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Summary 

 

Functionally graded materials (FGMs) are the most advanced heterogeneous 

composite materials, which are made of two or more constituent phases with continuous 

variation of material ingredients between two points in a predetermined direction. As a 

result, FGMs are enabled to inherit the best properties of the distinct components, e.g. 

low thermal conductivity, high thermal resistance, ductility, durability and superiority of 

fracture toughness and so on. FGMs were initially designed for the space shuttle for the 

thermal coating. Nowadays, they have a variety of real and potential applications in many 

engineering fields such as transport systems, energy conversion systems, cutting tools, 

machine parts, semi-conductors, optics and biomaterials, etc. Taking into account 

theoretical, numerical modelling and analysis of FGM, this thesis mainly focuses on 

predicting the response of functionally graded material plates by development with a 

novel and effective formulation, combining the isogeometric finite element method and 

higher-order shear deformation theories (HSDTs). The FGM plates were made of a 

mixture of two distinct material phases, namely a ceramic and a metal, which are assumed 

to vary continuously through the plate thickness according to a power-law distribution. 

To infer their effective material properties, two homogenization techniques, the rule of 

mixture and the Mori-Tanaka scheme, are utilized here.  

In order to model these plates, beside three-dimensional elasticity theory, two-

dimensional plate theories based on the equivalent single layer (ESL) model, which is 

concerned with the kinematics of deformation or stress state through the plate thickness, 

is preferred to use. In the context of the ESL model, classical plate theory (CPT) is the 

simplest one, which requires C1-continuity elements and merely provides acceptable 

results for thin plates. The first-order shear deformation theories (FSDT), which take into 

account the effects of shear deformation, is therefore developed. FSDT is suitable for 

moderate and thick plates. However, the primary difficulty of standard FSDT-based finite 

elements is that thin plate behaves stiff and shear-locking phenomenon takes place. 

Furthermore, with the linear in-plane displacement assumption through thickness of plate, 

shear strains and stresses are distributed inaccurately and do not satisfy the traction free 

boundary conditions at the plate surfaces. The shear correction factors (SCFs), which 

have values that are quite dispersed through each problem, are hence required to rectify 
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the unrealistic shear strain energy part. In this thesis, we successfully developed the 

higher-order shear deformation theories (HSDTs) including Reddy’s theory (TSDT), 

refined plate theory (RPT) and generalized shear deformation theory (GSDT). By 

including higher-order terms in displacement field, the HSDT models do not only 

describe more accurate the shear strains/stresses without requirement of SCFs but also 

achieve very good results for thick, moderate, thin and very thin plates. The GSDT and 

RPT models are presented in the general forms, which is strongly dependent on a 

distributed function, f(z). The distributed function is chosen to satisfy zero gradients at 

the top and bottom surfaces, i.e. ( / 2) 0f h   . Based on this condition, we propose a 

new inverse tangent function to enhance the accuracy of the numerical results. In addition, 

geometric nonlinearity is concerned with considering the strain–displacement 

relationship as being nonlinear. It is observed that plate is commonly modelled using 

small deformation assumptions. In many instances, assumptions of linearity lead to 

reasonable idealization of the plate behaviours. However, in some cases, e.g. small 

strains, moderate rotations (say 10 - 15) and large displacements (i.e. w/h  1), these 

assumptions may result in an unrealistic approximation of the response. Thus, the von 

Kármán nonlinear theory needs to be adopted. The plate formulations are established 

according to the total Lagrange description and solved by the iteration methods. 

In recent years, Thomas Hughes and co-workers have introduced a powerful 

numerical method, called an isogeometric analysis (IGA), which has a primary original 

purpose to enable a tighter connection between computer aided design (CAD) and finite 

element analysis (FEA). Being different from the traditional finite element method 

(FEM), which utilizes the Lagrange basis functions in approximating the unknown 

solutions and the geometry, isogeometric analysis employs the same basis functions in 

describing the exact geometry such as: B-spline, non-uniform rational B-spline 

(NURBS), etc., in order to construct finite approximation for analysis. As a result, the 

geometric error is eliminated because the geometry is represented exactly in the first 

coarsest mesh. Another major advantage is that IGA achieves easily the smoothness with 

Cp-1 continuity by using pth order NURBS. It enables this method to naturally fulfil the C1 

continuity requirement of the HSDT models by using the higher-order NURBS basis 

functions.  

This thesis investigates behaviours of the FGM plates, which can be classified into 

the following main points: 
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- Firstly, the bending analysis of the functionally graded material plates based on 

HSDT models including TSDT, RPT and GSDT under thermo-mechanical 

loadings is addressed. More importantly, the nonlinear equation of the plate based 

on von Kármán assumptions is provided and solved by Newton-Raphson method 

on a general framework of the isogeometric approach. The influences of gradient 

index, boundary condition, geometric shape, type of loading, material property on 

the response of FGM plate are also examined. 

- Secondly, elastic instability behaviour of FGM plates under in-plane compression 

load is investigated. The compression results from either directly applied load or 

temperature change. In the former, the loading is at the neutral surface of the 

plates. In the latter, it is assumed that the temperature varies uniformly on the top 

and bottom surfaces and be considered as a constant, linear or nonlinear function 

through the thickness direction. Moreover, high temperature environment makes 

a significant change in mechanical properties of the constituent materials. 

Therefore, the effect of temperature-dependent thermo-elastic material properties 

is considered in order to accurately predict the mechanical responses of FGM 

structures.  

- Thirdly, the dynamic problems related to free vibration and forced vibration are 

solved. In the former, the problem without the force vector is solved by eigenvalue 

analysis to estimate the natural frequencies, whilst in the latter applied loads and 

the von Kármán strains are considered. Thus, the equation of dynamic system, 

which is dependent upon not only time domain but also unknown displacements, 

is solved by the Newmark’s integration scheme in association with the Picard 

methods.  

- Finally, cracked FGM plate is modelled based on GSDT. Herein, a novel 

procedure based on integrating the enrichment functions into isogeometric finite 

element is proposed in order to model the discontinuous phenomenon in the 

cracked structure. In this concept, the Heaviside function is incorporated with 

NURBS basis to capture the discontinuous phenomenon at the crack faces, while 

at the crack tip, the asymptotic functions obtained from analytical solution are 

used as the enrichment functions to model the singular field, i.e. displacement 

field. 
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Samenvatting 

Functionele gradiënt materialen (FGM’s) zijn de meest geavanceerde heterogene 

composietmaterialen die bestaan uit twee of meer samenstellende onderdelen waarbij 

tussen twee punten in een vooraf bepaalde richting materiaalingrediënten continu 

variëren. Hierdoor kunnen FGM’s de beste eigenschappen van de verschillende 

componenten gebruiken, zoals onder meer lage thermische geleidbaarheid, hoge 

thermische weerstand, buigzaamheid, duurzaamheid en de superioriteit van 

breuktaaiheid. FGM’s werden in eerste instantie ontworpen voor de thermische bekleding 

van ruimteveren. Tegenwoordig hebben ze verschillende reële en potentiële toepassingen 

in vele technische gebieden, zoals transportsystemen, energieconversiesystemen, 

snijgereedschappen, machineonderdelen, halfgeleiders, optica en biomaterialen. 

Rekening houdend met theoretische en numerieke modellen en analyses van FGM’s, richt 

dit proefschrift zich vooral op het voorspellen van de respons van functionele gradiënt 

platen via de ontwikkeling van een nieuwe en effectieve formulering die een combinatie 

maakt van de isogeometrische eindige-elementenmethode en de hogere-orde theorie voor 

afschuifvervorming. De functionele gradiënt platen zijn gemaakt van een mengsel van 

twee afzonderlijke materialen: een keramische en een metalen die continu variëren 

doorheen de plaatdikte volgens een machtsfunctieverdeling. Om hun effectieve 

materiaaleigenschappen af te leiden worden twee homogenisatietechnieken gebruikt: de 

mengregelsmengregelsen de regel van Mori-Tanaka.  

Om deze platen te modelleren wordt, naast de driedimensionale elasticiteitstheorie, 

de voorkeur gegeven aan de tweedimensionale plaattheorieën gebaseerd op het evenwicht 

van het éénlaagmodel, dat zicht bezighoudt met de kinematica van vervorming of de 

spanningstoestand langs de plaatdikte. In het kader van het éénlaagmodel, is de klassieke 

plaattheorie de eenvoudigste, waarbij C1-contunïteitselementen gerespecteerd worden en 

aanvaardbare resultaten voor dunne platen worden bekomen. De 

afschuivingsvervormingstheorieën van de eerste orde, die rekening houden met de 

effecten van afschuifvervorming, werden daarom ontwikkeld. Deze theorieën zijn 

geschikt voor middelmatige en dikke platen. De moeilijkheid van deze theorieën is 

evenwel dat, als ze gecombineerd worden met eindige elementen, dunne platen stijf 

worden en het shear-locking fenomeen plaatsvindt. Bovendien worden, indien uitgegaan 

wordt van lineaire vlakke verplaatsing doorheen de plaatdikte, afschuifrekken en 
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spanningen onnauwkeurig verdeeld en wordt niet voldaan aan de vrije tractie 

randvoorwaarden bij de plaatoppervlakken. De afschuivingscorrectiefactor, die voor elk 

probleem varieert, dient dus de onrealistische energie van de afschuifrekken te rectifiëren. 

In dit proefschrift hebben we met succes de hogere-orde theorieën voor 

afschuifvervorming inclusief de theorie van Reddy, de verfijnde plaattheorie en de 

gegeneraliseerde afschuivingsvervormingstheorie ontwikkeld. Door het opnemen van 

termen van hogere orde in het verplaatsingsveld, beschrijven de modellen van de hogere-

orde theorie voor afschuifvervorming zowel afschuifrekken als spanningen 

nauwkeuriger, zonder de vereisten van de afschuivingscorrectiefactoren. Bovendien 

bekomen ze zeer goede resultaten voor dikke, midddelmatige, dunne en zeer dunne 

platen. De modellen van de gegeneraliseerde afschuivingsvervormingstheorie en de 

theorie van Reddy worden in algemene vormen uitgedrukt, die sterk afhankelijk zijn van 

een specifieke functie. Deze functie wordt gekozen om aan de nulwaarden van de gradiënt 

te voldoen aan de boven- en onderoppervlakken. Gelet op deze voorwaarde, stellen we 

een nieuwe inverse trigonometrische functie voor om de nauwkeurigheid van de 

numerieke resultaten te verbeteren. Bovendien wordt de geometrische niet-lineariteit in 

rekening gebracht om de rekverplaatsingsrelatie als niet-lineair te beschouwen. Er kan 

opgemerkt worden dat een plaat wordt gemodelleerd vanuit de veronderstelling van 

minimale vervorming. In veel gevallen leidt deze veronderstelling van niet-lineariteit tot 

een redelijke modellering van de plaat. Echter, in sommige gevallen, namelijk bij kleine 

rekken, matige rotaties (bijvoorbeeld 10 - 15) en grote verplaatsingen, leidt deze 

veronderstelling tot een onrealistische respons. Vandaar dat de von Kármán niet-lineaire 

theorie moet worden aangepast. De plaatformuleringen worden vastgesteld op basis van 

de totale beschrijving van Lagrange en worden opgelost door iteratie werkwijzen. 

Recent hebben Thomas Hughes en medewerkers een krachtige numerieke methode 

ontwikkeld, genoemd isogeometrische analyse (IGA). IGA heeft als oorspronkelijk doel 

een nauwere verbinding tussen computerondersteund ontwerp of computer aided design 

(CAD) en eindige-elementenanalyse te bekomen. Anders dan de traditionele eindige-

elementenmethode, die de Lagrange basisfuncties gebruikt voor zowel de onbekende 

parameters als de geometrie, maakt IGA gebruik van dezelfde basisfuncties in de 

beschrijving van de precieze geometrie, zoals B-spline en niet-uniforme rationele B-

spline (NURBS). Hierdoor wordt de geometrische fout geëlimineerd omdat de geometrie 
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met een grove verdeling goed wordt benaderd. Een ander groot voordeel is dat IGA 

gemakkelijk Cp-1 continuïteit bereikt door gebruik van NURBS van de pde orde. Dit zorgt 

ervoor dat deze methode ruim voldoet aan de C1 continuïteitseis van de modellen van de 

hogere-orde theorieën voor afschuifvervorming door NURBS basisfuncties van hogere 

orde toe te passen. 

Dit proefschrift onderzoekt het gedrag van functionele gradiënt platen, dat als volgt 

kan worden ingedeeld: 

- Ten eerste wordt de buiganalyse van de functioneel ingedeelde platen onder 

thermomechanische belasting beschreven, gebaseerd op de hogere-orde theorieën 

voor afschuifvervorming, de theorie van Reddy, de verfijnde plaattheorie en de 

gegeneraliseerde afschuivingsvervormingstheorie. Wat nog belangrijker is, is dat 

de niet-lineaire vergelijking van de plaat op basis van de veronderstelling van von 

Kármán beschreven wordt en opgelost wordt door de Newton-Raphson methode 

in het algemene kader van de isogeometrische aanpak. De invloeden van de 

gradiëntindex, de randvoorwaarden, de geometrische vorm, het type van belasting 

en de materiële eigenschappen op de respons van de functionele gradiënt platen 

wordt eveneens onderzocht. 

-  Ten tweede wordt het elastische instabiliteitsgedrag van functionele gradiënt platen 

onder drukbelasting in het vlak onderzocht. De drukspanning komt van de 

rechtstreeks opgelegde belasting of temperatuursverandering. In het eerste geval 

ligt de belasting op het neutrale oppervlak van de platen. In het tweede geval wordt 

verondersteld dat de temperatuur gelijkmatig verdeeld is over de bovenste en 

onderste oppervlakken en wordt het in de dikterichting beschouwd als een 

constante, lineaire of niet-lineaire functie. Bovendien brengt hoge temperatuur een 

significante verandering teweeg in de mechanische eigenschappen van de 

samenstellende materialen. Dus wordt het effect van de temperatuurafhankelijke 

thermo-elastische materiaaleigenschappen in aanmerking genomen om de 

mechanische respons te voorspellen. 

-  Ten derde worden de dynamische problemen verbonden aan vrije trillingen en 

gedwongen trillingen opgelost. In het geval van vrije trilling wordt het probleem 

zonder de krachtvector opgelost door eigenwaardeanalyse om de eigenfrequenties 

in te schatten, terwijl in het geval van gedwongen trilling de toegepaste belasting 
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en de von Kármán rekken in aanmerking worden genomen. Op die manier wordt 

de vergelijking van het dynamische systeem, dat niet alleen van het tijdsdomein, 

maar ook van ongekende verplaatsingen afhankelijk is, opgelost door Newmark's 

integratieschema samen met de Picard methoden. 

- Tot slot worden gescheurde functionele gradiënt platen gemodelleerd op basis van 

de gegeneraliseerde theorie voor afschuifvervorming. Hierbij wordt een nieuwe 

numerieke procedure voorgesteld om het discontinue fenomeen in de gescheurde 

structuur te modelleren, gebaseerd op de integratie van de Heaviside functie met 

isogeometrische eindige elementen. De Heaviside functie wordt verrijkt om het 

discontinue fenomeen bij de scheurvlakken vast te leggen, terwijl de asymptotische 

functies van de analytische oplossing worden geïncorporeerd met NURBS om de 

singulariteit bij de scheurtip te simuleren. 
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Chapter 1 Introduction 

 

1.1 History of FGM 

Materials play an important role in the development of science and technology. 

Based on available materials for different inorganic and organic compounds, many 

advanced materials have been invented such as, the advanced polymers, memory alloys, 

structural ceramics, etc. An illustration of development of modern materials is given in 

Figure 1.1 [1], in which, functionally graded materials (FGMs)  are the most advanced 

heterogeneous composite materials made of two or more constituent phases with gradual 

variation of material ingredients between two points in a predetermined direction [2]. 

 

Figure 1.1 Representation of advance material hierarchy. 
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a) Cross section of bamboo tree  

 

b) Bone 

(http://www.ncbi.nlm.nih.gov/pubmed/21

424265) 

 

c) Skin 

 (http://www.igb.fraunhofer.de/en/press-

media/press-releases/1999/skin-cosmetic-

research.html) 

Figure 1.2 Some examples of natural FGMs. 

The concept of FGMs is easily observed in the nature. For example, bamboo is an 

excellent illustration. As seen in Figure 1.2a, such materials possess continuously graded 

properties and are characterized by spatially varying microstructures created by non-

uniform distributions of the constituent phases [3]. Bone, illustrated in Figure 1.2b, is 

functionally graded and even human skin, as shown in Figure 1.2c, is graded. In 1972, 

this general idea was firstly mentioned for composites and polymeric materials [4, 5]. 

However, there were no actual investigations into their design, fabrication, manufacture, 

etc. Until 1985, the concept of FGM was proposed by a group of scientist in Sendai, Japan 

as a mean of developing the thermal barrier coating for the rocket engine [6]. However, 

most of the research works have been published in the last ten years. Noda and Tsuji [7] 

studied the steady thermal stresses in a FGM plate. Tanaka et al. [8, 9] employed direct 

sensitivity analysis and optimization techniques to design optimal thermo-elastic 

materials to reduce thermal stresses in FGMs. Jin and Noda [10] discussed the transient 

thermal stress intensity factors for a semi-infinite crack FGM plate under thermal shock 

loading. The modelling and analysis of FGM structures were reviewed by Birman and 

Byrd [11] and Swaninathan et al. [12]. From the literature, it is observed that the most 

http://www.ncbi.nlm.nih.gov/pubmed/21424265
http://www.ncbi.nlm.nih.gov/pubmed/21424265
http://www.igb.fraunhofer.de/en/press-media/press-releases/1999/skin-cosmetic-research.html
http://www.igb.fraunhofer.de/en/press-media/press-releases/1999/skin-cosmetic-research.html
http://www.igb.fraunhofer.de/en/press-media/press-releases/1999/skin-cosmetic-research.html
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common FGMs are the mixtures of two distinct material phases, e.g. a ceramic and a 

metal, for which their material properties vary smoothly and continuously from one 

surface to another. An example of FGM, e.g. Yttria Stabilized Zirconia (YSZ) / 

NiCoCrAlY is shown in Figure 1.3 [13]. As a result, FGMs usually inherit the best 

properties of the distinct components, e.g. low thermal conductivity, high thermal 

resistance by ceramic part, ductility, durability and superiority of fracture toughness of 

metal part. Therefore, they have great potential for many applications. 

 

Figure 1.3 Microstructure of cross-section of YSZ/NiCoCrAlY [13]. 

1.2 Application of FGMs  

FGMs have a variety of real and potential applications in many fields, such as 

transport systems, energy conversion systems, cutting tools, machine parts, semi-

conductors, optics and biomaterials as described in Figure 1.4.  

An example of their application can be seen in the space shuttles, for which surfaces 

always experience very high temperature. As known, space vehicles flying at hypersonic 

speeds experience extremely rapid temperature rise in very short time from aerodynamic 

heating due to friction between the vehicle surface and the atmosphere. For example, in 

U.S. space shuttles, the temperature on their outside surface increases to an attitude of 

1500C in a few minutes [14]. Hence, this required an advanced material, for which 

surfaces could withstand very high temperature and temperature differences. Firstly, the 

laminate composites with a discrete layer of ceramic material, which was bonded to a 

metallic structure as a conventional thermal barrier coating, were introduced. However, 
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the abrupt transition in material properties across the interface between distinct layers can 

cause large inter-laminar stresses and may lead to de-bond. Furthermore, the difference 

in thermal coefficients of the materials may result in residual stresses. These problems 

can be mitigated by replacing conventionally used laminated composites with FGMs with 

continuously and smoothly varying material properties in the thickness direction. This 

application was firstly realised during space plane project in1984 in National Aerospace 

Laboratory of Japan to avoid the stress peaks at interfaces in coated panels for the space 

shuttle [2]. Herein, two important research material systems in fabrication technology of 

FGM are: Aluminium ‘Al2O3’ [15] and Zirconia ‘ZrO2’ [16] exterior protective ceramic 

layers to improve thermal, oxidation and corrosion resistance. The used materials here 

served the temperature resistance of 2000 K with a temperature gradient of 1000 K across 

a 10 mm thick section [1]. Later on, their applications have been expanded to some 

structures in high temperature environment, such as plasma wall of fusion reactor, nuclear 

reactor components, heat exchangers, etc. The application of FGMs also increased in 

biomaterials, e.g. the artificial joints in orthopaedic implant. These implants made of the 

titanium/hydroxyapatite (Ti/HAP) with the concentration changed gradually in the 

longitudinal direction are designed to provide more titanium for the outer part subjected 

to directly applied forces. The main advantages of using such a FGM implant are [17]: 1) 

reduce the stress effect surrounding the bones; 2) improve the biocompatibility with bone 

tissues; 3) prevent the thermal-mechanical failure at the interface of the implants and 4) 

enhance the bone re-modelling, hereby maintaining the bone’s health status. In thermal-

electric field, the concept of FGM has been implemented in actuators and transducers 

with metal-semiconductor transition with improved efficiency [16]. In engineering 

application, FGMs are observed in the high-performance cutting tools.  Functionally-

graded cutting tool, a graded FGM WC/Co, causes the hardness at the cutting tool’s 

surface to be higher than its interior [18]. Consequently, this graded tool results in both 

considerably higher damage resistance and higher wear resistance as compared to a 

homogeneous one. Other applications of FGMs can be found in optical materials with 

piezoelectric and thermoelectric devices, vehicle and space light structures. The deeply 

detail of the FGM’s applications can be found in the excellent book by Miyamoto et al. 

[14]. 
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Figure 1.4 Various applicable fields for FGMs. 

1.3 A brief review of researches into FGM plates 

It is concluded in previous section that FGMs have a variety of real and potential 

applications in many engineering fields corresponding to extremely high temperature 

environment such as aerospace and aircraft structures, high-speed vehicle frames, nuclear 

fusion reactors, etc., which can be decomposed into plate/shell structures. In order to 

design, manufacture and operate them efficiently, a clear understanding of the behaviour 

of each structural component as plate/shell element, such as deformable characteristic, 

stress distribution, natural frequency and critical buckling of load under various 

conditions is therefore required. Moreover, many methodologies are proposed to predict 

exactly the behaviours of the FGM structures. They can be classified into two main 

categories: (1) the three-dimensional (3D) elasticity theory and (2) the two-dimensional 

(2D) plate theories. 

1.3.1 3D elasticity theory 

Pagano [19] initially investigated the analytical 3D elasticity method to predict the 

exact solution of simple static analysis. Noor [20, 21] has further developed 3D elasticity 

solution formulas for dynamic and stability analysis of multi-layered composite plates. 

For the FGM structures, Pan [22] has extended Pagano’s solution to derive a 3D exact 

solution for exponentially graded rectangular plates under simply supported boundary 

constraint. Vel and Batra obtained the 3D exact solutions for thermo-mechanical 
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behaviours [23], as well as, the free and forced vibrations [24] of a simply supported FGM 

rectangular plate under mechanical and thermal loads. Reddy and Cheng [25] studied the 

harmonic vibration problem of functionally graded material plates by means of a 3D 

asymptotic theory formulated in terms of transfer matrix. It was found that the solutions 

are mathematically complex and just applicable to simple geometries and boundary 

conditions. Furthermore, the exact solutions were very hard to find for the FGM plates, 

for which material properties varied in another non-exponential pattern. In contrast to 

former work, the numerical methods were also applied to analyse some 3D FGM plate 

problems, e.g., differential quadrature method (DQM) by Malekzadeh [26], mesh-less 

local Petrov-Galerkin (MLPG) method by Mojdehi et al. [27] and Dong [28], etc. … It is 

well known that such an exact 3D approach has most potential to attain the exact solutions 

of FGM plates. However, it is not easy to solve practical problems with complex (or even 

slightly complicated) geometries under arbitrary boundary conditions. Moreover, it is 

necessary to use 3D elements in modelling 3D solid so that the storage, as well as, the 

computational cost will be increased significantly, as discretized mesh becomes finer. 

Furthermore, it is challenging that the 3D elastic solutions are sometime impossible and 

too hard for eigenvalue problems [12]. Hence, the 3D theory can be simplified to 2D plate 

theory by making suitable assumptions based on the equivalent single layer (ESL) [29] 

and layer-wise (LW) [30] theories.  

1.3.2 2D plate theories 

In the LW model [31], the displacements are assumed to be different for each layer. 

Therefore, there is an increase in storage and computational cost due to increased number 

of unknowns, which is proportional to the number of lamina. While with the ESL model, 

the number of displacement variables is kept constant through the thickness. In the 

context of the ESL model, there are three common classes: classical plate theory (CPT), 

first-order shear deformation theory (FSDT) and higher-order shear deformation theory 

(HSDT). 

The classical plate theory (CPT): This is the simplest theory among the ELS theories 

and is based on Kirchhoff-Love hypothesis [32, 33], in which the straight lines normal to 

the mid-surface before deformation remains straight and perpendicular to the mid-plane 

after deformation (see Figure 1.5). This assumption omits both the shear and normal 

strains. In CPT, it is apparent that the displacement field is C1-continuous, which 
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numerically inconvenient in finite element formulation. Thus, the analytical [34-36] or 

numerical methods using Hermit interpolation functions or differential quadrature 

approximation in mesh-free methods [37-39] must be employed.  It is observed that CPT 

merely provides acceptable results for the thin plate problems (length to thickness ratio 

L/h  100) and becomes inadequate for the analysis of thick plates due to ignoring the 

transverse shear deformation. 

 

Figure 1.5 Deformation of a transverse normal. 

The first-order shear deformation theory (FSDT): The next theory in the hierarchy of 

ELS is FSDT. It was firstly proposed by Reissner [40, 41] and then developed by Mindlin 

[42] by taking into account the shear deformation effect by the way of a linear variation 

of the in-plane displacements through the thickness. This theory assumes that the 

transverse normal is still straight but is not necessary perpendicular to the mid-surface 

after deformation (see Figure 1.5). Because of its simple implementation compared to 

CPT, the FSDT was widely used to model the FGM plates. Praveen and Reddy [43] 
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studied the nonlinear transient responses of FGM plates under thermal and mechanical 

loadings using FEM and FSDT with von Kármán assumptions. Using an eight-node 

quadrilateral plate element based on consistency approach, Sundararajan et al. [44] 

analysed the large amplitude free flexural vibration behaviour of FGM plates. KM Liew 

et al. utilized combination of the element-free kp-Ritz method with FSDT to study 

thermo-elastic analysis [45], free vibration analysis [46] and geometrically nonlinear 

analysis [47] of FGM plates. Herein, the shear correction factor (SCF) was required to 

adjust the shear energy part. Nguyen-Xuan et al. developed the edge-based smoothed 

finite element method (ESFEM) [48] and node-based smoothed finite element method 

(NS-FEM) [49] to study bending static, free vibration and elastic stability of FGM plates. 

In this work, the strain smoothing technique was applied to the triangular plate elements 

to enhance the accuracy of the existing finite element methods. An isogeometric approach 

(IGA) was employed to study the bending, free vibration, buckling and supersonic flutter 

responses [50] and geometrically nonlinear analysis [51] of FGM plates based on FSDT. 

From the literature, it is found that FSDT model enables us to provide acceptable results 

for moderate and thick plate. However, when the plate becomes thin, the FSDT model is 

necessary to combine with some improved techniques such as reduced integration (RI) 

[52], mixed interpolation of tensorial components (MITC) [53], Mindlin-type plate 

element with improved transverse shear (MIN) [54], discrete shear gap (DSG) [55] 

elements and so on to overcome the shear locking phenomenon. Furthermore, based on 

the linear in-plane displacement assumption through the plate thickness, the FSDT yields 

inaccurate shear strain/stress distributions, which do not satisfy the traction free boundary 

conditions at the plate surfaces. It is hence required to amend the unrealistic shear strain 

energy part by SCF valued at a usual number of 5/6 or by a complex variable [56], which 

is computed so that the strain energy due to the true transverse stresses can be predicted 

by the 3D elastic theory [29]. 

The higher-order shear deformation theory (HSDT): To overcome the limitation of 

the CPT and FSDT, various kinds of HSDTs have then been devised [57-65]. The HSDT 

models take into account higher-order variations of the in-plane displacements through 

thickness. Consequently, they enable to more exactly describe shear strain/stress 

distributions with nonlinear paths and traction-free boundary conditions at the top and 

bottom surfaces of the plate. Moreover, the HSDT models provide better results and yield 

more accurate and stable solutions (e.g. inter-laminar stresses and displacements). 
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Furthermore, the SCFs are not required. Among HSDTs, third-order shear deformation 

theory (TSDT) by Reddy [57] is the most famous model and is widely used by many 

researchers. Reddy [66] studied both analytical solutions based on the Navier solutions 

and numerical ones based on finite element method for FGM plates based on the TSDT. 

