
FACULTY OF SCIENCES

Towards Flexible Goal-Oriented
Logic Programming

ir. Benoit Desouter

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Computer Science

Supervisors:
prof. dr. ir. Tom Schrijvers

prof. dr. ir. Marko van Dooren

Department of Applied Mathematics, Computer Science and Statistics
Faculty of Sciences, Ghent University

ii

Acknowledgments

As it feels more natural to thank people in the language that we have used on
a daily basis during the journey towards completing this PhD thesis, I’ll use
Dutch for most of the next few pages.

In de eerste plaats wil ik mijn promotoren Tom en Marko bedanken. Tom,
bedankt voor het geduld als ik occasioneel iets maar half begreep, en om er
altijd vertrouwen in te blijven hebben. Je hebt me heel wat kansen aangereikt,
waardoor ik van heel wat onderwerpen iets heb opgestoken. Marko, hoewel je
er pas halverwege bijkwam, toonde je al snel interesse voor het onderwerp en
heb je er vanuit je eigen expertise heel wat aan toegevoegd. Je deur stond altijd
voor me open als ik even een tussentijdse statusupdate wou geven. Bedankt
voor de babbels over vanalles en nog wat, en om me grondig te betrekken bij
het geven van Programmeren 1. Ik heb nog heel wat bijgeleerd over objec-
toriëntatie door jouw visie, slides en codevoorbeelden. Daarnaast ook bedankt
om mijn lokale LATEX-goeroe te zijn: niettegenstaande ik LATEX al tien jaar
lang gebruik, heb ik voor het precies goed krijgen van deze thesis heel wat
nieuwe pakketten en trucjes moeten gebruiken, met regelmatig vreemde out-
put of cryptische foutmeldingen tot gevolg die ik niet altijd alleen kon oplossen
— of het zou me op zijn minst veel meer tijd gekost hebben.

Ook wil ik graag Bart Demoen, Jan Wielemaker, Christophe Scholliers,
Kris Coolsaet en Gunnar Brinkmann bedanken voor het grondig nalezen van
mijn thesis en voor hun kritische feedback.

In het bijzonder wil ik Bart bedanken voor zijn ondersteuning van hPro-
log, het experimentele Prolog-systeem waarop ik zoveel heb gevloekt. Zon-
der hProlog zou het meeste van deze thesis echter niet mogelijk geweest zijn.
Meer dan eens heb je geduldig geantwoord op mijn emails met vragen over het

iii

iv

“vreemde” gedrag van hProlog. Bedankt voor de stroom aan Prolog tips en
WAM-expertise.

Het is bijzonder leuk als je werk ook gebruikt wordt door iemand anders
dan jezelf, en zeker als die persoon een alom gerespecteerde voortrekker is in
dat gebied. Daarom wil ik Jan bedanken om onze implementatie van tabling
te porten naar SWI-Prolog, de datastructuren te herschrijven in C en het
geheel op te nemen in de officiële development release. Daardoor heeft SWI-
Prolog nu een experimentele tabling implementatie die stapsgewijs verbeterd
kan worden. Het was heel onverwachts om zoveel positieve reacties te zien uit
de SWI-Prolog community.

Gunnar en Kris, bedankt om de administratie op jullie te nemen; ik weet
dat dat niet altijd de leukste taak is.

I would also like to thank LogicBlox, Inc. for giving us the ability to inves-
tigate the integration of Datalog and constraint programming in their system.

Ik heb heel graag gewerkt op de vakgroep WE02 omwille van de goede sfeer.
De verzameling van TWISTers die ik moet bedanken is in de loop der jaren
behoorlijk groot geworden. Om die verzameling te kunnen neerschrijven, heb
ik noodgedwongen een volgorde moeten kiezen, hoewel ik dat liever niet had
moeten doen. Op andere momenten in de tijd was de volgorde misschien anders
geweest. Mezelf kennende, ben ik waarschijnlijk ook wel iemand onterecht
vergeten, daarvoor al vast een sorry en dankjewel voor wie hieronder geen
specifieke vermelding heeft, maar zich toch aangesproken voelt.

Herman, ik had me geen betere bureaugenoot kunnen indenken. Merci voor
de komische noot die nooit ver weg was, de ernst wanneer het nodig was en
voor niet-ophoudende babbels over geeky en minder geeky onderwerpen. Lynn
en Sofie, bedankt voor de vele aangename gesprekken, het aanhoren van mijn
occasionele gezeur, en voor de inside jokes over het oprichten van een eigen
vakgroep bestaande uit de mensen van de “vaagheid” en mezelf. Aan de wan-
delzoektocht die we met ons drie hebben ondernomen op de personeelssportdag
2015, heb ik hele goede herinneringen. Lynn, bedankt om op de zonnige mei-
dag toen Bart, Sofie en wij op het grasveld achter S9 zaten te werken (wegens
de veel te warme bureaus), bij het zien van een eerdere versie van dit manu-
script, spontaan suggesties te maken voor het verbeteren van mijn wiskundige
notatie. Virginie, bedankt voor je enthousiasme, zowel bij badminton als op
het werk, en voor het hart onder de riem wanneer ik daar nood aan had. Om
gelijkaardige redenen een grote dankjewel voor het het een“man”spraesidium
van onze niet-erkende “studentenvereniging”: Catherine. Daarbovenop nog
een dankjewel voor het organiseren van spelletjesavonden, weekendjes en der-
gelijke. Je besefte van bij het begin als geen ander het belang van teambuilding
en je slaagt er telkens opnieuw in om elke vreemde eend in de bijt zich al snel

v

thuis te laten voelen. Bij toekomstige organisaties zal ik zeker van de partij
zijn; jullie zijn nog niet van mij af, beloofd! Charlotte, dankjewel voor bab-
bels over verbouwingen, over je schattige dochtertje Emilina (bij de laatste
aanpassing van dit dankwoord, ben je nog maar net bevallen van Jolan) en
zoveel meer. Machteld en Jens, dankjewel voor het tweewekelijks reserveren
van de badmintonpleintjes in het GUSB en voor goede babbels. Dieter en
Bart, jullie waren als “de informatica-assistenten” best wel een voorbeeld voor
mij. Bedankt daarvoor! Felix, ik ben er zeker van dat ook jij een voorbeel-
dassistent zult zijn voor toekomstige collega’s. Katia en Ann, de koffiepauzes
waren voor mij de manier om even alle dagelijkse beslommeringen rond onder-
zoek en onderwijs uit mijn hoofd te zetten. Bedankt om die momenten nog
aangenamer te maken. Hilde, bedankt voor alle petten die jij droeg. Kris, om
het er na zoveel keer inwrijven dat ik qua diploma een ingenieur ben, op je
geheel eigen wijze toch je appreciatie voor me uit te drukken: bedankt! Glad,
niet alleen tijdens je S9 tijd, maar telkens we elkaar op straat tegenkwamen,
was je bereid je ervaring met me te delen. We hebben samen behoorlijk de
draak gestoken met alles wat maar enigszins naar bureaucratie rook. Nico,
ook uit jouw ervaring kon ik rijkelijk putten. Joyce en jij zijn bovendien fan-
tastische TWIST-organisatoren en Minions! Michaël, officieel was je de peter
van Herman, maar tijdens die eerste onzekere weken, nu 4 jaar geleden, deed
je meer dan je best om ook mij op m’n gemak te stellen. Jean-Marie, Jan en
Dominiek, jullie enthousiasme en inzet was aanstekelijk!

Annick, Davy, Nico, Niels en Bert, voor het samen geven van en uitgebreid
discussiëren over Programmeren 1. De cursus van vier jaar geleden lijkt in het
niets meer op de cursus van vandaag; dat bracht vaak een hoop last minute
werk en kinderziektes met zich mee, die we samen hebben aangepakt en over-
wonnen. We hebben honderden studenten naar de eindmeet geleid. Annick,
dankjewel voor het delen van pure onderwijservaring, je vele voorbereidings-
werk in het weekend, en voor de aangename babbels tussenin! Ik keek altijd
uit naar een les Programmeren 1. Davy, bedankt voor de technische hulpmid-
delen waarmee we de uitdaging konden aangaan om eerstejaarsstudenten zo
goed mogelijk de basis van objectoriëntatie bij te brengen. Ik bedoel natuurlijk
Indianio en Capthook. Ook merci voor de luchtige insteek die bij jou nooit
ver te zoeken was. Nico en Niels, steeds als ik weer eens dreigde bedolven te
worden onder de berg oefeningen en bijhorende testen die we in de loop der
jaren opgesteld en gewijzigd hebben, kon ik op jullie hulp rekenen.

Sarah, je verdient een bijzondere vermelding voor je inspirerende persoon-
lijkheid. Zelden heb ik iemand ontmoet met zo’n geduld, rustig, realistisch en
supervriendelijk. Bedankt voor alle korte en langere topgesprekken, voor je
verstandige opmerkingen en om me meer dan eens met m’n mond vol tanden

vi

te zetten. Al ben je dan al bijna twee jaar vol toewijding aan je doctoraat aan
het schrijven, je blijft de verstandigste student aan wie ik ooit les heb mogen
geven. Als halftime TWIST-er, halftime VIB-er en nog met een promotor in
het verre Granada, heb je het misschien niet altijd even gemakkelijk, maar
ik heb je niet één keer horen klagen. Integendeel, je benadert alles vanuit je
positieve maar kritische ingesteldheid.

Aster, Cara en Malin (in alfabetische volgorde), ik ben behoorlijk trots op
jullie; daarom kunnen jullie hier ook niet ontbreken. Tot slot wil ik ook mijn
ouders bedanken voor alle goede zorgen en voor alle kansen. Jullie hebben me
altijd gesteund, al snapten jullie vaak helemaal niks van wat ik aan het doen
was, en jullie stonden ook altijd klaar voor me.

Contents

Acknowledgements iii

1 Introduction 1
1.1 The Purpose and Structure of this Dissertation 5
1.2 Scientific Output . 7

2 Goal-directed Logic Programming 11
2.1 Introduction . 11
2.2 Vanilla Meta-Interpreter . 21
2.3 Definite Clause Grammars . 22
2.4 Nonbacktrackable Variables and Mutation 23

2.4.1 Global Nonbacktrackable Variables 24
2.4.2 Nonbacktrackable Mutation 25

3 Modular Search 27
3.1 Introduction . 27
3.2 Problem Statement . 28

3.2.1 Problems with this Approach 29
3.2.2 Current Solutions . 30

3.3 Solution Overview . 31
3.3.1 User Perspective . 31
3.3.2 Modularity Aspects . 33

3.4 Search Method Library . 36
3.4.1 Discrepancy-Bounded Search 36
3.4.2 Iterative Deepening . 36

vii

viii CONTENTS

3.4.3 Limited Discrepancy Search and Factored Iteration . . . 37
3.4.4 Branch-and-Bound Optimization 40
3.4.5 More Search Methods 40

3.5 Tor Infrastructure Implementation 41
3.5.1 Hookable Disjunction 41
3.5.2 From Search Methods to Handlers 41
3.5.3 Handler Infrastructure 43
3.5.4 Custom Low-Level Handlers 44

3.6 Search Tree Observation . 47
3.6.1 Statistics . 47
3.6.2 Visualization . 47

3.7 Plain Prolog Example . 49
3.8 Evaluation . 51

3.8.1 Pure Search . 51
3.8.2 Search vs. Propagation 54
3.8.3 Search Methods . 55

3.9 Automatic Specialization . 56
3.10 Related Work . 57
3.11 Conclusion and Future Work 58
References . 60

4 Delimited Control 61
4.1 Informal Semantics . 62
4.2 Applications . 64

4.2.1 Coroutines . 64
4.2.2 Effect Handlers . 71

4.3 Meta-Interpreter Semantics . 73
4.3.1 Direct-Style . 73
4.3.2 Continuation-Passing Style 74
4.3.3 Program Transformation 76

4.4 Relation to catch/3 and throw/1 77
4.5 Implementation . 79

4.5.1 The hProlog Implementation 79
4.5.2 ZIP Implementation . 84

4.6 Semantic Intricacies . 86
4.6.1 Cut and If-then-else . 86
4.6.2 Re-activation . 87
4.6.3 Nesting Catch/Throw and Reset/Shift 89
4.6.4 Shiftless Resets and Resetless Shifts 90

4.7 Related Work . 91

CONTENTS ix

4.7.1 BinProlog and Continuations 91
4.7.2 BinProlog and Logic Engines 92
4.7.3 Conventional Prolog Coroutines 93
4.7.4 Environments on the Heap 93
4.7.5 Caml-based Languages 95
4.7.6 Experimental Languages 95
4.7.7 Coroutines in Haskell 95
4.7.8 Coroutines in Mainstream Languages 96

4.8 Performance Evaluation . 97
4.9 Conclusion . 99
References . 99

5 Modular Search Specification 101
5.1 Introduction . 101
5.2 The Challenge . 102
5.3 From Prolog to Haskell . 104
5.4 Background: Handlers and Transformers 106

5.4.1 The Free Monad Transformer 108
5.5 Heuristics as Handlers in Haskell 114

5.5.1 Step 1: Overloading . 114
5.5.2 Step 2: Introducing Syntax 117
5.5.3 Step 3a: Adding Heuristics 117
5.5.4 Step 3b: Adding Heuristics as Trees 120
5.5.5 Step 4: Reflecting Syntax Back into Semantics 125

5.6 From Haskell to Prolog . 125
5.6.1 Meta-Interpreter . 126
5.6.2 Delimited Continuations 126
5.6.3 The Delimited Continuations Transformer 129
5.6.4 The Isomorphism . 129

5.7 Heuristics as Handlers in Prolog 131
5.7.1 Delimited Continuations 131
5.7.2 The entwine/2 Infrastructure 132
5.7.3 Search Heuristics . 133
5.7.4 Multi-Way Disjunctions 134

5.8 Related Work . 135
5.8.1 Search . 135
5.8.2 Algebraic Effect Handlers 137
5.8.3 Monads . 138

5.9 Conclusion . 138
References . 139

x CONTENTS

6 Introduction to Tabled Resolution 141

6.1 Problems with SLD-resolution 141

6.2 Denotational Semantics . 144

6.3 Tabling and SLG-resolution . 145

6.4 Implementation Challenges . 148

6.5 Data Structures . 149

6.6 Operational Problems . 150

6.7 Scheduling Strategies . 151

6.8 Semantic Issues . 152

6.9 Alternative Lowlevel Mechanisms 153

6.9.1 CAT and CHAT . 153

6.9.2 JET . 153

6.9.3 Recomputing Approaches 154

6.10 Transformation-based Approaches 155

6.10.1 Extension Tables . 155

6.10.2 Recomputation-Free Approaches 156

6.11 Call Subsumption . 156

6.12 Tabling in other Contexts . 157

References . 158

7 Tabling with Delimited Control 161

7.1 Introduction . 161

7.2 Shallow Transformation . 162

7.3 The table/2 Predicate . 163

7.4 Activation and Delimited Answer Computation 165

7.5 Completion . 167

7.5.1 The Table Data Structures 168

7.5.2 Completion of a Double Recursive Call 170

7.6 Completion Details . 172

7.7 Evaluation . 174

7.7.1 Implementation Effort 174

7.7.2 Performance . 174

7.7.3 Comparison with CHAT 177

7.8 Related Work . 179

7.9 Conclusion . 179

References . 180

CONTENTS xi

8 Answer Subsumption 181
8.1 Introduction . 181
8.2 Background . 185

8.2.1 Partial Order . 185
8.2.2 Partially Ordered Set 185
8.2.3 Least Bounds . 186
8.2.4 Lattice . 186

8.3 Formalisation . 187
8.4 Framework Instances . 193

8.4.1 Regular Tabling . 193
8.4.2 Partial Order Answer Subsumption 194
8.4.3 Lattice Answer Subsumption 195
8.4.4 Mode-directed Tabling 196

8.5 Related Work . 198
8.6 Conclusion and Future Work 199

9 Conclusions 201
9.1 Future Work . 204

Summary 209

Nederlandstalige samenvatting 217

Bibliography 225

List of Figures 245

List of Tables 247

Index 248

xii CONTENTS

Chapter 1
Introduction

Declarative programming is about telling the computer what to do, but not
how. An exact definition of the notion has been the subject of much debate,
but the term certainly includes the logic programming paradigm, a paradigm
originating in the application of first order logic to problems in artificial intel-
ligence in the early seventies.

Nowadays, a wide range of subdomains exists [7] like traditional logic pro-
gramming, answer set programming [89], probabilistic logic programming [105]
and many more. This thesis deals with traditional logic programming. It is by
itself already an extremely interesting domain. The reason for this is of course
the support for nondeterminism, the ability to deal with multiple next steps,
that is lacking from imperative and functional languages.

Kowalski’s Adage Logic programming is the realisation of the ideal of
R. Kowalski, captured in his well-known adage [86]:

Algorithm = Logic + Control

According to this adage, the algorithms that make up computer programs con-
sist of two disjoint parts: one logic part encoding the domain-specific knowl-
edge and another part instructing the computer how to reason with that logic.
The ideal of Kowalski is that the programmer should be able to only focus on
the former, as it deals with describing the essence of the problem and not with
the details of how to calculate a solution. Indeed, modelling the problem itself
is for all but the most trivial problems already a challenging task. Given a

1

2 CHAPTER 1. INTRODUCTION

model of the problem, Kowalski believes that many computational challenges
that arise can be solved with computer-supplied reasoning.

There are two difficult and long lasting issues with the practical realisations
of this idea, which form the topic of this thesis:

• For pragmatic reasons like performance, a strict separation between logic
and control cannot be maintained in state-of-the-art logic programming.

• There are several situations where the standard computer-supplied con-
trol is too weak and this shines through to the logic layer. In these
situations, the programmer needs to adapt itself to the control, rather
than the inverse.

The Importance of Kowalski’s Adage Kowalski’s adage is important for
several reasons. First of all, the adage has a clear focus on modelling domain-
specific knowledge, as can also be seen in flowcharts, UML-diagrams and design
documents typically used in the planning stage of software development. It
results in high-quality software that fulfills the customer’s need. This focus
on domain-specific knowledge is also advocated for use in the implementation
phase in various other settings:

• For safety-critical applications, formal specification languages are typi-
cally used [12]. The verification of the resulting model is performed by
the computer.

• Bertrand Meyer’s design-by-contract approach [98] is now part of every
self-respecting computer science curriculum. At runtime, the computer
verifies that the behaviour of the program remains within the terms of
the contract.

• In a sense, even unit tests can be seen as as an executable specification
of domain specific knowledge. But of course, tests do not realise any
customer-usable functionality of the system.

Secondly, letting the computer supply the control considerably raises the
abstraction level of a programming language, so that we can tackle more
difficult problems without having to cope with an overwhelming amount of
low-level details. Indeed, in many other areas of technology and engineering,
abstraction has been the key to success stories:

• Integrated circuits are an abstraction of individual transistors. Thanks
to integrated circuits, we are able to build supercomputers.

3

• Operating systems abstract over the underlying hardware. Thanks to
operating systems, we do not have to worry about our specific hardware.
We can use time-sharing to maximally use the computer’s processing
power and so forth.

Even in our day-to-day life we use abstraction:

• A network map of the London Underground is an abstraction of the
underlying physical layout of the lines and tube stations.

• A credit card is an abstraction of money, that is an abstraction of bar-
tering goods.

Third, logic has long been used to model the human thought process. As
such, it forms a natural basis for instructing computers. The lack of mutable
state (in the most pure flavours) of logic programming that many novice users
find so peculiar is then a consequence of this model: it is not more peculiar than
the presence of mutable state in object-oriented programming which naturally
arises from mimicking real-world objects.

Goal-Directed Logic Programming There exist two major computation
strategies in logic programming: goal-directed (also known as top-down) and
bottom-up. A goal-directed evaluation starts from a query and tries to prove it
by using the rules in the program to expand the query until only facts remain.
The actual process used is called refutation. A bottom-up evaluation starts
from facts and derives all consequences using the rules in the program until
the query is derived.

In this thesis, we exclusively focus on the goal-directed approach. It is used
in the Prolog language, which is the oldest and best-known logic programming
language. Prolog has been developed as a direct consequence of Kowalski’s
ideas. However, even today, Prolog has not fully realised the adage due to the
limitations of the techniques chosen to instantiate it.

Prolog models the logic part of Kowalski’s equation using Horn clauses
and simple builtins. This choice exposes a uniform and simple interface to
the programmer. The limited number of language constructs makes it easy
to reason formally about a program. Moreover the homoiconic nature of the
language considerably simplifies automated manipulation.

The control part of Kowalski’s adage is modelled with SLD-resolution [85]
that corresponds to a top-down and left-to-right traversal of an implicit search
tree defined by the logic rules in the program. SLD-resolution is both conceptu-
ally simple and resource efficient, the latter of which was especially important

4 CHAPTER 1. INTRODUCTION

given the limited processing power at the time Prolog was designed. Nowa-
days Prolog virtual machines are heavily optimised for SLD-resolution. The
architecture of a Prolog virtual machine is nearly always based on a variant of
Warren Abstract Machine (WAM) [171, 4].

The choice to model logic with Horn clauses — complemented with builtins
— is not without its drawbacks. Horn clauses do not offer any way to capture
frequently occurring patterns in program code. As a consequence, maintain-
ing a code base of a reasonable size quickly becomes a tedious and boring
task. Therefore, programmers have frequently used program transformation
(exploiting Prolog’s homoiconic nature) to avoid this. However transforma-
tions are not an ideal solution, as they interact with each other. This seriously
slows down the development and adoption of new language features.

Neither is the choice of SLD-resolution for control optimal. SLD-resolution
by itself does not offer any flexibility neither in the parts of the search tree
scoured, nor in the traversal order. The search is always exhaustive and its
order does not dynamically adapt itself based on the properties of the specific
program.

For many real world problems an exhaustive search of the problem space
is simply infeasible due to sheer size. The standard approach in computer
science is the use of heuristics to attempt finding a solution, rather than all
solutions, or a near-optimal solution instead of the optimal solution, but within
reasonable time and with reasonable resources. For Prolog, this is no different,
but currently the only way to implement these heuristics is by adapting the
problem logic to explicitly encode a heuristic of choice. This goes against the
ideal of logic programming and has deep practical consequences:

• no reuse of the heuristics is possible;

• the entanglement of logic and control affects maintainability: typically
experimentation with many different heuristics is needed, so that the
programmer ends up with many different versions of the same program.

In summary: the need to use search heuristics in the SLD-setting creates an
overlap between logic and control that is not present in Kowalski’s ideal.

Secondly, SLD-resolution frequently requires a procedural — as opposed
to declarative — reading of the program rules. Programs incompatible with
the procedural reading loop infinitely, despite the fact that they are logically
sound. For example: the inability of Prolog to deal with left-recursive rules
surprises many newcomers [149, 148].

Tabling [20] has been developed as a means to tackle the shortcomings
of SLD-resolution, yet maintain its goal-directedness. It combines the effi-

1.1. THE PURPOSE AND STRUCTURE OF THIS DISSERTATION 5

ciency of top-down SLD-resolution with the cycle insensitivity of a Datalog-
style bottom-up computation. At the same time it avoids recomputation.
Unfortunately, the barrier for adoption has proven to be too high, as only a
few Prolog implementations currently provide tabling.

1.1 The Purpose and Structure of this Disser-
tation

The purpose of this thesis is to investigate alternatives for both the limited
modelling capabilities and the control issues in contemporary Prolog. To tackle
these issues, we borrow techniques from the functional programming paradigm
and adapt them to the Prolog setting.

Introduction to Prolog In Chapter 2 of this thesis, we give a brief in-
troduction to Prolog. As one focus of this thesis is to propose alternatives
for and enhancements to the SLD-resolution strategy, we explain this form
of computer-provided control. We then focus on the more advanced concepts
needed in the rest of this thesis, like meta-interpretation, definite clause gram-
mars and nonbacktrackable variables. We do not extensively discuss the im-
plementation of a Prolog virtual machine, but limit ourselves to pointing out
a few relevant parts of the WAM.

Modular Search In Chapter 3 on modular search heuristics, we provide a
hook into Prolog’s disjunction. This hook allows us to execute a handler at
every disjunction. The handler then implements the desired search heuristic.
In this way, logic and heuristic are no longer entangled, effectively providing
a solution to the reuse and maintainability issues discussed previously. We
have titled this approach Tor. However, the hook-based approach is a very
operational approach. We also provide a much more elegant declarative ap-
proach based on the observation that each heuristic in isolation already defines
a search tree of a form that is typical for that particular heuristic.

Delimited Control In Chapter 4, we introduce delimited control for logic
programming. Delimited control has an almost mythical status in the func-
tional programming world, but it had never been introduced to logic program-
ming. This form of control cannot only be used to implement various features
commonly found in existing Prologs, it also provides the foundations for the
easy development of new language features. In this light, the effect handlers

6 CHAPTER 1. INTRODUCTION

approach provides a structured approach on top of the foundations with on-
going research towards achieving more efficiency [78]. In particular, we use
delimited control in Chapter 7 where we develop a lightweight implementation
of tabling. Of course, we cannot introduce delimited control without providing
a formal semantics, a study of how it can be implemented and an investiga-
tion of what interactions it has with other language features. We discuss its
low-level implementation and verify the performance of the resulting engine.

Modular Search revisited In Chapter 5, we return to the problem of
modular search heuristics. We develop a formal specification in Haskell for the
problem using the free monad transformer. One particularly interesting result
is that we can derive an efficient Prolog implementation from this specifica-
tion. The process is nontrivial: although the free monad transformer in theory
forms a good basis for a Prolog implementation of modular search heuristics,
implementing the free monad transformer itself would be very challenging.
Fortunately, it is exactly delimited control that provides an isomorphic re-
placement, and as we will have seen by then from the discussion and examples
in the preceding chapter, delimited control suits Prolog very well.

Tabling with Delimited Control The next three chapters discuss tabling.
Tabling is perhaps the most widely studied extension of standard Prolog, as it
considerably raises the declarative nature of the language. Tabled resolution
strategies have better termination properties than standard SLD-resolution
and their engines may drastically improve performance for solving problems
that can be expressed in terms of smaller instances of themselves.

In particular, Chapter 6 is an introductory chapter for tabled resolution.
We study existing implementation mechanisms for tabled resolution and point
out their strengths and weaknesses. We conclude that there is no tabling
implementation that offers good performance while keeping implementation
efforts at a minimum.

Chapter 7 tackles the challenge identified in the previous chapter: we show
how a lightweight tabling mechanism can be implemented on top of an exist-
ing Prolog. We keep WAM changes at an absolute minimum by requiring only
support for delimited continuations to be implemented natively. Indeed, de-
limited continuations provide exactly the suspension capabilities that lie at the
heart of any tabling implementation. But in contrast to existing suspension
mechanisms, delimited control does not require major architectural changes to
the underlying virtual machine. We implement all surrounding infrastructure
such as call variant and answer tries in Prolog itself. In particular we come

1.2. SCIENTIFIC OUTPUT 7

up with a simple datastructure that avoids recomputation. Although several
approaches exist that do not avoid recomputation and have nonetheless exhib-
ited good performance, a lot of the implementation effort on the world’s most
performant tabling engines has been spent on avoiding it, leaving the recom-
puting engines behind. The resulting tabling implementation is not only a big
step forward in lowering the adoption threshold, but additionally serves as a
validation for delimited control in Prolog.

In Chapter 8 we investigate answer subsumption for tabled logic program-
ming. For many practical programs, it not necessary to store all answers like
standard tabling does, as we are often only interested in answers that are
optimal with respect to a particular criterion. To this end various techniques
have been developed that discard suboptimal answers during the computation.
These techniques are generally referred to as answer subsumption. However,
none of the existing techniques has been defined formally, so that it is not
clear when the techniques can be safely applied. With the development of a
mathematical framework, we provide more insight in the soundness of answer
subsumption.

We conclude in Chapter 9 with an overview of what we have achieved,
pointing out future work in this area. We also look at the big picture by
identifying several other areas in which logic programming falls short and can
learn from both the successes and failures of other paradigms.

1.2 Scientific Output

Publications

Peer-reviewed Journals and Conference Proceedings

• Benoit Desouter, Marko van Dooren, Tom Schrijvers, and Alexander
Vandenbroucke. Tabling as a Library with Delimited Control. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Sister Confer-
ences Best Paper Track (on invitation), 2016.

• Benoit Desouter, Marko van Dooren, and Tom Schrijvers. Tabling as a
Library with Delimited Control. Theory and Practice of Logic Program-
ming (TPLP), 2015. Proceedings of the 31st International Conference
on Logic Programming (ICLP).

• Tom Schrijvers, Nicolas Wu, Benoit Desouter, and Bart Demoen. Heuris-
tics Entwined with Handlers Combined: from Functional Specification

8 CHAPTER 1. INTRODUCTION

to Logic Programming Implementation. Proceedings of the 16th Inter-
national Symposium on Principles and Practice of Declarative Program-
ming (PPDP), 2014.

• Tom Schrijvers, Bart Demoen, Markus Triska, and Benoit Desouter.
Tor: Modular Search with Hookable Disjunction. Science of Computer
Programming (SoCP), 2014.

• Tom Schrijvers, Bart Demoen, Benoit Desouter, and Jan Wielemaker.
Delimited Continuations for Prolog. Theory and Practice of Logic Pro-
gramming, 2013. Proceedings of the 29th International Conference on
Logic Programming (ICLP).

• Benoit Desouter. Implementing LP Systems with CP Techniques. On-
line Supplement of Theory and Practice of Logic Programming (TPLP),
2013. Proceedings of the 29th International Conference on Logic Pro-
gramming (ICLP). Doctoral Consortium.

• Benoit Desouter, and Tom Schrijvers. Integrating Datalog and Con-
straint Solving. Proceedings of the 13th International Colloqium on
Implementation of Constraint and Logic Programming Systems (CI-
CLOPS), 2013.

Other Publications

• Tom Schrijvers, Bart Demoen, and Benoit Desouter. Delimited Con-
tinuations in Prolog: Semantics, Use and Implementation in the WAM.
Report CW 631 of KU Leuven, Department of Computer Science, 2013.

• Benoit Desouter, and Tom Schrijvers. Tor: Modular Search with Hook-
able Disjunction. Newsletter of the Association for Logic Programming
(ALP), 2013.

Presentations

Presentations at International Conferences

• 31st International Conference on Logic Programming (ICLP). Cork, Ire-
land. 2015. Talk entitled: Tabling as a Library with Delimited Control.

• 29th International Conference on Logic Programming (ICLP). Istanbul,
Turkey. 2013. Talk entitled: Delimited Continuations for Prolog. Talk
given together with Bart Demoen.

1.2. SCIENTIFIC OUTPUT 9

• Doctoral Consortium of the 29th International Conference on Logic Pro-
gramming (ICLP). Istanbul, Turkey. 2013. Talk entitled: Implementing
LP Systems with CP Techniques.

• 13th International Colloqium on Implementation of Constraint and Logic
Programming Systems (CICLOPS). Istanbul, Turkey. 2013. Talk enti-
tled: Integrating Datalog and Constraint Solving.

Other Presentations

• Wetenschappelijke Onderzoeksgemeenschap (WOG) Declaratieve Meth-
oden in de Informatica. Houthem-Sint Gerlach, the Netherlands. 2013.
Talk entitled: Zipping Trees for Modular Search.

10 CHAPTER 1. INTRODUCTION

Chapter 2
Goal-directed Logic Programming

2.1 Introduction

Kowalski’s well-known adage [86] captures the essence of programming in the
equation:

Algorithm = Logic + Control

Logic programming embraces this adage and interprets it strictly. As such,
the ideal of programming is threefold:

• model problems (by offering a declarative formulation for nondetermin-
ism and negation based on logic);

• separate logic from control as much as possible;

• provide automatic control

The best-known logic programming language is Prolog. Prolog was created
in the early seventies by Alain Colmerauer. The goal of this chapter is to famil-
iarize the reader with the necessary knowledge of this language to understand
the rest of the thesis. A programming language has both a syntax, defining
what sequence of symbols make up a valid program, and a semantics defining
the meaning of syntactically valid programs. We begin with the definition of
Prolog’s syntax.

11

12 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

Syntax for Data A Prolog term is either a constant (an atom or a number),
a variable or a term f(t1, t2, . . . , tn) with f a function1 symbol of arity n
(n > 0)2 and ti terms (i ∈ [1, n]).

Variables start with an upper case letter and atoms with a lowercase letter.
Given a term f(t1, t2, . . . , tn), the symbol f is called its functor, and its

arity is n. The notation f/n is commonly used to denote such a term. Functor
names also start with a lowercase letter.

Syntax for Code A literal has either the form l or l(t1, t2, . . . , tn) (n > 0)
with l the predicate symbol (or functor), ti terms (data) and arity n. Two
literals are said to belong to the same predicate iff they have the same predicate
symbol and arity. The literal true denotes logical truth, and fail denotes
logical falsehood.

A rule has the following form:

p← q1, q2, . . . , qn (n ≥ 0)

It consists of a head p, which is a predicate, and a body, which is the conjunc-
tion q1, q2, . . . , qn. Each qi is a literal r. A fact is special case of a rule where
there are no prerequisites (n = 0) and thus is a literal. As in first-order logic,
a predicate is a boolean valued function, where its rules and facts define the
values mapped to true. A Prolog program itself constitutes of rules and facts.

A Prolog term or literal is said to be ground iff the term/literal does not
contain any variables.

We have now defined what a syntactically valid Prolog program looks like.

Unification Unification [167] is the process in which Prolog terms are made
syntactically equal by instantiating (or binding) variables. Consider the terms
married(alice,bob) and married(X,Y). Then married(alice,bob) unifies
with married(X,Y) by binding X to alice and Y to bob. In contrast,
the terms married(alice,bob) and married(carol,bob) do not unify, as
clearly Alice is a different person from Carol. The process performs the least
amount of work that is necessary to make the terms syntactically equal. Thus,
unification computes the most-general unifier (MGU). For example, given
the terms married(alice,X) and married(Y,Z), the most general unifier is
{X ← alice, Y ← Z}.

1As syntactic sugar, Prolog also allows to use an infix or prefix notation. This is commonly
used for builtin, mostly mathematical, operations.

2SWI-Prolog allows compound terms with zero arguments. Classical Prolog does not.
See http://www.swi-prolog.org/pldoc/man?section=ext-compound-zero

http://www.swi-prolog.org/pldoc/man?section=ext-compound-zero

2.1. INTRODUCTION 13

Put formally, the unification algorithm in Prolog obeys the following rules:

• If t1 and t2 are constants, they unify if and only if they are the same.

• If t1 is a variable, then bind t1 to t2. Similarly if t2 is a variable.

• If t1 = f(t11 , t12 , . . . , t1n) and t2 = g(t21 , t22 , . . . , t2m) then t1 and t2
unify if and only if f = g, n = m and ∀i ∈ [1, n] : t1i = t2i unify .

From the formal description, it is clear that variables can be unified with
each other without having been assigned a value. Once a variable has been
bound, its value cannot be changed.

Occurs Check In theory, the unification of a variable V and a term T

should fail if T contains V. Checking this property is known as the “occurs
check”. Many Prolog implementations leave out this check by default for
reasons of performance. This may even cause unification to loop forever. The
Prolog ISO standard requires the presence of unify with occurs check/2

for sound unification [27]. Some implementations can optionally perform the
occurs check for all unifications (for example SWI-Prolog).

High-level Semantics A Prolog program models a world where some things
can be proved and others cannot. A simple query or goal is a regular literal that
the Prolog engine will attempt to prove. In addition, the Prolog engine can
also prove compound queries. A compound query is a conjunction of simple
queries and is considered provable if all of its constituent simple queries are
provable. A provable query is also said to be satisfiable. Facts are the base
literals that are taken to be unconditionally true. Other terms can be proved
via rules: the body of a rule represents the prerequisites that must be provable
before the head is taken to be true.

If a ground query can be proved, the system will answer “true”. If the
query is nonground, the system will in addition provide an answer substitution.
An answer substitution tells the user which variables must be unified. If a
query can be proved in different ways, the system will provide multiple answer
substitutions.

The Prolog engine attempts to find a proof for a given query using a fixed
control mechanism. The control mechanism is called SLD-resolution [85]. To
prove a query, the engine first selects the matching clauses: those rules for
which the head unifies with the query. Given a query q and two matching
clauses p1 and p2, SLD resolution will try both clauses in the order they
appear in the source code. Given a clause p consisting of the conjunction

14 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

q1, q2, SLD-resolution will try both conjuncts from left to right. Thus the
matching clauses, and the clauses for each of their body terms together with
their defining clauses and so on, define an implicit search tree that Prolog
scours in depth-first fashion. The term goal is used to indicate any part of the
search tree that the engine currently tries to prove.

Example 1. For example, to prove the query parent(X,bill) given the fol-
lowing small database of facts:

parent(alice,bob).

parent(carol,bill).

parent(bob,bill).

the matching clauses are parent(carol,bill) and parent(bob,bill). Both
clauses will be tried successfully in the given order. The associated substitutions
are {X ← carol} and {X ← bob} respectively.

Example 2. In the following example there are two rules defining the concept
of an ancestor.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

When those rules are taken together with the facts above, the implicit search
for the query ancestor(X,bill) looks like Figure 2.1, where we have used
a/2 as an abbreviation for ancestor/3 and similarly p/2 for parent/2. The
lightning sign (�) denotes failure to prove the goal and the square (�) indicates
success. For reasons of clarity, we have not labeled the edges with the answer
substitutions made.

Note that in the above example, we have deliberately chosen the order of
the rules so that the nonrecursive rule comes first (rule ordering). Also, we
have ordered the goals within the second rule so that there is no left-recursion
(goal ordering).

There are three alternative orderings:

1. The recursive rule is the first one, and uses right recursion.

2. The rule with the base case comes first, and the inductive rule uses left
recursion.

3. The inductive rule is the first one, and uses left recursion.

2.1. INTRODUCTION 15

a(X,bill)

p(X,bill)

� �

p(X,Z), a(Z,bill)

p(alice,bob), a(bob,bill)

a(bob,bill)

p(bob,bill)

�

p(bob,Z), a(Z,bill)

a(bill,bill)

p(bill,bill)

�

p(bill,Z2), a(Z2,bill)

�

p(carol,bill), a(bill,bill)

a(bill,bill)

p(bill,bill)

�

p(bill,Z2), a(Z2,bill)

�

p(bob,bill), a(bill,bill)

a(bill,bill)

p(bill,bill)

�

p(bill,Z2), a(Z2,bill)

�

Figure 2.1: Resolution tree for the query ancestor(X,bill).

When we run the same query ancestor(X,bill) on each of the alternatives,
alternative 1 also works as expected. Alternative 2 yields the correct answers,
but then loops infinitely. Alternative 3 loops infinitely. The last two alterna-
tives loop infinitely because SLD-resolution searches the implicit search tree
in a depth first manner: once it gets stuck in an infinite branch, it can never
escape.

The SLD-control strategy has multiple advantages:

• it is easily understandable for the programmer, although he needs to be
aware of rule and goal ordering;

• Prolog implementations can be (and are) heavily optimised for this strat-
egy so that only a limited amount of memory is needed.

Several chapters in this thesis are devoted to the disadvantages of the SLD-
resolution and a study of the alternatives. In particular, Chapter 3 discusses
how search heuristics that are compatible with an exhaustive depth-first search
can be modularly implemented in Prolog. In Chapter 7 we discuss the imple-
mentation of a tabling mechanism, a series of control mechanisms developed
specifically to tackle the fundamental weaknesses of depth-first search.

16 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

Negation So far, we have defined Horn clause programs. Horn clause pro-
grams or definite programs are the class of Prolog programs that do not use
negation or aggregation. Over the years, negation and some aggregation pred-
icates have been added. We do not discuss the latter as they are not important
for the remainder of the thesis, and do not represent a fundamental change.
We cannot, however, ignore the former.

The negation used in Prolog is negation-as-failure: the negation of a goal
succeeds if the goal itself cannot be proved. As such, it implements a closed
world assumption: anything that cannot be proved is assumed to be false.
In standard Prolog, there is no three valued logic where some things can be
unknown, and truth is always absolute.

To support negation, we need to adapt the allowed syntax for rules. A rule
now has the following form:

p← q1, q2, . . . , qn (n ≥ 0)

The head p, is unchanged with respect to the previous definition. The body
is still a conjunction q1, q2, . . . , qn but each qi is now either a literal r or its
negation \+ r.

Disjunction, Cut and Selection Typical Prolog implementations allow
three more constructs: disjunction, cut and selection.

Disjunction is denoted with a semicolon and is allowed only in rule bodies.
It is not a fundamental construct, as any rule containing disjunction can be
rewritten as a set of rules with the same head. The definition used in the
SWI-Prolog documentation is:

Goal1 ; _Goal2 :- Goal1.

_Goal1 ; Goal2 :- Goal2.

A cut, denoted by an exclamation point, makes the interpreter commit to
the clause in which it appears and discards any choice points made to the left
of the cut in the current clause. Cut is controversial as it does not have a
semantics backed by first-order logic, but only an operational semantics.

For selection, the syntax is somewhat unusual:

(If ->

Then

;

Else

).

2.1. INTRODUCTION 17

The definition used in the SWI-Prolog documentation is:

If -> Then; _Else :- If, !, Then.

If -> _Then; Else :- !, Else.

Implementation Virtually all modern Prolog implementations implement a
virtual machine that is some variant of the Warren Abstract Machine (WAM)
as proposed by D. H. D. Warren [171, 4].

A Prolog implementation typically distinguishes three (logical) stacks, that
we explain in a simplified form below. This will help the reader understand the
implementation of delimited control in the Prolog virtual machine discussed
in Section 4.5 on page 79. The three stacks are:

• an environment stack3

• a choicepoint stack

• a trail stack

Other important components in an implementation are the heap, and a set of
registers to store data temporarily.

Local Stack The local stack has the same function as the call stack
known from imperative programming languages. Figure 2.2 shows a simple
program with two rules. There are nor arguments nor variables in this pro-
gram. The query is ?- a.; the situation right before the call to predicate d is
shown, as indicated by the program counter PC. Every predicate call generates
a frame on the local stack. The frame pointer FP points to the top of stack.
A frame contains a pointer to the calling frame, normally indicated by CE (for
“continuation environment”) and a pointer to the goal that must be called if
the current rule is proved successfully. This pointer is called CP, for “continu-
ation point”. It fulfils the same task as the return address in stack frames of
imperative languages.

If a rule contains a predicate with arguments, the layout of the stack frame
becomes more difficult. In Figure 2.3 we show a modified version of the pro-
gram. The query is again ?- a.. For every argument there is one additional
slot containing a pointer into the heap. The argument itself is represented on
the heap (which is used as a stack of slots because of the implementation of
backtracking explained below, hence the alternative name “global stack”) in a
straightforward way.

3Also called the local stack.

18 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

...

CE

CP c

...

Stack

FP
?- a.

a :-

b,

c.

b :-

d, ←− PC

e.

Figure 2.2: Illustrating the function of the local stack (part 1).

...

f/2

a

b

...

Heap

...

CE

CP c

X

...

Stack

FP ?- a.

a :-

b(f(a,b)),

c.

b(X) :-

d, ←− PC

e(X).

Figure 2.3: Illustrating the function of the local stack (part 2).

2.1. INTRODUCTION 19

...

f/2

a

b

...

Heap

...

Y

CE

CP c

X

...

Stack

FP

a :-

b(f(a,b)),

c.

b(X) :-

d(X,Y), ←− PC

e(Y).

Figure 2.4: Illustrating the function of the local stack (part 3).

If a rule contains local variables, the layout of the stack frame is again
adapted accordingly. Figure 2.4 shows such a situation. There is one additional
slot per local variable containing a pointer into the heap. In this case, the local
variable is still unbound and there is just one heap cell pointing to itself.

Choicepoint and Trail Stack Perhaps the main distinguishing feature
of Prolog is its built in support for nondeterminism. Let us consider a rule with
disjunction to see how this is implemented at the engine level (Figure 2.5).
The situation depicted shows the engine before the unification in the first
branch of the disjunction. We see that a choicepoint has been allocated on the
choicepoint stack. This choicepoint contains a next clause pointer (BP) so that
the engine knows what the alternatives for the choicepoint are. The current
trail pointer (TR) points to the top of the trail stack. This top is the boundary
to unwind bindings on backtracking to the next alternative. The top of heap,
pointed to by the current top of heap (H) slot, is a boundary to reclaim terms
on backtracking. On the heap, we see that X is unbound.

Figure 2.6 shows the same rule just after the execution of the unification
in the first branch. We clearly see that X has been bound to f(a), but that
the trail stack records that this binding must be undone on backtracking.
Similarly, the choicepoint stack contains the information on information that
on backtracking can be garbage collected on the heap.

Unification Unification is implemented by aliasing variables. Figure 2.7
shows the result of the unifications X = Y, Z = Q and Q = Y.

20 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

...

Heap

BP r(X)

TR

H

...

Choicepoint
Stack

...

Trail Stack

p(X) :-

(

X = f(a),

q(X)

;

r(X)

).

Figure 2.5: Illustrating the function of the choicepoint and trail stacks (part 1).

f/1

a

...

Heap

BP r(X)

TR

H

...

Choicepoint
Stack

...

Trail Stack

p(X) :-

(

X = f(a),

q(X)

;

r(X)

).

Figure 2.6: Illustrating the function of the choicepoint and trail stacks (part 2).

X Y

Z Q

Figure 2.7: Implementing unification by pointer aliasing.

2.2. VANILLA META-INTERPRETER 21

2.2 Vanilla Meta-Interpreter

Prolog is well-suited for meta-programming, as code has the same syntactic
form as data. A textbook example is writing a meta-interpreter for Prolog
itself [150]. This technique can be used to formally define the semantics of
new Prolog language constructs, as shown in Section 4.3. It is also useful
for quickly implementing proof-of-concepts of these constructs at the cost of
limited execution speed.

eval(G) :-

(G = (G1,G2) ->

eval(G1),

eval(G2)

;

G = (T -> G1; G2) ->

(eval(T) ->

eval(G1)

;

eval(G2)

)

;

built_in_predicate(G) ->

call(G)

;

clause(G,Body),

eval(Body)

).

Figure 2.8: A vanilla meta-interpreter for Prolog.

The vanilla meta-interpreter enhanced with support for builtins is show
in Figure 2.8. The meta-interpreter is structured as a large case-switch over
the constructs that may appear in a syntactically valid Prolog program. As
an alternative for the case-switch, multiple rules may be used together with
the cut construct. However, correctly limiting the scope of the cuts is tricky,
therefore the switch-case version should be preferred. Let us examine each of
the cases in the meta-interpreter separately:

Conjunction The first case is conjunction of two goals. So it suffices to eval-
uate the first conjunct in the meta-interpreter and, in the case of success,
evaluate the second conjunct. In short: conjunction in the vanilla meta-
interpreter is interpreted as standard Prolog conjunction.

22 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

Selection The second case is the Prolog if construct. Again this is interpreted
as the regular Prolog if construct, which is not different from the selection
statement or expression found in other programming languages. Hence,
its semantics is deterministic commitment to either G1 or G2. This is
unusual for Prolog, as this language is fundamentally nondeterministic.

Builtins Rather than handling each builtin separately, we assume the ex-
istence of the built in predicate/1 that tests whether a particular
predicate is a builtin. If this is true, we call the builtin.

Rules In all other cases, we assume that the predicate is defined by a rule,
of which we obtain its defining body using the clause/2-builtin. Note
that facts can be viewed as rules with body true. This body is then
recursively evaluated in the meta-interpreter.

Note that disjunction is not a fundamental construct, as it can be simulated by
using multiple rules with the same head. We have also not included the cut as
this construct only has an operational meaning and is not present in traditional
Horn-clause programs. Also note that conjunction is binary. Although the user
is allowed to write the conjunction of n, n > 3 goals without parentheses, it is
internally represented as nested binary conjunctions, which is of course very
convenient for meta-interpretation.

2.3 Definite Clause Grammars

DCGs [26, 108] are a well-known Prolog extension to sequentially access the
elements of an implicit list. They are a good example for the effect handler’s
approach discussed in Section 4.2.2 on page 71, which is why we explain them
in this introductory chapter.

DCGs provide a convenient notation for formally writing grammars and
enable parsing a given input string from that grammar. The grammar rules can
be automatically expanded into Prolog clauses. Suppose we want to recognize
the language a∗b∗c∗, we can write the following grammar:

s --> a, b, c.

a --> [a], a.

a --> [].

b --> [b], b.

b --> [].

2.4. NONBACKTRACKABLE VARIABLES AND MUTATION 23

c --> [c], c.

c --> [].

Each rule consists of a head and a body. The head is a nonterminal symbol
and each body item is either a terminal or a nonterminal. Terminal opera-
tions are enclosed within lists, and the empty list [] corresponds to the empty
operation [150]. The query to test whether the sentence aabbcc is valid, is
s([a,a,b,b,c,c],[]).. One can also generate all valid sentences in the lan-
guage using the query s(X,[]).

Of course, just recognizing or generating a language is not very interesting.
Suppose we want to count the number of occurrences of each letter, then we
can modify the grammar as follows:

s(Na,Nb,Nc) --> a(Na), b(Nb), c(Nc).

a(N) --> [a], a(N0), {N is N0 + 1}.

a(0) --> [].

b(N) --> [b], b(N0), {N is N0 + 1}.

b(0) --> [].

c(N) --> [c], c(N0), {N is N0 + 1}.

c(0) --> [].

Here we add arguments to the nonterminal symbols carrying the number
of occurrences of the respective symbol, and we use braces to indicate goals
that must be called by Prolog directly. The builtin is/2 is used to evaluate
expressions and is typically used in infix notation. The expression must be
ground at the time of evaluation.

2.4 Nonbacktrackable Variables and Mutation

The tabling implementation introduced in Chapter 7 heavily relies on nonback-
trackable global variables and nonbacktrackable term mutation. Moreover,
they are also used occasionally in Chapter 3. We first describe the seman-
tics and implementation effort of the predicates for nonbacktrackable global
variables. Such variables are available in many popular Prolog implementa-
tions. The overhead of these features is only a small constant. Afterwards, we
describe nonbacktrackable mutation. The descriptions are adapted from the
SWI-Prolog website as it appeared on June 10, 2015.

24 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

2.4.1 Global Nonbacktrackable Variables

nb setval(+Name, +Value) In hProlog, this predicate associates Value

with the atom Name without copying it. The semantics on backtrack-
ing to a point before creating the link are poorly defined for compound
terms. The principal term is always left untouched, but backtracking
behaviour on arguments is undone if the original assignment was trailed
and left alone otherwise, which implies that the history that created the
term affects the behaviour on backtracking. A copy term/2 can be used
to avoid this. In SWI-Prolog, nb setval/2 binds a copy of Value to
avoid the ill-defined behaviour with respect to arguments of compound
terms. For special purposes, nb linkval/2 binds the raw term and is
equivalent to hProlog’s nb setval/2.

nb getval(+Name, -Value) Get the value associated with the global non-
backtrackable variable Name and unify it with Value. Note that this
unification may further instantiate the value of the global variable.

Native implementation Implementing nb setval/2 is not hard, and does
not introduce significant overhead in the WAM:

• In hProlog the implementation differs from that of b setval/2 by not
trailing its argument and freezing the heap in the case of a list or struct.
The additional cost is in computing the new frozen heap top. In the
worst case, this is linear in the number of choicepoints, but the work
required is (for each choicepoint) a simple addition. So this overhead is
really insignificant.

• Frozen heap is only reclaimed by garbage collection, but does not make
more space reachable, so that the garbage collector’s copying phase is
unaffected.

