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Abstract: In this paper we propose a novel real-time method for SLAM in autonomous vehicles. The environment is 

mapped using a probabilistic occupancy map model and EGO motion is estimated within the same 

environment by using a feedback loop. Thus, we simplify the pose estimation from 6 to 3 degrees of 

freedom which greatly impacts the robustness and accuracy of the system. Input data is provided via a 

rotating laser scanner as 3D measurements of the current environment which are projected on the ground 

plane. The local ground plane is estimated in real-time from the actual point cloud data using a robust plane 

fitting scheme based on the RANSAC principle. Then the computed occupancy map is registered against the 

previous map using phase correlation in order to estimate the translation and rotation of the vehicle. 

Experimental results demonstrate that the method produces high quality occupancy maps and the measured 

translation and rotation errors of the trajectories are lower compared to other 6DOF methods. The entire 

SLAM system runs on a mid-range GPU and keeps up with the data from the sensor which enables more 

computational power for the other tasks of the autonomous vehicle.  

1 INTRODUCTION 

The technology advancement in sensors and 

computer systems is enabling the proliferation of 

Advanced Driver Assistance Systems (ADAS) into 

the car market at an unprecedented pace. As of the 

year 2015, systems such as adaptive cruise control, 

automatic parking, automotive night vision, collision 

avoidance, emergency braking, hill descent, lane 

departure assistance, traffic sign recognition etc. can 

be found as standard equipment even in the mid-

range vehicles on the market. Recent reports about 

road safety indicate that driver error is the main 

contributor to more than 90% of traffic accidents 

(KPMG,2012), (Fagnant,2013). Even when the main 

reason for a crash is due to malfunctions of the 

vehicle or problems with the road or environment, 

some additional human factors can often have 

contributed to the crash and the severity of the 

injuries. Leading companies involved in autonomous 

vehicles believe that only completely self-driving 

cars will fully address safety concerns. 

 Such intelligent vehicles make use of advanced 

perception systems that could sense and interpret 

surrounding environment based on various kinds of 

sensors, such as: radar, lidar (laser rangefinder), 

monocular / binocular / omnidirectional vision 

systems, ultrasound, etc. Many of the following 

tasks for the intelligent vehicle can be performed 

within the same framework of sensory interpretation 

(Leonard,2008), (Nguyen,2012). The initial tasks is 

ego localization since the vehicle can’t drive safely 

if it doesn’t know its location and orientation (i.e. 

pose). The problem of pose estimation has been 

exhaustively researched in various applications such 

as stereo vision, structure from motion, mapping and 

augmented reality, however one can conclude that 

most of the proposed methods in the literature are 

computationally expensive and do the estimation 

off-line. The mainstream of approaches are based on 

key feature detection in optical video frames, which 



 

can be assessed by looking at the standard odometry 

benchmark (Geiger, 2012 and 2013). Tracking and 

registration of the detected features is often done 

using the Iterative Closest Point (ICP) approach 

(Pomerleau,2013). Pose estimation can also use the 

data from inertial navigation sensors (INS), global 

position system (GPS) or wheel rotation sensors, as 

prior motion information in achieving real-time 

computation speed (Scherer,2012). Kalman or 

particle filters are often used in order to reinforce the 

measurements with the past data for more natural 

estimation.  

When no additional data is available but the one that 

comes from the stereo cameras and/or lidar, many 

approaches have been proposed registering the point 

clouds using a more suitable representation. 

Notably, methods such as (Moosmann,2011) use 

projection of the point cloud onto a range image and 

then use features extracted from these images to do 

the matching between consecutive sweeps. On the 

other hand, there are methods which try to extract 

geometric primitives from within the point clouds, 

such as planes and edges, and then use them for 

matching and registration (Zhang,2014). These 

approaches have their pitfalls in situations where the 

environment does not contain simple planes and 

edges (open roads, forests, parks). There are two 

issues with these types of approaches : first, the high 

computational cost for extracting the robust image 

features and second, images in the visual spectrum 

often fail to capture good information in adverse 

weather conditions and during the night.  