The formulations took into account thermo-mechanical coupling, time dependency and 

geometric nonlinearity. Yang et al. [67] investigated the buckling, free vibration and 

dynamic stability of sandwich FGM plates subjected to thermo-mechanical loadings by 

temperature change and a periodic in-plane compression using TSDT and a semi-

analytical method.  Javaheri and Eslami [68] presented analytical solutions for the critical 

buckling temperature of simply supported FGM plates under four types of temperature 

rise using the TSDT and Navier solution. To extend this formulation, Najafizadeh and 

Heydari [69] derived the buckling in-plane load for clamped FG circular plates. Ferreira 

et al. utilized the mesh-less collocation method with multi-quadric radial basis functions 

to analyse static deformations [70, 71] and natural frequencies [72] of a simply supported 

plates modelled by TSDT. Tran et al. [73] employed isogeometric analysis to study the 

static bending behaviour, buckling load and also natural frequency and then extended 

their previous work for thermal buckling analysis with three types of temperature 

distribution [74]. However, TSDT requires the C1-continuity that causes the obstacles in 

the standard finite element formulations. Several C0 continuous elements [63, 75, 76] 

were proposed. GulshanTaj et al. [77] developed a nine-node isoparametric Lagrangian 

finite element for bending analysis of FGM plates under mechanical and thermal loadings 

using the C0 HSDT with seven DOFs per node. Phung-Van et al. [78] employed the same 

C0 HSDT plate formula for static and free vibration analyses of functionally graded 

material plates using a cell-based smoothed discrete shear gap method (CS-DSG3) and 

combined with von Kármán assumptions [79] to study nonlinear displacement – loading 

curves in FGM plates by a cell-based smoothed three-node plate element (CS-MIN3). 

1.4 A review of isogeometric analysis 

In engineering design, there is an intimate relation between two stages: design 

drawing stage generated by computer aid design (CAD) and analysis stage by finite 

element analysis (FEA).  
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Let us firstly study the evolution of CAD representation. In the past, before existence 

of computer graphic, designers could draw some simple geometries by hand with the 

drafting tools as rulers, compasses, protractors, etc. Some complex geometries such as 

the freeform curves of aircraft wing, ship’s bow, automobile body, etc. were also handled 

by hand with splines. The spline comes from the nature shape of long flexible strip of 

timber bent by hanging a number of hooked metal weights, called ducks [80]. By moving 

the ducks around, the shape of spline was change accordingly. Until 1946, the spline curve 

was introduced in the mathematic by a mathematician,  Schoenberg [81] and derived from 

the piecewise polynomial functions, known as B-spline basis functions. Up to 1960s, with 

the invention of computers, two French engineers, Pierre Bézier and de Casteljau 

developed a computer aided geometric design tool, called UNISURF, which could 

generate the spline curves and surfaces by computer (https://en.wikipedia.org/wiki/Non-

uniform_rational_B-spline). After that, numerous researches on B-spline was 

implemented in Riesenfeld’s PhD thesis [82] and rational B-splines by Versprille [83]. 

There are many efficient and numerically stable algorithms, which have been developed 

for completeness of the B-spline properties, such as the Cox-de Boor recursion [84, 85], 

the de Boor algorithm [86], the Oslo algorithms [87], polar forms and blossoms [88], etc. 

B-Splines are now extensively used in commercial software for creating smooth curves 

and surfaces as in AutoCAD, CATIA, 3D max, SolidWorks, LS-DYNA, etc. 

In the 1970s, non-uniform rational B-splines (NURBS) were developed and become 

the dominant techniques in engineering design. The major reason why NURBS were 

introduced was that unlike B-splines, they could exactly describe all conic sections such 

as circles, cylinders, spheres, ellipsoids, etc. Another major advantage is that the 

smoothness of NURBS basis functions is controlled easily as Cp-1 continuity for pth-order. 

NURBS are ubiquitous in CAD but they have some shortcomings, i.e., the inability to 

produce watertight geometries with no gaps and overlaps, which often complicate mesh 

generation. The major drawback comes from the tensor product of NURBS, where 

refinement is applied globally. It leads to an excessive overhead number of control points 

with increase in refinement for some discontinuous problems. To overcome the 

limitations of NURBS, some technologies have been recently developed to manage the 

local refinement such as: T-spline [89, 90], PHT-spline (polynomial splines over 

hierarchical T-meshes) [91]. Thereafter, Nguyen-Thanh et al. presented PHT-spline 

formulations for 2D elastic solids [92] and thin shell structures [93].  

https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
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In analysis stage, the initial geometries in CAD will be translated into analysis-

suitable geometries such as: elements, nodal coordinates, connectivity, etc. by mesh 

generators in order to introduce them to large-scale finite element codes for analysis. For 

some complex engineering designs, this task estimated to take over 80% of the overall 

analysis time [94]. In 2005, Hughes and co-workers [95] introduced NURBS-based 

isogeometric analysis (IGA) with the primary purpose to enable a tighter connection 

between CAD and FEA. The main idea of this method is to use directly the shape 

functions from geometric description, e.g. B-spline or NURBS to approximate the 

unknown fields. It helps the mesh for analysis to be represented exactly even though in 

the coarsest mesh and finer mesh can be obtained directly from previous mesh without 

further communication with CAD representation. As a result, IGA simplifies the cost-

intensive computational model generation procedure, especially in shape optimization 

[96]. Up to now, IGA has been widely applied to various engineering fields for examples, 

fluid mechanics [97-99], fluid-structure interaction problems [100-102], contact 

problems [103-105], optimization problems [106], solving PDEs having higher 

derivatives of the field variable such as the Hill-Cahnard equation [107], explicit gradient 

damage models [108] and gradient elasticity [109]. IGA has shown some advantages for 

structure vibration [110] and was applied to fracture problems [111-113]. So far, NURBS-

based IGA has been used to analyse and simulate practical structures including beam 

[114, 115], plates using FSDT [50, 116, 117] and HSDT [73, 118-120], layer-wise theory 

[121, 122], shell structures [123, 124] and so on. 

As pointed out in [125], with a fixed number of DOFs, higher-order continuity 

offered by NURBS requires the drastically increase in CPU time and RAM to solve the 

problems when using a direct solver. Whereas, solids in CAD are modelled by only the 

actual surfaces not the interior. Therefore, Sevilla et al. [126, 127] proposed NURBS-

enhanced finite element method (NEFEM), which only requires the boundary 

representation provided completely by CAD. In this method, specific interpolation and 

numerical integration were proposed at the elements intersecting the NURBS boundary, 

while traditional FE was utilized otherwise. Another way, isogeometric boundary element 

method (IGABEM), which just considers the truly boundary representation, was proposed 

by Simpson et al. [128, 129]. It was found that the IGABEM based on NURBS is more 

accurate than classical boundary element method (BEM) with polynomial interpolations. 
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Recently, Natarajan et al. [130] combined the concept of IGA into the scale boundary 

finite element method. The unknown fields on element boundary were discretized by 

NURBS basis functions, while analytical solution is sought in the radial direction. 

1.5 Motivation and objectives 

As mentioned in the previous section, FGM plate structures are widely used in 

various engineering fields. Several two dimensional plate theories are provided to predict 

accurately the responses of the structures. Among ESL plate theories, CPT requires C1-

continuity elements and merely provides acceptable results for the thin plate, whilst FSDT 

is suitable for moderate and thick plates. However, the standard FSDT-based finite 

elements usually get too stiff and lead to shear locking in analysis of thin and very thin 

plates. Furthermore, the obtained results are also dependent on the SCF, which is quite 

dispersed through many problems. In this thesis, we focus on development of HSDT with 

higher-order terms in displacement field in order to describe more realistic shear energy 

part without SCF requirement.  

Beside plate methodologies, the approximated numerical methods were developed 

rapidly to solve the partial differential equations (PDEs) described for these structures. 

Among them, the Finite Element Method (FEM) developed in the 1950s to 1960s, has 

been known as the most powerful and popular tool for numerical simulations in various 

engineering fields. However, finite element approximation of the plate structures using 

HSDT is not a trivial task because of using low-continuous order elements. Other 

drawbacks of FEM are: a) the reduction of accuracy by distortion mesh in large 

deformation analysis and b) the requirement of intensive re-meshing for discontinuous 

problems [131]. To solve the bottleneck, a family of mesh-free methods has been 

developed and successfully applied in engineering applications. In these methods, 

interpolation and nodal integration are entirely based on a set of scattered nodes instead 

of meshes. A comprehensive review of the mesh-free methods can be found in [132] by 

Belytschko et al. and in [133] by Li and Liu. Regarding direct nodal integration in mesh-

free method, it was observed in Ref. [134] that the vanishing derivatives of the shape 

functions at the nodes cause numerical instability and low accuracy. Furthermore, shape 

functions are rational functions, which require high-order integration scheme and usually 

do not satisfied the Kronecker delta property [135]. Therefore, essential boundary 

conditions cannot be directly imposed as conveniently as in the traditional FEM. In recent 
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years, a novel numerical method, the so-called Isogeometric Analysis (IGA), which yields 

higher-order continuity naturally and easily, has been proposed by Hughes et at. [95]. 

Thus, it enables to satisfy easily the stringent continuity requirement of the HSDT model 

without any additional variables. The second aim of this thesis is to apply isogeometric 

finite element method in order to integrate modelling and simulation of functionally 

graded material plates using higher-order shear deformation theories [62, 73, 136]. 

In order to use FGM plates efficiently, a clear understanding of their behaviours such 

as deformable characteristic, stress distribution, natural frequencies, dynamic response 

and elastic instability under thermal and mechanical loads is studied. Based on small 

displacement and strain assumptions, the plate formulation may be reduced to a linear 

problem. Linear solution can be obtained easily with low computational cost and 

sometime is a reasonable idealization. However, linear solution usually deviates from real 

response of structures [66, 137-139]. In some cases, assumption of nonlinearity is the 

only option for analyst, e.g., post buckling phenomenon [140, 141]. As safety and 

economy are the main goals, nonlinear analysis needs to be considered. Therefore, in this 

thesis, beside linear analysis, geometrically nonlinear analysis is employed to fully 

investigate the plate behaviour in the large deformation regime. 

1.6 Thesis outline 

This thesis is divided into eight chapters including the introduction and is organized 

as follows: 

Chapter 2 describes physical representation of the functionally graded material 

plates. Firstly, FGM is introduced as an inhomogeneous isotropic material.  In this thesis, 

two types of homogenization techniques: the rule of mixture and the Mori-Tanaka scheme 

are utilized to homogenize this material. Then, we exhibited theoretical formulations of 

FGM plates based on three types of HSDT: TSDT, RPT and GSDT. Herein, the general 

governing equations of plate structure are described in total Lagrange method with 

nonlinear effect related to von Kármán assumptions. 

Chapter 3 introduces a framework of isogeometric analysis for plate structure based 

on higher-order shear deformation theories. The concept of isogeometric analysis based 

on NURBS basis function is reviewed. Thereafter, this method is implemented into the 

plate formulations. NURBS-based IGA attains higher-order continuity, which naturally 
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satisfies C1 continuity requirement of the HSDT models. The numerical integration 

technique and treatment of boundary constraints in IGA are also presented in this chapter. 

Chapter 4 concentrates on static analysis of FGM plates under various boundary 

conditions. The governing equations for bending problems are established for both cases 

of linear analysis and geometrically nonlinear bending analysis, which considers 

nonlinear strain – displacement relation. The nonlinear governing equation is solved by 

employing the Newton-Raphson method. The obtained results of the thermo-mechanical 

deformations of the plates show the excellent performance of the present method. 

Chapter 5 discusses buckling and post-buckling analyses of the FGM plates under 

in-plane compression. The compressive stress comes from the directly applied load or 

temperature change. In the former, the loading is applied at the neutral surface of the 

plates, while it is assumed in the latter that the temperature varies uniformly on the top 

and bottom surfaces and only variously through the thickness direction, i.e. constant, 

linear or nonlinear functions. Furthermore, the effect of temperature-dependent thermo-

elastic material properties is considered in order to accurately predict the mechanical 

responses of FGM structures. 

Chapter 6 describes the procedure for dynamic problems, which can be categorized 

into two groups: free vibration and force vibration. The former, without force vector, is 

solved by eigenvalue analysis to estimate the natural frequencies, while the latter 

considers the applied loads and the von Kármán nonlinear strain.  Thus, the equation of 

dynamic system, which depends on not only time domain, but also unknown 

displacements, is solved by the Newmark’s integration scheme in association with the 

Picard methods.  

Chapter 7 presents the results of modal analysis for cracked FGM plates. In this 

chapter, a novel numerical procedure based on integrating the enrichment functions 

through the partition of unity method (PUM) into isogeometric finite element in order to 

model the discontinuous phenomenon in the cracked structures. The fact is that the 

Heaviside function is enriched to capture the discontinuous phenomenon at the crack 

faces, while the asymptotic functions from analytical solution are incorporated with 

NURBS to model the singular field at the crack tips. This method shows good validations 

for 2D in-plane structures and then extends to various shapes of FGM plates in the 

numerical example section. 
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Finally, chapter 8 closes this thesis with some concluding remarks and suggestions 

for future research. 
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Chapter 2 Functionally Graded Material Plate 

 

2.1 Functionally graded material 

We assume that the plate is made of functionally graded material, which is an 

inhomogeneous isotropic material as shown in Figure 2.1. FGM is fabricated by mixing 

two distinct material phases, e.g. ceramic and metal, for which their properties are 

constant in xy-plane (isotropic behaviour) and vary along thickness (z-direction).  

 

Figure 2.1 A functionally graded material layer. 

Because of gradual variation of each phase along the plate thickness, the effective 

properties of FGM also gradually vary along the z-direction. In order to model FGM, 

there are two common approaches, in which material ingredients can be changed in a 

stepwise gradation as illustrated in Figure 2.2a or a continuous way as revealed in Figure 

2.2b, respectively. In the former, the FGM plate works as a laminated plate, which is 

stacked sequentially by many isotropic lamina having different material properties. The 

effective material coefficient can be calculated following Reddy’s text book [29]. In the 

latter, the material ingredients are represented as their volume fractions, which are 

assumed to distribute as a power-law function 

1
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V z
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18   Chapter 2 

                

a)                                                                      b) 

Figure 2.2 a) Stepwise gradual and b) continuous variation. 

where Vc and Vm are ceramic and metal volume fractions, respectively. It is noted that the 

sum of them is always unity and n   is the power index or gradient index. The 

advantage of this function is that it is simple and by changing of the power index, n, a 

wide range of distribution shape of the material phases can be represented,  as shown in 

Figure 2.3 for distribution of the ceramic volume fraction. As observed, n = 0  

1, 0c mV V  , the structure is fully ceramic and when n =   0, 1c mV V  , the 

homogeneous metal is retrieved. Furthermore, ( / 2) 1cV h   and ( / 2) 1mV h   mean that 

fully ceramic and metal phase on the top and the bottom surfaces, respectively. 

 

Figure 2.3 The ceramic volume fraction along the thickness. 

In order to homogenize this material, several analytical approaches available in the 

literature [1] are briefly presented in the following section. 
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2.1.1 The rule of mixture 

In this homogenization, the effective material properties, Pe, including Young’s 

modulus (E), shear modulus (), Poisson’s ratio (), the density (), thermal conductivity 

(k) and thermal expansion () are given by: 

e c c m mP PV P V   (2.3) 

where subscripts m, c and e refer to the metal, ceramic and effective constituents, 

respectively. This approach is the easiest without consider the interactions among the 

constituents [142] and more common in the stress analysis of FGM. 

2.1.2 The Mori-Tanaka scheme 

The Mori–Tanaka scheme [143, 144] works well for estimating the effective material 

properties of the graded microstructure, that have a clearly defined continuous matrix and 

a discontinuous particulate phase. It takes into account the interaction of the elastic fields 

between neighbouring inclusions with the effective bulk (K) and shear () moduli defined 

as follows: 
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where 1 (9 8 ) / 6( 2 )m m m m mf K K     . From the obtained effective bulk and shear 

moduli, the effective values of Young’s modulus (E) and Poisson’s ratio () are given by: 

9 3 2
,

3 2(3 )

e e e e
e e

e e e e

K K
E

K K

 


 


 

 
 (2.5) 

While, the effective thermal conductivity is determined by [145]: 

1 (1 )( ) /

e m c

c m c c m m

k k V
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
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   
 (2.6) 

and the coefficient of thermal expansion is estimated from [146]: 
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2.1.3 Other approaches 

Besides the two approaches presented above, there are several micromechanics 

models developed over the years to infer the effective properties of macroscopically 

homogeneous functionally graded materials: self-consistent estimate [147], composite 

sphere assemblage model [148], composite cylindrical assemblage model [149], the 

simplified strength of materials method [150], the methods of cells [151], 

micromechanical models [152] and the exponential law method [153]. 

In this study, we adopt two popular methods for estimating the effective FGM 

properties: the Mori-Tanaka scheme and the rule of mixture. For Aluminium-Zirconia 

FGM (Al/ZrO2-1), for which properties are tabulated in Table 2.1, Figure 2.4 shows 

comparison of the effective Young’s modulus of plate calculated by the two 

homogenization schemes via the power index n. As it can be seen, the two models produce 

the same modulus for homogeneous material (n = 0). As material becomes 

inhomogeneous, the effective property through the thickness of the former is higher than 

that of the latter. 

Table 2.1 Material property 

  E (GPa)  k (W/mK)  10-6C  kg/m3

Al 70 0.3 204 23  2707 

ZrO2-1 200 0.3 2.09 10  5700 

ZrO2-2 151 0.3 2.09 10  3000 

Al2O3 380 0.3 10.4 7.4  3800 

SiC 427 0.17 120 4.0 3100 
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Figure 2.4 The effective modulus of Al/ZrO2-1 FGM plate computed by the rule of mixture 

(in solid line) and the Mori-Tanaka (in dash dot line). 

2.1.4 Thermal effect 

FGMs are mainly made from a mixture of ceramic and metal. And they are most 

commonly used in the high-temperature environment. To calculate thermal load, it is 

assumed that the temperature varies uniformly on the top and bottom surfaces and non-

uniformly through the thickness direction. Therefore, the temperature field is obtained by 

solving one-dimensional equation of heat conduction in the thickness direction: 

d d
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d d
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 (2.8) 

The solution of Eq. (2.8) is given in analytical form [154] as:  
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or expressed by polynomial series [69, 155] as:  

( ) ( )( )m c mT z T z T T    (2.10) 

where 
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Figure 2.5 Temperature distributions through the thickness of Al/ZrO2-1 FGM plate. 

Figure 2.5 illustrates the effect of the gradient index n on the temperature distribution 

through the thickness of the Al/ZrO2-1 FGM plate subjected to a thermal load, where the 

top and bottom surfaces are held at 300C and 20C, respectively. It is evident that the 

temperature in the FGM plates varies nonlinearly and is always lower than that in the 

homogenous plates except for two top and bottom points.  

Moreover, high temperature environment makes a significant change in mechanical 

properties of the constituent materials. Therefore, it is essential to take into account the 

temperature-dependent material property to predict accurately the mechanical responses 

of FGM structures. According to Ref. [156], the properties of the common structural 

ceramics and metals are expressed as a nonlinear function of temperature: 

 1 2 3

0 1 1 2 31P P P T PT PT PT

      (2.12) 

where P0, P-1, P1, P2 and P3 are the coefficients of temperature, which can be found in 

Ref. [157] as the unique parameters for each constituent material. 
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2.2 Motion and deformation gradient 

When a deformable body is under the action of external forces and given boundary 

constraints, the body undergoes motion and deformation and takes a definitive shape at 

the end of load application. In a rectangular Cartesian coordinate, let us consider two 

points P (x, y, z) and Q (x+dx, y+dy, z+dz) in un-deformed configuration of a body . 

The length of line PQ is 
Tds d d x x , where [ ]Td dx dy dzx . During deformation, 

the points P and Q move to new positions of P* (X, Y, Z) and Q* (X+dX, Y+dY, Z+dZ) at 

deformed configuration *, respectively (as shown in Figure 2.6) by adding a finite 

displacement as follows: 

X = x +u  (2.13) 

The two points are now separated by an infinitesimal distance, 
TdS d d X X , where 

[ ]Td dX dY dZX . The standard strain measure, namely the Green-Lagrange strain, 

E, is defined by the change in the differential length as [29]: 

2 22 T T Td d dS ds d d d d   x E x X X x x  (2.14) 

Herein, the total differential length is given by: 

d dX J x  (2.15) 

where J is the Jacobian matrix: 

X X X

x y z

Y Y Y

x y z

Z Z Z

x y z

   
 
  

 
   

   
  

 
   
 
   

J I u  (2.16) 

where 
( ) ( ) ( )

( )
x y z

     
    

  
denotes the gradient operator. 
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Figure 2.6 Deformation of an elastic body. 

Substituting Eq. (2.15) into Eq. (2.14), the Green-Lagrange strain tensor is: 

     
1 1 1

.
2 2 2

T T T          
 

E I u I u I u u u u  (2.17) 

or we can rewrite it in the index form as: 

1 1

2 2

ji k k
ij

j i i j

uu u u
E

x x x x

   
        

    (2.18) 

It should be noted that if the displacement gradient is small, the Green-Lagrange 

tensor reduces to the infinitesimal strain tensor by eliminating the second-order 

infinitesimal term: 

 
1

or
2

T  ε u u
   

1

2

ji
ij

j i

uu

x x


 
     

 (2.19) 

2.3 Two-dimensional plate theory 

A plate is a three-dimensional solid with a small thickness as compared to the other 

dimensions [158]. To facilitate the solution, the 3D theory can be simplified to the 

equivalent single layer (ESL) plate theory by making assumption of kinematics of 

deformation. Among the ESL, the CPT and the FSDT are simple and adequate to describe 

the behaviour of most plates. However, they cannot yield accurate inter-laminar stress 

distributions. Therefore, HSDTs, which involve the higher-order stress resultants, are 

proposed to represent the kinematic behaviour. In these models, the higher-order terms 
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are incorporated into the displacement field in order to consider the effect of shear 

deformation directly. In this section, we consider three HSDT models. 

2.3.1.1 Third-order shear deformation theory (TSDT) 

This is a simple and famous theory for bending plate proposed by Reddy [29], in 

which the displacements of an arbitrary point are given by: 

 

 

3

0 0,2

3

0 0,2

0

4
( , , )

3

4
( , , )

3

( , )

x x x

y y y

z
u x y z u z w

h

z
v x y z v z w  

h

w x y w

 

 

   

   



,   
2 2

h h
z

 
  

 
 

(2.20) 

where 0 0 0, ,u v w  are the displacement components of a point on the mid-surface through 

x, y and z directions, respectively, , x y   are the rotations in the xz and yz planes, 

respectively, h is the plate thickness and z  [-h/2 h/2] is distance from the considered 

point to the mid-surface. Based on the kinematic of displacement, / 0z w z     , the 

infinitesimal strain tensor in Eq. (2.19) can be simplified using two separates vectors: in-

plane and shear strains, respectively 

,

,

, ,

xx x

yy y

y xxy

u

v

u v







   
   

   
     

    (2.21) 

2
, 0, 0,

2
0,, 0,

4
1

z xxz x x

y yyz z y

u w wz

wv w h

 



         
                 

     (2.22) 

It is seen that the shear strains are equal to zero at z = ±h/2. It means that traction-

free boundary conditions at the top and bottom surfaces of plate are automatically 

satisfied. In numerical computation, using the same interpolated functions makes the 

unequal order in the approximation of the rotations ,x y   and derivative of deflection

0, 0,,x yw w . In thin plate, as the length-to-thickness ratio becomes large, Eq. (2.22) does 

not become zero. It leads to invalid zero-transverse shear strains. Consequently, the 

stiffness matrix becomes stiff and yields erroneous results for the general displacements. 

This phenomenon is known as shear-locking, which also exists in FSDT model. 
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2.3.1.2 Refined plate theory (RPT) 

The displacement field of RPT is established by adding those assumptions given by 

Senthilnathan et al. [59]: 

- The transverse displacement is separated into two parts: bending and shear 

components denoted as wb and ws, respectively. 

- The bending components of in-plane displacements, in conjunction with wb, are 

given by classical plate theory (CPT): 

, ,
,x b x y b y

w w      (2.23) 

- The shear components of the in-plane displacements give rise, in conjunction with 

ws, to the parabolic variations of shears trains/stresses through the plate in such a way that 

the shear strains/stresses vanish on the top and bottom surfaces of the plate. Substituting 

Eq. (2.23) into Eq. (2.20), the following displacement field can be obtained as: 

3

0 , ,2

3

0 ,, 2

4
( , , )

3

4
( , , )

3

( , )

b x s x

s yb y

b s

z
u x y z u zw w

h

z
v x y z v z w  w

h

w x y w w

  

  

 

    
(2.24) 

As it is observed, the current unknown variable is  0 0

T

b su v w wq , one reduced 

variable as compared with FSDT and TSDT. In general, we introduce a generalized 

refined plate theory based on shape functions, which determine the distribution of the 

transverse shear strains/stresses across the plate thickness:  

0 , ,

0 ,,

( , , ) ( )

( , , ) ( )

( , )

b x s x

s yb y

b s

u x y z u zw g z w

v x y z v z g z w  w

w x y w w

  

  

 

    (2.25) 

where ( ) ( )g z f z z  , in which ( )f z  is a so-called distributed function which is clearly 

introduced in the next sub-section. 

Substituting Eq. (2.25) into Eq. (2.22), the shear strain is derived as: 

,

,

( )
xz s x

s yyz

w
f z

w





    
    

    
γ      (2.26) 
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As mention in Ref. [159], as the plate becomes thinner (L/h  100), the effect of shear 

component on the transverse displacement is significantly small and can be eliminated. 

Consequently, the shear strains/stresses may tend to zero and this theory reduces to the 

CPT. 

2.3.1.3 Generalized shear deformation theory (GSDT) 

Another way to treat the shear-locking phenomenon naturally, a generalized higher-

order shear deformation theory derived from the CPT is defined as follows: 

0 0,

0 0,

0

( , , ) ( )

( , , ) ( )

( , )

x x

y y

u x y z u zw f z

v x y z v zw f z  

w x y w





  

  



    (2.27) 

or in vector form: 

1 2 3( )z f z  u u u u     (2.28) 

where  1 0 0 0 
T

u v wu ,  2 0, 0, 0
T

x yw w u and  3  0
T

x y u . And the function 

( )f z  is chosen to satisfy the tangential zero value on the top and bottom faces, i.e., 

( / 2) 0f h   . Based on this condition, various distributed functions ( )f z   are listed in 

Table 2.2 including: third-order polynomials by Reddy [57] and Shimpi [160, 161], 

exponential function by Karama [162], sinusoidal function by Touratier [163] and Arya 

[164], fifth-order polynomial by Nguyen [118], trigonometric function by Thai [165]  and 

our proposed function in inverse tangent form [136] as shown in Figure 2.7. This plate 

theory is also called generalized shear deformation theory (GSDT), which does not only 

satisfy the traction free boundary condition at the plate surfaces, but also overcome shear-

locking phenomenon naturally.  
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Figure 2.7 a) The shape functions and b) their derivative through the plate thickness. 

Table 2.2 The forms of distributed functions and their first derivative. 

Model ( )f z  ( )f z  

Reddy (TSDT) 
4 3 2

3
/z z h

 
2 21 4 /z h  

Shimpi 
5 5 3 2

4 3
/z z h   5 2 2

4
1 4 /z h

 

Karama (ESDT) 
22( / )z hze

 

24 2 2( / )

2
(1 ) z h

h
z e  

Touratier (SSDT) sin( )
h

h
z



  
cos( )

h
z



 

Nguyen-Xuan 2 4

7 2 23 5

8 h h
z z z 

 2 4

7 6 102 4

8 h h
z z 

 

Thai (ITSDT) 
2

arctan( )
h

h z z
 

2 22 2(1 ( ) ) / (1 ( ) )
h h

z z 
 

Present model arctan(sin( ))
h

h
z



  
2cos( ) / (1 sin ( ))

h h
z z

 
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Herein, by setting ( ) 0f z   we adopt the CPT as follows: 

0 0,

0 0,

0

( , , )

( , , )

( , )

x

y

u x y z u zw

v x y z v zw

w x y w

 

 



    (2.29) 

Similarly, the Reissner–Mindlin theory is obtained by setting ( )f z z  and assigning 

,w  
x x x

   

    (2.30) 

2.4 Strain and stress 

 The plate is a bending structure, in which the in-plane displacements are much 

smaller than the transverse one (deflection). Thus, the components of the in-plane 

displacement gradients u,x, u,y, v,x, v,y are of the order , and the terms of the higher-order 

2 can be neglected in the strains. Whereas, for the moderate rotations of transverse 

displacement (say 10− 15), the following terms 
2 2

, , , ,, ,x y x yw w w w  are small but not 

negligible [166]. Due to independence of transverse displacement on z coordinate in Eq. 