• The heap backtrack pointer HB must be set to the top of the heap. This
must also happen at every backtrack, for which one may introduce an
extra WAM-register FH (a so-called freeze register). In that case the
garbage collection phase also needs to be made aware of this extra reg-
ister.

Nonnative implementation Mutable variables (also known as reference
cells) can also be implemented nonnatively by means of mutable terms, as
proposed by Aggoun and Beldiceanu [3]. Our implementation for creating,

2.4. NONBACKTRACKABLE VARIABLES AND MUTATION 25

reading and writing such variables comes in both a backtrackable and a non-
backtrackable version, and is as follows:

new_bvar(InitialValue,Var) :-

var(Var),

Var = bvar(InitialValue).

b_put(Var,Value) :-

Var = bvar(_),

setarg(1,Var,Value).

b_get(bvar(Value),Value).

new_nbvar(InitialValue,Var) :-

var(Var),

Var = nbvar(InitialValue).

nb_put(Var,Value) :-

Var = nbvar(_),

nb_setarg(1,Var,Value).

nb_get(nbvar(Value),Value).

The nonnative implementation of mutable variables is available as a sepa-
rate library on the following webpage:

http://www.swi-prolog.org/pack/list?p=mutable_variables.

2.4.2 Nonbacktrackable Mutation

For nonbacktrackable mutation, hProlog and SWI-Prolog provide the predicate
nb setarg/3 that has the semantics defined below4. This predicate uses the
same technique as nb setval/2.

nb setarg(+Arg,+Term,+Value) In hProlog, this predicate assigns the
Argth argument of the compound term Term with the given Value. On
backtracking the assignment is not reversed. The term Value is not
duplicated before assignment. In SWI-Prolog, Value is duplicated to
avoid the same issues as described for nb setval/2, and nb linkarg/3

is provided as a special-purpose alternative.

The implementation can be made thread-safe, reentrant and capable of han-
dling exceptions. Realising these features with a traditional implementation
based on assert/retract or flag/3 is much more complicated.

4In GNU Prolog the setarg/4 predicate can be used to the same effect.

http://www.swi-prolog.org/pack/list?p=mutable_variables

26 CHAPTER 2. GOAL-DIRECTED LOGIC PROGRAMMING

Chapter 3
Modular Search with Hookable
Disjunction

3.1 Introduction

In Prolog, the logic part of a problem specification is captured in programmer-
supplied rules or clauses that have a first-order logic interpretation. The con-
trol component is supplied by the Prolog engine and essentially consists of
search. In order to answer queries, a Prolog engine performs a backward-
chaining depth-first tree search.

Prolog’s default search strategy is in practice inadequate to effectively scour
large search spaces. As a consequence, the programmer often has to comple-
ment Prolog’s control with additional hints or heuristics in the form of extra
code. This is particularly prevalent in the context of Constraint Logic Pro-
gramming where it is common practice for the programmer to complement a
constraint model with a search specification.

Unfortunately, it is not all that easy to cleanly separate logic and control
when implementing search heuristics in Prolog. When one discovers that Pro-
log’s control is ineffective, it is often impossible to orthogonally add one’s own
control without touching the existing logic. The problem is that syntactically
logic and control in Prolog are tightly coupled, and adding different control
means cross-cutting existing code.

In this chapter, we present a novel approach to adding control in an or-
thogonal manner. Our solution features the following properties:

27

28 CHAPTER 3. MODULAR SEARCH

label([]).

label([Var|Vars]) :-

(var(Var) ->

fd_inf(Var,Value),

(Var #= Value,

label(Vars)

;

Var #\= Value,

label([Var|Vars])

)

;

label(Vars)

).

label([] ,_).

label([Var|Vars] ,D) :-

(var(Var) ->

D > 0,

ND is D - 1,

fd_inf(Var,Value),

(Var #= Value,

label(Vars ,ND)

;

Var #\= Value,

label([Var|Vars] ,ND)

)

;

label(Vars ,D)

).

Figure 3.1: Labeling predicate: plain (left) and with depth bound (right).

• It is a lightweight library-based approach that is easily portable to differ-
ent Prolog systems: it is currently an SWI-Prolog library [174] available
at http://www.swi-prolog.org/pack/list?p=tor.

• Our approach has all the benefits of modularity: search methods can be
composed and the library of these heuristics is (user-)extensible.

• Its overhead is minimal, as we demonstrate on benchmarks: this is
achieved through term expansion/2, a feature present in most Prolog
systems.

With Tor, we capture all common search methods in CLP(FD) libraries such
as ECLiPSe’s search/6 that provides ten fixed (combinations of) search meth-
ods [133]. This approach is indeed particularly suitable for Constraint Logic
Programming, but also useful for general Prolog programs with a large search
space.

3.2 Problem Statement

We illustrate the heart of the matter on a simple labeling predicate label/1

written against SWI-Prolog’s clpfd library [162] (see Fig. 3.1, left). A labeling
predicate assigns a value to each variable in the given list of variables (Vars).

http://www.swi-prolog.org/pack/list?p=tor

3.2. PROBLEM STATEMENT 29

label/1 defines a search tree where the branches are created by disjunction.1

Suppose that for a certain call label([X1,...,Xn]) the search tree is too
large to fully explore. In order to get some useful answers, certain parts of
the tree can be left unexplored, effectively pruning the tree. One particular
way in which this can be done is by reaping the low-hanging solutions only,
and pruning the subtrees that are below a certain depth. This is achieved
by imposing a depth bound on Prolog’s depth first search. Figure 3.1 shows
on the right a variant of label/1 that implements this idea; the additional
parameter is the depth bound.

Imposing a depth bound may or may not be a successful approach to get-
ting useful answers. If it turns out to be unsuccessful, other pruning strategies
can be tried, like imposing a node bound or a discrepancy bound. Each of
these requires rewriting the label/1 predicate to incorporate a different prun-
ing technique. In general, an explorative process takes place whereby several
different variants of the labeling code are written and evaluated until an effec-
tive pruning strategy is found.

3.2.1 Problems with this Approach

The problems with the above approach should be apparent:

• The approach follows the well-known copy-paste-modify anti-pattern.
Variants of the labeling code are copied all over the place, potentially
propagating bugs and rendering maintenance into a nightmare. Working
code is modified.

• The same heuristic is implemented over and over in different settings
(different applications, different labeling predicates, different Prolog sys-
tems, ...). This process is error-prone, wastes precious programmer time
and is bound to yield non-optimal code quality.

• The effort and expertise required to combine working labeling code with
various search heuristics is non-trivial. This means that fewer combi-
nations are explored by programmers under time pressure or unfamiliar
with particular heuristics. The end result is that suboptimal solutions
are obtained.

• As soon as the labeling code spans several different predicates or multi-
ple invocations of the same predicate, the complexity of adding search
heuristics increases drastically.

1fd inf/2 returns the smallest value in a variable’s finite domain. The operators starting
with a hash impose arithmetic constraints.

30 CHAPTER 3. MODULAR SEARCH

3.2.2 Current Solutions

Most of the current solutions are specific to CLP, and we are aware of one
general Prolog approach.

CLP Solutions In the context of CLP ECLiPSe [133] copes with this prob-
lem by providing a number of search methods in the search/6 predicate.
This predicate lets the user control through its various arguments the selec-
tion method, the choice method and the search method: the former two decide
on which variable is used during labeling, and which value it is assigned first.
They do not concern us here. The search method controls how the search tree
is explored, e.g., depth-bounded, node-bounded or limited discrepancy search.
Apart from individual search methods, only a fixed number of compositions is
supported, such as changing the strategy when a depth bound is reached. In
this setting users can extend the set of supported heuristics and combinations
by reprogramming parts of the search/6 predicate.

The same approach can be found in other Prolog systems’ CLP(FD) li-
braries, albeit to a more limited extent. SICStus Prolog [17] allows imposing
discrepancy and time limits, and B-Prolog [175] provides a time limit. GNU
Prolog [41] and Ciao’s [62] new clpfd library provide no way to limit the
search on top of depth-first traversal.

All CLP(FD) libraries do provide one extra search method: optimization
with respect to an objective value. Optimization is typically implemented as
either branch-and-bound or by restarting the whole search with a new bound
whenever a solution is found.

Typically these approaches only support adding search heuristics to a sim-
ple goal made up of a labeling predicate defined in the corresponding CLP
library. This means that complex goals made up of a conjunction of labeling
calls or custom labeling predicates are not supported. ECLiPSe is the only
system that provides one search method, branch-and-bound, independent from
a particular labeling predicate.

Prolog Solution We are aware of only one other approach to modify Pro-
log’s own search method: the breadth-first and iterative deepening program
transformations in Ciao [62]. These modify annotated predicates in place and
are not compositional.

All in all the available library support that Prolog systems provide is very
limited indeed. As soon as users face a (constraint) problem that requires a
non-trivial search method, they are forced to write all their search code from
scratch, and it can be very daunting to combine different search methods.

3.3. SOLUTION OVERVIEW 31

Non-Prolog Solutions There are a range of effective search techniques that
are not based on (depth-first) tree search like local search, genetic algorithms,
simulated annealing, . . . However, these techniques are out of scope of this
chapter. We only consider search methods that are compatible with Prolog’s
depth-first search.

Chapter Organization The rest of this chapter is structured as follows.
First, Section 3.3 outlines the Tor approach. Next, Section 3.4 reviews Tor’s
standard library of search methods. Then, Section 3.5 covers the Tor’s im-
plementation. Section 3.6 discusses how Tor allows to observe the search tree
for (performance) debugging purposes. We illustrate the application of Tor
on an example Prolog problem in Section 3.7. Next, Section 3.8 evaluates the
Tor implementation. In Section 3.9, we present a simple automatic specializer
that mitigates overhead even in applications without constraint propagation
using Tor. Section 3.10 addresses related work and Section 3.11 concludes.

3.3 Solution Overview

3.3.1 User Perspective

Tor divides search code into two parts: a) the code that defines the search
tree, and b) the code that defines the search method . The user defines these
separately (or reuses existing definitions from a library) and combines them
into a search goal.

Search Tree Code The search tree code shown in Figure 3.1 sets up the
problem specific search tree using label/1 as an example. To fit in the Tor
framework one provision has to be made: the code must use Tor’s custom
disjunction tor/2 rather than ;/2. For instance, tor label/1 is the Tor-
compatible variant of label/1.

tor_label([]).

tor_label([Var|Vars]) :-

(var(Var) ->

fd_inf(Var,Value),

(Var #= Value,

tor_label(Vars)

tor

Var #\= Value,

tor_label([Var|Vars])

32 CHAPTER 3. MODULAR SEARCH

)

;

tor_label(Vars)

).

Search Methods A search method is defined as a predicate that captures
the essence of that method in a declarative way, as a bare-bones search tree
without any useful work (such as labeling variables). For instance, dbs tree/1

captures the depth-bounded search method.

dbs_tree(Depth) :-

Depth > 0,

Depth1 is Depth - 1,

(dbs_tree(Depth1)

tor

dbs_tree(Depth1)

).

Just like the search tree code, the search method code must respect syn-
tactic restrictions:

• The search method code must be defined as a predicate with a single
clause.

• This clause must contain at most one invocation of tor/2.

• Moreover, each of the two branches of that disjunction may contain at
most one directly recursive invocation.

• Finally, there may be no indirectly recursive calls and no indirect invo-
cations of tor/2.

The reason for these restrictions is explained in Section 3.5 on page 41.

Combining Search Tree and Search Method The user imposes a search
method on a search tree by calling the predicate tor merge(MGoal,TGoal),
where MGoal is a call to the search method predicate and TGoal is a call to
the search tree predicate. Conceptually, tor merge/2 overlays or merges the
search trees of the two goals, synchronizing their tor/2 disjunctions.

An example of tor merge’s behavior is graphically depicted in Figure 3.2.
The top left search tree is that of dbs tree(4), where all the red (northeast-
striped) leaves at level 5 denote failures. The top right search tree is that

3.3. SOLUTION OVERVIEW 33

Figure 3.2: Search trees of tor merge(dbs tree(4),tor label([X,Y])).

of tor label([X,Y]), where the blue (northwest-striped) leaves at various
levels denote solutions. The bottom search tree is obtained by merging both
other trees. The corresponding leaves are overlaid. When an internal node is
overlaid with a leaf, the leaf wins out. If both nodes are internal nodes, the
resulting node is an internal node. When both nodes are leaves, the leaf from
the left tree wins out.

To facilitate reuse, we generally recommend to encapsulate the application
of tor merge/2 to a particular search method in a separate predicate, like
dbs/2 for dbs tree/1.

dbs(Depth,Goal) :-

tor_merge(dbs_tree(Depth),Goal).

This makes for more concise calls, like dbs(4,tor label(Vars)).

Wrapping Up In the final step, the Tor predicate search(Goal) is used to,
conceptually, replace all the occurrences (merged or not) of tor/2 by proper
Prolog disjunctions.

In summary, the behavior of label/2 of Fig. 3.1 is recovered as follows:

search(dbs(Depth,tor label(Vars)))

≡
label(Vars,Depth)

3.3.2 Modularity Aspects

The big contribution of the Tor approach is its modularity . Here we look in
more detail at the modularity aspects of Tor that are not found in any of the

34 CHAPTER 3. MODULAR SEARCH

existing systems.

Decoupling of Search Tree and Search Method

The first modularity advantage of Tor is that it decouples the code that
defines the search tree from the code that defines the search method. This
decoupling means that new search methods and new search tree code can be
written without awareness of one another and without the modification of any
existing code. This means that, once developed, new search methods and
labelling code can easily be reused in many different settings.

Contrast this with ECLiPSe’s search/6 predicate. It tightly couples the
options for setting up the search tree (like variable and value selection strate-
gies) with those for the search method. For instance, the CLP(FD) search is
hard wired and thus the available search methods do not support pure Prolog
search. Users cannot add new search methods or labeling approaches without
adapting the existing code.

Finally, we note that this decoupling does not exclude already supported
forms of modularity. In particular, various problem-specific heuristics exist for
deciding how to build the search tree. Well-known examples are variable and
value selection strategies in CLP(FD) and these are an essential part of an ef-
fective search. There are already good solutions for modularizing variable and
variable selection strategies in CLP(FD) libraries and Tor does not duplicate
their effort. Nevertheless Tor is inherently compatible with these modular
solutions: the strategies can easily be integrated in the search tree code. We
refer to the companion code library for several examples.

Modular Combination of Search Tree Code and Search Method

Because their implementations are decoupled, there is no inherent restriction
on the combination of search tree code with search method code. To make
matters more concrete, let us consider an additional search method lds/1

(short for limited discrepancy search, explained in Section 3.4.3 on page 37)
and an additional search predicate tor member/2 (the Tor variant of the
well-known member/2). We can now express four different search scenarios by
varying both the search tree and search method code:

?- search(dbs(10,tor_label([X1,...,Xn]))).

?- search(dbs(10,tor_member(X,[X1,...,Xn]))).

?- search(lds(tor_label([X1,...,Xn]))).

?- search(lds(tor_member(X,[X1,...,Xn]))).

3.3. SOLUTION OVERVIEW 35

More concretely, any other search method and labeling predicate can be com-
bined in the same way, whether they originate from the Tor library or are
defined by the user. Of course, it is still up to the user to assess which com-
position is effective for his problem. No CLP(FD) library we are aware of
provides this functionality.

Advanced Compositions

Beyond the basic combinations illustrated above, Tor supports the modular
composition of multiple search methods and/or multiple labeling goals. None
of these are readily expressible in existing CLP(FD) systems.

Composition of Labeling Goals A user can define a complex labeling goal
as the conjunction of two invocations of tor label/1.2

?- search(lds((tor_label([X1,...,Xn])

,tor_label([Y1,...,Ym])))).

This example becomes more interesting when the two lists of variables are
labeled with different variable and value selection strategies.

Composition of Search Methods With nested invocation the user can
compose two (or more) existing search methods into a new one. This com-
position denotes that both search methods are simultaneously active in every
node of the search tree.

For instance, we can simultaneously apply a depth limit and perform a
limited discrepancy search:

?- search(dbs(10,lds(tor_label([X1,...,Xn])))).

Contrast this with the non-modular approach where the user would face the
much more complex task of writing a combined search heuristic dbs lds/2

from scratch.

Putting Everything Together Finally, the compositional nature of the
notation can be exploited to its fullest potential to obtain sophisticated search
specifications. For instance, the goal

2Observe that this example is fundamentally distinct from the simpler goal
?- search(lds((tor label([X1,...,Xn])))), search(lds((tor label([Y1,...,Ym])))).

36 CHAPTER 3. MODULAR SEARCH

?- ...,

search(lds((dbs(XsLimit,tor_label(Xs))

,dbs(YsLimit,tor_label(Ys))))).

applies limited discrepancy search to the whole search tree, and additionally
imposes one depth-limit on the search of the Xs and another to that of the Ys.

3.4 Search Method Library

Following the Tor approach, it is easy to write various search methods in a
modular way. While the user can write custom ones himself, Tor already
provides a substantial library of search methods. We cover several of them
here.

3.4.1 Discrepancy-Bounded Search

The discrepancy-bounded search heuristic is a small variant of depth-bounded
search: the bound is only updated in right branches.

dibs(Discrepancies,Goal) :-

tor_merge(dibs_tree(Discrepancies),Goal).

dibs_tree(Discrepancies) :-

(dibs_tree(Discrepancies)

tor

Discrepancies > 0,

NDiscrepancies is Discrepancies - 1,

dibs_tree(NDiscrepancies)

).

3.4.2 Iterative Deepening

Iterative deepening emulates breadth-first search by means of increasing depth-
bounds. The implementation consists of a driver id loop/3 that initiates an
iteration with a given depth bound and, if pruning occurred, starts the next
one with an incremented depth-bound.

An iteration consists of a search with a variant of the depth-bounded heuris-
tic, id tree/3; it differs from depth-bounded search in that it reports its prun-
ing in the non-backtrackable mutable variable PVar (see Section 2.4). This
variable communicates to the driver whether a new iteration should be started
or not.

3.4. SEARCH METHOD LIBRARY 37

id(Goal) :-

new_nbvar(not_pruned,PVar),

id_loop(Goal,0,PVar).

id_loop(Goal,Depth,PVar) :-

nb_put(PVar,not_pruned),

(tor_merge(id_tree(Depth,PVar),Goal)

;

nb_get(PVar,Value),

Value == pruned,

NDepth is Depth + 1,

id_loop(Goal,NDepth,PVar)

).

id_tree(Depth,PruneVar) :-

(Depth > 0 ->

NDepth is Depth - 1,

(id_tree(NDepth, PruneVar)

tor

id_tree(NDepth, PruneVar)

)

;

nb_put(PruneVar,pruned),

false

).

The problem with this definition is that the upper parts of the search tree
are repeatedly searched. This is because in iteration i + 1 there is no means
to restart the search from those parts that were cut away in iteration i. In
the following chapter, we propose a method that could capture those subtrees,
instead of cutting them away. The search could then be restarted from there.

3.4.3 Limited Discrepancy Search and Factored Iteration

The traditional limited discrepancy search [61] is a minor variant of iterative
deepening. It applies the depth-bound only in right branches. Put differently,
limited discrepancy search is to discrepancy-bounded search what iterative
deepening is to depth-bounded search.

With some abstraction (with pruned and friends — defined below), we
can factor out the common iteration part of iterative deepening and limited
discrepancy search:

38 CHAPTER 3. MODULAR SEARCH

iterate(PGoal) :-

with_pruned(

iterate_loop(0,PGoal)).

iterate_loop(N,PGoal) :-

(

call(PGoal,N)

;

is_pruned,

reset_pruned,

M is N + 1,

iterate_loop(M,PGoal)

).

This iteration pattern runs a goal PGoal that is parameterized by a natural
number N. The goal uses this number as a bound and applies pruning when the
bound is exceeded. The iteration repeatedly restarts the goal with successive
values for N until the goal completes without pruning.

With this iteration pattern we can express iterative deepening and limited
discrepancy search as follows:

id(Goal) :- iterate(flip(dbs,Goal)).

lds(Goal) :- iterate(flip(dibs,Goal)).

flip(Goal,Y,X) :- call(Goal,X,Y).

There is only one complicating factor: we need to communicate the pruning
from the handler to the iteration. Fortunately, global variables allow us to do
that.

prune :-

set_pruned(true),

fail.

reset_pruned :-

set_pruned(false).

is_pruned :-

get_pruned(true).

get_pruned(Flag) :-

nb_getval(pruned,Flag).

set_pruned(Flag) :-

nb_setval(pruned,Flag).

with_pruned(Goal) :-

get_pruned(OldFlag),

(reset_pruned,

call(Goal)

;

set_pruned(OldFlag),

fail

).

3.4. SEARCH METHOD LIBRARY 39

With the imperative ugliness hidden in the above definitions, the following
new definition of dbs tree handler subsumes both id tree/2 and the previous
dbs tree/1 definitions.

dbs_tree(Depth) :-

(Depth > 0 ->

Depth1 is Depth - 1,

(dbs_tree(Depth1)

tor

dbs_tree(Depth1)

)

;

prune

).

Node-Bounded Search

A node-bounded search is much like a depth-bounded search, except that the
decrements of the limit are not backtracked. Hence, as an optimization we
abort the whole search at once by throwing an exception rather than gradually
failing out of the search tree.

nbs(Nodes,Goal) :-

new_nbvar(Nodes,NodesVar),

catch(

tor_merge(nbs_tree(NodesVar),Goal),

out_of_nodes(NodesVar),

fail

).

nbs_tree(Var) :-

nb_get(Var,N),

(N > 0 ->

N1 is N - 1,

nb_put(Var, N1),

(nbs_tree(Var)

tor

nbs_tree(Var)

)

;

throw(out_of_nodes(Var))

).

40 CHAPTER 3. MODULAR SEARCH

3.4.4 Branch-and-Bound Optimization

This well-known optimization approach posts constraints in the intermediate
nodes of the search tree to find increasingly better solutions. Our implemen-
tation uses Tor to access those intermediate nodes and generate increasingly
larger values of the Objective variable. It uses two variables, BestVar and
Current. The former keeps track of the overall best solution so far, while the
latter is the solution that the current node tries to improve upon.

Both the overall and current best solution are initialized to a value smaller
than the infimum of the objective variable’s domain. Whenever a solution is
found, the overall best solution is updated. Whenever we backtrack into a
Tor choice point, the heuristic synchronizes the current best solution with
the overall best solution. If the current best solution was out of sync, the
handler also imposes a new lower bound on the objective variable. Note that
inf denotes negative infinity.

bab(Objective,Goal) :-

fd_inf(Objective,Inf),

LowerBound is Inf - 1,

new_nbvar(LowerBound,BestVar),

Current = inf,

tor_merge(bab_tree(Objective,BestVar,Current),Goal),

nb_put(BestVar,Objective).

bab_tree(Objective,BestVar,Current) :-

nb_get(BestVar,Best),

(Best \= inf , (Current == inf ; Best > Current) ->

Objective #> Best,

NCurrent = Best

;

NCurrent = Current

),

(bab_tree(Objective,BestVar,NCurrent)

tor

bab_tree(Objective,BestVar,NCurrent)

).

3.4.5 More Search Methods

We have implemented many other orthogonal search methods with Tor, in-
cluding all those offered by ECLiPSe’s search/6 predicate. These can be
found in the companion code.

3.5. TOR INFRASTRUCTURE IMPLEMENTATION 41

3.5 Tor Infrastructure Implementation

3.5.1 Hookable Disjunction

Tor is built around one core predicate, tor/2, which replaces the regular
Prolog disjunction in search tree code. The predicate is defined as:

G1 tor G2 :-

(b_getval(left,Left),

call(Left,G1) % conceptually: Left(G1)

;

b_getval(right,Right),

call(Right,G2) % conceptually: Right(G2)

).

This definition provides two hooks into the disjunction by means of global
variables left and right.3 In these hooks the programmer installs handlers
for the left and right branches to control the search. These handlers are higher-
order predicates that take a goal and execute it in a (possibly) modified man-
ner.

We obtain standard Prolog disjunction, if we use call/1 as handler:

?- findall(X, (X in 1..10

, b_setval(left,call)

, b_setval(right,call)

, tor_label([X])

), Values).

Values = [1,2,3,4,5,6,7,8,9,10].

The point of Tor is of course to install more interesting handlers.

3.5.2 From Search Methods to Handlers

More interesting handlers originate from the search method. The tor merge/2

predicate transforms their high-level definitions into pairs of low-level handlers,
before it installs those handlers. This transformation proceeds in two phases.
First the search method definition is normalized, and then the handlers are
extracted.

3Note that b getval/2 and b putval/2 are SWI-Prolog builtins for reading and writing
global mutable variables, whose names are atoms. Their non-backtrackable counterparts are
nb getval/2 and nb putval/2.

42 CHAPTER 3. MODULAR SEARCH

Search Method Normalisation

In the first phase, the rewrite/2 predicate rewrites the search method defini-
tion into a normal form

sm(X1,...,Xn) :-

(Left

tor

Right

).

If tor/2 is defined as the usual disjunction, both arguments of rewrite/2
have (on success) the same logical interpretation.

rewrite((Head :- Body),(Head :- Left tor Right)) :-

split(Body,Left,Right).

split(tor(GL,GR),GL,GR) :- !.

split((G1,G2),(GL1,GL2),(GR1,GR2)) :- !,

split(G1,GL1,GR1),

split(G2,GL2,GR2).

split((Test -> G1 ; G2),

(Test -> GL1 ; GL2),(Test -> GR1 ; GR2)) :- !,

split(G1,GL1,GR1),

split(G2,GL2,GR2).

split((G1;G2),(GL1;GL2),(GR1;GR2)) :- !,

split(G1,GL1,GR1),

split(G2,GL2,GR2).

split(G,G,G).

Handler Extraction

The left and right handlers are derived from the Left and Right branches of
the search method’s normal form:

sm_left(X1,...,Xn,Goal) :-

NLeft.

sm_right(X1,...,Xn,Goal) :-

NRight.

where NLeft and NRight are derived from Left and Right by replacing any
recursive calls with call(Goal). Moreover, if any of the recursive calls features
parameters that are not the same as in the head, that parameter is wrapped in

3.5. TOR INFRASTRUCTURE IMPLEMENTATION 43

a mutable variable. For instance, the Depth parameter of dbs tree/1 changes
to Depth1 in the recursive calls. Hence, the following handlers are derived:

dbs_tree_left(MDepth,Goal) :-

b_get(MDepth,Depth),

Depth > 0,

Depth1 is Depth - 1,

b_put(MDepth,Depth1),

call(Goal).

dbs_tree_right(MDepth,Goal) :-

... % identical

Finally, a tor merge(sm(T1,...,Tn),Goal) goal is rewritten into the ap-
propriate invocation of tor handlers/3:

tor_handlers(Goal, sm_left(T1,...,Tn), sm_right(T1,...,Tn)).

In case any of the parameters need to be wrapped in a mutable variable,
tor merge/2 also takes care of that. For instance,

?- tor_merge(dbs_tree(4),tor_label(Xs)).

becomes

?- new_bvar(4,MVar),

tor_handlers(tor_label(Xs),dbs_tree_left(MVar)

,dbs_tree_right(MVar)).

3.5.3 Handler Infrastructure

Default Handler

The predicate search/1 sets up the default handler for both hooks: call/1.

search(Goal) :-

b_setval(left,call),

b_setval(right,call),

call(Goal).

With this default handler, tor/2 corresponds simply to plain disjunction
(;)/2.4 For instance, with search/1 we recover the behavior of label/1

of Fig. 3.1 from the Tor-variant:

search(tor label(Vars)) ≡ label(Vars)

4Apart from the scope of any cuts in the alternative branches

44 CHAPTER 3. MODULAR SEARCH

Extending Installed Handlers

In order to facilitate installing new handlers, Tor provides a convenient pred-
icate: tor handlers/3.

tor_handlers(Goal,Left,Right) :-

b_getval(left,LeftHandler),

b_getval(right,RightHandler),

b_setval(left,compose(LeftHandler,Left)),

b_setval(right,compose(RightHandler,Right)),

call(Goal),

b_setval(left,LeftHandler),

b_setval(right,RightHandler).

compose(G1,G2,Goal) :- call(G1,call(G2,Goal)).

% conceptually: G1(G2(Goal))

This predicate assumes that there are already handlers installed, either by
search/1 or a previous invocation of tor handlers/2. It does not replace the
installed handlers by the new ones, but composes them with compose/3.5 This
accounts for the ability to compose search methods, discussed in Section 3.3.2.

Finally, tor handlers/2 also scopes the effect of the new handlers: they
are only active in the provided goal. After execution of the goal, the old
handlers are reset.

3.5.4 Custom Low-Level Handlers

In addition to writing high-level search methods, expert users can also exploit
Tor’s low-level infrastructure and write custom low-level handlers that don’t
fit the search method pattern. Here we show two such cases.

Higher-Order Search Methods

ECLiPSe’s search/6 provides several higher-order search methods. These are
search methods that are parameterized by other search methods.

An example of this is the following dbs/3 variant on depth-bounded search.
When it reaches the depth bound, it does not prune the remaining subtree,
but activates the search method Method. A typical example is to limit the
discrepancy once we reach a certain level in the search tree. This is achieved
with dbs(Level,lds(Discrepancies),Goal).

5While compose is a ternary predicate, recall that it has to be used in partially applied
form in left and right.

3.5. TOR INFRASTRUCTURE IMPLEMENTATION 45

dbs(Level, Method, Goal) :-

new_bvar(yes(Level),Var),

tor_handlers(Goal,dbs_handler(Var,Method)

,dbs_handler(Var,Method)).

dbs_handler(Var,Method,Goal) :-

b_get(Var,MDepth),

dbs_handler_(MDepth,Var,Method,Goal).

dbs_handler_(yes(Depth),Var,Method,Goal) :-

(Depth > 1 ->

NDepth is Depth - 1,

b_put(Var,yes(NDepth)),

call(Goal)

;

b_put(Var,no),

call(Method,Goal)

).

dbs_handler_(no,_,_,Goal) :-

call(Goal).

The first-order search dbs/2 can then be redefined as dbs(Level,prune,Goal)
where:

prune(Goal) :- prune.

In ECLiPSe, only a fixed number of parameters can be supplied to these
higher-order search methods, and search/6 explicitly caters for each separate
combination in its implementation. Not so with Tor. There is no restric-
tion on the possible combinations; the higher-order search methods are truly
parametric.

Parallel Search

It turns out that the comparatively simple interface of Tor is even general
enough to express at least a naive implementation of parallel search. The query
?- search(parallel(tor label(Vars),5)) uses 5 processes to explore parts
of the search tree in parallel. It is based on the definition of parallel/2 below.

parallel(Goal,N) :-

set_available_processes(N),

tor_handlers(Goal, tor_fork, call).

46 CHAPTER 3. MODULAR SEARCH

tor_fork(Goal) :-

(i_am_a_child ->

call(Goal)

;

wait_for_available_process,

fork(PID),

PID == child,

call(Goal)

).

For a left branch, the code uses the fork/1 predicate to duplicate the
current Prolog process,6 yielding a so-called parent process and a concurrent
child process. The child process (determined via i am a child/0) explores
the goal. Since the goal PID == child fails in the parent process, this parent
process backtracks and considers the right branch which is delegated by the
installed handler to the built-in call/1 predicate, and whose left tor-branches
are again subject to tor fork/1.

We have used three more predicates that need explanation:

• set available processes/1 initializes the number of available (sub-)
processes,

• i am a child/0 succeeds if and only if the current process is not the
main Prolog process, and

• wait for available process/0 waits until a process is available and
then succeeds: any time a process is forked, the number of available
processes goes down by one, and when a process finishes, the number of
available processes goes up by one.

All three predicates can be implemented in an ad-hoc way in SWI-Prolog.
To illustrate the parallel exploration of two independent branches in a

simple and self-contained example, consider the query:

?- search(parallel(repeat tor X = 2,1)).

which yields X = 2 on the toplevel (a shared resource among all created pro-
cesses), whereas this specific solution cannot be obtained with regular Prolog
disjunction because it is hidden by an infinite branch due to the goal repeat.

Clearly, the possibilities of search parallelism based on the Tor framework
are worth exploring further, in particular regarding communication between
processes, and using threads instead of processes for portability and efficiency.

6fork/1 is available in SWI-Prolog on Unix platforms.

3.6. SEARCH TREE OBSERVATION 47

3.6 Search Tree Observation

The original purpose of Tor was to allow the manipulation of search tree
traversal by various search heuristics. It turns out that Tor also enables
various ways to observe the search tree, so that one can gain insight in the
search process itself, e.g., for (performance) debugging purposes. We illustrate
in the next sections plain statistics and visualization.

3.6.1 Statistics

Similar to SWI-Prolog’s profile/1, time/1 and statistics/0 predicates, we
can provide different components that monitor various metrics of the search
tree and provide us with a convenient summary. In the following example,
we constrain 4 finite domain variables to the domain 1, . . . , 4 via the library’s
ins/2 constraint and emit all solutions found by labeling, including accompa-
nying statistics:

?- length(Xs,4), Xs ins 1..4,

search(tor_statistics((tor_label(Xs),writeln(Xs)))),

false.

[1,1,1,1]

% Number of solutions: 1

% Number of nodes: 4

% Number of failures: 0

...

[4,4,4,4]

% Number of solutions: 256

% Number of nodes: 510

% Number of failures: 0

The code for tor statistics/1 is in the Tor library.
To support users who want to check whether they have successfully re-

placed all regular disjunctions with Tor, we also provide a tool that uses
SWI-Prolog’s choice point inspection primitive prolog current choice/1 to
verify this.

3.6.2 Visualization

In addition to summarized data of the search tree, we can also visualize the
actual search tree itself with Tor. For that purpose, we provide a predicate
that emits a textual representation, a log, of the search tree:

48 CHAPTER 3. MODULAR SEARCH

root

l

l

> r

> >

r

l

> r

> >

r

> r

> >

r

l

l

> r

> >

r

l

> r

> >

r

> r

> >

r

l

> r

> >

r

l

> r

> >

r

> r

> >

Figure 3.3: Search tree for labeling 3 variables with domains of size 3 that are not
involved in any constraints.

log(Goal) :-

tor_merge(log_tree,Goal),

writeln(solution).

log_tree :-

((writeln(left)

tor

writeln(right)

),

log_tree

;

writeln(false),

false

).

A complimentary tool that turns this log into a PDF image is also available
from our public code repository. Due to our concise decision to transform the
textual logs to scalable vector graphics in PDF format, there is no inherent
limit on the sizes of search trees that users of Tor can visualize with this tool.

Fig. 3.3 shows the complete search tree for labeling 3 variables with do-
mains of size 3 that are not involved in any constraints: Xs = [, ,], Xs

ins 1..3, search(log(tor label(Xs))). The symbol > denotes that a so-
lution is found at this node, while l and r denote internal nodes generated by
left and right branches of tor/2 respectively.

Fig. 3.4 shows two search trees for the 8-queens puzzle: The left one was
created with depth limit (search strategy dbs) 4 and contains no solutions.
The right one was created with depth limit 7 and stopped the search after

3.7. PLAIN PROLOG EXAMPLE 49

root

l

l

⊥ r

l

! !

r

! !

r

l

l

! !

r

! !

r

l

! !

r

! !

r

l

l

l

! !

r

! !

r

l

! !

r

! !

r

l

l

! !

r

! !

r

l

! !

r

! !

root

l

l

⊥ r

l

⊥ ⊥

r

l

⊥ ⊥

r

⊥ ⊥

r

l

l

⊥ r

⊥ ⊥

r

l

⊥ ⊥

r

l

l

! !

⊥

r

⊥ ⊥

r

l

l

⊥ r

⊥ ⊥

r

l

⊥ ⊥

r

l

! !

>

Figure 3.4: Search trees of 8-queens with depth bound 4 and 7.

finding the first solution. Hence, only the right-most leaf is a solution. The
symbol ⊥ denotes pruning due to constraint propagation, and ! denotes a node
that is not explored because the depth limit is exceeded at this level of the
search tree.

It would be interesting to further integrate the logging output with the
more powerful CP visualization tool CP-Viz [144].

3.7 Plain Prolog Example

While the application of Tor to CLP problems is obvious, we wish to empha-
size that Tor is not limited to CLP.

For that reason we illustrate the use of Tor on the well-known problem of
the wolf, the goat and the cabbage. The following code, adapted from Sterling
and Shapiro [150], implements this decision problem in plain Prolog (without
constraints). Naive depth-first execution of this code loops infinitely.

wgc :-

initial_state(State),

wgc(State).

wgc(State) :-

final_state(State), !.

wgc(State) :-

move(State,Move),

update(State,Move,State1),

legal(State1),

wgc(State1).

initial_state(wgc(left, [wolf, goat, cabbage], [])).

50 CHAPTER 3. MODULAR SEARCH

final_state(wgc(right, [], [wolf, goat, cabbage])).

move(wgc(Bank, Left, Right),Move) :-

(Bank == left,

tor_member(Move, Left)

tor

Bank == right,

tor_member(Move, Right)

tor

Move = alone

).

:- tor tor_member/2.

tor_member(X,[X|_]).

tor_member(X,[_|Xs]) :- tor_member(X,Xs).

update(wgc(B,L,R), Cargo, wgc(B1, L1, R1)) :-

update_boat(B, B1),

update_banks(Cargo, B, L, R, L1, R1).

update_boat(left, right).

update_boat(right, left).

update_banks(alone, _B, L, R, L, R) :- !.

update_banks(Cargo, left, L, R, L1, R1) :- !,

select(Cargo, L, L1),

insert(Cargo, R, R1).

update_banks(Cargo, right, L, R, L1, R1) :-

select(Cargo, R, R1),

insert(Cargo, L, L1).

insert(X,[Y|Ys], [X,Y|Ys]) :-

precedes(X,Y), !.

insert(X, [Y|Ys], [Y|Zs]) :-

precedes(Y,X), !,

insert(X,Ys,Zs).

insert(X, [], [X]).

precedes(wolf, _X).

precedes(_X, cabbage).

legal(wgc(left, _L, R)) :- \+ illegal(R).

3.8. EVALUATION 51

legal(wgc(right, L, _R)) :- \+ illegal(L).

illegal(Bank) :- memberchk(wolf, Bank),

memberchk(goat, Bank).

illegal(Bank) :- memberchk(goat, Bank),

memberchk(cabbage, Bank).

The nondeterministic enumeration in this code is situated in the move/2 and
tor member/2 predicates.7 In order to use Tor, we have replaced ordinary
Prolog disjunction with tor/2.

To avoid the non-termination, we can apply a depth-bound and discover
in finite time that the problem has a solution.

?- search(dbs(17,wgc)).

true.

Of course this is not the only search method that solves the problem. Thanks
to Tor, it is convenient to explore many others and to determine the most
effective one for the problem at hand.

3.8 Evaluation

To study Tor’s overhead, we have performed a number of benchmarks on a
MacBook Pro, with a 2.4 GHz CPU and 4 GB RAM, running Mac OS X 10.6.7.
We compare two Prolog systems with different performance characteristics. On
the one hand we consider SWI-Prolog 5.11.7, a feature-rich, but relatively slow
Prolog system with a CLP(FD) solver written in Prolog. On the other hand,
we consider B-Prolog 7.5#3, one of the fastest Prolog systems with a highly
optimized CLP(FD) implementation.

3.8.1 Pure Search

Table 3.1 considers the extreme situation where the search is pure enumeration
of unconstrained constraint variables:

length(N,Vars), Vars ins 1..D

Hence, no constraint propagators are activated due to choices. Values are
simply enumerated.

7The tor/1 declaration implicitly adds Tor-disjunctions between the clauses of a predi-
cate.

52
C
H
A
P
T
E
R

3.
M
O
D
U
L
A
R

S
E
A
R
C
H

our label/1 clpfd’s label/1 search/6

B-Prolog’s labeling/1

man Tor man Tor man Tor

SWI-Prolog

N=6,D=8 1.80 s 240 % 2.08 s 151 % 2.55 s 132 %

N=6,D=9 3.63 s 249 % 4.20 s 153 % 5.09 s 135 %

N=6,D=10 6.82 s 269 % 7.87 s 155 % 9.53 s 137 %

N=7,D=8 14.44 s 244 % 16.63 s 153 % 20.40 s 134 %

N=7,D=9 32.80 s 269 % 37.80 s 155 % 46.04 s 136 %

N=7,D=10 68.27 s 278 % 78.63 s 157 % 94.30 s 139 %

B-Prolog

N=6,D=8 0.49 s 156 % 0.09 s 276 % 0.12 s 223 %

N=6,D=9 0.99 s 157 % 0.18 s 283 % 0.23 s 221 %

N=6,D=10 1.87 s 160 % 0.32 s 291 % 0.44 s 219 %

N=7,D=8 4.56 s 144 % 0.71 s 306 % 0.94 s 220 %

N=7,D=9 8.90 s 163 % 1.59 s 301 % 2.06 s 225 %

N=7,D=10 18.64 s 163 % 3.25 s 332 % 4.37 s 220 %

Table 3.1: Labeling benchmarks without propagation: execution times.

3.8.
E
V
A
L
U
A
T
IO

N
53

our ff label/1 labeling/2 search/6

man Tor man Tor man Tor

SWI-Prolog

allinterval 4.03 s 101 % 4.02 s 101 % 4.01 s 101 %

golf 3.93 s 99 % 3.92 s 100 % 3.96 s 99 %

mhex 18.59 s 102 % 18.61 s 101 % 18.46 s 101 %

n queens 2.03 s 103 % 2.05 s 102 % 2.09 s 102 %

sudoku 2.14 s 101 % 2.15 s 101 % 3.40 s 100 %

B-Prolog

allinterval 1.14 s 100 % 0.81 s 112 % 0.89 s 109 %

knapsack 3.94 s 125 % 2.11 s 175 % 2.17 s 172 %

knight 0.67 s 101 % 0.71 s 100 % 0.91 s 100 %

mhex 0.23 s 106 % 0.19 s 107 % 0.23 s 104 %

n queens 1.01 s 107 % 0.89 s 107 % 1.03 s 106 %

Table 3.2: Labeling benchmarks with propagation: execution times. Note that the problem sizes of the benchmarks
are not the same for SWI-Prolog and for B-Prolog.

54 CHAPTER 3. MODULAR SEARCH

The first column denotes the problem size, expressed in the number of
variables N and their domain size D. The other three pairs of columns denote
different implementations of labeling: 1) label/1 as listed in this paper, 2)
label/1 from SWI-Prolog’s clpfd library and the corresponding labeling/1

provided by B-Prolog, and 3) search/6 ported from ECLiPSe to SWI-Prolog
and B-Prolog with minimal changes. For each of these, we show the absolute
runtime of the standard/manual version (man) and the relative runtime of the
Tor version (tor).

In both SWI-Prolog and B-Prolog the impact of Tor is pretty consistent
across the problem sizes, but depends on the labeling implementation. In
SWI-Prolog, the overhead is most prominent (140-180 %) in our bare-bones
label/1, while it is less so (50-60 %) in clpfd’s label/1. The latter delegates
to labeling/2, which involves more generic option processing. Finally, in
search/6 Tor compensates its overhead further (to 30-40 %) by not collecting
search statistics when these are not demanded. In ECLiPSe’s implementation,
these statistics are collected regardless of demand.

In B-Prolog, the performance characteristics of the labeling predicates are
markedly different. Firstly, the cost of the inequality (#\=)/2 in our label/1
is relatively high, which keeps the overhead of Tor low (60%). In contrast,
the two other labeling predicates rely on B-Prolog’s domain inst next/3 for
enumeration, which compiles down to a single abstract machine instruction. As
a result the overhead of Tor is much higher, more so in the tight labeling/1
(170%-230%) than the more bloated search/6 (120%).

In summary, in these propagation-free benchmarks, the overhead of Tor
goes up to about a factor three for tight labeling loops, but is lower for option-
rich labeling predicates. Moreover, Tor is better behaved in SWI-Prolog than
in B-Prolog. All in all, we find that this is a very reasonable price to pay for
the extra flexibility that Tor provides. Still, invoking Tor’s specializer (see
the next section) can get rid of all overhead.

3.8.2 Search vs. Propagation

While the performance penalty of Tor is limited in the previous benchmarks,
the performance-wary user may not be willing to accept the overhead. How-
ever, the previous benchmarks are not representative of realistic CLP prob-
lems, that spend a lot of time on constraint propagation in every node of the
search tree. All this extra work easily dwarfs the overhead of Tor. Table 3.2
illustrates this observation on a number of typical CLP benchmarks.

For added realism, the benchmarks use the first-fail variable selection strat-
egy, with hand-written labeling code ff label/1, the two library predicates

3.8. EVALUATION 55

plain lds dibs-1 dibs-2 credit/bbs

N= 95 2.11 s 0.66 s 0.45 s 0.28 s 0.33 s

N= 96 0.65 s 4.98 s 4.89 s 1.13 s 1.04 s

N= 97 T/O 3.68 s 3.56 s 22.66 s 4.08 s

N= 98 T/O 15.67 s † 5.71 s 10.16 s 2.50 s

N= 99 T/O 2.42 s 2.22 s 9.85 s 2.57 s

† no solution

Table 3.3: N-Queens benchmarks with various search methods: execution times.

labeling/2 (SWI-Prolog) and labeling ff/1 (B-Prolog), and the ported
search/6. Because B-Prolog’s CLP(FD) solver is orders of magnitude faster
than SWI-Prolog’s, it makes little sense to use exactly the same benchmarks for
the two platforms. Instead, we resorted to different problem sizes or different
benchmarks altogether.

In the case of SWI-Prolog, we see that Tor introduces no (significant)
overhead; its runtime is marginal compared to that of constraint propagation.
In the case of B-Prolog, the overhead of Tor is more noticeable, in the order
of 10% for most benchmarks. Only in the case of the knapsack problem does
it go up to 75% for the tightest labeling loop.

In summary, we see no performance reason to avoid the use of Tor for
most CLP problems. Especially in SWI-Prolog there is no runtime price to
pay. In the setting of B-Prolog, an extra 10% runtime is a low price for the
extra flexibility that Tor provides. Moreover, in the next section we will see
how we can eliminate Tor’s overhead to the extent that we don’t pay for it if
we don’t use the capabilities it provides.

3.8.3 Search Methods

Finally, Table 3.3 illustrates once more why we want to use different search
methods: they can significantly reduce the runtime while still leading to use-
ful solutions. The table shows the runtime for finding the first solution of the
n queens benchmark in SWI-Prolog for 5 different problem sizes and 5 differ-
ent search methods: (plain) plain depth-first search, (lds) limited discrepancy
search, (dibs-1/-2) discrepancy bounds of 1 and 2, and (credit/bbs) credit-
based search with 10,000 credits that switches to a bounded backtracking (1
backtrack) search when the credits are exhausted. The notation T/O stands
for timeout.

56 CHAPTER 3. MODULAR SEARCH

3.9 Automatic Specialization

Tor encourages writing fairly abstract and generic code. This style clearly
incurs some overhead (notably due to meta-calling) compared to specialized
search code. Fortunately, in the case of CLP applications, this overhead is very
modest compared to the cost of constraint propagation. However, in the case
of applications without constraint propagation, we do observe an overhead
that is significant. In order to mitigate that overhead, we exploit Prolog’s
homoiconic nature to provide a simple but effective automatic specializer.

Even though there is a large body of work on automatic program special-
ization for Prolog, notably involving partial evaluation, we decided to write our
own program specializer. Its main tasks are 1) to perform constant propagation
on the global variables left and right, 2) to replace instantiated meta-calls
by direct calls and 3) to inline the handler code into the main search loop.
For control we follow a lightweight approach based on declarations of what
predicates to inline and specialize.

Example 1 Our specializer yields label/1 for the generic composition
search(tor label(Vars)). Similarly, we recover SWI-Prolog’s labeling/2

by specializing its Tor variant. Hence, we do not pay if we do not modify the
search.

Example 2 The specialized form of the goal

search(dbs(N, tor_label(Vars)))

is new bvar(N,DVar), label21(Vars, DVar), with:

label21([], _).

label21([Var|Vars], DVar) :-

(var(Var) ->

fd_inf(Var, Val),

(b_get(DVar, Depth),

Depth>0,

NDepth is Depth+ -1,

b_put(DVar, NDepth),

Var#=Val,

label21(Vars, DVar)

;

b_get(DVar, G),

G>0,

NDepth is G+ -1,

b_put(DVar, NDepth),

3.10. RELATED WORK 57

Var#\=Val,

label21([Var|Vars], DVar)

)

;

label21(Vars, DVar)

).

This code is slightly less efficient than that of label/2. Firstly, the overhead
of mutable variables is not entirely eliminated here, as DVar is still present.
Secondly, the two branches have some code in common that could be shared.
However, there are no more meta-calls and all code is inlined in the recursive
loop of label21/2.

In future work, we intend to get rid of the remaining inefficiencies by imple-
menting additional transformations, including Peter Schachte’s approach [131]
for eliminating mutable variables adapted to our setting.

3.10 Related Work

We have already covered the most closely related work, existing approaches to
search heuristics in Prolog, in Section 3.2.2. Here we cover other important
related topics.

Combinators Tor is related to earlier work on Monadic Constraint Pro-
gramming (MCP) [137] in the context of Haskell, and Search Combinators [138]
in the context of C++ and the Gecode library8. In contrast to those works,
Tor is tailored towards Prolog’s built-in depth-first search and, as a conse-
quence, consists of a much simpler and more elegant design.

Comet The imperative Comet language [164] features fully programmable
search by means of search controllers [165]. There are two main differences
between Tor and Comet’s search controllers. Firstly, search controllers trade
simplicity for flexibility, providing more hooks and first-class continuations
to manipulate the search. Secondly, search controllers are not intended to
be composed, in contrast to Tor’s handlers that are explicitly designed to
support composition.

Gecode Gecode [140] is a C++ library for constraint programming that pro-
vides two complimentary means to control the search: search engines and

8http://www.gecode.org

http://www.gecode.org

58 CHAPTER 3. MODULAR SEARCH

branchers. A valid search consists of a combination of one search engine and
one or more branchers. The search engine determines how to navigate the
search tree (e.g., depth first search, depth-first search with iterative deepening,
. . .) and the branchers define the search tree. A typical brancher is defined,
like typical CLP(FD) labeling predicates, in terms of a set of variables, and a
variable and value selection strategy. Multiple branchers denote a conjunction.
Unlike Tor search engines cannot be composed, and all branchers are subject
to one and the same search engine.

Aspect-Oriented Programming The Tor approach is closely related to
aspect-oriented programming (AOP) [79, 92]. AOP provides a generic ap-
proach for modularly cross-cutting existing code with new code, so-called ad-
vice. This advice is injected in arbitrary join points (i.e., program points)
based on a pointcut predicate.

Obviously Tor is more limited in scope, as only tor/2 disjunctions are
cross-cut and only at the positions of the two hooks. However, we believe that
these “limitations” are actually Tor’s strength: its simplicity makes it easy to
express all common search methods and its discipline favors compositionality.

A Functional Specification of Modular Search In Chapter 5 we build
a formal specification for the Tor approach based on functional techniques.
More specifically, we reify the search tree as syntax using the free monad. The
heuristics then act on this reified tree. Finally, the syntax is reflected back
into the semantics.

We derive an actual Prolog implementation from this Haskell model; this is
possible because of an isomorphism between the free monad and the delimited
continuations monad. Implementing the free monad transformer in Prolog
itself is challenging, but not needed because we have added delimited control
to Prolog (see the following chapter), which is a much more natural fit for the
language.

