
voor een klasse van semimartingaalmodellen, alsook de robuustheid van de LRM
strategieën met betrekking tot het modelleren van onzekerheid. We onderstellen
dat het verdisconteerde aandelenkoersproces S voldoet aan de stochastische differenti-
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aalvergelijking (SDE)

dS(t) = S(t−)

a(t) dt+ b(t) dW (t) +

∫
R

γ(t, z)Ñ(dt,dz)

 , (3.9)

waarin a Lipschitz, W en Ñ respectievelijk een Brownse beweging en een gecentreerde
Poisson toevalsmaat zijn. Onder bepaalde onderstellingen voor de modelparameters, kan
de lokaal-risicominimiserende hedgingstrategie voor een vanilla-optie of een Aziatische
optie geformuleerd worden als oplossing van een achterwaartse stochastische differenti-
aalvergelijking (BSDE),

dṼ (t) = Υ̃(t)a(t) dt+ Υ̃(t)b(t) dW (t) +

∫
R

Υ̃(t)γ(t, z) Ñ(dt,dz) + dLFS(t),

Ṽ (T ) = ξ̃ ,
(3.12)

waarbij ξ̃ de verdisconteerde payoff voorstelt, Ṽ de verdisconteerde waarde is van de
hedgingportefeuille en het voorspelbare proces Υ̃, gedefinieerd als Υ̃(t) = χFS(t)S(t−),
staat voor grootte van de investering in het onderliggende activum S.

De prijzen Si, i = 1, . . . , d, van de risicovolle activa voor spread-opties of basket-
opties voldoen aan de SDEs van de vorm (3.9) aangedreven door gecorreleerde Brownse
bewegingen. De tegenhanger van de BSDE (3.12) in het geval van twee onderliggende
activa luidt als volgt

Ṽ (t) = Ṽ (T )−
T∫
t

{
Υ̃1(s)a1(s) + Υ̃2(s)a2(s)

}
ds−

T∫
t

Υ̃1(s) dζ1(s)

−
T∫
t

Υ̃2(s) dζ2(s)− LFS(T ) + LFS(t) ,

Ṽ (T ) = h(S(·)(T )) ,

(3.59)

waarbij ξ̃ de verdisconteerde payoff is, Υ̃i(t) = χFSi (t)Si(t−) de grootte van
investering in de risicovolle activa Si, i = 1, 2.

We simuleren de LRM strategieën door de overeenkomstige BSDEs numeriek op
te lossen. Gebruik makend van een discretisatieschema en de convergentieresultaten
voor achterwaartse stochastische differentiaalvergelijkingen zoals bestudeerd in [115]
wordt aangetoond dat de LRM strategieën robuust zijn met betrekking tot de keuze
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van het model en we leiden een schatting af voor modelonzekerheid (zie Stelling 3.12,
Stelling 3.17, Stelling 3.18, Stelling 3.19 en Opmerking 3.20, Stelling 3.24, Stelling
3.25, Stelling 3.26).

Hoofdstuk 4 stelt een efficiënte numerieke methode voor om de onzekerheid
ingebed in exotische derivaten te kwantificeren.

Modelonzekerheid wordt gekenmerkt door een eindige verzameling van mogelijke
modellen van verschillende types, terwijl parameteronzekerheid wordt gekenmerkt door
het specificeren van elke parameter in een interval. Elke parameter kan elke waarde in
zo’n interval aannemen. Cont [49] suggereerde om de onzekerheid vervat in de waarde
van een derivaat te kwantificeren via worst-case waarden. Vanuit dit oogpunt hoeven we
enkel een speciaal type van deze modellen in overweging te nemen. Anderzijds kunnen
we de waarde voor de worst-case berekenen voor de modellen van elk type en de grenzen
van deze worst-case waarden zoeken. Vandaar dat we ons in dit hoofdstuk kunnen
focussen op parameteronzekerheid zonder verlies van algemeenheid. In deze context
is de belangrijkste vraag hoe we een grote verzameling van waarden voor derivaten
efficiënt kunnen berekenen voor een grote verzameling van de modelparameters.