(2.27), the zero transverse normal strain condition 0z   is fulfilled. Thus, the Green-

Lagrange tensor in (2.18) is simplified in the form of the von Kármán strains with five 

elements as follows: 

2

, ,

2

, ,

, , , ,

, ,

, ,

1
2

2
0

0

x xx

y y x

xy y x x y

xz z x

yz z y

u w

v w

u v w w

u w

v w











    
    
    

     
       

     
     

         

    (2.31) 

Substituting the assumed displacement field in (2.27) into Eq. (2.31), the strain 

vector with separated in-plane strain  and shear strain  parts are given by: 

1 2( )

0 ( )0

m z f z

f z

      
        

      

κ

γ β

 
     (2.32) 

where the in-plane , the mid-plane curvatures and the bending shear strain are defined as: 

0

0

0

( , , )

( , , )

( , )

x

y

u x y z u z

v x y z v z  

w x y w





 

 


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2

0, 0,

2

0, 0,

0, 0, 0, 0,

1

2
2

x x

m y x L NL

y x x y

u w

v w

u v w w

  
  

     
     

    

0,

1 0,

0,2

xx

yy

xy

w

w

w

 
 

   
 
 

κ ,   

,

2 ,

, ,

x x

y y

x y y x





 

 
 

  
  

κ ,   x

y





 
 
 

β      

(2.33) 

The nonlinear component of in-plane strain can be rewritten as: 

1

2
NL  A θ  (2.34) 

where 

0,
0,

0,

0,

0, 0,

0

0 and

x
x

y

y

y x

w
w

w
w

w w



 
    

    
   

 

A θ  (2.35) 

Considering thermal effect, the thermal strain is given by: 

1

( ) 1

0

th

x

th th

y e

th

xy

z T

   
    

     
   

   



 



 (2.36) 

with ( )e z is the effective thermal coefficient and T  is the temperature change defined 

as: 

( ) ( ) iT z T z T    (2.37) 

where Ti is the initial temperature and T(z) is the current temperature varied through the 

plate thickness as given in Eq. (2.9). 

In general, the transverse normal stress z  is not zero. However, from practical 

consideration, a plate is in a state of plane stress due to thickness dimension being very 

small compared with the other dimensions [29]. Consequently, the transverse normal 

stress z is assumed to be zero and eliminated in the virtual work statement. Hence, the 

plane-stress state reduces the constitutive relation with five elements as follows: 
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th

x xx

th

y yy

th

xy xy xy

xz xz

yz yz

  
  

  
    

     
    

   
   
   

C 0

0 G

 

 

  

 

 

 (2.38) 

or the simplified form with separated in-plane and shear stresses 

th    
    

     

σ C 0

τ 0 G γ

  
 (2.39) 

where the material matrices are given by: 

3

1 0

1 0
1

0 0 (1 ) / 2

e

e
e

e

e

E







 
 


 
  

C  (2.40) 

1 0

0 12(1 )

e

e

E



 
  

  
G  (2.41) 

The in-plane forces, moments and shear forces are calculated as follows: 

/2

/2

1

d

( )

ij
h

ij ij
h

ij

N

M z z

f zP




   
   

   
   

  

    and   
/2

/2
( ) d

hx xz

h
y yz

Q
f z z

Q





      
   

      
  (2.42) 

Substituting Eq. (2.39) into Eq. (2.42), stress resultants are rewritten in matrix form  

1

2

0

ˆ ˆˆ ˆ

th

m

th

th

S

th

     
     

            
      
             

NN A B E 0

M B D F 0 M

P E F H 0 P

Q 0 0 0 D β

σ ε σD






 

(2.43) 

in which 

/2
2 2

/2
, , , , , (1, , , ( ), ( ), ( )) d

h

ij ij ij ij ij ij ij
h

A B D E F H z z f z zf z f z C z


   

 
/2 2

/2
( ) d

h
s

ij ij
h

D f z G z


   

(2.44) 

and the thermal stress resultants are expressed as: 
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   
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/2
1 ( ) d
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e
h

th th th

e
h

z f z T z


 
 
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 

N M P C




 

(2.45) 

The generalized strain vector ̂  in Eq. (2.43) is divided into the linear and nonlinear 

strain components, respectively as: 

1

2

ˆ ˆ ˆ

L NL

L NL

   
   
   

      
   
      β

 

 
  

 



 
(2.46) 

2.5 Variational equation of equilibrium 

The governing equations of the plate structure are derived from the principle of 

virtual displacement as: 

 
0

d 0
t

U V K t     
 

(2.47) 

where the virtual strain energy U is defined as: 

ˆ ˆdT

V
U V   σ

 
(2.48) 

Before proceeding with the discretization of the virtual strain energy in Eq. (2.48),  

it is necessary to consider further the variation of strain ̂
 

due  to the virtual  

displacements as  the  sum  of  the  variation  of  the linear  and  nonlinear  generalized  

strains as: 

ˆ ˆ ˆ
L NL     

 
(2.49) 

where the variation of the nonlinear component of the in-plane strain is obtained from Eq. 

(2.34)  as: 

NL   A θ
 

(2.50) 

Substituting the stress and strain in Eq.(2.43) and (2.49), the virtual strain energy is 

rewritten as: 
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ˆˆ ˆ ˆ ˆ dT T

thU


   ε Dε ε σ  
 

(2.51) 

The virtual work done by external forces 

d dT TV  
 

    u f u t
 

(2.52) 

where f
 
represents the external load and t  is the prescribed traction on the natural 

boundaries. 

And the virtual kinetic energy is: 

dT

e
V

K V    u u
 

(2.53) 

where e is the effective density of the FGM, and a dotted variable indicates its time 

derivative. Integrating Eq. (2.53) by part with respect to time, we obtain a new form of 

the virtual kinetic energy [167]:  

 
0 0

d d d
t t

T

V
K t V t    u u  

 
(2.54) 

Substituting by the displacement field in Eq. (2.28), the virtual kinetic energy can be 

reformed as: 

dTK 


   u mu
 

(2.55) 

where  1 2 3

T
u u u u and the mass matrix m is calculated according to consistent form 

as follows: 

1 2 4

2 3 5

4 5 6

I I I

I I I

I I I

 
 


 
  

m  with   
/2 22

/2
1, , , ( ), ( ), ( ) d

h

i e
h

I z z f z zf z f z z


 
 

(2.56) 

Substituting Eqs. (2.51), (2.52) and (2.55) into Eq. (2.47), the governing equation is 

written as: 

ˆˆ ˆ ˆ ˆd d d d d 0T T T T T

th    
    

         u mu ε Dε ε σ u f u t
 

(2.57) 
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Chapter 3 Isogeometric Analysis for Plate Structures 

Based on Higher-Order Shear Deformation Theory 

 

3.1 Briefly introduction of finite element method 

The Finite Element Method (FEM) developed in the 1950s to 1960s, has been known 

as the most powerful and popular tool for numerical simulations in various engineering 

fields. In FEM, the domain is firstly discretized into a number of simple subdomains, 

called finite elements. These elements are connected by nodes, Then, over each element 

the unknown fields are approximated by a linear combination between unknown variables 

at the nodes, called degree of freedoms (DOFs) and the shape functions, commonly 

known as the Lagrange interpolation functions.  

3.1.1 Lagrange interpolation functions 

The classical univariate Lagrange interpolation functions are given by [168]: 

 
1

1,

p
jp

i

j j i i j

L
 

 




 





  (3.1) 

where i = 1…p+1 and p is the polynomial order. Figure 3.1 illustrates a set of quadratic 

Lagrange interpolation functions on a two-element parametric space, in which element 

boundary corresponds to value  = 0.5. It can be seen that the basis functions constitutive 

a partition of unity, i.e.   1p

iL  
 
and satisfy the Kronecker delta property, i.e. 

( )p

i j ijL   . It helps the basis functions to be interpolatory at the nodes. Furthermore, 

they achieve C0 continuity at the inter-element boundary. Thus, for the PDE having 

higher-order derivative of the unknown fields, e.g. the defection in Euler-Bernoulli beam 

theory, classical plate theory or higher-order plate theory as derived in Eq. (2.57), the 

Lagrange higher-order basis functions are not admissible in the finite element 

approximation. For these problems, such other polynomial functions known as the Hermit 

interpolation functions were proposed to satisfy the C1 continuity requirement. 
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Figure 3.1 Quadratic Lagrange interpolation functions on a two-element parametric space. 

3.1.2 Hermit interpolation functions 

For a line element with two nodes, a set of Hermit interpolation functions is 

introduced as [169]: 

   

   

2 3 2 33 3

11 12

3 3

01 02

2 3 2 3

1 3 32

2

2H H

H H

     

      

  

  

 


 (3.2) 

It is noted that these functions are cubic polynomial (p=3) and are separated into 

groups, i.e. 
3 3

11 12,H H  and 
3 3

01 02,H H , for approximating deflection and its derivative (slope), 

respectively.  

     
a)                                                                          b) 

Figure 3.2 a) Hermite cubic functions and b) their first derivative. 

Figure 3.2 plots the set of Hermite cubic functions and their derivative. For a plate, 

a two-dimensional structure, there is a complexity in approximation. The in-plane 

displacement (u0, v0) and rotations (βx, βy) are approximated by the Lagrange basis 

functions while transverse displacement w0 must be approximate using the Hermite 

3

11H 3

12H
3

02H3

01H  3

11H


 3

12H


 3

02H
 3

01H

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interpolation functions [29]. Furthermore, it typically requires extra three unknown 

variables including derivatives of deflection, w0,x, w0,y, w0,xy at each node and a set of 

shape functions produced by tensor product, Hi = [
3 3

1 1( ) ( ),i iH H  3 3

0 1( ) ( ),i iH H 

3 3

1 0( ) ( ),i iH H  3 3

0 0( ) ( )i iH H  ] corresponds to the variables of [w0, w0,x, w0,y, w0,xy], in 

which i = 1÷2. 

3.2 Isogeometric analysis framework 

In this section, a brief discussion about B-spline and NURBS basis functions 

implemented in IGA is given. Firstly, we present the basic concepts in their construction. 

Secondly, the most of the algorithms used to implement B-spline and NURBS are 

particularly summarized [94, 170]. 

3.2.1 B–splines basis functions 

A B-splines basis of degree p is generated from a non-decreasing sequence of 

parameter value i , 1,...i m p  , called a knot vector  1 2 1, ,..., m p    Ξ , in which 

1 2 1... m p      . i
  is the ith knot and m is number of the basis functions. If the 

knots are equally spaced in the parameter space, knot vector may be uniform and non–

uniform in otherwise. In the so-called open knot, the first and the last knots are repeated 

by p+1times and very often get values of 1 0
 
and 

1 1m p   . Furthermore, knot vector 

is divided into m-p of inner knot spans, some of which may possibly have zero length if 

a knot value appears more than once, the so-called a multiple knot. The B-splines basis 

function is C∞ continuous inside a knot span and Cp-k continuous at a knot repeated k 

times. As a result, it achieves Cp-1 continuity at a single knot and C-1 one at the first and 

the last knots.  

Using Cox-de Boor algorithm, the univariate B-spline basis functions  ,i pN   are 

defined recursively on the corresponding knot vector start with order p = 0 

  10
1  if  

0  otherwise

i i

iN
  

  
 


 (3.3) 

as 1p  the basis functions are obtained from:  
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     1

1

11

1

1

p p p

i i

i pi
i

i p i i p i

N N N
  

  
   

 

   






 

 
 (3.4) 

Note that when evaluating these functions, ratio in the form 0/0 is assumed to be zero. 

An example of univariate quadratic B-spline basis functions based on an open knot vector 

 1 2 3 3 4

5 5 5 5 5
0,0,0, , , , , ,1,1,1Ξ  is illustrated in Figure 3.3. The important properties of B-

Spline functions are summarized as follows: 

 Being piecewise polynomial functions. 

 Non-negative over the domain   0 , , ,p

iN i p    

 Constitute a partition of unity   1p

iN    

 Linear independence, i.e.,   0 0p

i i iN       

 Having local support over p+1 knot spans , i.e., ( )p

iN  is non-zero with 

1,i i p    
    

 Cp-k continuity at the interior knot having k repeats. 

 Do not satisfy the Kronecker delta property, i.e., ( )p

i j ijN    except the special 

case, as 
j  repeated p time then ( ) 1p

i iN  . 

 

Figure 3.3 Univariate quadratic B-splines basic functions. 

By a simple way, the so-called tensor product of univariate B-splines, the 

multivariate B-spline basis functions are generated as: 
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   
1

d
p

iN N 








p

i ξ ξ  (3.5) 

where parametric 1, 2, 3d  represents 1D, 2D and 3D spaces, respectively. Figure 3.4 

gives an illustration of bivariate B-splines basic based on tensor product of two knot 

vectors  1 2 3 3 4

5 5 5 5 5
0,0,0, , , , , ,1,1,1Ξ  and  1 1 2 2

3 3 3 3
0,0,0,0, , , , ,1,1,1,1Η

 
in two 

parametric dimensions ξ and η, respectively.  

  

a)
 

2,3

4,6 ( , )N                                                   b)
 

2,3

7,8 ( , )N    

Figure 3.4 Bivariate B-splines basic functions. 

After defining the B-spline basis functions, a domain including B-spline curve, 

surface or solid depending on value of parameter d, can be then constructed from a linear 

combination of them and the control points iP :
 

   N p

i i

i

S ξ ξ P  (3.6) 

3.2.2 Non-Uniform Rational B-Spline (NURBS) 

B-splines are convenient for modelling the geometries with curved boundaries. 

However, for some simple conic shapes (e.g., circles, ellipses, spheres, etc.), we gain the 

ability that geometry cannot be exactly represented just by the polynomial functions. 

Thus, NURBS are introduced here as a generalization of B-spline in the form of rational 

functions, i.e. 

 
 

 

N

N
R







p

i ip

i

j

p

j

j

ξ
ξ

ξ
 (3.7) 
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where 0 i  is the so-called an individual weight corresponding to B-splines basis 

functions ( )N p

i
ξ . The weight values can be analytically defined for simple geometries 

[170] or obtained from CAD software such as Rhino [171].  Figure 3.5 illustrates an 

examples of quadratic basis function with p = 2 corresponding to knot vector 

 0, 0, 0, 0.5, 1, 1, 1Ξ . It is seen that the parametric domain is subdivided into two equal 

elements according to knot spans  0, 0.5  and  0.5, 1 , where three non-zero functions 

are defined. A set of NURBS basis shapes is strongly depended on a weight vector. 

NURBS basis functions also inherit all the key features of their B-splines progenitors, 

namely, point wise non-negativity, partition of unity, continuous degree at the knot points 

and local support over p +1 knot spans. For the special case, in which all weights are 

unity, the NURBS basis reduces to the B-spline one as shown in Figure 3.5b. In a similar 

fashion to B-spline curve, the NURBS curved is defined according to Eq. (3.6) by 

replacing B-spline by NURBS.  

a)        b)    

c)   

Figure 3.5 NURBS basic functions with assigned weigth vector: a)  1, 0.5, 0.5, 1ζ ,                      

b)  1, 1, 1, 1ζ , c)  1, 1, 1.5, 1ζ .
 

2 2

1 2

2 2

3 4

R R

R R
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An example of construction for a half circle having unit radius is illustrated in Figure 

3.6. For this problem, we use linear combination between three sets of quadratic NURBS 

basis shown in Figure 3.5 and four control points in red colour with their coordinate as 

shown in Figure 3.6. The red curve indicates the B-spline curve (all weights are unity) 

which is unable to reproduce the circle exactly, while the exact geometry is achieved by 

NURBS with 1 4 2 31; 0.5       . As the weight at the control point 
3P  decreases 

the curve is pushed far away from point 
3P . In Figure 3.7, by using a set of the Lagrange 

interpolation functions in Figure 3.1, a half circle is approximated with two element (in 

blue cure) and five nodes (blue square). Because Lagrange basis functions are 

polynomial, they cannot describe exactly the conic geometries, e.g. a circle [95]. At the 

centre of arc, there is no continuity of slope at this point due to C0 continuity at the inter-

element boundary. 

 

Figure 3.6 Model of a half circle by NURBS. The blue curve – the exact geometry, the red 

one – the B-spline curve and the cyan one are produced from linear combination between 

four control points (in red circle) and sets of NURBS basic functions from Figure 3.5a, b 

and c, respectively. 
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Figure 3.7 Model of a half circle with two elements by quadratic NURBS basis (in red 

curve) and Lagrange quadratic function (in blue curve). 

3.2.3 Refinement technique 

In computational analysis, numerical methods usually use refinement technique to 

reach the desired results. Besides two common refinement techniques in FEM based on 

control over the element size and the order of the basis, namely h- and p- refinement, IGA 

supports k-refinement, which is an interesting feature to control the continuity of the basis 

functions. Herein, we briefly introduce the three refinement algorithms. For more details, 

readers can find in the textbook [94]. 

h-refinement is called knot insertion, in which knots can be inserted without 

changing a domain geometrically and parametrically. As a result, the domain is divided 

into more elements with smaller size. Let us consider the example shown in Figure 3.8 to 

illustrate this technique. The knot vector of the original curve is  0, 0, 0, 1, 1, 1Ξ . 

Then, a knot is inserted at 0.5  . The new curve is geometrically and parametrically 

identical to the original curve with one more control point, one more element, and one 

more basis function as well.  
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Original curve 

 

  

Refined curved 

 

Figure 3.8 Knot insertion on a quadratic curve: upper is geometry while lower is the set of 

basis fucntions. The curve is subdivided into two elements without changing geometry. 

Control points are denoted by filled red circles, while element nodes are denoted by blue 

square. 

p-refinement, called order elevation (or degree elevation), makes an increment of 

the order of the basis functions. During this process, the multiplicity of the knots is 

increased by one, and no new knot values are added. As a result, the size of knot vector 

is larger, but no new element is created. Let us consider an example of order elevation. 

From the initial curve shown in Figure 3.8a, we raise the order to cubic and quartic as 

shown in Figure 3.9 and the size of knot vector is increased accordingly to 

 0, 0, 0, 0, 1, 1, 1, 1Ξ
 

and  0, 0, 0, 0, 0, 1, 1, 1, 1, 1Ξ , respectively. The new 

curve is still described exactly with more control points, as well as, the basis functions 

and is geometrically and parametrically identical to the original one. A feature of p–

refinement is that it raises the order and keeps the continuity of the basis constant. A 

major difference as compared with common C0 continuity p–refinement in FEM is that 

order elevation in IGA helps the current basis functions to achieve Cp-k continuity 

depending on the continuities of initial basis functions.  
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a) Cubic functions 

 

 

b) Quartic functionsp 

Figure 3.9 Order elevation. The number of the control points and the basis function as well 

are increased, whilst the geometry and the number of elements are kept identically to the 

original ones. 

k–refinement refers to the process, in which the order elevation is followed by knot 

insertion which results in a higher-order and higher continuity of the basis functions. In 

this approach as shown in Figure 3.10, the order elevation is performed firstly on the 

coarsest discretization. Then, subsequent knot insertion will be implemented to make sure 

that Cp-1 continuity is achieved across the newly created element boundaries. Through 

these examples, we can propose the relation between the number of control points (ncp) 

and the number of elements (nel) in IGA description as follows: 

unique(knot vector) ( 1)eln p  

      1 1cp eln n p k p       

(3.8) 
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Figure 3.10 k-refinement approach. 

Application of refinement technique in 2D [172]: In this thesis, we focus on the 

study of plate structures, which are constructed in two-dimensional space. Thus, we try 

to illustrate an application of NURBS with the three refinement techniques for 2D 
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geometry, e.g., a circular plate as revealed in Figure 3.11. To exactly describe this 

geometry, the coarsest mesh with one quadratic element constructed from a linear 

combination as Eq. (3.6) between the tensor product of two knot vectors  0,0,0,1,1,1Ξ  

and  0,0,0,1,1,1Η
 
and nine control points, which coordinates are given in Table 3.1.  

 

Figure 3.11 Circular geometry is described in the coarsest mesh with 9 control points 

denoted in red circular marker. 

Table 3.1 The coordinates and the weights of control points of a circular plate with radius R = 

0.5. 

Pi 1 2 3 4 5 6 7 8 9 

xi 2 / 4  2 / 2  2 / 4  0 0 0 2 / 4  2 / 2  2 / 4  
yi 2 / 4  0 2 / 4  2 / 2  0 2 / 2  2 / 4  0 2 / 4  
i 1 2 / 2  1 2 / 2  1 2 / 2  1 2 / 2  1 

Figure 3.12, Figure 3.13 and Figure 3.14 illustrate sequentially three types of 

refinement schemes in IGA as h-,p-,k- refinement for description of the circular geometry. 

By inserting the knot value in the range of (0, 1), the length of knot vectors increases and 

the number of NURBS elements increases accordingly. As it can be seen in Figure 3.12, 

we can insert different knots in the knot vectors in order to discretise the domain with 

different numbers of element in each direction. Let us consider a discretization of 2×2 

elements as plotted in Figure 3.13, by multiplying every distinct knot one by one, the 

order of approximated function increases from p = 2 to p = 3, 4. The numbers of knots 

increases but the number of elements is still constant. For this example, each element 
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belongs to those knots lying inside element and also on its boundaries. And the C0-

continuity is kept on the element boundaries. Those points are the same as those of 

quadrilateral elements Q9, Q16, Q25 of Lagrange family in finite element method [173]. 

Another way, by just repeating the first and the last knots as shown in Figure 3.14, the 

basis increases the order p as well as its continuity to Cp-1. That is, the basis still has p-1 

continuous derivatives at an inside knot. As it can be seen, in k-refinement, with the same 

number elements, it requires less control points than p-refinement. Thus, it is concluded 

that k-refinement is a potentially superior approach in higher precision than p-refinement 

[95]. One important issue is that the plate theories in this thesis require C1-continuity in 

approximate formulations. Therefore, using k-refinement for NURBS basis with order

2p   will naturally satisfy this requirement. 

 

 , 0, 0, 0, 0.5, 1, 1, 1Ξ H
 

 

 1 2

3 3
, 0, 0, 0, , , 1, 1, 1Ξ H

 

 

 

 1 2

3 3
0, 0, 0, , , 1, 1, 1Ξ

 

 1 1 3

4 2 4
0, 0, 0, , , , 1, 1, 1H  

Figure 3.12 Knot insertion in circle modeling. 
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 
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 
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1 2 2

3 3 3
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  
  
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1 1 1

3 3 3

2 2 2

3 3 3

0,0,0,0,0, , , ,...
,

, , , 1,1,1,1,1
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  
  

Ξ H
 

Figure 3.13 Order elevation: the order of basis functions rises from p = 2 to p = 3, 4, 

respectively and also keeps the C0 continuity on the element boundaries. 
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 , 0, 0, 0, 0.5, 1, 1, 1Ξ H
 

 

 1 2

3 3
, 0,0,0,0, , ,1,1,1,1Ξ H

 

 

 
1
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3

0,0,0,0,0, ,...
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  
  
  

Ξ H
 

Figure 3.14 k-refinement: the basis functions increase and their order also achieves Cp-1 

continuity. 

3.2.4 Summary of IGA 

The salient features of IGA can be summarized as follows: 

- Geometry can be described exactly by a single patch or multi-patch. In which, a 

mesh of a NURBS patch is defined by the tensor product of knot vectors, for 

instant, Ξ Η ,  Ξ Η Z  for two- and three-dimension, respectively. 

- A linear combination between the control points and the basis functions defines 

the geometry. 

- The unknown variables are the degrees of freedom (control variables) are located 

at the control points which are not necessary to stay on the actual geometry. 

- There are three different mesh refinement strategies: h-refinement, p-refinement 

and k-refinement which increases both of smoothness and order of the basis 

functions. 

3.3 Discrete system equations 

Similar to the traditional finite element method, isogeometric analysis also invokes 

the isoparametric concept, in which the geometric description and finite analysis share 

the same basis functions. However, there is a major difference between FEM and IGA 

regarding the type of basis functions. In classical FEM, the basis functions chosen to 

approximate the unknown fields are also used to approximate the known geometry, whilst 

IGA employs the basis functions, which are capable to exactly describe the known 

geometry such as B-spline or NURBS as shown in Eq. (3.7), to construct finite 

approximation of the displacements: 
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   A

h

A

A

Ru ξ ξ q  (3.9) 

where Aq
 
denotes the vector of nodal degrees of freedom associated with the control 

point AP , which has 5 degrees of freedom (DOFs) 
0 0 0

T

A A A xA yA Au v w    q  for 

TSDT and GSDT and 4 DOFs  0 0

T

A A A bA sAu v w wq for RPT. 

Substituting Eq. (3.9) into Eq. (2.46), the generalized strains can be rewritten in 

matrix form as: 

1
ˆ

2

L NL 
  
 
B B q  (3.10) 

where 

       1 2
T

T T T T
L m b b s 

  
B B B B B  (3.11) 

in which these strain matrices are defined differently depending on the approximated 

displacement field of each plate theory given in Section 2.3. The strain matrices B are 

defined as: 

Third-order shear deformation theory [73] 

, ,

1

, ,

, , , ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

A x A x

m b

A A y A A y

A y A x A y A x

R R

R R

R R R R

   
   

    
   
   

B , B ,  

, ,

2

, ,2

, , ,

0 0 0
4

0 0 0 ,
3

0 0 2

A xx A x

b

A A yy A y

A xy A y A x

R R

R R
h

R R R

 
 

   
 
 

B   
,

,

0 0 0

0 0 0
A x As

A
A y A

R R

R R

 
 
  

B  

(3.12) 

Refined plate theory [136, 159] 

, ,

1

, ,

, , ,

0 0 0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 2 0

A x A xx

m b

A A y A A yy

A y A x A xy

R R

R R

R R R

   
   

     
   
   

B B , (3.13) 
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,

,2

,

,

,

0 0 0
0 0 0

0 0 0 ,
0 0 0

0 0 0 2
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Generalized shear deformation theory [62] 
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(3.14) 

Meanwhile, strain matrix 
NL

B , derived from Eq. (2.34), is still dependent upon 

displacement gradient 

( )NL g

A A

 
  
 

A
B q B

0     
where  

 

,

,

0 0 0 0

0 0 0 0

A xg

A

A y

R

R

 
  
 

B  (3.15) 

As observed from Eq. (3.12) to (3.14), the SCF is no longer required in the shear 

strain matrix, as well as, in the global stiffness matrix as shown latter in Eq. (3.18). 

Furthermore, the bending strain matrices contain the second-order derivative of the shape 

functions. Hence, it requires C1-continuity element in approximate formulations. 

However, the enforcement of even C1-continuity across inter-element boundaries in 

standard finite element method is not a trivial task. In an effort to address this difficulty, 

the Hermite interpolation function was added to satisfy specific approximation of 

transverse displacement. It may produce extra unknown variables including derivatives 

of deflection, which lead to an increase in the computational cost, i.e. a C1-continuity 

four-node quadrilateral plate element with 10 DOFs/node [174], a conforming element 

with 8 DOFs or a non-conforming element with 7 DOFs [57, 175] requiring the Lagrange 

interpolation of u0, v0, x, y and the Hermit interpolation of w0. It is now interesting to 

note that our present formulation based on IGA naturally satisfies C1-continuity from the 

theoretical/mechanical viewpoint of FGM plates [73]. In our work, the basis functions are 

Cp-1 continuous. Therefore, as 2p   the present approach always satisfies C1- continuity 

requirement in approximate formulations based on the proposed HSDT.  
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Variation of the generalized strain in Eq. (2.49) can be rewritten in matrix form as: 

 ˆ L NL  B B q  (3.16) 

Substituting Eqs. (3.10) and (3.16) into Eq. (2.57), and eliminating the virtual 

displacement vector q , the equation of motion is written in the following matrix form: 

ext Kq Mq F  (3.17) 

where the global stiffness matrix K is expressed as: 

     ˆ ˆ0.5 d d
T T

L NL L NL NL
th

L NL th

 
    

  

 K B B D B B B σ

K K K

 (3.18) 

in which LK
 
and NLK  are the linear and non-linear stiffness matrices, respectively, whilst 

Kth is the initial stress stiffness matrix due to the in-plane compressions by temperature 

change: 

  ˆ d
T

L L

L


 K B DB
 

     
1 1ˆ ˆ ˆ+ + d
2 2

T T T
L NL NL L NL NL

NL


 K B DB B DB B DB
 

(3.19) 

  d

th th
T x xyg g

th th th
xy y

N N

N N

 
 
 
 

 K B B  (3.20) 

and M is the mass matrix: 

dT


 M N mN  (3.21) 

in which  

1 2 3

A A A A
   N N N N  (3.22) 

where the inside matrices are in size of 3×5 or 3×4 depending on TSDT, GSDT or four 

unknown variable RPT. 