Therefore, we part with the standard 6DOF point 

cloud registration paradigm and propose a novel 

algorithm for simultaneously mapping the perceived 

environment and performing the localization task 

using the previous state of what has already been 

mapped. We adopt the so called occupancy grid map 

as a medium for all further operations of the 

autonomous vehicle. In the literature, authors make 

use of these logical representation, i.e. maps, which 

explains the occupancy of the environment in a 

probabilistic way, first proposed by (Moravec,1985) 

for use in sonar mapping.  

Occupancy grid maps are spatial representations of 

the external environment. The external world is 

represented by a high resolution grid of variables 

that model the occupancy of the space. Besides the 

mapping the occupancy data can also be used for 

various other key functions necessary for the mobile 

vehicle navigation, such as positioning, path 

planning, collision avoidance object detection and 

prediction of the future state of the environment. 

Older studies suggest that occupancy grid maps are 

arguably the most successful environment 

representation in mobile robotics to date 

(Kortenkamp,1998). Moreover, in the domain of 

autonomous vehicles, they are an optimal way of 

recording a background model of the vast 

environments, Fig.1. An efficient implementation of 

these maps has been proposed by (Homm,2010), 

which will be explained in more detail in chapter 2.  

We also make a simplification to the system 

assuming that the world the vehicle is moving 

through is completely flat and that it can be precisely 

modelled via a two dimensional map. This way the 

localization becomes a 3DOF registration problem 

which can be solved robustly and more importantly, 

with a tight real-time constraint. Our main sensor is 

the Velodyne HDL-64E lidar which experiences the 

same general motion as the vehicle: three degrees of 

translational freedom and three degrees of rotation 

relative to the environment. The pose estimation can 

be seen as a closed feedback loop system that also 

tries to produce a map of the environment using the 

estimated pose information. A detailed analysis of 

the classical pose estimation approach and our 

simplified method follows in chapter 3. 

The speed and accuracy of the proposed method is 

experimentally tested in chapter 4 and we give our 

concluding remarks in the discussion in chapter 5. 

2 OCCUPANCY MAP 

The proposed model of the environment estimates 
the probability of occupancy for each world 
coordinate using the inverse sensor logic. This 
means that the sensor measurements are used to 
reconstruct the most probable map using a Bayesian 
reasoning. Occupancy maps can be a very elegant 

Figure 1: Small section of an occupancy grid map with 

cell size 12.5x12.5cm 



 

solution to the problem of mapping when there is a 
multitude of heterogeneous sensors on board the 
vehicle. They are invariant to the category of the 
scanned objects in the environment as long as they 
are correctly transformed into probability of 
occupancy. For example, one can incorporate 
measurements from object detectors, ultrasound 
objects, distance measures from lidar or stereo 
cameras into one single occupancy map. 
Let us define the occupancy map as a 2D grid 𝑚 in 
the 𝑥𝑦 plane with grid elements 𝑚𝑖,𝑗and a series of 
𝑧1,...,𝑇 measurements obtained from the lidar. Each 
sensor measurement𝑧𝑖 contains information about 
the occupancy of several grid locations together with 
the pose of the vehicle which might come from other 
sensors. So, the problem of simultaneous building of 
the map and localization of the vehicle can be 
explained by finding the ego motion of the vehicle 
using the previously built map and cumulatively 
computing the probability of occupancy for each 
grid element 𝑚𝑖,𝑗 given the new measurements in 
𝑍𝑇. 
We will first explain the update of the occupancy 
map for a static vehicle, or a moving vehicle for 
which we already solved the ego location. The 
probability of occupancy for each grid element (cell) 
can be estimated separately from the rest of the map 
 

𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇). (1) 

 
Commonly the log-odds or log likelihood ratio 
representation is used for computational reasons 
since its update requires a simple addition operation, 
 

𝑙𝑖,𝑗 = 𝑙𝑜𝑔
𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇)

1 − 𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇)
, 

 

(2) 

 
where the posterior 𝑚𝑖,𝑗can be reconstructed from 
𝑙𝑖,𝑗by  
 

𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇) = 1 −
1

𝑒𝑙𝑖,𝑗
. 