3.11 Conclusion and Future Work

We have presented Tor, a lightweight library-based approach for modifying
Prolog’s depth-first search with reusable and compositional search methods.
While the notion of hookable disjunction has enabled a surprisingly large num-
ber of possibilities for modifying Prolog search, we still see a few areas that
could be improved in future work:

3.11. CONCLUSION AND FUTURE WORK 59

Increased Expressivity Simplicity has been a guiding principle in the de-
sign of Tor. In order to minimize the threshold for users, we keep the effort
and complexity of defining and using search methods low. We pay for this
simplicity with a somewhat restricted expressivity. An example of a search
method that cannot be expressed with Tor is swapping the order of branches
in a disjunction. In order to overcome this limitation we would have to add
extra complexity to the tor/2 built-in in the form of an additional hook.
However, we choose simplicity over additional expressivity. Nevertheless, Tor
is remarkably expressive as it is, covering all of the commonly found search
methods in CLP(FD) libraries.

It would be interesting to investigate how expressive Tor is in a parallel
setting. As a starting point, the naive parallel search strategy from Subsec-
tion 3.5.4 could be adapted to use threads instead of processes.

On a more drastic account, we would like to investigate ways to replace
Tor’s underlying depth-first queuing strategy. The stack freezing function-
ality of tabling systems like XSB [152] and YAP [130] provides interesting
perspectives for this purpose.

Multiway Disjunctions Tor currently only supports binary disjunctions;
multiway disjunctions have to be decomposed into binary ones. For some
applications, this decomposition can be somewhat unnatural. For instance,
when enumerating all the values V of a constraint variable X, one might expect
that all alternative assignments X #= V sit at the same level in the search tree.
This is of course generally not the case in a binary decomposition.

Multiway disjunction could be provided by a more general hook replacing
the hooks for the left and right branches that Tor currently supplies. For
example, the following hook would do:

or(G1,G2) :- get_hook(P), P([G1,G2]).

mor(Gs) :- get_hook(P), P(Gs).

However, it is not clear how the elegant declarative interface based on archety-
pal search trees could be generalised to this setting. Each inner node of the
archetypal search tree would have to dynamically adapt its number of children
to match the number of branches in the multiway-disjunctions of the problem’s
search tree.

Declarative State Management We have hidden the operational aspects
of Tor from the programmer with the use of the high-level programming in-
terface for heuristics. Even though the underlying implementation relies on

60 CHAPTER 3. MODULAR SEARCH

mutable variables, the interface provides a declarative view on state manage-
ment.

Unfortunately, non-backtrackable state is not covered by the high-level in-
terface; the programmer has to manage it explicitly in an imperative style.
The problem is that non-backtrackable state updates are often followed im-
mediately by failure. There is no idiomatic declarative alternative for this
technique. However, we could turn to pure deterministic encodings of fail-
ure with non-backtrackable state, like Haskell’s ListT (State s) monad [74]
and use Filinski’s reification/reflection technique [47] to translate to and from
Prolog’s native effects.

References

This chapter is based on our article on Modular Search: Tom Schrijvers,
Bart Demoen, Markus Triska, and Benoit Desouter. Tor: Modular Search
with Hookable Disjunction. Science of Computer Programming (SoCP), 2014.
Benoit Desouter’s contribution lies in defining and experimenting with the
heuristics from this chapter, as well as the creation of an SWI-Prolog library.
Benoit set up the initial assessment of the performance of the Tor approach
and assisted in structuring the article’s presentation.

Chapter 4
Delimited Control

Prolog, as defined in Chapter 2, is a very minimalist language. Essentially
it consists of Horn clauses extended with simple built-in predicates. This
minimality has several advantages, but infrastructure to capture common pro-
gramming patterns is sometimes thoroughly missed.

In the past, this encoding of frequently occurring patterns has been ad-
dressed using meta-programming and program transformations. There are
several well-known examples: definite clause grammars (DCGs) [26, 108], log-
ical loops [132], extended DCGs [166], and structured state threading [69].

These are all non-local program transformations. For several reasons, they
are not ideal for defining new language features:

• the effort of defining a transformation is proportional to the number of
features in the language;

• program transformations are fragile: when the language evolves, they
require amendments;

• when a new feature is introduced, the whole system may need transform-
ing.

This makes the development and adoption of new language features a dif-
ficult case. By bringing a well-known control primitive from the functional
world, delimited continuations [46, 31], to Prolog, we alleviate these problems.

Feature extensions based on delimited continuations are more lightweight
and more robust with respect to change than traditional approaches. Intro-
ducing extensions based on delimited continuations does not require pervasive

61

62 CHAPTER 4. DELIMITED CONTROL

changes to an existing code base. These nice properties stem from the fact
that they enable the definition of new language features at the program level
(i.e. in libraries) rather than at the meta-level.

In contrast with BinProlog [157], where continuations are first-class, our
primitives for delimited control do give continuations this status. In BinProlog,
continuations are normally invisible, while we aim to make them available for
library developers.

The Origin of Delimited Control Delimited continuations have their
roots in functional programming, and their use in programs that explicitly
pass continuations, continuation-passing style (CPS), is folklore. Felleisen in-
troduced the reset and shift primitives for delimited control (“prompt ap-
plications”) in direct style programs using the untyped lambda-calculus [46].
Danvy and Filinski [31] independently proposed similar operators. Felleisen
defined the semantics via translation to a stack-machine, but did not provide
an actual implementation. One of his examples was a yield-mechanism on a
tree. Felleisen already pointed out the relation of continuations to stream-
programming, although he did not distinguish yield as a separate operator.
Duba et al. added first-class continuations to the statically typed ML lan-
guage [43]. Flatt et al. implemented a production version in Scheme [48].

We define the control operators with a different signature and semantics
from Danvy and Filinski’s version. Our operators are more closely related to
the fcontrol and run proposed by Dorai Sitaram [145].

The structure of this chapter is as follows: we first give an informal seman-
tics for the primitives of delimited control. Next, we show a few applications.
In a third section, we define a meta-interpreter semantics. Before diving into
the actual implementation in the WAM (Section 4.5), we investigate the re-
lationship of the primitives with catch/3 and throw/1. We discuss some
semantic intricacies in Section 4.6 and next move on to a presentation of re-
lated work. We evaluate the performance of our approach in Section 4.8 and
conclude in Section 4.9.

4.1 Informal Semantics

We have implemented delimited control in Prolog by means of two interacting
predicates: reset/3 and shift/1. We now informally describe the semantics
of this predicate pair. The pair does not turn continuations into first-class
Prolog citizens, yet their usefulness will be made clear in the following section.

4.1. INFORMAL SEMANTICS 63

p :-

reset(q,Cont,Term1),

writeln(Term1),

writeln(Cont),

writeln(endp).

q :-

writeln(a),

shift(qterm),

writeln(b).

?- p.

a

qterm

[$cont$(785488,[])]

endp

Figure 4.1: Illustrating the semantics of reset/3 and shift/1.

• reset(Goal,Cont,Term1) executes Goal and

– if Goal calls shift(Term2), its further execution is suspended and
unified with continuation Cont. The reset/3 predicate succeeds. A
continuation is an unspecified Prolog term, which can be resumed
using call/1. It can be called, saved, copied and compared like
any other term, but it is opaque: from its representation we cannot
determine anything about the actual goals it represents.

– if Goal succeeds, then reset/3 binds Cont and Term1 to 0.

– if Goal fails, then reset/3 also fails.

• shift(Term2) unifies the remainder of Goal up to the nearest call to
reset/3 (i.e., the delimited continuation) with Cont, and its return value
Term2 with Term1. Finally, it returns control to just after the reset/3

goal.

Example 3. Figure 4.1 shows a first example. This example illustrates that
shift/1 unifies the last two arguments of reset/3: both are printed out. The
continuation in this case represents the writeln(b) goal in the context of the
activation of the clause for q/0. Since this continuation is not activated, this
goal has no effect. The example also shows that execution is continued after
the reset/3 goal.

One important aspect this example shows is that it is up to the continua-
tion of the reset/3 to call the continuation constructed by shift/1. A small
adaptation of the above example actually calls the continuation:

64 CHAPTER 4. DELIMITED CONTROL

p :-

reset(q,Cont,Term1),

writeln(Term1),

call(Cont),

writeln(endp).

?- p.

a

qterm

b

endp

Compound Goal Given the clauses for a/0 and b/0 below,

a :-

reset((b,

writeln(in_reset(Term))

),Cont,Term),

writeln(after_reset),

call(Cont).

b :-

shift(shifted),

writeln(after_shift).

?- a.

after_reset

after_shift

in_reset(shifted)

the result of the query ?- a. on the right might surprise. However, it is
completely in line with the description that Cont captures the whole of the
continuation after the call to shift/1 up to just after the reset/3 goal. A
simple way to see that this is the desired behavior is by noting that the clause
for a/0 above is equivalent to:

a :-

reset(newpred(Term),Cont,Term),

writeln(after_reset),

call(Cont).

newpred(Term) :-

b,

writeln(inside_reset(Term)).

In Section 4.6 we discuss the actual semantic intricacies of the reset/shift
pair.

4.2 Applications

4.2.1 Coroutines

As a first example of delimited control, we show how coroutines can be imple-
mented. By the term coroutines, we do not mean the Prolog variety, but the

4.2. APPLICATIONS 65

from_list([]).

from_list([X|Xs]) :-

yield(X),

from_list(Xs).

enum_from_to(L,U) :-

(L < U ->

yield(L),

NL is L + 1,

enum_from_to(NL,U)

;

true

).

sum(Sum) :-

sum(0,Sum).

sum(Sum0,Sum) :-

ask(X),

(X == eof ->

Sum = Sum0

;

Sum1 is Sum0 + X,

sum(Sum1,Sum)

).

Figure 4.2: Some example iterators (left) and iteratees (right).

more general meaning. Coroutines are subroutines that can be suspended and
resumed to communicate with another routine. There is growing consensus
that coroutines are easier to understand than lazy evaluation [82, 81]. We too
believe that Prolog coroutines are to be preferred over lazy evaluation à la
Ciao [18], but both techniques allow for a flexible and modular design that
emphasises reuse. The communication partners are coupled very loosely.

We can distinguish three different types of coroutines:

iterator An iterator1 is a coroutine that suspends to output data. The iter-
ator uses the yield/1 primitive to suspend and return an intermediate
value.

iteratee An iteratee is a coroutine that suspends to request external input.
The iteratee uses the ask/1 primitive to suspend.

transducer A transducer transforms iterators of one kind into another kind.

Figure 4.2 shows several examples of iterators (left) and iteratees (right). With
from list/1, values from the given argument list are generated one by one.
With enum from to/2, one generates all values between the given bounds.
This kind of coroutine-based iterators exists in many languages (e.g. Python).
The sum/0 iteratee adds up as many numbers as provided by its external input
source.

1Quite often also referred to as a generator [90].

66 CHAPTER 4. DELIMITED CONTROL

yield(X) :-

shift(yield(X)).

ask(X) :-

shift(ask(X)).

Figure 4.3: Definition of yield/1 and ask/1.

% Iterator consumers

with_write(Goal) :-

reset(Goal,Cont,Term),

(Term = yield(X) ->

write(X),

with_write(Cont)

;

true

).

% Iteratee producers

with_read(Goal) :-

reset(Goal,Cont,Term),

(Term = ask(X) ->

read(X),

with_read(Cont)

;

true

).

with_list(L,Goal) :-

reset(Goal,Cont,Term),

(Term = ask(X) ->

L = [X|T],

with_list(T,Cont)

;

true

).

Figure 4.4: Providing a context for iterators and iteratees with handlers: example
handlers.

4.2. APPLICATIONS 67

Handlers The implementation of the primitives yield/1 and ask/1 (Fig-
ure 4.3) relies on delimited control. The trick is to decouple the syntax of these
operations from their semantics. So, the primitives are all syntax and simply
shift their own term representation. The semantics is provided by a handler
which can be seen as the context in which the coroutine runs. Figure 4.4 de-
fines the with write handler for our example iterators and the with read and
with list handlers for our example iteratee:

• The with write handler runs the given iterator in a delimited environ-
ment, which is provided by the reset/3 predicate. Every time the yield
operation is encountered, the execution of the iterator is interrupted and
control is transferred to just after the reset goal. This is because yield/1
is defined in terms of shift/1, which works together with reset/3 to
provide this behaviour.

To distinguish between a yield and the iterator running out of elements,
the Term argument of reset will be bound to yield in the first case and
to 0 in the second case. For a yield, we print the yielded element to
the terminal and call the handler recursively on the remainder of the
iterator, which is bound to the Cont argument of the reset. In contrast,
if the iterator runs out of elements, we succeed with true.

• The with read and with list handlers follow a similar pattern: if the
iteratee finishes without asking for more elements, we succeed with true.
Otherwise we read, respectively extract an element and call the handler
recursively. If the user provides no element in the case of with read,
or if the list runs out of elements in the case of with list, resolution
simply fails.

In the case of iterators, the context determines the sink of the data,
hence we refer to the context as a consumer. With iteratees, the context
determines the source of the data, hence we say that the context is a
producer.

Consumers are independent from the particular iterator:

?- with_write(from_list([1,2,3]).

123

true.

?- with_write(enum_from_to(1,4)).

123

true.

68 CHAPTER 4. DELIMITED CONTROL

The producers can be replaced independently from the iteratees:

?- with_list([1,2,3],sum(S)).

S = 6.

?- with_read(sum(S)).

|: 1.

|: 2.

|: 3.

S = 6.

Lockstep coroutining Iterators and iteratees can be combined to work
together in lock-step. To this end, we define a handler play/2 that uses
both. This handler calls the first communication partner G1 in a reset and
whenever it yields or asks for an element, it is suspended. Next, play/2

runs the other communication partner G2 until yielding or asking. Then, the
requests are synced: if G1 asks an element and G2 provides one, or vice versa,
the communication is successful and the handler is invoked recursively on the
remainder of both partners.

play(G1,G2) :-

reset(G1,Cont1,Term1),

(Cont1 == 0 ->

true

;

reset(G2,Cont2,Term2),

sync(Term1,Term2),

play(Cont1,Cont2)

).

sync(ask(X),yield(X)).

sync(yield(X),ask(X)).

Flexible communication between both partners is made possible by play/2:

?- play(sum(S), from_list(1,2,3)).

S = 6.

?- play(sum(S), enum_from_to(1,4))

S = 6.

More generally, coroutines can mix yield/1 and ask/1 to communicate in
two directions. Consider the following mapping and scanning predicates:

4.2. APPLICATIONS 69

mapL([],[]).

mapL([X|Xs],[Y|Ys]) :-

yield(X),

ask(Y),

mapL(Xs,Ys).

scanSum(Acc) :-

ask(X),

NAcc is Acc + X,

yield(NAcc),

scanSum(NAcc).

For instance, to compute a list of partial sums yj =
∑j
i=0 xi for a given input

list xi one can use:

?- play(mapL([1,2,3,4],L),scanSum(0)).

L = [1,3,6,10].

Compare this coroutine-based approach to Sterling and Kirschenbaum’s ap-
proach of applying techniques to skeletons [148]. The former are much more
lightweight and uniform. In contrast, the latter rely on program transforma-
tion or meta-interpretation and are more ad-hoc.

Transducers A transducer transforms an iterator of one kind into an iter-
ator of another kind. A transducer communicates with two parties: it asks
values from an underlying iterator and uses these to produce other values that
it yields to an iteratee.

The doubler/2 predicate is an example of a transducer that doubles the
values it receives. Other examples are the mapL/2 and scanSum/1 predicates
explained above.

doubler :-

ask(Value),

NValue is Value * 2,

yield(NValue),

doubler.

The transduce/2 predicate from Figure 4.5 applies a transducer to an it-
erator. The predicate runs the given transducer goal until a shift is encoun-
tered. The shift binds TermT to either yield(NValue) or to ask(Value).
Then, transduce/2 calls a helper predicate. For a yield, the helper predicate
actually yields the value and then calls transduce recursively on the continu-
ation. For an ask, the handling is more complicated: the helper predicate runs
the iterator goal, and if this goal yields a value, it supplies that value to the
transducer goal before running transduce recursively on both continuations.

Here is an example how to use transduce/2:

?- play(sum(Sum),transduce(fromList([1,2]),doubler)).

Sum = 6.

70 CHAPTER 4. DELIMITED CONTROL

transduce(IG,TG) :-

reset(TG,ContT,TermT),

transduce_(TermT,ContT,IG).

transduce_(0,_,_).

transduce_(yield(NValue),ContT,IG)) :-

yield(NValue),

transduce(IG,ContT).

transduce_(ask(Value),ContT,IG) :-

reset(IG,ContI,TermI),

(TermI == 0 ->

true

;

TermI = yield(Value),

transduce(ContI,ContT)

).

Figure 4.5: Definition of the transduce/2 predicate for applying transducers.

Java-style iterators The init iterator/2 predicate packages a generator
goal in an iterator structure that captures the last yielded element and the
generator’s continuation. This resembles the iterator() method from the
Java Iterable interface very well. The next/3 predicate extracts this element
and builds the new iterator from the continuation, similar to the Java next()

method on an iterator.

init_iterator(Goal,Iterator) :-

reset(Goal,Cont,YE),

(YE = yield(Element) ->

Iterator = next(Element,Cont)

;

Iterator = done

).

next(next(Element,Cont),Element,Iterator) :-

init_iterator(Cont,Iterator).

As in the examples above, consumers of iterators are independent of the
particular generator:

sum(Iterator,Acc,Sum) :-

(next(Iterator,X,NIterator) ->

4.2. APPLICATIONS 71

NAcc is Acc + X,

sum(NIterator,NAcc,Sum)

;

Acc = Sum

).

and can be hooked up to many different ones:

?- init_iterator(fromList([1,2,3]),It), sum(It,0,Sum).

Sum = 6.

?- init_iterator(enumFromTo(1,3),It), sum(It,0,Sum).

Sum = 6.

4.2.2 Effect Handlers

Plotkin and Pretnar [110] have recently formulated a particularly insightful
class of applications: effect handlers. Effect handlers are an elegant way to
add many kinds of side-effectful operations to a language and are far less
intrusive than monads [99].

We will see that the coroutines from the previous section are in fact all
effect handlers; we explained them first because they are more familiar.

Implicit State Passing Figure 4.6 (left) defines an effect handler for an
implicit state passing feature. The feature provides two primitive operations:
get/1 for reading the implicit state, and put/1 for writing it. For instance,
the predicate inc/0 uses these primitives to increment the state.

inc :- get(S), S1 is S + 1, put(S1).

The effect handler decouples the syntax of the new operations from their se-
mantics. The put/1 and get/1 predicates are all syntax and have no semantics;
they simply shift their own term representation. The semantics is supplied
by the handler predicate run state/3. This handler predicate runs a goal
and interprets the two primitive operations whenever they are shifted. For
the interpretation, run state recursively threads a state. Hence, a minimal
example that uses implicit state is:

?- run_state(inc,0,S).

S = 1.

72 CHAPTER 4. DELIMITED CONTROL

get(S) :- shift(get(S)).

put(S) :- shift(put(S)).

run_state(Goal,Sin,Sout) :-

reset(Goal,Cont,Command),

(Cont == 0 ->

Sout = Sin

; Command = get(S) ->

S = Sin,

run_state(Cont,Sin,Sout)

; Command = put(S) ->

run_state(Cont,S,Sout)

).

c(E) :- shift(c(E)).

phrase(Goal,Lin,Lout) :-

reset(Goal,Cont,Term),

(Cont == 0 ->

Lin = Lout

; Term = c(E) ->

Lin = [E|Lmid],

phrase(Cont,Lmid,Lout)

).

Figure 4.6: Effect handler expressing the State monad (left) and effect handler for
DCGs (right).

Definite Clause Grammars Figure 4.6 (right) shows a lightweight effect
handler for definite clause grammars. They are conventionally defined by
program transformation, for which they require special syntax to mark DCG
clauses H --> B and to mark non-DCG goals {G} inside clauses. Our effect
handler requires neither. It only introduces one new primitive operation c(E)

to consume the current element E in the implicit list. For instance, the follow-
ing predicate implements the grammar (ab)n and returns n.

ab(0).

ab(N) :- c(a), c(b), ab(M), N is M + 1.

?- phrase(ab(N),[a,b,a,b],[]).

N = 2.

Composing Effect Handlers Effect handlers can easily be made compo-
sitional. All it takes is for a handler to propagate unknown operations to the
next one in line. For example we can mix the DCG and state features this
way.

4.3. META-INTERPRETER SEMANTICS 73

phrase(Goal,Lin,Lout) :-

reset(Goal,Cont,Term),

(Cont == 0 -> ...

; Term = c(E) -> ...

;

shift(Term),

phrase(Cont,Lin,Lout)

).

ab.

ab :- c(a), c(b), inc, ab.

?- run_state(phrase(

ab,[a,b,a,b],[]

),0,S).

S = 2.

4.3 Meta-Interpreter Semantics

4.3.1 Direct-Style

We now formalize the delimited continuations feature by extending the vanilla
meta-interpreter from Section 2.2 with the reset/3 and shift/1 predicates.
On purpose, we leave out the if-then-else case and postpone the discussion to
Section 4.6.

eval(G) :-

eval(G,Signal),

(Signal = shift(Term,Cont) ->

format(’ERROR: Uncaught ‘shift(~w)\’.\n’,[Term]),

fail

;

true

).

eval(shift(Term),Signal) :- !,

Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !,

eval(G,Signal1),

(Signal1 = ok ->

Cont = 0,

Term = 0

;

Signal1 = shift(Term,Cont)

),

Signal = ok.

eval((G1,G2),Signal) :- !,

eval(G1,Signal1),

(Signal1 = ok ->

eval(G2,Signal)

;

74 CHAPTER 4. DELIMITED CONTROL

Signal1 = shift(Term,Cont),

Signal = shift(Term,(Cont,G2))

).

eval(G,Signal) :-

built_in_predicate(G), !,

call(G),

Signal = ok.

eval(G,Signal) :-

clause(G,Body),

eval(Body,Signal).

The meta-interpreter extends every goal with an extra output parameter
Signal. It is instantiated to ok when the goal succeeds normally. The base
case for this behavior is the eval/2 clause for built-in predicates.

When a goal’s evaluation is abruptly terminated by a call to shift(Term)

before its continuation Cont can be executed, the Signal flag is instantiated
to shift(Term,Cont). The base case for this behavior is the eval/2 clause for
shift(Term), where the empty continuation is represented by the goal true.

The clause for conjunction (G1,G2) evaluates the first goal. If it suc-
ceeds normally, the conjunction clause proceeds with G2. If G1 is aborted by
shift/1, then the whole conjunction case is aborted too and G2 is added to
the returned continuation.

The clause for reset(G,Cont,Term) evaluates G and binds Cont and Term

to 0 when G terminates normally; otherwise, they are bound to the returned
values.

4.3.2 Continuation-Passing Style

The following continuation-passing style meta-interpreter is an alternative for-
malization of the delimited continuation semantics. It materializes the call
stack as a stack of continuation frames. Every frame consists of a list, repre-
senting a conjunction of goals.

The evaluation of a conjunction (G1,G2) adds the second conjunct G2 to
the front of the current frame’s list at the top of the stack. The evaluation of
reset/3 pushes a new frame on top of the stack and shift/1 pops the top
frame from the stack.

eval(G) :-

eval(G,top([])).

eval(reset(G,Cont,Term),Conts) :- !,

eval(G,push([],Cont,Term,Conts)).

4.3. META-INTERPRETER SEMANTICS 75

eval(shift(Term),Conts) :- !,

eval_shift(Conts,Term).

eval(call_continuation(Cont0),Conts) :- !,

add_conts(Cont0,Conts,NConts),

eval_continue(NConts).

eval((G1,G2),Conts) :- !,

add_cont(G2,Conts,NConts),

eval(G1,NConts).

eval(true,Conts) :- !,

eval_continue(Conts).

eval(Goal,Conts) :-

clause(Goal,Body),

eval(Body,Conts).

eval_continue(top([])).

eval_continue(top([G|Gs]) :-

eval(G,top(Gs)).

eval_continue(push([],Cont,Term,Conts)) :-

Cont = 0,

Term = 0,

eval_continue(Conts).

eval_continue(push([G|Gs],Cont,Term,Conts) :-

eval(G,push(Gs,Cont,Term,Conts)).

eval_shift(top(Gs),Term) :-

format(’ERROR: Uncaught ‘shift(~w)\’.\n’,[Term]),

fail.

eval_shift(push(Cont,C,T,Conts),Term) :-

C = Cont,

T = Term,

eval_continue(Conts).

add_cont(top(Gs),G,top([G|Gs])).

add_cont(push(Gs,Cont,Term,Conts),G,

push([G|Gs],Cont,Term,Conts)).

add_conts([],Conts,Conts).

add_conts([G|Gs],Conts,NConts) :-

add_cont(Conts,G,Conts1),

add_conts(Gs,Conts1,NConts).

76 CHAPTER 4. DELIMITED CONTROL

4.3.3 Program Transformation

By means of the second Futamura projection [50], we obtain a program trans-
formation from the direct-style interpreter.

The general principle of this transformation is that each predicate gets
one extra argument, which captures both the term of shift/1 and the con-
tinuation, just as the second argument Signal does in the direct-style meta-
interpreter. To keep the notation simple, we assume that the goals in the input
program have arity zero, but the reader should be able to generalize easily.

We need to consider the transformation of a fact, and of three types of
conjunctive clauses: below is at the left side the original form, and at the right
the transformed form.

a. a(ok).

a :- a(X) :-

b, b(Y),

c. (Y == ok ->

c(X)

;

addcont(Y,c(_),X)

).

d :- d(X) :-

reset(e,Cont,Term), e(Y),

(

Y == ok ->

Cont = 0, Term = 0

;

s(Term,Cont) = Y

),

g. g(X).

h :- h(X) :-

shift(Term), k. X = s(Term,k(_)).

addcont(s(Term,Cont),G,s(Term,(Cont,G))).

This transformation works as follows:

1. The extra argument to a fact is ok.

2. For a rule consisting of the conjunction of two general body predicates,
the extra argument is the extra argument of the second conjunct in case

4.4. RELATION TO CATCH/3 AND THROW/1 77

the execution of the first conjunct was successful, and otherwise a term
s/2 containing the term shifted by the first conjunct and a composite
continuation. This composite continuation, defined by the addcont/3

fact consists of the continuation of the first conjunct, followed by the
entire second conjunct. Remember from Section 2.2 that a conjunction
of more than two goals is represented by nested binary conjunctions.

3. If the first goal in the rule is a reset, the extra argument of the entire rule
is the extra argument to the second conjunct, regardless of the occurrence
of a shift in the first conjunct. The difference lies in the bindings made
to the extra argument of the first conjunct. In particular, s(Term,Cont)
= Y binds the entire continuation to Y.

4. Although simple, the rule where the first conjunct is a shift, is perhaps
the most interesting. The extra argument to the entire rule is a term
s(Term,Cont) with Term the argument passed to the shift-operator, and
Cont the continuation of that shift within the rule, which is k.

In this context, it is also worth giving the implementation of the predicates
call continuation/1 and call/1. call continuation/1 is defined trivially as:

call_continuation((G1,G2)) :- !,

call_continuation(G1),

call_continuation(G2).

call_continuation(G) :- call(G).

and the transformed version is obtained as defined above. Because the im-
plementation is trivial, in our WAM version the user can just use call/1 for
continuations. After all, continuations are just like any other goal.

For call/1, we write the transformed version by hand:

call(X,Goal) :-

arg(1,Goal,X),

call(Goal). % the normal call/1

It is fairly obvious that the first argument of call/2 must be the first argument
of the called goal.

4.4 Relation to catch/3 and throw/1

The usual way to call catch/throw is in combination with each other, so that
catch(Goal,Ball1,Handler) corresponds to a throw(Ball2).

catch/throw has similarities with reset/shift, the important differences
being:

78 CHAPTER 4. DELIMITED CONTROL

1. throw/1 discards both the forward and backtracking continuation up to
the matching call to catch/3; shift/1 makes only the forward continu-
ation available to the (reset) handler. In other words: shift/1 does not
delete choicepoints.

2. throw/1 makes a copy of Ball2 (let’s name it Ball2Copy) and then
undoes the bindings up to the catch/3; shift/1 does not make a copy
of its argument and does not undo bindings.

3. if Ball1 and Ball2Copy do not unify, a matching call to catch/3 higher
up in the execution is searched for; if Term1 does not unify with Term2,
this results in failure of the continuation of the reset/3 goal, and back-
tracking occurs, potentially into Goal.

4. as for catch/throw, it is as if the handler is true.

The following code shows how catch/3 and throw/1 can be implemented
with reset/shift:

catch(Goal,_Catcher,_Handler) :-

nb_setval(thrown,nothrow),

catch1(Goal).

catch(_Goal,Catcher,Handler) :-

nb_getval(thrown,Term),

Term = ball(Ball),

nb_setval(thrown,nothrow),

(Ball = Catcher ->

call(Handler)

;

throw(Term)

).

catch1(Goal) :-

reset(Goal,Cont,Term),

(Cont == 0 ->

true % no ball was thrown

;

!,

nb_setval(thrown,Term),

fail

).

throw(Ball) :-

copy_term(Ball,BC),

shift(ball(BC)).

Note that we use the fact that when there is no shift/1 inside the Goal of
reset/3, Cont is unified with the integer 0.

One might wonder whether implementing reset/shift with catch/throw

is possible. One showstopper is that throw/1 undoes all bindings up to the
catch/3, while shift/1 does not. The other is that throw/1 copies (at least in
its ISO compliant mode2) while shift/1 does not make a copy of its argument.
Both are related of course.

2SWI-Prolog copies the ball just like ISO. It only searches for a catcher with matching
ball before copying.

4.5. IMPLEMENTATION 79

4.5 Implementation

This section presents an implementation of reset/3 and shift/1 in the
WAM [4, 171], more specifically in the context of hProlog [36].

4.5.1 The hProlog Implementation

There are three main issues in the implementation:

1. the representation of a (delimited) continuation,

2. the change of control involved in shift/1, and

3. how to pass the continuation and the argument of shift/1 to reset/3

They are described at the abstract machine level, using the hProlog WAM
variant that originates in the XSB implementation [152]: the name of several
abstract machine instructions reflects that. Still, the code below should be
easily readable to anyone acquainted with the WAM.

Relevant hProlog Implementation Choices hProlog uses a separate
environment and choicepoint stack, WAM argument registers are numbered
starting at 1, and a free variable (a self-reference) never occurs in an environ-
ment. Also, we do not use the WAM instruction names from [4], but adopt
the naming convention actually used in hProlog: the instruction names are
truncated, yet annotated with their classification. Possible classifications are
t (for temporary) and p (for permanent).

Reset The hProlog code of reset/3 is shown below on the left; sysh:asm/1
is a variant of the C asm command for generating inline WAM instructions.
The corresponding WAM code is on the right: for each instruction, it shows
the code address. The getpvar instruction places the contents of the given
register into the given permanent variable and always continues with the next
instruction. The getpval instruction unifies the given variable and argument
register. Backtracking occurs on failure; on success, the next instruction is
executed.

reset(Goal,Cont,Term) :- 000 allocate 4

016 getpvar Y2 A3

032 getpvar Y3 A2

call(Goal), 048 call call/1 4

reset_marker, 080 builtin_reset_marker_0

80 CHAPTER 4. DELIMITED CONTROL

sysh:asm(getpval(Cont,1)), 088 getpval Y3 A1

sysh:asm(getpval(Term,2)). 104 getpval Y2 A2

120 dealloc_proceed

The builtin reset marker 0 serves two roles:

• If no shift is executed inside a succeeding Goal, execution returns to
the reset marker. It is then responsible for putting the default value
0 in the WAM argument registers 1 and 2. The getpval instructions
subsequently unify these registers with the appropriate arguments of
reset.

• If a shift is executed inside Goal, the code for shift puts the correct val-
ues of Cont and Term in argument registers 1 and 2. The reset marker

then acts as a marker in the stack for shift, which returns to the
getpval right behind the marker so that the reset marker itself is not
executed.

Shift The implementation of shift/1 — together with that of a helper
predicate get chunks/3 — is listed below. It performs two tasks: 1) to capture
the continuation up to the nearest enclosing reset/3 in a heap term Cont, and
2) to unwind the local stack to pass control back to that reset/3.

shift(Term) :-

% 1) capture continuation

nextEP(first,E,P),

get_chunks(E,P,L),

Cont = call_continuation(L),

% 2) pass control

sysh:asm(putpval(Cont,1)),

sysh:asm(putpval(Term,2)),

unwind_environments.

get_chunks(E,P,L) :-

(points_to_reset_marker(P) ->

L = []

;

get_chunk(E,P,TB),

L = [TB|Rest],

nextEP(E,NextE,NextP),

get_chunks(NextE,NextP,Rest)

).

4.5. IMPLEMENTATION 81

1. The first task is handled by the auxiliary predicate get chunks(E,P,L).
It captures the delimited continuation as a list L of continuation chunks
by traversing the local stack and constructing with get chunk/3 a con-
tinuation chunk for each environment on the way. The structure of such
a chunk is explained below.

The traversal is made possible by the new nextEP(E,NextE,NextP)

primitive that retrieves both the next environment pointer NextE and
next continuation pointer NextP stored in the given environment E. The
traversal starts at the current environment, aliased by the atom first,
and ends at the environment of the reset/3 call, which is reached when
the continuation pointer points to the reset marker (identified by the
new primitive points to reset marker/1). The current environment
first is the start of the chain that leads to builtin reset marker.

Finally, shift wraps the resulting list in the functor of the predicate
call continuation/1 (shown later) so that it can be directly meta-
called.

2. For the second task, shift first sets up Cont and Term in the first and
second WAM argument registers (with putpval that places the content
of the given permanent variable into the given register and then con-
tinues with the next instruction) where the two getpval instructions at
the end of reset/3 can find them. Then it passes control to reset/3

with the new primitive unwind environments/0. This primitive un-
winds the environment stack up to the environment of the first enclosing
reset/3 call in a similar way as get chunks/3 traverses it. Then it
sets the WAM E register3 to point to this environment, and the WAM
P register (the “next instruction” pointer) to point to just after the
builtin reset marker 0 instruction so that it does not get executed.

Note that unwind environments/0 is careful not to upset the WAM
argument registers set up by shift/1 and that unwind environments/0

leaves the choice points unchanged, so that later backtracking could bring
the execution back in the scope of the reset/3 goal. This is compatible
with the meta-interpreter semantics in Section 4.3.

Continuation Chunks The predicate get chunk(E,P,TB) builds a contin-
uation chunk in its TB argument. Such a chunk captures in a heap term all
the necessary information to resume the unexecuted remainder (the tail) of a

3The WAM E global register keeps the address of the latest environment on top of the
stack.

82 CHAPTER 4. DELIMITED CONTROL

predicate body. This information consists of 1) the code to execute, and 2)
the data to execute with.

The first part is easy: the code to execute starts at P. The second part
is more involved: the code may refer to data in both argument registers and
environment variables. Fortunately, it is a WAM invariant that no argument
registers are live at a code point, like P, right after a call. Hence, we only need
to capture the set of live environment variables (LEV) in the environment E.

In hProlog, just as in Yap [130] and possibly other systems, the LEV set at
a continuation point P is determined at compile-time, and can at runtime be
retrieved from P. This basically follows the ideas of Branquart and Lewi [14],
but there are many ways to implement them. For hProlog, a bitmap of fixed
size describing which slots are live at that point in the execution of a clause,
is an argument of each call instruction. If this fixed bitmap size is too small
to represent the active Yvars4, it points to a piece of memory after the code
for the predicate (but still in the code zone), where there is enough space.
The loader takes care of this. The bitmaps are not shown in the WAM code
above. Hence, in summary, the term built by get chunk/3 in its TB argument
is $cont$(P,LEV).

The dual of get chunk/3 is call chunk($cont$(P,LEV)): it builds a new
environment on the local stack from the continuation chunk. The size of the
new environment can be found in the call-instruction right before P, and the
live variables LEV can be filled in the appropriate slots of the environment by
using the position information provided by P.

The predicate call continuation/1 extends call chunk/1 to a list of
continuation chunks:

call_continuation([]).

call_continuation([TB|Rest]) :-

call_chunk(TB),

call_continuation(Rest).

Example 4. The example of Fig. 4.7 on the facing page provides more insight
in the representation of a continuation. The example shows Prolog code on
the left, and the corresponding hProlog WAM instructions on the right. The
putpvar Yi Aj initialises the i-th stack variable in the current environment
to unbound and also lets Aj point to it; the meaning of the rest of the other
instructions should be clear from their opcode. The continuation captured in
the example consists of two chunks:

4Permanent variables are traditionally denoted as Yi and temporary variables as Xi,
hence the terms YVars and XVars.

4.5. IMPLEMENTATION 83

p :- 176 allocate 4

192 putpvar Y2 A2

208 putpvar Y3 A3

224 put_atom A1 q

reset(q,Cont,Term), 248 call reset/3 4

280 putpval Y2 A1

writeln(Cont), 296 call writeln/1 4

328 putpval Y3 A1

writeln(Term), 344 call writeln/1 4

376 putpval Y2 A1

call(Cont). 392 deallex call/1

q :- 584 allocate 2

r, 600 call r/0 2

632 put_atom A1 endq

writeln(endq). 656 deallex writeln/1

r :- 680 allocate 3

696 putpvar Y2 A1

foo(Y), 712 call foo/1 3

744 put_atom A1 shiftterm

shift(shiftterm), 768 call shift/1 3

800 putpval Y2 A1

writeln(Y). 816 deallex writeln/1

foo(bla(_)).

?- p.

call_continuation([$cont$(800,[bla(_165)]),$cont$(632,[])])

shiftterm

bla(_165)

endq

Figure 4.7: Example Prolog and WAM code.

1. $cont$(800,[bla(165)]) mentions: 1) the address (800) of the first
instruction following the shift/1 goal, and 2) the one active Yvar (Y2)
of r/0 at that point. The existence of the latter is derived from the pre-
ceding call 3 instruction (768): 3 is the length of the environment at
that point (E,CP and Y2). Hence, the (dereferenced) reference to Y2
is copied in the list; the term is not copied with copy term/2. During

84 CHAPTER 4. DELIMITED CONTROL

call continuation/1, this reference is put in the appropriate environ-
ment slot in a new environment.

2. $cont$(632,[]) points to the instruction 632 right after the call to r/0

in the body of q/0. Since that clause has no permanent variables, the
LEV is empty.

80

q−env

r−env E

P = 800

bla(_165)

Y

 632

p−env

Cont

Term

−

−

reset−env

 280

−

Figure 4.8: The local stack and the E and P pointers at the moment shift/1 is
called.

Figure 4.8 completes the example. It shows the environments of the activa-
tions of p/0, reset/3, q/0 and r/0, at the moment that shift/1 is construct-
ing the continuation. The reader can check the values of all code pointers in the
figure. Note that the term bla(165) resides on the heap. Some environment
entries are not shown as they are not relevant here.

4.5.2 ZIP Implementation

As a proof of concept, Wielemaker has implemented delimited continuations
in SWI-Prolog [174]: it is based on the simpler ZIP [11]. This leads to the
following differences:

4.5. IMPLEMENTATION 85

1. Since an SWI-frame — similar to a WAM environment — records which
predicate it belongs to, the reset marker is not needed for finding the
corresponding reset activation.

2. SWI-Prolog uses code scanning [172] to determine the live frame vari-
ables. Code scanning is performed once while constructing the delimited
continuation, and avoided while reconstructing the frame with its cor-
rect slots. The SWI-Prolog analogue of the hProlog $cont$/2 term is a
$cont$/3 term with as first argument a clause reference for keeping the
clause corresponding to the chunk alive long enough. The second argu-
ment is a program counter similar to the first argument of the hProlog
$cont$/2. The third argument is a list of Offset-Term pairs identifying
the frame slot and the value of the live frame variables.

The interaction between the two implementations lead to the exploration
of three alternatives:

Reinstalling the whole continuation in one go at call continuation.
This can lead to repeatedly scanning (a copy of) the same continua-
tion, and sometimes leads to changing the runtime complexity of the
program from linear to quadratic.

Leaving continuations on the local stack instead of copying them to the
heap. The obvious advantages are: a) creating the continuation in
shift/1 is cheap, and b) no data is created on the heap that must
be garbage collected. After implementing this alternative, we made the
following observations:

1. It can lead to the same complexity increase as installing the whole
continuation in one go, unless one introduces an extra WAM-register
or global scoped variable that remembers the environment with the
CP that points to the marker: in this way, no scanning of the stack
is needed to find the limits of the continuation.

2. The recursive reactivation of a delimited continuation is no longer
possible.

3. To make the approach work, one needs to implement a local stack
garbage collector. We have refrained from doing so.

4. Heap garbage collection needs some modification to scan the live
continuations.

5. In case the delimited continuation is small, in the order of a few
frames, the approach yields no performance advantage.

86 CHAPTER 4. DELIMITED CONTROL

6. In SWI-Prolog, there are two advantages: a) the clause reference
in the $cont$/3 term is no longer needed. b) It does no longer
interfere with SWI-Prolog’s meta-calling of control structures by
means of a special temporary clause on the local stack.

In conclusion, keeping continuations on the stack is feasible, but whether
it is desirable depends on the design of the virtual machine.

Non-selective Environment Saving We have also tried saving all environ-
ment slots in the $cont$/2 structure, rather than selectively saving only
the live variables. As a consequence, heap garbage collection becomes
slightly more complicated but can still be accurate. Whether this ap-
proach saves time and space depends theoretically on the ratio between
the sizes of the environment and the LEV, but in practice, it turns out
to be only slightly more efficient, and we have abandoned it.

4.6 Semantic Intricacies

4.6.1 Cut and If-then-else

WAM-based implementations usually store information on how far to cut in
the environment. This distance may no longer be appropriate when the cut
is captured in and executed as part of a delimited continuation. Special care
must be taken not to inadvertently cut unrelated choicepoints.

Two cases are common: a cut not appearing as the first goal in a clause5,
and if-then-else with a non-simple test. Both are exemplified below:

p :- savecp(B), p(B).

p :- a, !, body1. p(B) :- a, cutto(B),

body1.

p :- body2. p(_) :- body2.

q :- b, (c -> d ; e), f. q :- b, savecp(B),

(c, cutto(B), d ; e),

f.

On the left, the user-written code is shown, on the right the equivalent code
using the non-ISO predicates savecp/1 and cutto/1. The predicate savecp/1

5If cut is the first goal in the clause, the relevant choicepoint can be detected in a different
way.

4.6. SEMANTIC INTRICACIES 87

unifies the current choice point pointer B with its argument. Later, cutto/1
uses this pointer to cut up to the correct choice point. In both cases, B is a
permanent variable that resides in the environment of that clause activation.
The above is hProlog specific (and actually follows the XSB implementation),
but a similar thing happens in many other Prolog implementations.

Since a continuation saves the active permanent variables, it is possible
that the value of such a B is captured. The situation in which the cutto(B)
goal is later executed in the delimited continuation must be treated carefully:
the choice point B refers to might not exist any longer, and even if it does, it
would be strange to cut all choicepoints up to B away, as there could be new
choicepoints that are related to the continuation of the reset/3 goal.

A choice needs to be made, and we have decided that a cut in a captured
continuation can only cut up to, but not including, the youngest choicepoint
before invoking the continuation. The two examples in Fig. 4.9 on the next
page show this.

In the implementation, one needs to take care that any active permanent
variable whose value represents a choice point, is replaced by the appropriate
choice point on executing a continuation containing that cut.

4.6.2 Re-activation

A continuation can be called more than once, so the question arises: what
variables do those different activations share? In our approach, this depends
on which optimizations are performed.

a :- shift(x), nonvar(X), X = 1.

a :- X = X, shift(x), nonvar(X), X = 1.

E.g. in the first clause the variable X is not live at the moment shift/1 is
called. Hence, the variable X is not shared between different invocations of the
continuation. However, in the second clause sharing depends on whether X=X

is optimized away or not. The meta-interpreter does not have this problem,
and this is the only point where the low-level implementation differs from the
meta-interpreter. Here is a more detailed example:

88 CHAPTER 4. DELIMITED CONTROL

p0 :-

reset(q0,Cont,Term),

writeln(Term),

call(Cont).

q0 :-

writeln(q_1),

shift(fromq_1), !,

writeln(endq_1).

q0 :-

writeln(q_2),

shift(fromq_2),

writeln(endq_2).

p1 :-

reset(q1,Cont,Term),

writeln(Term),

call(Cont).

q1 :-

(

writeln(q_1), shift(fromq_1) ->

writeln(endq_1)

;

writeln(q_2), shift(fromq_2),

writeln(endq_2)

).

?- p0, fail.

q_1

fromq_1

endq_1

q_2

fromq_2

endq_2

?- p1, fail.

q_1

fromq_1

endq_1

q_2

fromq_2

endq_2

Figure 4.9: A cut in a captured continuation can only cut up to the youngest
choicepoint before invoking the continuation: example situations.

4.6. SEMANTIC INTRICACIES 89

calltwice1 :-

reset(f1,Cont,_),

writeln(Cont),

call(Cont),

call(Cont).

f1 :-

foo(Y),

shift(ignored),

writeln(’Y’ = Y),

Y = 1.

foo(_).

?- calltwice1.

[$cont$(787800,[_263])]

Y = _263

Y = 1

calltwice2 :-

reset(f2,Cont,_),

writeln(Cont),

call(Cont),

call(Cont).

f2 :-

shift(ignored),

writeln(’Y’ = Y),

Y = 1.

?- calltwice2.

[$cont$(788000,[])]

Y = _282

Y = _300

In both pieces of code, Y is a permanent variable. However, in f1/0, Y is
initialized before the call to shift/1, so it appears in the continuation (one
can see that the variable 263 occurs in the output twice), while in f2/0, Y
is initialized after the call to shift/1: so the initialization of Y in the second
case happens in the continuation, every time the continuation is activated.
This explains the output in both cases as well.

One could argue that the WAM optimization which initializes variables as
late as possible is no good in this context, and it makes the results dependent
on other optimizations (e.g. inline the call foo(Y) to Y = and then remove
that unification as it has no effect). So one cannot rely on a particular sharing
behavior of multiple invocations of the same continuation within the WAM.
In the case of BinProlog as well, the exact form of a continuation can depend
on optimizations, or the particularities of the binarizing transformation.

4.6.3 Nesting Catch/Throw and Reset/Shift

ISO Prolog has catch/throw as a scoped construct. Reset/shift is also scoped,
so we must understand the interaction between both.

As long as the two constructs are properly nested, the resulting behavior is
relatively easy to predict: the inner nested construct does not really interfere
with the outer one.

When the two constructs are not properly nested, a little more thought is
needed. The first case is exemplified by the code below: it shows a continuation

90 CHAPTER 4. DELIMITED CONTROL

containing a throw/1. This continuation is picked up by reset/3 and is
subsequently called. The call to throw/1 is no longer in the scope of the
initially corresponding catch/3 goal, so the throw remains uncaught.

p :-

reset(q,Cont,Term),

writeln(Term),

call_continuation(Cont).

q :- catch(r,Ball,writeln(Ball)).

r :- shift(rterm), throw(rball).

?- p.

rterm

Uncaught exception(rball)

From the language design point of view, there might be different options
to explore. We are satisfied because the current implementation behaves rea-
sonably.

The other improper nesting is shown below:

a :-

catch(b,Ball,writeln(Ball)).

b :-

reset(c,Cont,Term),

writeln(Term),

call_continuation(Cont).

c :-

throw(ballfromc),

shift(notseen).

?- a.

ballfromc

Since throw/1 discards the forward continuation, it is clear that this situ-
ation does not pose any problems.

4.6.4 Shiftless Resets and Resetless Shifts

For the implementation in hProlog, we have chosen to unify the Cont and
Term arguments of reset/3 with zero in the absence of shift, as this seems

4.7. RELATED WORK 91

more useful than other options, and to have the toplevel catch shifts outside
of a reset. It implies that in the code for get chunks/3 in Section 4.5 the test
points to reset marker(P) eventually succeeds. As such, there is no risk to
cross the boundaries of the environment stack. Alternative semantics are easy
to implement as a variation on the basic schema.

4.7 Related Work

4.7.1 BinProlog and Continuations

BinProlog [157] is based on explicit continuation passing: clauses are trans-
formed to a binary form and carry the continuation as a first class citizen6 in
an extra argument. To be more explicit, binarization of the fact/clause/query
on the left results internally in the constructs on the right:

a.

a :- b, c.

?- q.

a(Cont) :- call(Cont).

a(Cont) :- b(c(Cont)).

?- q(true).

While the continuation is normally invisible to the user, [158] describes
how (still based on program transformation) the user can have access to the
continuation, and then manipulate it. The special notation for that is by
allowing multi-headed clauses of the form

p(foo), bar :- body.

whose meaning is: “if p/1 is called with first argument foo, and a continuation
starting with bar, then execute body”. The above clause is binarized using
the built-in BinProlog predicate strip cont/3, which splits a continuation —
a conjunction of goals, but in binarized nested form — into its first goal and
the rest of the continuation. As [158] says: strip cont/3 acts as if defined by

strip_cont(f(X1,...,Xn,Cont), f(X1,...,Xn), Cont).

for every f/(n+1). strip cont/3 acts in a similar way to our get chunk/3

from Section 4.5.
Based on strip cont/3 and the implementation of catch and throw in Bin-

Prolog, we have built an implementation of reset/3 and shift/1 as follows:

6Unfortunately, being first class means it is an infinite term as soon as it is used explicitly.

92 CHAPTER 4. DELIMITED CONTROL

reset(Goal,Cont,Term) :-

call(Goal),

marker(Cont,Term).

shift(Term) :-

Marker = marker(Cs,Term),

get_cont(Cont),

consume_cont(Marker,(_,_,Cs),Cont,NewCont),

call_cont(NewCont).

consume_cont(Marker,Gs,Cont,LastCont):-

strip_cont(Cont,Goal,NextCont),

(Goal = Marker ->

LastCont = NextCont,

Gs = true

;

Gs=(Goal,OtherGs),

consume_cont(Marker,OtherGs,NextCont,LastCont)

).

marker(0,0).

The predicate consume cont/4, is similar to our get chunks/3: it keeps peel-
ing off the first goal of a continuation until the marker is found in the contin-
uation. The fact marker(0,0) serves to catch the absence of a shift/1 inside
Goal. We used this code for benchmarking.

4.7.2 BinProlog and Logic Engines

BinProlog also provides a coroutine-like feature: logic engines [157, 33]. A logic
engine is essentially an independent Prolog environment that can be queried
for successive answers to a goal.

In spirit, the logic engines approach and our coroutines are quite similar:
to consider concurrency decoupled from multi-threading. However, our corou-
tines are more lightweight as they live in the same engine and, e.g., share the
same heap and choicepoint stack. Moreover, in our approach the interfaces
are more symmetric: coroutines receive data with ask/1 that was sent by an-
other coroutine with yield/1 and vice versa. Logic engines receive data with
from engine/1 that was sent by to engine/2 and return data with return/1

that was requested by get/2.

4.7. RELATED WORK 93

4.7.3 Conventional Prolog Coroutines

Various coroutine-like features have been proposed in the context of Prolog
for implementing alternative execution mechanisms such as constraint logic
programming: freeze/2, block/1 declarations, . . . Nowadays most of these
are based on a single primitive concept: attributed variables [66, 88, 104, 35].
These attributed variables combine three useful aspects in one feature:

1. The ability to associate updateable data with a variable using the pred-
icates get attr/3 and put attr/3,

2. The ability to associate a goal, a call to the user-defined predicate
attr unify hook/2, with the instantiation of the variable (the corou-
tine), and

3. The implicit and automatic invocation of the coroutine goal when the
variable becomes instantiated or aliased to another attributed variable.