              TSDT, GSDT:            
1

0 0 0 0

0 0 0 0 ,

0 0 0 0

A

A A

A

R

R

R

 
 


 
  

N  (3.23) 
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(3.24) 

The last term denotes the external force vector, which is the superimposition of the 

transverse mechanical load and thermal loading 

  0
ˆd d d

T
ext L

A A A A

me th

R R
  

     F f t B σ

F F

 
(3.25) 

3.4 Numerical integration 

In order to calculate the stiffness matrices, mass matrix and force vector in Eqs. 

(3.19), (3.21) and (3.25) in isogeometric finite element method, a numerical integration 

following to the Gauss-Legendre quadrature is employed. As it can be seen, these 

parameters are related to the shape functions and their first and second spatial derivatives 

in physical coordinate system denoted by x. However, according to Section 3.2 the shape 

functions are constructed in natural coordinate system denoted by . Thus, a 

transformation between the two coordinate systems should be established. We define the 

mapping ˆ: x  from the parameter space to the physical space as shown in Figure 

3.15. 

( )
( )

( )

i

i

i i

xx
R

y y

  
    
   


ξ

x ξ
ξ

 (3.26) 

where (xi, yi) are the physical coordinate of the control points utilized defining the two 

dimensional geometry .  

The first spatial derivatives of the shape functions are computed as: 
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where J is the Jacobian matrix  

, ,

, ,

x x

y x

 

 

 
  
 

J  (3.28) 

and their second derivatives are also computed as follows: 
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J J  (3.29) 

where  
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2 , ,

, ,
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Figure 3.15 Numerical integration in isogeometric analysis. 

The fact is that the numerical integration in IGA is the same as in FEM, which is 

performed by the Gauss-Legendre quadrature. However, there is a more complex 

implementation in IGA. Integral over the entire geometry (in physical system) is split into 
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integrals over each physical element, 
e . The integral is pulled back to the parametric 

element ˆ e  via the geometry mapping x-1. Then, the integral over the parametric element 

are continued to pull back to the parent domain, 
e , where existing integration rules are 

usually defined. The mapping ˆ: e e   from the parent domain [ 1, 1] [ 1, 1]    to the 

parametric domain 1 1[ , ] [ , ]i i i i      is given by: 

   1 1

1

2
i i i i 

            (3.31) 

   1 1

1

2
j j j j 

    
 

       (3.32) 

Therefore, the Jacobian of this transformation is defined as: 

  1 1

1

4
i i j j      J  (3.33) 

At the last domain, the integrals can be implemented following the Gauss-Legendre 

numerical integration as a sum of the value defined at sampling points, known as the 

Gaussian points. To illustrate this process, we try to integrate mathematically a function 

f(x, y) over the entire physical domain Ω. 
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
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



 







J

J J

J J

 (3.34) 

where (i, i) are the Gaussian points and Wi, Wj are the weighting coefficients, which are 

introduced in Table 3.2 following Ref. [52]. Specially, a number of (p +1) × (q +1) 

Gaussian points are adopted for two-dimensional element by using pth and qth orders 

NURBS.  
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Table 3.2  Gauss points and weights in the Gauss-Legendre numerical integration. 

nGP Integration point i Weight Wi 

1 0.000000000000000 2.000000000000000 

2 0.577350269189625 1.000000000000000 

3 0.000000000000000 0.888888888888888 

  0.774596669241483 0.555555555555555 

4 0.339981043584856 0.652145154862546 

  0.861136311594052 0.347854845137453 

5 0.000000000000000 0.568888888888888 

 0.538469310105683 0.478628670499366 

  0.906179845938664 0.236926885056189 

6 0.238619186083196 0.467913934572691 

 0.661209386466264 0.360761573048138 

  0.932469514203152 0.171324492379170 

7 0.000000000000000 0.417959183673469 

 0.405845151377397 0.381830050505118 

 0.741531185599394 0.279705391489276 

  0.949107912342758 0.129484966168869 

3.5 Boundary conditions 

In solid mechanics, boundary conditions can be divided into groups of homogeneous 

and inhomogeneous Direchlet boundary conditions (BCs). In this section, we address a 

general procedure to treat those boundary conditions in NURBS approximation. 

3.5.1 Homogeneous boundary conditions 

The homogeneous Dirichlet BCs can be enforced easily by setting the corresponding 

control point value as zero. For example, let us consider the simply support condition in 

Figure 3.16, the BCs are treated in the same way as the standard FEM by assigning their 

zero-values for all control points in cyan square around the boundary: 

0 0

0 0

0 at lower and upper edges

0 at left and right edges

x

y

u w

v w





  

  
 (3.35) 

For the clamped boundary as shown in Figure 3.17, the BCs are: 

0 0 0

0,

0
0

0

x y

n

u v w
u v w

w

     
    



 (3.36) 
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Figure 3.16 Simply support boundary condition: assign zero-displacements for those control 

points in cyan square around the boundary. 

Herein, the Dirichlet boundary conditions on 0 0 0, , and ,x yu v w    is easily treated 

as in the case of simply supported condition. However, for the derivatives 0,nw  the 

enforcement of BCs can be solved in a simple and effective way [176], such as rotation-

free [93, 124]. The derivatives can be included in a compact form of the normal slope at 

the boundary: 

0 0 0

0

( ( ) ) ( ( ))
lim 0C C

n

w w n n w n

n n 

  
 

 

x x
 (3.37) 

As 0( ( )) 0Cw n x  according to Eq. (3.36), Eq. (3.37) leads to impose the zero value 

on the deflection variable at control points xA, which is adjacent to the boundary control 

points xC. It can be observed that implementing the essential boundary condition using 

this method is very simple in IGA.  

Symmetry boundary conditions are given by: 

0

,

0
at = 0

0

x

x

u
x

w

 





 (3.38) 

Based on Eq. (3.37), the zero-rotation condition along the symmetry line is enforced 

by assigning equal deflection of two rows of control points. This constraint can be 

implemented using a simple penalty technique [177] to ensure an equal deflection of the 

two adjacent control nets as revealed in Figure 3.17. 
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Figure 3.17 Clamped and symmetric boundary conditions: to constrain zero-deflection of two 

rows of control points in cyan square while it is assigned the equal deflection of two rows of 

control points in blue square to make sure the zero-rotation condition along these boundaries. 

3.5.2 Inhomogeneous boundary condition 

Being different from the homogeneous BCs, the displacement gets non-zero value in 

the inhomogeneous Dirichlet boundary conditions. Let us consider an example of one 

edge of the plate with a given displacement xu u  as plotted in Figure 3.18. 

Inhomogeneous Dirichlet BCs are applied directly at the two end nodes of the edge by 

simply setting the control variables equal to the prescribed values. For the case of interior 

control points such as points 2 and 3, which is stood outside the geometry because 

NURBS shape functions do not satisfy the Kronecker delta property at these points, there 

is no available displacement constraints for them. Thus, some special treatment [135] e.g. 

the Lagrange multiplier method, the penalty method, the augmented Lagrange method, 

etc. were proposed to  estimate the prescribed displacements. Herein, we prefer to treat  

inhomogeneous using a least square minimization, which is described in [112]. The basic 

idea of this treatment is to find the parameters of the boundary control points that 

minimize the following quantity: 

 
21

( ) ( )
2

C CJ u x u x   (3.39) 

where xC denotes a set of collocation points distributed on the essential boundary. ( )Cu x  

is the displacement at point xC and is approximated using the partition of unity property 

of the NURBS basis functions: 
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( ) ( )C i C iu x R x u  (3.40) 

where iu is the unknown displacement, which we want to impose at the control points. For 

the sake of simplicity, let us consider the case where there is only one collocation point 

and a quadratic basis (there are 3 non-zero functions Ri at xC). Thus, we have: 

 
2

1 1 2 2 3 3

1
( ) ( ) ( ) ( )

2
C C C CJ R x u R x u R x u u x     (3.41) 

 

 
Figure 3.18 Illustration of imposing inhomogeneous BC: blue circle points denote the control 

points while red square point denotes the element node. 

The partial derivatives of J with respect to iu  are given by: 

1 1 2 2 3 3[ ( ) ( ) ( ) ( )] ( )C C C C i C

i

J
R x u R x u R x u u x R x

u


   


 (3.42) 

The condition ∂J/∂u =0 gives the following linear system of equations: 

1 11 1 2 1 3 1

2 2 3 2 2 2

3 3 3 3

( )

C

C

x

u RR R R R R R

R R R R u u x R

sym R R u R

    
    

    
         

 (3.43) 

Repeating the same analysis for other collocation points and other elements on the 

boundary, one obtains the linear system of equations in the form Ku = f. After solving it, 

these boundary displacements are enforced on the control points. 

 

 

 

 



 

 

 

Chapter 4 Static Analysis 

 

4.1 Introduction 

In this chapter, stress analyses of FGM plates based on the HSDT models with 

arbitrary boundary conditions under a thermo-mechanical loading is studied by using the 

NURBS-based isogeometric approach. By using higher-order of NURBS basis functions, 

as p  2, the present method enables to produce the C1-continuity, which is naturally 

fulfils the stringent continuity required by the HSDT models with no additional variables 

like C0-continuity elements [63, 75, 76] or some works of Thai [174]. Moreover, beside 

linear analysis geometrically nonlinear analysis based on using the von Kármán 

assumptions, which deal with small strains and moderate rotations, is employed to fully 

investigate the plate behaviour in the large deformation regime. 

This chapter is outlined as follows. The general governing equations for both linear 

and nonlinear bending problems are introduced in Section 4.2. Herein, the flowchart for 

solving the nonlinear equation is represented by employing the Newton-Raphson method. 

Several numerical examples given in Section 4.3, show the excellent performance of the 

present method. To close this chapter, some concluding remarks are given in Section 4.4. 

4.2 Governing equation 

The static solutions can be obtained by solving the algebraic equation Eq. (3.17) 

without the rotational inertia: 

extKq F  (4.1) 

From Eqs. (3.18) and (3.19), it can be seen that the stiffness matrix, K , has a 

nonlinear relation with the unknown variable q  because NL
B

 
is a function of displacement 

field. Thus, the nonlinear equilibrium equation, Eq. (4.1), must be solved iteratively. 

Firstly, the governing equation can be rewritten in the form of residual force: 



60  Chapter 4 

( ) 0ext  φ q Kq F  (4.2) 

The residual force presents the error in this approximation and tends to zero during 

iteration. If i
q , an approximate trial solution at the ith iteration, makes unbalance residual 

force an improved solution 1i
q  is then proposed as: 

1i i  q q q  (4.3) 

where the incremental displacement q  is calculated by equating curtailed Taylor’s 

series expansion of 1( )i
φ q in the adjacency of i

q  to zero: 

1( ) ( ) 0i i

T

   φ q φ q K q  (4.4) 

in which TK  is called the tangent stiffness matrix evaluated at the ith iteration as follows: 

( )i

T NL gi


  



φ q
K K K

q  
(4.5) 

where the stiffness matrix 
NLK  strongly depends on displacement 

   ˆ d
T

L NL L NL

NL


   K B B D B B  (4.6) 

and the geometric stiffness matrix is given by: 

   d
T x xyg g

g

xy y

N N

N N

 
  

 
K B B

 (4.7) 

It is noted that being different from the initial stress stiffness matrix, 0K , the 

geometric stiffness matrix is calculated using the internal forces according to Eq. (2.42).  

Equation (4.3) is repeated until the displacement error between two adjacent 

iterations is reduced to the desired error with tolerance  = 0.01. The Newton-Raphson 

procedure is summarized according to the flowchart in Figure 4.1. 

1

0.01

i i

i

 


q q

q
 (4.8) 
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Figure 4.1 Flowchart for geometrically nonlinear bending analysis of plate. 

4.3 Numerical results 

For convenience, the following normalized transverse displacement, in-plane 

stresses and shear stresses are expressed as: 

ˆ
w

w
h

 ,  

2 3
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z

wE h
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f L
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f L
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f L


  ,  
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4

z

m

f L
P

E h


 
(4.9) 

4.3.1 Linear analysis 

In the linear problems, the nonlinear stiffness matrices are set to zero. The finite 

element model for static analysis becomes a linear system of equations as follows: 

ext

L K q F  (4.10) 

4.3.1.1 Convergence study 

Let us consider a simply supported Al/SiC square FGM plate, for which properties 

are given in Table 2.1. The plate is subjected to a sinusoidal pressure defined as 

sin( / )sin( / )zf x L y W   at the top surface as shown in Figure 4.2. A convergence study 

of transverse displacement by quadratic (p = 2), cubic (p = 3) and quartic (p = 4) elements 

is tabulated in Table 4.1 and also depicted in Figure 4.3 according to power index, n = 1 

and 6, respectively. It is observed that as the number of element increases, the obtained 
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results converge to the exact solutions from 3D deformation model by Vel and Batra [23]. 

IGA, moreover, gains the super-convergence with the discrepancy between meshing of 

5×5 and 25×25 around 0.05% as p3. Herein, IGA just using 11×11 cubic NURBS 

elements as shown in Figure 4.2c produces an ultra-accurate solution that is very close to 

the exact solution with very small error around 0.02%. Therefore, in next investigations, 

the meshing of 11×11 cubic NURBS elements is used. 

 

 

 

 

a) 
 

b) 

 

c) 

 

d) 

Figure 4.2 Square plate: a) geometry; b), c), d): meshing of 11×11 quadratic, cubic and 

quartic elements, respectively. Noted that control points are in red circle, whitls elements are 

borderd by blue lines. 
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Table 4.1  Convergence study of deflection of square Al/SiC FGM plate. 

  p 5×5 7×7 11×11 15×15 19×19 25×25 

3D sol. 

[23] 

 Quadratic 1.5032 1.5150 1.5226 1.5250 1.5261 1.5269  

n = 1 Cubic 1.5271 1.5277 1.5279 1.5279 1.5279 1.5279 1.5281 

  Quartic 1.5275 1.5279 1.5279 1.5279 1.5279 1.5279   

 Quadratic 2.2906 2.3052 2.3147 2.3178 2.3192 2.3202  

n = 6 Cubic 2.3203 2.3212 2.3214 2.3215 2.3215 2.3215 2.3218 

  Quartic 2.3207 2.3215 2.3215 2.3215 2.3215 2.3215   

 

 

a) n =1 

 

b) n = 6 

Figure 4.3 Comparison of present result with analytical solution of Vel and Batra according 

to power indices. 

4.3.1.2 Shear locking test 

This phenomenon is investigated for an isotropic plate subjected to a uniform 

transverse load. Figure 4.4 reveals the relation between the central deflection and the 

length-to-thickness ratio under full simply supported and full clamped boundary 

conditions. For fair comparison between the plate theories:  FSDT, TSDT, GSDT and 

RPT, the same mesh of 11×11 cubic NURBS elements is utilized to model the plates for 

both cases of boundary conditions. Some concluding remarks are drawn as:  

- The CPT [158] based on Kirchhoff assumption gives constant results which 

are independent of the length-to-thickness ratio (L/h).  

- For thick and moderate plate (L/h < 100), these HSDT models including 

TSDT, GSDT, RPT gain nearly the same deflections and slightly higher than 

FSDT one. 
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a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

Figure 4.4 The central deflection via length to thickness ratios and boundary conditions: a) 

Simply supported and b) Clamped. 

- As the plates become thin (L/h > 100), all models give the same results, 

which match well with CPT [158]. However, for very thin plate (L/h > 1000), 

being different from GSDT and RPT, both TSDT and FSDT give the 

divergent transverse displacements as compared to CPT. This is called shear-

locking phenomenon. According to Kirchhoff theory, as thickness, h, 

approaches to zero, the rotations (β in Eq. (2.32)) as well as the shear 

component (ws in Eq. (2.26)) are very small and can be eliminated. That 

causes zero shear strains/stresses. Therefore, GSDT and RPT are naturally 

free of shear locking. In case of FSDT and TSDT, shear strains are related to 
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parameter
0,

w
x x

 , as noted in Eq. (2.22). As Kirchhoff constraint is 

imposed, this parameter must identically vanish, 
0,

0w 
x x

 . However, in 

numerical method, with the same approximated function for both of rotations 

and transverse displacement, the linear combination of this function and its 

derivatives mathematically results in non-zero value. Consequently, the shear 

energy remains, which dominate the bending energy and causes shear-

locking.  

4.3.1.3 Comparison of plate theories 

Next, a simply supported Aluminium/Alumina (Al/Al2O3) FGM plate subjected to a 

sinusoidal pressure defined as sin( / )sin( / )zf x L y W   is considered. It is noted that 

the material properties are computed by the rule of mixture in Eq. (2.3). Using different 

distributed functions f(z) in the form of third-order polynomials (f1) by Reddy [57], 

inverse trigonometric function (f2) by Thai [165] and our proposed function in inverse 

tangent form, the results based on RPT and GSDT including deflection 

3 4
10 / ( )

c z
w wE h f L and axial stress 

2
/ ( )

x x z
h f L   at the centre of the plate are 

summarized in Table 4.2. The solutions are in good agreement with that of Zenkour’s 

generalized shear deformation theory [64], and those from Carrera et al. [178, 179] using 

Carrera’s unified formulation and Neves et al. [180, 181] using sinusoidal shear 

deformation theory (SSDT) and HSDT models. It is concluded that the quasi-3D models 

accounting for the thickness stretching effect 0z   gain the lower transverse 

displacement and higher axial stress than the 2D plate models, which eliminate the 

stretching effect. However, the discrepancy between the two models reduces as the plate 

becomes thinner. An interesting point is that HSDT using present function gains the 

lowest deflections being closest to the quasi-3D models. In addition, there is no different 

in results obtained by GSDT and RPT. Thus, without other notification, GSDT is 

preferred to be employed in these numerical results. 

Figure 4.5 plots the stress distribution through the thickness of thick plate with L/h=4 

and n = 1. Using HSDT, the axial stress is plotted in a coincident path, while there is a 

slight difference observed for shear stress distribution. And all of them satisfy the 

traction-free boundary conditions at the plate surfaces. Figure 4.6 presents the curved 



66  Chapter 4 

distribution of the axial and shear stresses through the plate thickness according to power 

index n = 1, 4, 10, respectively. It can be concluded that the present model based on 

NURBS approximation yields very promising results compared to those by Neves et al. 

[180].  

 

 

 

a) 

 

 

 

 

 

 

 

 

b) 

 

Figure 4.5 The stresses through thickness of SSSS Al/Al2O3 FGM plate under sinusoidal load 

with L/h=4, n=1, via different plate models: a) 
2 2

( , , )
L W

x z  and b) 
2

( ,0, )
L

yz z . 
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a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

Figure 4.6 The stresses through thickness of SSSS Al/Al2O3 FGM plate under sinusoidal load 

with L/h=4, n=1 via various power indices n: a) axial stress 
2 2

( , , )
L W

x z
 
and b) shear stress 

2
( ,0, )

L

yz z .  
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a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

Figure 4.7 The stresses through thickness of Al/ZrO2-1 FGM plate under uniform loads 

L/h=5 and clamped edges based on HSDT & FSDT: a) 
2 2

( , , )
L W

x z
 
and b) 

2
(0, , )

W

xz z . 

Figure 4.7a plots the axial stress at the central point of the clamped plate according 

to n = 0, 2, respectively under FSDT and HSDT formulations. It is revealed that with 

homogeneous material, axial stress is symmetric through the middle plan. In 

inhomogeneous case, the stress is distributed in tendency that the magnitude of 

compressive stress at the top is greater than the tensile one at the bottom. Furthermore, 

we can see that there is an overlap in results between FSDT and HSDT models. 

Nevertheless, this observation is no longer true in case of shear stress (0, / 2, )xz W z  as 

plotted in Figure 4.7b. Employing FSDT, the shear stress is wrongly distributed with 

constant (n=0) and has negative values at the two free surfaces. While HSDT yields 

parabolic curves of shear stress with traction free boundary at top and bottom surfaces of 

the plate. 



  69 

 

 

Table 4.2 The non-dimensional deflection and, axial stress of SSSS Al/Al2O3 square plate under 

sinusoidal load.  

n Model z
 L/h = 4 10 100 

w  3
( )

x

h
z   w  3

( )
x

h
z   w  3

( )
x

h
z   

1 Ref. [179] 0 0.7171 0.6221 0.5875 1.5064 0.5625 14.969 

 FSDT 0 0.7291 0.806 0.5889 2.015 0.5625 20.15 

 GSDT [64] 0 - - 0.5889 1.4894 - - 

 Ref. [178] 0 0.7289 0.7856 0.589 2.0068 0.5625 20.149 

  0 0.7171 0.6221 0.5875 1.5064 0.5625 14.969 

 SSDT [181] 0 0.6997 0.5925 0.5845 1.4945 0.5624 14.969 

 HSDT [180] 0 0.7308 0.5806 0.5913 1.4874 0.5648 14.944 

  0 0.702 0.5911 0.5868 1.4917 0.5647 14.945 

 TSDT  0.7284 0.5806 0.5889 1.4886 0.5625 14.9553 

 

RPT 

f1  0.7284 0.5796 0.5889 1.4856 0.5625 14.9255 

 f2  0.7254 0.5779 0.5885 1.4849 0.5625 14.9255 

 Present  0.7204 0.5793 0.5878 1.4854 0.5625 14.9255 

 

GSDT 

f1  0.7284 0.5783 0.5889 1.4816 0.5625 14.889 

 f2  0.7254 0.5755 0.5885 1.4809 0.5625 14.889 

  Present  0.7203 0.5769 0.5878 1.4814 0.5625 14.889 

4 Ref. [179] 0 1.1585 0.4877 0.8821 1.1971 0.8286 11.923 

 FSDT 0 1.1125 0.642 0.8736 1.6049 0.828 16.049 

 GSDT [64] 0 - - 0.8651 1.1783 - - 

 Ref. [178] 0 1.1673 0.5986 0.8828 1.5874 0.8286 16.047 

  0 1.1585 0.4877 0.8821 1.1971 0.8286 11.923 

 SSDT [181] 0 1.1178 0.4404 0.875 1.1783 0.8286 11.932 

 HSDT [180] 0 1.1553 0.4338 0.877 1.1592 0.8241 11.737 

  0 1.1108 0.433 0.87 1.1588 0.824 11.737 

 TSDT  1.1598 0.4443 0.8815 1.1782 0.8286 11.9092 

 

RPT 

f1  1.1599 0.4433 0.8815 1.1753 0.8287 11.8796 

 f2  1.162 0.4371 0.882 1.1727 0.8287 11.8793 

 Present  1.1562 0.4369 0.8812 1.1726 0.8287 11.8793 

 

GSDT 

f1  1.1598 0.4406 0.8815 1.1711 0.8287 11.8436 

 f2  1.162 0.4344 0.882 1.1686 0.8287 11.8434 

  Present  1.1562 0.4342 0.8812 1.1684 0.8287 11.8433 

10 Ref. [179] 0 1.3745 0.3695 1.0072 0.8965 0.9361 8.9077 

 FSDT 0 1.3178 0.4796 0.9966 1.199 0.936 11.99 

 GSDT [64] 0 - - 1.0089 0.8775 - - 

 Ref. [178] 0 1.3925 0.4345 1.009 1.1807 0.9361 11.989 

  0 1.3745 0.1478 1.0072 0.8965 0.9361 8.9077 

 SSDT [181] 0 1.349 0.3227 0.875 1.1783 0.8286 11.932 

 HSDT [180] 0 1.376 0.3112 0.9952 0.8468 0.9228 8.6011 

  0 1.3334 0.3097 0.9888 0.8462 0.9227 8.601 

 TSDT  1.3908 0.3255 1.0087 0.8777 0.9362 8.8988 

 

RPT 

f1  1.3908 0.3249 1.0087 0.876 0.9362 8.8804 

 f2  1.3871 0.3189 1.0084 0.8735 0.9362 8.8802 

 Present  1.3738 0.3183 1.0064 0.8732 0.9362 8.8802 

 

GSDT 

f1  1.3908 0.323 1.0087 0.8733 0.9362 8.8582 

 f2  1.387 0.317 1.0084 0.8709 0.9362 8.8580 

  Present  1.3738 0.3165 1.0064 0.8706 0.9362 8.8579 
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4.3.1.4 Effect of boundary conditions 

In this subsection, the effect of boundary conditions on the normalized central 

deflection 
3 2 4

100 /{12(1 ) }
m z

w wE h f L 
 
of Al/ZrO2-1 plate subjected to uniform load is 

investigated. In this problem the Mori-Tanaka scheme is used for homogenizing the 

Al/ZrO2-1 FGM plate. Table 4.3 shows the comparisons between present results (TSDT 

and GSDT using 5 DOFs/point and RPT using 4 DOFs/point) and those of Gilhooley [60] 

based on higher-order shear and normal deformable plate theory (HOSNDPT) using 18 

DOFs/node. Figure 4.8 shows that using NURBS-based isogeometric finite element 

method produces solutions very close to Ref. [60] for all boundary conditions. Moreover, 

when the boundary conditions change from CCCC to SSSS and SFSF, the structural 

stiffness reduces and the magnitudes of deflection increase. The shapes of transverse 

displacement according to the various boundary conditions are illustrated in Figure 4.9. 

 

Figure 4.8 The normalized deflection of Al/ZrO2-1 FGM plate (L/h = 5) via power indexes 

and boundary conditions. 
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Table 4.3 The non-dimension deflection of Al/ZrO2-1 plate under uniform load with L/h = 5 via 

different boundary conditions. 

BC n HOSNDPT [60] TSDT GSDT RPT 

 0 0.5019 0.5088 0.5054 0.506 

 0.5 0.7543 0.7607 0.7559 0.7568 

 1 0.8708 0.8776 0.8721 0.8732 

SFSF 2 0.9744 0.9830 0.9767 0.9784 

 4 - 1.0701 1.0626 1.0648 

 8 - 1.1577 1.1486 1.1504 

 Metal 1.4345 1.4537 1.444 1.4458 

 0 0.1671 0.1716 0.1711 0.1703 

 0.5 0.2505 0.2554 0.2547 0.2536 

 1 0.2905 0.2955 0.2948 0.2934 

SSSS 2 0.328 0.3334 0.3328 0.3312 

 4 - 0.3655 0.3648 0.363 

 8 - 0.3958 0.3945 0.3922 

 Metal 0.4775 0.4903 0.4888 0.4865 

 0 0.0731 0.0734 0.0725 0.0701 

 0.5 0.1073 0.1077 0.1064 0.1029 

 1 0.1253 0.1256 0.1241 0.1201 

CCCC 2 0.1444 0.1447 0.143 0.1384 

 4 - 0.1622 0.1598 0.1546 

 8 - 0.1760 0.1729 0.1669 

 Metal 0.2088 0.2098 0.207 0.2001 

 

        

a) SFSF                                                         b) SSSS 

c) CCCC  

Figure 4.9 Deflection profile of Al/ZrO2-1 FGM plates under various boundary conditions. 
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4.3.1.5 Effect of the types of homogenization scheme 

Table 4.4 summarizes the IGA results in comparison with those of mesh-less method 

[70] and MLPG [142] using the same HSDT for thick and moderate Al/ZrO2-2 plates. 

The plate is simply supported and subjected to uniform load fz. In this example, both 

homogenization schemes: the Mori-Tanaka method and the rule of mixture are employed. 