(3) 

 
Since the error level of our sensor is lower than the 
cell size, there is a high probability that most 
measurements will fall within their respective grid 
cells. Thus, we make an assumption that the 
probability of occupancy of 𝑚𝑖,𝑗 is conditionally 
independent of the rest of the map, even from its 
neighbouring cells. We therefore can estimate the 
posterior as  
 

𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇)

=
𝑝(𝑧𝑇|𝑚𝑖,𝑗)𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇−1)

𝑝(𝑧𝑇|𝑧1…𝑧𝑇−1)
. 

 

(4) 

 
If we apply Bayes rule to the term 𝑝(𝑧𝑇|𝑚𝑖,𝑗) we 
have the probability that the cell 𝑚𝑖,𝑗 is occupied: 
 

𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇)

=
𝑝(𝑚𝑖,𝑗|𝑧𝑇)𝑝(𝑧𝑇)𝑝(𝑚𝑖,𝑗|𝑧1…𝑧𝑇−1)

𝑝(𝑚𝑖,𝑗)𝑝(𝑧𝑇|𝑧1…𝑧𝑇−1)
. 

 

 

(5) 

 
The probability of the grid cell to be free𝑚𝑖,𝑗̅̅ ̅̅ ̅, can be 
expressed with the same equation, and by noting that 
𝑝(𝑚𝑖,𝑗̅̅ ̅̅ ̅, ) = 1 − 𝑝(𝑚𝑖,𝑗) we can devise recursive 
expression for the map update at time T given the 
past map and the current measurements and pose: 
 

𝑙𝑖,𝑗 = 𝑙𝑜𝑔
𝑝(𝑚𝑖,𝑗|𝑧𝑇)

1 − 𝑝(𝑚𝑖,𝑗|𝑧𝑇)

+ 𝑙𝑜𝑔
1 − 𝑝(𝑚𝑖,𝑗)

𝑝(𝑚𝑖,𝑗)

+ 𝑙𝑖,𝑗
𝑝𝑎𝑠𝑡

, 

 

 

 

(6) 

 
where the initial map can be constructed from the 
prior probabilities for occupancy for each grid cell: 
 

𝑙𝑖,𝑗
0 = 𝑙𝑜𝑔

𝑝(𝑚𝑖,𝑗)

1 − 𝑝(𝑚𝑖,𝑗)
. 

 

(7) 

 
This approach builds an incremental map of the 
environment containing the log-odds for occupancy. 
The first term of equation (6) explains the log-odds 
of occupancy for a single cell given the 
measurements in𝑧𝑇, and the second term is the prior 
log-odd of the cell. This relation is usually called an 
inverse sensor model because it translates the sensor 
measurements into their causes, i.e. the map. At any 
given point one can recover the probability of 
occupancy for the whole map using equation (3).  
A more accurate approach to occupancy map 
estimation is the forward sensor model which 
computes the likelihood of the sensor measurements 
in the space of all possible maps. This approach is an 
optimization problem where we search an optimal 
map which maximizes the probability of the given 
measurements. However, the forward model 
formulation prohibits a real-time implementation 
since it requires every sensor measurement in order 
to find the optimal map. We refer to (Thrun,2003) 
for further information about the implementation of 
the forward sensor model.  
In the following chapter we will explain how the 
pose estimation of the vehicle can be performed 
using the currently unregistered occupancy map data 
with relatively low computational complexity and 
high level of accuracy. 