A significant difference with delimited continuations is that attributed vari-
ables allow only one way of transferring control: instantiation of a variable. In
contrast, the reset/shift predicate pair offer explicit transfer of control.

Implementation-wise and conceptually, the attributed variable coroutines
are not based on continuations. Typically, either a routine is triggered only
once, or the same modified goal is triggered over and over again. Any behavior
similar to continuations must be programmed explicitly.

In summary: apart from the common name “coroutine”, attributed vari-
able coroutines share very little with coroutines based on delimited continua-
tions.

4.7.4 Environments on the Heap

In [37], Demoen and Nguyen describe an implementation of coroutining in
which environments of certain declared predicates are put on the heap in-
stead of on the local stack. The primitives yield/1, leave/0 and resume/1

proposed in that paper can be easily implemented with the constructs of the
current paper. Figure 4.10 shows an action rules example from Demoen and
Nguyen’s paper, while Figure 4.11 shows the same example expressed with the
constructs from this paper.

Without going in too much detail, it is fairly clear that our reset/shift
are more general, and therefore not so efficient as their mechanism. However,
the latter interferes more with other parts of the implementation like stack

94 CHAPTER 4. DELIMITED CONTROL

:- suspension(foo/3).

foo(X,Y,SuspTerm) :-

writeln(first(X,Y)),

yield(SuspTerm),

writeln(next(X,Y)),

leave.

p :-

foo(X,Y,SuspTerm),

X = 1,

resume(SuspTerm),

Y = 2,

resume(SuspTerm).

?- p.

first(X,Y)

next(1,Y)

next(1,2)

Figure 4.10: Original action rules example.

foo(X,Y) :-

writeln(first(X,Y)),

shift(SuspTerm),

writeln(next(X,Y)).

p :-

reset(foo(X,Y),Cont,SuspTerm),

X = 1,

call(Cont),

Y = 2,

call(Cont).

Figure 4.11: Action rules expressed using delimited control.

4.7. RELATED WORK 95

management, garbage collection, . . . and is therefore perhaps not so attrac-
tive. Furthermore, much of the performance was achieved by implementing
recurring patterns as low-level WAM instructions. Future work on the imple-
mentation might lead to a unified implementation which uses the best of both
approaches.

4.7.5 Caml-based Languages

Masuko and Asai [94] describe the implementation of delimited continuations
in the typed functional language MiniCaml. In later work [95], they present
a direct implementation in the Caml Light system, a lightweight implementa-
tion of the Caml language. In contrast to MiniCaml, Caml Light is expressive
enough to define actually interesting programs. Kiselyov [80] describes a li-
brary implementation for OCaml.

4.7.6 Experimental Languages

Eff [112] is a functional language where effects handlers are first-class citizens.
The language is mainly experimental. Frank is another experimental language
with typed algebraic effects, provided as a Haskell library [96].

4.7.7 Coroutines in Haskell

Our Prolog meta-interpreter closely resembles James and Sabry’s implemen-
tation in terms of the coroutine monad [70]. The Haskell code for this imple-
mentation, from which we have omitted a few parts that may obfuscate the
connection to our setting, is:

-- The coroutine monad

data Yield t a = Return a | Yield a (Yield t a)

instance Monad (Yield t) where

return x = Return x

(Return x) >>= f = f x

(Yield t cont) >>= f = Yield t (cont >>= f)

yield :: t -> Yield t ()

yield t = Yield t (return ())

-- The shift/reset implementation

96 CHAPTER 4. DELIMITED CONTROL

shift :: t -> Yield t ()

shift t = yield t

reset :: Yield t a -> Yield t (Either (t, Yield t a) a)

reset (Return x) = return (Right x)

reset (Yield t cont) = return (Left (t,cont))

The Haskell constructors Return and Yield in this code correspond to the
Signal parameter in the meta-interpreter from Section 4.3. Additionally, the
definition of the monadic bind (>>=) closely corresponds to the meta inter-
preter’s treatment of conjunction.

James and Sabry are not the first to study the coroutine monad. Different
variants of the coroutine monad (transformer) [10] have been studied under
different names: resumption monad [107], free monad [6] and step monad [71].

4.7.8 Coroutines in Mainstream Languages

Today, many mainstream languages like C], Ruby, JavaScript and Python,
have some variant of a yield, although the operator is not widely described
as a delimited continuation operator [2, 1, 102, 160]. Moreover expressivity
greatly differs from language to language.

Statements vs. Expressions One distinguishing characteristic is whether
the yield is an expression or a statement [70]. If yield is used as an expression,
it means the iterator takes input from its calling context. This is possible in
Ruby and Python 2.5. In earlier versions of Python, yield was a statement, as
in Javascript 1.7 and C].

The continuations in our Prolog setting are essentially goals, which have
a statement-like quality. However, as we have shown with iteratees, they are
nevertheless able to take input from their context.

First-Class Iterators Another characteristic is whether iterators are first-
class values. It is the case in C], although iterators are mostly used in combi-
nation with a foreach loop, as well as in JavaScript and Python. A first-class
iterator is more flexible and it is easier to work with multiple iterators at the
same time.

As we have shown, our iterators are first-class values in Prolog. They can
be passed around freely.

4.8. PERFORMANCE EVALUATION 97

4.8 Performance Evaluation

Although raw performance is clearly not the focus of delimited control, and a
detailed evaluation is not necessary for the rest of this thesis, it is customary
to include a short discussion of the performance. For more detailed benchmark
results, we refer the interested reader to our technical report [40].

To assess the quality of our native implementation approach, we compare
it to two other approaches for implementing delimited continuations:

• The transformation-based approach of Subsection 4.3.3. It adds a signal
parameter to every predicate that is checked at every conjunction.

• The binarization approach uses the internal continuation-passing repre-
sentation of Prolog clauses in BinProlog [157] and implements delimited
continuations using the BinProlog built-ins.

The native and transformation approaches were implemented in hProlog and
SWI-Prolog. It only makes sense to use the binarization approach in BinPro-
log.

We compare the three implementation approaches on two artificial bench-
marks: (1) shift shifts a delimited continuation, and (2) exec calls a previously
shifted continuation. We use three different sizes of continuations: 5,000,
10,000 and 20,000 chunks.

Table 4.1 shows the timing results (in milliseconds) obtained on an Intel
Core2 Duo Processor T8100 2.10. Garbage collection times (only in SWI-
Prolog) were not included, and the timings of empty loops were subtracted.

The shift benchmark in the upper half of the table shows that the na-
tive hProlog implementation is about 2.5 times faster than the transformed
hProlog implementation. This shows that in hProlog the native implementa-
tion effort payed off. This is not the case in SWI-Prolog, partly because of
the code scanning for constructing the LEV’s, that makes the implementation
more involved in the ZIP, and also because of other implementation choices
made in SWI-Prolog. BinProlog’s binarization does not exhibit an advantage
compared to hProlog’s transformation-based and native implementations. It
is even outperformed by transformation in SWI-Prolog. Overall, we see that
all implementations scale roughly linear with the size of the continuation, as
expected.

The lower half of the table shows the exec benchmark which measures the
time to execute the delimited continuation. This is contrasted — in brackets
— with the time to meta-call a conjunction of equivalent goals. The same
pattern shows here: SWI-Prolog performs better in transformed mode, while

98
C
H
A
P
T
E
R

4.
D
E
L
IM

IT
E
D

C
O
N
T
R
O
L

Native Transformed Binarization

Depth hProlog SWI-Prolog hProlog SWI-Prolog BinProlog

shift

5,000 64 1,965 164 505 1,120

10,000 128 3,950 328 1,028 2,230

20,000 268 8,388 664 2,037 4,450

exec

5,000 248 (398) 1,951 (1,137) 480 (398) 1,415 (1,137) 260 (270)

10,000 492 (796) 3,886 (2,283) 964 (796) 2,847 (2,283) 530 (550)

20,000 992 (1,586) 7,780 (4,390) 1,932 (1,586) 5,688 (4,390) 1,040 (1,100)

Table 4.1: Benchmark results for shifting (top) and calling (bottom) continuations (ms).

4.9. CONCLUSION 99

hProlog performs better in native mode. hProlog even executes its native
continuations faster than meta-calling equivalent conjunctions, but note that
in hProlog and SWI-Prolog, meta-call suffers a performance penalty because
of the ISO Prolog semantics. Calling continuations in BinProlog is almost as
fast as in hProlog and on par with BinProlog’s meta-call.

In summary, a native implementation of delimited continuations in the
WAM is worthwhile. This does not seem true in the ZIP, or at least not
within the overall design of SWI-Prolog.

4.9 Conclusion

This chapter has introduced a design of delimited continuations for Prolog
that enables many useful applications. Alongside this design, it has described
a complimentary implementation of the reset and shift operators in the WAM,
which is to our knowledge the first implementation in a non-continuation pass-
ing style Prolog virtual machine. The implementation is lightweight, because
it is independent of most of the rest of the system, and its interactions with
other parts of the system were shown. The performance accommodates the
applications: even in the very fast hProlog system, performance does not seem
an impediment to using the enhanced expressivity.

We have nonetheless observed that the performance somewhat degrades if
the delimited control operators are used to define deeply nested effect handlers.
There is ongoing work by Hany Saleh [60] to develop a general technique to
automatically collapse these nested handlers into a single monolithic one. His
insights may lead to further improvements to the implementation.

References

This chapter is based on our article on Delimited Control and the companion
technical report:

• Tom Schrijvers, Bart Demoen, Benoit Desouter, and Jan Wielemaker.
Delimited Continuations for Prolog. Theory and Practice of Logic Pro-
gramming, 2013. Proceedings of the 29th International Conference on
Logic Programming (ICLP).

• Tom Schrijvers, Bart Demoen, and Benoit Desouter. Delimited Con-
tinuations in Prolog: Semantics, Use and Implementation in the WAM.
Report CW 631 of KU Leuven, Department of Computer Science, 2013.

100 CHAPTER 4. DELIMITED CONTROL

Benoit Desouter’s contribution lies in experimentation with the effect handlers
presented in this chapter and the initial performance assessment of the direct-
style meta-interpreter as well as the native implementation. Also, Benoit in-
vestigated the relationship to coroutines in mainstream languages. Benoit
assisted in writing both the technical report and article.

Chapter 5
A Functional Specification of
Modular Search

5.1 Introduction

In Chapter 3, we have discussed Tor that constitutes the state of the art
in separating the control mechanism from the problem logic while remaining
faithful to Prolog’s execution model. Other solutions offer greater flexibil-
ity but abandon Prolog’s execution model altogether. Tor is a light-weight
library-based approach that is easily portable to different Prolog systems.
However, it suffers from a major deficiency: it lacks proper semantic basis,
and so requires intimate knowledge of the implementation in order to be un-
derstood.

We resolve this deficiency by borrowing techniques from the world of func-
tional programming—monads and effect handlers—to guide the design of a
library that is both modular and based on sound principles. Indeed, exploit-
ing the synergy between the functional programming and logical program-
ming paradigms is essential for this work. The cross-pollination of ideas from
both fields solves problems that are otherwise intractable. In this chapter we
champion such multi-disciplinary work and present the full development of
our solution from its functional specification in Haskell to logic programming
implementation in Prolog, in order to bring both communities closer together.

Monads [170] have firmly established their place in functional programming
as a practical solution to modelling computations that involve side effects and

101

102 CHAPTER 5. MODULAR SEARCH SPECIFICATION

that have a notion of sequentiality. Instances of monads are abound, and
much work has been done on reasoning about monadic programs in terms
of the monad’s implementation details [68], where the concrete instance is of
interest.

An emerging approach is to treat monads as an interface, whose laws form
a specification [51], which is closer to the formulation of universal algebras
as Lawvere theories [87]. Here the implementation is hidden and the monad
is opaque or abstract. Programs cannot exploit the monad’s implementation
details, but are restricted to the exposed interface.

In this chapter we develop a technique to extend the opaque monad that
represents Prolog, in order to reason carefully about nondeterminism and
heuristics. An important ingredient of our solution are effect handlers [110, 96,
9, 83, 13, 76]. They provide a new approach to defining monads that cleanly
separates syntax from semantics, where a syntax tree is first built, and then
interpreted in a semantic domain using a handler . We combine these effect
handlers with the free monad transformer to model and extend an opaque
effectful language expressed in monadic style.

Our technical contributions are as follows:

• We show how to obtain modular search heuristics by means of effect
handlers, and, in particular, define an unusual entwine handler that
allows us to express search heuristics as archetypal search trees much
like Tor’s merge/2 combinator.

• We formulate a functional model that takes the feature-rich nature of
modern Prolog systems into account. Furthermore, we use effect handlers
and the free monad transformer to minimize the footprint of both the
model and the final solution.

• We explain carefully how to transfer our functional solution for modular
search heuristics to Prolog. This transfer involves a non-trivial isomor-
phism between the free monad transformer and the delimited continua-
tion monad transformer.

5.2 The Challenge

Recall from Chapter 3 the standard practice to apply a search heuristic
to a problem: it really means modifying the program to embody a different
tree. For example, the queens/2 program is in Figure 5.1 on the left. On the
right is a modified version with the addition of a depth bound. Unfortunately,

5.2. THE CHALLENGE 103

queens(N, Qs) :-

findall(C,between(1,N,C),L),

go(L,N,[],Qs).

go([],N,Qs,Qs).

go([X|Xs],N,Acc,Qs) :-

select(Y,[X|Xs],Ys),

noThreat(Acc,N,1),

go(Ys,N,[Y|Acc],Qs).

select(Y,[X|Xs],Ys) :-

(Y = X,

Ys = Xs

; Ys = [X|Zs],

select(Y,Xs,Zs)

).

queens2(N, Qs, DB) :-

findall(C,between(1,N,C),L),

go(L,N,[],Qs, DB).

go([],N,Qs,Qs, _).

go([X|Xs],N,Acc,Qs, DB) :-

select(Y,[X|Xs],Ys, DB, NDB),

noThreat(Acc,N,1),

go(Ys,N,[Y|Acc],Qs, NDB).

select(Y,[X|Xs],Ys, DB, NDB) :-

DB > 0,

(Y = X,

Ys = Xs,

NDB is DB - 1

; Ys = [X|Zs],

DB1 is DB - 1,

select(Y,Xs,Zs, DB1, NDB)

).
noThreat([],_,_).

noThreat([M|Ms],R,C) :-

abs(M-R) =\= C, NC is C + 1, noThreat(Ms,R,NC).

Figure 5.1: The n-queens search problem: plain (left) and with depth bound (right,
with unmodified code in light gray).

104 CHAPTER 5. MODULAR SEARCH SPECIFICATION

there are obvious problems with this approach to search heuristics. Since the
heuristic’s code is entangled with the problem’s code, it is hard to modularly
reuse either. Furthermore, this entanglement encourages an error-prone and
labour-intensive copy-paste-modify approach. What we really want is a mod-
ular approach where problems (i.e., the logic) and heuristics (i.e., the control)
can be defined separately and combined effortlessly.

The Tor approach constitutes the current state of the art in solving this
problem. With Tor the depth-bounded search heuristic is expressed as an
independent predicate dbs/2 and applied to queens/2 as follows.

?- search(dbs(10,queens(8,Qs))).

The approach is based on using a hookable disjunction tor/2 in queens/2

instead of Prolog’s regular disjunction (;)/2. There are two hooks: one for
the left branch and one for the right branch of the disjunction. The dbs/2

heuristic influences queen/2’s search by installing appropriate call-backs in the
hooks.

However, the hook-based approach lacks proper semantic grounding. As
a consequence, the approach lacks elegant algebraic properties that make its
use predictable, in other words, its use requires intimate knowledge of the
implementation.

In this chapter we aim for a more general and elegant solution that is based
on proper semantic foundations. For this purpose we start from a functional
model of the problem in Haskell and apply established techniques to solve the
problem, then subsequently derive a practical implementation for Prolog.

5.3 From Prolog to Haskell

In this section we present the functional model of Prolog that will drive our
developments. This already presents a first dilemma: modern Prolog systems
provide a large set of primitive operations, the so-called builtins. Incorporat-
ing all of these in our model would be both extremely tedious and onerous.
However, we also do not want to oversimplify our model and run the risk of
obtaining results that do not work in actual Prolog systems.

We solve this dilemma with a standard functional programming technique,
abstract types. Instead of specifying a concrete representation for Prolog com-
putations, we assume the existence of an abstract type:

data Prolog a

5.3. FROM PROLOG TO HASKELL 105

Values of this type represent Prolog computations, also known as goals. As
a small admission to functional programming, we will assume that goals have
a return value which is reflected in the type variable a. Goals that return
values of a particular type instantiate a accordingly. Proper Prolog goals are
of type Prolog (): they do not return any value of interest, which is modelled
by instantiating a with the unit type ().

We will assume that there are numerous ways to construct values of type
Prolog a. However, we deliberately do not attempt to model them all and
make no assumptions about how a Prolog goal is constructed. For our own
purposes, we restrict our vocabulary to no more than four constructors (two
primitives and two combinators) to build new goals.

The first two of these can be summarized by saying that Prolog has an
instance of the monad class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

instance Monad Prolog

This means that Prolog supports a sequential composition operator (>>=) and
matching unit operator return. This notion of sequentiality closely corresponds
to Prolog’s conjunction operation p , q, which is satisfied when a solution
exists for both p and q. In this setting order matters, and expressions are
executed from left to right. More specifically p , q corresponds to p >> q ,
which is an instance of >>= where the return value of p is of no interest to q .

p >> q = p >>= (λx → q)

A computation can end in one of two ways: either the search for a solution
ends in success where the result is true, or in failure in which case the result
is false. The behaviour of true interacts with the conjunction operator in
the same way as return () with (>>), as described by the left and right unit
laws of a monad:

return ()>> p = p = p >> return () (5.1)

Given this relationship, we identify true with return ().
To model false, we introduce the operation

fail :: Prolog a

This operation comes equipped with the left-zero law, which dictates how fail
interacts with the monadic bind:

fail >> q = fail (5.2)

106 CHAPTER 5. MODULAR SEARCH SPECIFICATION

Haskell Prolog
return () true

fail false

p >> q p , q

p ||| q p ; q

Table 5.1: Prolog model in Haskell.

This is a perfect fit for false since in the setting of Prolog there is no right-
zero of conjunction: side-effects performed before failure cannot be undone in
general.

To model the disjunction p ; q, where either p or q must be satisfied, we
introduce the operation:

(|||) :: Prolog a → Prolog a → Prolog a

that satisfies the left-distributivity property:

(m ||| n)>>= f = (m >>= f) ||| (n >>= f) (5.3)

Moreover, 〈Prolog a, (|||), fail〉 forms a monoid, where the following laws must
hold:

x ||| (y ||| z) = (x ||| y) ||| z (5.4a)

fail ||| x = x = x ||| fail (5.4b)

The relationship between our model and the syntax of logic programming
we are interested in is summarized in Table 5.1.

5.4 Background: Handlers and Transformers

Search heuristics are naturally expressed as transformations of search trees.
For instance, the depth-bounded search prunes all subtrees below a given
depth. Unfortunately, this view does not fit well with our monadic model
of Prolog as the Prolog monad is opaque and we cannot observe the search
tree structure of goals. A more effective technique for observing the syntactic
structure of monadic programs is the effect handlers approach. This approach
will be key to expressing heuristics in a modular way.

Effect handlers decouple the syntax and the semantics of side-effect prim-
itives, which we call operations in the rest of the chapter. The syntactic

5.4. BACKGROUND: HANDLERS AND TRANSFORMERS 107

operations themselves live in an abstract syntax tree, which is modelled by
the free monad. The semantics are captured in so-called handler functions, or
handlers for short, and we focus on those that can be expressed as folds over
the abstract syntax tree.

The decoupling has a number of advantages: it facilitates both the modular
definition of monads in terms of separately defined operations, and also the
assignment of different semantics to the same syntax. In this dissertation we
will add one more advantage to that list: it allows us to extend opaque monads
that have not necessarily been defined in terms of the effect handlers approach
with new capabilities.

The well-known free monad f ? denotes abstract syntax trees where the
shape of the nodes is captured in the functor f .

data f ? a = Return a | Op (f (f ? a))

A new node of shape f and subtrees of type f ? a can be built with the Op con-
structor. The Return constructor marks a non-terminal, and (>>=) performs
simultaneous substitution on all non-terminals in the tree.

instance Functor f ⇒ Monad (f ?) where
return a = Return a
Return a >>= f = f a
Op n >>= f = Op (fmap (>>=f) n)

An important convention when using the free monad for modelling syntax trees
is that each node represents an operation and its subtrees denote the possible
continuations from that operation. In this way, the free monad’s notion of
substitution and the operational interpretation of sequential composition both
coincide in (>>=).

As an example, lets consider an abstract syntax tree for expressions involv-
ing only the operations in MonadState s m [73], where the monad m uniquely
determines the state s.

class Monad m ⇒ MonadState s m | m → s where
get :: Monad m ⇒ m s
put :: Monad m ⇒ s → m ()

This has two primitive operations, and the shape of the corresponding syntax
is given by the functor State s r .

data State s r
= Get (s → r)

108 CHAPTER 5. MODULAR SEARCH SPECIFICATION

| Put s (()→ r)

instance Functor (State s) where
fmap f (Get k) = Get (f ◦ k)
fmap f (Put s k) = Put s (f ◦ k)

Following the free monad convention, the parameter of the Get constructor
takes a function that is the continuation after the get-operation. Similarly,
the second parameter of the Put constructor is the continuation after the
put-operation. Thus, Op (Get k) is the syntactic representation of get >>= k
and Op (Put s k) of put s >>= k . If we want to represent the operations by
themselves without any relevant continuation, we just instantiate k to return.

The following operations construct syntax trees that represent actions:

instance MonadState s ((State s)?) where
get = Op (Get return)
put s = Op (Put s return)

5.4.1 The Free Monad Transformer

While the free monad approach forms an attractive basis for solving our search
heuristics problem, it is not very appealing to replace the opaque Prolog monad
with the free monad. After all, that would be akin to throwing away our
existing Prolog system and engineering a new one from the ground up. Instead
of this prodigious effort we would much prefer a more lightweight solution.

This solution comes in the form of the free monad transformer f ?m , which
combines an existing base monad m with the free monad f ? by interleaving
computations in m with syntactic operations from f . The return value has
type a.

To define the free monad transformer, we generalise the free monad f ?.

data Free f a x = ReturnF a | OpF (f x)

Here the type variable x represents the continuation after an f -operation. This
generalisation is also a functor if f is a functor.

instance Functor f ⇒ Functor (Free f a) where
fmap (ReturnF a) = ReturnF a
fmap f (OpF x) = OpF (fmap f x)

We can now define the free monad transformer by interleaving f with m and
tying the knot.

5.4. BACKGROUND: HANDLERS AND TRANSFORMERS 109

newtype f ?m a = FreeT {unFreeT :: m (Free f a (f ?m a))}

When the base monad m is Id there is no additional structure so:

f ? a ∼= f ?Id a

In other words, f ? a is the fixpoint of Free f a. The star used in the notation
reminds of the Kleene star.

The structure of f ?m requires m to be a monad, and f to be a functor. We
use this fact so often that we will use the following convenient notation for the
required type constraint synonym:

type ` f ?m = (Functor f ,Functor m,Monad m)

In other words, this constraint expresses that f ?m is a well-formed free monad
transformer.

We can define the fold over this structure:

fold :: ` f ?m ⇒ (m (Free f a b)→ b)→ (f ?m a → b)
fold alg = alg ◦ fmap (fmap (fold alg)) ◦ unFreeT

To understand (and to come up with) this kind of definitions, one follows
the types:

• fold alg is a function from f ?m a to b.

m (Free f a b)

alg

b f ?m a

fold

b

Figure 5.2: Illustrating the type correctness of the fold over f ?m a: left-hand side.

110 CHAPTER 5. MODULAR SEARCH SPECIFICATION

f ?m a

fold alg

b Free f a (f ?m a) f ?m a

fmap unFreeT

Free f a b m (Free f a (f ?m a))

fmap

m (Free f a b)

alg

b

Figure 5.3: Illustrating the type correctness of the fold over f ?m a: right-hand side.

5.4. BACKGROUND: HANDLERS AND TRANSFORMERS 111

• unFreeT is a function from f ?m a to m (Free f a (f ?m a)).

• (fmap (fold alg)) is a function from Free f a (f ?m a) to Free f a b,
so fmap (fmap (fold alg)) is a function from m (Free f a (f ?m a)) to
m (Free f a b).

• The result of the expression fmap (fmap (fold alg)) ◦ unFreeT is thus a
function from f ?m a to m (Free f a b).

• alg is a function from m (Free f a b) to b.

• The result of the entire right-hand side of fold alg is thus a function from
f ?m a to b, which of course matches with the type of the left-hand side.

We have illustrated this in Figures 5.2 and 5.3.
Since any correct monad transformer must also be a monad, we must show

that f ?m is a monad. We can use the above fold to give a definition of (>>=) in
the instance that shows this fact.

a

return

f ?m a

a

ReturnF

Free f a (f ?m a)

return

m (Free f a (f ?m a))

FreeT

f ?m a

Figure 5.4: Illustrating the type correctness of the f ?m a monad instance: return
case.

112 CHAPTER 5. MODULAR SEARCH SPECIFICATION

a

f

m :: f ?m a f ?m a

(>>=)

f ?m a

Figure 5.5: Illustrating the type correctness of the f ?m a monad instance: left-hand
side of the bind case.

instance ` f ?m ⇒ Monad (f ?m) where
return = FreeT ◦ return ◦ ReturnF
m >>= f = fold (FreeT ◦ join ◦ fmap (unFreeT ◦ alg)) m

where alg (ReturnF a) = f a
alg (OpF op) = opF op

opF op = FreeT (return (OpF op))

Again, the type correctness of the definitions is not immediately obvious. We
illustrate the return-case in Fig. 5.4 on page 111 and the bind-case ((>>=))
in Fig. 5.5, and Fig. 5.6 on the facing page.

The following definition of runStateF is an example of a handler that elim-
inates the State syntax by interpreting it in terms of a state that is threaded
through the computation. So, under the assumption that f is a functor and m
is a monad (expressed by the constraint ` (State s)?m), we can turn a syntax
tree of type (State s)?m a back into the original base monad m by supplying an
initial state of type s. The resulting value has type m (a, s): it is a monadic
value containing both the result value of computation and the final state.

runStateF :: ` (State s)?m ⇒ (State s)?m a → s → m (a, s)
runStateF p s0 = runFreeT (alg s0) p where

alg s (ReturnF x) = return (x , s)
alg s (OpF (Get k)) = runStateF (k s) s

5.4. BACKGROUND: HANDLERS AND TRANSFORMERS 113

Free f a (f ?m a)

alg

f ?m a

unFreeT

m (Free f a (f ?m a)) m (Free f a (f ?m a))

fmap

m m (Free f a (f ?m a)))

join

m (Free f a (f ?m a))

FreeT

f ?m a

fold m :: f ?m a

f ?m a

Figure 5.6: Illustrating the type correctness of the f ?m a monad instance: right-hand
side of the bind case.

114 CHAPTER 5. MODULAR SEARCH SPECIFICATION

alg s (OpF (Put s ′ k)) = runStateF (k ()) s ′

What the alg-function does, is intuitively clear: given a terminal node in the
syntax tree and a state, we invoke the return operation of the base monad
with the value in the terminal node and the same state. On encountering the
syntactic encoding of a get, we execute that get and similarly for put.

The above definition makes use of the following auxiliary definition:

runFreeT :: ` f ?m ⇒ (Free f a (f ?m a)→ m b)→ (f ?m a → m b)
runFreeT alg p = unFreeT p >>= alg

which runs the given computation up to the first syntactic operation, which it
delegates to alg . In the case of runStateF , this alg handles the state operation
appropriately, and at the end of the computation returns the result together
with the final state.

In the remainder of the chapter we will also make use of the following
variant of runFreeT :

step :: ` f ?m ⇒ f ?m a → (f (f ?m a)→ f ?m a)→ f ?m a
step t alg = FreeT (runFreeT alg ′ t) where

alg ′ (ReturnF x) = return (ReturnF x)
alg ′ (OpF op) = unFreeT (alg op)

The function step differs in two ways from runFreeT . Firstly, it does not
promise to eliminate the syntactic operations altogether. Instead, it can be
used to eliminate only some operations or to replace them by others (last line).
Secondly, step preserves ReturnF (one-but-last line). As a consequence, the
alg parameter only needs to concern itself with the operations.

We again demonstrate that the function is indeed type-correct in Fig. 5.7
on the next page, Fig. 5.8, and Fig. 5.9 on page 116.

5.5 Heuristics as Handlers in Haskell

The machinery of effect handlers gives us the tools we need to describe heuris-
tics in a modular way. Our solution will be developed in four steps.

5.5.1 Step 1: Overloading

Our first step is to overload the operations of Prolog . Here we accomplish this
with the MonadProlog type class:

5.5. HEURISTICS AS HANDLERS IN HASKELL 115

op :: f (f ?m a)

alg

t :: f ?m a (f ?m a)

step

f ?m a

Figure 5.7: Illustrating the type correctness of step: left-hand side.

Free f a (f ?m a)

alg ′

m (Free f a (f ?m a)) t :: f ?m a

runFreeT

m (Free f a (f ?m a))

FreeT

f ?m a

Figure 5.8: Illustrating the type correctness of step: right-hand side.

116 CHAPTER 5. MODULAR SEARCH SPECIFICATION

x :: a

ReturnF

Free f a (f ?m a)

return

m (Free f a (f ?m a))

op :: f (f ?m a)

alg

(f ?m a)

unFreeT

m (Free f a (f ?m a))

Figure 5.9: Illustrating the type correctness of the alg ′ helper function.

class Monad m ⇒ MonadProlog m where
fail :: m a
(|||) :: m a → m a → m a

which inherits the left-zero and left-distributivity laws of Prolog ,

fail >>= q = fail (5.5a)

(m ||| n)>>= f = (m >>= f) ||| (n >>= f) (5.5b)

However, importantly, we do not require that 〈m a, (|||), fail〉 forms a
monoid. This relaxation is crucial to support search heuristics. After all,
the monoid laws require that the shape of the search tree is irrelevant. For
instance, according to the associativity law, the following two trees should be
indistinguishable:

t1 = return x ||| (return y ||| return z)
t2 = (return x ||| return y) ||| return z

In contrast, the shape of the search tree is essential for search heuristics. Dif-
ferent shapes of trees will be affected differently by the same heuristic. For
instance, the depth-bounded search heuristic may prune the solutions y and z
in t1, while it prunes x and y in t2.

5.5. HEURISTICS AS HANDLERS IN HASKELL 117

5.5.2 Step 2: Introducing Syntax

We proceed in the second step by capturing the relevant operations as syntax
using the free monad transformer. While MonadProlog provides two opera-
tions, fail and (|||), we will see in the next step that we can get away with
capturing only (|||) in syntax. This comes at the cost of somewhat more com-
plicated handlers. However, Section 5.6 will bear out that keeping the syntactic
footprint as small as possible is a good idea.

Hence, the functor Or captures only p ||| q with the syntax Or p q .

data Or x = Or x x
orF :: Monad m ⇒ Or?m a → Or?m a → Or?m a
orF p q = opF (Or p q)
instance Functor Or where

fmap f (Or p q) = Or (f p) (f q)

Observe that unlike Get the constructor Or does not require a separate field
for the continuation. Thanks to the left-distributivity property, we can express
(p ||| q)>>= k also as (p >>= k) ||| (q >>= k).

This data acts as a syntactic construction that gives us an instance of
MonadProlog in terms of the free monad transformer:

instance MonadProlog m ⇒ MonadProlog (Or?m) where
fail = lift fail
p ||| q = orF p q

5.5.3 Step 3a: Adding Heuristics

The syntactic Or gives substance to the search tree that is implicitly embodied
by a computation. Now we can truly write search heuristics as functions that
transform this search tree.

type Heuristic m a = Or?m a → Or?m a

Below we capture a number of well-known heuristics in this form.

Depth-Bounded Search The Haskell version of the depth-bounded search
heuristic from Section 3.3 looks like:

dbs :: MonadProlog m ⇒ Int → Heuristic m a
dbs 0 t = fail

118 CHAPTER 5. MODULAR SEARCH SPECIFICATION

dbs n t = step t alg where
alg (Or x y) = (dbs (n − 1) x) ||| (dbs (n − 1) y)

Here we see our first use of the step function. It is used to decrement the depth
bound at every Or . When the limit is exceeded, the whole remaining compu-
tation is replaced by failure. Remember that Heuristic m a is a synonym for
a function from Or?m a to Or?m a.

Discrepancy-Bounded Search Discrepancy-bounded search (Section 3.4)
is a minor variant of depth-bounded search:

dibs :: MonadProlog m ⇒ Int → Heuristic m a
dibs 0 t = fail
dibs n t = step t alg where

alg (Or x y) = (dibs n x) ||| (dibs (n − 1) y)

Node-Bounded Search The implementation of node-bounded search in
Prolog requires the use of mutable references as explained in Section 2.4. We
can capture such references in our model by using the type class MonadRef .
This supports three operations: newRef creates a new reference r a within
the monadic context m, readRef extracts a value from a reference into the
context, and writeRef takes a reference and a value a, and writes the value
into the reference.

class Monad m ⇒ MonadRef r m | m → r where
newRef :: a → m (r a)
readRef :: r a → m a
writeRef :: r a → a → m ()

To illustrate the use of this interface, we implement modifyRef , which simply
modifies the current value in some cell by applying a function f to its contents,
and then returns the original value.

modifyRef :: MonadRef r m ⇒ r a → (a → a)→ m a
modifyRef r f = do x ← readRef r

writeRef r (f x)
return x

This works by first reading the value x contained in the reference, writing the
new value f x to the reference, and then returning x .

5.5. HEURISTICS AS HANDLERS IN HASKELL 119

In addition to the usual properties of mutable references, we also explicitly
stipulate the interaction with backtracking: the writes are not backtracked
over.

writeRef ref x >> (p ||| q) = (writeRef ref x >> p) ||| q (5.6)

Read from right to left this law expresses that writes in the left branch are
also seen by the right branch. Contrast this with the characterization of back-
tracking behaviour:

writeRef ref x >> (p ||| q)
=

(writeRef ref x >> p) ||| (writeRef ref x >> q)

which expresses that writes in one branch are not seen by the other branch.
The support for references can be lifted straightforwardly from m to Or?m .

instance MonadRef r m ⇒ MonadRef r (Or?m) where
newRef x = lift (newRef x)
readRef r = lift (readRef r)
writeRef r x = lift (writeRef r x)

This support enables us to express a handler for node-bounded search.

nbs :: (MonadProlog m,MonadRef r m)⇒ Int → Heuristic m a
nbs n t = newRef n >>= go t where

go t ′ ref = step t ′ alg where
alg (Or x y) = do n ← modifyRef ref pred

guard (n > 0)
go x ref ||| go y ref

Failure-Bounded Search Failure-bounded search terminates the search
when too many paths in the tree lead to dead ends. It may actually seem
surprising that we can write this heuristic without being able to explicitly ob-
serve failure. Nevertheless, with a clever trick that relies on the underlying
DFS we can observe failure indirectly.

fbs :: (MonadProlog m,MonadRef r m)⇒
Int → Heuristic m a

fbs n t = do ref ← newRef n
fref ← newRef False -- (a)
x ← go ref fref t

120 CHAPTER 5. MODULAR SEARCH SPECIFICATION

writeRef fref True -- (b)
return x where

go ref ′ fref ′ t ′ = step t ′ alg
where alg (Or x y) = x |||

(do b ← modifyRef fref ′ (const False) -- (c)
when (¬ b) -- (d)

(do n ← modifyRef ref ′ pred
guard (n > 0))

y)

The mutable reference fref expresses whether the last explored path has termi-
nated successfully. At the start of the search (a), we are on the first path but
have not completed it yet. Hence initially fref holds the value False. Later,
when a solution is found (b), the value True is written into the reference. Af-
ter completing a path successfully or unsuccessfully, the search backtracks into
the right branch of an or . At the start of the right branch (c) we can observe
in fref whether the previous path was successful or not. We also write False
into fref to capture the status of the new path we are on. If the previous path
has failed (d), we subtract one from the failure bound and prune if we have
failed too often already.

5.5.4 Step 3b: Adding Heuristics as Trees

The effect handlers approach distinguishes syntactic operations and handlers.
Syntactic operations offer the flexibility of a deeply embedded domain-specific
language (DSL); they can be freely analyzed, manipulated and interpreted in
different ways. This is exactly the property we have put to good use with
the definition of heuristics over search trees. In contrast, handlers like our
heuristics are akin to a shallow embedding of a DSL: they can be used in one
way only, by function application to a computation.

In this section we show how to recover much of the flexibility of deep
embeddings, while simultaneously providing a more structured approach to
defining search heuristics. This approach is a literal translation of the Prolog
approach from Section 3.3.

1. We capture the essence of a heuristic in an archetypal search tree. For
instance, the archetypal search tree for depth-bounded search is a perfect
binary tree of depth n with failures at its leaves.

dbsTree 0 = fail
dbsTree n = dbsTree (n − 1) ||| dbsTree (n − 1)

5.5. HEURISTICS AS HANDLERS IN HASKELL 121

2. We apply the heuristic to a search problem by means of an operator (.)
called entwine, that combines two search trees: in this case, one given
by the logic to solve the problem, and the other given by the heuristic.

For instance, we recover dbs as follows:

dbs ′ :: MonadProlog m ⇒ Int → Heuristic m a
dbs ′ db t = dbsTree db . t

In summary, this approach refines Kowalski’s slogan to:

algorithm = control . logic

where both logic and control are expressed in a declarative rather than an
operational style. Moreover, they are expressed in the same language of search
trees.

The Entwining Operator The (.) operator is similar to the definition of
the zip operation: zipping two lists truncates the longer one when their struc-
ture disagrees. Similarly, entwining two trees truncates the larger one when
their structure disagrees. The truncation of trees is essentially the pruning of
the search space.

(.) :: (MonadProlog m)⇒ Or?m a → Or?m a → Or?m a
p . q = p ‘step‘ (λ(Or x1 x2)→

q ‘step‘ (λ(Or y1 y2)→
(x1 . y1) ||| (x2 . y2)))

This operation steps into the first tree, and inspects its structure for an Or
constructor. When this is found, it steps into the second tree where it again
inspects its structure for an Or constructor. If both are found, then a new
tree is constructed, where children of the trees are entwined together.

Note that 〈Or?m a, (.), inf 〉 forms a monoid, because (.) is associative and
the infinitely branching tree inf is its identity:

inf :: Monad m ⇒ Or?m a
inf = opF (Or inf inf)

122 CHAPTER 5. MODULAR SEARCH SPECIFICATION

Archetypal Trees and Handlers We can establish that dbsTree n cap-
tures the essence of the dbs handler in an archetypal tree by showing that
dbs n and dbs ′ n are equivalent. Our proof proceeds by induction on n.

For n = 0 we have that:

dbs 0 t

= { def. of dbs }
fail

= { ∀alg .step fail alg = fail }
fail ‘step‘ (λ(Or x1 x2)→
t ‘step‘ (λ(Or y1 y2)→ (x1 . y1) ||| (x2 . y2)))

= { def. of (.) }
fail . t

= { def. of dbsTree }
dsbTree 0 . t

= { def. of dbs ′ }
dbs ′ 0 t

Also, for n = m + 1 and induction hypothesis dbs m = dbs ′ m, we can
show that:

dbs (m + 1) t

= { def. of dbs }
step t (λ(Or y1 y2)→ (dbs m y1) ||| (dbs m y2))

= { induction hypothesis }
step t (λ(Or y1 y2)→ (dbs ′ m y1) ||| (dbs ′ m y2))

= { def. of dbs ′ }
step t (λ(Or y1 y2)→ (dbsTree m . y1) ||| (dbsTree m . y2))

= { ∀alg t1 t2.alg (Or t1 t2) = step (t1 ||| t2) alg }
(dbsTree m ||| dbsTree m) ‘step‘ (λ(Or x1 x2)→
t ‘step‘ (λ(Or y1 y2)→ (x1 . y1) ||| (x2 . y2)))

= { def. of . }
(dbsTree m ||| dbsTree m) . t

= { def. of dbsTree }
dbsTree (m + 1) . t

5.5. HEURISTICS AS HANDLERS IN HASKELL 123

= { def. of dbs ′ }
dbs ′ (m + 1) t

Modular Definition of Heuristics Figure 5.10 shows that there is an
archetypal search tree hidden in all the heuristics of Section 5.5.4. Yet, the
main advantage of archetypal search trees is that we can define them in a
convenient modular style.

For instance, we can define dbsTree n as delay n>>fail , where delay returns
return () after a given depth:

delay :: MonadProlog m ⇒ Int → Or?m ()
delay 0 = return ()
delay n = delay (n − 1) ||| delay (n − 1)

Here, return () is a placeholder for another heuristic that can be plugged in
with (>>) and becomes active at depth n in the search tree.

This allows us to define iterative deepening as follows:

itd :: (MonadProlog m,MonadRef r m)⇒ Heuristic m a
itd t = do newRef False >>= go t 0 where

go t n ref = (t . (delay n >> prune ref)) |||
do b ← readRef ref

if b then do writeRef ref False
go t (n + 1) ref

else fail
prune ref = writeRef ref True >> fail

Iterative deepening itd repeatedly runs a depth-bounded search, increment-
ing the depth bound on each iteration. The iterative process stops when no
pruning happened in the last iteration. The heuristic prune ref performs
immediate pruning and records this in the mutable reference to remember it
across backtracking. With delay n >> prune ref the immediate pruning is
delayed to depth n.

While Tor provides an operator merge/2 similar to (.), that operator does
not satisfy the same elegant algebraic properties (e.g, forming a monoid) and,
as consequence, cannot express delayed heuristics in this modular fashion.

Limitation While (.) is very convenient and captures a large class of search
heuristics, not all heuristics can be expressed in this way. In particular, con-
sider the random reordering of branches,

124 CHAPTER 5. MODULAR SEARCH SPECIFICATION

dibs ′ :: (MonadProlog m)⇒ Int → Heuristic m a
dibs ′ db t = dibsTree db . t where

dibsTree 0 = fail
dibsTree n = dibsTree n . dibsTree (n − 1)

nbs ′ :: (MonadProlog m,MonadRef r m)⇒
Int → Heuristic m a

nbs ′ n t = do ref ← newRef n
t . nbsTree ref where

nbsTree ref = do n ← modifyRef ref pred
guard (n > 0)
nbsTree ref ||| nbsTree ref

fbs ′ :: (MonadProlog m,MonadRef r m)⇒ Int → Heuristic m a
fbs ′ n t = do ref ← newRef n

fref ← newRef False
x ← t . fbsTree ref fref
writeRef fref True
return x where

fbsTree ref fref = fbsTree ref fref |||
do b ← modifyRef fref (const False)

when (¬ b) (do n ← modifyRef ref pred
guard (n > 0))

fbsTree ref fref

Figure 5.10: Search heuristics expressed as entwined trees.

5.6. FROM HASKELL TO PROLOG 125

muddle :: (MonadRandom m,MonadProlog m)⇒ Heuristic m a
muddle t = step t alg where

alg (Or x y) = do b ← getRandom
if b then muddle x |||muddle y

else muddle y |||muddle x

which is a popular heuristic to randomize the search tree. This heuristic cannot
be expressed with (.) because it always keeps left branches on the left and
right branches on the right.

5.5.5 Step 4: Reflecting Syntax Back into Semantics

Finally, the semOr handler reflects the syntactic Or back into the semantic
(|||) of the underlying monad m.

semOr :: MonadProlog m ⇒ Or?m a → m a
semOr = runFreeT alg where

alg (ReturnF a) = return a
alg (OpF (Or x y)) = semOr x ||| semOr y

We can now recover queens ′ as:

queens ′′ n db = semOr (dbs db (queens n))

provided that queens is written against the type class MonadProlog rather
than the opaque monad Prolog .

In this scheme, we start with the original tree generated by queens, but
interpreted under the Or?m monad. The ensuing tree is then pruned by the
function dbs before it is finally reflected back into the underlying monad m.

5.6 From Haskell to Prolog

This section sets up the means to transfer our Haskell-based solution for mod-
ular search heuristics to Prolog.

On the outset, there are several compelling reasons why basing our ap-
proach on the free monad transformer would make it well-suited for imple-
mentation in Prolog:

1. In the Or?m type, we can choose m to be the complex (but implicit)
monad that underpins Prolog.

126 CHAPTER 5. MODULAR SEARCH SPECIFICATION

2. The approach allows us to conveniently reuse Prolog’s primitive imple-
mentations for return () and fail by lifting.

3. We can lift individual feature extensions that we have modelled as addi-
tional class constraints, such as mutable references and random number
generation. This could be applied to other extensions we have not cov-
ered explicitly in our model: predicates (i.e., goal abstractions), mutable
databases, I/O, and many more.

However, implementing the free monad transformer itself in Prolog is chal-
lenging. As the Prolog monad is implicit in the Prolog language, it does not
lend itself to transformation. So we now direct our efforts to overcoming this
obstacle.

5.6.1 Meta-Interpreter

As explained in Section 2.2, meta-interpreters are the most common way of
modelling Prolog language extensions in Prolog. The signature of a plain
Prolog meta-interpreter is eval/1, where eval(Goal) conceptually denotes
the type m (). However, our meta-interpreter needs to capture computations
of type m (Free Or () (Or?m ())). Hence, we extend the interpreter’s sig-
nature with an extra (output) argument: eval(Goal,Flag). Flag is either
return (corresponding to Return ()) or or(Goal1,Goal2) (corresponding to
opF (Or g1 g2)).

With this signature it is straightforward to port the free monad transformer
implementation to Prolog (see Figure 5.11). However, this meta-interpreter
requires us to reify all of the syntax in Prolog which we are interested in. For
our small fragment this is very manageable, but there are many other features
in Prolog, such as built-ins and user-defined predicate calls, and with a growing
list, this approach will soon become tedious and unmaintainable. We clearly
need an approach that is orthogonal to the existing language features.

5.6.2 Delimited Continuations

We do not have to look very far for an alternative approach. The delimited
continuations from the previous chapter provide an isomorphic replacement of
the free monad transformer.

Prolog provides an idiosyncratic interface of two operators for capturing
delimited continuations: shift/1 and reset/3 which are conventionally mod-
elled by:1

1Note that these control operators are have different signatures and semantics than those

5.6. FROM HASKELL TO PROLOG 127

semOr(Goal) :-

eval(Goal,Flag),

(Flag = return ->

true

; Flag = or(G1,G2) ->

(semOr(G1)

; semOr(G2)

)

).

eval(Goal,Flag) :-

(Goal = fail ->

fail

; Goal = true ->

Flag = return

; Goal = (Goal1,Goal2) ->

eval(Goal1,Flag1),

(Flag1 = return ->

eval(Goal2,Flag)

; Flag1 = or(Left,Right) ->

Flag = or((Left,Goal2),(Right,Goal2))

)

; Goal = (Goal1;Goal2) ->

Flag = or(Goal1,Goal2)

; Goal = entwine(Goal1,Goal2) ->

eval(Goal1,Flag1),

(Flag1 = return ->

Flag = return

; Flag1 = or(Left1,Right1) ->

eval(Goal2,Flag2),

(Flag2 = return ->

Flag = return

; Flag2 = or(Left2,Right2) ->

eval((entwine(Left1,Left2)

;entwine(Right1,Right2)

),Flag)

)

)

).

Figure 5.11: Prolog meta-interpreter supporting entwine/2.

128 CHAPTER 5. MODULAR SEARCH SPECIFICATION

class Monad m ⇒ MonadDelCont f m | m → f where
shiftP :: f b → m b
resetP :: m a → (a → m b)→

(Susp f (m a)→ m b)→ m b

The shiftP operation takes a reason and returns a computation. The resetP
operation takes a computation of type m a, a conversion function of type
a → m b, a handler function of type Susp f (m a) → m b and returns a
computation m b.

These operations can be seen as a generalization of throw and catch from
the well-known error monad. Like throw , the shiftP operation terminates the
ongoing computation abruptly, with a value that indicates the reason. Like
catch, the resetP operation makes it possible to observe whether a subcompu-
tation terminates normally or abruptly.

The big difference between both interfaces is that catch only exposes the
reason for the abrupt termination. In contrast, resetP gives us, nicely pack-
aged up in a Susp(ension), both the reason (as a value of type f a), and the
unfinished part (the continuation given by a → r) of the subcomputation.

data Susp f r where
S :: f a → (a → r)→ Susp f r

instance Functor (Susp f) where
fmap f (S d r) = S d (f ◦ r)

Note that the type of the reason f a is indexed by the type a expected by the
continuation a → r .

The resetP and shiftP control operations satisfy two laws that regulate
their interaction.

resetP (shiftP d >>= f) r h = h (S d f) (5.7a)

resetP (return x) r h = r x (5.7b)

The first law shows that a shift under a reset is handled by h, which has
access to the suspended computation. The second law shows that the result of
a successful computation under a reset is handled by the conversion function
r , which has access to the result. In either case, resetP returns a computation
of type m b.

originally introduced by Danvy and Filinski under those names [31]. They are more closely
related to Sitaram’s fcontrol and run operators [145].

5.6. FROM HASKELL TO PROLOG 129

5.6.3 The Delimited Continuations Transformer

An instance of MonadDelCont can be obtained from any monad m by making
use of the delimited continuations monad transformer, written f †m a, and this
will serve as our replacement for the free monad transformer that fits the
functionality exposed by Prolog.

newtype f †m a = DC T {runDC T :: ∀r .(a → m r)→
(Susp f (f †m a)→ m r)→ m r }

Its representation takes two continuations, the return continuation of type
a → m r , and the handler continuation of type Susp f (f †m a)→ m r .

The transformed monad’s return method invokes the return continuation,
and its (>>=) extends both continuations:

instance Monad m ⇒ Monad (f †m) where
return x = DC T (λr h → r x)
m >>= f = DC T (λr h →

runDC T m (λx → runDC T (f x) r h) (h ◦ fmap (>>=f)))

Remember that the runDC T function takes three arguments:

• the first is the computation m to extend;

• the second is the return continuation, in this case it it a function that
takes the result of the computation and runs f x ;

• the third is the handler continuation, which is h ◦ fmap (>>=f).

The resetP method sets the handler continuation and the shiftP method
invokes it.

instance Monad m ⇒ MonadDelCont f (f †m) where
resetP m r h = DC T (λr ′ h ′ →

runDC T m (λx → runDC T (r x) r ′ h ′)
(λp → runDC T (h p) r ′ h ′))

shiftP d = DC T (λr h → h (S d return))

5.6.4 The Isomorphism

We will now establish the relationship between the free monad transformer
and the delimited continuations monad transformer. This will enable us to

130 CHAPTER 5. MODULAR SEARCH SPECIFICATION

adapt our existing infrastructure formulated in terms of the former to Prolog-
compatible infrastructure in terms of the latter.

For all intents and purposes the two transformers are isomorphic, but there
are two significant technical wrinkles that must be ironed out before formally
establishing this isomorphism.