From the obtained non-dimensional deflections, some remarks are withdrawn. (1) There 

is a good agreement between NURBS-based approximation using quadratic, cubic and 

quartic elements. (2) The present results are in excellent agreement with those obtained 

by mesh-less method [70] using 19×19 number of colocation points for both 

homogeneous schemes. And (3) Figure 2.4 shows that the rule of mixtures procedures 

larger effective Young modulus through the plate thickness than that produced by the 

Mori-Tanaka scheme. Thus, the transverse displacement by former model is slightly 

smaller than that of the latter because of stiffer stiffness matrix. 

Table 4.4 Non-dimensional centre deflection 100 /c cw w h  of simply supported square 

Al/ZrO2-2 plate subjected to a uniform load. 

L/h Method 
n 

0 0.5 1 2  

20 

Mesh-less  

method [70] 

2.08 2.79 3.09 3.33 4.48 

(2.08)* 2.65 2.97 3.24 (4.48) 

MLPG [142] 2.118 - 3.150 3.395 4.580 

IGA (p = 2) 
2.0827 2.7919 3.0916 3.3392 4.4928 

(2.0827) (2.6611) (2.9778) (3.2512) (4.4928) 

IGA (p = 3) 
2.0831 2.7924 3.0922 3.3398 4.4935 

(2.0831) (2.6616) (2.9783) (3.2518) (4.4935) 

IGA (p = 4) 
2.0831 2.7924 3.0922 3.3398 4.4935 

(2.0831) (2.6616) (2.9783) (3.2518) (4.4935) 

5 

Mesh-less  

method [70] 

2.477 3.2930 3.6660 4.0090 5.343 

(2.477) (3.135) (3.515) (3.883) (5.343) 

MLPG [142] 2.436 - 3.634 3.976 5.253 

IGA (p = 2) 
2.4818 3.3008 3.6739 4.0160 5.3536 

(2.4818) (3.1424) (3.5231) (3.8903) (5.3536) 

IGA (p = 3) 
2.4819 3.3009 3.6741 4.0162 5.3538 

(2.4819) (3.1425) (3.5233) (3.8905) (5.3538) 

IGA (p = 4) 
2.4819 3.3009 3.6741 4.0162 5.3538 

(2.4819) (3.1425) (3.5233) (3.8905) (5.3538) 

*Results according to the rule of mixture are in parentheses 
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4.3.1.6 Skew plate subjected to a uniform mechanical load 

Skew plate is one of the widely used structures in civil, mechanical, marine and 

aeronautical engineering applications. In this subsection, we apply the present method to 

analyse a simply supported Al/ZrO2-1 skew plate considering the change of the skew 

angle. The plate with geometry shown in Figure 4.10 is constrained by soft simply 

supported condition (just w0 = 0 on all edges), has the length to thickness ratio L/h = 100, 

and is subjected to a uniform mechanical load fz = -104 N/m2. Figure 4.11 plots the axial 

stress distribution at the plate centre versus the change of gradient index from 0.5 to 1 and 

2. It is observed that the axial stress increases when the skew angle increases. This 

conclusion was also observed in Ref. [45] by Lee et al. using the kp-Ritz method.  

 

 

 

 

a) 

 

b) 

Figure 4.10 The skew plate: a) Geometry and b) Meshing of 11×11 cubic elemements. 

4.3.1.7 Behaviour of plate under thermo-mechanical loading 

It is well known that FGM structure is commonly used in high temperature 

environments. In this problem, we simulate a simply supported Al/ZrO2-2 FGM plate 

under both mechanical and thermal loadings. The plate is made of Aluminium at the 

bottom surface and Zirconia at the top surface, and has dimensions as: length L = 0.2 m 

and thickness h = 0.01 m. Material properties vary through the thickness of the plate 

following the rule of mixture. It is assumed that temperature at the bottom surface is held 

at Tm = 20C (room temperature) and the temperature at the top surface varies from 0C 

to 500C.  
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a) n = 0.5 

 

 

 

           

 

b) n = 1 

 

 

 

 

 

c) n = 2 

 

 

 

Figure 4.11 The axial stress distribution at the centre of Al/ZrO2-1 skew plate via various 

gradient indices. 

Figure 4.12 shows the non-dimensional central deflection of Al/ZrO2 plate under 

thermal load. Because of the high temperature at the top surface, the plate is deflected 

upward. The metal plate undergoes the maximum deflection due to its high sensitivity to 
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temperature. The FGM plate with respect to the volume fraction (n =1) can produce the 

minimum deflection. As observed, the FGM plates experience less deflection than the 

isotropic ones, i.e. fully ceramic and fully metal plates. This is due to the fact that 

temperature distribution through the thickness of FGM plates is always lower than that of 

the counterparts, as shown in Figure 2.5. This leads to produce less thermal resultants 

(according to Eq. (2.45)), which directly cause bending of the plate. Hence, it is concluded 

that the FGM plates can well resist high temperature conditions. 

  

Figure 4.12 Non-dimension central deflection of simply supported Al/ZrO2 plate under  

thermal load. 

 

 

Figure 4.13 Non-dimensional central deflection ˆ /w w h  of Al/ZrO2 FGM plate subjected to  

thermo-mechanical load. 
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a) Mechanical loading 

 

b) Thermo-mechancial loading 

Figure 4.14 Central axial stress 
2 2/ ( )x x zh f L  at points on the vertical line passing 

through the centroid of Al/ZrO2 FGM plate subjected to a thermo-mechanical load. 

At last but not least, we investigate the behaviour of FGM plates under the thermal-

mechanical effect. The temperature is now constantly held Tm = 20C at the bottom 

surface and Tc = 300C at the top surface. By applying uniform pressure changing from 

0 to 107 N/m2, the central deflection is plotted in Figure 4.13. It is seen that the behaviour 

of deflection under thermo-mechanical load is quite different from the pure mechanical 

load. Because the high temperature at the top surface causes the thermal expansion, the 

plates result in upward deflections. The deflection of the plates then varies from positive 



  77 

 

 

side to negative side when the mechanical load increases. As a result, the behaviour is 

similar to that in the case of purely mechanical load. However, the intermediate response 

of graded plates is not as similar as that in the case of purely mechanical load. The metallic 

plate is also found to be highly sensitive to the temperature when deflection varies largely. 

The ceramic plate gives the deflection that is smaller than that of the intermediate plates, 

when the mechanical load increases. Figure 4.14 shows the axial stress distribution 

through the thickness of plates with a uniform mechanical distributed load of 610zf  

N/m2. With the presence of the temperature field given above, compression occurs at the 

top surface, while tension occurs at the bottom surface. Except for fully ceramic or fully 

metal plates, the stress distribution of FGM plates has a similar trend.  

4.3.2 Geometrically nonlinear bending analysis 

4.3.2.1 Validation study 

Let us first consider a thin (L/h =100) clamped square plate (E = 206.84 GPa,  = 

0.316) under a uniformly distributed load. This problem is often studied by many authors 

[171, 182, 183] for the geometrically nonlinear validation of thin plate models. Figure 

4.15 shows the central deflection ŵ  and axial stress (0,0, / 2)x h , which have nonlinear 

curves as function of the load parameter P  because of geometrically nonlinearity effect. 

The present results are in good agreement with those of analytical solution using a double 

Fourier series by Levy [182], nine-node finite element (FEM Q9) [183] and mixed finite 

element model (MIXFEM) [171]. Especially, using 5DOFs/point, the present method 

produces more accurate stress solutions than MIXFEM using eight DOFs.  
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a) Transverse displacement 

 

b) Axial stress 

Figure 4.15 Comparison of (a) the non-dimensional central deflection and (b) normal stress 

of thin clamped square plate. 

Next, the geometrically nonlinear behaviour of a circular isotropic plate under a 

uniform pressure is investigated. We consider the plate with radius-to-thickness ratio, 

/ 50R h   and material properties: Young’s modulus 710E  psi (68.95 GPa) and 

Poisson’s ratio  = 0.3. The present transverse central displacements listed in Table 4.5 

are compared with the analytical Kirchhoff solution [184], that of Kirchhoff-based 

elements, such as discrete Kirchhoff theory (DKT) [185],  refined non-conforming 

element method (RNEM) [186] and that of Mindlin-based elements: nine-node 

Lagrangian quadrilateral element (QL) [183], mixed interpolation smoothing 
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quadrilateral element (MISQ20) [187]. It is noted that the error as compared with 

analytical solution [184] are shown in parenthesis. As it can be seen, the present method 

produces the most accurate solution. 

Table 4.5 Normalized central deflection of a clamped circular plate under uniform load 

Load 

 P  

Normalized central deflection ŵ  

MISQ20 

[187] 

QL 

 [183] 

DKT 

[185] 

RNEM 

[186] 
Present 

Anal. Sol. 

[184] 

1 
0.170 0.1682 0.172 0.1664 0.1669 

0.169 
(0.59)* (0.47) (1.78) (1.54) (1.24) 

2 
0.327 0.3231 0.330 0.3179 0.3208 

0.323 
(1.24) (0.03) (2.17) (1.58) (0.68) 

3 
0.465 0.4591 0.470 0.4514 0.4562 

0.457 
(1.75) (0.46) (2.84) (1.23) (0.18) 

6 
0.780 0.7702 0.791 0.7637 0.7671 

0.761 
(2.50) (1.21) (3.94) (0.35) (0.80) 

10 
1.067 1.0514 1.082 1.0544 1.0487 

1.035 
(3.09) (1.58) (4.54) (1.87) (1.32) 

15 
1.320 1.3007 1.342 1.3164 1.2989 

1.279 
(3.21) (1.70) (4.93) (2.92) (1.56) 

 *The relative error is listed in parenthesis. 

At last, the benchmark problems with the experimental results of Zaghloul and 

Kenedy [139] are studied. The comparisons between the obtained results based on the 

HSDT model and others according to CPT [139], FSDT [171] and the experimental 

results [139]  are revealed in Figure 4.16 for a simply supported orthotropic plate having 

material properties E1 = 20.684 GPa, E2 = 8.825 GPa, G12 = G23 = G31 =2.551 GPa,  = 

0.32 and a clamped 4 cross-ply [0/90/90/0] plate which set material of E1 = 12.604 GPa, 

E2 = 12.627 GPa, G12 = G23 = G31 =2.155 GPa,  = 0.2395 [139], respectively. It is clearly 

observed that the present results with just 5 DOFs per each control point match well with 

those of FSDT [171] using MIXFEM with 8 DOFs/node. Considering the shear 

deformation effect, both HSDT and FSDT models achieve more accurate solutions than 

CPT. However, in case of the clamped plate in Figure 4.16b, there is a small discrepancy 

between them. This may due to the effect of the boundary conditions and material 

properties used in the experiment [171]. 
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b) 

 

 

Figure 4.16 The load-deflection curves of: (a) the simply supported orthotropic plate (L = 

304.8 mm, h = 3.51 mm) and (b) the clamped [0/90/90/0] crossply plate (L = 304.8 mm, h = 

2.44 mm). 

4.3.2.2 FGM plate 

Let us investigate the Al/ZrO2-2 plate with data given in sub-section 4.3.1.7. The 

plate is subjected to uniformly distributed load, which is increased sequential to 
7

10
z

f    

N/m2 after five steps. Figure 4.17 shows the variation of the central deflection ˆ /w w h   

versus load parameter P  and power index n. It should be noted that index n = 0 

corresponds to the ceramic plate, whilst n =  indicates the metal plate. As expected, the 

deflection response of FGM plates is moderate for both linear and nonlinear cases, 

compared to that of ceramic (stiffer) and metal (softer) plates. One more interesting point 
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may be noted that the nonlinear deflections are smaller than the linear ones, and their 

discrepancy increases by increasing load. This is due to the stiffer stiffness matrix with 

additional nonlinear stiffness matrix, NLK , which strongly depends on the deflection. 

Figure 4.18 plots the stress distributions through the plate thickness of the FGM plate 

(n=1) via the change of load intensity. It can be seen that the effect of nonlinearity reduces 

the amplitude of the normalized stresses. 

 

Figure 4.17 Non-dimensional center deflection via load parameter and power index: non-

linear results (in solid line) and linear results (in dash line). 

By enforcing the temperature field to this plate as Tm = 20C and Tc = 300C at the 

bottom and top surfaces, respectively, the mechanical load versus transverse displacement 

curves via gradient index are plotted in Figure 4.19. The tendency is observed for 

nonlinear analysis similar to linear analysis as shown in Figure 4.13 except that the 

nonlinear deflections are larger than the linear ones under purely thermal load. Because 

the initial stress stiffness matrix Kth, which is generated by thermal membranes, makes 

reduction in the overall plate stiffness. Another difference from linear solution is that the 

nonlinear results cannot be superimposed. For instant, as n = 0 the total deflection 

ˆ 0.3963w   is different from a sum of ˆ 0.4385w   and ˆ 0.124w  in case of purely 

transverse and thermal load. 
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a) The shear stress
2

( ,0, )
L

yz z  

 

b) The axial stress 
2 2

( , , )
L W

x z . 

Figure 4.18 Effect of the load parameter P  on the stresses distributions. Increase in load 

reduces the magnitude of the normalized stresses. Noted that the arrow denotes increase in 

magnitude of the load parameter. 

 

 

Figure 4.19 Non-dimensional central deflection ŵ  of FGM plate under thermo-mechanical 

load. 

4.4 Concluding remarks 

In this chapter, the plate formulations, based on a combination between NURBS-

based isogeometric approach and HSDT models including TSDT, RPT and GSDT, have 

been applied to stress analysis of FGM plates under thermo-mechanical loadings. The 

Linear 
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FGM plates made of a mixture of two distinct material phases varying through the plate 

thickness is homogenized by two homogenization techniques: the rule of mixture or the 

Mori-Tanaka scheme. Thanks to higher-order continuity of NURBS functions, the present 

method allows us to achieve easily the smoothness with arbitrary continuity order 

compared with the traditional FEM. As a result, the present NURBS formulation naturally 

fulfils the C1-continuity of HSDT models. Furthermore, based on using the von Kármán 

assumptions, the effect of geometric nonlinearity on static analysis is studied. Through 

various numerical results, some concluding remarks can be drawn: 

- By including higher-order terms in the displacement fields, HSDTs can describe 

more exactly the shear energy part without SCF requirement. They provide better 

results and more accurate shear stresses than FSDT with the curved shapes 

through the plate thickness and traction free at the plate surfaces. 

- Being different from GSDT and RPT, which naturally and absolutely overcome 

shear-locking phenomenon, FSDT and TSDT just attain reliable results with 

limitation of span-to-thickness ratio, L/h ≤ 1000. 

- All HSDT models including TSDT, GSDT and RPT gain very similar results for 

the FGM plates, which are in excellent agreement with the available solutions in 

literature. By using four unknown variables, one reduced DOF per each control 

point, RPT is known as an effective model in analysis the FGM plates because of 

the reduction in computational cost.  

- There is a reduction of thermal deflection in the FGM plates as compared to 

homogeneous plates. Under thermo-mechanical load, axial stress in FGM plate is 

also distributed taking advantage of material characteristic with increase of 

compression at the top (ceramic surface) and decrease of tension at the bottom 

(metal surface), respectively. 

- There is a quite difference between linear and nonlinear solutions. Under 

transverse load, nonlinear analysis achieves lower displacements because of 

additional nonlinear stiffness matrix. In case of purely thermal load, due to 

thermal membrane effect, the overall plate stiffness is reduced. As a result, the 

nonlinear deflections are larger than the linear ones. 

In this thesis, we present GSDT and RPT in general forms based on the distributed 

function f(z), which is chosen to satisfy the tangential zero value on the top and bottom 
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faces, i.e., ( / 2) 0f h   . Following to this condition, we try to propose a novel function 

as an inverse tangent form. By using it, the HSDT models gain the best deflection, which 

is the closest to the quasi-3D models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 5 Elastic Instability  

 

5.1 Introduction 

In the preceding chapter, we assumed that the plates were bent by transverse loading 

and the stretching of the middle plane is too small and can be neglected. However, when 

a slender structure is loaded by in-plane compressions, the plate can be deformed and 

failed by stretching effect. Under small compressive loading, the plate hardly deforms 

with any noticeable change in geometry. As load increases to a predetermined magnitude, 

the structure suddenly experiences a large deformation and may lose its load carrying 

capacity. This is called buckling phenomenon and also known as structural instability. 

The load, at which the structure is unstable, is called the critical buckling load or simply 

critical load.  

 

Figure 5.1 The relation between in-plane loading force and deflection at a representative 

point in a plate. 

Plate buckling may be represented by a deflection path plotting in-plane loading 

force (P) versus the deflection (w) at a representative point on the plate [188] as shown 

in Figure 5.1. In classical buckling theory, the curve follows the paths I, II and III. That 

is, with increase in loading P, the curve follows the vertical path (I) upwards known as 



86  Chapter 5 

the primary path, showing no displacement until a critical load Pcr (the bifurcation point) 

is reached. Then, by continuously increasing the in-plane force to overcome the 

bifurcation point, the curve theoretically may continue up the vertical path (II), or may 

follow a buckling path, which is horizontal path (III) for the linear idealization or 

increasing slope (IV) for a nonlinear one considering large displacement assumptions. 

The latter curve (IV) is also called the secondary or post buckling path that depicts the 

behaviour of the plate after bifurcation. This behaviour is an important consideration in 

structural design, especially for slender and lightweight structures. Finally, as the plate 

has initial deflection (commonly called a geometric imperfection or imperfection), the P-

w curve will follow a curved path V because of bending effect. For this type of analysis, 

no bifurcation phenomenon is observed.  

The buckling and post-buckling phenomena are one of the major design criteria of 

the plate/panel structures for their optimal usage. Thus, study of stability of the plates has 

been receiving considerable attentions, especially for FGM plates. For examples, Birman 

[11] was the first person, who studied the buckling of FGM hybrid composite plates under 

uniaxial compressive loadings. Javaheri and Eslami utilized Kirchhoff’s thin plate theory 

to study the mechanical and thermal buckling of FGM plates [35, 189] and also obtained 

the closed-form solutions of the critical buckling temperature for FGM plates using 

Reddy’s TSDT [68]. It is concluded that TSDT underestimates the buckling load in 

comparison with CPT. Najafizadeh and Heydari [69] investigated the thermal stability of 

circular FGM plates based on HSDT whereas Liew et al. [141] and  Lee et al. [190] spent 

their attention on post-buckling analysis under thermo-mechanical loads. Shen [140] has 

examined thermal post buckling of FGM plates considering the effect of temperature-

dependent thermo-elastic properties of the constituent materials.  

In this chapter, we present a simple and efficient formulation relied on the framework 

of NURBS-based IGA for buckling and post-buckling analyses of FGM plates under 

thermal and mechanical loads. It is assumed that the plates are flat with no initial 

imperfection in geometry. The von Kármán nonlinear strain-displacement relation is 

adopted to study the secondary path (IV). Herein, three types of temperature rise are 

investigated including: uniform temperature rise, linear and nonlinear temperature change 

across the plate thickness. Furthermore, the effect of temperature-dependent material 

properties is considered to lead the nonlinear governing equation to depend on not only 
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unknown displacement but also temperature. Thus, an incremental/iterative approach 

presented in Section 5.2 is utilized to obtain the temperature-deflection curves. Various 

numerical examples are given in Section 5.3 to investigate the effect of various 

parameters, such as length to thickness ratios, plate aspect ratios, gradient index, types of 

loads and material properties on thermo-mechanical critical load. This chapter is closed 

by some concluding remarks in Section 5.4. 

5.2 Governing equations 

5.2.1 Pre-buckling state 

By neglecting the inertia and the non-linear terms in the transverse displacement 

component, the pre-buckling response is obtained by solving a linear set of algebraic 

equations from Eq. (4.10): 

ext

L K q F  (5.1) 

where the external load vector is calculated from the applied in-plane force or temperature 

rise. Obtained unknown displacements are used to calculate the pre-buckling force 

T

x y xyN N N   N  according to Eq. (2.43), which is valid just before the plate buckles 

1 2

th

L     N A B E N  (5.2) 

Note that in mechanical buckling, we eliminate thermal load, i.e. Nth = 0.  

5.2.2 Buckling state 

At buckling state, the initial flat plate is buckled with an additional deflection, i.e., 

bw w  (5.3) 

Let us consider the equilibrium of a small element cut out from the plate by two pairs 

of planes parallel to yz and xz planes with the in-plane forces as shown in Figure 5.2.  

Projecting these forces into x and y axes sequentially, we obtain the following 

equation of equilibrium: 
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0

0

yxx

y xy

NN

x y

N N

y x


 

 

   

  

 (5.4) 

Then, projecting in-plane force Nx on the z-axis as depicted in Figure 5.2a gives: 

2
1

2

b x b
z x

w N w
F N dxdy

x x x

   
   

   

 (5.5) 

In the same way, projection of Ny on the z-axis is given as: 

2
2

2

yb b
z y

Nw w
F N dxdy

y y y

  
   

   

 (5.6) 

And, that of the shear forces Nxy and Nyx is: 

2
3 2

xy xyb b b
z xy

N Nw w w
F N dxdy

x y x y y x

    
    

      

 (5.7) 

 

 

Figure 5.2 In-plane forces in a plate element [191]. 

a) 

b) 
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Summation of (5.5), (5.6) and (5.7) acting on the element and combining with 

condition in Eq. (5.4), we obtain the bending energy due to the initial in-plane forces 

[191] as follows: 

2 2 2

02 2
ˆ2 d ( ) dTb b b

b x y xy b b

w w w
V w N N N w w

x y x y
  

 

   
         

    
  N   (5.8) 

where 
0

ˆ ;x xy xy yN N N N   N . 

Substituting Eq. (5.8) into Eq. (2.47), the governing equation is written as
 

0
ˆ ˆˆ ˆ d ( )d 0T T

L L b bw w 
 

     ε D ε N  (5.9) 

Equation (5.9) is the plate buckling equation in fundamental form. It should be 

understood that it is the equation of equilibrium of the plate in a condition of neutral 

stability. After eliminating the virtual displacement vectorq , the linear eigenvalue 

equation is given by: 

  0L g K K q  (5.10) 

in which KL and Kg are linear and geometric stiffness matrices, calculated according to 

Eqs. (3.18) and (4.7), respectively and parameter   is the load factor and is 

multiplied with membrane forces to define the critical buckling load, i.e. crP N . 

Depending on type of loading, herein, we classify buckling in two classes: 

mechanical loading and thermal loading. In the former, it is assumed that the pre-buckling 

force resultants are equal to in-plane compression loads, i.e., 0

x xN N  , 
0

y yN N 

0

xy xyN N  , whilst in the latter, the pre-buckling thermal force resultants, Nth, is 

estimated according to Eq. (2.45) as follows: 

/2

/2

1
( )

( ) ( )d 1
1 ( )

0

th

x
h

th e
y e

h
e

th

xy

N
E z

N z T z z
z

N




   
      

     
    

   

   (5.11) 

Herein, temperature change is given by: 

( ) iT T z T    (5.12) 
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where Ti is the initial temperature and T(z) is the current temperature, which can be 

assumed to have various distribution variously through the plate thickness. 

Uniform temperature rise: It is assumed that the temperature can be uniformly raised to 

a constant value ( ) fT z T z  . Therefore, the critical buckling temperature difference 

cr f iT T T    is constant through the plate thickness. Substituting it into Eq. (5.11) leads 

to: 

   /th

cr crT N X   

where                                    
/2

/2

( )
( )d

1 ( )

h
e

e
h

e

E z
X z z

z





  
(5.13) 

Linear temperature change across the plate thickness: It is assumed that a linear 

temperature variation across the thickness is given by: 

 
1

( )
2

c m m

z
T z T T T

h

 
    

 
   (5.14) 

Similar to the previous case, after finding the pre-buckling thermal stress, the critical 

buckling temperature difference between the ceramic-rich and metal-rich surfaces of the 

plate, ( / 2) ( / 2)crT T h T h    is computed as: 

   
 th

cr m i

cr

N X T T
T

Y

 
   

where                                 
/2

/2

( ) ( ) 1
d

1 ( ) 2

h
e e

h
e

E z z z
Y z

z h

 
  

  





 

(5.15) 

Non-linear temperature change across the plate thickness: For the FGM plate, 

according to Eq. (2.10), it is seen that the temperature nonlinearly varies through the plate 

thickness as follows: 

 ( ) ( )c m mT z T T z T    (5.16) 

Substituting Eq. (5.16) into Eq. (5.11), the critical buckling temperature difference 

between two opposite plate surfaces is found as: 

     
 th

cr m i

cr

N X T T
T

Z

 
   

where                                    
/2

/2

( ) ( )
( )d

1 ( )

h
e e

h
e

E z z
Z z z

z







  

(5.17) 
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5.2.3 Post-buckling state 

As discussed above (see Figure 5.1), a linear buckling analysis can get the critical 

load for a particular plate. However, plates are typically capable of carrying considerable 

additional load before collapse. In some case, this is even several times as much as the 

critical load [188]. For the post-buckling analysis, the effect of geometrical nonlinearity 

must be considered by using the von Kármán nonlinear strain-displacement formulation.  

In this present work, only thermal post-buckling is studied. By eliminating the 

mechanical load and the inertia terms, the governing equation (2.57), reduces to 

(considering ˆ ˆ ˆ
L NL      ): 

ˆˆ ˆ ˆ ˆ ˆ ˆd d d 0T T T

NL th L th  
  

     ε Dε ε σ ε σ
 

(5.18) 

Substituting Eq. (3.10) into Eq. (5.18), one can obtain the non-linear system of 

algebraic equation as: 

 L NL th th  K K K q F
 

(5.19) 

where Fth is defined in Eq. (3.25) and Kth is established due to work by pre-stress ˆ
thσ as: 

ˆ ˆ d dT T th

NL th NL 
 

  ε σ ε N  (5.20) 

Substituting Eq. (2.50) into Eq. (5.20) leads to: 
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  

 (5.21) 

For the case of the isotropic plates under uniform temperature rise, the force vector 

is zero because only membrane forces are generated. And, they are accounted for in the 

geometric stiffness matrix and have no effect on bending energy. Therefore, the critical 

buckling parameter is found by solving nonlinear eigenvalue problem: 

  0L NL th  K K K q
 

(5.22) 
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In the case of FGM plate, because of non-symmetric-through-thickness, temperature 

rise produces bending moments along with membrane forces, which enforce the FGM 

plate to deflect. Hence, the bifurcation buckling cannot occur. In such case, the nonlinear 

equation (5.19) is solved by Newton-Raphson technique as mentioned in Section 4.2. 

However, for some special case, that is clamped edges, the supports are capable to handle 

the produced thermal moments. The plate remains un-deformed in pre-buckling state. 

Therefore, buckling bifurcation phenomenon can occur. The properties of FGM are also 

a function of temperature as shown in Eq. (2.12). Thus, Eq. (5.22), which is a function of 

both the nodal variables q and temperature T(z), should be solved by the incremental 

iterative methodology.  

Firstly, using thermo-elastic properties at Tm (the final temperature at the plate 

bottom), the smallest eigenvalue (load factor) and its corresponding eigenvector are 

obtained from the linear eigenvalue equation, Eq. (5.10). The buckling load, computed 

from multiplying the initial load with the load factor, is utilized to calculate the critical 

buckling temperature difference following Eq. (5.13), (5.15) or (5.17) and according to 

the type of temperature rise. Next, the thermo-elastic properties at m crT T T  is 

updated. Besides, the eigenvector is normalized and scaled up to desired amplitude, such 

as wc/h = 0.1 (where wc is the maximum deflection) and then it is used as the displacement 

vector for evaluation of the nonlinear stiffness. Eq. (5.22) is solved to obtain the load 

factor and the associated eigenvector. Subsequently, updated temperature T is 

implemented. Convergence is verified by using a desired tolerance, i.e.  = 0.01. If this is 

not satisfied, all the matrices are updated at the updated temperature by current load factor 

and displacement vector according to current buckling mode shape. Eq. (5.22) is solved 

again to obtain the load factor and buckling mode shape. This iterative procedure keeps 

going until the convergence of the thermal buckling temperature is achieved.  A brief 

summary of this procedure is shown in Figure 5.3 with three steps of the stability analysis. 

It is noted that in each displacement incremental step, the desired amplitude (wc/h) is kept 

constant. 
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Figure 5.3 Flow chart for thermal post-buckling analysis of plate. 

5.3 Numerical results 

5.3.1 Mechanical buckling 

Let us consider a clamped circular plate of radius R and thickness h subjected to a 

uniform radial pressure p0 as illustrated in Figure 5.4. By using knot insertion and order 

elevation, the domain is discretized into a sequence of refined meshes with 11×11 cubic 

elements as shown in Figure 5.5. It is observed that, the geometry is described exactly.  
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Figure 5.4 Clamped circular plate under radial compression. 