 

3 POSE ESTIMATION 

3.1 Classical 6DOF approach 

The pose of the sensor (lidar) corresponds to the 
orientation and position of the vehicle, where in the 
first moment of time the pose is arbitrarily set at the 
coordinate centre. As the vehicle is moving through 
the world, it experiences rotational and translational 
changes to its pose. The simplest forward motion on 
a flat road produces a translation change in the axis 
perpendicular to the vehicle motion, thus the vehicle 
is moving with one degree of freedom. In the real 
world though, the vehicle might be taking a turn in a 
bend which has some incline (grade) and a slight 
camber to the road surface. Furthermore, the vehicle 
suspension will try to dampen the effects of the 
forward and lateral acceleration and keep the vehicle 
level to the ground. In these actual scenarios the 
sensor attached to the vehicle is experiencing 
changes within 6 degrees of freedom: motion in the 
three spatial dimensions, and rotation around the 
three axes, at the same time.  
The problem of pose estimation then becomes the 
standard problem encountered in structure from 
motion applications where a 6DOF fundamental 
matrix which explains the change of pose is being 
estimated from the sensor data. Assuming that the 
change in sensor data between two time intervals is 
entirely due to motion through static environment, 
then the 3D points measured in the present 𝑃𝑡 are 
related to the 3D points measured in the past 𝑃𝑡−1 
via the augmented matrix: 
 

𝑃𝑡 = [
𝑅𝑡 𝑇𝑡
0 1

] 𝑃𝑡−1,  

(8) 
 
where the points are expressed in homogeneous 
coordinates, 𝑅𝑡 represents the 3x3 rotation matrix 
and 𝑇𝑡 represents a 3x1 translation vector. The pose 
can thus be estimated by finding the optimal 
transformation matrix which minimizes the distance 
between the two sets of 3D points after 
transformation. Although elegant, the solution of the 
ego motion is a typical non-linear least squares 
problem which is highly sensitive to noise. Several 
existing approaches can minimize or remove noisy 
data from the system at different points. A widely 
used technique is the Iterative Closest Point 
algorithm (Chen,1991) which is effectively applied 
in matching point cloud data by iteratively searching 
for the nearest neighbours for each point. Another 
popular method is the Random Sample Consensus 
which is designed to cope with large percentages of 
outliers in the data (Fischler,1981) and can be 

applied to iteratively estimate the rotation and 
translation by using a subset of 3D points which 
produce the maximum number of inliers.  
Directly matching the point clouds generated by the 
lidar sensor cannot produce accurate results because 
of the non-uniform sampling technique of the 
rotating head, so most authors are adapting their 
methods to search for suitable geometric primitives 
within the point clouds and use them as features for 
further matching. Other types of approaches try to 
estimate the geometric primitives by projecting the 
point clouds onto a 360 degree panoramic image and 
use it to find robust features for matching. However, 
the autonomous vehicle does not always encounter 
regularly shaped manmade objects and most of the 
time when driving on open roads the surrounding 
objects are of natural origin. This relative scarcity of 
geometric primitives in the point-cloud data can 
render most of the geometrically based matching 
algorithms ineffective since they discard a lot of 
otherwise useful information.  
 

3.2 Proposed method 

We are guided by the idea that no information from 
the sensors should be discarded and as such, the 
whole lidar point cloud should be used as a single 
feature for pose estimation. Since the objective in 
our project is SLAM with additional object detection 
within the built environment model, we adopt the 
occupancy map as a feature and use what 
information is available from the past measurements 
for registration. Among other benefits, this also 
makes the system design feasible for real-time 
application. From the experimental runs of the 
vehicle and the acquired point clouds we can 
observe that the car is moving in a relatively flat 
environment (low absolute road grade compared to 
the range of the sensor). The change in elevation 
between two consecutive laser scans falls below the 
noise threshold of the sensor. This motivates us to 
assume that the occupancy of the environment can 
be modelled using a flat two dimensional map, an 
important simplification to the pose estimation 
problem which brings higher accuracy and fast 
execution times.  
The algorithm starts by finding the ground plane, i.e. 
the 3D plane on which most of the road surface is 
laid on. The flat world assumption dictates that any 
difference of the estimated ground plane and the 
world plane (z=0) is due to sensor rotation. This can 
happen because of the dynamics of the vehicles’ 
suspension during linear or  lateral accelerations and 
most notably while passing speed bumps or 
potholes.  