First, we must enforce that the base functor f of the delimited continu-
ation transformer is only applied to monadic values. These values are after
all meant to be the continuations of the syntactic operations. We can impose
this restriction by pre-composing f with the monad and thus use f ‡m instead of
f †m . Remember that any monad is a functor and that the composition of two
functors is also a functor.

data f ‡m a = L {runL :: (f ◦ f ‡m)†m a }

where (◦) is the well-known functor composition:

data (f ◦ g) a = Comp {runComp :: f (g a)}

The corresponding functor instance is:

instance (Functor f ,Functor g)⇒ Functor ((◦) f g) where
fmap f (Comp x) = Comp (fmap (fmap f) x)

Second, the suspension S s k breaks up a continuation into two parts: one part
that sits under the syntactic construction s, and another part k that represents
the following execution. Consequently, continuations that have been broken
up at different points are distinguishable. However, if we are careful to always
treat these parts as one atomic continuation, then this does not pose a problem.
We can enforce this atomic treatment by normalize-ing all f ‡m a computations.

normalize:: ` f ?m ⇒ f ‡m a → f ‡m a
normalize m =

L (DC T (λr h → runDC T (runL m) r (h ◦ norm)))
where

norm (S x k) =
S ((Comp ◦ fmap join ◦ runComp ◦ fmap (L ◦ k)) x) return

Taking the above two points into consideration we can formulate the two
witnesses of the isomorphism.

The to function turn a value of type f ?m a into a value of type f ‡m a, while
from does the inverse.

5.7. HEURISTICS AS HANDLERS IN PROLOG 131

to:: ` f ?m ⇒ f ?m a → f ‡m a
to m = L (DC T (λr h →

do x ← unFreeT m
case x of

ReturnF a → r a
OpF s → h (S (Comp (fmap to s)) return)
))

from:: ` f ?m ⇒ f ‡m a → f ?m a
from m = FreeT (runDC T (runL m) r h) where

r = return ◦ ReturnF
h = return ◦OpF ◦ fmap from ◦ collapse

collapse (S s k) = fmap (>>=L ◦ k) (runComp s)

These functions indeed witness the isomorphism if quotiented by normalize:

from ◦ to = id (5.8)

normalize ◦ to ◦ from = normalize (5.9)

Finally, using the isomorphism it is possible to derive that the f ‡m equivalent
of opF can be defined simply as:

opF ′ s = shiftP s

In other words, a syntactic operation can be modelled directly in Prolog using
shift/1.

Similarly, we can derive the counterpart of step as:

step′ m h = resetP m return h

With opF ′ and step′ we have all we need to make the transition from
Haskell to Prolog.

5.7 Heuristics as Handlers in Prolog

Finally, we have a Prolog-friendly approach that is both light-weight and en-
ables a mostly native execution of search problems.

5.7.1 Delimited Continuations

The actual Prolog interface to delimited continuations is as follows: The built-
in predicate shift(D) corresponds to shiftP t . The resetP operation has
signature reset(P,K,D), which corresponds more or less to

132 CHAPTER 5. MODULAR SEARCH SPECIFICATION

Haskell Prolog
Left () K = 0

Right (S d k) K = JkK, D = JdK

Table 5.2: Interpretation of delimited continuations in Prolog.

resetP :: M ()→ M (Either () (Susp f (M ())))
resetP p (return ◦ Left) (return ◦ Right)

The input argument is the computation P and the other two arguments encode
in an untyped way the output, as is shown in Table 5.2.

5.7.2 The entwine/2 Infrastructure

With the help of the delimited continuation primitives, we can implement the
infrastructure for entwine/2 in Prolog, which corresponds to the (.) opera-
tion.

Since Prolog does not allow us to override the disjunction primitive (;)/2,
we are forced to use a new name, or/2, for expressing its syntactic form.

or(G1, G2) :- shift(or(G1, G2)).

Prolog’s plain disjunction (;)/2 remains available, allowing programmers to
choose between disjunction that can be observed by our framework, and that
which cannot. Capturing and handling of syntactic disjunctions is imple-
mented with reset/3.

step(G, Pattern, Handler) :-

reset(G, K, D),

(K = 0

-> true

; D = or(G1, G2),

Pattern = or((G1, K), (G2, K)),

call(Handler)

).

This enables a straightforward port of the (.) implementation:

entwine(G1, G2) :-

step(G1, or(GL1, GR1),

step(G2, or(GL2, GR2),

or(entwine(GL1, GL2), entwine(GR1, GR2))

)

).

5.7. HEURISTICS AS HANDLERS IN PROLOG 133

Finally, the reflection of toplevel syntactic disjunctions into Prolog’s origi-
nal disjunction is handled by semOr/1:

semOr(G) :-

step(G, or(G1, G2), (semOr(G1) ; semOr(G2))).

While the meta-interpreter must cater for all features in the languages, this
delimited continuations-based approach is nicely orthogonal to other features.
The code is substantially shorter and clearly requires less maintenance. More-
over, even though raw performance is not the main objective, this approach is
almost 3 times faster than the meta-interpreter on search intensive code that
does not use (.).

A small caveat is in order: In our Haskell model we expect that the following
property holds for p :: MonadProlog m ⇒ m a:

p = semOr p

The Prolog equivalent of this statement is only true if the programmer avoids
calling or/2 inside a small subset of Prolog’s control operations like Prolog’s
special catch/3. Fortunately, this requirement is generally not a heavy burden
when solving search problems.

5.7.3 Search Heuristics

Now that we implemented the entwining infrastructure in Prolog, it is possible
to define well-known search heuristics in the same concise and high-level style
as in Haskell. As an example, the following Prolog code implements the depth-
bounded search heuristic:

dbs(Depth,Goal) :- entwine(Goal,dbs(Depth)).

dbs(Depth) :-

Depth > 0,

Depth1 is Depth - 1,

(dbs(Depth1) or dbs(Depth1)).

We have also implemented other heuristics such as discrepancy-bounded,
node-bounded and failure-bounded search, as well as branch-and-bound, lim-
ited discrepancy search, and iterative deepening.2

As we have remarked in Section 5.5.4, not all search heuristics can be ex-
pressed in terms of entwine/2. Fortunately, we can still write custom handlers.
One such handler is muddle/1:

2http://users.ugent.be/~bdsouter/heuristics.html

http://users.ugent.be/~bdsouter/heuristics.html

134 CHAPTER 5. MODULAR SEARCH SPECIFICATION

muddle(G) :-

step(G, or(GL, GR),

(random(2) > 0

-> or(muddle(GL),muddle(GR))

; or(muddle(GR),muddle(GL))

)).

5.7.4 Multi-Way Disjunctions

Multi-way disjunctions are useful to express for instance that all the alterna-
tives generated by a call to select/3 are at the same level in the search tree
and thus should be treated equally by depth-bounded search.

With the effect handlers approach, multi-way disjunction can easily be
expressed as a generalization of binary disjunctions: the multi-way disjunction
predicate mor/1 takes a list of goals rather than two goals.

mor(Gs) :- shift(mor(Gs)).

mstep(G, Pattern, Handler) :-

reset(G, K, D),

(K = 0

-> true

; D = mor(Gs),

maplist(extend(K),Gs,EGs),

Pattern = mor(EGs),

call(Handler)

).

extend(K,G,(G,K)).

A multi-way disjunction can be interpreted in terms of Prolog’s binary
disjunction.

semMor(G) :- mstep(G, mor(Gs), alts(Gs)).

alts([G|Gs]) :- (G ; alts(Gs)).

However, first we can apply heuristics, like depth-bounded search. While
it is not obvious how to extend entwine/2 to multi-way disjunctions, it is easy
enough to write regular handlers.

mdbs(DB,G) :-

mstep(G,mor(Gs),

(DB > 0,

5.8. RELATED WORK 135

NDB is DB - 1,

maplist(mdbs_rec(NDB),Gs,NGs),

mor(NGs))).

mdbs_rec(DB,G,mdbs(DB,G)).

5.8 Related Work

5.8.1 Search

FP Models of LP Spivey’s algebraic model of logic programming’s com-
binatorial search [147] is very similar to MonadProlog . The model was first
described by Seres et al. [142] as a way to allow both depth-first and breadth
first strategies.

It has long been known that Prolog-like features can be embedded in
Haskell using monads and monad transformers. For instance, Hinze [64] pro-
vides the equivalent of MonadProlog as well as a pruning primitive once. We
can implement this using (.).

Hinze [65] has also derived a backtracking monad transformer using the
techniques of term and context passing. Both are systematic ways to derive a
program implementation from its specification. The technique thus builds on
the laws one imposes on the monad at hand to eliminate the need for a deus
ex machina.

Kiselyov et al. [84] derive two implementations of a backtracking monad
transformer. The first manages continuations explicitly, while the second does
this implicitly using delimited control operations. Unlike our work, their
monad transformer provides several extra operations, among which are fair
conjunctions and disjunctions, and allows selecting an arbitrary number of
answers.

Erwig [44] compares Prolog and Haskell-style approaches to solving search
problems. He argues that the Haskell style (which comprises lazy evaluation,
static typing and multi-parameter type classes) is better suited. However,
search heuristics are not discussed.

Functional Logic Programming Typically, Functional Logic Program-
ming (FLP) systems support nondeterminism in the same way as Prolog, with
a fixed depth-first search strategy. In order to provide more flexibility, various
FLP researchers [15, 93] have investigated encapsulated search. Encapsulated
search reifies the search tree of a nondeterministic computation in a datastruc-

136 CHAPTER 5. MODULAR SEARCH SPECIFICATION

ture similar to Or?m . This reified tree can be explored by programmer-supplied
search strategies instead of the default depth-first search.

Given the tree-based interface of FLP encapsulated search, it is a perfect
platform for the ideas of this paper: the declarative definition of search heuris-
tics as archetypal search trees, and the modular composition of search trees
with the (.) operator.

Constraint Programming The constraint logic programming libraries of
many Prolog systems [17, 175, 41, 62] provide search heuristics that offer lim-
ited reusability: they are hardwired in a generic labelling predicate that can
be used to solve particular classes of problems. The one exception is the
branch-and-bound heuristic of ECLiPSe [133], which is not tied to a labelling
predicate.

Schrijvers et al. [137] present Monadic Constraint Programming, a monadic
model of Constraint Programming. This model features an explicit search tree
datastructure that is manipulated by search heuristics. Compositionality of
search heuristics is achieved by defining them in terms of a set of hooks. This
approach is more complex and operational in nature than the one in this
chapter, which makes it harder for the programmer to define new heuristics
and reason about the behaviour of compositions. The hook-based approach
is further explored in C++ [139] (“search combinators”) and Prolog [134]
settings, where it suffers from similar problems.

MiniSearch [119] is also a combinator based meta-search language that
acknowledges the significant engineering effort in [139]. This complexity is
because the original search combinators approach interacts with the solver at
every node. MiniSearch is designed with minimal requirements on the solvers:
any FlatZinc [103] solver will do, although an emulation layer for incrementally
adding constraints and variables and for emulating interprocess communication
is then needed. To minimize solver requirements, MiniSearch only interacts
with the solver at every solution. It cannot express heuristics like limited dis-
crepancy search and iterative deepening that can be expressed in our approach.
Our approach provides access to the entire search tree and provides flexibility
via lightweight delimited continuations. Similar to our approach, variable and
value ordering heuristics cannot be expressed. The considerable improvements
achieved with MiniSearch for solution quality within a two minute time limit
once again demonstrate the importance of being able to specify custom search
heuristics flexibly.

Nordin and Tolmach [106] describe a lazy functional framework for solving
constraint satisfaction problems. As in our approach, it is straightforward to

5.8. RELATED WORK 137

express and combine algorithms to prune the search space, using both fixed
and dynamic variable ordering. They note an imperative implementation of
several combinations of these algorithms is known to be tricky. However, they
stress the importance of being able to experiment with them, since the best
combination of features tends to depend on the particular problem.

Continuations The explicit use and manipulation of continuations in con-
tinuation passing style programs for implementing search is folklore. In the
late 1980’s, Felleisen [46] and Danvy & Filinski [31] independently proposed
operators for delimited continuations in direct style programs. The latter is
the reset/shift approach we have adopted in this article, which has a simple
static interpretation in terms of continuations.

The CP language Comet [164] is a particularly interesting application of
this technique: it features fully programmable search [165] based on contin-
uations that make it easy to capture the state of the solver and write non-
deterministic code.

5.8.2 Algebraic Effect Handlers

Plotkin and Pretnar [110] have introduced the concept of handlers for alge-
braic effects as a generalization of exception handlers. Their approach applies
handlers on the free monad. Based on this idea, two entirely new program-
ming languages, Frank [96] and Eff [9], have been created from the ground up
around algebraic effect handlers; in these languages the computation monad
is implicit.

More recently, three proposals show how to implement algebraic effect han-
dlers on top of existing functional programming languages: Kiselyov et al. [83]
provide a Haskell implementation in terms of the free monad, in combina-
tion with the codensity transformer to obtain better performance for (>>=).
Brady [13] provides a layered implementation: a syntactic monad is inter-
preted into what is essentially the delimited continuation-based approach of
Section 5.6. Finally, underneath it all is an arbitrary monad m; while Brady
only uses this underlying monad in the handler definitions, his handler infras-
tructure is in fact a monad transformer. Kammar et al. [76] present several
different implementations in Haskell, OCaml, SML and Racket. For Haskell,
the free monad and a continuation-based approach are considered. For the
other languages, the delimited continuation approach is taken.

138 CHAPTER 5. MODULAR SEARCH SPECIFICATION

5.8.3 Monads

Monadic Zip The literature covers a number of zip-like monadic operations
similar to our (.): Giorgidze et al. [52] introduce a monadic zip operator mzip
to support parallel monad comprehensions, a generalization of parallel list
comprehensions. Their mzip is subject to two laws: it must have a partial
inverse munzip, and it must be associative.

As part of their Joinad concept, Petricek et al. [109] define monadic op-
erations similar to ours, including a monadic zip. However, the laws associ-
ated with their operations make them different in important ways from ours.
Notably, while our (.) and (|||) commute, for Joinads the zip operator left-
distributes over or .

Monad Laws Gibbons and Hinze [51] promote reasoning about code that
is polymorphic in the monad by means of laws, which is the starting point
of this paper. They illustrate law-based reasoning on several related monadic
effects: failure, nondeterministic choice and probabilistic choice.

Free Monad Transformer The free monad (transformer) is also known
by various other names, emphasizing different aspects: coroutine monad [10],
resumption monad [107] and step monad [71]. The coroutine aspects is very
relevant in our setting: in essence, the (.) operation treats two searches as
coroutines that are synchronized at corresponding occurrences of (|||).

5.9 Conclusion

This chapter has exploited the synergy between two declarative paradigms to
tackle a challenging problem in logic programming with functional program-
ming techniques. First it has shown how to cleanly separate logic and search
heuristics in a functional model of Prolog by means of effect handlers and the
free monad transformer. Then it has derived an actual Prolog implementation
from this functional specification.

We are keen to use effect handlers to further extend Prolog with control
operations that interact with the ones presented in this work. Of particular
interest is Spivey’s wrap [147] that groups multiple binary disjunctions into a
single multi-way disjunction.

5.9. CONCLUSION 139

References

This chapter is based on our article on Entwining Heuristics: Tom Schrijvers,
Nicolas Wu, Benoit Desouter, and Bart Demoen. Heuristics Entwined with
Handlers Combined: from Functional Specification to Logic Programming Im-
plementation. Proceedings of the 16th International Symposium on Principles
and Practice of Declarative Programming (PPDP), 2014. Benoit Desouter as-
sisted in writing both the final as well as early versions of the article, with
special focus on the introduction and motivation sections. He was responsible
for a study of related work.

140 CHAPTER 5. MODULAR SEARCH SPECIFICATION

Chapter 6
Introduction to Tabled Resolution

In Chapter 4, we have introduced delimited control and we have shown how it
can be used to flexibly add new language constructs. The language constructs
we have added so far are meant to be used in rule bodies and as such, do not
change the evaluation order of an entire set of rules. This kind of flexibility
and how to obtain it, is the topic of this and the following chapter.

6.1 Problems with SLD-resolution

As mentioned in Chapter 2, the standard control mechanism offered by SLD-
resolution, has several advantages. However, it has also severe restrictions:

1. it may go into an infinite loop if the input data contains cycles;

2. it may go into an infinite loop if clauses contain left recursion;

3. it is easy to construct programs where subgoals are repeatedly evaluated.
For large inputs, this leads to a combinatorial explosion of the number
subgoals to explore.

We now discuss each of those problems in more detail.

Cyclic Input Data Consider a trivial reachability problem with a cycle in
the input data:

141

142 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

path(X,Y)

edge(X,Y)

�

X
=

1,
Y

=
2

�

X
=

2, Y
=

1

edge(X,Z), path(Z,Y)

path(2,Y)

�

Y
=

1

edge(2,Z′), path(Z′,Y)

path(1,Y)

.

Z
′
=

1

X
=

1,
Z

=
2

. . .

Figure 6.1: SLD-resolution gets trapped due to cyclic input data.

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

edge(1,2).

edge(2,1).

For the query path(X,Y), SLD-resolution repeats the correct answer sub-
stitutions an infinite number of times. We illustrate this in Figure 6.1. Thus
due to the cycle, the interpreter gets trapped.

Left Recursion Consider the following formulation of the reachability prob-
lem:

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(X,Z), path(Z,Y).

edge(1,2).

edge(2,3).

Although for this trivial problem, no cycles occur in the input data, stan-
dard SLD-resolution goes into an infinite loop1 after finding the correct solu-

1i.e. until the virtual machine runs out of stack space.

6.1. PROBLEMS WITH SLD-RESOLUTION 143

path(X,Y)

edge(X,Y)

�

X
=

1,
Y

=
2

�

X
=

2, Y
=

3

path(X,Z), path(Z,Y)

edge(1,2), path(2,Y′)

edge(2,Y′)

�

Y
′

=
3

path(2,Z′′), path(Z′′),Y′)

. . .

X
=

1,
Z

=
2

path(X,Z′), path(Z′,Z), path(Z,Y)

. . .

Figure 6.2: SLD-resolution gets trapped due to left recursion.

tions for the query path(X,Y). This is because the second rule is left recursive:
the rule is defined in terms of itself where the head occurs as the first body
goal. We illustrate this in Figure 6.2. When we swap the first and second rule,
no answers are ever found before the occurrence of the loop. Left-recursion
often occurs in problem domains like parsing [100].

In general, nontermination for certain programs occurs no matter what
the static computation strategy is. Under a static computation strategy, the
decision which clause to use next for resolution, does not depend on any run-
time properties of the program, but is fixed beforehand. We need a strategy
that is dynamic in nature [53].

Combinatorial Explosion To illustrate the possibility of combinatorial ex-
plosion in standard SLD-resolution, it suffices to write a Prolog program that
calculates the well-known Fibonacci numbers:

fibo(0, 1).

fibo(1, 1).

fibo(N, F) :-

N > 1,

N1 is N - 1,

N2 is N - 2,

fib(N1, F1),

fib(N2, F2),

F is F1 + F2.

It is easy to see that during the calculation of the Fibonacci number Fn,
the Fibonacci number Fn−1 starts by calculating Fn−2, which is repeated
immediately afterwards. This phenomenon is repeated for Fn−2 and smaller
instances. A complexity analysis shows that this algorithm has exponential
complexity.

144 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

Indeed, in imperative programming, this problem has long been solved
by dynamic programming. Even in Prolog, it is not very difficult to write a
bottom-up version using the database manipulation predicate assert/1. Yet
from a declarative point of view, the programmer should not be bothered with
these control issues.

6.2 Denotational Semantics

Logicians have extensively studied the semantics of logic programming. Of
interest for this thesis is the denotational semantics [163, 143].

Consider a definite clause program P (no negations anywhere). The Her-
brand base HP of P is the set of ground atoms in P . A Herbrand interpreta-
tion states which ground atoms from the Herbrand base are true and which
are false. By convention, we simply indicate the atoms that are true in the
Herbrand interpretation:

∀a ∈ HP : I |= a ⇐⇒ a ∈ I

A model of a program P is an interpretation of P in which every formula in
the program is true.

Example 5. Consider the following program P :

p(a).

p(b).

q(X) :- p(X).

Then the Herbrand base is {p(a), p(b), q(a), q(b)}. Two possible Herbrand in-
terpretations are {p(a), p(b)} and {p(a), q(a)}.

Every program P has an immediate consequence operator TP that maps
Herbrand interpretations to Herbrand interpretations. This operator is defined
as:

TP = {α ∈ HP | α← B1, . . . , Bn is a ground instance of a clause in P∧
{B1, . . . , Bn} ⊆ I}

where I is an interpretation of P . This means that α follows directly from the
given interpretation I by some rule in the program.

An interpretation I is a fixpoint of TP iff TP (I) = I. The conventional
denotational semantics for P is the unique interpretation I that is the least

6.3. TABLING AND SLG-RESOLUTION 145

fixpoint of TP, also known as the least Herbrand model of the program (a
result due to van Emden and Kowalski [163]). This interpretation contains
those and only those atoms that follow from the program and that are not
self-supported.

It can be shown that the least fixed-point of TP is TP↑ω where TP↑ω is
defined as:

TP↑0 = ∅
TP↑1 = TP

(
TP↑0

)
TP↑2 = TP

(
TP↑1

)
. . .

TP↑ω =
⋃
n>0

TP↑n

This definition suggests a naive bottom-up evaluation strategy, which is used
in an improved semi-naive form by Datalog systems. However, this strategy
is impractical for query answering in the general Prolog setting. Firstly, com-
pound terms give rise to both an infinite Herbrand model and an infinite
least Herbrand model which cannot be practically computed. Secondly, the
bottom-up strategy can be overly expensive because it derives more facts than
necessary for answering the query at hand.

Hence, Prolog uses the top-down strategy of SLD resolution, essentially
based on TP

−1 to reason backwards from the query and only consider relevant
facts. Unfortunately, this backwards chaining strategy easily gets trapped in
cyclic derivations.

6.3 Tabling and SLG-resolution

In order to alleviate the problems of SLD-resolution, D. S. Warren has in-
troduced SLG-resolution [20]. The overall idea is called tabled evaluation or
tabling, and now has many innovative uses in areas like model checking [114],
program analysis and non-monotonic reasoning [53].

Tabling combines the efficiency of top-down SLD resolution with the cycle-
insensitivity of a bottom-up least fixed-point computation. Its backbone is
top-down resolution, but paired with active cycle detection. Tabling replaces
infinite cycles with a forward-chaining least fixed-point strategy, not unlike the
immediate consequence operator TP, but switches back to top-down resolution
for previously unexplored queries.

146 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

Like in the bottom-up strategy tabling comes at the cost of storing the
answers to intermediate queries. To mitigate this cost, most systems use SLD
resolution by default and allow the programmer to enable tabling for individual
predicates. This is often accomplished by a declaration of the following form:

:- table p/n.

During the evaluation of a query, several call variants of a tabled predicate
are likely to occur. We precisely define the call variant notion below; for now
it suffices to say that two terms are considered a variant if they are identical
up to variable renaming. The idea of tabling is to keep a list of previously
calculated answers for each call variant. When trying to prove a query of call
variant v it is first checked whether the answers are not present in a table
associated with v before the resolution starts using program clauses.

Tabling ensures termination for Horn clause programs. In several cases
tabling selected predicates has a drastic influence on time complexity, some-
times a drop from exponential in some parameter n to polynomial in n. From
the more theoretical point of view, tabling offers a consistent declarative and
procedural semantics that is lacking from standard Prolog [53].

It is however not wise to table just any predicate, not only because of the
memory usage, but also because it may be incompatible with the intended
semantics. As a simple example, it would give very counterintuitive results
to table a predicate that has side effects, because the side effects would be
executed only at the moment of tabling [153].

Terminology An important notion is variance: informally, two terms are
considered a variant of each other if they are identical up to variable renaming.
For example, p(1, X) and p(1, Y) are variants of each other, while p(1, X) and
p(2, X) are not.

A formal definition is given by the numbervars bijection [115] that stan-
dardises the representation of terms by representing each variable as a unique
constant. For example, numbervars(p(X, q(X,Y))) = p(V1, q(V1,V2)).

The following definitions are based on the description in [128]:

Generator The generator is the first occurrence of a tabled subgoal. For a
generator, the engine uses program clauses to derive answers for that
subgoal.

Consumer A subgoal that was encountered before. The engine then does not
use program clauses, but consumes answers from the table associated
with this subgoal. It needs to be suspended when it has exhausted all

6.3. TABLING AND SLG-RESOLUTION 147

answers currently in the table, and resumed when new answers have been
derived. A generator also needs to act as a consumer of its table.

Scheduling component A set of subgoals that are possibly interdependent.
This set has a unique leader.

Leader A leader is a generator subgoal GL that depends on no subgoal older
than itself. A goal A depends on another goal B if the answers to goal B
influence the answers to goal A. Subgoals younger thanGL are allowed to
depend on GL. The leader schedules consumers in its scheduling compo-
nent according to a particular scheduling strategy, and determines com-
pletion of a scheduling component. Scheduling strategies are discussed
in Section 6.7.

Freeze register A freeze register is used to freeze a stack by setting the con-
tents of the register to the current top of the stack. This is done so that
the the execution state of suspended computations can be reconstructed.
As a consequence, the frozen space will not be reclaimed until completion
of the associated table.

Consumer choicepoint This type of choicepoint represents the suspended
environment. It saves the state of several WAM-registers.

Forward trail Addresses and values used to restore variable bindings along
the path to the suspended consumer.

With the above definitions, we have all the ingredients to describe how an
SLG-engine suspends a consumer. SLG-resolution is based on the older OLDT-
resolution ([156]), but adds support for negation. It is not our intention to
provide a deep understanding of SLG-resolution, but rather to give the reader
a general idea of how this resolution works. It corresponds to maintaining a
forest of SLD-stacks [55]. The engine

1. freezes all the stacks by means of the freeze registers;

2. creates a consumer choicepoint;

3. fails, which causes backtracking to the previous choicepoint. Here, the
freeze registers must not be reset.

Resuming a customer uses the information in the consumer choicepoint, in
particular the forward trail to restore variable bindings along the path to the
suspended consumer.

In the literature (e.g. [128]), five operations of an SLG-engine are distin-
guished:

148 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

New Subgoal For a given tabled subgoal G, this operation checks whether
this is the first occurrence of G or not.

Program Clause Resolution This operation corresponds to ordinary Pro-
log resolution. It is used for generators.

New Answer Records answers in the table associated with G.

Answer Return As an alternative to program clause resolution, consumers
use the answers from the table by means of this operation. Until com-
pletion, a tabled engine needs to be able to reconstruct the execution
environments E of G so that the newly derived answers returned by An-
swer Return can be run in those environments E, potentially leading
to more new answers.

Completion This operation determines whether all answers for a given set of
subgoals are stored in the tables. To accomplish this, it needs to examine
the dependencies between tables and the answers consumed so far. An
SLG-engine maintains a stack of scheduling components to this end.

6.4 Implementation Challenges

Since its conception in the early nineties, tabling has only been implemented
in a few Prolog systems, most notably in XSB [152]. Other well-known imple-
mentations are the Yap [130], Ciao [62] and B-Prolog [175] engines.

Each has its own particular ways of implementing tabling, but all the im-
plementations have one thing in common: implementing tabling is hard.

Sagonas and Stuckey have very nicely summarised the core problems [128]:

. . . the generation and consumption of answers are asynchronous
and interleaved events.

Implementing tabling requires pervasive changes to the Prolog engine.
Specifically for SLD-resolution, the changes required to the WAM are:

• the introduction of a set of freeze registers;

• the introduction of a forward trail stack;

• the introduction of a new memory area, the table space;

• changes to the garbage collector;

6.5. DATA STRUCTURES 149

• new primitive operations;

• as a consequence of changing the number of memory areas, the adapta-
tion of the tagging scheme.

These changes are not orthogonal to an existing SLD-engine, but deeply
influence its architecture. Thus it should not surprise that, despite tabling
being around for quite some time and despite its desirability, it has only been
implemented in systems developed in the context of academia.

6.5 Data Structures

The data structures used for representing the table itself, have been extensively
studied. Two approaches can be distinguished: the most common one is to
use tries; an alternative is the use of hash tables, as in B-Prolog [180].

Tries A trie is a particular kind of tree where the number of children per
node is variable across nodes and across time. Each entry is split into parts.
The entries are stored in the trie so that the common prefixes of their parts
are on a common path from the root.

Tries were originally defined to index dictionaries [115]. They provide com-
plete discrimination for terms.

This datastructure allows for insertions and containment checks with good
algorithmic complexity: both operations have complexity O(d) where d is the
depth of the call pattern.

Example 6. Suppose we have an answer p(1,a(b)) for a call variant of p(1,
). Then the path through a trie will be root, 1, a/1, b/0. We obtain the

trie from Figure 6.3 by adding the following answers to that trie: p(1,a),
p(1,a(c)), p(1,a(b(c))), p(1,a(b(d)))).

In the context of tabling, there are two usage scenarios for tries [115]:

Answer check / insert Each call variant is associated with its own trie for
storing answers. This corresponds to the New Answer operation from
Section 6.3.

Call check / insert There is a single trie that keeps the relation between
call variants and their respective tables.

150 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

p(1,)

1

a/1

b/1

c/0 d/0

b/0 c/0

a/0

Figure 6.3: The structure of a trie: common prefixes are on a common path from
the root.

Substitution factoring Substitution factoring (alternative: unification fac-
toring) is a technique developed to avoid storing redundant data in tries, de-
veloped by Ramakrishnan et al. [115].

Given the table for a call variant G, all answers A in that table can be
represented by means of an answer substitution θA as GθA. Thus it suffices to
only store the substitutions. Supposing that {V1, V2, . . . , Vm} are the variables
in G, then an answer substitution GθA has the following form:

{V1 7→ t1, V2 7→ t2, . . . Vm 7→ tm}

The sequence 〈t1, t2, . . . tm〉 can easily be stored in a trie. The insertion
and lookup operations then have a time complexity that is O(‖GθA‖).

Implementing Tries in the WAM For efficiency, tries can be dynami-
cally compiled to WAM instructions, so that looking up an answer in the trie
constructs that answer on the stack.

6.6 Operational Problems

Common problems with tabling implementations are:

1. They add overhead for the evaluation of nontabled predicates, among
the order of 10% [38]. This has been addressed by the CAT and CHAT
approaches, discussed in Subsection 6.9.1.

6.7. SCHEDULING STRATEGIES 151

2. Excessive memory consumption, due to:

• the need to represent tables. Despite their good time complexity,
standard tries are not particularly memory-friendly.

• specifically for SLG-resolution and depending on the scheduling
strategy (explained in the next section): stack space, because an
arbitrary number of stacks may be frozen.

3. Incomplete tables, because in several applications not the answers to,
but only the satisfiability of a given query are of interest. In that case it
makes sense to stop the query evaluation as soon as an answer is found.
However, this pruning operation results in incomplete tables. These
tables cannot be trusted, because part of the computation has not been
executed, and are typically thrown away. This is not only a memory
problem, but it may also lead to many redundant computations, which
we wanted to avoid in the first place.

Memory problems are recently becoming more of an issue [159, 113], be-
cause applications are made with increasingly large data sets. For example,
Rocha et al. have applied tabling to inductive logic programming [123]. In
this application domain, huge search spaces are explored and the number of
tables gets too large for the available memory. In a tabling implementation,
it is common to have a set of primitives to dynamically abolish some tables,
but it is up to the programmer to use them. As it is difficult to make a
good guess at what the least useful tables are without any extra information
Rocha [121, 122] has introduced a memory management strategy based on
a least recently used algorithm (LRU-strategy). In the same articles, Rocha
proposes to keep incomplete tables around and to restart the evaluation from
the beginning once the answers in the tables have been consumed. This idea
bears some similarities with the work of Sagonas and Stuckey [128], discussed
in Subsection 6.9.2 below. In this context, Sagonas and Stuckey have crit-
icised attempts to integrate the Prolog cut-operator into SLG-resolution, as
proposed in [54, 179].

6.7 Scheduling Strategies

A scheduling strategy determines the order of resuming suspended computa-
tions. Traditionally, two different strategies are distinguished [128, 32]:

batched scheduling In batched scheduling, a generator immediately con-
sumes answers when they have been produced. This strategy thus re-

152 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

turns answers one by one before computing them all, which in principle
is better if only one answer or a subset of the answers is desired.

local scheduling In local scheduling, a generator postpones the consumption
of generated answers until they have all been generated. Thus it collects
all the solutions to a tabled predicate before making any one of them
available outside the tabled computation.

The pros and cons of both scheduling strategies have been nicely sum-
marised in [32]:

Batched evaluation is closer to SLD-evaluation in that it computes
solutions lazily as they are demanded, but it may need arbitrarily
more memory than local evaluation, which is able to reclaim mem-
ory sooner.

In this article, de Guzmán, Carro and Warren propose swapping evaluation as
a third strategy. Similar to batched evaluation, it returns answers one by one,
but at a lower memory usage.

The importance of flexibly supporting multiple scheduling strategies is
stressed by Rao et al. [117]. Depending on the scheduling strategy, tabled
logic programs can show substantial differences in performance. The authors
show that an optimal strategy unfortunately does not exist. Thus, tabling
strategies can only improve specific classes of applications. Implementations
should flexibly support multiple strategies.

6.8 Semantic Issues

Tabling does not go well with several Prolog constructs: cut, negation and
aggregation predicates. Many papers ignore this, and only handle the class of
definite programs.

The problem with cuts is the following [152]: suppose a goal G is called in
two places and suppose the first of those two places has a cut. Then this cut
might remove a choicepoint for an incomplete table. This could disallow the
derivation of answers in the second place, leading to incompleteness2.

Recent work attempts to provide pruning without relying on Prolog-style
cut. One example is the JET-approach discussed in the next section. Chico de
Guzmán, Carro and Hermenegildo [23] provide a recent overview of pruning
benefits, its issues and mention five previous attempts.

2The best practical advice thus is not to use cuts in combination with tabling.

6.9. ALTERNATIVE LOWLEVEL MECHANISMS 153

Negation has two problems: floundering and nonstratification [154]. The
negation operator must only be applied to ground literals. In the other case,
the program is said to “flounder”. Nonstratification means that a program
has a set of rules with cycles through negation.

In addition, side effects must be used with care: a side effect will only be
performed the first time that a subgoal is called.

6.9 Alternative Lowlevel Mechanisms

We already explained that implementing tabling is complex. In addition, the
underlying idea leaves plenty of choice on how to implement different aspects.
Finally, SLG-resolution is so specific that it is hard to reuse some aspects of its
implementation in the context of other languages like functional or functional
logic languages. Thus, over the years, a lot of alternative implementation
mechanisms have been developed.

6.9.1 CAT and CHAT

The CAT is an alternative to the SLG-WAM used in XSB [38]. Rather than
freezing memory areas, CAT uses incremental copies to preserve the execu-
tion state of suspended computations. The advantage of this approach is
that the speed of the underlying abstract machine is not affected for non-
tabled execution. However, in the worst case, CAT must copy so much that
its tabled execution becomes arbitrarily worse than that of the SLG-WAM.
CHAT is an improved hybrid scheme incorporating some ideas from the SLG-
WAM [39], but also respecting the important property that the execution
speed of nontabled evaluation should not be affected. The scheme implements
the suspension mechanism using a combination of freezing and copying to a
separate memory area. CAT and CHAT do require changes to the WAM, but
acknowledge that the complexity and scope of these changes should be kept
limited. Demoen and Sagonas themselves consider CHAT’s design superior to
CAT.

6.9.2 JET

The operational problems with incomplete tables and pruning discussed in Sec-
tion 6.6 are the main motivation for the JET approach. JET allows suspension
and resumption at an arbitrary point and, by means of a static analysis, de-
tects points where pruning can occur without leading to recomputation. These

154 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

points are called JET-points.
For example, in the following rule, taken directly from [128], and assuming

batched scheduling, pruning could occur at the program points marked with
^:

test :- start(S), t(S), tle(S,G), good(G).

^ ^

If the pruning is implemented like a Prolog cut, the only safe solution is to
throw away the incomplete tables. JET saves these computations and allows
them to be executed later. The implementation is based on CHAT. JET makes
tabled evaluation much more demand-driven, and as such, we consider it an
important step forward.

De Guzmán, Carro and Warren [32] mention that their swapping evaluation
scheduling strategy was prefigured in the context of JET.

6.9.3 Recomputing Approaches

SLG’s good performance comes from its suspension mechanism that avoids
recomputation (explained below). However, this is also the hardest part in the
implementation. Several approaches cleverly avoid the need to suspend.

To distinguish between tabled resolution strategies that do and do not
perform recomputation, Sagonas and Stuckey have introduced the “proper
tabling” terminology for strategies that do not perform recomputation [128].

Linear Tabling Mechanisms Linear tabling mechanisms [179], which im-
plement the SLDT-resolution strategy, maintain a single execution tree. In-
stead of suspending, the approach steals choicepoints from a former variant
call. Linear tabling is implemented in B-Prolog [178].

SLDT-resolution works in the same way as standard SLD-resolution, ex-
cept when the call is a variant of some former call. In that case, SLDT uses
the answers already available in the table. If the table is exhausted, the re-
maining clauses of the former call are tried, which is referred to as “stealing
the choicepoint”. Subgoals thus always extend the current computation, and
no suspension is created. But this is not enough: after exhausting all answers
and clauses, the call must be re-executed from the first clause of the predicate
until no new answers can be derived. This re-execution is generally referred
to as recomputation.

Each tabled call can thus be both a producer and a consumer. As an
important property, there is no overhead for standard SLD-resolution, but the
need for recomputation of subgoals cannot always be avoided. In some cases

6.10. TRANSFORMATION-BASED APPROACHES 155

recomputation can be avoided with the Direct-Recursion Optimisation. Unlike
for suspension-based mechanisms, the cut operator works for a class of useful
programs.

Although simpler than SLG resolution, implementing SLDT still requires
the addition of 4 new specifically designed WAM-instructions, a new frame
structure and a new data area. As a drawback, the obtained efficiency is
limited.

Dynamic Reordering of Alternatives Dynamic Reordering of Alterna-
tives (DRA) [53, 55] also implements tabled evaluation without complex op-
erations like stack-freezing. It postpones clauses containing variant calls at
runtime, which is similar to suspension creation. Guo and Gupta have to this
end introduced six new WAM instructions. The DRA-scheme has been de-
veloped with parallelism for logic programming in mind. Compared to XSB,
Guo and Gupta’s implementation of DRA has a significantly better space per-
formance — due to a potentially large number of stacks/heaps that may be
frozen in XSB, but a worse time performance. The authors cite as sources for
XSB’s better time performance that XSB avoids reconstructing the execution
environment for applying looping alternatives, and secondly that XSB includes
tabling in the compiling stage.

6.10 Transformation-based Approaches

6.10.1 Extension Tables

Back in 1987, S. W. Dietrich described extension tables in her PhD thesis [42].
In a later article [45] these tables were described as “a memo facility that the
algorithm uses both to cut infinite derivation paths for complete evaluation and
to optimise the evaluation of logic programs”. Indeed, extension tables pro-
vide a lightweight implementation of tabling where the control flow is defined
entirely by means of program transformation and database manipulations.

This approach cannot achieve satisfactory performance as suspended goals
are always re-evaluated. The initial implementation used the assert and
retract predicates for database manipulations. These predicates may be slow
depending on term size and structure. A later version moved the data struc-
tures to C, but did not change the inherent recomputation behaviour.

156 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

6.10.2 Recomputation-Free Approaches

Ramesh and Chen [116] extend Prolog with new tabling primitives imple-
mented in C through the foreign function interface. They are the first to aim
for a portable method of integrating SLG-resolution into Prolog systems. A
complicated program transformation introduces calls to these C routines at the
appropriate points in tabled predicates. A limitation of their proposal is that
it does not allow arbitrary interleaving of tabled and nontabled predicates [21]:
except for the first call, tabled calls must appear in the body of a tabled pred-
icate for their implementation to work correctly. Chico de Guzmán et al.
remark that tabling all predicates between generators and consumers works
around this problem, but that this can seriously impact efficiency.

More recently, Chico de Guzmán et. al. [24] have addressed the performance
bottlenecks of Ramesh and Chen’s approach. But while their improvement is
successful in terms of performance and has good scaling characteristics, it does
require lower-level C primitives, changes to the WAM’s memory management,
and an even more complicated program transformation. These changes further
increase the cost of porting and maintaining the mechanism, while the devel-
opment effort cannot be amortised over other features. Hence, the approach
does not lower the threshold for adopting tabling.

Bridge Transformation Chico de Guzmán et al. have also presented an
enhanced transformation removing the limitation that calls to tabled predi-
cates must occur in the body of tabled predicates [21, 22]. They introduce the
notion of bridge predicates: a predicate B is a bridge if for some tabled predi-
cate T, T depends on B. The enhancement makes the transformation even more
involved: a deep analysis of both tabled and bridge predicates is necessary and
some code is duplicated. Due to the approximation used, some predicates may
be unnecessarily marked as bridge predicates, which produces an additional
average slowdown of three percent.

6.11 Call Subsumption

Traditionally, tabling implementations have been based on variant tabling.
However, over the years, several alternatives have emerged that allow for more
answer sharing. With variant-based tabling, an engine only reuses answers
for a past goal that is a variant of the current goal (that is, identical modulo
variable renaming) [72]. Subsumption-based tabling allows for more reuse: a
goal G′ subsuming a goal G contains in its table all answers for G. However

6.12. TABLING IN OTHER CONTEXTS 157

not all answers for G′ may be applicable, as G′ is more general. However
the mechanisms are more complex than the ones used in a variant-engine,
hence more difficult to implement [28]. Increasing the level of abstraction will
obviously make this task easier.

Johnson et al. [72] propose time-stamped tries that allow efficiently se-
lecting the relevant answers for a subsumed goal G. The table space used
in a time-stamped trie remains within a constant factor of the space used by
a variant-based engine, but the engine is likely to create more choicepoints.
Time-stamped tries are clearly superior to subsumptive tabling engines based
on the older DTSA [118].

Cruz and Rocha [28] describe retroactive subsumption that allows sharing
between subsumptive subgoals independent of their call-order. In a later pa-
per ([29]), they propose a variation on the time-stamped trie: the Single Time
Stamped Trie is tailored for retroactive subsumption. Although they report
some overhead in programs stressing the drawbacks — when retroactive sub-
sumption is not applicable, the simplicity of their design remains attractive.

6.12 Tabling in other Contexts

Haskell In Haskell, the traditional approach to deal with nondeterminism
is to model computations by the list of their outcomes. However, this does
not work when nondeterministic problems are recursive as the recursion may
cause the lists to become infinite. Vandenbroucke et al. [168, 169] define a
model that is able to deal with both non-determinism and recursion. They
give a semantics to this model in terms of a least fixpoint computation, which
is exactly what tabling does for the immediate consequence operator in logic
programming.

Mercury Mercury is a pure logic programming language for the creation of
large programs. The syntax is similar to Prolog, but semantically, the language
is very different.

The main design criterium for tabling in Mercury was that tabled eval-
uation should not impact the execution speed of nontabled predicates [146].
Therefore the implementation borrows heavily from the CAT approach (dis-
cussed in Subsection 6.9.1). Somogyi and Sagonas state: “CAT is simply the
tabling mechanism requiring the fewest, most isolated, changes to the Mercury
implementation.”. In particular, maximum performance for the tabled predi-
cates themselves was not a design requirement. Chico de Guzman et al. [24]
have stressed the technical differences in the implementation because of the

158 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

differences in the base language, although both Mercury and their work im-
plement tabling using external modules and program transformation, so as to
keep the changes to the compiler and runtime system minimal.

Still, adding tabling to Mercury is hard and has only been implemented
for one of several backends. The major reason for this complexity is because
if-then-else and existential quantification are often used in Mercury. The cor-
responding constructs in Prolog are cuts and negation. In Section 6.8, we have
explained that the interaction between these constructs and tabling are notori-
ously tricky. The Mercury approach partly motivated the JET approach [128].

The problem with existential quantification is that it discards stack frames
once a witness is found. The discarded stack frames may include the frames
of a generator, which leads to incomplete tables. Mercury has a new type of
stack, the cut stack, that can detect this situation. In this case, the existence
of noncomplete generators is erased, so that the table can be recomputed.

The problem with if-then-else is that in a tabling context, failure of the
condition does not not imply that the condition is not satisfiable: some goal
in the condition may have been suspended. By using a new type of stack,
the possibly-negated-context stack, this situation can be detected. Rather
can computing incorrect results, an exception can be thrown, but, to our
knowledge, no solution to compute the correct answers has been proposed yet.

Picat Picat [176] is being promoted as a successor for Prolog. The language
lacks Prolog’s non-logical features, such as the cut operator and dynamic pred-
icates. The Picat tabling system implements a linear tabling mechanism. This
has been exploited to provide a framework for solving planning problems [8].

Tabling and Parallelism Logic programming is well-suited for automatic
parallelization: logic programs often contain multiple clauses for a rule. These
alternatives may be explored in parallel.

Integration of or-parallelism and tabling has been demonstrated by the Yap
Prolog system [130].

References

This chapter is partially based on the following articles:

• Benoit Desouter, Marko van Dooren, and Tom Schrijvers. Tabling as a
Library with Delimited Control. Theory and Practice of Logic Program-

6.12. TABLING IN OTHER CONTEXTS 159

ming (TPLP), 2015. Proceedings of the 31st International Conference
on Logic Programming (ICLP).

• Benoit Desouter, Marko van Dooren, Tom Schrijvers, and Alexander
Vandenbroucke. Tabling as a Library with Delimited Control. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Sister Confer-
ences Best Paper Track (on invitation), 2016.

160 CHAPTER 6. INTRODUCTION TO TABLED RESOLUTION

Chapter 7
Tabling with Delimited Control

7.1 Introduction

Tabling is one of the most widely studied extensions to Prolog because it
considerably raises the declarative nature of the language. Tabling takes away
the sensitivity of SLD resolution to rule and goal ordering, and allows a larger
class of programs to terminate. As an added bonus, the memoisation that
is done by the tabling mechanism may drastically improve performance in
exchange for more memory.

Given all these advantages, it may come as a surprise that many Prolog
systems still do not support tabling. The reason is however simple. In the
previous chapter we have studied existing implementation approaches. All of
them require pervasive changes to the Prolog engine. This is a substantial
engineering effort that is beyond most systems [130].

We have also seen that several works have attempted to tackle this problem.
The approach of Ramesh and Chen (Subsection 6.10.2), improved by Chico
de Guzmán et. al.. is successful in terms of performance, but it does require
lower-level C primitives, changes to the WAM’s memory management, and
an extremely complicated program transformation. Those changes increase
the cost of porting and maintaining the mechanism, and the development
effort cannot be amortised over other features. The extension tables from
Subsection 6.10.1 provide a tabling mechanism that is implemented directly
in Prolog. However, the approach cannot achieve satisfactory performance as
suspended goals are always re-evaluated.

161

162 CHAPTER 7. TABLING WITH DELIMITED CONTROL

Santos Costa et al. [130] point out that “Making it easy to change and
control Prolog execution in a flexible way is a fundamental challenge for Pro-
log.”. In Chapter 4, we have already seen that delimited control, as a language
construct for manipulating a program’s control flow, does exactly that. We
have shown that the impact of delimited control on the WAM is minimal. On
top of that, the development effort of delimited control can be amortized over
the range of high-level language features they enable, such as effect handlers.

In this chapter we show how delimited control can be used for a lightweight
tabling mechanism. Both the tabling control flow and data structures are writ-
ten entirely in Prolog enhanced with delimited control. It does not require deep
custom changes to the Prolog engine, complicated program transformations,
or meta-interpretation. As such our mechanism demystifies many aspects of
implementing tabling.

Compared to existing state-of-the-art systems, our system needs more at-
tention in terms of performance, but this does not outweigh the gain in flexi-
bility: we bring tabling much closer to the masses. In contrast with extension
tables, our approach does not require recomputation of suspended goals.

7.2 Shallow Transformation

In our approach, tabled predicates require no special notation, nor any syn-
tactic analysis of the predicates being tabled. Predicates are written in the
usual way, and transformed by a shallow program transformation.

:- table p/2.

p(X,Y) :- p(X,Z), e(Z,Y).

p(X,Y) :- e(X,Y).

Figure 7.1: Running example: transitive closure.

The use of tabling is illustrated in Figure 7.1. Predicate p/2 computes the
transitive closure of the e/2 relation. The table-directive indicates that p/2

will be tabled. Predicates without that directive are resolved using standard
SLD-resolution.

The table/1 directive performs a very shallow program transformation,
the result of which is shown in Figure 7.2. This transformation introduces a
new predicate p aux/2, which we call the worker predicate. Its clauses are
literal copies of the original clauses of p/2. Only the name in the head of the

7.3. THE TABLE/2 PREDICATE 163

p(X,Y) :- table(p(X,Y),p_aux(X,Y)).

p_aux(X,Y) :- p(X,Z), e(Z,Y).

p_aux(X,Y) :- e(X,Y).

Figure 7.2: Result of the transformation.

table(Wrapper,Worker) :-

get_table_for_variant(Wrapper,Table),

table_get_status(Table,Status)

(Status = complete ->

get_answer_from_table(Table,Wrapper)

;

(exists_scheduling_component ->

run_leader(Wrapper,Worker,Table),

get_answer_from_table(Table,Wrapper)

;

run_follower(Status,Wrapper,Worker,Table)

)

).

Figure 7.3: The table/2 predicate.

predicate is changed. Everything else is preserved, including recursive calls to
the tabled predicate.

The new predicate p/2, which we call the wrapper predicate, is defined in
terms of the dynamic tabling predicate table/2. This predicate receives the
corresponding wrapper and worker call patterns as arguments and takes care
of tabling that call. We stress that table/2 does not receive any information
about the static structure of p/2 and manages the tabling fully dynamically.
We explain how table/2 can be implemented directly in Prolog in Section 7.3.

7.3 The table/2 Predicate

Thanks to the shallow program transformation, the table/2 predicate in-
tercepts every call to a tabled predicate. Figure 7.3 shows that table/2 re-
trieves the Table data structure for the given Wrapper call pattern. There is
one table for every distinct call pattern encountered so far; if the current call
pattern has not been encountered before, get table for variant/2 allocates

164 CHAPTER 7. TABLING WITH DELIMITED CONTROL

run_leader(Wrapper,Worker,Table) :-

create_scheduling_component,

activate(Wrapper,Worker,Table),

completion,

unset_scheduling_component.

Figure 7.4: Handling the leader call.

a fresh data structure for it.
Then table/2 switches on the Table’s status. If the status is complete,

it means that all answers for the Wrapper call pattern are already available
in the table. The call is then answered by consuming the answers with the
get answer from table/2 predicate.

Otherwise, we either start collecting answers (run leader/3), or we are
already in the process of collecting answers and proceed (run follower/4).
The call that initiates answer collection is called the leader . A leader is a
call to a tabled predicate that has only non-tabled ancestors in the dynamic
call graph. Other calls to tabled predicates during answer collection are called
followers. Every follower has a leader as its ancestor. The leader and its
followers make up a scheduling component . Multiple scheduling components
can occur during program execution.

Example 7. Consider the top-level call ?- p(X,Y). for our running exam-
ple. Then p(X,Y) clearly is the leader of a new scheduling component. The
recursive call p(X,Z) in the first clause constitutes a follower in its scheduling
component.