 

 

a) Control net 

 

(b) Discretization 

Figure 5.5 The meshing of 11×11 cubic elements. 

The plate made from Al/ZrO2-2 is homogenized using the rule of mixture, in which 

the effective Young’s modulus Ee and Poison’s ratio e are calculated according to [192]: 

e c c m mP PV P V   

where                                               
1

2

n

m

z
V

h

 
  
 

,  1c mV V       

(5.23) 

Table 5.1 shows the comparison between the present results numerically obtained 

from IGA using TSDT, RPT and GSDT with closed form solutions published in the  

literature [192, 193]. It is seen that the results from the three HSDT models are nearly 
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similar and in good agreement with those of unconstrained third-order shear deformation 

plate theory (UTSDT) [193] with differences of 0.5% and 1.8%. And, the discrepancy 

between them reduces as plate becomes thinner. Next, the variation of the critical load 

parameter 2= /cr cr mp p R D  with 3 2= /{12(1 )}m mD E h   versus the gradient index and the 

thickness to radius ratio is illustrated in Figure 5.6. It is observed that the critical buckling 

load increases due to the decrease in the h/R ratios and the increase in the value of n. As 

n > 10, the gradient index seems to have no effect on the buckling load. In addition, among 

plate models, TSDT achieves slightly smaller critical buckling load than the counterparts 

do. In the next examples TSDT, thus, is the preferred model to employ. Figure 5.7 

presents the first four buckling mode shapes of the clamped circular Al/ZrO2-2 plate with 

h/R = 0.1 and n = 2. 

 

 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

Figure 5.6 The effect of ratio R/h and  power index n on the buckling load crp . 
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Table 5.1 Comparison of the buckling load parameter of clamped thick circular Al/ZrO2-2 plate. 

Power 
Plate theory 

h/R 

index n 0.1 0.2 0.25 0.3 

0.5 

FST [193] 19.423 17.34 16.048 14.711 

TST [192] 19.411 17.311 16.013 14.672 

UTSDT [193] 19.413 17.31 16.012 14.672 

TSDT  19.4391 17.3327 16.0334 14.691 

  f1 19.4391 17.3327 16.0334 14.6910 

RPT f2 19.5439 17.4441 16.1492 14.8118 

  Present 19.5663 17.518 16.2506 14.9381 

 f1 19.532 17.4088 16.1012 14.7511 

GSDT f2 19.5436 17.4493 16.1585 14.825 

  Present 19.5662 17.5239 16.2609 14.9526 

2 

FST [193] 23.057 20.742 19.29 17.77 

TST [192] 23.074 20.803 19.377 17.882 

UTSDT [193] 23.075 20.805 19.378 17.881 

TSDT  23.1062 20.8319 19.4033 17.906 

  f1 23.1062 20.8319 19.4033 17.9060 

RPT f2 23.2342 20.9728 19.552 18.0628 

  Present 23.2592 21.0569 19.6687 18.2099 

 f1 23.2186 20.9256 19.4873 17.9811 

GSDT f2 23.2336 20.978 19.5616 18.077 

  Present 23.2589 21.0629 19.6794 18.2255 

10 

FST [193] 27.111 24.353 22.627 20.823 

TST [192] 27.133 24.423 22.725 20.948 

UTSDT [193] 27.131 24.422 22.725 20.949 

TSDT  27.1684 24.4542 22.7536 20.975 

 f1 27.1684 24.4542 22.7536 20.9750 

PRT f2 27.3155 24.6077 22.9117 21.1383 

  Present 27.3429 24.6994 23.0389 21.2986 

 f1 27.3008 24.5641 22.852 21.0627 

GSDT f2 27.3148 24.6136 22.9228 21.1548 

  Present 27.3425 24.7065 23.0515 21.3169 
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Figure 5.7 The first four buckling modes of Al/ZrO2-2 plate with h/R = 0.1 and n = 2. 

5.3.2 Thermal buckling 

5.3.2.1 Convergence study 

Table 5.2 shows the convergence of critical temperature of the circular plate. Here 

we use quadratic, cubic and quartic elements according to order of NURBS function p = 

2, 3, 4, respectively. The convergence of the present elements is shown in Figure 5.8.  It 

is observed that the present results converge well to the closed form solution reported in 

[194]. Also, the NURBS approximation with the highest order (p = 4) produce the most 

exact solution. 

Table 5.2 Convergence of thermal buckling of the Al/Al2O3 FGM plate (R/h = 100). 

Mesh 

n = 0 n = 1 

quadratic 

(p = 2) 

cubic  

(p = 3) 

quartic 

(p = 4) 

Ref. 

[194] 

quadratic 

(p = 2) 

cubic  

(p = 3) 

quartic 

(p = 4) 

Ref. 

[194] 

4×4 274.803 17.5081 13.4059 

12.712 

150.561 8.4393 6.2543 

5.906 
8×8 24.5348 12.9758 12.7292 12.419 6.0461 5.9151 

16×16 13.3846 12.7247 12.7173 6.2761 5.9128 5.9093 

20×20 12.9895 12.7201 12.7154 6.0586 5.9106 5.9086 

24×24 12.8496 12.7180 12.7137 5.9816 5.9097 5.9082 
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Figure 5.8 The convergence of critical buckling temperature of FGM circular plate. 

5.3.2.2 Circular functionally graded plates 

In this sub-section, let us consider the clamped FGM plate with meshing as shown 

in Figure 5.5b and subjected to temperature rise.  

Table 5.3 Critical buckling temperature of the clamped circular FGM plate under uniform 

temperature rise. 

n Method 
h/R 

0.01 0.02 0.03 0.04 0.05 

0 

quadratic 13.3846 51.4591 114.5560 202.2010 313.7709 

cubic 12.7247 50.7470 113.6986 201.0238 312.0007 

quartic 12.7173 50.7029 113.5274 200.5534 310.9643 

FSDT [194] 12.712 50.795 114.090 202.333 315.160 

CPT [194] 12.716 50.866 114.449 203.456 317.914 

0.5 

quadratic 7.6414 29.2259 65.0216 114.7970 178.2466 

cubic 7.2107 28.7673 64.4906 114.1103 177.2762 

quartic 7.2065 28.7454 64.4077 113.8854 176.7840 

FSDT [194] 7.202 28.783 64.662 114.706 178.731 

CPT [194] 7.204 28.819 64.843 115.237 180.121 

1 

quadratic 6.2761 23.9771 53.3350 94.1640 146.2188 

Cubic 5.9128 23.5899 52.8871 93.5859 145.4027 

quartic 5.9093 23.5719 52.8191 93.4005 144.9953 

FSDT [194] 5.906 23.603 53.029 94.081 146.815 

CPT [194] 5.907 23.630 53.169 94.520 147.694 

Table 5.3 and Table 5.4 exhibit critical buckling temperatures according to uniform 

and non-uniform temperature distribution, respectively. The obtained results are 

compared with those of the closed form solutions [194] and the FEM [195] using a three-
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node shear flexible plate element based on the field-consistency principle. It is again 

observed that with the moderate thin plates the present results based on HSDT are lower 

than those obtained by using FSDT and CPT models. As the plates become thinner, the 

buckling temperature parameter decreases rapidly and converges to that of the FSDT 

model [194, 195]. 

Table 5.4 Critical buckling temperature of the clamped circular FGM plate under nonlinear 

temperature rise. 

n Method 
h/R 

0.01 0.02 0.03 0.04 0.05 

0 

quadratic 26.7693 102.9183 229.1120 404.4020 627.5418 

Cubic 25.4494 101.4939 227.3972 402.0476 624.0014 

quartic 25.4347 101.4059 227.0547 401.1068 621.9286 

FSDT [195] 25.426 101.576 - 404.258 629.279 

FSDT [194] 25.924 101.455 228.180 404.666 630.320 

CPT [194] 25.433 101.59 228.898 405.821 635.828 

0.5 

quadratic 20.1554 77.0880 171.5049 302.7956 470.1542 

Cubic 19.0193 75.8784 170.1043 300.9842 467.5945 

quartic 19.0083 75.8205 169.8857 300.3910 466.2963 

FSDT [195] 18.996 75.913 - 302.29 470.746 

FSDT [194] 18.996 75.915 170.594 302.532 471.393 

CPT [194] 19.002 76.009 171.021 304.039 475.061 

1 

quadratic 16.3386 62.4200 138.8481 245.1389 380.6544 

Cubic 15.3929 61.4121 137.6820 243.6341 378.5297 

quartic 15.3839 61.3652 137.5049 243.1514 377.4691 

FSDT [195] 15.377 61.441 - 244.721 381.164 

FSDT [194] 15.373 61.440 138.037 244.897 381.646 

CPT [194] 15.378 61.512 138.433 246.05 384.453 

Figure 5.9 and Figure 5.10 describe the change of buckling temperature using the 

cubic NURBS element with respect to the thickness-to-radius ratios h/R and power 

indices n, respectively. It can be seen that increase in h/R ratio enables the plate to resist 

higher temperature. With increase in the gradient power n, the critical temperature values 

reduce because of the stiffness degradation by the enrichment of the metal material 

proportion. The change is rapid as n  2 and becomes slightly independent with power 

index n > 2, especially in case of uniform temperature distribution. Furthermore, it is also 

revealed that under non-uniform distribution assumption, FGM plates gain higher 

buckling temperature than that using uniform temperature rise across the thickness. 

Figure 5.11 depicted the ratio of critical temperature due to non-uniform and uniform 

temperature rise via the power index. The ratio depending on material properties due to 

the value of n is always larger than 2 and gains the maximum at 2.638 with n = 0.5. 
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Figure 5.9 The buckling temperature of clamped FGM circular plate under uniform 

temperature distribution. 

 

 

Figure 5.10 Critical buckling temperature of FGM circular plates via power index n. Note 

that in case of R/h = 10, plotted results are in the form of Tcr/100 
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Figure 5.11 The effect of volume fraction exponent on the buckling temperature ratio of 

FGM circular plate. 

5.3.2.3 Rectangular functionally graded plates 

Consider the thermal buckling of the Al/Al203 rectangular plate with its dimension: 

length L, width W and thickness h. The plate is discretized into uniform mesh of quadratic, 

cubic and quartic elements, respectively. It is assumed that the FGM plate having initial 

stress free state at T0 = 0C is subjected to the temperature cT  at the top surface and mT = 

5C at the bottom surface. First, the behaviour of the simply supported FGM plates under 

uniform temperature rise is studied. For comparison purposes, the problems are solved 

using the eigenvalue approach according to Eq. (5.10) by neglecting the bending moment 

effect. The critical thermal parameter crT  corresponding to various exponent values, n, 

for both thin and thick plates is summarized in Table 5.5. The obtained solution matches 

very well with that of the analytical approach reported by Javaheri [68] and the semi-

analytical method based on the HSDT proposed by Matsunaga [196]. 
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Table 5.5 Critical buckling temperature of the clamped circular FGM plate under nonlinear 

temperature rise. 

L/h Method 
Power index n 

0 0.5 1 4 5 10 

10 

HSDT [196] 1599.294 914.1890 749.26 660.5410 669.402 683.211 

CPT [68] 1709.911 - 794.377 - 726.571 746.927 

TSDT [68] 1617.484 - 757.891 - 678.926 692.519 

Quadratic 1618.9900 923.3422 758.5504 670.5738 679.4528 692.8362 

Cubic 1618.7752 923.2171 758.4422 670.4712 679.3494 692.7331 

Quartic 1618.7468 923.1991 758.4267 670.4594 679.3379 692.7225 

100 

HSDT [196] 17.087 9.7068 7.939 7.1297 7.259 7.462 

CPT [68] 17.099 - 7.943 - 7.265 7.469 

TSDT [68] 17.088 - 7.939 - 7.26 7.462 

Quadratic 17.1152 9.6995 7.9538 7.1409 7.2697 7.4719 

Cubic 17.0967 9.6876 7.9437 7.1342 7.2633 7.4659 

Quartic 17.0913 9.6842 7.9409 7.1322 7.2614 7.4641 

The FGM plates, however, under simply supported boundary conditions exhibits no 

bifurcation  type of instability except for the homogeneous plates [197] because of the 

structural asymmetry through thickness. The governing equation (5.10), therefore, must 

be solved with the existence of the load vector Fext, which is defined in Eq. (3.25). Note 

that the equilibrium equation is solved linearly based on the classical buckling theory 

without the nonlinear effect. Figure 5.12 reveals the influence of the temperature field on 

the central displacement w/h of the simply supported FGM plates. Considering the effect 

of the geometric stiffness, the total structure stiffness reduces according to temperature 

increment. This makes the plate weaker and more flexible. As the gradient temperature 

crT  is large enough, the deflection increases rapidly without depending on the rise of 

thermal load. This is unreal because as deflection is large enough, i.e. w/h >1, the von 

Kármán strain needs to be considered in the strain tensor. Thus, full equilibrium equation, 

as Eq. (5.19), will be established in order to exactly describe this situation. This problem 

will be re-investigated in the post-buckling section. Under this temperature field which is 

higher at the top surface than at the bottom one, the plate has an upward deflection as 

shown in Figure 5.13. 
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a) L/h =10 

 

b) L/h = 50 

Figure 5.12 The central deflection of the simply supported FGM plates via the power indices n 

and the length-to-thickness ratio L/h. 
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Figure 5.13 The deflection of the simply supported plate (L/h = 10) under temperature rise. 

 

 

Figure 5.14 Critical buckling temperature of clamped FGM plates versus n: solid line: 

L/h=10 (Tcr /100); dash line: L/h=100. 

Next, the relation between critical buckling temperature Tcr and power index n 

under three types of thermal distribution for the clamped FGM plates is investigated. Note 

that, in case of thick plate (L/h = 10), the critical temperature, Tcr, is divided by 100. The 

clamped edge support neutralizes the extension-bending coupling [197]. This helps the 

plate to prevent the occurrence of the initial transverse deformation under temperature 

field [198]. Hence, the buckling bifurcation type is exhibited. In Figure 5.14, it can be 

seen that for homogeneous plates, the non-uniform thermal distribution becomes in the 

linear form. The results obtained for the two cases are therefore identical. Moreover, the 
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same conclusions for the circular plates in the previous sub-section are obtained for the 

rectangular plates such as: crT  reduces according to increase in power index n or length 

to thickness ratio L/h and the critical gradient crT  using nonlinear distribution is higher 

than that of linear or uniform distribution.  

5.3.3 Thermal post-buckling 

In this sub-section, we focus on a study of the nonlinear behaviour of the plates under 

uniform, linear and non-linear temperature distribution through the plate thickness. The 

plates are constrained on all edges by clamped or simply supported conditions, which are 

divided in two cases: movable and immovable in the in-plane directions: 

Movable edge (SSSS1) :          

0 0

0 0

0 on 0,

0 on 0,

y

x

v w x L

u w y W





   


     
(5.24) 

Immovable edge (SSSS2) :      

0 0 0

0 0 0

0 on 0,

0 on 0,

y

x

u v w x L

u v w y W





    


      
(5.25) 

5.3.3.1 Isotropic plates 

In this section, two examples, for which solutions are available in the literature, are 

considered in order to validate the efficiency of the present method for the thermal 

instability. Firstly, the thermal post-buckling temperature – deflection curve of a simply 

supported square plate (L/h = 10,  = 0.3,  = 10-6/C) under uniform temperature rise is 

plotted in Figure 5.15. The obtained results are compared with those of Bhimaraddi and 

Chandashekhara [199] using the single mode approach and the parabolic shear 

deformation theory and the closed-form solutions by Shen [140] based on  higher-order 

shear deformation plate theory. Herein, it is evident that identical results are obtained in 

comparison with Shen’s solutions for both perfect and imperfect plates (initial deflection  

* / 0.1w h  ) even in the dimensionless critical temperature * 410cr crT T    , which has 

a value of 119.783C [140].  
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Figure 5.15 Temperature-deflection curve of an isotropic square plate. 

 

 

Figure 5.16 Temperature-deflection curve of a clamped isotropic skew plate. 

Secondly, the comparison of the post-buckling path of a clamped skew plate (skew 

angle = 45, E = 1GPa,  = 0.3,  = 10-6/C) with that of Prabhu and Durvasula [200] is 

depicted in Figure 5.16. In this example, the temperature is normalized as 

* 2 2/ ( )crT T E L h D    with the flexural rigidity 3 2/12(1 )D Eh  . A good agreement 

is observed again in the comparison study. 

5.3.3.2 Temperature-independent material Al/Al2O3 plate 

Let us continue studying the problem in section 5.3.2.2 with the thermal post-

buckling analysis. Herein, the plate is made from Al/Al2O3, for which material properties 
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are assumed to be independent of temperature. Figure 5.17 shows the effect of power 

index n on the thermal post-buckling paths of the FGM plates subjected to the uniform 

and non-linear temperature rise. Noted that in case of nonlinear temperature rise, it is 

assumed that no temperature change in the bottom of the plate, 0mT  . Some remarks 

are concluded:  

- The thermal resistance of the FGM plates reduces due to increase in the material 

gradient index, n, because of the stiffness degradation by the higher metal 

inclusion, i.e., the buckling strength is highest if the plate is fully-ceramic (n = 0) 

and lowest if the homogeneous metal plate is retrieved (n = infinitive). 

- If we can keep the temperature varies non-uniformly through the thickness, FGM 

plates can resist higher buckling temperature. 

- The clamped plates exhibit a bifurcation-type of instability, which is vertically 

symmetric. 

- It is also observed that after getting the bifurcation temperature, the post-buckling 

temperature increases monotonically with the increase in the transverse 

displacement and suddenly drops to the secondary instability path. The transition 

from primary post-buckling path to the secondary one is caused by redistribution 

of post-buckling displacement mode shape. The maximum transverse 

displacement shifts from the plate centre towards one plate corner. This 

phenomenon is similar to what reported for angle-ply composite plate by Singha 

et al [201] and for FGM plate by Prakash et al. [197, 202]. After the secondary 

instability, the post-buckling temperature slightly increases due to increase in 

deflection. This point is clearly illustrated in Figure 5.18.  
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a) Uniform temperature rise 

 

b) Nonlinear temperature rise 

Figure 5.17 Bifurcation buckling paths of the clamped circular Al/Al2O3 plate (R/h=100) 

under uniform and nonlinear temperature rise. 
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Figure 5.18 Buckling modes of the clamped circular Al/Al2O3 plate (n =1, R/h = 100) under 

uniform temperature rise. 

Next, the nonlinear behaviour of simply supported thin square Al/Al2O3 plate under 

nonlinear temperature distribution is investigated. The temperature-maximum deflection 

curves using various values of gradient index are shown in Figure 5.19. It is noted that, 

being different from homogeneous plates, which have bifurcation buckling paths, FGM 

plates bend as soon as the thermal load is applied. Because the presence of extension-

bending coupling effect produces the bending moment (Mth and Pth), the plates bend 

toward to the upper side. In Figure 5.20, for comparison purpose, the nonlinear bending 

behaviour of Al/Al2O3 plate (n = 1) under uniform, linear and nonlinear temperature rise 

is studied. Herein, the plate boundaries are constrained by two simply supported 

conditions: movable edges (SSSS1) and immovable edges (SSSS2). It is found that at an 

enough high temperature level, the uniform temperature distribution produces more 

transverse displacement in the plates than linear and nonlinear temperature distributions. 

In addition, the plate with SSSS1 boundary condition undergoes smaller deformation than 

that having SSSS2. Because of movability of in-plane displacements around its edges 

(except four corners), the thermal effect is reduced as shown in Figure 5.21. It should be 

noted that, for clear vision, the in-plane displacements are scale by 1000. 
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Figure 5.19  Thermal post-buckling paths of SSSS2 square Al/Al2O3 plate (L/h = 100) under 

nonlinear temperature rise. 

 

 

Figure 5.20 Thermal post-buckling paths of the Al/Al2O3 plate (n = 1, L/h = 100). 
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a) Movable edges (SSSS1) 

 

b) Immovable edges (SSSS2). 

Figure 5.21 Displacement of Al/Al2O3 plate (n = 1) at T = 40C under types of boundary 

condition: Whole plate profile (upper) and thermal deflection at cross section y = W/2 

(lower). 

5.3.3.3 Temperature-dependent material Si3N4/SUS304 plate 

In this section, the thermal post-buckling behaviour of temperature-dependent 

material square plate, made of Silicon nitride (Si3N4) and Stainless steel (SUS304), is 

investigated. Their material properties are functions of temperature following Eq. (2.12) 

with the coefficients listed in Table 5.6 [157].  

Table 5.6 Temperature dependent coefficients of Si3N4 and SUS304  

Material Property P-1 P0 P1 P2 P3 

Silicon 

nitride 

Si3N4 

  

E (Pa) 0 3.4843e11 -3.0700e-4 2.1600e-7 -8.946e-11 

 0 0.24 0 0 0 

 (1/K) 0 5.8723e-6 9.0950e-4 0 0 

k (W/mK) 0 13.723 -1.0320e-3 5.47e-7 -7.88e-11 

Stainless 

steel 

SUS304 

  

E (Pa) 0 2.0104e11 3.0790e-4 -6.534e-7 0 

 0 0.3262 -2.00e-4 3.80e-7 0 

 (1/K) 0 1.2330e-5 8.0860e-4 0 0 

k (W/mK) 0 15.379 -1.26Ee-3 2.09e-6 -7.22e-10 
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An example of the effect of temperature change on material properties of 

Si3N4/SUS304 FGM plate, i.e. Young modulus is illustrated in Figure 5.22. It is observed 

that increase in temperature reduces Young modulus magnitude for both isotropic (n = 0) 

and FGM plates (n = 1, 10). 

 

Figure 5.22 The effective Young modulus of Si3N4/SUS304 plate at sepcified temperature: 

T=0 K (solid line), T=300 K (dashed line), T=1000 K (dash dot line). 

 

Figure 5.23 reveals the thermal post-buckling behaviours for Si3N4/SUS304 FGM 

plate with various power indices n =0, 1, 10. The post-buckling paths for temperature-

dependent and temperature-independent are presented in solid and dashed curves, 

respectively. Herein, the results considering temperature-independent material property 

(values are estimated at T0 = 300K) are also presented for comparison purpose. It is 

observed that the thermal post-buckling curve becomes lower when considering the 

thermal dependent properties and increase in value of n. Furthermore, with thin plate 

(L/h=100), the discrepancy between temperature-independent solutions and temperature-

dependent solutions is insignificant due to the very small buckling temperature. As 

expected, with an increase in the length-to-thickness ratio, the critical buckling 

temperature increases accordingly.  
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a) L/h =100 

 

b) L/h =20  

Figure 5.23 Thermal post-buckling paths of Si3N4/SUS304 FGM plate via various power 

indices and length-to-thickness ratios L/h. 
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5.4 Concluding remarks 

This chapter presents a simple and efficient formulation relied on the framework of 

NURBS-based IGA for elastic instability analysis of the FGM plates under thermal and 

mechanical loads. The problem can be classified into two categories: buckling and post-

buckling analyses. The former with assumption that the plates are flat with no initial 

imperfection in geometry, is solved by eigenvalue analysis, whilst the latter, which 

considers the von Kármán assumptions, is solved by an incremental/iterative approach. 

Through various numerical results, some concluding remarks can be drawn: 

- In the FGM plates, there are non-symmetric material properties and temperature 

field through the plate thickness. Therefore, no bifurcation type of instability 

occurs for simply supported conditions. Under this boundary condition, the plate 

exhibits bending behaviour because of extra extension-bending coupling or 

thermal moment. The clamped boundary condition is capable to neutralize the 

extra bending. Thus, the buckling bifurcation type can be exhibited. 

- The critical buckling value of FGM plates increases due to increase in plate 

thickness and also decrease in the gradient index n because of the material 

degradation by enrichment of ceramic constituent – higher Young modulus. 

- The critical thermal gradient crT  of the FGM plates under nonlinear temperature 

distribution is greater than that under uniform or linear ones. 

- The difference in thermal resistance in the FGM plates with and without 

considering temperature-dependent material property is substantially higher in the 

thick plate as compared to the thin one. 

 

 

 

 

 

 

 

 



 

 

 

Chapter 6 Dynamic Analysis 

 

6.1 Introduction 

The dynamic analysis of FGM structures plays an important role in various branches 

of engineering applications, particularly aerospace and other area of transportation. Thus, 

there are many researchers paying their attention to this problem that can be classified 

into two main groups: 1) free vibration analysis, which studies the fundamental natural 

frequencies and corresponding distributions of model displacements and 2) forced 

vibration analysis related to the transient response of the plate structures under dynamic 

loading. Various methods have been employed so far for the vibration analysis of FGM 

plates. Vel and Batra [24] have presented an exact solution using a 3D elastic theory for 

the free and forced vibration of simply-supported rectangular FGM plates. Reddy and 

Chen [25] studied the harmonic vibration problem of FGM plates with 3D asymptotic 

approach. Matsunaga [58] predicted closed form analytical natural frequencies of simply 

supported FGM plates using the method of power series expansion of displacement 

components. Ref. [12] concluded that solution of eigenvalue problems using 3D elasticity 

theories is hard to obtain particularly, when the material properties are graded according 

to power law. Moreover, the analytical solutions for practical applications are highly 

mathematical complexity. Due to these limitations, the numerical methods have become 

the most widely used computational tools for plate structures [39, 44, 46, 48, 72].  

In this chapter, we develop the NURBS-based isogeometric finite element method 

to study free and forced vibrations of FGM plates. In the former, without the force vector, 

the fundamental natural frequencies are obtained by solving the eigenvalue analysis, 

whilst the latter considers the applied forces and the von Kármán strain. Thus, the 

geometrically nonlinear equation of dynamic system, which is dependent upon both time 

domain and unknown variables, is solved by the Newmark time-stepping scheme in 

association with the Picard iteration method. 
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This chapter is outlines as follows. The general governing equations for free 

vibration and geometrically nonlinear transient problems are introduced in Section 6.2. 

Using HSDT models that accounts for the transverse shear strains and rotary inertia, the 

present method not only overcomes naturally shear-locking phenomenon but also 

produces excellent results as compared with those available in the literature. Numerical 

results of the vibration analysis presented in Section 6.3 investigate the effect of the 

gradient index, boundary conditions, length to thickness ratios as well as the loading on 

the response of various shapes of FGM plates. Finally, some concluding remarks are 

reported in Section 6.4. 

6.2 Governing equations 

For this problem, we investigate separately two categories: free vibration and 

geometrically nonlinear transient analysis. 

6.2.1 Free vibration 

For free vibration problem, after eliminating the load vector and the nonlinear effect, 

the governing equation, Eq. (3.17), reduces to a simple form: 

0L  K q Mq  (6.1) 

The solution is assumed to be periodic: 

0( , ) ( ) i tt eq x Q x


 (6.2) 

where    is the frequency of natural vibration of the plate. Substituting Eq. (6.2) 

into Eq. (6.1) yields: 

 2 0L  K M q  (6.3) 

Because of non-zero displacement, the natural frequency is obtained by solving the 

eigenvalue problem as: 

2 0L  K M  (6.4) 

6.2.2 Geometrically nonlinear transient 

In case of geometrically nonlinear transient analysis of the plate, the governing 

equation is the same as Eq. (3.17): 
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ext Kq Mq F  (6.5) 

It is observed that the equation of dynamic system in Eq. (6.5) is dependent on both 

time domain and unknown displacement vector. To discretize this problem, the 

Newmark’s integration scheme in association with the Picard methods is employed. The 

dynamic problem is solved in step-by-step for a number of equal time intervals, t . Once 

the displacement at time ( 1)t m t    is known, its first and second derivatives, i.e. 

velocity and acceleration, are sought implicitly as follows: 

1 12

1 1 1
( ) 1

2
m m m m m

t t  
 

 
     

   
q q q q q  (6.6) 

1 1(1 )m m m mt t      q q q q  (6.7) 

Herein, we choose two variables  = 0.25 and  = 0.5 following the average 

acceleration method, an unconditional stable method in the Newmark family method 

[203]. As it can be seen, the information at current is calculated based on the converged 

solutions at the previous time step t = mt. Hence, to start this process, the initial 

conditions are assumed to be known. In this study, the initial conditions are zero 

displacement, velocity and acceleration at time t = 0 [203]. Substituting Eq. (6.6) into Eq. 