 

We use an iterative plane fitting algorithm on the 
raw point cloud data to select the three points that 
best explain the road surface. It is based on the 
paradigm of RANSAC in a way that in each iteration 
a random subsample of points is used to generate a 
plane equation for which the average distance of all 
other points is computed and the subset with the 
lowest average distance (highest number of inliers) 
is selected. From the list of inliers 𝑃𝑖𝑛

𝑡  of this optimal 
subset, a new plane is fitted in a least squares sense. 
The point cloud is then “rectified” relative to this 
ground plane by applying the inverse rotation 
relative to the estimated ground normal. 
The next step is the projection of the rectified point 

cloud on the world plane to produce the initial 

occupancy map. We accumulate the height of each 

3D point into the respective occupancy grid cell and 

produce a probability of occupancy based on the 

average height of points over that location. Points 

with height greater than 3m are assumed to be have 

a probability of 1 and points in between are scaled 

respectively, Fig.2. Thus, we obtain an orthographic 

projection of the environment in a form of a top 

view. Vehicle rotation will produce rotation of the 

features on the map, and vehicle translation will shift 

the rows and columns of the map. One can clearly 

see the actual change in rotation and position of 

features on Fig.3. where the initial occupancy map is 

compared with the occupancy map produced after 

500ms of driving.  
We will focus on this domain of imagery to estimate 
the current pose of the vehicle using standard image 
registration techniques. The aim is to estimate the 
rotation and translation change between two 
occupancy maps built from the sensor data of two 
consecutive positions. We adopt the widely used 
technique of Phase-Only Correlation (POC) 
(Nagashima,2007) which naturally decouples the 

rotation estimation from the translation estimation in 
a two step approach. The input occupancy maps are 
transformed using the 2D DFT 
 

𝑀𝑢,𝑣(𝑇) = ∑𝑚𝑖,𝑗(𝑇)𝑒
−𝑗2𝜋(𝑢𝑖+𝑣𝑗)

𝑖,𝑗

 

𝑀𝑢,𝑣(𝑇 − 1) = ∑𝑚𝑖,𝑗(𝑇 − 1)𝑒−𝑗2𝜋(𝑢𝑖+𝑣𝑗)

𝑖,𝑗

, 

 

 

 

(9) 

where their respective amplitude spectra 
|𝑀𝑢,𝑣(𝑇)|and |𝑀𝑢,𝑣(𝑇 − 1)| are shift-invariant and 
thus can be used for rotation estimation. In order to 
directly estimate the rotation change we further take 
the log of each spectra and transform it in polar 
coordinates (𝑀𝑇

𝜌,𝜃
), thus the rotation estimation boils 

down to shift estimation. This is easily computed 
using the 2D convolution of these two images using 
the normalized cross-power spectrum  
 

𝑅(𝑘) =
𝑀𝑇

𝜌,𝜃(𝑘)𝑀𝑇−1
𝜌,𝜃 (𝑘)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝑀𝑇
𝜌,𝜃(𝑘)𝑀𝑇−1

𝜌,𝜃 (𝑘)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|
, 

 

(10) 

 

where 𝑀𝑇−1
𝜌,𝜃 (𝑘)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 is the complex conjugate of the 

polar log spectrum of the occupancy map at time T-

1.The phase-only correlation is defined by the 

inverse discreet Fourier transform of (10). If the two 

input images are the same, then the POC function is 

the Kronecker delta function and the more the two 

images differ the more the peak height reduces and 

there is an apparent shift in the actual position of the 

peak. Peak height in the POCC function is a good 

measure of the similarity of the two images and the 

position of the peak is proportional to the angle of 

Figure 2. Example of the initial occupancy map, the black 

background is assumed to be free (p=0) 

Figure 3. Comparison of two occupancy maps with 

temporal difference of 500ms (red colour now codes the 

past information, same as Fig.2) 