The Leader The leader, defined in Figure 7.4, takes responsibility for com-
puting all the answers of its scheduling component. To quickly identify whether
there currently is a leader, we use a global non-backtrackable variable, that
is checked by exists scheduling component/0. Similarly, the simple predi-
cates create scheduling component/0 and unset scheduling component/0

set and unset the variable.
The job of the leader consists of two tasks: 1) it starts computing the

answers of the scheduling component with activate/3, and 2) it computes
the least fixpoint for the whole scheduling component with completion/0.

Followers Followers, defined in Figure 7.5, have fewer responsibilities than
the leader. If the table of the follower is fresh, i.e. it is the first time the call

7.4. ACTIVATION AND DELIMITED ANSWER COMPUTATION 165

run_follower(fresh,Wrapper,Worker,Table) :-

activate(Wrapper,Worker,Table),

shift(call_info(Wrapper,Table)).

run_follower(active,Wrapper,Worker,Table) :-

shift(call_info(Wrapper,Table)).

Figure 7.5: Handling a follower call.

pattern occurs, then the follower activates the answer computation. Sub-
sequently, it yields control with shift/1; this is explained in more detail in
the next subsection. If the table is already actively collecting answers, the
follower immediately yields control.

7.4 Activation and Delimited Answer Compu-
tation

When a call pattern is encountered for the first time, the computation of its
answers is activated with the predicate activate/3. This predicate, defined
in Figure 7.6, alters the table status from freshly allocated to active and
puts the Worker to work with the auxiliary delim/3 predicate. Note that a
failure driven loop is used to backtrack over all the alternatives of Worker.

activate(Wrapper,Worker,Table) :-

table_set_status(Table,active),

(

delim(Wrapper,Worker,Table),

fail

;

true

).

Figure 7.6: Activation.

The body of a tabled predicate p/n is actually executed by predicate
delim/3, defined in Figure 7.7. This predicate runs p/n’s Worker in the con-
text of a reset/3. If the Worker succeeds normally, the answer is added to
the table with store answer/2.

166 CHAPTER 7. TABLING WITH DELIMITED CONTROL

delim(Wrapper,Worker,Table) :-

reset(Worker,Continuation,SourceCall),

(Continuation == 0 ->

store_answer(Table,Wrapper)

;

SourceCall = call_info(_,SourceTable),

TargetCall = call_info(Wrapper,Table),

Dependency = dependency(SourceCall,Continuation,TargetCall),

store_dependency(SourceTable,Dependency)

).

Figure 7.7: Delimited execution.

However, if the Worker calls a tabled predicate q/m — with either the
same or a different call pattern as p/n — then Worker does not terminate
normally. The reason is that the q/m call is a follower, and run follower/4

always ends in a shift/1 without producing an answer. Instead the Worker

suspends, capturing the remainder in Continuation.

Example 8. Consider the following clause from our running example:

p_aux(X,Y) :- p(X,Z), e(Z,Y).

The worker p aux(X,Y) for the call p(X,Y) immediately suspends at the re-
cursive call p(X,Z) with Continuation = e(Z,Y).

Through this suspension, we bypass the regular depth-first execution mech-
anism of Prolog and avoid its potential non-termination. We replace the depth-
first search by the least fixpoint computation of the completion phase. For this
purpose, we record the suspended computation in the form of a dependency/3

structure. This structure expresses that given an answer for the q/m call, one
may obtain answers for the p/n call by resuming the suspended continuation.
We denote q/m as the source call and p/n as the target call. For the source
call, it is sufficient to store the SourceTable to be able to retrieve an answer
later. For the target call, we need the Wrapper in addition to the table, as
the Wrapper contains the partial answer that running the continuation will
instantiate. This explains the form of the dependency/3 structure, which is
stored in the table of the source call to be triggered whenever a new answer is
added.

Example 9. The dependency for our example above expresses that, given an
answer for p(X,Z), we may obtain answers for p(X,Y) by executing e(Z,Y).

7.5. COMPLETION 167

completion :-

(worklist_empty ->

set_all_complete,

cleanup_tables

;

pop_worklist(Table),

completion_step(Table),

completion

).

completion_step(SourceTable) :-

(

table_get_work(SourceTable,Answer,

dependency(Source,Continuation,Target)),

Source = call_info(Answer,_),

Target = call_info(Wrapper,TargetTable),

delim(Wrapper,Continuation,TargetTable),

fail

;

true

).

Figure 7.8: The completion fixpoint.

For instance, if we get the answer X = a, Z = b for p(X,Z), and we have the
fact e(b,c) then we obtain the answer X = a, Y = c for p(X,Y).

Example 10. Assume that e/2 is defined by the facts e(a,b) and e(b,c).
Then the query ?- p(X,Y) yields not only the dependency on p(X,Z) through
the first clause of p aux/2 but also the answers p(a,b) and p(b,c) through the
second clause of p aux/2. Since p(X,Z) is a variant of p(X,Y), the dependency
and the two answers are all associated with the same table.

7.5 Completion

The completion phase, defined in Figure 7.8, computes the fixpoint over
all answers and dependencies of the scheduling component. Just like Data-
log’s semi-naive approach [19], our implementation tries to avoid unnecessary
recomputation.

We maintain a worklist of all tables for which at least one associated answer

168 CHAPTER 7. TABLING WITH DELIMITED CONTROL

has not been fed into at least one associated dependency. This worklist is
updated whenever a new answer or new dependency is associated with a table.

Predicate completion/0 is the driving loop of the completion phase. It
repeatedly pops a table from the worklist and calls completion step/1 to
process answer/dependency pairs that have not yet been combined. When the
worklist is empty, the completion fixpoint has been reached. On reaching the
fixpoint, set all complete/0 sets the status of every table in the scheduling
component to complete. Finally cleanup tables/0 erases all the dependen-
cies, as they are no longer necessary.

By calling table get work/3, predicate completion step/1 retrieves an
unprocessed Answer/Dependency pair from the table. It instantiates the source
of the dependency with the answer and resumes the dependency’s continuation
with delim/3, binding the variables in the partial answer Wrapper along the
way. This process may lead to new answers or new dependencies that spur the
fixpoint computation on. Here, a failure-driven loop is used to iterate over all
answer/dependency pairs.

Example 11. Let us consider the completion that follows Example 10. There
is one entry in the worklist: the table for call variant p(X,Y). This table has
two unprocessed pairs:1

p(a,b) / dependency(p(X,Z),e(Z,Y),p(X,Y))

p(b,c) / dependency(p(X,Z),e(Z,Y),p(X,Y))

The first pair yields the new answer p(a,c) with the help of the fact e(b,c).
The second pair yields nothing. The production of a new answer reschedules
the table for p(X,Y) in the worklist. Yet the second completion round yields
no new answers or dependencies and the fixpoint computation terminates with
answer set {p(a,b), p(b,c), p(a,c)} for call p(X,Y).

7.5.1 The Table Data Structures

The central data structure used by the tabling control flow explained above is
the table. We maintain one such table per call variant, which can be retrieved
from a global repository of all tables. This global repository is implemented
in the form of a trie data structure, also known as the call trie, that maps call
patterns to tables.

There is a second global data structure, the global worklist, which main-
tains a simple queue of tables for the completion algorithm explained in Sec-
tion 7.5.

1We have abbreviated the call information for the sake of clarity.

7.5. COMPLETION 169

The table itself consists of two parts: the answer trie and the local worklist:

• The answer trie is where get answer from table/2 finds its answers.
Moreover, the trie allows store answer/2 to quickly check whether a
newly produced answer has already been computed before, and to only
store it in case it has not.

• The local worklist serves the table get work/3 predicate. It retrieves
pairs of answers and dependencies that have not been combined before.
For this purpose we use a dequeue (i.e., a double-ended queue) that
contains answers and dependencies.

The dequeue maintains the invariant that an answer is to the left of a
dependency if and only if they have not been combined. New answers
are added on the left, because they have not been combined with any
dependency yet. New dependencies are added on the right.

For performance reasons, the dequeue batches consecutive answers into a
single entry on insertion; the same happens to consecutive dependencies.
Every batch contains homogeneous elements (either answers or depen-
dencies) and is implemented as a list — the position of the elements in
the list is insignificant. Batches of the same type are not merged if they
become adjacent during the combination of answers and dependencies.
Doing so would reduce the number of swaps, but at the cost of merging
the lists.

The table get work/3 predicate retrieves a batch of answers immedi-
ately to the left of a batch of dependencies, swaps their positions and
yields the elements of their Cartesian products for processing. Depen-
dencies and answers that are created by the combination are also sent
to the appropriate tables. A single step of this process is illustrated
in Figure 7.9. The solid arrow denotes the transformation of the local
worklist. The wavy line denotes the emission of new answers and depen-
dencies that are generated by the completion step. The answers in the
gray ellipse have been added to the local worklist, and will eventually
move to the right of all dependencies.

Implementation Support The key implementation support for these ta-
bles are mutable terms and non-backtrackable mutations, discussed in Sec-
tion 2.4. We also use a global variable for the table repository. The non-
backtrackable nature is essential to retain the collected answers and depen-
dencies across disjunctions.

170 CHAPTER 7. TABLING WITH DELIMITED CONTROL

a1 d1 d1 a1 a1
.
am dn do ap aq

d1 a1 d1 a1 a1
.
dn am do ap aq

Answers & Dependencies

Figure 7.9: Combining answers and dependencies in a local worklist.

7.5.2 Completion of a Double Recursive Call

Example 12. Consider a variant of our running example where the recursive
clause is replaced by:

r(X,Y) :- r(X,Z), r(Z,Y).

Figure 7.10 illustrates the computation of ?- r(a,Y). Each table is a rect-
angle. The consecutive states of its worklist are shown from top to bottom.
A dotted arrow shows the target of a dependency. The solid and wavy lines
are as in Figure 7.9. In the explanation, the labels of the completion steps in
the figure are written between parentheses. The call ?- r(a,Y). gives rise to
the dependency D1 = dependency(r(a,Z),r(Z,Y),r(a,Y)) and the answer
r(a,b) (left rectangle).

Iteration 1 In the first iteration of completion (1), the answer is fed into
the dependency (wavy arrow α), hence D1 and r(a,b) are swapped. This ex-
poses the call r(b,Y) (middle rectangle). For this new call we immediately
obtain the dependency D2 = dependency(r(b,Z1),r(Z1,Y),r(b,Y)) and the
answer r(b,c). We also record D3 = dependency(r(b,Y),true,r(a,Y)) be-
tween r(b,Y) and r(a,Y). The true in D3 represents the empty continuation:
finding an answer for r(b,Y) gives an answer for r(a,Y) for free!

Iteration 2 During the second iteration, we feed the answer r(b,c) into the
two dependencies D2 (2.a, wavy arrow β) and D3 (2.b, wavy arrow γ).

β In the D2 case, we expose a new call r(c,Y) (right rectangle) yielding no
direct answer. We obtain D4 = dependency(r(c,Z2),r(Z2,Y),r(c,Y))

and a derived dependency D5 = dependency(r(c,Y),true,r(b,Y)) in-
stead.

γ In the D3 case, we obtain the new answer r(a,c) for the top-level call.

7.5.
C
O
M
P
L
E
T
IO

N
171

r(a,Y)

r(a,b) D1

D1 r(a,b)

r(a,c) D1 r(a,b)

D1 r(a,c) r(a,b)

r(b,Y)

r(b,c) D2 D3

D2 r(b,c) D3

D2 D3 r(b,c)

r(c,Y)

D4 D5

D4 D5 D6

11

3

2.a

2.b

α
β

γ

δ

Figure 7.10: Illustration of the computation of r(a,Y).

172 CHAPTER 7. TABLING WITH DELIMITED CONTROL

Iteration 3 During the third iteration (3), we feed the new answer into
dependency D1 (wavy arrow δ). This yields the call r(c,Y) and the dependency
D6 = dependency(r(c,Y),true,r(a,Y)).

The fixpoint Finally, there is no more work to be done: at the bottom of
each rectangle, all Di are left of all answers. Hence, the fixpoint comprises the
answer table {r(a,b), r(a,c)} for the call pattern r(a,Y), the answer table
{r(b,c)} for the call pattern r(b,Y) and the empty answer table for r(c,Y).

7.6 Completion Details

This section gives more implementation details of the completion phase dis-
cussed in the previous section.

To get answers and dependencies that must be combined from the local
worklist, we first extract the worklist from the table, and in preparation, set
a flag indicating that we are busy working. The actual work is delegated to
table get work /3.

table_get_work(Table,_Answer,_Dependency) :-

get_worklist(Table,Worklist),

set_flag_executing_all_work(Worklist),

table_get_work_(Worklist,Answer,Dependency).

In table get work /3, we once more delegate the work nondeterministically,
but once an answer/dependency pair is extracted from the local worklist, we
copy the dependency to ensure that the original version is not modified. When
the first rule eventually fails, the work in this local worklist is done for now,
so we unset the flag.

table_get_work_(Worklist,Answer,Dependency) :-

worklist_do_all_work(Worklist,Answer,Dependency0),

copy_term(Dependency0,Dependency).

table_get_work_(Worklist,_Answer,_Dependency) :-

unset_flag_executing_all_work(Worklist), fail.

The predicate extracting answer/dependency pairs executes a single step, and
when this eventually fails, recursively calls itself unless all the work is done.

worklist_do_all_work(Worklist,Answer,Dependency) :-

(worklist_work_done(Worklist) ->

fail

;

7.6. COMPLETION DETAILS 173

worklist_do_step(Worklist,Answer,Dependency)

;

worklist_do_all_work(Worklist,Answer,Dependency)

).

The job of the local worklist is done for now if the pointer to the cluster
of answers that should be combined with dependencies, points to a dummy
value. Alternatively, the work is done if there is no dependency cluster, in
which case the next entry in the underlying double linked list representation
of the worklist points to the dummy value.

worklist_work_done(Worklist) :-

wkl_get_rightmost_inner_answer_cluster_pointer(Worklist,

RiacPointer),

(wkl_is_dummy_pointer(Worklist,RiacPointer) -> true

;

dll_get_pointer_to_next(RiacPointer,NextPointer),

wkl_is_dummy_pointer(Worklist,NextPointer)

).

Taking the Cartesian product of an answer and a dependency cluster happens
by first swapping the clusters in local worklist. Next, the pointers to these
clusters are dereferenced by the underlying double linked list representation.
Finally, one answer and one dependency are nondeterministically yielded for
combination.

worklist_do_step(Worklist,Answer,Dependency) :-

wkl_get_rightmost_inner_answer_cluster_pointer(Worklist,ACP),

wkl_swap_answer_continuation(Worklist,ACP,SCP),

dll_get_data(ACP, wkl_answer_cluster(AList)),

dll_get_data(SCP, wkl_suspension_cluster(SList)),

member(Answer,AList), member(Dependency,SList).

Swapping clusters is propagated to the underlying double linked list represen-
tation. Afterwards, the pointer to the answer cluster that must be swapped
next, must be updated to the new location of the cluster.

wkl_swap_answer_continuation(Worklist,ACP,SCP) :-

dll_get_pointer_to_next(ACP,SCP),

dll_swap_adjacent_elements_(ACP,SCP),

wkl_update_righmost_inner_answer_cluster_pointer(Worklist,ACP).

Updating the pointer to the answer cluster that must be swapped next, is a no-
op if the cluster currently pointed to still has to be combined with dependency

174 CHAPTER 7. TABLING WITH DELIMITED CONTROL

clusters, and hence can still propagate to the right. Otherwise, a new cluster
is found by walking back in the underlying double linked list representation.

wkl_update_righmost_inner_answer_cluster_pointer(Worklist,ACP) :-

(wkl_answer_cluster_moved_completely(Worklist,ACP) ->

wkl_find_new_rightmost_inner_answer_cluster_pointer(Worklist,

ACP,ACP2),

wkl_set_rightmost_inner_answer_cluster_pointer(Worklist,ACP2)

;

true

).

7.7 Evaluation

7.7.1 Implementation Effort

Table 7.1 summarizes the implementation effort in lines of Prolog (LoC). The
control flow shown in this chapter comprises 60 LoC, or less than 11% of the
overall effort. The majority goes to the two kinds of data structures, the tries
(40%) and the worklists (45%). Adding 25 lines of glue code, this amounts to
an implementation for 577 Prolog LoC.

7.7.2 Performance

While raw efficiency is not the main objective of our lightweight implemen-
tation, it is nevertheless important to achieve a reasonable performance com-
pared to the existing state-of-the-art tabling systems. In order to evaluate
this, we compare our implementation in hProlog 3.2.38 against XSB 3.4.0
[152], B-Prolog8.1 [175], Yap 6.3.4 [130] and Ciao 1.15-2731-g3749edd [62] on
a number of benchmarks.2 Table 7.2 summarizes the results (for hProlog in
ms, the others as a proportion) obtained on a Dell PowerEdge R410 server (2.4

2The description and code of the benchmarks can be found at http://users.ugent.be/

~bdsouter/tabling/.

Category LoC Category LoC
Control flow 60 Completion Worklists 259
Call and Answer Tries 233 Miscellaneous 25
Total 577

Table 7.1: Code size in lines of code.

http://users.ugent.be/~bdsouter/tabling/
http://users.ugent.be/~bdsouter/tabling/

7.7.
E
V
A
L
U
A
T
IO

N
175

Benchmark Size hProlog hProlog
XSB

hProlog
B−Prolog

hProlog
Yap

hProlog
Ciao

fiba 500 24 (13) O/F (—) ∞ ∞ —
750 33 (13) O/F (—) 17 41 —

1,000 46 (13) O/F (—) 46 19 —
10,000 982 (66) O/F (—) 3 44 —

recognizea 20,000 205 (73) 26 (1) 0.003 11 4
50,000 503 (221) 30 (2) 0.001 14 4

n-reversea 500 767 (138) 38 (5) 11 15 45
1,000 2,800 (537) 31 (6) 6 8 34

shuttleb 2,000 44 (12) ∞ (2) 0.1 ∞ 9
5,000 138 (14) 23 (2) 0.08 ∞ 12

20,000 582 (29) 24 (4) 0.02 ∞ 10
50,000 1,586 (72) 29 (6) 0.01 ∞ 12

ping pong 10,000 271 (16) 45 (2) 0.07 ∞ 14
20,000 490 (28) 35 (4) 0.03 ∞ 8

path double first loop 50 653 (14) 19 (2) 13 ∞ 7
100 4,638 (29) 17 (4) 10 ∞ 6

path double first 50 162 (12) 27 (2) 15 ∞ 14
100 989 (16) 20 (3) 12 ∞ 10
200 6,785 (53) 18 (7) 16 ∞ 10
500 110,463 (267) 25 (14) 19 ∞ 14

path right last: pyramid 500 500 1,914 (104) 35 (7) 29 ∞ 27
path right last: binary tree 18 18 108,662 (4,120) 78 (5) 50 3,461 42
test large joins 2c 12 3,001 (237) 10 (5) 4 ∞ 12
joins mondial 6,444 (399) 8 (2) 7 224 6

Table 7.2: Results of the performance benchmarks: for hProlog in ms; the others as a proportion. In parentheses:
maximum RSS, for hProlog in MB; XSB as a proportion.

Source: a [45] b [38] c Yap benchmark suite

176 CHAPTER 7. TABLING WITH DELIMITED CONTROL

GHz, 32 GB RAM) running Debian 7.6. In parentheses, we have indicated the
maximum resident set size (RSS) in megabytes and the proportion of hProlog
to XSB. The figures in the table are averages over five runs.

Discussion The XSB system is the reference system for tabling; it has in-
vested most time and resources in the development of its tabling infrastructure.
We see that it is 8 to 38 times faster than our implementation, but 45 to 78
times faster for two outliers (path right last: binary tree 18 and 10k ping-
pong). It has a maximum RSS that is up to 7 times as large, and 14 times for
path double first 500. In general, standard trie-based structures overload the
memory because representation sharing is poor. This has been addressed by
Raimundo and Rocha [113].

Since XSB does not support big integers, it was not meaningful to run the
Fibonacci benchmark, recorded as O/F (for overflow). This is a case in point
for wider tabling support in other systems: often we need both tabling and
other non-standard features.

B-Prolog is only half as fast as XSB on many benchmarks, but is archi-
tecturally different: B-Prolog implements linear tabling and uses hash tables
instead of tries. Moreover, in several cases B-Prolog is notably slower than XSB
(i.e., n-reverse) and even much slower than our own implementation (recog-
nize, shuttle, ping pong). Yet, unlike XSB, B-Prolog does support big integers
and is substantially faster than our approach for the fib benchmark. All in
all the results are mixed and point out several weaknesses in the B-Prolog
implementation compared to our all Prolog implementation.

The Yap tabling implementation, which is based on that of XSB, is clearly
the fastest: the underlying engine is much faster [125]. It outperforms our ap-
proach on all benchmarks, and the other systems on most. Many benchmarks
take less than 1 ms, rounded down to 0 ms, hence the factor ∞ in the table.

The performance of Ciao lies between that of XSB and B-Prolog. Perfor-
mance of our implementation is within a factor 4 to 14 of Ciao, with reverse
and path right last as outliers. Running the Fibonacci benchmarks is currently
not possible, as tabling and bignums currently do not operate together3.

Summary We consider the performance results of our implementation very
reasonable, especially if we take into account the stark contrast between our
lightweight pure Prolog implementation and the complex integration in other
systems. As part of future work, we think that advances in three areas
may positively affect performance. Firstly, continuations are copied with

3Personal email communication with Manuel Carro.

7.7. EVALUATION 177

copy term/2. A special-purpose copy continuation/2 could do better by
exploiting the known structure of these terms. Other applications using delim-
ited control could benefit from this optimization as well. Secondly, we don’t
statically identify strongly connected components in the scheduling compo-
nent. Doing so would allow the specialisation of completion. Finally, in con-
trast with state-of-the art implementations, our tries do not use substitution
factoring.

7.7.3 Comparison with CHAT

We now compare the amount of work that must be performed for creating a
suspension using delimited control to the work that must be performed in the
Copy-Hybrid Approach to Tabling (CHAT) [39]. In this subsection, we assume
familiarity with the WAM [171, 4], as summarised in Section 2.1 on page 11,
as well as some familiarity with SLG-terminology, as explained in Section 6.3
on page 145.

Three different situations are of interest because they have a nontrivial
cost: the creation of a suspension, its resumption, and the completion of a
scheduling component. We discuss these situations in this order.

Creation of a suspension Without loss of generality, we assume a four
stack WAM, i.e. the choicepoints and environments have their own separate
stack4. On encountering a consumer of an arbitrary non-completed generator,
both CHAT and our approach have to take action on some of the four stacks
in the WAM:

Local stack To create a suspension with delimited control, the local stack
must be traversed to capture the continuation of the call that triggered
the suspension. The continuation is stored on the heap. The distance
of the local stack that must be traversed depends on the continuation.
Theoretically, this can be arbitrarily large, but is usually limited. Next,
the stack is unwound over the same distance. How the live environ-
ment variables are determined depends on the specific implementation
(see Section 4.5 on page 79): either at compile time or by code scanning.

Choicepoint stack In CHAT, a copy of the consumer choicepoint needs to
be made in a CHAT-specific memory area. Additionally, all choicepoints
between the consumer and its generator (inclusive) need to have their
top of heap and top of local stack fields updated. The amount of work

4The other two stacks are the heap, also known as global stack, and the local stack.

178 CHAPTER 7. TABLING WITH DELIMITED CONTROL

depends on the distance between the consumer and its generator, but
can be done in an incremental fashion. No such changes are needed in
the delimited control implementation.

Trail stack In CHAT, a selective copy of the trail between consumer and
generator needs to be made, together with the values pointed to by these
trail entries. The amount of work once more depends on the distance
between the consumer and its generator. There will be one trail entry
per dynamical unification of a logical variable. No such copies need to
be made in the delimited control implementation.

To summarize: the efficiency of CHAT depends on the choice point and
trail stack distances between the consumer and its generator. For our tabling
approach based on delimited control, the efficiency depends on the distance of
the local stack that must be traversed, which depends on the continuation. It
is hard to predict which distance will be the smallest as this greatly depends
on the specific program.

Resumption of a suspension In CHAT, reinstalling a single consumer
requires work involving each of the four WAM stacks:

Heap The top of heap must be adapted — anO(1)-operation. No such change
is needed in the delimited control implementation.

Local stack The top of the local stack must be adapted. This is again an
O(1)-operation. In our approach based on delimited control, a new en-
vironment must be created and the slots must be filled in with the live
variables saved in the continuation. This operation is linear in the size
of the continuation.

Choicepoint stack The consumer choicepoint from the CHAT-specific mem-
ory area must be copied back to the choicepoint stack. No such change
is needed in the delimited control implementation.

Trail stack The trail is reinstalled by copying it from the CHAT-specific
memory area to the trail stack and reinstalling the saved bindings. No
change to the trail stack is needed in the delimited control implemen-
tation. However this operation serves the same purpose as the creation
of a new environment on the local stack and filling it in with the live
variables from the continuation. It also has the same complexity.

In summary: the amount of work to resume a suspension is similar for the
CHAT and delimited control-based approaches.

7.8. RELATED WORK 179

Completion of a scheduling component In CHAT, on completion of a
scheduling component, the CHAT-specific memory areas of all consumers of
that component are freed. In our approach based on delimited control, all ref-
erences to the continuations of the component are invalidated, the garbage col-
lector can reclaim the space used for these continuations. Both tasks are sim-
ilar. Additionally, in CHAT, the generator choice point of a leader is popped
from the choicepoint stack, which is a constant time operation

In summary: the amount of work on completion of a scheduling component
is similar for the CHAT and delimited control-based approaches.

7.8 Related Work

We have provided an thorough overview of existing tabling systems, their
strengths and weaknesses in the previous chapter. So in this section, we limit
ourselves to a discussing of delimited control in Prolog.

While delimited control is well-known in the functional programming world,
it has not received much attention in the context of Prolog. We are the first
ones to provide an unobtrusive implementation in the WAM, as discussed
in Chapter 4. In the continuation-passing implementation [158] of BinPro-
log [157] adding delimited control is even easier. We also illustrate the power
of delimited control by porting various effect handlers [111] to Prolog. As far
as we know, this chapter shows the first Prolog-specific application.

7.9 Conclusion

In order to enable a more widespread adoption of tabling, we have presented
a lightweight implementation of tabling on top of delimited control. In con-
trast to existing approaches, our approach is implemented entirely in Prolog
and requires no deep modifications to the WAM or complex program trans-
formations. While there is obviously a trade-off between the simplicity of the
implementation and runtime performance, we believe that the current perfor-
mance of our approach is reasonable. Of course, there is ample opportunity
for improvement. The library approach also makes it feasible to study tabling
outside of its original context, for example in functional programming.

180 CHAPTER 7. TABLING WITH DELIMITED CONTROL

References

This chapter is based on our article on Tabling with Delimited Control: Benoit
Desouter, Marko van Dooren, and Tom Schrijvers. Tabling as a Library
with Delimited Control. Theory and Practice of Logic Programming (TPLP),
2015. Proceedings of the 31st International Conference on Logic Programming
(ICLP). Benoit Desouter was responsible for the implementation of the tabling
library, as well as experimentation with different variations. Benoit conducted
the performance evaluation and a study of the related work (presented in the
previous chapter). He has written and structured most of the article.

Chapter 8
A Mathematical Formalisation of
Answer Subsumption

8.1 Introduction

The original definition of tabling only uses answer variance: an answer A is
added to the table for a particular goal G if and only if A is not a variant of any
other answer already in the table [151]. This takes all arguments into account
and is formally defined by the numbervars bijection [115] that standardises the
representation of terms by representing each variable as a unique constant. An
engine then only reuses answers for a past goal that is a variant of the current
goal.

Although tabling greatly raises the expressivity of the language, another
level of declarativeness is achieved by adding answer subsumption. Using plain
tabling, the user must explicitly write the control logic for selecting optimal
answers. Answer subsumption eliminates this. We say that a goal G′ subsumes
a goal G if G′ contains in its table all answers for G. For example, p(a,)

subsumes p(a,b). However, not all answers for G′ may be applicable. As
already mentioned in Chapter 6, subsumption-based tabling allows for more
reuse than variant-based tabling.

To illustrate the merits of answer subsumption consider the following tabled
predicate p/3 that computes the transitive closure of the e/3-relation with the
distance between the nodes:

181

182 CHAPTER 8. ANSWER SUBSUMPTION

:- table p/3.

p(X,Y,D) :- e(X,Y,D).

p(X,Z,D) :-

p(X,Y,D1),

p(Y,Z,D2),

D is D1 + D2.

e(a,b,1).

e(b,c,1).

e(a,c,1).

The query ?- p(X,Y,D). computes a table with four answers:

p(a,b,1).

p(b,c,1).

p(a,c,1).

p(a,c,2).

For this tiny example, the resulting table is small. But for many real-world
problems the size of the table quickly becomes prohibitively large. Supposing
we are only interested in the shortest paths between two nodes, the table con-
tains unnecessary information on the longer paths. Moreover, the programmer
must write code to select the shortest path:

shortest(X,Y,MD) :-

findall(D,p(X,Y,D),Ds),

list_min(Ds,MD).

Answer subsumption avoids storing unnecessary information and raises the
declarative level: its directives allow the user to specify the characteristics of
optimal answers and retain only them. Three varieties of answer subsump-
tion exist nowadays. Their applications are in the domain of dynamic pro-
gramming, the implementation of paraconsistent, quantitative and preference
logics, as well as abstract analysis domains [151, 56].

Partial Order Answer Subsumption In the above example, any answer
was added to the table regardless of the existence of another answer in the
table describing a shorter path between the same nodes. Partial order answer
subsumption [151] does not do so: an answer A is added to the table only if
A is greater than the other answers in the table with respect to a user-defined
partial order function. In addition, any answers worse (that is: smaller than
A with respect to the partial order) are deleted from the table.

Using the notation from [151], also used in XSB, the tabling declaration
for our working example can be modified as follows:

:- table p(_,_,po(</2)).

8.1. INTRODUCTION 183

The partial order </2 is then defined so that only answers p(A,B,C1) and
p(A,B,C2) are ordered with respect to each other, based on the value of their
third argument. Paths between different nodes cannot be compared.

The declaration results in a table with only three answers:

p(a,b,1).

p(b,c,1).

p(a,c,1).

Partial order answer subsumption thus models an intuitive notion of prefer-
ence.

Lattice Answer Subsumption Lattice answer subsumption [151] does not
simply add an answer A satisfying some criterion: A is joined with another
answer A′ and this join replaces A′ in the table. The user has the freedom to
choose the join function.

Again using the notation in [151] for our working example, we have:

:- table p(_,_,lattice(min/3)).

min(X,Y,Z) :-

Z is min(X,Y).

From the notation, the operational meaning is not immediately clear: answers
p(A,B,C1) and p(A,B,C2) are joined and only the join is stored in the table.
For our working example, this results in the same table as with partial order
subsumption.

From a mathematical point of view, lattice answer subsumption defines an
equivalence relation between sets of answers and stores only the representative
of each equivalence class. The join operation can then be seen as union modulo
the equivalence relation.

Mode-directed Tabling Mode-directed tabling [56, 57, 177, 129] is another
form of answer subsumption where the user specifies which arguments are
distinguishing (+), which are irrelevant (- or @) and which must be aggregated
(usually a mnemonic). The user specifies an aggregation operation which is
used to combine the values of that argument across answers with the same
distinguishing arguments.

Using mode-direction, the table declaration for our working example looks
like:

:- table p(+,+,0).

184 CHAPTER 8. ANSWER SUBSUMPTION

A plus sign denotes an indexed (= distinguishing) argument. A minus sign de-
notes an argument where the first instance seen is stored, whereas with the @-
sign all instances are stored. In the original paper by Guo and Gupta [56], only
two aggregate operations were allowed: minimum (indicated by 0 or “min”)
and maximum (indicated by 9 or “max”).

The problem with answer subsumption Using answer subsumption the
query ?- p(a,c,D). yields only the shortest distance. It does so by greedily
throwing away non-optimal intermediate results and in this way only considers
finitely many paths, even if the graph is cyclic. In summary, answer subsump-
tion makes tabling (sometimes infinitely) more efficient for our aggregation
use-case.

Unfortunately, none of the existing implementations that we are aware of
is generally sound. Consider the following pure logic program.

p(0). p(1).

p(2) :- p(X), X = 1.

p(3) :- p(X), X = 0.

The query ?- p(X). has a finite set of solutions, {p(0),p(1),p(2),p(3)}, the
largest of which is p(3). However XSB, Yap and B-Prolog all yield different
(invalid) solutions when answer subsumption is used to obtain the maximal
value. Both XSB and B-Prolog yield X = 2, with a maximum lattice and max

table mode respectively. Yap (also with max table mode) yields X = 0; X =

1; X = 2, every solution except the right one.
Clearly, these results are unsound. This example is not the only erroneous

one; we can easily construct more erroneous scenarios with other supported
forms of aggregation. Hence, we must conclude that answer subsumption is
in general not a semantics-preserving optimisation. Yet, as far as we know,
the existing literature does not offer any guidance on when the feature can be
relied upon. In fact, to our knowledge, its semantics have not been formally
discussed before. Every variety is defined in an informal way, by means of
examples, sometimes supplemented by the changes needed to an SLG-based
tabling engine. This lack of formal definition makes it hard to implement
answer subsumption in tabling systems that do not implement a variety of
SLG-resolution. Moreover, if a system should support multiple varieties, their
relationship and possible interactions must be understood thoroughly.

As a first step towards a remedy for this situation, we propose a framework
for answer subsumption. This framework provides a common view on all
existing varieties. Differences between the varieties can be expressed formally
in this framework.

8.2. BACKGROUND 185

We start with an overview of the necessary mathematical background (Sec-
tion 8.2). The framework itself is discussed subsequently in Section 8.3. We
show how the existing approaches are an instance of the framework in Sec-
tion 8.4 and discuss related work in Section 8.5. Section 8.6 concludes. We
assume familiarity with tabling (see for example [20]).

8.2 Background: Lattices

In this section we introduce the mathematical concepts needed for formally
defining answer subsumption. We start with the concept of a partial order.
Next we introduce the poset concept. In Subsection 8.2.3 we define the least
upper and greatest lower bound. We finish with the introduction of the lattice
concept. This section is based on the Lattice Tutorial by N. Jovanovic [75]
and the work of Lloyd [91].

8.2.1 Partial Order

A partial order relation is a binary relation R over the domain D that has the
following additional properties:

∀x ∈ D.R(x, x) (Reflexivity)

∀(x, y) ∈ D ×D.R(x, y) ∧R(y, x) =⇒ x = y (Antisymmetry)

∀(x, y, z) ∈ D3. R(x, y) ∧R(y, z) =⇒ R(x, z) (Transitivity)

For example, the relation 6 over R satisfies all these properties. Therefore
6 is a partial order relation. We denote an arbitrary partial order relation
with v, and we denote x v y for v (x, y).

8.2.2 Partially Ordered Set

A partially ordered set (short: poset) is a set D over which a partial order v
is defined. It is denoted as (D,v), and D is called the ground set. If there is
an order for all pairs of elements in the set, that set is a totally ordered set:

∀(x, y) ∈ D ×D.x v y ∨ y v x (Totality)

186 CHAPTER 8. ANSWER SUBSUMPTION

Example 13. The set {1, 2, 3} is a totally ordered set under 6. Its powerset,
P ({1, 2, 3}) is partially ordered set under subset inclusion ⊆. To see that this
set is not totally ordered, consider the pair ({1}, {2}). Neither {1} ⊆ {2} nor
{2} ⊆ {1} holds.

8.2.3 Least Bounds

Two elements x and y in a poset (D,v) have an upper bound u iff x v u ∧ y v
u. An upper bound is not necessarily unique and is not necessarily different
from the elements it is computed for.

We use the following notation for the set of upper bounds of a subset S of
D:

ubsD(S) = {u ∈ D | ∀s ∈ S. s v u}
The least upper bound (supremum or join) of a subset S of D is an upper

bound
⊔
D(S) that satisfies:

∀u ∈ ubsD(S).
⊔
D

(S) v u

This means that the least upper bound precedes any other upper bound. Tra-
ditionally, the following notation is used for the least upper bound when S has
only two elements:

⊔
D({x, y}) = x t y. Equivalently, the following property

holds for the least upper bound:

∀s ∈ S. x t y v s ⇐⇒ x v s ∧ y v s

By analogy, one defines the notions of lower bound and greatest lower
bound. The greatest lower bound is also known as the infimum or meet and
denoted with

d
D(S) for S ⊆ D and x u y for {x, y} ⊆ D.

In what follows, we leave out the subscripts in the notation for supremum
and infimum whenever they are clear from the context.

8.2.4 Lattice

A lattice 〈L,⊔S ,dS〉 is a poset (L,v) in which all nonempty finite subsets
have both a supremum and an infimum.

Example 14. The above definition of lattice may seem trivial. Therefore
it is instructive to give an example of a poset that is not a lattice. Consider
the following set of three elements (that are sets themselves): {{a} , {b} , {a, b}}
with the inclusion relation ⊆. There is no greatest lower bound for the elements
{a} and {b}, hence this poset is not a lattice.

8.3. FORMALISATION 187

A complete lattice is a poset in which all subsets have both a least upper
bound and a greatest lower bound. Stated mathematically [168]: a complete
lattice is a partially ordered set such that for every S ⊆ L:(
∃
⊔
S ∈ L.∀x ∈ L.

(⊔
S v x⇔ ∀s ∈ S. s v x

))
∧(

∃
l
S ∈ L.∀x ∈ L.

(
x v

l
S ⇔ ∀s ∈ S. x v s

))
(8.1)

In the literature, it is described that existence of all possible infinite joins
entails the existence of all possible infinite meets, and vice versa. In addition,
we do not rely on the presence of a greatest lower bound in what follows.
Therefore we work with upper semi-lattices, for which is sufficient to require
that for every S ⊆ L:

∃
⊔
S ∈ L.∀x ∈ L.

(⊔
S v x⇔ ∀s ∈ S. s v x

)
(8.2)

Properties of complete lattices Consider a complete lattice 〈L,⊔,d〉.
Then the following properties hold:

• The least upper bound
⊔
S is unique ∀S ⊆ L.

• There is always a least element (bottom element) ⊥L, which corresponds
to the least upper bound of the empty set ∅: ⊥L =

⊔
∅.

All lattices with a finite number of elements are always complete lattices.
Every non-empty finite lattice is bounded from below by taking the meet of
all elements:

⊥L :=
l
{l | l ∈ L}

To every (other) lattice, one can adjoin an artificial bottom element.

8.3 Formalisation

In this section we describe our formalisation of answer subsumption. It is
based on the definitions given above.

Suppose that the answers for a tabled predicate belong to a set A. We
say that the tabled predicate has type A. In traditional tabling, the table t
stores facts belonging to this predicate, and thus has type P (A). The fixpoint

188 CHAPTER 8. ANSWER SUBSUMPTION

computation deals with answers of type A and suspended computations of
type C :=A→ Maybe (A).

There are two motivations for answer subsumption: (a) reduction in table
size, and (b) easier modelling of dynamic programming problems. Therefore,
in general, the table simply has type L, denoted as t : L and contains a single
abstract answer. We assume the existence of a map from call patterns to the
correct table. The type L is not just any type: we require the existence of an
upper semi-lattice 〈L,t〉 where t denotes the join operation t : L→ L→ L.
The definition of an upper semi-lattice requires that the join operation t is a
total function. We use the notation v for the lattice’s partial order function.

Moreover, to ensure termination, the upper semi lattice 〈L,t〉 must be
bounded: it must have a least element, traditionally called bottom and denoted
by ⊥L. As explained above, this is not a problem in practice.

Under the above requirements we define the following join operation on
sets of abstract answers:⊔

: P (L)→ L ⊔
{l1, l2, . . . , ln} :=⊥L t l1 t l2 t . . . t ln (8.3)

Equation 8.3 relies on the associativity of the join operation. Indeed:

(x t y) t z v w ⇐⇒ (x t y), z v w ⇐⇒ x, y, z v w ⇐⇒
x, (y t z) v w ⇐⇒ x t (y t z) v w (8.4)

Injection Function We derive values of the type L from a fact of type A
using an injection function α′ : A→ L. We require that this function is total:

Dom(α′) = A (8.5)

We then define the following injection operator on sets of nonabstract an-
swers:

α : P (A)→ L

α (as) :=
⊔
{α′ (a) | a ∈ as} (8.6)

We require that this function is total. The image of ∅A under α follows from
Equation 8.3:

α (∅A) = ⊥L (8.7)

Note that the type of the set injection operator is not P (A)→ P (L). Also
note that in general the set injection operator α is not injective: an element
of L will typically be mapped to by many elements of P (A).

8.3. FORMALISATION 189

P(A)

P(L)

L

Pα′

⊔
α

Figure 8.1: Commutative diagram relating α and
⊔

.

P(A)× P(A) P(A)

L× L L

α×α

∪

α

t

Figure 8.2: Commutative diagram relating α, ∪ and t.

Consequence From the definition of
⊔

follows the following continuity
property of α:

α ({a1 . . . an}∪ {an+1 . . . am}) = α ({a1 . . . an}) t α ({an+1 . . . am}) (8.8)

It means that α maintains the least-upper-bound.
As can be seen from Figure 8.1, α =

⊔ ◦Pα′ where Pα′ applies α′ to each
element in the set it is given. Moreover, α ◦∪ = t ◦ (α×α) (Figure 8.2).

Morphism From Property 8.8 and the presence of a bottom element,
it follows that α is an upper semi-lattice morphism from 〈P (A) ,∪,∅A〉 to
〈L,t,⊥L〉.

Induced Relations The partial order relation on L induces a binary
relation on A, defined as:

- : A→ A→ Bool

a1- a2 :=α′ (a1)vα′ (a2) (8.9)

It is important to note that this binary relation is not a partial order as
the antisymmetry property is not fulfilled. Figure 8.3 makes this clear: 1- 2
and 2- 1, but 1 6= 2.

190 CHAPTER 8. ANSWER SUBSUMPTION

1

2

3

a

⊥L

Figure 8.3: Example situation where is - not antisymmetric. The arrows define
α′.

The relation is reflexive, which follows from the reflexivity of v. The relation
is also transitive, which also follows from the transitivity of v. Thus - is a
preorder.

Similarly, the partial order relation on L induces a binary relation on P (A):

--- : P (A)→ P (A)→ Bool

{a11 , a12 , a1n}--- {a21 , a22 , a2m} :=

α ({a11 , a12 , a1n})vα ({a21 , a22 , a2m}) (8.10)

It is important to note that this binary relation is also not a partial order
as the antisymmetry property is again not fulfilled. Figure 8.4 makes this
clear since the following facts hold: ∅A--- {1}, {1}---∅A but clearly ∅A 6= {1}.
The relation is reflexive, which follows from the reflexivity of v. The relation
is also transitive, which also follows from the transitivity of v. Thus --- is a
preorder.

The binary relations --- and - are of course related:

{a1}--- {a2} ≡ a1- a2 (8.11)

In theory many elements may map to ⊥L as α is not injective. We are
convinced that for many practical cases the following property holds:

∀as ∈ P (A) . α (as) = ⊥L =⇒ as = ∅A (8.12)

The Table We now discuss creation and update for the table. A naive
way to calculate the table would be to calculate the set t : P (A) of nonab-
stract answers and perform the abstraction step α (t) at the end. Because of

8.3. FORMALISATION 191

∅A

. . .

{1}

⊥L

Figure 8.4: Example situation where is --- not antisymmetric. The arrows define
α.

property 8.8 we can interleave abstraction with the generation of nonabstract
answers. This gives the following procedure:

Creation Procedure The table must be initialised with ⊥L.

Update Procedure On derivation of a new answer a ∈ L, the table t
must be updated as follows: t contains an optimal abstracted answer lop, the
updated table t′ := t t α′ (a).

This procedure is much more interesting than the naive attempt for two
reasons. The first reason is the storage needed: we assume that it is much
more memory efficient to store an abstracted answer instead of a nonabstract
answer. The second reason is the number of calculations performed. In the
worst case, there may be an infinite number of nonabstract answers that do
not matter for the calculation of optimal abstracted answers.

Monotonicity Requirement The entire procedure only works correctly
on condition that the rules defining the tabled predicate are monotonic. This
is related to the results given in [91]. If we model a rule as a function1 r : A→
B then ∀ (a1, a2) ∈ A×A. a1 -A a2 =⇒ r (a1) -B r (a2).

Suppose that we order the facts of Prolog predicates p/1 and q/1 by the
natural ordering on their integer arguments. Then the following two rules
constitute a program that does not satisfy the monotonicity requirement:

q(N) :- p(M), N is -1 * M.

1We feel it is not necessary to state precisely how to model rules as functions.

192 CHAPTER 8. ANSWER SUBSUMPTION

p(10).

p(N) :- p(M), N is M - 1, N > 0.

The Need for an Inverse Injection Function The fixpoint phase re-
quires a more difficult treatment. Since the type of an arbitrary suspended
computation is obviously fixed to C (defined above as A → Maybe (A)), the
type of its input must be A. Suppose we had to store every answer of type A
just to serve as the input of the suspended computations, again we would not
have gained anything at all. Therefore we assume the existence of an inverse
injection function γ : L→ P (A) that constructs a set of possible nonabstract
answers from a given abstract answer. This abstracted answer is an optimal
abstracted answer stored in the table.

We require that γ is a total function:

Dom(γ) = L (8.13)

Note that this definition allows that γ (l1) = ∅A.

Relationship between α′ and γ We require the following relationship
between the injection function α′ and the inverse injection function γ by means
of α:

α ◦ γ = id : L→ L (8.14)

γ ◦α = paretoFrontier (8.15)

where (g ◦ f)(x) = g(f(x)) and where paretoFrontier intuitively returns all
minimal elements and is defined as:

paretoFrontier : P (A)→ P (A)

paretoFrontier (as) := {ai | ai ∈ as,¬∃aj ∈ as. aj - ai} (8.16)

The rationale behind Equation 8.14 is that if we start from an abstracted
answer and first derive a set of nonabstract answers using γ and then abstract
these answers again using α, we should arrive at the same abstracted answer
as we originally started from. After all, the deabstraction process should not
introduce any new information.

The rationale behind Equation 8.15 is that given a set of nonabstract an-
swers that is first abstracted using α and then deabstracted again using γ, we
should not arrive at the original set of nonabstract answers, but at the subset
of answers that are minimal.

8.4. FRAMEWORK INSTANCES 193

∅A

{1}

{1, 2}

{1, 2, 3}

{2}

. . .

⊥L

a

b

. . .

Figure 8.5: Visualising our requirements on α′ (full line) and γ (dotted line).

For the definition of Equation 8.16 note especially that:

¬∃aj ∈ as. aj - ai 6≡ ∀aj ∈ as. ai- aj (8.17)

The reason for this is that not all elements (ai, aj) ∈ A × A have to be par-
tially ordered with respect to each other. Figure 8.5 visualises the relationship
between α and γ.

8.4 Framework Instances

We now show how the existing approaches to answer subsumption fit within
our framework.

8.4.1 Regular Tabling

Tabling systems have been around since the early nineties. The best-known
tabling engines, like XSB [152], Ciao [62], Yap [130] and B-Prolog [175], are
based on SLG-resolution [20]. Several of these systems also support one or
more variants of answer subsumption.

194 CHAPTER 8. ANSWER SUBSUMPTION

Regular tabling Partial order
without abstraction with abstraction

L P (A) P (A) P (B)
α′ {a1} {a1} {δ ({a1})}
α id id {δ (x)}
γ id id ∪{ε(y) | y ∈ x}
t ∪ {x | x ∈ l1 ∪ l2,

(@y ∈ l1 ∪ l2 | x 6= y∧
yvx)}

similar

Table 8.1: Summary of the framework instances (part 1).

Regular tabling trivially fits in the framework by choosing L :=P (A). The
injection function is then α′ (a1) := {a1}. This means that α = id. The inverse
injection function is γ := id as it must take type L :=P (A) to type P (A). The
join operation is then ∪. These choices are summarised in Table 8.1.

Table Data Structure The table has type P (A): it stores a set of answers.
The standard datastructure is a trie, as it provides good insertion and lookup
performance for individual answers. As an alternative, a hashtable is used in
some implementations (e.g., B-Prolog).

8.4.2 Partial Order Answer Subsumption

Partial order answer subsumption is available in XSB [151]. It is a restricted
form of lattice answer subsumption.

Partial order answer subsumption fits the framework by choosing

L :=P (A)

The injection function is again α′ (a1) = {a1} and the inverse injection function
is again γ := id. The join operation is

l1 t l2 := {x | x ∈ l1 ∪ l2, (@y ∈ l1 ∪ l2 | x 6= y ∧ yvx)}

This follows the existing informal semantics that

1. a1 is only added to t iff a1 is minimal with respect to other answers in t
according to the partial order v;

8.4. FRAMEWORK INSTANCES 195

2. If a1 is added, any answers that a1 subsumes are deleted.

Also note that we need to deal with the case where elements cannot be partially
ordered with respect to each other. The choices for this instance are again
summarised in Table 8.1.

Table Data Structure The table again has type P (A). Here it is impor-
tant to efficiently retrieve as well as delete answers that can be ordered with
respect to a given answer a1. Assuming that answers that be ordered with
respect to each other (hereafter referred to as partially orderable answers) are
sharing a common prefix, tries are particularly well-suited as their discrimi-
natory property is based on common prefixes. In general, partially orderable
answers should be stored in the same bucket.

Abstraction With partial order subsumption, an optional abstraction op-
eration can be applied so that a set of answers can be represented by a single
answer. This is needed when the program does not have a finite model. To
support abstraction in XSB, the notation is extended to

:- table p(_,_,po(order/2,abstr/2)).

where order/2 is a partial order, as above, and abstr/2 is the abstraction
operation. This function is user-supplied. The abstraction is only taken when
necessary. Swift and Warren briefly discuss a Net-style formalism as an exam-
ple [151].

We designate the abstraction function with δ. It has the following type:
δ : P (A)→ B. The abstract domainB thus is the user’s choice and L :=P (B).
For the same reasons as outlined for the deinjection operator γ, we also need
an inverse abstraction function ε. This function has type ε : B → P (A).

The set injection operator is then α (x) := {δ (x)}. This means that the
injection operator is α′ (a1) := {δ ({a1})}. The join operation is similar to
above, but working on answers of type B instead of answers of type A. The
deinjection operator is then γ (x) :=∪{ε(y) | y ∈ x}.

8.4.3 Lattice Answer Subsumption

Lattice answer subsumption is available in XSB [151]. It can form the basis of
multi-valued logics, quantitative logics, and of abstract interpretation [151].

Lattice answer subsumption fits the framework by choosing L :=P (A).
The injection function is then α′ (a1) := {a1} and the inverse injection function

196 CHAPTER 8. ANSWER SUBSUMPTION

Lattice subsumption Mode direction

L P (A) P (A)
α′ {a1} {a1}
α id id
γ id id

t arbitrary

{x | x ∈ l1 ∪ l2,
x = aggregate (

setSameIndexedPositions (

l1 ∪ l2, x))}

Table 8.2: Summary of the framework instances (part 2).

is γ := id. The join operation can be chosen arbitrarily. This follows the
existing informal semantics that a1 may not be added to t, but that the join
is taken of a1 and another answer in t. We summarize the choices made in
Table 8.2. It is clear that lattice answer subsumption is the most general
approach; mode direction requires the most difficult formalisation despite the
ease with which it is applied in practice.

Table Data Structure Here the table should be able to store a set of
answers ai. Given the arbitrary choice of join operation, there is no clear
candidate for an efficient data structure. As a general rule, it should be possible
to efficiently retrieve those answers that should be joined with a given answer
a1.