(6.5), a quasi-static equation is obtained as: 

1 1 1
ˆ ˆ

m m m  K q F  (6.8) 

where 1
ˆ

mK and 1
ˆ

mF  are the effective stiffness matrix and force vector at time ( 1)m t   

1 1 2

1ˆ ,m m
t

  


K K M
 

1 1 2

1 1 1ˆ 1
2

ext

m m m m m
t t  

 

  
      

    
F F M q q q  

(6.9) 

Referring to Eq. (6.9), all parameters are known from the converged solutions at 

previous time step, i.e. t = mt except the stiffness matrix 1mK , which nonlinearly 

depends on the displacements at the present time 1mq . Therefore, the Picard algorithm is 

used to re-approximate Eq. (6.8) as follows: 

1

1 1 1
ˆ ˆ( )i i

m m m



  K q q F  (6.10) 

where the superscript is the iteration number, while the subscript denotes the load step.  
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Eq. (6.10) is iteratively solved until the difference between 
1

i

mq  and 1

1

i

m



q reduces 

to a pre-selected error tolerance, i.e. 

1

1 1

1

0.01

i i

m m

i

m



 






q q

q
 (6.11) 

The procedure is summarized by a flow chart as shown in Figure 6.1. 

 

Figure 6.1 Flow chart for geometrically nonlinear transient analysis of plate. 

6.3 Numerical results 

In this section, we investigate two problems: free vibration and geometrically 

nonlinear transient analysis. 

For convenience, the obtained results are normalized as: 

2= / /m mL h E        (6.12) 

6.3.1 Free vibration 

6.3.1.1 Shear locking test 

Let us consider an isotropic plate with dimension L×W×h having fully simply 

supported edges. Figure 6.2 reveals the relation between the first five natural frequencies 

and the length-to-thickness ratio L/h. Herein, increase in L/h ratio leads to increase in the 



  119 

 

 

obtained natural frequencies from the thick plate theories such as: FSDT and GSDT, 

which converge to CPT results by Leissa [204]. While GSDT produces the well-matched 

results with thin plate frequencies, a significant decrease in accuracy is observed from the 

FSDT for extremely thin plate (L/h > 1000). The phenomenon maybe attributed to the 

shear locking of the plate model.  

 

a) FSDT 

 

b) GSDT 

Figure 6.2 The first five natural frequencies of an isotropic plate via length to thickness ratio 

using: a)FSDT and b)GSDT 
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6.3.1.2 Free vibration of square Al/ZrO2-1 plate 

Let us consider a simply supported Al/ZrO2-1 plate, which is homogenized by the 

Mori-Tanaka scheme. In Table 6.1, we put the numerical results based on the HSDTs 

with various functions f(z): f1 by Reddy [57], f2 by Thai [165] and the proposed function 

in inverse tangent form,  in comparison with the exact solution [24], that of HOSNDPT 

[142] and quasi-3D solution using SSDT and HSDT [180, 181]. The excellent correlation 

between these models is achieved with very small error which is less than 0.4% for all 

values of exponent n. In addition, it is revealed that the proposed distributed function 

gives the best natural frequency with the least error as compared to the exact solution [24] 

by Vel and Batra. The first ten natural frequencies of the thick and moderate plate with 

a/h = 5, 10, 20 are listed in Table 6.2. The computed values agree well with the literature 

[142] for various L/h ratios and mode number. For n = 1, the first six mode shapes are 

plotted in Figure 6.3. 

Table 6.1 The natural frequency 
 
of SSSS Al/ZrO2-1 plate with L/h = 5. 

Model z  
Power  index n 

0 0.5 1 2 3 5 10 

Exact [24]  - - 0.2192 0.2197 0.2211 0.2225 - 

HOSNDPT 

[142] 
 - - 

0.2152 

(-1.82)* 

0.2153 

(-2.00) 

0.2172 

(-1.76) 

0.2194 

(-1.39) 
- 

SSDT [181] 0 - - 
0.2184 

(-0.36) 

0.2189 

(-0.36) 

0.2202 

(-0.41) 

0.2215 

(-0.45) 
- 

 
0 - - 

0.2193 

(0.05) 

0.2198 

(0.05) 

0.2212 

(0.05) 

0.2225 

(0.00) 
- 

HSDT [180] 0 0.2459 0.2219 
0.2184 

(-0.36) 

0.2191 

(-0.27) 

0.2206 

(-0.23) 

0.222 

(-0.22) 
0.2219 

 0 0.2469 0.2228 
0.2193 

(0.05) 

0.22 

(0.14) 

0.2215 

90.18) 

0.223 

(0.22) 
0.2229 

TSDT  0.2461 0.2222 
0.2185 

(-0.32) 

0.2190 

(-0.32) 

0.2204 

(-0.32) 

0.2216 

(-0.40) 
0.2211 

RPT 

f1  0.2459 0.2221 
0.2184 

(-0.36) 

0.2189 

(-0.36) 

0.2203 

(-0.36) 

0.2216 

(-0.40) 
0.2211 

f2  0.2462 0.2224 
0.2186 

(-0.27) 

0.2191 

(-0.27) 

0.2205 

(-0.27) 

0.2218 

(-0.31) 
0.2215 

Present  0.2468 0.2229 
0.2192 

(0.00) 

0.2196 

(-0.05) 

0.221 

(-0.05) 

0.2224 

(-0.04) 
0.2222 

GSDT 

f1  0.2461 0.2222 
0.2185 

(-0.32) 

0.219 

(-0.32) 

0.2204 

(-0.32) 

0.2216 

(-0.40) 
0.2211 

f2  0.2464 0.2225 
0.2188 

(-0.18) 

0.2192 

(-0.23) 

0.2205 

(-0.27) 

0.2218 

(-0.31) 
0.2215 

Present  0.247 0.223 
0.2193 

(0.05) 

0.2197 

(0.00) 

0.2211 

(0.00) 

0.2224 

(-0.04) 
0.2222 

       (*) The error in parentheses 
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Table 6.2 The natural frequency   of Al/ZrO2-1 plate with various ratios L/h. 

L/h Model 
Mode number 

1 (2,3) 4 5 6 7 8 

5 

Exact [24] 0.2192 - - - - - - 

HOSNDPT [142] 0.2152 0.4114 0.4761 0.4761 0.582 0.6914 0.8192 

TSDT 0.2185 0.4118 0.4794 0.4794 0.5823 0.6948 0.8219 

 f1 0.2187 0.4116 0.4806 0.4806 0.5821 0.6976 0.8233 

RPT f2 0.2186 0.4116 0.4804 0.4804 0.5821 0.6972 0.8233 

  Present 0.2192 0.4116 0.4827 0.4827 0.5821 0.7018 0.8233 

 f1 0.2185 0.4118 0.4794 0.4794 0.5823 0.6948 0.8226 

GSDT f2 0.2188 0.4118 0.4808 0.4808 0.5823 0.6977 0.8233 

  Present 0.2193 0.4118 0.4831 0.4831 0.5823 0.7023 0.8233 

10 

Exact [24] 0.0596 - - - - - - 

HOSNDPT [142] 0.0584 0.141 0.2058 0.2058 0.2164 0.2646 0.2677 

Quasi 

3D 

SSDT[181] 0.0596 0.1426 0.2058 0.2058 0.2193 0.2676 0.2676 

HSDT[180] 0.0596 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 

TSDT 0.0596 0.1423 0.2059 0.2059 0.2185 0.2666 0.2666 

 f1 0.0595 0.1423 0.2058 0.2058 0.2187 0.2668 0.2668 

RPT f2 0.0595 0.1423 0.2058 0.2058 0.2187 0.2667 0.2667 

  Present 0.0596 0.1425 0.2058 0.2058 0.2192 0.2675 0.2675 

 f1 0.0596 0.1423 0.2059 0.2059 0.2185 0.2666 0.2666 

GSDT f2 0.0596 0.1424 0.2059 0.2059 0.2188 0.2669 0.2669 

  Present 0.0596 0.1426 0.2059 0.2059 0.2193 0.2677 0.2677 

20 

Exact [24] 0.0153 - - - - - - 

HOSNDPT [142] 0.0149 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 

Quasi 

3D 

SSDT[181] 0.0153 0.0377 0.0596 0.0739 0.0739 0.095 0.095 

HSDT[180] 0.0153 0.0377 0.0596 0.0739 0.0739 0.095 0.095 

TSDT 0.0153 0.0377 0.0596 0.0739 0.0739 0.0949 0.0949 

 f1 0.0153 0.0377 0.0595 0.0739 0.0739 0.0949 0.0949 

RPT f2 0.0153 0.0377 0.0595 0.0739 0.0739 0.0949 0.0949 

  Present 0.0153 0.0377 0.0596 0.0739 0.0739 0.095 0.095 

 f1 0.0153 0.0377 0.0596 0.0739 0.0739 0.0949 0.0949 

GSDT f2 0.0153 0.0377 0.0596 0.0739 0.0739 0.095 0.095 

  Present 0.0153 0.0377 0.0596 0.074 0.074 0.0951 0.0951 
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Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 

Figure 6.3 The first six mode shapes of Al/ZrO2-1 with n =1, L/h=5. 

6.3.1.3 Free vibration of circle Al/Al2O3 plate 

In this section, the normalized frequency ˆ =100 /c ch E    of the clamped circular 

Al/Al2O3 plate with radius R = 0.5 are investigated. The effective Young’s modulus Ee 
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and density e of FGM plate are calculated according to the rule of mixture following Ref. 

[205] by Reddy et al. 

1
( )

2

n

e m c c

z
E E E E

h

 
    

 
,     (6.13) 

Eq. (6.13) shows that as n = 0, the plate is fully metal and as n → , the homogeneous 

ceramic plate is retrieved. Herein, the effects of the power index and radius to thickness 

ratio R/h are investigated. The obtained results as shown in Table 6.3 agree well with 

those obtained by three methods: semi-analytical solution [206], a FEM from ABAQUS 

software package and a method named the uncoupled model (UM), formerly proposed by 

Ebrahimi et al. [207]. To close this section, the first six mode shapes of circular plate are 

plotted in Figure 6.4. 

Table 6.3 The first eight frequencies ̂  of clamped circular Al/Al2O3 FGM plate. 

h/R Method 
Mode number 

1 2 3 4 5 6 7 8 

0.01 

Semi-anal.  0.0236 0.0491 0.0805 0.0918 0.1178 0.1404 0.1607 0.1951 

FEM 0.0234 0.0486 0.0798 0.0909 0.1167 0.1391 0.1592 0.1933 

UM 0.0257 0.0535 0.0877 0.1000 0.1283 0.1529 0.1751 0.2126 

IGA  0.0236 0.0492 0.0807 0.0924 0.1191 0.1431 0.1643 0.1991 

0.1 

Semi-anal.  2.3053 4.6934 7.5146 8.5181 10.7128 12.6197 14.2324 16.9838 

FEM 2.2888 4.6661 7.4808 8.4829 10.6776 12.5877 14.2025 16.9583 

UM 2.5038 5.0831 8.1156 9.1931 11.5376 13.5743 15.2879 18.2114 

IGA  2.3076 4.7005 7.5318 8.5380 10.7483 12.6636 14.2925 17.0520 

0.2 

Semi-anal.  8.6535 16.7666 25.6486 28.7574 34.0756 35.0981 39.4394 40.5889 

FEM 8.6403 16.7890 25.7661 28.9152 34.1893 35.3618 39.4169 40.9538 

UM 9.3162 17.9164 27.2480 30.4998 - 37.1197 - 42.8001 

IGA  8.6787 16.8595 25.8479 29.0092 34.0581 35.4875 39.4177 41.0759 
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Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 

Figure 6.4 The first six mode shapes of Al/Al2O3 plate with h/R=0.1. 

6.3.1.4 Free vibration of skew Al/ZrO2-2 plate 

Let us consider a skew Al/ZrO2-2 plate with geometry and meshing as illustrated in 

Figure 4.10. Figure 6.5 plots the first four non-dimensional frequencies 2= / /c cL h E  

of clamped Al/ZrO2-2 plate corresponding to the skew angle ranging from 30 to 90. 

The present method gives slightly higher results than the element-free kp-Ritz method 

[46] and also ES-DSG [48]. All results are in good agreement except case of skew angle 

fixed at  = 30, the difference between ES-DSG and IGA is approximately around 3.5%. 
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It is believed that very small skew angle leads to distortion mesh, which affects the 

accuracy of the finite element method. It can be also seen that the natural frequencies 

decrease due to increase in the power index n and angle skew. According to Eq. (2.1), an 

increase in n leads to reduction of ceramic proportion in FGM plate, which causes the 

stiffness degradation of the plate. Figure 6.6 depicts the first eight mode shapes of the 

Al/ZrO2-2 skew plate. 

  

  

Figure 6.5 Comparison of the first four frequencies of the clamped skew Al/ZrO2-2 plate  

with L/h=10. 
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Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 

Figure 6.6 The first six mode shapes of the clamped skew Al/ZrO2-2 with n =1, L/h=10 and 

angle skew = 45. 

6.3.2 Nonlinear dynamic analysis 

6.3.2.1 Verification of IGA for dynamic responses 

An orthotropic plate with material properties [208] E1 = 525 GPa, E2 = 21 GPa, G12 

= G23 = G31 =10.5 GPa,  = 0.25,  = 800 Ns2/m4 (80kg/m3) and dimensions: length L = 

250 mm, thickness h = 5 mm, is firstly studied for validation. For this problem, the fully 

simply supported plate is subjected to a uniform step loading of 1 MPa. Its transient 

response according to the normalized central deflection ˆ /w w h  under both linear and 

nonlinear analyses is shown in Figure 6.7. It is observed that present method predicts very 

close deflection response as compared with finite strip method (FSM) by Chen et al. 

[208]. It also clearly exhibits that the magnitude and wavelength of the non-linear 

response are lower than that of linear case with the same loading intensity. 
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Figure 6.7 Time history of the transverse displacement of an orthotropic plate under step 

uniform load with intensity 1MPa1. 

6.3.2.2 Dynamic respond of Al/Al2O3 FGM plates 

Next, the dynamic response of Al/Al2O3 FGM plate (L = 0.2 m, h = 0.01 m) is 

investigated. The transverse load is distributed sinusoidally in duration of t1 = 3 ms as 

follows: 

0 0( , , ) sin( )sin( ) ( )z

x y
f x y t q F t

a b

 
     (6.14) 

in which 0 15 MPaq   and value of force 0 ( )F t  depicted in Figure 6.8 depends on 

loading types: step, triangular, sinusoidal and explosive blast, respectively.  

1

1

1 1

10

1 1

1

1 0
Step loading

0

1 / 0
Triangular loading

0( )

sin( / ) 0
Sine loading

0

Explosive blast loadingt

t t

t t

t t t t

t tF t

t t t t

t t

e

  



   


 


 

 







    (6.15) 

where  = 330 s-1. 

                                                 

1 The results of FSM by Chen et al. 
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Figure 6.8 Time history of applied load F0(t). 

Figure 6.9 presents the time history of the central displacement of FGM plate (n = 1) 

under four types of loading in short time t = 5 millisecond. As it can be seen, except for 

sin loading, all types of loading give nearly same period of the central deflection. And 

after removing the applied load, the plate still deflects and vibrates harmonically. The 

response of the plate under sine loading with two load levels q0 and 2q0, as predicted by 

linear and nonlinear analysis, is shown in Figure 6.10. As it can be seen, at the lower 

loading level, there is less difference between the two models. However, at loading level 

2q0, Figure 6.10b shows that linear IGA predicts higher magnitudes of deflection and 

period of the motion as compared to nonlinear case. Under the step loading, the time 

history of the deflection and normalized axial stress at the central point of the FGM plates 

using various value of power index, i.e. n = 0.5, 1, 2 are given in Figure 6.11. It is observed 

that increase in power index n reduces the plate stiffness, making the plate to be more 

sensitive to vibration with higher magnitude and period in the deflection and the axial 

stress. 
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Figure 6.9 The deflection response of the FGM plate (n=1) under various loading types. 

 

 

 

 

a) 

 

 

 

 

b) 

 

Figure 6.10 Comparsion of linear and nonlinear delfection response of FGM plate (n=1) 

under sine loading due to the level of load: a) q0  and b) 2q0. 
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a) 

 

 

 

 

b) 

 

Figure 6.11 Response of the FGM plates to a step loading: a)central deflection versus time, 

b) central axial stress versus time.  

6.4 Concluding remarks 

The free vibration and forced vibration analyses of FGM plates were performed 

using a combination of isogeometric finite element method and HSDT models. The 

former without the force vector is solved by eigenvalue analysis to study the fundamental 

natural frequencies, while the latter is solved by the Newmark time-stepping scheme in 

association with the iteration method to study the response of the plate structures as a 

function of time. Several types of plate with many shapes: rectangle, circle, skew are 

investigated and the obtained results are in good agreement with the analytical and other 

available solutions in literature. Similar to static analysis in Chapter 4, HSDT shows more 

advantage than FSDT in overcoming the shear-locking phenomenon naturally. Moreover, 

employing our proposed distributed function helps HSDT models to gain the most 

accurate natural frequencies with the least error as compared to 3D exact results. The 
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proposed method not only describes exactly the plate geometry, but also satisfies the 

stringent continuity required by the HSDT models. It is, therefore, believed that the 

present approach can be very promising to provide the reliable reference sources for 

analysing the FGM plates. 
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Chapter 7 Analysis of Cracked Plates 

 

7.1 Introduction 

In the previous chapters, this research was carried out for designing FGM plate 

structures without the presences of cracks or flaws. However, during manufacturing, 

FGM or general plate structures may have some flaws or defects. In service, the cracks 

can be generated and grown from defects under a cyclic loading. It is known that the 

cracks affect the dynamic response and stability characteristics of the plate structures and 

cause a reduction of their load carrying capacity. Therefore, various researches on 

dynamic behaviour of cracked plates become attractive to engineers and designers. 

Vibration of cracked plates was early studied in 1967 by Lynn and Kumbasar [209] using 

Green’s function for approximating the transverse displacements. Stahl and Keer [210] 

used the Levy-Nadai approach and the homogeneous Fredholm integral equations of the 

second kind to deal with the free vibration analysis of the cracked rectangular plates. 

Hirano and Okazaki [211] utilized the Levy solution to investigate eigenvalue problems 

of the cracked rectangular plates with two opposite edges simply supported. Qian [212] 

applied a finite element method to the free vibration analysis of the square thin plates. 

Krawczuk [213] presented a finite element model to evaluate the influence of the crack 

location and its length on the amplitude of the natural frequencies. Su et al. [214] further 

extended FEM to the free vibration analysis of thin plates with arbitrary boundary 

conditions. Yuan and Dickinson [215] introduced the artificial springs at the 

interconnecting boundaries in the Reyleigh-Ritz method to analyse the flexural vibration 

of rectangular plates. Lee and Lim [216] studied the natural frequencies of rectangular 

plates with central crack by considering transverse shear deformation and rotary inertia. 

Also, Liew et al. [217] used domain decomposition method to devise the plate domain 

into the numerous subdomains around the crack location. Recently, Huang and Leissa 

[218] utilized the famous Ritz method with special displacement functions to take into 

account the stress singularity near the crack tips. 
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Almost all researches focused on considering thin homogenous plates based on the 

CPT. However, to produce accurately the natural frequency of moderate and thick 

anisotropic plates the transverse shear deformation needs to be taken into account. To 

author’s knowledge, there are a few publications in the free vibration analysis of cracked 

plates considering the transverse shear deformation. Bachene et al. [219] utilized the 

extended finite element method (XFEM) to analyse the free vibration of cracked 

rectangular plates based on the FSDT. However, they only used Heaviside function for 

discontinuous enrichment and ignored the asymptotic functions to approximate the 

singular field near the crack tips. Natarajan et al. [220] extended XFEM to the dynamic 

analysis of FGM plates. Huang et al. [221] used the Ritz method and the Reddy’s theory 

to obtain the free vibration solution of FGM thick plates with side cracks. Yang et al. [67] 

studied the nonlinear dynamic response of the cracked FGM plates based on TSDT using 

the Galerkin method. Recently, Huang et al. [222] employed three-dimensional elasticity 

theory to study the free vibration of cracked rectangular FGM plates.  

In this chapter, we present the GSDT for modelling cracked FGM plates. It is worth 

mentioning that this model requires C1-continuity of the generalized displacements 

leading to the second-order derivative of the stiffness formulation, which causes some 

obstacles in standard C0-continuity finite element formulations. Fortunately, it is shown 

that such a C1-GSDT formulation can be easily achieved using a NURBS-based 

isogeometric approach. In addition, to capture the discontinuous phenomenon in the 

cracked FGM plates, the enrichment functions through the partition of unity method 

(PUM) originated by Belytschko and Black [223] are incorporated with NURBS basic 

functions to create a novel method, so-called eXtended Isogeometric Analysis (XIGA), 

which is presented in Section 7.2. XIGA has been applied to stationary and propagating 

cracks in 2D [113], plastic collapse load analysis of cracked plane structures [224] and 

cracked plate/shell structures [225]. Herein, we investigate the vibration of the cracked 

FGM plates with an initial crack emanating from an edge or centrally located. Several 

numerical examples are provided in Section 7.3. Finally, the chapter is closed with some 

concluding remarks in Section 7.4. 

7.2 An extended isogeometric (XIGA) cracked plate formulation 

The basic idea is that enriched functions to capture the local discontinuous and 

singular fields are enhanced in the standard approximation as follows [223]: 
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( ) ( ) enrichment fieldsh std

I I

I S

N


 u x x q   (7.1) 

where ( )IN x and std

Iq are the standard finite element shape function and nodal degrees of 

freedom associated with node I, respectively. To enhance the capability of IGA in 

analysing the cracked structures, a new numerical procedure, XIGA, was firstly proposed 

by Luycker et al. [112] and developed by Ghorashi et al. [113] and Nguyen et al. [177] 

as a combination of IGA and PUM. Being different from XFEM, which uses the Lagrange 

polynomials in approximation, XIGA utilizes the NURBS basis functions: 

( ) ( ) ( )
enr

h std enr enr

I I J J

I S J S

R R
 

  u x ξ q ξ q  (7.2) 

in which enr

JR are the enrichment functions associated with node J located in the enriched 

domain enrS , which is split up into two parts including: a set Sc for Heaviside enriched 

control points and a set Sf for crack tip enriched control points as shown in Figure 7.1. 

Furthermore, the enrichment functions are determined for each domain. 

    

Figure 7.1 Illustration of the nodal sets Scand Sf for a quadratic NURBS mesh. 

To describe the discontinuous displacement field, the enrichment function is defined 

as: 

 ( ) ( ) ( ) ( ) ,enr c

J J JR R H H J S  ξ ξ x x  (7.3) 

where the Heaviside function is given by: 

  Control point of set Sc 

    Control point of set Sf 
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1 if  ( *) 0
( )

1 orthewise
H
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 



x x n
x  (7.4) 

in which x* is the projection of point x on the crack path, and n is the normal vector of 

crack at point x*. Because the Heaviside function is a step function, its derivative equals 

to zero [113, 219, 225] except at the crack point, where there is no derivative. Thus, the 

first derivative of enrichment basis function by Heaviside function can be written in the 

following form: 

   ( ) ( ) ( ) ( ) ( ) , *enr

J J J J JR R H H R H H
       x x x x x x  (7.5) 

Similarly, the second derivative of Heaviside enrichment function is expressed as: 

   ( ) ( ) ( ) ( ) ( ) , *enr

J J J J JR R H H R H H
        x x x x x x  (7.6) 

Let us consider the one-dimensional domain discretized into three elements as 

illustrated in Figure 7.2. For an open uniform knot vector 1 2

3 3
0 0 0 0 1111   Ξ , the 

cubic B-spline basic functions and their first derivatives are revealed from Figure 7.2b 

and c, respectively. It is clearly observed that the C2 and C1 continuities are gained at all 

interior knots for the basis functions and their derivatives, respectively. The discontinuous 

point locates at position 0.45   belonging to the second element, which is described by 

four basis functions, i.e. 3 ( : 3 6)iR i   , By multiplying the Heaviside functions in Eq. 

(7.3), they attain the opposite values through the crack point. That enables us to model 

the discontinuity. As it can be seen in Figure 7.2d and e, the Heaviside enrichment 

functions and their first derivatives also keep the original continuities except at the crack 

position. On the other hand, the crack tip enrichment function can be written in the 

following form [226]: 

 
4

1

( ) ( ) ( , ) ( , ) ,enr f

J J L L J J

L

R R G r G r J S 


 
   

 
ξ ξ  (7.7) 

where 
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 (7.8) 
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in which r and   are polar coordinates in the local crack tip coordinate system. 

      
a) 

 

b) 
 

c) 

 
d) 

 
e) 

Figure 7.2 An 1D example of the enrichment basis functions by Heaviside function for the 

split element cut by the crack located at 0.45  : a) The Heaviside function; b) the B-

spline basis functions and c) their first derivative; d) the enrichment basis functions and e) 

their first derivative. 

Now, substituting the displacement field approximated in Eq. (7.2) into Eq. (3.9) and 

considering the enriched displacement field, the strain matrices can be rewritten in general 

form as:   
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std enr 
 

B = B B  (7.9) 

where Bstd and Benr are the standard and enriched strain matrices of B defined in the  forms 

similar to Eq. (3.14): 
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(7.10) 

in which R  can be either the NURBS basic functions ( )R ξ or enriched functions enrR . 

While, the global mass matrix M is estimated similarly to Eq. (3.21), i.e.: 
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(7.11) 

Resolve the linear eigenvalue equation Eq. (6.3), the natural frequency   of the 

cracked plates is obtained. 

7.3 Numerical results 

7.3.1 Verification of XIGA 

In order to validate the efficiency of the present method for the crack problems, two 

examples are studied, for which solutions are available in the literature. Let us firstly 

consider an isotropic infinite plate with material parameters of E = 107 kPa,  = 0.3 

containing a centre crack of length 2a subjected to a remote uniform stress  = 102 kPa. 

The plane strain state is assumed. The closed form displacement field in term of polar 

coordinates in a reference frame (r, ) centred at  the crack tip is [227]: 
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While the stress field is given by: 
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 (7.13) 

where IK a   is the mode I stress intensity factor. A unit shaded domain with crack 

length of 0.5 mm is modelled (as shown in Figure 7.3) with the prescribed displacements 

on the bottom, right and top edges prescribed by Eq. (7.12) and traction along the left 

edge defined by Eq. (7.13). Herein, the inhomogeneous Dirichlet BCs in IGA is treated 

according to the instruction in Section 3.5.2. 

 

Figure 7.3 Infinite crack plate in tension. 

To evaluate the present method, Figure 7.4 reveals a comparison between XFEM 

and XIGA (p = 3) using the relative error norms of displacement and energy, which are 

given by [169]: 

   
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h h
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a) Displacement error norm 

 

b) Enegy error norm 

Figure 7.4 Comparison of relative error norms between XIGA and XFEM. 

To estimate the convergence rate, we choose horizontal parameter to be the size of 

element, which is defined as the maximum distance of element edge. As compared with 

XFEM, it is observed that XIGA using higher-order basis function (cubic function) 

achieves better accuracy and higher convergence rate in displacement error norm as well 

as energy error norm. Figure 7.5 shows the contour plots of displacements and stress 

distributions in x and y directions, respectively. 
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       a) Displacement in x-direction                   

           

b) Displacement in y-direction                              

 

c) Axial stress x 

 

d) Axial stress y 

Figure 7.5 Contour plot of the displacements and stresses distribution. 

In the next example, we investigate a rectangular plate of length L = 16 mm, width 

W = 7 mm, thickness h = 1 mm and crack length of a = W/2 with material parameters of 

E = 3×107kPa,   = 0.25. The planar plate is enforced at the top edge by a shear loading   

= 1kPa and also clamped at the bottom edge as shown in Figure 7.6a. Herein, we use 

cubic element (p = 3) with an example of meshing as shown in Figure 7.6b. The analytical 

stress intensity factor (SIF) for this problem is KI = 34.0 as reported by Yau et al. [228]. 

Figure 7.7a and b show the relations between the relative error of SIF via the number of 

degrees of freedom (DOFs) and CPU time, respectively. Herein, the computations are 

performed on a laptop computer with CPU Intel® core (TM) 2 Duo T6400, 2.00 GHz 

processor. The present method has been coded in the Matlab language. It is again seen 

that the present method achieves more accurate results than XFEM. Indeed, to get the 

accuracy of SIF KI with error lower than 0.1%, XIGA needs approximately 4300 DOFs, 

while XFEM uses more than 25000 DOFs with nearly two times the required 
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computational cost. Figure 7.8 plots the distribution of axial stress, shear stress and 

displacement along y direction.  