 

rotation in the pose of the vehicle. In our 

experiments we estimate the peak of the POC 

function by parabolic fitting and thus estimate the 

rotation of the vehicle with sub “pixel” accuracy. 
Once the rotation has been estimated, the old 
occupancy map is rotated to match the current. The 
remaining difference, the shift of the two maps, is 
due to the forward translation of the vehicle which is 
again estimated similarly using the POC function 
from equation (10). It is important to note that we 
use a weighting function in a form of a low pass 
filter for the Fourier coefficients in order to reduce 
the effect of lidar noise introduced in the measured 
points and the presence of moving objects in the 
scene.  
The output of the spectral matching is the yaw angle 
delta of the vehicle between two consecutive sensor 
measurements and the magnitude of the translation 
vector in 2D space. In order to predict the actual 
X,Y position of the vehicle and its exact trajectory 
we multiply the translation magnitude by the cosine 
and sine of the yaw delta and accumulate the results 
over time 

𝜃𝑇 = ∑𝜃𝑖

𝑇

𝑖=1

 

𝑥𝑇 = 𝑥𝑇−1 + 𝑇𝑟𝑎𝑛𝑠 ∗ 𝑐𝑜𝑠(𝜃𝑇) 
𝑦𝑇 = 𝑦𝑇−1 + 𝑇𝑟𝑎𝑛𝑠 ∗ sin(𝜃𝑇), 

 

 

 

 

(11) 

where Trans is the estimated translation change 
between two consecutive scans. 
This information is fed back to the mapping 
equation (6) as part of the measurement 𝑧𝑇 in order  
 
to correctly project the lidar points on the global 
occupancy map of the environment. An example of a 
computed trajectory after several minutes of driving 

a loop through a public road can be seen on Fig.4, 
and the resulting occupancy map that has been 
generated on fig.5. 

4 EXPERIMENTS AND RESULTS 

For validation we use the raw data streams provided 
by the lidar recordings from the KITTI dataset, and 
perform our mapping and registration analysis. We 
chose this particular dataset as it is currently the 
most comprehensive study about autonomous 
vehicles driving through public roads. The 
experimental dataset contains 21 recordings from 
driving the vehicle through urban, rural and highway 
roads. These recordings were made with the rotating 
lidar and two stereo camera pairs. We only used the 
data from the lidar which is rotating at 10Hz 
providing an aggregated point cloud every 100ms. 
Each point of the point cloud is defined with X,Y,Z 
Cartesian coordinates and a reflectance index. 
Additionally, a 6DOF pose matrix is given for each 
time instance. We will compare our trajectories to 
the GPS poses in order to measure the accuracy of 
the pose estimation, but since there is currently no 
ground truth data available for evaluating the 
occupancy mapping system, the map accuracy will 
only be measured qualitatively. 
Our estimated odometry poses contain information 
for 3DOF changes of the vehicle. We use the 
method for evaluation suggested by the authors of 
the KITTI dataset in order to compare the accuracy 
of the estimated trajectories, i.e. we compute the 
average rotation and translation errors for every 
segment of length 100,200... 800m. For the 
sequences which have GPS ground truth data 
available, {0..10}, we report an average 3DOF 
rotation error of 0.00380 deg/m and average 3DOF 
translation error of 0.2904% measured as an average 

Figure 4. Estimated trajectory vs. trajectory recorded using 

GPS/IMU for KITTI sequence 00, scale in [m]. 

Figure 5. Estimated occupancy map for KITTI 00 



 

differences between the starting and ending poses 
for each sub-segment of length 100m to 800m using 
the distance metrics as follows: 
 

𝑑(𝜃1, 𝜃2) = min(2𝜋 − |𝜃1 − 𝜃2|, |𝜃1 − 𝜃2|) 

∆𝜃𝑖 = 𝑑(𝜃𝑖, 𝜃𝑖+𝑜𝑓𝑓𝑠𝑒𝑡), 

𝑜𝑓𝑓𝑠𝑒𝑡 ∈ {100𝑚, 200𝑚,… ,800𝑚} 

𝑅𝑜𝑡𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑𝑑(∆𝜃𝑖,𝐺𝑇 , ∆𝜃𝑖,𝐸𝑆𝑇)

𝑁

𝑖

, 

 

 