8.4.4 Mode-directed Tabling

Mode-direction [56, 57] has been motivated by the underlying idea of dynamic
programming: to define an optimal solution in terms of optimal solutions to
subproblems. Finding optimal solutions using plain tabling is tricky. Secondly,
mode-direction has been motivated by the need for evidence for the solution
found.

Mode-direction was proposed by Guo and Gupta for use in the TALS
system [53] (based on ALS Prolog). It has also been implemented in B-
Prolog [177] and Yap [129]. Zhou et al. [177] extend the mode declaration for
B-Prolog with a cardinality limit, and a new nt-declaration. The cardinality

8.4. FRAMEWORK INSTANCES 197

limit specifies the number of optimal answers that must at most be kept in the
table. The nt mode allows arguments to be discarded for both variant check-
ing and answer tabling, which is useful for passing global data to a predicate.
It can be simulated using global variables, but the nt mode results in cleaner
code. Also, in B-Prolog, a mode-directed predicate is allowed to produce mul-
tiple answers, so that the relation from input to output does not need to be
a function. Unique to the Yap implementation is the mode “last”, which is
the opposite of the (-) operator (called “first” in Yap): the argument is not
indexed, and the last instance seen will be stored.

An operational semantics for mode-direction has been defined by Guo and
Gupta [57].

Mode-directed tabling fits the framework by choosing L :=P (A). The
injection function is again α′ (a1) := {a1} and the inverse injection function
is again γ := id. Guo and Gupta allow two aggregation operations ‘min’ and
‘max’ either of which we denote with ./. If B is the type of the arguments
that must be aggregated, then ./ has the type P (B)→ B. We now introduce
some auxiliary functions that we use for the definition of the join operation:

• The function indexedPositions returns a set containing the indices that
the user has declared as indexed.

• The function nonIndexedPositions returns a set containing the indices
that the user has declared as non-indexed.

• The function aggregationPosition returns the sole index that the user
has declared as aggregated.

• The function sameIndexedPositions determines for two answers a1 and
a2 whether their arguments at the indexed positions are equal. This
function thus has type A→ A→ Bool and is defined as

sameIndexedPositions (a1, a2) :=

∀i ∈ indexedPositions. argi(a1) = argi(a2) (8.18)

• The function setSameIndexedPositions determines the set of answers
that has the same arguments at the indexed positions as the given an-
swer. This function has type L→ A→ L and is defined as:

setSameIndexedPositions (l1, a1) :=

{x | sameIndexedPositions (x, l1) , x ∈ l1} (8.19)

198 CHAPTER 8. ANSWER SUBSUMPTION

l1 t l2 :=

{x | x ∈ l1 ∪ l2, x = aggregate (setSameIndexedPositions (l1 ∪ l2, x))} (8.20)

where aggregate is defined as:

aggregate : L→ A

aggregate (x) := arg agg (x) (8.21)

where agg is defined as:

agg : L→ B

agg (l1) := ./
({

arg aggregationPosition (x) | x ∈ l1
})

(8.22)

where arg aggregationPosition (x) selects the argument (of type B) to be aggre-
gated from an answer x, and where ./ converts a set of such arguments to
an aggregated argument. We summarize the choices made for mode-direction
in Table 8.2 on page 196.

In B-Prolog’s implementation of mode-directed tabling, it is possible to
specify that n optimal answers must be kept in the table. We can do the same
by generalising the aggregation function ./ to a relation.

Table Data Structure In this case, a trie is not unconditionally a good
data structure. For example, suppose the first argument is non-indexed, while
the rest of the arguments is indexed, then the answers with given indexed
arguments are scattered all over the trie. A trie will work fine if the indexed
arguments coincide with a prefix of the arguments.

8.5 Related Work

Lattice Answer Subsumption in Haskell Vandenbroucke et al. [168, 169]
have added lattice answer subsumption to their tabling implementation in
Haskell. It is based on the effect handlers approach.

Tabling and Probabilistic Inference Answer subsumption is used in the
PITA probabilistic inference package for XSB. PITA computes the probability
of queries by means of annotated disjunction (LPADs) and build explanations
for the derivation steps. The binary decision diagrams (BDDs) used to repre-
sent those explanations have a natural lattice structure [120].

8.6. CONCLUSION AND FUTURE WORK 199

Tabling and Constraint Handling Rules Schrijvers et al. [135] argue
that it is hard to implement constraint solvers using attributed variables, and
therefore propose to use constraint handling rules (CHR) for developing new
constraint solvers that can be integrated in a tabled logic programming system.
In [135] they present a practical implementation of the framework. They
use “call abstraction” or subsumption to reduce the number of tables, and
discuss a novel way to reduce the size of answer sets in comparison to answer
subsumption.

Tabling and Constraint Logic Programming Arias Herrero [5] gives a
short overview of tabling combined with constraint logic programming (TCLP).
The initial idea of TCLP is due to Kanellakis et al. [77] in the constraint
databases community. A constraint database generalises atomic values to con-
straint variables to allow a range of values in the fields of the relation. TCLP’s
theoretical basis was set up in the context of Datalog [120]. However, a top-
down approach normally uses less space and obtains its result faster than
a Datalog-style bottom-up approach, but it can get stuck in infinite loops.
Toman [161] proposed to use tabling to mitigate the downfalls of a top-down
approach. The paradigm has since been applied to model checking, timed
automata, and abstract interpretation.

Adding constraints to tabled logic programming allows to suspend calls
that satisfy the following two conditions:

• the current call is a variant of an earlier call;

• the constraint store of the current call is entailed by the constraint store
of the earlier call.

A constraint store Sa is entailed by Sb (Sa v Sb) if any solution in Sa is also
a solution in Sb.

TCLP is implemented in XSB [30], but the implementation does not use full
entailment checking. The approach of de Guzmán et al. [25] uses entailment
checking on both answers and calls. This allows termination in more cases
than other approaches. It also improves in the area of constraint projection.

8.6 Conclusion and Future Work

Apart from classical tabling using only call variance, a few variants of an-
swer subsumption have been described in literature. Compared to classical

200 CHAPTER 8. ANSWER SUBSUMPTION

tabling, answer subsumption again raises the language’s declarative expres-
siveness. Unfortunately, the semantics of these approaches has only been de-
scribed informally.

We have presented a framework that can express all existing answer sub-
sumption variants. This allows for a better understanding of each individual
variant, but also sheds light on their mutual relationships.

A deep understanding of a particular answer subsumption variant is nec-
essary to implement that technique robustly. Although the literature for most
variants has also described the changes needed to SLG-based tabling engine to
implement the variant, we felt that it is hard to fully grasp all implementation
details due to a lack of formal definition. Therefore, anyone who wishes to
add answer subsumption to a tabling system not based on SLG, is somewhat
left in the dark. We are convinced that our framework makes this challenging
task somewhat easier.

As future work we aim to develop a criterion that can check whether it is
safe to use a particular form of answer subsumption, as preliminary findings has
shown that is it easy to come up with situations where the existing mechanisms
derive incorrect answers.

Chapter 9
Conclusions

We have started this thesis with an overview of the broad field of logic pro-
gramming and then explained Prolog, the oldest and most widely known logic
programming language, in more detail. Over the years, many successful ex-
tensions of traditional logic programming have been developed, which has lead
to a wide variety of subdomains. However, implementation has required ex-
tensive efforts. This is because implementing a virtual machine for even plain
Prolog is tremendously complex. Due to this complexity, the extensions have
mainly been developed in isolation.

We believe that simpler implementation techniques could be a big leap
forward in the progress of using logic programming for modeling ever larger
and more difficult problems. These problems arise naturally in a wide range
of scientific disciplines as well as industry. In this thesis we have focused on
three different areas.

Modular Search Heuristics One of the most-heard criticisms about tradi-
tional Prolog is that its automated control, SLD-resolution, is too rigid, since
it does not adapt itself to the situation and always performs an exhaustive
search. Indeed an exhaustive depth-first search is not always feasible when
problem domains become larger and larger. Out of necessity, the standard
practice for changing the control is to modify the problem logic to include
control information. However, intermingling custom heuristics with the logic
describing the actual problem domain is clearly a violation of Kowalski’s ideal.
In practice, this is reflected in the development and maintenance effort.

201

202 CHAPTER 9. CONCLUSIONS

Tor is a simple hook into disjunction that allows the clear separation
between a custom heuristic and the logic of the problem domain. We have
consciously kept the effort of defining a new (composed) search heuristic low.
As a result, some search methods cannot be expressed, f.e. swapping the order
of the branches in a disjunction. Nevertheless, Tor is remarkably expressive.

We have formalized Tor by constructing a functional model of Prolog
and search heuristics. From this model we have derived an actual Prolog
implementation based on delimited control. Delimited control is a well-known
technique from the functional world. We have shown that this construct can
be easily given a very useful Prolog-compatible semantics. We have shown
how to implement delimited control in the WAM and verified the performance
of the resulting engine.

Flexible language extensions Apart from search heuristics, delimited con-
trol enables the flexible implementation of a wide range of well-known pro-
gramming techniques, such as DCGs, coroutines and implicit state passing.
Notably, the effect handler’s approach, which we see as a structured, yet lucid,
way of using delimited control, has been a tremendous help. Indeed, also in
the functional world itself, we perceive an increased interest in effect handlers,
where they are seen as a simpler alternative for monads. In the logic pro-
gramming world, the effect handlers approach provides the infrastructure to
capture common program patterns.

In principle, the capturing of program patterns can also be achieved using
meta-programming and program transformations, but these come with severe
drawbacks:

• the effort of defining a transformation is proportional to the number of
features in the language;

• programs transformations are fragile: when the language evolves, they
require amendments;

• when a new feature is introduced, the whole system may need transform-
ing.

Effect handlers using delimited control have none of these drawbacks: they
can be developed in isolation and afterwards be composed at will. In view of
what we have achieved with delimited control, its ease of both use and imple-
mentation, we believe that a more widespread use in the logic programming
world, would be a step in the direction towards simple, yet powerful systems.

203

Tabling Probably the most widely studied adaptation of SLD-resolution is
tabling. The promise of tabling is twofold: apart from the relaxed control-
related requirements that tabling engines offer and the resulting improved ter-
mination properties, its memoisation effect can greatly improve performance.
Both advantages come at the cost of memory. But also in this area, the imple-
mentation effort is a burden for its widespread adoption. For definite programs
the technique itself is now well-understood, but investing several man-years in
major architectural changes, is an effort that can only be made in an academic
context. As a result, only a handful from a wide range of Prolog systems sup-
port tabling.

We have provided an extensive overview of existing implementation ap-
proaches. We have then shown how the issue can be tackled by a small library
on top of a Prolog equipped with delimited control. In contrast with existing
suspension mechanisms, the implementation of delimited control in the WAM
can be done in a couple of hundred lines. The tabling implementation itself
then takes under 600 lines and comes as a library. The main part of the ef-
fort does not go to manipulating the control flow (only 11% of the overall line
count), but to providing efficient data structures for the fixpoint computation
and for storing answers.

So far, our high-level tabling library has not yet achieved the performance
level of a native implementation, but this was never our objective. We have
definitely shown that delimited control is a viable construction for achieving
the suspension functionality, which is by far the most difficult part of tabling
systems. Thus all the expressivity of Prolog systems that do not have the
resources to deeply reengineer their engine can now be combined with tabling.

Next to classical tabling where all distinct answers are stored in the table,
the literature describes several techniques that allow to specify a preference
across answers. Suboptimal answers then are discarded in favour of more op-
timal answers. This not only leads to higher space efficiency, but also raises
the declarative nature of the language once again, as users do not need to
concern themselves with the algorithmic behind the selection of optimal an-
swers. Moreover, for some problems, these techniques, designated as answer
subsumption, change the termination behaviour from looping infinitely to a
much better-behaved finite runtime.

However, existing answer subsumption variants have not been defined for-
mally, making it difficult to compare these techniques and implement them in
a different setting than the one they were originally developed in. We have
remedied these situation by defining a framework that provides a common
setting.

204 CHAPTER 9. CONCLUSIONS

9.1 Future Work

While several leaps further, we are by no means at the end of the path towards
flexible goal-oriented logic programming: several interesting questions remain
in areas close as well as more remote to this thesis. We begin with a discussion
of the topics in close correspondence to this thesis and gradually move further
away.

Modular Search Heuristics Concerning modular search heuristics, relax-
ing the requirement that search heuristics have to be compatible with Prolog’s
underlying depth first search mechanism would make way for a entirely new
range of techniques. Our success with delimited control to manipulate the
control flow provides an interesting perspective to this end. Secondly, Tor
is limited to binary disjunction. Multiway disjunctions have to be encoded
as a sequence of binary ones, which feels unnatural for some applications. It
would be interesting to investigate how the model and implementation can be
generalised; however it is clear that this can be achieved using a more compli-
cated hook. Less clear is how this hook could be hidden behind a declarative
interface similar to the archetypal search trees capturing the essence heuristics
in the case of binary disjunction.

Flexible language extensions To help spread delimited control in logic
programming, it would be beneficial to see what patterns commonly occur in
actual Prolog programs and provide a library of abstractions. Unfortunately,
deeply nesting effect handlers currently has an adverse effect on performance.
There is ongoing work by Hany Saleh [60] on how nested effect handlers can
be folded into a single monolithic one.

Tabling Specific for tabling, advances in several areas are still possible:

• Continuations are copied with the general copy term/2 predicate. A
special-purpose copy continuation/2 could do better by exploiting the
known structure of these terms. Other applications using delimited con-
trol could benefit from this optimization as well.

• In the scheduling component, we identify strongly connected compo-
nents dynamically. Doing so statically would allow the specialisation of
completion.

9.1. FUTURE WORK 205

• In contrast with state-of-the art implementations, our tries do not use
substitution factoring. Neither have we experimented with hash tables,
as preferred by B-Prolog.

To shift the tradeoff between investment and performance more towards per-
formance, implementing the supporting datastructures, like answer and call
variant tries, at the lowest possible level is not the big issue for a skilled Pro-
log implementor, as these are orthogonal to the existing engine.

Given the improved understanding of techniques for answer subsumption
offered by our formal framework, it would be interesting to extend our high-
level tabling implementation with them. Our initial exploration shows that
this does not require changes to the control flow, but only to the table data
structure. However, defining a flexible architecture to switch between tradi-
tional tabling and the different answer subsumption variants requires more
creativity, in addition to modularity support from the underlying Prolog. Ul-
timately, more practical experience could lead to the development of some
guidelines on which answer subsumption technique to use in a given situation.

Parallel logic programming Exploiting parallelism in logic programs has
long been a topic of interest. Gupta et al. provide an excellent survey [58].
The most promising method for non-tabled execution seems the exploitation
of or-parallelism: exploring matching clauses in parallel, because this can be
done implicitly and its implementation is reasonably simple.At the same time,
or-parallelism obtains very good speedups [127].

Less work has been done on parallelising tabled execution. Freire et al.
propose table parallelism where parallel execution can happen at each tabled
subgoal [49]. They also design a parallel completion algorithm. Unfortunately,
this does not exploit parallelism for non-tabled subgoals. To address this issue,
Rocha et al. propose two new computational models: or-parallelism within
tabling (OPT) and tabling within or parallelism (TOP) [124]. They have
implemented the OPT model in Yap [126, 127].

In the long run, it would be interesting to investigate how the existing
models for parallelism map to our lightweight tabling approach. As a first step,
parallelising the completion phase may already yield significant performance
improvements.

The cut construct Although a standard behaviour for cut in plain Prolog
has been proposed as far back as 1986 [101], this extralogical construct still
raises issues in the development of extensions, with tabling as a notorious
example. In addition, we believe that the bad reputation of cut has certainly

206 CHAPTER 9. CONCLUSIONS

contributed to the current popularity of ASP. We are aware of at least two
attempts to evict the construct from Prolog [67, 34]. On a less radical scale,
analysis tools could flag and perhaps even propose refactorings in the style of
Schrijvers et al. [141] for many occurrences.

User-orientation User-friendliness and adequate tooling support are still
an issue in the whole logic programming community. Recently some interest
has emerged there, as can be seen from the advent of IULP: the International
Workshop on User-Oriented Logic Programming. More practically, the need
for maintaining valuable large industrial applications triggers such develop-
ments [97].

Programming in the large For traditional logic programming itself there
are still many challenges remaining in statical typing and portability. Pure
Prolog has always been a dynamically typed language, but given the advan-
tages of a statical type system, attempts to introduce new typed logic lan-
guages as well as attempts to gradually introduce types into existing Prolog
variants have been made [136, 181, 63]. Portability is hard, as for historical
reasons many interesting contributions to traditional logic programming have
been scattered over a wide range of implementations. Since 2007, a basic com-
patibility framework has been established between Yap and SWI-Prolog [173].

Of prime importance to programming in the large is a powerful standard-
ized module system: this is not only beneficial for the maintainability of large
applications, but additionally stimulates library development [59]. Haemmerlé
and Fages review the module system of several contemporary Prolog imple-
mentations [59]. Many of these systems derive from Quintus Prolog, yet differ
in subtle ways.

For their module system review, Haemmerlé and Fages only use two prop-
erties: module protection and calling module protection. The former ensures
that only visible predicates can be called, while the latter ensures that call-
backs are impossible, unless explicitly allowed. Unfortunately, only the module
systems of Ciao [16] and XSB [155] satisfy both properties. However, although
they are unequivocally fundamental, many other issues may influence the de-
sign of a module system. Interesting examples are given in the design for the
Ciao module system [16]: allowing efficient compilation and global analysis to
name only two.

XSB’s module system is remarkable in the sense that it only can only
export and import predicates instead of any atom.

The popular SWI-Prolog has explicitly positioned itself as a system for

9.1. FUTURE WORK 207

programming in the large [174]. We believe that this is the right direction:
with an ever increasing amount of heterogeneous data sources, flexibility and
library support more than ever determine the success of not only a language,
but of an entire paradigm.

208 CHAPTER 9. CONCLUSIONS

Summary

In this thesis we have tackled several shortcomings of traditional goal-oriented
logic programming. The de facto standard language for this class is Prolog.
However, this language is not without its faults: one of the most often heard
critics is its rigidness. Over the years of its long and venerable life, many
extensions have been developed to deal with weak spots. Also, a rich variety
of new subdomains in logic programming has its roots in Prolog.

However, Prolog language extensions have mainly been developed in iso-
lation. This is because implementing those extensions is hard: a virtual ma-
chine for plain Prolog is already tremendously complex. We aim at more
flexibility through simple implementation techniques. For finding these tech-
niques we do not fear cross-pollination with another well-understood declar-
ative paradigm: functional programming. Successfully combining ideas from
these two paradigms could be a big leap towards modeling increasingly large
and complex problems.

Prolog allows to specify a problem as a set of rules. Ideally, these rules
define only the logic of the problem domain. The programmer does not need
to worry about how the computer executes those rules. At least, that is the
theory.

The control built into Prolog interpreters is SLD-resolution. SLD-resolution
specifies that rules matching a given goal are executed in textual order: from
top to bottom and from left to right. If the user is not constantly aware of this
order, it is in practice very simple to write a program that traps the interpreter
in an infinite loop. For instance, it suffices to write a left-recursive rule before
its corresponding base case.

Yet, even when the user takes the built-in control into account, it is clear
that the built-in control is very rigid. As it happens, the search strategy is
not only predictable, but it is always exhaustive in addition. It is best to
visualise the strategy as a (search) tree, where each alternative is represented
by a branch. The leaves of the tree correspond to failures or successes. When

209

210 SUMMARY

we write a left-recursive rule, we thus define an implicit tree with an infinite
path on the left.

Modular Search SLD-resolution blindly chooses the left children in the
infinite search tree over and over again and hence gets trapped on this path.
Even when the search tree is finite, or when we make sure that the infinite
branches in the tree are on the right, it can very well be that the finite part
of the tree is already much too large to scour. Of course, there are many
well-known heuristics to search only a part of the tree, for example imposing
a bound on the length of the paths (depth-bounded search), on the number of
nodes (node-bounded search), hybrids, etc..

The problem is however that the user cannot just use heuristics considering
only a part of the tree: he has to encode the strategy himself, and that en-
tangled with the logic describing the problem domain. Prolog only supplies a
pruning operator (known as cut), that allows to prune alternative branches. It
immediately strikes that this is a very primitive modus operandi: not a single
form of reuse is possible, although the idea behind the heuristic is always the
same. The programmer thus loses valuable time redefining similar code over
and over again. In addition, it is often extremely important to experiment
with lots of different heuristics. Each heuristic scours a different part of the
tree. This can lead to finding a solution faster, or finding a better a solution.

The standard practice to experiment with heuristics is thus to copy the
program and adapt it a bit. As a consequence bugs propagate throughout
the different versions, and maintenance quickly becomes a real nightmare.
Absence of a library of reusable search methods has an additional perverse
effect: the programmer has to reinvent the wheel every time, which leads to
him/her falling back on those methods that he/she is familiar with. He/she
comes less into contact with alternative methods that a library would offer
ready-to-use. A good software library has also been designed so that methods
can work together easily; in our case this means that the search heuristics can
be easily combined into a composite heuristic.

We address the non-reusability of search heuristics in Chapter 3. We pro-
vide a hook into Prolog’s (binary) disjunction. This hook enables us to execute
at each disjunction a handler that is specific for the search heuristic we want
to obtain. We title this approach Tor. However, this is a very operational
manner of doing things. We also provide a much more elegant declarative ap-
proach based on the observation that each heuristic in isolation already defines
a search tree of a form that is typical for that particular heuristic. For exam-
ple, depth-first search with a maximum allowed depth of n defines a balanced

211

binary tree of depth n+1 of which the leaves. We can combine this heuristical
tree with the search tree of the problem logic by overlaying them. To this
end, it suffices to look at each node whether the shape of trees still match. If
we encounter failure in the tree corresponding to the heuristic, then the result
is failure. If we encounter a success node in the tree corresponding to the
problem logic, then we have also found a solution for the combined heuristic.

Using the Tor methodology we define several well-known search heuris-
tics. These search heuristics must all be compatible with Prolog’s depth first
execution strategy though. It is for example not possible to swap the order of
the branches in the tree. The greatest power of Tor lies however in the way
we can combine different heuristics into a new composite heuristic. It is for
instance easy to create a heuristic that after exhaustively scouring the tree up
to a given dept, switches to a strategy where only a given maximum number
of nodes can be visited.

For a search problem, it is of course important how many tree nodes we
can search in a given time interval. Therefore it is important that Tor does
not cause too much overhead. In this respect, it is important to note that for a
constraint programming problem the lion’s share of the execution time is spent
on propagation. With a slowdown factor of at most three, the performance of
artificial benchmarks is reasonable given the extra flexibility, but for realistic
benchmarks, we see that Tor does not introduce any significant overhead in
the case of SWI-Prolog. For the faster B-Prolog the overhead of Tor is among
the size of 10%. With automatic specialisation this overhead can be limited
even more though.

Delimited Control In Chapter 4 we discuss delimited control. A Prolog
program consists only of rules and facts. When we look at the form of an
individual rule, we see that it in essence consists of a Horn clause, supplemented
with simple built-in predicates. So Prolog is a minimalistic language. This has
several advantages (it is for example easy to reason about the language), but at
times infrastructure to encode frequently occurring patterns can be thoroughly
missed. Therefore, in the past several methods to add extra constructs to
the language have been developed. Beyond a doubt meta-programming and
program transformations are among the most well-known. The use of both is
encouraged by Prolog’s homoiconic nature. Other examples from the literature
are extended DCGs, logical loops and structured state threading. All these
examples belong to the category of non-local program transformations.

Non-local program transformations are not ideal because they are fragile:
each time a new construct is added to the language, the program transforma-

212 SUMMARY

tion must also be adapted, even when semantically both are decoupled from
each other. The amount of work to define such a program transformation is
thus proportional to the number of constructs in the language. When a new
construct is added, the entire system must be adapted. This makes defining
a new language construct so unattractive that the alternative of copy-paste
doesn’t even seem that horrid.

In the functional world effect handlers have recently attracted a good deal
of attention as a flexible but structured alternative to define new language
constructs. However, for use in the logic programming world, an underlying
mechanism is needed and therefore we can also draw inspiration from the
functional world in the form of delimited control, that there hold an almost
mythical status. We define two control operators shift/1 and reset/3 that
offer a Prolog compatible form of delimited control. We define the semantics of
these operations in the standard manner using a direct-style meta-interpreter,
and using an interpreter in continuation-passing style. We discuss the different
semantical points of attention that show up defining these constructs, including
interaction with cut, selection and exception handling. We also present the
full low-level implementation of the constructs in two standard architectures
for Prolog virtual machines, the WAM and the ZIP. The constructs cannot
only be used to implement well-known Prolog language extensions (such as
DCGs), in addition we show how several ideas from other languages can easily
be integrated. Effect handlers here serve as a structured approach on top of
the lowlevel primitives for delimited control.

We compare the performance of the lowlevel implementation with an imple-
mentation based on program transformation. An implementation at low-level
gives good results for the WAM, for the ZIP (or at least within the overall de-
sign of SWI-Prolog) this is not the case. There, an approach based on program
transformation is faster.

Modular Search Specification In Chapter 5 we revisit the search heuris-
tics from the third chapter. The Tor-approach is lightweight, efficient and
can be easily ported to other systems. However, the approach has been de-
fined quite operationally and therefore lacks a semantical model. We therefore
define a model for Tor using functional techniques.

As a starter for the Tor model, we reify the search tree that is implicit
in Prolog. Thus the search tree is now represented as syntax. This process
happens by applying the Free monad. The search heuristics can do their job
easily on this explicit representation. As a result, we obtain a modified tree.
This tree can be reflected back into the semantics.

213

Working in the Free monad is very well-suited to a Haskell model. Imple-
menting this monad in Prolog is on the contrary very challenging. Luckily,
this is not needed. We show that there exists an isomorphism between the
Free monad and the Delimited continuations monad transformer. We have
created a Prolog implementation of delimited control in the previous chapter.
As a consequence, using the isomorphism, we can port our Haskell results to
Prolog.

Introduction to Tabled Resolution In Chapter 6 we give an overview of
the existing techniques for tabling in logic programming. We already know
that due to an incorrect rule order a standard Prolog interpreter based on
SLD-resolution can get stuck in an infinite branch of the implicit search tree.
The same problem can occur if the input data is cyclic, but then there is no
simple solution possible like swapping the rules. Put more formally, SLD-
resolution is not capable of calculating the least fixpoint of the immediate
consequence operator. Tabling has been developed to tackle the problems of
SLD-resolution. The underlying idea is to temporarily suspend calculations
that would go into an infinite loop and resume them later in a controlled
fashion. To this end, one keeps the collection of answers that have been found
so far in a datastructure also known as the table.

However, implementing the tabling technique is extremely complex. The
best-known technique is based on freezing the execution stacks of the virtual
machine. It was developed by D.S. Warren and implemented in XSB. Be-
sides, there are only a handful of implementations based on the same principle
(Ciao and Yap). These have all been developed in an academic context. This
is because implementing tabling requires extremely invasive changes to the
architecture of the virtual machine, the so-called Warren Abstract Machine.
That changes are for budgetary and time-related reasons simply impossible in
industry. However, this low-level implementation offers a good performance.

As an alternative to a full-blown stack-freezing tabling implementation, a
lot of different approaches have been developed based on complex program
transformations. The most well-known are linear tabling mechanisms (B-
Prolog). These avoid the necessity to temporarily suspend computations but
thereby loose some performance. Given these complications, it is not a sur-
prise that very few systems have a tabling implementation, despite the earliest
research in tabling dating from the end of the eighties. It is however very
desirable because tabling does not only dramatically increases the Prolog lan-
guage’s declarative level and termination properties drastically, but in addition
can lead to a gain of an order of magnitude in execution speed. This is because

214 SUMMARY

tabling can be considered as a declarative variant of dynamic programming.
In Chapter 7 we tackle this problem.

Tabling with Delimited Control After an overview of the existing tech-
niques for tabling, it is clear that no implementation of tabling exists combining
decent performance with ease of implementation. With ease of implementa-
tion, we mean a design that does not require drastic changes to the architecture
of the virtual machine. In Chapter 7 we design an implementation that re-
quires minimal changes to the WAM and is thus orthogonal to the already
existing features. Typically, the suspension mechanism is the hardest part to
provide; we realise that it possible to use the primitives for delimited con-
trol from Chapter 4 to this end. Apart from this we use mutable terms and
non-backtrackable variables that are by default available in many Prolog im-
plementations. These three features are the only that must be provided at
low-level inside the WAM. The implementation itself is possible as a library
in user space and thus is written in ordinary Prolog code. That makes our
implementation very accessible and easily portable across the different Prolog
implementations. In addition we have already shown that the primitives for
delimited control cannot only be used to implement tabling. Because of this
property the cost of implementing these primitives can be amortised over the
applications they enable.

Unique to our work is the way in which we calculate the fixpoint. As input
we have both a set of answers and a set of computations that were suspended,
but that can lead to a new answer, given an already obtained answer. We
describe a simple mechanism that does not unnecessarily duplicate work, but
is at the same time simple: we consider a double-ended queue and at any point
add obtained answers to one end and add suspended computations to the other
end. Each time we combine an existing answer with a suspended computa-
tion, we swap both in the list. From this combination, new answers or new
suspended computations can possibly be derived. We repeat the process until
all answers are on that side that is used for adding suspended computations
and vice versa.

We evaluate our tabling implementation by comparing to those Prolog im-
plementations that have implemented tabling by freezing the execution stack
(XSB, Ciao, Yap) and with the linear implementation of B-Prolog. The per-
formance of our implementation is very reasonable when we consider the very
deep architectural changes to the virtual machine that are necessary for the
alternatives and compare this to our very lightweight implementation in only
577 lines of Prolog code. Of those 577 lines, less than 11% goes to the ac-

215

tual control flow. We spent 45% of the line count to the datastructure for
the fixpoint computation and 40% to the tree datastructure for keeping the
answers.

Answer Subsumption Answer subsumption is an extension of traditional
tabling that allows to prefer certain, more suitable, answers above others. As
a consequence, the less suitable answers no longer need to be stored in the
table. This allows to express optimisation and planning problems in a much
more declarative style, since the user is no longer responsible for selecting
optimal (partial) solutions.

Several concrete variants of the general “answer subsumption” idea have
been described in the literature. The problem is that they are not defined
formally: the description is limited to giving the interface for a specific imple-
mentation, describing a few example problems, and an overview of the changes
necessary to the specific tabling system (in practice always based on freezing
the execution stacks) in which the variant has been developed. Hence, it is
very difficult to implement the technique in another system: there is a lot of
uncertainty about the exact behaviour.

In addition, it is also difficult to see the commonalities and differences
between the variants. This makes a choice for a particular variant more of a
guess, rather than an informed decision.

In Chapter 8 we remedy this situation: we define a general framework for
answer subsumption in which all variants can be described. This framework
is based on the mathematical concept of a lattice. We give an overview of
the existing approaches to answer subsumption and show how they fit in the
framework.

216 SUMMARY

Nederlandstalige samenvatting

In deze thesis hebben we verschillende tekortkomingen van traditioneel doelge-
richt logisch programmeren behandeld. De feitelijke standaardtaal voor deze
groep is Prolog. Deze taal heeft echter ook zijn gebreken: één van de meest
gehoorde kritieken is z’n starheid. Tijdens Prolog’s lange en eerbiedwaardige
levensloop, zijn veel uitbreidingen ontwikkeld om de zwakke plekken aan te
pakken. Daarnaast heeft ook een rijke variëteit aan nieuwe subdomeinen van
logisch programmeren roots in Prolog.

Echter, taaluitbreidingen voor Prolog zijn meestal in isolatie ontwikkeld.
De reden hiervoor is dat het implementeren van deze extensies moeilijk is:
een virtuele machine voor pure Prolog is al zeer complex. Wij mikken op
meer flexibiliteit door eenvoudige implementatietechnieken. Voor het vinden
van deze technieken, schuwen we een tweewegsinteractie met een ander goed
begrepen programmeerparadigma, functioneel programmeren, niet. Een suc-
cesvolle combinatie van ideeën uit deze twee paradigma’s kan een grote stap
zijn naar het modelleren van alsmaar grotere en complexere problemen.

Prolog laat toe een probleem declaratief te specifiëren als een verzameling
regels. Deze regels definiëren idealiter alleen de logica van het probleemdomein.
De programmeur hoeft zich niet te bekommeren om hoe deze regels worden
uitgevoerd door de computer. Althans, dat is de theorie.

De controle die in Prolog-interpreters is ingebouwd, is SLD-resolutie. SLD-
resolutie specificeert dat de regels die passen bij een gegeven doel worden
uitgevoerd van boven naar onder, en dat de doelen binnen één regel zullen
worden uitgevoerd van links naar rechts. Als de gebruiker zich niet voort-
durend bewust is van deze volgorde, is het in de praktijk heel eenvoudig om
een programma te schrijven waarbij de interpreter vast komt te zitten in een
oneindige lus. Bijvoorbeeld, het volstaat om een links-recursieve regel neer te
schrijven voor zijn basisgeval.

Maar ook wanneer de gebruiker wel rekening houdt met de ingebouwde con-
trole, valt het duidelijk op dat deze heel rigide is. De zoekstrategie is namelijk

217

218 NEDERLANDSTALIGE SAMENVATTING

niet alleen voorspelbaar, maar ook per default altijd exhaustief. De strategie
valt het best te visualiseren als een (zoek)boom, waarbij elk alternatief zorgt
voor een splitsing. De bladeren van de boom komen overeen met falingen of
successen. Wanneer we een links-recursieve regel schrijven, definiëren we dus
een impliciete boom met een oneindig lang pad links.

Modulair zoeken SLD-resolutie kiest telkens blindelings voor linkerkinde-
ren in de oneindige zoekboom en komt dus zo vast te zitten op dit pad. Ook
wanneer de zoekboom eindig is, of wanneer we ervoor zorgen dat de oneindige
takken rechts in de boom zitten, kan het zijn dat het deel van de boom met
eindige paden al veel te groot is om te doorzoeken. Uiteraard zijn vele heuris-
tieken bekend om slechts een gedeelte van de boom te doorzoeken, bijvoorbeeld
een limiet opleggen op de lengte van de paden (dieptebeperkt zoeken), op het
aantal toppen dat mag bezocht worden in de boom (topbeperkt zoeken), com-
binaties enz..

Het probleem is echter dat de gebruiker heuristieken die slechts een deel
van de boom beschouwen, niet zomaar kan opgeven: hij moet de strategie zelf
coderen en wel vermengd met de logica die het probleemdomein definieert.
Prolog voorziet enkel een snijoperator (bekend als cut), die toelaat om alter-
natieve takken weg te snijden. Het valt meteen op dat dit een zeer primitieve
manier van werken is: er is geen enkele vorm van hergebruik mogelijk voor
de heuristieken hoewel het idee altijd hetzelfde is. De programmeur verliest
dus kostbare tijd door telkens opnieuw gelijkaardige code te moeten schrijven.
Het is bovendien vaak heel belangrijk om met veel verschillende heuristieken
te experimenteren. Elke heuristiek doorzoekt een ander deel van de boom. Dit
kan er dus toe leiden dat een oplossing sneller gevonden wordt, of dat er een
betere oplossing gevonden wordt.

De standaardmanier van werken tot nu toe is dus om het programma te
kopiëren en een beetje aan te passen. Dat zorgt ervoor dat bugs zich versprei-
den, en onderhoud wordt al snel een ware nachtmerrie. De afwezigheid van een
bibliotheek van herbruikbare zoekmethoden heeft nog een bijkomend pervers
effect: de programmeur moet telkens weer het wiel heruitvinden, wat er ook
voor zorgt dat hij/zij steeds opnieuw terugvalt op die methoden die hij/zij
kent. Hij/zij komt minder in contact met alternatieve methoden die een bibli-
otheek kant-en-klaar zou aanbieden. Een goede sofwarebibliotheek is ook zo
ontworpen dat methoden gemakkelijk kunnen samenwerken; in ons geval be-
tekent dit dat de zoekheuristieken gemakkelijk kunnen worden gecombineerd
tot een samengestelde heuristiek.

Niet kunnen hergebruiken van zoekheuristieken pakken we aan in Hoofd-

219

stuk 3. We voorzien een omwegje (hook) in de (binaire) disjunctie van Prolog.
Dit omwegje zorgt ervoor dat we bij elke disjunctie een bepaalde routine (han-
dler) kunnen uitvoeren die specifiek is voor de zoekheuristiek die we willen
bekomen. Deze aanpak noemen we Tor. Dit is echter een zeer operationele
manier van werken. We voorzien ook een veel elegantere declaratieve manier
gebaseerd op de observatie dat elke heuristiek op zichzelf al een zoekboom defi-
nieert met een vorm die typerend is voor de specifieke heuristiek. Zo definieert
dieptebeperkt zoeken met een maximaal toegelaten diepte n een gebalanceerde
binaire boom van diepte n+ 1 waarvan de bladeren overeenkomen met faling.
Deze heuristiekboom kunnen we combineren met de zoekboom van de pro-
bleemlogica door ze te overlappen. Het volstaat hiervoor bij elke splitsing te
kijken of de vorm van de bomen nog overeenkomt. Als we in de boom horend
bij de heuristiek faling tegenkomen, dan faalt het geheel. Komen we in de
zoekboom horend bij de probleemlogica een succestop tegen, dan hebben we
ook een oplossing gevonden voor de gecombineerde heuristiek.

Aan de hand van de Tor methodologie definiëren we verschillende wel-
bekende zoekheuristieken. Deze zoekheuristieken moeten echter wel allemaal
compatibel zijn met de diepte-eerst strategie van Prolog. Het is bijvoorbeeld
niet mogelijk om de volgorde van de takken in de boom om te wisselen. De
grote kracht van Tor ligt echter in de manier waarop we de verschillende heu-
ristieken kunnen combineren tot een nieuwe samengestelde heuristiek. Het is
bijvoorbeeld eenvoudig om een heuristiek te maken die na het volledig door-
zoeken van de boom tot op een gegeven diepte, voor de dieper gelegen toppen
overschakelt op een strategie waarbij nog een maximaal aantal toppen mag
worden bezocht.

Voor een zoekprobleem is het uiteraard belangrijk hoeveel toppen van de
boom we in een gegeven tijdsspanne kunnen doorzoeken. Daarom is het be-
langrijk dat Tor niet al te veel overhead veroorzaakt. Hierbij is het belangrijk
om op te merken dat voor een constraint programming probleem het leeuwen-
deel van de uitvoeringstijd gespendeerd wordt aan propagatie. De performan-
tie voor artifiële benchmarks zonder propagatie is met een vertragingsfactor
van hoogstens drie redelijk gezien de extra flexibiliteit, maar voor realistische
benchmarks zien we Tor geen significante overhead introduceert in het ge-
val van SWI-Prolog. Voor het snellere B-Prolog is de overhead van Tor in de
grootteorde van 10%. Met automatische specialisatie kan deze overhead echter
nog verminderd worden.

Begrensde controle In hoofdstuk 4 bespreken we begrensde controle (de-
limited control). Een Prolog programma bestaat enkel uit regels en feiten.

220 NEDERLANDSTALIGE SAMENVATTING

Wanneer we kijken naar de vorm van een individuele regel, dan zien we dat
die in essentie bestaat uit een Horn-clausule, aangevuld met eenvoudige inge-
bouwde predikaten. Prolog is dus een minimalistische taal. Dit heeft verschil-
lende voordelen (het is bijvoorbeeld eenvoudig om over de taal te redeneren),
maar soms wordt infrastructuur om vaakvoorkomende patronen te kunnen
encoderen nogal gemist. In het verleden zijn daarom verschillende manieren
bedacht om extra constructies aan de taal toe te voegen. De bekendste hier-
van zijn ongetwijfeld meta-programmeren en programmatransformaties. De
toepassing van beide wordt aangemoedigd door de homöıconische natuur van
Prolog. Andere voorbeelden uit de literatuur zijn extended DCGs, logical loops
en structured state threading. Al deze voorbeelden vallen onder de categorie
van niet-lokale programmatransformaties.

Niet-lokale programmatransformaties zijn echter niet ideaal, want ze zijn
breekbaar. Telkens wanneer een nieuwe constructie aan de taal wordt toe-
gevoegd, moet ook de programmatransformatie worden aangepast, zelfs wan-
neer beide semantisch gezien los van elkaar staan. De hoeveelheid werk om
een dergelijke programmatransformatie te definiëren is dus recht evenredig
met het aantal constructies in de taal. Wanneer een nieuwe constructie wordt
gëıntroduceerd, moet het hele systeem aangepast worden. Dit alles maakt het
definiëren van een nieuwe taalconstructie zo onaantrekkelijk dat het alternatief
copy-paste niet eens zo afschuwelijk lijkt.

In de functionele wereld hebben effect handlers de laatste tijd veel aandacht
gekregen als een flexibele, maar gestructureerde manier om nieuwe taalcon-
structies te definiëren. Voor toepassing in de wereld van logisch programmeren
is er echter een onderliggend mechanisme nodig en ook daarvoor kunnen we
inspiratie halen uit de functionele wereld in de vorm van begrensde controle,
die aldaar een haast mythische status geniet. Wij definiëren twee controleope-
ratoren shift/1 en reset/3 die een Prolog-compatibele vorm van begrensde
controle aanbieden. We definiëren de semantiek van deze operaties op de stan-
daard manier aan de hand van een directe metainterpreter en een interpreter in
continuatiestijl. We bespreken de verschillende semantische aandachtspunten
die bij het definiëren van deze primitieven opduiken, waaronder de interactie
met cut, selectie en uitzonderingen. Ook bespreken we de volledige laagniveau
implementatie van de constructies in twee standaardarchitecturen voor Prolog
virtuele machines, de WAM en de ZIP. De constructies kunnen niet alleen ge-
bruikt worden voor het aanbieden van bekende taaluitbreidingen van Prolog
(zoals DCGs), maar we tonen ook aan hoe verschillende ideeën uit andere talen
gemakkelijk kunnen worden toegevoegd. Effect handlers zorgen hierbij voor
een gestructureerde aanpak bovenop de laagniveau primitieven voor begrensde
controle.

221

We vergelijken de performantie van de laagniveauimplementatie met een
transformatiegebaseerde aanpak. Een implementatie op laagniveau levert voor
de WAM goede resultaten op, in de ZIP (of op z’n minst in het design van
SWI-Prolog) is dit niet het geval. Daar is een transformatiegebaseerde aanpak
sneller.

Een specificatie voor modulair zoeken In hoofdstuk 5 keren we terug op
de zoekheuristieken uit het derde hoofdstuk. De Tor-aanpak is lichtgewicht,
efficiënt en kan gemakkelijk worden overgedragen naar andere systemen. De
aanpak is echter wel nogal operationeel gedefinieerd en daarom ontbreekt een
semantisch model. We ontwerpen daarom een model voor Tor aan de hand
van functionele technieken. Inzicht in zowel logische als functionele technieken
is hier een noodzakelijke voorwaarde om het probleem tot een goed einde te
brengen.

Als start van het model voor Tor reificeren we de zoekboom die in Prolog
impliciet is. De zoekboom wordt dus nu voorgesteld door middel van syntax.
Dit proces gebeurt door toepassing van de Free monad. Op deze expliciete
voorstelling kunnen de heuristieken gemakkelijk werken. Als resultaat beko-
men we een aangepaste boom. Deze boom kan terug worden geflecteerd in de
semantiek.

Werken in de Free monad is erg geschikt voor een Haskell model. Deze
monad daarentegen gaan implementeren in Prolog is erg uitdagend. Dit is
gelukkig niet nodig. We tonen aan dat er een isomorfisme is tussen de Free
monad en de Delimited Continuations monad transformer. We hebben in
het vorige hoofdstuk een implementatie gemaakt voor begrensde controle in
Prolog. Dankzij het isomorfisme kunnen we dus ook onze Haskell resultaten
omzetten naar Prolog.

Introductie tot tabulatie In hoofdstuk 6 geven we een overzicht van de be-
staande technieken voor tabelleren in logisch programmeren. We weten reeds
dat door een verkeerde volgorde van regels, een standaard Prolog interpreter
gebaseerd op SLD-resolutie vast kan komen te zitten in een oneindige tak van
de impliciete zoekboom. Hetzelfde probleem kan optreden als de inputdata
cyclisch is, maar dan is er geen eenvoudige oplossing mogelijk zoals het om-
wisselen van de regels. Meer formeel is SLD-resolutie niet in staat om het
kleinste fixpunt te berekenen van de onmiddellijk-gevolg operator. Tabling is
ontwikkeld om de problemen van SLD-resolutie aan te pakken. Het onderlig-
gende idee is altijd om berekeningen die in een oneindige lus terecht dreigen
te komen, af te breken en later op een gecontroleerde manier opnieuw uit te

222 NEDERLANDSTALIGE SAMENVATTING

voeren. Daarvoor houdt men de verzameling van antwoorden bij die men tot
nu toe heeft gevonden in een datastructuur die ook wel bekend staat als de
tabel (table).

De tabulatietechniek implementeren is echter zeer complex. De meest be-
kende aanpak is gebaseerd op het bevriezen van de uitvoeringsstapels van de
virtuele machine. Ze werd ontwikkeld door D.S. Warren en gëımplementeerd
in XSB. Daarnaast zijn er slechts een handvol andere implementaties op het-
zelfde principe gebaseerd (Ciao en Yap). Deze zijn alle ontwikkeld in een
academische context. De implementatie van tabelleren vergt namelijk zeer
ingrijpende veranderingen aan de architectuur van de virtuele machine, de zo-
geheten Warren Abstract Machine1, die omwille van tijdsduur en budgettaire
beperkingen simpelweg niet mogelijk zijn in de industrie. Deze implementatie
op laag niveau biedt echter een goede performantie.

Als alternatief voor een volledige implementatie van tabulatie die de uitvoe-
ringsstapels bevriest, zijn er heel wat andere manieren ontwikkeld gebaseerd op
complexe programmatransformaties. Het meest bekend zijn de lineaire tabelle-
ringsmechanismen (B-Prolog). Deze vermijden de noodzaak om berekeningen
tijdelijk uit te stellen, maar boeten daardoor aan performantie in. Gegeven
deze complicaties is het dan ook niet verwonderlijk dat, hoewel het vroegste
onderzoek naar tabulatie dateert uit het einde van de jaren 80, zeer weinig
systemen een implementatie van tabulatie hebben. Dit is echter zeer wenselijk
omdat tabelleren niet alleen het declaratief niveau van de taal Prolog en zijn
terminatieeigenschappen drastisch verhoogt, maar daarnaast ook kan zorgen
voor een grootteorde aan verbetering van de uitvoeringssnelheid. Tabelleren
kan namelijk beschouwd worden als een declaratieve variant van dynamisch
programmeren. In hoofdstuk 7 pakken we dit probleem aan.

Tabulatie met begrensde controle Na een overzicht van de bestaande
technieken voor tabelleren, is het duidelijk dat er geen enkele implementatie
van tabulatie bestaat die een redelijke performantie combineert met imple-
mentatiegemak. Met implementatiegemak bedoelen we een ontwerp dat geen
drastische wijzigingen vraagt in de architectuur van de virtuele machine. In
hoofdstuk 7 ontwerpen we een implementatie die minimale wijzigen vraagt
in de WAM en aldus orthogonaal staat op de reeds bestaande voorzieningen.
Typisch het moeilijkst te voorzien is een onderbrekingsmechanisme; wij re-
aliseren ons dat het mogelijk is om hiervoor de primitieven voor begrensde
controle uit hoofdstuk 4 te gebruiken. Daarnaast gebruiken we muteerbare
termen en niet-backtrackbare variabelen die reeds in heel wat Prolog imple-

1genoemd naar de pionier D.H.D Warren.

223

mentaties standaard zijn voorzien. Deze drie features zijn de enige die op laag
niveau in de WAM moeten worden voorzien. De implementatie zelf is mogelijk
als een bibliotheek op gebruikersniveau en is dus geschreven in gewone Prolog
code. Dat maakt onze implementatie zeer toegankelijk en eenvoudig over-
draagbaar tussen de verschillende Prolog implementaties. Bovendien hebben
we reeds aangetoond dat de primitieven voor begrensde controle niet uitslui-
tend bruikbaar zijn voor het implementeren van tabulatie. Hierdoor kan de
kost voor het implementeren van deze primitieven worden uitgemiddeld over
hun verschillende toepassingen.

Uniek voor ons werk is de manier waarop we het fixpunt berekenen. Als
input hebben we zowel een verzameling van antwoorden als een verzameling
van berekeningen die eerder werden uitgesteld, maar gegeven een reeds bere-
kend antwoord, kunnen leiden tot een nieuw antwoord. We beschrijven een
eenvoudig algoritme dat geen werk onnodig dupliceert, maar tegelijk eenvoudig
is: we beschouwen een dubbelgelinkte lijst en voegen steeds reeds berekende
antwoorden toe aan het ene uiteinde en de uitgestelde berekeningen aan het
andere uiteinde. Telkens wanneer we een bestaand antwoord combineren met
een uitgestelde berekening, wisselen we beide om in de lijst. Door deze combi-
natie kunnen mogelijk nieuwe antwoorden of uitgestelde berekeningen aan de
lijst worden toegevoegd. We herhalen het proces tot alle antwoorden aan die
kant staan waar de uitgestelde berekeningen worden toegevoegd en vice versa.

We evalueren onze implementatie van tabulatie door te vergelijken met die
Prolog implementaties die tabulatie hebben gëımplementeerd door het bevrie-
zen van de uitvoeringsstapel (XSB, Ciao, Yap) en met de lineaire implemen-
tatie van B-Prolog. De performantie van onze implementatie is erg behoorlijk
wanneer we rekening houden met de zeer ingrijpende veranderen aan de vir-
tuele machine die nodig zijn voor de alternatieven en dit vergelijken met onze
zeer lichtgewicht implementatie in slechts 577 lijnen Prolog code. Van die 577
lijnen code gaat minder dan 11% naar de eigenlijke control flow. We besteden
45% van het aantal lijnen aan de datastructuur voor de fixpuntberekening en
40% aan de boomdatastructuur voor het bijhouden van de antwoorden.

Selecteren van antwoorden Selecteren van antwoorden (answer subsump-
tion) is een uitbreiding van het klassiek tabelleren die toelaat om bepaalde,
meer geschikte, antwoorden te verkiezen boven andere. Als gevolg hiervan gaat
men de minder geschikte antwoorden niet langer opslaan in de tabel. Dit laat
toe om optimalisatie- en planningsproblemen uit te drukken op een veel decla-
ratievere manier, aangezien de gebruiker niet zelf instaat voor het selecteren
van optimale (deel)oplossingen.

224 NEDERLANDSTALIGE SAMENVATTING

Van het algemene idee “selecteren van antwoorden” zijn verschillende con-
crete varianten beschreven in de literatuur. Het probleem is echter dat deze
niet formeel worden gedefinieerd: men beperkt zich tot het geven van de in-
terface voor een specifieke implementatie, het beschrijven van een aantal voor-
beelden, en een overzicht van de wijzigingen die nodig zijn in het specifieke (in
de praktijk altijd op het bevriezen van de uitvoeringsstapel gebaseerde) tabel-
leringssysteem waarin de variant is ontwikkeld. Bijgevolg is het zeer moeilijk
om de techniek te implementeren in een ander systeem: er heerst veel ondui-
delijkheid over het precieze gedrag.

Daarnaast is het ook moeilijk om de overeenkomsten en verschillen tussen
de varianten te zien. Dat maakt een keuze voor een bepaalde variant meer een
gok dan een gëınformeerde beslissing.