We stellen een efficiënte numerieke methode voor om deze belangrijke vraag aan te
pakken en dit gebaseerd op een combinatie van de Monte-Carlomethode en het Smolyak-
interpolatie-algoritme (4.16). Met de resulterende verzameling van waarden voor de
derivaten kunnen we de onzekerheid ingebed in deze waarden kwantificeren aan de hand
van twee onzekerheidsmaten. De eerste is de coherente onzekerheidsmaatstaf [49]

µQ(f) = P (f)− P (f) . (4.4)

waarbij P en P de boven- en ondergrenzen zijn van de waarde van het derivaat, die
benaderd worden door

P (f) ≈ max
Q∈Q̄

PQ(f) and P (f) ≈ min
Q∈Q̄

PQ(f) , (4.3)

met Q̄ een verzameling van prijsmodellen.
De tweede maat is de entropie van de waarde van het derivaat

H(P ) =
∑

i
p(xi) log

1

p(xi)
, (4.12)

waarbij p staat voor de empirische verdeling van de waarde van het derivaat.
Numerieke voorbeelden worden uitgewerkt om de parameteronzekerheid in Bermu-

dan putopties en in down-and-out putopties te kwantificeren voor het Hestonmodel. De
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resultaten tonen aan dat voor deze twee soorten opties, de in-the-money optie (K = 100,
S0 = 100) meer onzekerheid bevat dan dezelfde soort optie met een andere moneyness.
Relatief gezien, bevat de in-the-money Bermudan putoptie (K = 110, S0 = 100) meer
onzekerheid dan de out-of-the-money Bermudan putoptie (K = 80, S0 = 100); het
omgekeerde geldt voor de down-and-out putopties. Bovendien heeft modelonzekerheid
meer invloed op de out-of-the-money en at-the-money down-and-out putopties (K = 80,
100, S0 = 100) dan op de overeenkomstige Bermudan putopties (K = 80, 100,
S0 = 100). Echter, de impact van parameteronzekerheid op een in-the-money down-
and-out putoptie (K = 110, S0 = 100) is groter dan die op de in-the-money Bermudan
putoptie (K = 110, S0 = 100). Deze resultaten geven een investeerder de nodige
informatie om een afgeleid product te prijzen in de over-the-counter-markt.

Hoofdstuk 5 stelt een efficiënte numerieke methode voor om vervormde verwacht-
ingswaarden te berekenen.

De vervormde verwachtingswaarde van een stochastische variabeleX wordt gedefini-
eerd als

EΨ[X] =

∫ +∞

−∞
xdΨ(FX(x)),

waarbij FX staat voor de distributiefunctie en Ψ voor een vervormingsfunctie. Ver-
vormde verwachtingswaarden vinden uitgebreide toepassingen in financiën en verzek-
eringen. Over het algemeen bestaat er voor de vervormde verwachtingswaarde geen
analytische formule, omdat de vervormde dichtheidsfunctie meestal niet in gesloten
vorm bestaat. De Monte-Carlomethode is de standaard aanpak om dergelijke vervormde
verwachtingswaarden te berekenen. Echter, de Monte-Carlomethode is niet heel
efficiënt. Wij stellen een analytische benaderingsmethode voor voor de vervormde
verwachtingswaarden, namelijk de zogenaamde T-COSmethode (algoritme 5.1 en
(5.20)). In het Hestonmodel geven de numerieke resultaten aan dat de T-COSmethode
ongeveer 2500 keer efficiënter is dan de standaard Monte-Carlomethode met opgeslagen
en gesorteerde paden. Merk op dat het simuleren van het prijsproces veel meer tijd
kost dan het laden van de opgeslagen paden. Vandaar dat de numerieke resultaten de
voordelen van de T-COSmethode ten opzichte van de standaard Monte-Carlomethode
extra in de verf zetten.

Hoofdstuk 6 onderzoekt op empirische wijze of de gewogen Monte-Carlomethode
de onzekerheid in de waarde van een derivaat kan verminderen.