(12) 

 
where𝑑 is the smallest distance between two angles, 
𝑖 is the start of each sub-trajectory and 𝑁 is the total 
number of sub-trajectories evaluated. For measuring 
the error in the Yaw angle, we extract the Yaw from 
each pose matrix of the ground truth and input it into 
equation (12). The 3DOF translation error is simply 
the average difference of the 𝐿2 norms of each start 
and end position for the ground truth and estimated 
sub-trajectories. 
We also uploaded our results on the test server 
provided by the authors of the dataset to evaluate 
how this approach compares against other 6DOF 
algorithms. The 6DOF pose errors measures the 
angular and translational difference of the start and 
end pose matrix 𝑃𝑖  in 3D : 
 

𝑑(𝑃1, 𝑃2) = 𝑃2
−1𝑃1 (13) 

 
Our 6DOF pose matrices are constructed by 
transforming the three Euler angles and the 2D 
translation vector into a 3x4 matrix using the 
estimated Yaw angle and zeros for the roll and pitch, 
also, we use zero value for the height. Hence is the 
expected drop in accuracy measured using the test 
server of the KITTI dataset.  
Table 1. holds a summary for the accuracy of the 
results obtained with our algorithm compared to the 
other methods. The entire table and other 
information about the methods can be found at 
(KITTI,2015), however, in this extract we included 
the top performing methods by means of translation 
error and one of the rare methods based solely on 
lidar point cloud data “pcl-ndt-gicp”. As expected, 
our approach has mediocre accuracy when tested on 
the full 6DOF benchmark with the missing non 
estimated data, scoring 1.89% average translation 
error and 0.0083 deg/m average rotation error. 
However, the 3DOF poses that we estimate score the 
highest accuracy on the list for translation error. 
We further investigated the robustness of our 
method by adding two types of noise to the point 
clouds. In the first experiment, the data is polluted 
with additive white Gaussain noise in all of the three 
spatial dimensions. The standard deviation of the 
distribution is increased within reasonable ranges 

Table 1: Average rotation and translation errors in 6DOF 

for the test sequences of the KITTI dataset 

 
[5-100cm] simulating point-clouds from a low-end 
laser scanner. In the second experiment we have 
kept the original points from the lidar intact only we 
adding new points which simulate erroneous data i.e. 
outliers which might be produced from other 
sensors. The rate of outlier pollution, again, was 
increased within reasonable ranges [2.5-90%].The 
resulting 3DOF rotation and translation errors for the 
KITTI dataset are measured as previously described. 
We observed that the proposed method is able to 
cope well with large amounts of both additive noise 
and the presence of outliers. The translation error 
seems to sharply increase once an additive error of 
more than 70cm is added to the lidar data or once 
there are more than 60% outlier points. This 
robustness is due to the nature of the spectral 
matching pose estimation.  
Our GPU implementation has an execution time 
which can keep up with the lidar data. The algorithm 
is running at around 20fps on a mid-range graphics 
card. The registration of the occupancy maps 
consumes around 30-40ms and the rest is spent on 
the RANSAC and fitting for the ground plane 
estimation (10-20ms).  

5 CONCLUSION  

We proposed a feedback loop approach for SLAM 
by using the probabilistic occupancy map model. By 
simplifying the pose estimation problem in the 
3DOF domain of the occupancy map we have 
managed to achieve high accuracies for both 
translation and rotation estimation. The resulting 
trajectories correspond very well to the orthographic 
projections of the path the vehicle is taking and the 
built maps accurately reflect the occupancy 

Method Terr. Rerr. Exec. 

time 

Environ. 

V-LOAM 0.75% 0.001

8 

0.3s 4xCPU 

LOAM 0.88% 0.002

2 

1s 2xCPU 

SOFT 1.03% 0.002

9 

0.1s 2xCPU 

Cv4xv1-sc 1.09% 0.002

9 

0.145s GPU 

...     