In hoofdstuk 8 pakken we deze situatie aan: we definiëren een algemeen
framework voor answer subsumption waarin alle varianten kunnen worden
beschreven. Dit framework is gebaseerd op het wiskundig begrip tralie. We
geven een overzicht van de bestaande aanpakken voor selectie van antwoorden
en tonen hoe deze binnen het framework passen.

Bibliography

[1] Python PEP 342 — Coroutines via Enhanced Generators, 2005. http:

//www.python.org/dev/peps/pep-0342/. ↑96

[2] C] Language Specification Version 4.0, 2010. http://msdn.microsoft.
com/en-us/library/x53a06bb.aspx. ↑96

[3] Abderrahmane Aggoun and Nicolas Beldiceanu. Time stamps tech-
niques for the trailed data in constraint logic programming systems. In

SPLT’90, 8ème Séminaire Programmation en Logique, pages 487–510,
1990. ↑24

[4] Hassan Aı̈t-Kaci. Warren’s Abstract Machine — a Tutorial Reconstruc-
tion. http://wambook.sourceforge.net/, 1999. Online edition of the
1991 book published by MIT Press. ↑4, ↑17, ↑79, ↑177

[5] Joaqúın Arias Herrero. Design and implementation of a modular inter-
face to integrate CLP and tabled execution, 2015. ↑199

[6] S. Awodey. Category Theory, volume 49 of Oxford Logic Guides. Oxford
University Press, 2006. ↑96

[7] Chitta Baral and Michael Gelfond. Logic programming and knowledge
representation. The Journal of Logic Programming, 1920, Supplement
1:73 – 148, 1994. Special Issue: Ten Years of Logic Programming. ↑1

[8] Roman Barták, Agostino Dovier, and Neng-Fa Zhou. On modeling plan-
ning problems in tabled logic programming. In Proceedings of the 17th

225

http://www.python.org/dev/peps/pep-0342/
http://www.python.org/dev/peps/pep-0342/
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://wambook.sourceforge.net/

226 BIBLIOGRAPHY

International Symposium on Principles and Practice of Declarative Pro-
gramming, PPDP ’15, pages 31–42, New York, NY, USA, 2015. ACM.
↑158

[9] Andrej Bauer and Maitja Pretnar. Programming with algebraic effects
and handlers, 2012. arXiv:1203.1539. ↑102, ↑137

[10] M. Blazevic. monad-coroutine: Coroutine monad transformer for sus-
pending and resuming monadic computations, 2010. http://hackage.

haskell.org/package/monad-coroutine. ↑96, ↑138

[11] D.L. Bowen, L. Byrd, and W.F. Clocksin. A portable Prolog compiler.
In Proceedings of the Logic Programming Workshop, pages 74–83, 1983.
↑84

[12] Marco Bozzano and Adolfo Villafiorita. Design and Safety Assessment
of Critical Systems. Auerbach Publications, Boston, 1st edition, 2010.
↑2

[13] Edwin Brady. Programming and reasoning with algebraic effects and
dependent types. In Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional programming, ICFP ’13, pages 133–144.
ACM, 2013. ↑102, ↑137

[14] Paul Branquart and Johan Lewi. A scheme of storage allocation and
garbage collection for Algol 68. In ALGOL 68 Implementation, pages
199–238, 1970. ↑82

[15] Bernd Braßel, Michael Hanus, and Frank Huch. Encapsulating non-
determinism in functional logic computations. Journal of Functional
and Logic Programming, 2004(6), 2004. ↑135

[16] Daniel Cabeza and Manuel Hermenegildo. The Ciao module system: A
new module system for Prolog. Electronic Notes in Theoretical Computer
Science, 30(3):122 – 142, 2000. Parallelism and Implementation Technol-
ogy for (Constraint) Logic Programming (in connection with ICLP ’99).
↑206

[17] Mats Carlsson and Per Mildner. SICStus Prolog - The first 25 years.
Theory and Practice of Logic Programming, 12(1-2):35–66, 2012. ↑30,
↑136

arXiv:1203.1539
http://hackage.haskell.org/package/monad-coroutine
http://hackage.haskell.org/package/monad-coroutine

BIBLIOGRAPHY 227

[18] Amadeo Casas, Daniel Cabeza, and Manuel V. Hermenegildo. A syn-
tactic approach to combining functional notation, lazy evaluation, and
higher-order in LP systems. In Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-
26, 2006, Proceedings, volume 3945 of LNCS, pages 146–162. Springer,
2006. ↑65

[19] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know
about Datalog (and never dared to ask). IEEE Trans. on Knowl. and
Data Eng., 1(1):146–166, 1989. ↑167

[20] Weidong Chen and David S. Warren. Tabled evaluation with delaying
for general logic programs. J. ACM, 43(1):20–74, 1996. ↑4, ↑145, ↑185,
↑193

[21] Pablo Chico de Guzmán, Manuel Carro, and Manuel V. Hermenegildo.
A sketch of a complete scheme for tabled execution based on program
transformation. In Maria Garcia de la Banda and Enrico Pontelli, ed-
itors, Logic Programming, volume 5366 of Lecture Notes in Computer
Science, pages 795–800. Springer Berlin Heidelberg, 2008. ↑156

[22] Pablo Chico de Guzmán, Manuel Carro, and Manuel V. Hermenegildo.
A program transformation for continuation call-based tabled execution.
CoRR, abs/0901.3906, 2009. ↑156

[23] Pablo Chico de Guzmán, Manuel Carro, and Manuel V. Hermenegildo.
Supporting pruning in tabled LP. In Proceedings of the 15th Inter-
national Symposium on Practical Aspects of Declarative Languages -
Volume 7752, PADL 2013, pages 60–76, New York, NY, USA, 2013.
Springer-Verlag New York, Inc. ↑152

[24] Pablo Chico de Guzmán, Manuel Carro, Manuel V. Hermenegildo,
Cláudio Silva, and Ricardo Rocha. An improved continuation call-based
implementation of tabling. In Practical Aspects of Declarative Lan-
guages, 10th International Symposium, volume 4902 of Lecture Notes
in Computer Science, pages 197–213. Springer, 2008. ↑156, ↑157

[25] Pablo Chico de Guzmán, Manuel Carro, Manuel V. Hermenegildo, and
Peter Stuckey. A general implementation framework for tabled CLP.
In Tom Schrijvers and Peter Thiemann, editors, Functional and Logic
Programming, volume 7294 of Lecture Notes in Computer Science, pages
104–119. Springer Berlin Heidelberg, 2012. ↑199

228 BIBLIOGRAPHY

[26] A. Colmerauer. Metamorphosis grammars. In Leonard Bolc, editor,
Natural Language Communication with Computers, volume 63 of Lecture
Notes in Computer Science, pages 133–188. Springer Berlin Heidelberg,
1978. ↑22, ↑61

[27] Michael A. Covington. ISO Prolog: A summary of the draft proposed
standard. 1993. Last viewed online on May 10, 2016 at http://fsl.

cs.illinois.edu/images/9/9c/PrologStandard.pdf. ↑13

[28] Flávio Cruz and Ricardo Rocha. Retroactive subsumption-based tabled
evaluation of logic programs. In Tomi Janhunen and Ilkka Niemelä,
editors, Logics in Artificial Intelligence, volume 6341 of Lecture Notes
in Computer Science, pages 130–142. Springer Berlin Heidelberg, 2010.
↑157

[29] Flávio Cruz and Ricardo Rocha. A simple table space design for retroac-
tive call subsumption. 2011. ↑157

[30] Baoqiu Cui and David S. Warren. A system for tabled constraint logic
programming. In Computational Logic CL 2000, volume 1861 of Lecture
Notes in Computer Science, pages 478–492. Springer Berlin Heidelberg,
2000. ↑199

[31] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceed-
ings of the 1990 ACM conference on LISP and functional programming,
LFP ’90, pages 151–160. ACM, 1990. ↑61, ↑62, ↑128, ↑137

[32] Pablo Chico de Guzmán, Manuel Carro, and David S. Warren. Swapping
evaluation: A memory-scalable solution for answer-on-demand tabling*.
Theory and Practice of Logic Programming, 10(4-6):401–416, July 2010.
↑151, ↑152, ↑154

[33] Wolfgang De Meuter and Gruia-Catalin Roman, editors. Coordination
Models and Languages, volume 6721 of LNCS, 2011. ↑92

[34] S. K. Debray and D. S. Warren. Towards banishing the cut from Pro-
log. IEEE Transactions on Software Engineering, 16(3):335–349, March
1990. ↑206

[35] Bart Demoen. Dynamic attributes, their hProlog implementation, and
a first evaluation. Report CW 350, Dept. of Comp. Sc., KU Leuven,
Belgium, 2002. ↑93

http://fsl.cs.illinois.edu/images/9/9c/PrologStandard.pdf
http://fsl.cs.illinois.edu/images/9/9c/PrologStandard.pdf

BIBLIOGRAPHY 229

[36] Bart Demoen and Phuong-Lan Nguyen. So many WAM Variations, so
little Time. In Computational Logic - CL2000, First International Con-
ference, Proceedings, volume 1861 of Lecture Notes in Artificial Intelli-
gence, pages 1240–1254. ALP, Springer, 2000. ↑79

[37] Bart Demoen and Phuong-Lan Nguyen. Two WAM implementations of
action rules. volume 5366 of LNCS, pages 621–635, December 2008. ↑93

[38] Bart Demoen and Konstantinos Sagonas. Cat: The copying approach to
tabling. In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, editors,
Principles of Declarative Programming, volume 1490 of Lecture Notes in
Computer Science, pages 21–35. Springer Berlin Heidelberg, 1998. ↑150,
↑153, ↑175

[39] Bart Demoen and Konstantinos Sagonas. Chat: The copy-hybrid ap-
proach to tabling. In Gopal Gupta, editor, Practical Aspects of Declar-
ative Languages, volume 1551 of Lecture Notes in Computer Science,
pages 106–121. Springer Berlin Heidelberg, 1998. ↑153, ↑177

[40] Bart Demoen, Tom Schrijvers, and Benoit Desouter. Delimited continua-
tions in Prolog: semantics, use and implementation in the WAM. Report
CW 631, Dept. of Computer Science, KU Leuven, Belgium, 2013. ↑97

[41] Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the imple-
mentation of GNU-Prolog. Theory and Practice of Logic Programming,
12(1-2):253–282, 2012. ↑30, ↑136

[42] Suzanne Wagner Dietrich. Extension Tables for Recursive Query Evalu-
ation. PhD thesis, Stony Brook, NY, USA, 1987. AAI8815786. ↑155

[43] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class
continuations in ML. In Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’91,
pages 163–173, New York, NY, USA, 1991. ACM. ↑62

[44] Martin Erwig. Escape from Zurg: an exercise in logic programming. J.
Funct. Program., 14(3):253–261, May 2004. ↑135

[45] Changguan Fan and Suzanne Wagner Dietrich. Extension table built-
ins for Prolog. Software: Practice and Experience, 22(7):573–597, 1992.
↑155, ↑175

230 BIBLIOGRAPHY

[46] Mattias Felleisen. The theory and practice of first-class prompts. In Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’88, pages 180–190. ACM, 1988. ↑61,
↑62, ↑137

[47] Andrzej Filinski. Monads in action. In Manuel V. Hermenegildo and
Jens Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2010),
pages 483–494. ACM, 2010. ↑60

[48] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.
Adding delimited and composable control to a production programming
environment. SIGPLAN Not., 42(9):165–176, October 2007. ↑62

[49] Juliana Freire, Rui Hu, Terrance Swift, and David S. Warren. Pro-
gramming Languages: Implementations, Logics and Programs: 7th In-
ternational Symposium, PLILP ’95 Utrecht, The Netherlands, September
20–22, 1995 Proceedings, chapter Exploiting parallelism in tabled eval-
uations, pages 115–132. Springer Berlin Heidelberg, 1995. ↑205

[50] Yoshihiko Futamura. Partial evaluation of computation process — an
approach to a compiler-compiler. Higher-Order and Symbolic Computa-
tion, 12(4):381–391, 1999. ↑76

[51] Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational
reasoning. In Proc. ICFP, pages 2–14. ACM, 2011. ↑102, ↑138

[52] George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen Weijers.
Bringing back monad comprehensions. In Proceedings of the 4th ACM
symposium on Haskell, Haskell ’11, pages 13–22. ACM, 2011. ↑138

[53] Hai-Feng Guo and Gopal Gupta. A simple scheme for implementing
tabled logic programming systems based on dynamic reordering of al-
ternatives. In Proceedings of ICLP’01, pages 181–196. Springer, 2001.
↑143, ↑145, ↑146, ↑155, ↑196

[54] Hai-Feng Guo and Gopal Gupta. Cuts in tabled logic programming. In
Bart Demoen, editor, Proceedings of the Colloqium on Implementation of
Constraint and Logic Programming Systems (CICLOPS), pages 62–73,
2002. ↑151

[55] Hai-Feng Guo and Gopal Gupta. An efficient and flexible engine for
computing fixed points. CoRR, abs/cs/0412041, 2004. ↑147, ↑155

BIBLIOGRAPHY 231

[56] Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via
tabling. In Bharat Jayaraman, editor, Practical Aspects of Declarative
Languages, volume 3057 of Lecture Notes in Computer Science, pages
163–177. Springer, 2004. ↑182, ↑183, ↑184, ↑196

[57] Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via
mode-directed tabling. Software: Practice and Experience, 38(1):75–94,
2008. ↑183, ↑196, ↑197

[58] Gopal Gupta, Enrico Pontelli, Khayri A.M. Ali, Mats Carlsson, and
Manuel V. Hermenegildo. Parallel execution of Prolog programs: A
survey. ACM Trans. Program. Lang. Syst., 23(4):472–602, July 2001.
↑205

[59] Rémy Haemmerlé and Francois Fages. Modules for Prolog Revisited.
Research Report RR-5869, INRIA, 2006. ↑206

[60] Amr Hany Saleh. Transforming delimited control: Achieving faster effect
handlers. In Proceedings of the Technical Communications of the 31st
International Conference on Logic Programming, 2015. ↑99, ↑204

[61] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy
search. In Proceedings of the 15th International Joint Conferences on
Artificial Intelligence (IJCAI 1995), pages 607–613, 1995. ↑37

[62] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-
Garćıa, Edison Mera, José F. Morales, and German Puebla. An overview
of Ciao and its design philosophy. Theory and Practice of Logic Program-
ming, 12(1-2):219–252, 2012. ↑30, ↑136, ↑148, ↑174, ↑193

[63] Patricia Hill and John Wylie Lloyd. The Gödel programming language.
MIT press, 1994. ↑206

[64] Ralf Hinze. Prological Features In A Functional Setting — Axioms And
Implementations. In Third Fuji Int. Symp. on Functional and Logic
Programming, pages 98–122, 1998. ↑135

[65] Ralf Hinze. Deriving backtracking monad transformers. SIGPLAN Not.,
35(9):186–197, September 2000. ↑135

[66] Christian Holzbaur. Meta-structures vs. Attributed Variables in the Con-
text of Extensible Unification. volume 631 of LNCS, pages 260–268,
August 1992. ↑93

232 BIBLIOGRAPHY

[67] Masaki Hoshida and Mario Tokoro. Logic Programming ’88: Proceedings
of the 7th Conference Tokyo, Japan, April 11–14, 1988, chapter ALEX:
The logic programming language with explicit control and without cut-
operators, pages 82–95. Springer Berlin Heidelberg, 1989. ↑206

[68] G. Hutton and D. Fulger. Reasoning About Effects: Seeing the Wood
Through the Trees. In Pre-proceedings of the Symposium on Trends in
Functional Programming, 2008. Unpublished, available at http://www.
cs.nott.ac.uk/~gmh/effects.pdf. ↑102

[69] Dragan Ivanovic, José Francisco Morales Caballero, Manuel Carro, and
Manuel Hermenegildo. Towards structured state threading in Prolog. In
CICLOPS 2009, 2009. ↑61

[70] R. James and A. Sabry. Yield: Mainstream delimited continuations. In
First International Workshop on the Theory and Practice of Delimited
Continuations (TPDC 2011), 2011. ↑95, ↑96

[71] Mauro Jaskelioff and Eugenio Moggi. Monad transformers as monoid
transformers. Theor. Comput. Sci., 411(51-52):4441–4466, December
2010. ↑96, ↑138

[72] Ernie Johnson, C.R. Ramakrishnan, I.V. Ramakrishnan, and Prasad
Rao. A space efficient engine for subsumption-based tabled evaluation
of logic programs. In Aart Middeldorp and Taisuke Sato, editors, Func-
tional and Logic Programming, volume 1722 of Lecture Notes in Com-
puter Science, pages 284–299. Springer Berlin Heidelberg, 1999. ↑156,
↑157

[73] Mark P. Jones. Functional programming with overloading and higher-
order polymorphism. In Johan Jeuring and Erik Meijer, editors, Ad-
vanced Functional Programming, volume 925 of Lecture Notes in Com-
puter Science, pages 97–136. Springer Berlin Heidelberg, 1995. ↑107

[74] Mark P. Jones and Luc Duponcheel. Composing monads. Research Re-
port YALEU/DCS/RR-1004, Yale University, Department of Computer
Science, New Haven, Connecticut, December 1993. ↑60

[75] Nenad Jovanovic. Lattice tutorial, 2005. Last viewed on July 29,
2015 at https://www.iseclab.org/people/enji/infosys/lattice_

tutorial.pdf. ↑185

http://www.cs.nott.ac.uk/~gmh/effects.pdf
http://www.cs.nott.ac.uk/~gmh/effects.pdf
https://www.iseclab.org/people/enji/infosys/lattice_tutorial.pdf
https://www.iseclab.org/people/enji/infosys/lattice_tutorial.pdf

BIBLIOGRAPHY 233

[76] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action.
In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional programming, ICFP ’13, pages 145–158. ACM, 2013. ↑102,
↑137

[77] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query
languages. Journal of Computer and System Sciences, 51(1):26–52, 1995.
↑199

[78] Steven Keuchel and Tom Schrijvers. Towards efficient implementations
of effect handlers. In IFL 2014, 2014. ↑6

[79] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Christina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP 1997), pages 220–242, 1997.
↑58

[80] Oleg Kiselyov. Delimited control in OCaml, abstractly and concretely:
System description. In Matthias Blume, Naoki Kobayashi, and Germán
Vidal, editors, Functional and Logic Programming, volume 6009 of Lec-
ture Notes in Computer Science, pages 304–320. Springer Berlin Heidel-
berg, 2010. ↑95

[81] Oleg Kiselyov. Iteratees. volume 7294 of LNCS, pages 166–181, 2012.
↑65

[82] Oleg Kiselyov, Simon Peyton-Jones, and Amr Sabry. Lazy vs. yield:
Incremental, lazy pretty-printing. In APLAS, 2012. ↑65

[83] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an
alternative to monad transformers. In Proceedings of the 2013 ACM
SIGPLAN symposium on Haskell, Haskell ’13, pages 59–70. ACM, 2013.
↑102, ↑137

[84] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry.
Backtracking, interleaving, and terminating monad transformers. In
Proc. ICFP’05, pages 192–203. ACM, 2005. ↑135

[85] Robert Kowalski. Predicate logic as programming language. In Pro-
ceedings of International Federation for Information Processing (IFIP),
pages 569–574, 1974. ↑3, ↑13

234 BIBLIOGRAPHY

[86] Robert Kowalski. Logic for Problem Solving. North-Holland, 1979. ↑1,
↑11

[87] Bill Lawvere. Functorial semantics of algebraic theories. Proceedings
of the National Academy of Sciences of the United States of America,
50(1):869–872, 1963. ↑102

[88] S. Le Houitouze. A New Data Structure for Implementing Extensions to
Prolog. volume 456 of LNCS, pages 136–150, August 1990. ↑93

[89] Vladimir Lifschitz. What is answer set programming? In Proceedings
of the 23rd National Conference on Artificial Intelligence - Volume 3,
AAAI’08, pages 1594–1597. AAAI Press, 2008. ↑1

[90] Barbara Liskov. History of programming languages — II. chapter A
History of CLU, pages 471–510. ACM, 1996. ↑65

[91] J. W. Lloyd. Foundations of Logic Programming, chapter 1: Declarative
Semantics. Springer-Verlag New York, 1984. ↑185, ↑191

[92] Wolfgang Lohmann, Günter Riedewald, and Guido Wachsmuth. Aspect-
Orientation in Prolog. In Proceedings of the 16th International Sympo-
sium on Logic-based Program Synthesis and Transformation, 2006. ↑58

[93] Wolfgang Lux. Implementing encapsulated search for a lazy functional
logic language. In Fuji International Symposium on Functional and Logic
Programming, volume 1722 of Lecture Notes in Computer Science, pages
100–113. Springer, 1999. ↑135

[94] Moe Masuko and Kenichi Asai. Direct implementation of shift and reset
in the MinCaml compiler. ML’09, pages 49–60, 2009. ↑95

[95] Moe Masuko and Kenichi Asai. Caml Light+ shift/reset= Caml Shift.
Theory and Practice of Delimited Continuations (TPDC 2011), pages
33–46, 2011. ↑95

[96] Conor McBride. The Frank manual, May 2012. Last viewed
on 07/12/2015 at https://personal.cis.strath.ac.uk/conor.

mcbride/pub/Frank/TFM.pdf. ↑95, ↑102, ↑137

[97] Edison Mera and Jan Wielemaker. Porting and refactoring Prolog pro-
grams: the PROSYN case study. Theory and Practice of Logic Program-
ming, 13(4-5 Online Supplement), 2013. ↑206

https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/TFM.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/TFM.pdf

BIBLIOGRAPHY 235

[98] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–
51, October 1992. ↑2

[99] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1),
1991. ↑71

[100] Robert C. Moore. Removing left recursion from context-free grammars.
In Proceedings of the 1st North American Chapter of the Association for
Computational Linguistics Conference, NAACL 2000, pages 249–255.
Association for Computational Linguistics, 2000. ↑143

[101] Chris Moss. Third International Conference on Logic Programming: Im-
perial College of Science and Technology, London, United Kingdom, July
14–18, 1986 Proceedings, chapter Cut & Paste — defining the impure
primitives of Prolog, pages 686–694. Springer Berlin Heidelberg, 1986.
↑205

[102] Mozilla.org. Javascript 1.7, 2006. https://developer.mozilla.org/

en/New_in_JavaScript_1.7. ↑96

[103] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and
G. Tack. MiniZinc: Towards a standard CP modelling language.
4741:529–543, 2007. ↑136

[104] U. Neumerkel. Extensible unification by metastructures. In META’90,
pages 352–364, April 1990. ↑93

[105] Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming.
Information and Computation, 101(2):150 – 201, 1992. ↑1

[106] Thomas Nordin and Andrew Tolmach. Modular lazy search for
constraint satisfaction problems. J. Funct. Program., 11(5):557–587,
September 2001. ↑136

[107] N. S. Papaspyrou. A Resumption Monad Transformer and its Applica-
tions in the Semantics of Concurrency. Technical Report CSD-SW-TR-
2-01, National Technical University of Athens, 2001. ↑96, ↑138

[108] Fernando C.N. Pereira and David H.D. Warren. Definite clause gram-
mars for language analysis – A survey of the formalism and a comparison
with augmented transition networks. Artificial Intelligence, 13(3):231 –
278, 1980. ↑22, ↑61

https://developer.mozilla.org/en/New_in_JavaScript_1.7
https://developer.mozilla.org/en/New_in_JavaScript_1.7

236 BIBLIOGRAPHY

[109] Tomas Petricek, Alan Mycroft, and Don Syme. Extending monads with
pattern matching. In Proc. Haskell’11, pages 1–12. ACM, 2011. ↑138

[110] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In
Proceedings of the 18th European Symposium on Programming Lan-
guages and Systems: Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, ESOP ’09, pages
80–94. Springer-Verlag, 2009. ↑71, ↑102, ↑137

[111] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Log-
ical Methods in Computer Science, 9(4), 2013. ↑179

[112] Matija Pretnar. An introduction to algebraic effects and handlers. In
Proceedings of the 31st conference on the Mathematical Foundations of
Programming Semantics, Electronic notes in theoretical computer sci-
ence, 2015. ↑95

[113] João Raimundo and Ricardo Rocha. Global trie for subterms. Online
Proceedings of the 11th International Colloquium on Implementation of
Constraint Logic Programming Systems (CICLOPS 2011), 2011. ↑151,
↑176

[114] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Scott A.
Smolka, Terrance Swift, and David S. Warren. Efficient model checking
using tabled resolution. In Orna Grumberg, editor, Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science, pages
143–154. Springer Berlin Heidelberg, 1997. ↑145

[115] I.V Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift,
and David S. Warren. Efficient access mechanisms for tabled logic pro-
grams. The Journal of Logic Programming, 38(1):31 – 54, 1999. ↑146,
↑149, ↑150, ↑181

[116] R. Ramesh and Weidong Chen. A portable method for integrating SLG
resolution into Prolog systems. In Proceedings of the 1994 International
Symposium on Logic Programming, ILPS ’94, pages 618–632, Cambridge,
MA, USA, 1994. MIT Press. ↑156

[117] Prasad Rao, C. R. Ramakrishnan, and I.V. Ramakrishnan. On the
nonexistence of optimal scheduling strategies for tabled resolution. ↑152

[118] Prasad Rao, C. R. Ramakrishnan, and I.V. Ramakrishnan. A thread in
time saves tabling time. In Joint International Conference/Symposium
on Logic Programming (JICSLP). MIT Press, 1996. ↑157

BIBLIOGRAPHY 237

[119] Andrea Rendl, Tias Guns, Peter J. Stuckey, and Guido Tack.
MiniSearch: A solver-independent meta-search language for MiniZinc.
In Proceedings of Principles and Practice of Constraint Programming —
21st International Conference (CP 2015), pages 376–392, 2015. ↑136

[120] Fabrizio Riguzzi and Terrance Swift. Tabling and answer subsumption
for reasoning on logic programs with annotated disjunctions. In Proceed-
ings of the 17th RCRA International Workshop on Experimental Evalu-
ation of Algorithms for Solving Problems with Combinatorial Explosion,
Bologna, Italy, June 10-11, 2010, volume 616 of CEUR Workshop Pro-
ceedings, Aachen, Germany, 2010. Sun SITE Central Europe. ↑198, ↑199

[121] Ricardo Rocha. Handling incomplete and complete tables in tabled logic
programs. In Sandro Etalle and Miroslaw Truszczynski, editors, Logic
Programming, 22nd International Conference, ICLP 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, volume 4079 of Lecture Notes in
Computer Science, pages 427–428. Springer, 2006. ↑151

[122] Ricardo Rocha. On improving the efficiency and robustness of table
storage mechanisms for tabled evaluation. In Proceedings of the 9th
International Conference on Practical Aspects of Declarative Languages,
PADL ’07, pages 155–169, Berlin, Heidelberg, 2007. Springer-Verlag.
↑151

[123] Ricardo Rocha, Nuno Fonseca, and Vı́tor Santos Costa. On applying
tabling to inductive logic programming. In Machine Learning: ECML
2005, volume 3720 of Lecture Notes in Computer Science, pages 707–714.
Springer Berlin Heidelberg, 2005. ↑151

[124] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. Or-parallelism
within tabling. 1999. ↑205

[125] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. YapTab: A
tabling engine designed to support parallelism. In Conference on Tabu-
lation in Parsing and Deduction, pages 77–87, 2000. ↑176

[126] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. Logic Pro-
gramming: 17th International Conference, ICLP 2001 Paphos, Cyprus,
November 26 – December 1, 2001 Proceedings, chapter On a Tabling
Engine That Can Exploit Or-Parallelism, pages 43–58. Springer Berlin
Heidelberg, 2001. ↑205

238 BIBLIOGRAPHY

[127] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. On applying
or-parallelism and tabling to logic programs. CoRR, cs.LO/0308007,
2003. ↑205

[128] Konstantinos Sagonas and Peter J. Stuckey. Just enough tabling. In Pro-
ceedings of the 6th ACM SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming, PPDP ’04, pages 78–89,
New York, NY, USA, 2004. ACM. ↑146, ↑147, ↑148, ↑151, ↑154, ↑158

[129] João Santos and Ricardo Rocha. On the efficient implementation of
mode-directed tabling. In Kostis Sagonas, editor, Practical Aspects of
Declarative Languages, volume 7752 of Lecture Notes in Computer Sci-
ence, pages 141–156. Springer Berlin Heidelberg, 2013. ↑183, ↑196

[130] Vı́tor Santos Costa, Ricardo Rocha, and Lúıs Damas. The YAP Prolog
system. Theory and Practice of Logic Programming, 12(1-2):5–34, 2012.
↑59, ↑82, ↑148, ↑158, ↑161, ↑162, ↑174, ↑193

[131] Peter Schachte. Global variables in logic programming. In Proceedings of
the International Conference on Logic Programming (ICLP 1997), pages
3–17, 1997. ↑57

[132] Joachim Schimpf. Logical loops. volume 2401 of LNCS, pages 224–238,
2002. ↑61

[133] Joachim Schimpf and Kish Shen. ECLiPSe From LP to CLP. Theory
and Practice of Logic Programming, 12(1-2):127–156, 2012. ↑28, ↑30,
↑136

[134] Tom Schrijvers, Bart Demoen, Markus Triska, and Benoit Desouter.
Tor: Modular search with hookable disjunction. Science of Computer
Programming, 84(0):101 – 120, 2014. ↑136

[135] Tom Schrijvers, Bart Demoen, and David Scott Warren. TCHR: A
framework for tabled CHR. Theory and Practice of Logic Programming,
8(4):491–526, Jul 2008. ↑199

[136] Tom Schrijvers, Vı́tor Santos Costa, Jan Wielemaker, and Bart Demoen.
Towards typed Prolog. In Maria Garcia de la Banda and Enrico Pontelli,
editors, Logic Programming, volume 5366 of Lecture Notes in Computer
Science, pages 693–697. Springer Berlin Heidelberg, 2008. ↑206

BIBLIOGRAPHY 239

[137] Tom Schrijvers, Peter Stuckey, and Philip Wadler. Monadic con-
straint programming. Journal of Functional Programming, 19(6):663–
697, November 2009. ↑57, ↑136

[138] Tom Schrijvers, Guido Tack, Pieter Wuille, Horst Samulowitz, and Peter
Stuckey. Search Combinators. In Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming (CP
2011), pages 774–788. Springer, 2011. ↑57

[139] Tom Schrijvers, Guido Tack, Pieter Wuille, Horst Samulowitz, and Peter
Stuckey. Search combinators. Constraints, 18(2):269–305, 2013. ↑136

[140] Christian Schulte et al. Gecode, the generic constraint development
environment, 2013. http://www.gecode.org/, accessed March 2013.
↑57

[141] Alexander Serebrenik, Tom Schrijvers, and Bart Demoen. Improving
Prolog programs: Refactoring for Prolog. Theory and Practice of Logic
Programming, 8(2):201–215, March 2008. ↑206

[142] Silvija Seres, Michael Spivey, and Tony Hoare. Algebra of logic pro-
gramming. In International Conference on Logic Programming, pages
184–199. Palgrave MacMillan, 1999. ↑135

[143] Marek Sergot. Minimal models and fixpoint semantics for defi-
nite logic programs, January 2005. Last viewed on 04/02/2016
at https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/

Fixpoint_Definite_491-2x1.pdf. ↑144

[144] Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta, Luis Que-
sada, and Mats Carlsson. A generic visualization platform for CP. In
David Cohen, editor, Proceedings of Principles and Practice of Con-
straint Programming — CP 2010, volume 6308 of Lecture Notes in Com-
puter Science, pages 460–474. Springer, 2010. ↑49

[145] Dorai Sitaram. Handling control. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation,
PLDI ’93, pages 147–155, New York, NY, USA, 1993. ACM. ↑62, ↑128

[146] Zoltan Somogyi and Konstantinos Sagonas. Tabling in Mercury: Design
and implementation. In Pascal Hentenryck, editor, Practical Aspects
of Declarative Languages, volume 3819 of Lecture Notes in Computer
Science, pages 150–167. Springer Berlin Heidelberg, 2006. ↑157

http://www.gecode.org/
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_491-2x1.pdf
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_491-2x1.pdf

240 BIBLIOGRAPHY

[147] John Michael Spivey. Algebras for combinatorial search. J. Funct. Pro-
gram., 19(3-4):469–487, July 2009. ↑135, ↑138

[148] L. S. Sterling and M. Kirschenbaum. Applying techniques to skeletons.
In Constructing Logic Programs, pages 127–140. John Wiley, 1993. ↑4,
↑69

[149] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Pro-
gramming Techniques, chapter Foreword by D.H.D. Warren. MIT Press,
Cambridge, MA, 2nd edition, 1994. ↑4

[150] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Program-
ming Techniques. MIT Press, Cambridge, MA, 2nd edition, 1994. ↑21,
↑23, ↑49

[151] Terrance Swift and David S. Warren. Tabling with answer subsump-
tion: Implementation, applications and performance. In Tomi Janhunen
and Ilkka Niemelä, editors, Logics in Artificial Intelligence, volume 6341
of Lecture Notes in Computer Science, pages 300–312. Springer Berlin
Heidelberg, 2010. ↑181, ↑182, ↑183, ↑194, ↑195

[152] Terrance Swift and David S. Warren. XSB: Extending Prolog with tabled
logic programming. Theory and Practice of Logic Programming, 12(1-
2):157–187, January 2012. ↑59, ↑79, ↑148, ↑152, ↑174, ↑193

[153] Terrance Swift and David Scott Warren. The XSB System – Volume 1:
Programmer’s Manual, pages 91–94. Version 3.6.x edition, April 2015.
↑146

[154] Terrance Swift and David Scott Warren. The XSB System – Volume 1:
Programmer’s Manual, pages 80–136. Version 3.6.x edition, April 2015.
↑153

[155] Terrance Swift and David Scott Warren. The XSB System – Volume 1:
Programmer’s Manual, pages 24–30. Version 3.6.x edition, April 2015.
↑206

[156] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In
Ehud Shapiro, editor, Third International Conference on Logic Program-
ming, volume 225 of Lecture Notes in Computer Science, pages 84–98.
Springer Berlin Heidelberg, 1986. ↑147

BIBLIOGRAPHY 241

[157] Paul Tarau. The BinProlog experience: Architecture and implementa-
tion choices for continuation passing Prolog and first-class logic engines.
TPLP, 12(1-2):97–126, 2012. ↑62, ↑91, ↑92, ↑97, ↑179

[158] Paul Tarau and Veronica Dahl. Logic Programming and Logic Grammars
with First-order Continuations. In LOPSTR ’94, volume 883, June 1994.
↑91, ↑179

[159] Christian Theil Have and Henning Christiansen. Efficient tabling of
structured data using indexing and program transformation. In Clau-
dio Russo and Neng-Fa Zhou, editors, Practical Aspects of Declarative
Languages, volume 7149 of Lecture Notes in Computer Science, pages
93–107. Springer Berlin Heidelberg, 2012. ↑151

[160] Dave Thomas and Andrew Hunt. Programming Ruby: the Pragmatic
Programmer’s Guide. Addison-Wesley Longman Publishing Co., Inc.,
2000. ↑96

[161] David Toman. Memoing evaluation for constraint extensions of Datalog.
Constraints, 2(3-4):337–359, 1997. ↑199

[162] Markus Triska. The finite domain constraint solver of SWI-Prolog.
In Proceedings of the 11th International Symposium on Functional and
Logic Programming (FLOPS 2012), pages 307–316, 2012. ↑28

[163] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23(4):733–742, October 1976.
↑144, ↑145

[164] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local
Search. MIT Press, 2005. ↑57, ↑137

[165] Pascal Van Hentenryck and Laurent Michel. Nondeterministic control
for hybrid search. Constraints, 11(4):353–373, 2006. ↑57, ↑137

[166] Peter Van Roy. A useful extension to Prolog’s definite clause grammar
notation. 24(11):132–134, 1989. ↑61

[167] Maarten W. Van Someren. Understanding students’ errors with Prolog
unification. Instructional Science, 19(4-5):361–376, 1990. ↑12

[168] Alexander Vandenbroucke, Tom Schrijvers, and Frank Piessens. Fixing
non-determinism. ↑157, ↑187, ↑198

242 BIBLIOGRAPHY

[169] Alexander Vandenbroucke, Tom Schrijvers, and Frank Piessens. The
table monad in Haskell. In IFL 2015, 2015. ↑157, ↑198

[170] P. Wadler. The essence of functional programming. In POPL ’92: 19th
Symposium on Principles of Programming Languages, pages 1–14, 1992.
↑101

[171] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, SRI, 1983. ↑4, ↑17, ↑79, ↑177

[172] Jan Wielemaker and Ulrich Neumerkel. Precise garbage collection in
Prolog. In CICLOPS ’08, pages 1–15, 2008. ↑85

[173] Jan Wielemaker and Vı́tor Santos Costa. Practical Aspects of Declarative
Languages: 13th International Symposium, PADL 2011, Austin, TX,
USA, January 24-25, 2011. Proceedings, chapter On the Portability of
Prolog Applications, pages 69–83. Springer Berlin Heidelberg, 2011. ↑206

[174] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
SWI-Prolog. THEORY AND PRACTICE OF LOGIC PROGRAM-
MING, 12(1-2):67–96, 2012. ↑28, ↑84, ↑207

[175] Neng-Fa Zhou. The language features and architecture of B-Prolog.
Theory and Practice of Logic Programming, 12(1-2):189–218, 2012. ↑30,
↑136, ↑148, ↑174, ↑193

[176] Neng-Fa Zhou and Jonathan Fruhman. A User’s Guide to Picat, 1.2
edition, June 2015. ↑158

[177] Neng-Fa Zhou, Y. Kameya, and T. Sato. Mode-directed tabling for
dynamic programming, machine learning, and constraint solving. In
Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, volume 2, pages 213–218, Oct 2010. ↑183, ↑196

[178] Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling strate-
gies and optimizations. Theory and Practice of Logic Programming,
8(01):81–109, 2008. ↑154

[179] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Imple-
mentation of a linear tabling mechanism. In Enrico Pontelli and Vı́tor
Santos Costa, editors, Practical Aspects of Declarative Languages, vol-
ume 1753 of Lecture Notes in Computer Science, pages 109–123. Springer
Berlin Heidelberg, 2000. ↑151, ↑154

BIBLIOGRAPHY 243

[180] Neng-Fa Zhou and Christian Theil Have. Efficient tabling of structured
data with enhanced hash-consing. Theory and Practice of Logic Pro-
gramming, 12:547–563, 7 2012. ↑149

[181] David Zook, Emir Pasalic, and Beata Sarna-Starosta. Practical Aspects
of Declarative Languages: 11th International Symposium, PADL 2009,
Savannah, GA, USA, January 19-20, 2009. Proceedings, chapter Typed
Datalog, pages 168–182. Springer Berlin Heidelberg, 2009. ↑206

244 BIBLIOGRAPHY

List of Figures

2.1 Resolution tree for the query ancestor(X,bill) 15
2.2 Function of the local stack (part 1) 18
2.3 Function of the local stack (part 2) 18
2.4 Function of the local stack (part 3) 19
2.5 Function of the choicepoint and trail stacks (part 1) 20
2.6 Function of the choicepoint and trail stacks (part 2) 20
2.7 Implementing unification by pointer aliasing 20
2.8 A vanilla meta-interpreter for Prolog 21

3.1 Labeling predicate with and without depth bound 28
3.2 Search trees of tor merge(dbs tree(4),tor label([X,Y])) . 33
3.3 Visualizing a Tor search tree 48
3.4 Search trees of 8-queens with depth bound 4 and 7 49

4.1 Illustrating the semantics of reset/3 and shift/1 63
4.2 Some example iterators and iteratees 65
4.3 Definition of yield/1 and ask/1 66
4.4 Providing a context for iterators and iteratees with handlers . . 66
4.5 Definition of the transduce/2 predicate 70
4.6 Effect handler for state, respectively DCGs 72
4.7 Example Prolog and WAM code 83
4.8 The local stack and the E and P pointers at the moment shift/1

is called . 84
4.9 Illustrating the scope of cut in a captured continuation 88
4.10 Original action rules example 94

245

246 LIST OF FIGURES

4.11 Action rules expressed using delimited control 94

5.1 The n-queens search problem: plain and with depth bound . . 103
5.2 Type correctness of fold over f ?m a (1) 109
5.3 Type correctness of fold over f ?m a (2) 110
5.4 Type correctness of f ?m a monad instance (1) 111
5.5 Type correctness of f ?m a monad instance (2) 112
5.6 Type correctness of f ?m a monad instance (3) 113
5.7 Type correctness of step (1) . 115
5.8 Type correctness of step (2) . 115
5.9 Type correctness of alg ′ . 116
5.10 Search heuristics expressed as entwined trees 124
5.11 Prolog meta-interpreter supporting entwine/2 127

6.1 SLD-resolution gets trapped due to cyclic input data 142
6.2 SLD-resolution gets trapped due to left recursion 143
6.3 The structure of a trie . 150

7.1 Running example: transitive closure 162
7.2 Result of the transformation triggered by table/2 163
7.3 The table/2 predicate . 163
7.4 Handling the leader call . 164
7.5 Handling a follower call . 165
7.6 Activation . 165
7.7 Delimited execution . 166
7.8 The completion fixpoint . 167
7.9 Combining answers and dependencies in a local worklist 170
7.10 Illustration of the computation of r(a,Y) 171

8.1 Commutative diagram relating α and
⊔

. 189
8.2 Commutative diagram relating α, ∪ and t 189
8.3 Example situation where is - not antisymmetric 190
8.4 Example situation where is --- not antisymmetric 191
8.5 Visualising our requirements on α′ and γ 193

List of Tables

3.1 Labeling benchmarks without propagation 52
3.2 Labeling benchmarks with propagation 53
3.3 N-Queens benchmarks with various search methods 55

4.1 Benchmark results for shifting and calling continuations 98

5.1 Prolog model in Haskell . 106
5.2 Interpretation of delimited continuations in Prolog 132

7.1 Code size in lines of code . 174
7.2 Results of the performance benchmarks 175

8.1 Summary of the framework instances (part 1) 194
8.2 Summary of the framework instances (part 2) 196

247

Index

Answer Return, 148
CP-Viz, 49
Completion, 148
New Answer, 148, 149
New Subgoal, 148
Program Clause Resolution, 148
8-queens, 48

abstract syntax tree, 107
abstract type, 104
activation, 165
answer trie, 169
answer variance, 181
answer/dependency pair, 168, 172
anti-pattern, 29
antisymmetry, 185
archetypal search tree, 120
argument register, 79
arity, 12
aspect-oriented programming, 58
attributed variable, 93

B-Prolog, 30, 154
backtracking, 119
backwards chaining, 145
batched scheduling, 151

big integer, 176
binarization, 91
BinProlog, 91
body, 12, 16
branch-and-bound, 30, 40
breadth-first, 30
bridge predicate, 156
builtin, 104

C], 96
call trie, 168
choice method, 30
choicepoint stack, 17, 79
choicepoint stealing, 154
Ciao, 30
CLP(FD), 28
code scanning, 85
complete lattice, 187
completion, 167
compositionality, 29, 30, 35
compound term, 145
concurrency, 92
constant, 12
constraint logic programming, 27, 93
constraint propagation, 49
constraint propagator, 51

248

INDEX 249

constraint variable, 51
consumer, 67
continuation, 63, 107, 117, 166
continuation chunk, 81
continuation frame, 74
continuation pointer, 81
continuation-passing style, 62, 74
copy-paste-modify, 29, 104
coroutine, 64
coroutine monad, 95
cut stack, 158
cut-operator, 151

Datalog, 145
DCG, 72
decoupling, 34
default value, 80
definite clause grammar, 72
definite program, 16
delimited continuations monad trans-

former, 129
delimited control, 126, 131
denotational semantics, 144
dependency, 166, 170
depth-bounded search, 32, 44, 117
dequeue, 169
discrepancy-bounded search, 36, 118
domain-specific language, 120

ECLiPSe, 28, 30, 45
effect handler, 101, 106
entwine, 121
environment pointer, 81
environment stack, 17, 79
equivalence relation, 183
expression, 96
extension table, 155, 161
extraction, 42

fact, 12

failure-bounded search, 119
fixpoint, 109
floundering, 153
follower, 164
forward trail, 147
frame, 85
free monad, 96, 107
free monad transformer, 102, 108, 125,

129
free variable, 79
freeze register, 147
functor, 12
Futamura, 76

garbage collection, 24
genetic algorithms, 31
global worklist, 168
GNU Prolog, 30
goal, 13, 14
goal ordering, 14
greatest lower bound, 186
ground, 12

handler, 41, 67, 102
hash table, 176
head, 12, 16
heap backtrack pointer, 24
Herbrand base, 144
Herbrand interpretation, 144
higher-order search method, 44
hook, 41
Horn clause program, 16
hProlog, 79

immediate consequence operator, 144
infimum, 186
injection, 188
instantiation, 93
intercept, 163
interface, 102

250 INDEX

isomorphism, 102, 129
iteratee, 65
iterative deepening, 30, 36, 123
iterator, 65

JavaScript, 96
join, 186

Kowalski, 11, 121

lattice, 186
leader, 164
least element, 187
least fixpoint, 145, 164, 166, 172
least Herbrand model, 145
least upper bound, 186
left distributivity, 106
left zero, 105
LEV, 82
limited discrepancy search, 37
live environment variable, 82
local scheduling, 152
local search, 31
local stack, 17
local worklist, 169
logic engine, 92
lower bound, 186
LRU-strategy, 151

maximum resident set size, 176
meet, 186
Mercury, 157
merge, 32
meta-interpreter, 21, 126, 133
modularity, 28, 33
monad, 101
monoid, 106, 116, 121
monotonicity, 191
morphism, 189
muddle, 123

multi-headed clause, 91
multi-threading, 92
multi-way disjunctions, 134
mutable reference, 118
mutable term, 169

negation, 16
node-bounded search, 39, 118
non-backtrackable mutation, 169
non-termination, 166
nonstratification, 153
normalisation, 42, 130
numbervars, 146, 181

observation, 47
opaque, 102
optimization, 30
overlay, 32
overload, 114

parallel search, 45
parallelism, 155
parallelization, 158
Pareto frontier, 192
partial order relation, 185
partially ordered set, 185
Picat, 158
poset, 185
possibly-negated-context stack, 158
preorder, 190
producer, 67
program specialization, 56
program transformation, 30, 76, 161,

162
prompt applications, 62
proper tabling, 154
prune, 29
Python, 96

query, 13

INDEX 251

recomputation, 154
reference cell, 24
reflexivity, 185
register, 147
reset marker, 80
resumption monad, 96
retroactive subsumption, 157
Ruby, 96
rule, 12
rule ordering, 14

satisfiable, 13
scheduling component, 164
scheduling strategy, 151
search method, 30, 31
search tree, 31
second Futamura projection, 76
semantics, 101, 104
semi-naive evaluation, 145
SICStus, 30
simulated annealing, 31
SLD-resolution, 13, 141
SLDT-resolution, 154
SLG-resolution, 145
stack unwinding, 80
statement, 96
step monad, 96
strongly connected component, 177
substitution factoring, 150, 177
subsumption-based tabling, 156
supremum, 186
swapping evaluation, 152, 154
syntax, 117
syntax tree, 102

tagging scheme, 149
term, 12
time-stamped trie, 157
totality, 185
trail stack, 17

transducer, 65
transitivity, 185
trie, 149
tying the knot, 108

unification factoring, 150
upper bound, 186

value selection, 34
variable selection, 34
variance, 146

WAM, 17
wolf-goat-cabbage problem, 49
worker, 162
wrapper, 163

ZIP, 84

	Acknowledgements
	Introduction
	The Purpose and Structure of this Dissertation
	Scientific Output

	Goal-directed Logic Programming
	Introduction
	Vanilla Meta-Interpreter
	Definite Clause Grammars
	Nonbacktrackable Variables and Mutation
	Global Nonbacktrackable Variables
	Nonbacktrackable Mutation

	Modular Search
	Introduction
	Problem Statement
	Problems with this Approach
	Current Solutions

	Solution Overview
	User Perspective
	Modularity Aspects

	Search Method Library
	Discrepancy-Bounded Search
	Iterative Deepening
	Limited Discrepancy Search and Factored Iteration
	Branch-and-Bound Optimization
	More Search Methods

	Tor Infrastructure Implementation
	Hookable Disjunction
	From Search Methods to Handlers
	Handler Infrastructure
	Custom Low-Level Handlers

	Search Tree Observation
	Statistics
	Visualization

	Plain Prolog Example
	Evaluation
	Pure Search
	Search vs. Propagation
	Search Methods

	Automatic Specialization
	Related Work
	Conclusion and Future Work
	References

	Delimited Control
	Informal Semantics
	Applications
	Coroutines
	Effect Handlers

	Meta-Interpreter Semantics
	Direct-Style
	Continuation-Passing Style
	Program Transformation

	Relation to catch/3 and throw/1
	Implementation
	The hProlog Implementation
	ZIP Implementation

	Semantic Intricacies
	Cut and If-then-else
	Re-activation
	Nesting Catch/Throw and Reset/Shift
	Shiftless Resets and Resetless Shifts

	Related Work
	BinProlog and Continuations
	BinProlog and Logic Engines
	Conventional Prolog Coroutines
	Environments on the Heap
	Caml-based Languages
	Experimental Languages
	Coroutines in Haskell
	Coroutines in Mainstream Languages

	Performance Evaluation
	Conclusion
	References

	Modular Search Specification
	Introduction
	The Challenge
	From Prolog to Haskell
	Background: Handlers and Transformers
	The Free Monad Transformer

	Heuristics as Handlers in Haskell
	Step 1: Overloading
	Step 2: Introducing Syntax
	Step 3a: Adding Heuristics
	Step 3b: Adding Heuristics as Trees
	Step 4: Reflecting Syntax Back into Semantics

	From Haskell to Prolog
	Meta-Interpreter
	Delimited Continuations
	The Delimited Continuations Transformer
	The Isomorphism

	Heuristics as Handlers in Prolog
	Delimited Continuations
	The entwine/2 Infrastructure
	Search Heuristics
	Multi-Way Disjunctions

	Related Work
	Search
	Algebraic Effect Handlers
	Monads

	Conclusion
	References

	Introduction to Tabled Resolution
	Problems with SLD-resolution
	Denotational Semantics
	Tabling and SLG-resolution
	Implementation Challenges
	Data Structures
	Operational Problems
	Scheduling Strategies
	Semantic Issues
	Alternative Lowlevel Mechanisms
	CAT and CHAT
	JET
	Recomputing Approaches

	Transformation-based Approaches
	Extension Tables
	Recomputation-Free Approaches

	Call Subsumption
	Tabling in other Contexts
	References

	Tabling with Delimited Control
	Introduction
	Shallow Transformation
	The table/2 Predicate
	Activation and Delimited Answer Computation
	Completion
	The Table Data Structures
	Completion of a Double Recursive Call

	Completion Details
	Evaluation
	Implementation Effort
	Performance
	Comparison with CHAT

	Related Work
	Conclusion
	References

	Answer Subsumption
	Introduction
	Background
	Partial Order
	Partially Ordered Set
	Least Bounds
	Lattice

	Formalisation
	Framework Instances
	Regular Tabling
	Partial Order Answer Subsumption
	Lattice Answer Subsumption
	Mode-directed Tabling

	Related Work
	Conclusion and Future Work

	Conclusions
	Future Work

	Summary
	Nederlandstalige samenvatting
	Bibliography
	List of Figures
	List of Tables
	Index