De focus van de voorgaande hoofdstukken was vooral hoe de impact van mod-
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elonzekerheid te kwantificeren. In dit hoofdstuk gebruiken we de gewogen Monte-
Carlomethode om de impact van modelonzekerheid op de waarde van een afgeleid
product te verminderen. Modelonzekerheid wordt hier gekenmerkt door de achttien
gecalibreerde Hestonmodellen uit [91]. Voor elke gecalibreerd Hestonmodel, gebruiken
we de standaard Monte-Carlomethode en de gewogen Monte-Carlomethode om de
impliciete volatiliteit bij vanilla-opties te berekenen. De resultaten worden vergeleken
met de overeenkomstige marktgegevens. De vergelijking toont aan dat in tegenstelling
tot de standaard Monte-Carlomethode, de gewogen Monte-Carlomethode de impact van
modelonzekerheid bij de impliciete volatiliteit kan verminderen. Daarnaast berekenen
we, onder elk gecalibreerd Hestonmodel, met behulp van zowel de standaard Monte-
Carlomethode als de gewogen Monte-Carlomethode de waarde van Aziatische opties,
barrier-opties en lookback-opties. De resultaten bevestigen ook hier dat de gewogen
Monte-Carlomethode de impact van modelonzekerheid kan verminderen.

Hoofdstuk 7 stelt een efficiënte numerieke methode voor om de op comonotoniciteit
gebaseerde bovengrenzen van rekenkundige Aziatische opties te berekenen en
onderzoekt empirisch hoe foutieve modellen te detecteren.

Risicotheorie gebaseerd op comonotoniciteit zorgt voor een superreplicerende strate-
gie en een bovengrens voor discrete rekenkundige Aziatische optieprijzen. De super-
replicerende strategie bestaat uit het verhandelen van Europese opties met geselecteerde
uitoefenprijzen en uitoefendata, en de kosten van deze strategie komen overeen met
de waarden van een bovengrens. Deze bovengrens is optimaal in een welbepaalde
zin. Berekening van de optimale uitoefenprijzen van de Europese opties in de
hedgingportefeuille is de sleutelprocedure bij het opzetten van de superreplicerende
strategie en bij het berekenen van de corresponderende optimale waarde. Deze
superreplicerende strategie kan worden opgezet hetzij in een modelgebaseerde context
hetzij in een modelvrije context. De optimale uitoefenprijzen moeten worden berekend
met speciale numerieke methoden in de modelgebaseerde context en in een modelvrije
context.

Albrecher et al. [1] stelden voor om in de modelgebaseerde context de distribu-
tiefunctie van de prijs van het onderliggend activum te halen uit de dichtheidsfunctie
ervan en om via de bisectiemethode de optimale uitoefenprijzen te berekenen. De
berekening van de verdelingsfunctie kan echter heel tijdrovend zijn als de dichthei-
dsfunctie niet in een analytische vorm beschikbaar is, zoals in het geval van het
Hestonmodel [103]. In dit hoofdstuk stellen we een efficiënte manier voor om de
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berekeningsprocedure voor de distributiefunctie (7.13) van de onderliggende waarde te
versnellen in de modelgebaseerde context. In de modelvrije context hebben Chen et
al. [40] reeds een efficiënt zoekalgoritme beschreven om de optimale uitoefenprijzen te
berekenen. We volgen deze methode in het modelvrije kader.

We laten verder zien hoe voor Aziatische opties de specificatie van een verkeerd
model kan gedetecteerd worden door het vergelijken van de modelgebaseerde grenzen
met de overeenkomstige modelvrije grenzen. We bespreken een aantal praktische zaken,
zoals het niet-unieke karakter van de marginale distributie voor de onderliggende waarde
in het modelvrije kader.
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[81] H. FÖLLMER AND M. SCHWEIZER, Hedging of contingent claims under
incomplete information, in Applied Stochastic Analysis, M. Davis and R. Elliott,
eds., vol. 5 of Stochastic Monographs, Gordon and Breach Science Publishers,
New York, 1991, pp. 389–414.
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