 

 

Figure 7.6 An edge crack plate under shear stress: a)model and b) meshing of 11×25 cubic 

elements. 

 

  

Figure 7.7 Comparison between XIGA and XFEM. 
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a) Displacement Uy                  

 

b) Axial stress x 

 

c) Axial stress xy 

Figure 7.8 Contour plot of the displacement and stresses distribution. 

7.3.2 Central crack plate 

Let us consider an isotropic plate with dimension L × W × h having a central crack 

length a as shown in Figure 7.9a. The plate having fully simply supported edges is 

discretizing in 21×21 cubic elements as plotted in Figure 7.9b.  

 

 

 

a) Plate model 

 

b) mesh of 21x21 cubic elements 

Figure 7.9 The plate with a center crack 

Table 7.1 reveals the effect of L/h ratio on the first five natural frequencies 

2ˆ /L h D    of a central crack plate (a/L=0.5), where  3 2/ 12(1 )D Eh    is the 

flexural rigidity of the plate. As expected, the obtained results match well with 3D 

solutions using Ritz method by Huang [222]. Herein, increase in the length-to-thickness 
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ratio makes the plates thinner and the results reach CPT solutions by Stahl and Keer [210] 

and Liew [217]. In case of thin plate (L/h = 100), the present model using thick plate 

theory also yields highly consistent results with lower than 1% error. Thus, for 

comparison with thin plate results, the length-to-thickness ratio L/h = 100 is used for 

further analysis. 

Table 7.1 Effect of L/h ratio on the non-dimension frequency ̂  of the centre cracked plate 

(a/L=0.5). 

L/h Source Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

5 3D elasticity [222] 15.3099 28.9610 37.7709 52.7735 55.8137 

 XIGA (GSDT) 15.2563 29.8746 37.3251 52.4719 55.3396 

 XIGA (FSDT) 15.2478 28.9675 37.4698 52.3002 55.3078 

10 3D elasticity  16.7507 36.6804 44.7765 67.2474 70.8494 

 XIGA (GSDT) 16.7205 37.2500 44.4276 66.8942 70.3951 

 XIGA (FSDT) 16.7155 36.8069 44.6413 67.0764 70.5312 

20 3D elasticity [222] 17.3092 40.5798 47.4863 74.1539 77.9872 

 XIGA (GSDT) 17.2894 40.9878 47.2903 73.9589 77.6872 

 XIGA (FSDT) 17.2810 40.7329 47.4410 74.1472 77.8016 

100 3D elasticity [222] 17.6892 42.8930 48.6429 77.5246 81.9196 

 XIGA (GSDT) 17.6638 43.3424 48.5695 77.4614 81.7008 

 XIGA (FSDT) 17.6595 43.6574 48.6100 77.5809 81.7446 

CPT Stahl [210] 17.706 43.031 48.697 77.733 82.155 

  Liew [217] 17.85 42.82 48.72 77.44 83.01 

Next, Table 7.2 tabulates a convergence study of the first five natural frequencies ̂  

of the thin plate. It is observed that within thick plate theories such as FSDT and HSDT, 

the present method gains good accuracy with slightly lower results as compared to that 

of CPT [210, 217] with very small errors of less than 0.18% and 0.96% for the intact and 

cracked plate, respectively. Using a mesh of 21×21 cubic elements, the relation between 

non-dimensional frequencies ̂  and crack length ratio is listed in Table 7.3. The results 

obtained from XIGA are in good agreement with those obtained from CPT solution by 

Stahl [210] using Levy-Nadia approach, Liew et al. [217] using the domain 

decomposition method, 3D elasticity [222] and Mindlin plate theory [229] using Ritz 

method. In addition, the comparison of first five frequencies with CPT results is depicted 

in Figure 7.10. It reveals that the frequencies decrease due to an increase in crack length 

ratio. For example, the values of frequency, according to change mode shape from 1 to 5, 

reduce up to 18.4%, 67.3%, 5.4%, 40.8% and 23.8% of its initial values for intact plate, 
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respectively. It is concluded that the magnitude of the frequency for anti-symmetric 

modes through the y-axis, which is perpendicular to the cracked path (e.g. mode 2, mode 

4, as shown in Figure 7.11), is much more affected by the crack length. The discontinuous 

displacement is shown clearly along the crack path. 

Table 7.2 Convergence study of natural frequencies for the thin plate. 

a/L Mode GSDT  FSDT Stahl 

  9×9 13×13 17×17 21×21 25×25 25×25  [210] 

0.5 1 17.5193 17.6820 17.6744 17.6638 17.6555 17.6473 17.706 

 2 40.7297 43.4868 43.4441 43.3424 43.2637 43.4461 43.031 

 3 45.3888 48.2668 48.5149 48.5695 48.5857 48.6015 48.697 

 4 66.4784 76.5502 77.3085 77.4614 77.5011 77.5584 77.733 

  5 69.5361 81.7570 81.7221 81.7008 81.6812 81.6758 82.155 

 

 

 

Figure 7.10 Variation of the first five natural frequencies versus crack length ratios. 
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Table 7.3 Non dimensional natural frequencies of the isotropic square plate (L/h=100) for 

different crack length ratios  

Mode Source 
Crack length ratio a/L  

0 0.2 0.4 0.5 0.6 0.8 1 

1 Stahl 19.739 19.305 18.279 17.706 17.193 16.403 16.127 

 Liew 19.74 19.38 18.44 17.85 17.33 16.47 16.13 

 Huang - - - 17.69(*) 17.13(**) - - 

 XIGA 

(GSDT) 

19.732 19.2638 18.2349 17.6638 17.1305 16.3587 16.1096 

 (0.04) (0.21) (0.24) (0.24) (0.36) (0.27) (0.11) 

  XIGA 

(FSDT) 

19.732 19.2711 18.2324 17.6595 17.1204 16.3544 16.1092 

 (0.04) (0.18) (0.25) (0.26) (0.42) (0.30) (0.11) 

2 Stahl 49.348 49.170 46.624 43.031 37.978 27.773 16.127 

 Liew 49.35 49.16 46.44 42.82 37.75 27.43 16.13 

 Huang - - - 42.89 37.69 - - 

 XIGA  

(GSDT) 

49.3033 49.098 46.7232 43.3424 38.1929 27.9035 16.1096 

 (0.09) (0.15) (0.21) (0.72) (0.57) (0.47) (0.11) 

  XIGA 

 (FSDT) 

49.3034 49.1147 46.8296 43.6574 38.3476 28.0654 16.1092 

 (0.09) (0.11) (0.44) (1.46) (0.97) (1.05) (0.11) 

3 Stahl 49.348 49.328 49.032 48.697 48.223 47.256 46.742 

 Liew 49.35 49.31 49.04 48.72 48.26 47.27 46.74 

 Huang - - - 48.64 48.13 - - 

 XIGA  

(GSDT) 

49.3033 49.2557 48.9313 48.5695 48.1013 47.0781 46.6618 

 (0.09) (0.15) (0.21) (0.26) (0.25) (0.38) (0.17) 

  XIGA  

(FSDT) 

49.3034 49.2761 48.9668 48.6100 48.1154 47.088 46.6611 

 (0.09) (0.11) (0.13) (0.18) (0.22) (0.36) (0.17) 

4 Stahl 78.957 78.957 78.602 77.733 75.581 65.732 46.742 

 Liew 78.96 78.81 78.39 77.44 75.23 65.19 46.74 

 Huang - - - 77.52 75.28   

 XIGA 

(GSDT) 

78.8423 78.7275 78.3262 77.4614 75.4169 65.7993 46.6618 

 (0.15) (0.29) (0.35) (0.35) (0.22) (0.10) (0.17) 

  XIGA  

(FSDT) 

78.8424 78.7689 78.4028 77.5809 75.4895 65.9949 46.6611 

 (0.15) (0.24) (0.25) (0.20) (0.12) (0.40) (0.17) 

5 Stahl 98.696 93.959 85.510 82.155 79.588 76.371 75.285 

 Liew 98.70 94.69 86.71 83.01 80.32 76.60 75.28 

 Huang - - - 81.92 79.22 - - 

 XIGA 

(GSDT) 

98.5193 92.9166 84.9408 81.7008 79.2038 76.0646 75.1033 

 (0.18) (1.11) (0.67) (0.55) (0.48) (0.40) (0.24) 

  XIGA 

 (FSDT) 

98.5206 93.4560 85.0508 81.7446 79.1787 76.0581 75.1019 

 (0.18) (0.54) (0.54) (0.50) (0.51) (0.41) (0.24) 
(*)3D-elasticity theory [222], and (**)Mindlin plate theory [229]  

In parenthesis, there are the relative errors as compared with CPT’s solution [210]  
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Mode 1 

                                                                        
Mode 2 

 
Mode 3 

 
Mode 4 

 
Mode 5 

Figure 7.11 The first five mode shapes of the simply supported plate with the center crack 

with a/L =0.8 

Finally, the effect of length to thickness ratio L/h on the frequencies of Al/Al2O3 

FGM plate is shown in Figure 7.12. In this example, the material properties are calculated 

by two homogenization schemes including the rule of mixture and the Mori-Tanaka 

scheme with the power index n = 1. For inhomogeneous materials, the effective property 

through the thickness of the former is higher than the latter. The results from the Mori-

Tanaka scheme, hence, are lower than that of the counterpart because of lower stiffness. 

Moreover, the value of natural frequency changes rapidly between thick plate (L/h =2) 

and moderate thin plate (L/h =50) with discrepancy up to 57.2% and 71.3% via the rule 

of mixture and the Mori-Tanaka scheme, respectively. However, for thin plates 

(L/h100), it is independent of the length to thickness ratio with approximated difference 

up to 1% due to naturally shear-locking free by the present plate theory. 
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Figure 7.12 The first frequency of the central cracked Al/Al2O3 plate obtained for both 

mixture and Mori-Tanaka schemes. 

7.3.3 Edge cracked plate 

Let us consider a simply supported square plate with uniform thickness h and length 

L, respectively. The FGM plates containing a crack side from the left edge with length a, 

is discretized into 2121 cubic NURBS elements as shown in Figure 7.13.  

 

 

a) Plate model 

 

b) Mesh of 21x21 cubic elements 

Figure 7.13 The plate with an edge crack. 

Herein, the variation of material properties through the plate thickness is evaluated 

using the rule of mixture. Table 7.4 depicts the effect of the power index n on the first 

five natural frequencies of a simply supported Al/Al2O3 plate with length to thickness 
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ratio L/h=10 and crack length ratio a/L=0.5. The present method gives good agreement 

compared to both the Ritz method and XFEM. It can be seen that the present results are 

slightly lower than that of Huang et al. [221] based on TSDT or even Natarajan et al. 

[220] based on FSDT. Compared to 3D elasticity solution calculated by ABAQUS finite 

element package (using 130791 nodes) [221], the proposed approach based on TSDT 

model obtains the most accurate first natural frequency. As shown in Figure 2.4, 

increasing volume fraction exponent n reduces the effective property of the material 

through the plate thickness. Thus, frequency parameter 
2

/ /
c c

L h E    decreases 

because of reduction in the stiffness of FGM plate. The same conclusions are drawn for 

cantilever Al/ZrO2 cracked plate with results listed in Table 7.5. The first four mode 

shapes of the edge cracked FGM plate under fully simply supported and clamped edge 

right conditions are shown in Figure 7.14 and Figure 7.15, respectively. It can be again 

seen that the magnitude of deflection based on anti-symmetric mode through the y-axis 

changes drastically around the crack path (for example, modes 2 and 4). 

      
Mode 1                                              

      
   Mode 2                                           

 
Mode 3 

 
Mode 4 

Figure 7.14 First four mode shapes of the edge crack Al/Al2O3 plate. 
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Table 7.4 The first five natural frequencies of the simply supported Al/Al2O3 plate (a/ L= 0.5) 

n 

  

Method 

  

Mode number 

1 2 3 4 5 

0 Ritz [221] 5.379 11.450 13.320 16.180 17.320 

 XFEM [220] 5.387 11.419 13.359 - - 

 XIGA (GSDT) 5.3643 11.4734 13.2801 16.2062 17.2927 

  XIGA (FSDT) 5.3657 11.3901 13.2818 16.2062 17.2433 

0.2 Ritz [221] 5.001 10.680 12.410 15.420 16.150 

 XFEM [220] 5.028 10.659 12.437 - - 

 XIGA (GSDT) 4.9879 10.7069 12.3702 15.4377 16.1267 

  XIGA (FSDT) 4.9877 10.6208 12.3641 15.4376 16.0678 

1 3D elasticity [221]  4.115 8.836 10.240 13.330 13.520 

 Ritz [221] 4.122 8.856 10.250 13.310 13.490 

 XFEM [220] 4.1220 8.5260 10.2850 - - 

 XIGA (GSDT) 4.1119 8.8791 10.2131 13.3103 13.4946 

  XIGA (FSDT) 4.1123 8.8129 10.2139 13.2728 13.4911 

5 Ritz [221] 3.511 7.379 8.621 10.490 11.170 

 XFEM [220] 3.626 7.415 8.566 - - 

 XIGA (GSDT) 3.5018 7.3980 8.5912 10.4928 11.1511 

  XIGA (FSDT) 3.5218 7.4559 8.6873 10.4956 11.2728 

10 Ritz [221] 3.388 7.062 8.289 9.569 10.710 

 XFEM [220] 3.409 7.059 8.221 - - 

 XIGA (GSDT) 3.3773 7.0792 8.2582 9.5750 10.6887 

  XIGA (FSDT) 3.3986 7.1420 8.3594 9.5757 10.8206 
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Mode 1                                              

      
   Mode 2                                           

 
Mode 3 

 
Mode 4 

Figure 7.15 First four mode shapes of the cantilever Al/ZrO2 plate with the edge crack. 

Table 7.5 The first five natural frequencies of the cantilever Al/ZrO2 plate (a/L = 0.5) 

Mode Method 
n          

0 0.2 1 5 10 

1 Ritz [221] 1.0380 1.0080 0.9549 0.9743 0.9722 

 XFEM [220] 1.0380 1.0075 0.9546 0.9748 0.9722 

 XIGA (GSDT) 1.0381 1.0076 0.9547 0.9738 0.9716 

  XIGA (FSDT) 1.0380 1.0074 0.9546 0.9744 0.9721 

2 Ritz [221] 1.7330 1.6840 1.5970 1.6210 1.6170 

 XFEM [220] 1.7329 1.6834 1.5964 1.6242 1.6194 

 XIGA (GSDT) 1.7363 1.6871 1.6006 1.6238 1.6189 

  XIGA (FSDT) 1.7271 1.6778 1.5919 1.6191 1.6135 

3 Ritz [221] 4.8100 4.6790 4.4410 4.4760 4.4620 

 XFEM [220] 4.8231 4.6890 4.4410 4.4955 4.4845 

 XIGA (GSDT) 4.8084 4.6782 4.4407 4.4743 4.4586 

  XIGA (FSDT) 4.8015 4.6695 4.4340 4.4883 4.4693 

4 Ritz [221] 5.2180 5.0780 4.8200 4.8500 4.8340 

 XIGA (GSDT) 5.2332 5.0923 4.8336 4.8626 4.8457 

  XIGA (FSDT) 5.2067 5.0644 4.8089 4.8618 4.8409 

5 Ritz [221] 6.1850 6.0250 5.7160 5.5900 5.4780 

 XIGA (GSDT) 6.1959 6.0246 5.7148 5.5986 5.4866 

  XIGA (FSDT) 6.1950 6.0216 5.7139 5.5987 5.4866 
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7.3.4 Circular and annular plates with a central crack 

We study circular and annular plates with uniform thickness h, outer radius R and 

inner one r as shown in Figure 7.16. The Al/Al2O3 FGM plate is clamped at the outer 

boundary and has a central crack with length ( ) / 2a R r  . Herein, the Mori-Tanaka 

homogenization scheme is used. 

 

Figure 7.16 The model of an annular plate. 

First, the cracked circular plate with the central crack length 2a is investigated by 

setting the inner radius r = 0.  Because the reference solution of this problem is not 

available, the present method is compared with the XFEM [226]. Note that XFEM 

incorporated with the FSDT employs the selective integration technique in order to 

enhance the results [230]. The computed frequency parameters  2 / /c cR h E    

are illustrated in Figure 7.17. It is clear that XIGA provides lower frequencies and higher 

convergence rate than XFEM. Table 7.6 shows the effect of the power index n on the first 

five natural frequencies. Observation is again that the frequency parameter decreases due 

to increase in gradient index, n from 0 to 10. It is also seen that there is a bit difference 

between the two methods. This may be caused by the following reasons: (1) geometric 

error due to curved geometry is exact description by XIGA based on NURBS instead of 

the approximation in XFEM and (2) approximated order: XIGA utilizes NURBS with 

higher-order functions than XFEM using bilinear Lagrange functions. Furthermore, in 

XIGA, cubic basis functions (p = 3) gains less results than quadratic basic functions (p = 

2). It is believed that with higher-order approximated function, cubic elements produce 

better results. This conclusion has been previously confirmed in [116]. Figure 7.18 plots 
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the fundamental mode shapes of the circular plate. Using NURBS functions, the curved 

boundary of the circular plate is still described exactly. 

 

Figure 7.17 Convergence of the first frequency of a cracked FGM circular plate with a/R = 

0.5, h/R = 0.1, n = 1. 

Table 7.6 The first five natural frequencies   of a clamped circular Al/Al2O3 plate with the 

central crack (a/R = 0.5) 

n Method 
Mode number 

1 2 3 4 5 

0 XFEM(*) 
2.6436 4.4598 5.9206 8.6034 9.0733 

 XIGA(**) (p=2) 2.6406 4.4929 5.9177 8.6315 9.1287 

  XIGA(**) (p=3) 2.6309 4.3435 5.8750 8.5429 8.9441 

0.2 XFEM 2.2080 3.7396 4.9485 7.1937 7.5976 

 XIGA (p=2) 2.2055 3.7674 4.9467 7.2188 7.6452 

  XIGA (p=3) 2.1972 3.6414 4.9111 7.1434 7.4922 

1 XFEM 1.8086 3.0674 4.0536 5.8914 6.2259 

 XIGA (p=2) 1.8044 3.0869 4.0442 5.8989 6.2474 

  XIGA (p=3) 1.7969 2.9762 4.0127 5.8306 6.1146 

5 XFEM 1.6364 2.7475 3.6526 5.2942 5.5742 

 XIGA (p=2) 1.6288 2.7536 3.629 5.2732 5.5584 

  XIGA (p=3) 1.6223 2.6538 3.5999 5.211 5.4347 

10 XFEM 1.5678 2.6276 3.4977 5.0687 5.3326 

 XIGA (p=2) 1.5624 2.6391 3.4821 5.0609 5.3338 

  XIGA (p=3) 1.5564 2.5462 3.4550 5.0036 5.2181 
(*)XFEM uses a fine mesh of 45×45 4-node quadrilateral elements;  
(**)XIGA uses a mesh of 31×31quadratic (or cubic) NURBS elements. 
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Mode 3 

 

Mode 4 

Figure 7.18 First four mode shapes of the edge crack Al/Al2O3 plate. 

Finally, as the inner radius r  0, we have the full annular plate shown in Figure 7.16. 

Because of symmetry, an upper haft of plate has been modelled, as shown in Figure 7.19, 

with the symmetric constraint along the line y = 0. Herein, the treatment of symmetric 

BCs is implemented according to Section 3.5.1. 

 

Figure 7.19 Mesh of an upper half of an annular plate. 

O x 

y 
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Figure 7.20 First four mode shapes of the annular plate with R/r=2, R/h=10. 

Table 7.7 shows the frequency parameter 
2( ) / /c cR r h E     of the annular 

Al/Al2O3 plates for different outer radius to inner radius ratios, R/r and radius to thickness 

ratios, R/h according to n = 1. It is concluded that the frequency parameters decrease 

sequentially by increasing inner radius to outer radius ratio r/R. To close this section, the 

first four mode shapes of annular FGM plate are depicted in Figure 7.20. 

7.4 Concluding remarks 

A novel and effective formulation based on combining XIGA and GSDT has been 

applied to dynamic analysis of cracked FGM plates. In this method, the Heaviside 

function is enriched to capture the discontinuous phenomenon at the crack faces while, 

the tip enrichment functions from analytical solution are incorporated with NURBS to 

perform the singular displacement field at the crack tips. The obtained results, which are 

in excellent agreement with that of analytical and numerical methods in the literature, 

demonstrate that XIGA is an effectively computational tool for vibration analysis of the 

cracked plates. 

It is also concluded that magnitudes of the natural frequencies decrease due to an 

increase in crack length ratio. They change dramatically according to anti-symmetric 

mode through the y-axis, which is perpendicular to crack path.  
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Herein, two homogenous models based on exponent function have been used to 

estimate the effective property of the FGM plates including the rule of mixture and the 

Mori-Tanaka technique. It can be seen that, increasing power index n leads to a reduction 

of frequency parameter of the FGM plates. In addition, to consider the interactions among 

the constituents, the Mori-Tanaka homogenization scheme gains lower frequency value 

than the rule of mixture. 

Beside the study of some benchmarks in rectangular geometry for purpose of 

comparison, extensive studies were conducted to concentrate in circular and annular FGM 

plates. It is believed that XIGA with non-geometric approximation can be very promising 

to provide good reference results for vibration analysis of these plates with curved 

boundaries. 

Table 7.7 The frequency parameter  of the annular pate for different inner radius to outer 

radius ratios, r/R and radius to thickness ratios, R/h according to n = 1. 

R/h r/R 
Mode number       

1 2 3 4 5 

2 0 1.2786 1.7682 2.3336 2.7352 2.8058 

 0.2 0.8438 1.0109 1.7316 1.8588 1.9021 

 0.5 0.5516 0.5896 0.7308 0.8458 0.9817 

  0.8 0.2760 0.2771 0.2800 0.2896 0.2905 

5 0 1.6804 2.6230 3.5290 4.9598 5.0683 

 0.2 1.0877 1.3898 2.7728 3.4371 4.0295 

 0.5 0.7845 0.8556 1.1536 1.3664 1.9105 

  0.8 0.4923 0.4965 0.5066 0.5225 0.5537 

10 0 1.8480 3.5185 4.0473 5.9916 6.3512 

 0.2 1.1563 1.5352 3.1932 4.1404 4.8849 

 0.5 0.8621 0.9560 1.3533 1.6388 2.3101 

  0.8 0.6470 0.6540 0.6730 0.6975 0.7545 

20 0 1.8379 3.1941 4.1533 6.1526 6.4956 

 0.2 1.1793 1.598 3.3309 4.4139 5.2045 

 0.5 0.8877 0.9954 1.4507 1.7937 2.5902 

  0.8 0.7279 0.7371 0.7655 0.7999 0.8775 

100 0 1.8649 3.3264 4.2398 6.3270 6.7435 

 0.2 1.1922 1.6442 3.4202 4.6187 5.3415 

 0.5 0.8973 1.0154 1.5007 1.8656 2.6187 

  0.8 0.7646 0.7753 0.8124 0.8567 0.9362 

 

 



 

 

 

Chapter 8 Conclusions and Future Work 

 

8.1 Summary and conclusion 

This thesis has successfully addressed the plate formulation based on higher-order 

plate theories for modelling and analysing functionally graded material plates by using 

NURBS-based isogeometric analysis. The FGM plates, made of a mixture of two distinct 

material phases varying through the plate thickness, are homogenized by two 

homogenization techniques: the rule of mixture or the Mori-Tanaka scheme. The two 

models produce the same parameters for homogeneous material. As material is 

inhomogeneous, the former produces higher effective properties than the latter. Thus, the 

two homogenization techniques give quite different results for FGM plates. 

By including higher-order terms in the displacement fields, a family of HSDT 

models including Reddy’s TSDT, RPT and GSDT is constructed to describe more 

accurately the shear energy part without SCF requirement. They provide better results 

and more accurate shear stresses than FSDT with the curved shapes through the plate 

thickness and traction free at top and bottom surfaces. RPT and GSDT produce the shear 

strains/stresses, which are independent of the transverse displacement. As a result, they 

naturally overcome the shear-locking phenomenon.  

An isogeometric approach based on B-spline and non-uniform rational B-spline 

achieves easily the smoothness with Cp-1continuity by using pth order NURBS. The main 

advantage of this method is that it naturally fulfils the C1-continuity requirement of the 

HSDT models by using higher-order NURBS basis, a non-trivial task in traditional FEM. 

By embedding the well-known framework of isogeometric finite element, the exact 

geometry is represented in the first coarsest mesh and is preserved throughout the 

refinement process. It enables us to eliminate the geometric error. Consequently, the 

present method produces more accurate and cost-effective results for the plate problems. 

Furthermore, using the higher-order NURBS basis functions enables us to reduce the 

shear locking effect in TSDT and FSDT for very thin plate (L/h >1000). 
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In this thesis, the GSDT and RPT models are presented in the general forms, which 

are strongly dependent on the function f(z). Beside, some other available functions [57, 

118, 160, 162, 164, 165], a new inverse tangent function is proposed. Through numerous 

examples for static, free vibration and buckling analyses of the FGM plates, it is observed 

that the proposed function enhances the solutions, which are more accurate than those of 

IGA based on other functions or that of quasi-3D models as compared to the 3D elasticity 

solutions. 

By adopting large deflection assumptions, the von Kármán strain-displacement 

relation is considered in the plate formulations for geometrically nonlinear bending, 

transient and post-buckling analyses. The nonlinear governing equations are originally 

established in the Lagrangian system (initial configuration) and then solved by the 

incremental/iterative approaches. With the additional nonlinear stiffness in the global 

stiffness, the nonlinear deflections are always lower than the linear ones. 

Because of the non-symmetric material properties and temperature field through the 

plate thickness in the FGM plates, there is no bifurcation-type of instability occurs for 

simply supported conditions. Under these boundary conditions, the plate exhibits bending 

behaviour due to the existence of extra extension-bending coupling or thermal moment. 

In special case, the clamped boundary condition is capable to neutralize the extra 

moments. Thus, the primary path and the secondary path (post buckling path) can be 

exhibited for the clamped FGM plates. 

In the last chapter, an extended isogeometric analysis (XIGA) is successfully 

developed for the cracked 2D structures and FGM plates. In this method, the Heaviside 

function is enriched to capture the discontinuous phenomenon at the crack faces, whilst 

the tip enrichment functions from analytical solution are incorporated with NURBS to 

approximate the singular field at the crack tips. The obtained results from some 

benchmark problems show that proposal method achieves better accuracy and super-

convergence as compared to traditional XFEM.  

8.2 Future research 

This thesis is restricted to study FGM plate problems related to static and vibration 

analyses, elastic stability based on a framework of isogeometric approach. Many aspects 
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have been not yet studied here. They can be suggested as possible future extension of the 

present work: 

- With many wonderful features, FGMs have been applied in the nano/micro 

structures such as nano-electro-mechanical systems (NEMS) and micro-electro-

mechanical systems (MEMS). Beside some experimental results, the present 

method can be combined with the nonlocal continuum mechanics to model the 

nano and micro material mechanical behaviours. 

- The results in this thesis are given for one layer FGM, for which properties vary 

according to one dimension through plate thickness. In some realistic structures, 

volume fractions of the constituents can be distributed variously through two-

directions 

- Under high temperature, the constituents can react with oxygen and become 

oxidized. It is obvious that their material nonlinear behaviour will dominate. 

Therefore, nonlinear material models need to be developed and incorporated in 

the present formulation to capture more realistic structural behaviours. 

- All the presented examples are either square or circle/ellipse, which are the 

simplest geometries that can be modelled straightforward with only a single patch. 

To describe some complex geometries, the new techniques based on IGA: multi-

patch or finite cell method have been developed. It is believed that they are very 

useful for analysis of real structures. 

- Another research direction is to extend the present 2D theories to full-3D or quasi-

3D theories. 

- Currently, uniform mesh is utilized at discontinuous points. To enhance results, 

local refinement strategies can be developed for the present approach. We suggest 

to use T-spline basis functions instead of NURBS basis functions.  

- A possible interesting topic is to apply XIGA for vibration based damage 

assessment.  

- In chapter 7, the crack was assumed to develop through the whole thickness of the 

plate. An interesting direction, in particular for fracture mechanics, related to the 

part-through surface crack in an elastic plate is suggested. A special treatment 

could be developed in the vicinity of damage position while standard 

homogenized plate model is used elsewhere.  
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