PROPOSED 

3DOF 

0.29

% 

0.003

8 

0.05s GPU 

PROPOSED 

6DOF 

1.89

% 

0.008

3 

0.05s GPU 

pcl-ndt-gicp 2.02 0.008 2s 10xCPU 



 

situation. By avoiding the time consuming and often 
unreliable stereo video feature matching approach 
we managed to localize the vehicle using only the 
laser scanner point clouds in their entirety as a single 
feature.  
However, the laser scanner produces point clouds 
that are oftentimes are subjected to clearly visible 
rolling shutter effect. Few authors in the past have 
pointed out this problem when trying to use the raw 
point clouds as input for odometry, and different de-
warping techniques have been used in order to 
produce an accurate image of the environment. This 
is done relying on additional sensors for motion 
prior which in our project were not fully available. 
We demonstrated that by using the warped point 
clouds provided by the KITTI dataset the occupancy 
map registration algorithm can produce accurate 
enough results for the purpose of mapping and later 
object detection of the autonomous vehicle. We 
point reader to observe a detailed crop from one of 
the built occupancy maps on Fig.1. and also to check 
the integrity of the built map shown on Fig.5.  
The main drawback of our method is an actual result 
of the simplification of the problem and can happen 
when the vehicle crosses its own path over a bridge. 
The method is currently unable to put the height 
difference into the occupancy map.  

ACKNOWLEDGEMENTS 

The work was financially supported by IWT through 

the Flanders Make ICON project 140647 

“Environmental Modelling for automated Driving 

and Active Safety (EMDAS)”. 

REFERENCES 

KPMG (2012), “Self-Driving Cars: The Next Revolution”, 

KPMG and the Center for Automotive Research; at 

www.kpmg.com/Ca/en/ 

IssuesAndInsights/ArticlesPublications/Documents/sel

f-driving-cars-next-revolution.pdf. 

Daniel J. Fagnant and Kara M. Kockelman (2013), 

“Preparing a Nation for Autonomous Vehicles: 

Opportunities, Barriers and Policy 

Recommendations”, Eno Foundation; at 

www.enotrans.org/wpcontent/uploads/wpsc/download

ables/AV-paper.pdf. 

John Leonard. “A perception-driven autonomous urban 

vehicle”. Journal of Field Robotics, vol. 25, pages 727-

774, October 2008. 

Thien-Nghia Nguyen, Bernd Michaelis and Al-Hamadi. 

“Stereo Camera Based Urban Environment Perception 

Using Occupancy Grid and Object Tracking”. IEEE 

Trans. on Intelligent Transportation Systems,vol. 13, 

pages 154-165, March 2012. 

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for 

autonomous driving? The kitti vision benchmark 

suite,” in IEEE Conf. on Computer Vision and Pattern 

Recognition (CVPR), 2012, pp. 3354–3361. 

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision 

meets robotics: The KITTI dataset,” Int. Journal of 

Robotics Research, no. 32, pp. 1229–1235, 2013. 

F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, 

“Comparing ICP variants on real-world data sets,” 

Autonomous Robots, vol. 34, no. 3, pp. 133–148, 2013. 

S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, 

S. Nuske, and S. Singh, “River mapping from a flying 

robot: state estimation, riverdetection, and obstacle 

mapping,” Autonomous Robots, vol. 32, no. 5, pp. 1 – 

26, May 2012. 

F. Moosmann and C. Stiller, “Velodyne SLAM,” in IEEE 

Intelligent Vehicles Symp. (IV), Baden-Baden, 

Germany, June 2011. 

J. Zhang and S. Singh,“LOAM: Lidar Odometry and 

Mapping in Real-time”. Robotics: Science and Systems 

Conf. 2014. 

H. Moravec and A. Elfes. “High resolution maps from 

wide angle sonar”. In In Proc. of the IEEE Int. Conf. 

on Robotics & Automation (ICRA)., volume 2, pages 

116121, Mar. 1985. 

D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. 

“AI-based Mobile Robots: Case 

studies of successful robot systems”, Cambridge, MA, 

1998. MIT Press 

Homm, F. BMW Group, Res. & Technol., Munich, 

Germany, Kaempchen, N. ; Ota, J. ; Burschka, D. 

“Efficient Occupancy Grid Computation on the GPU 

with Lidar and Radar for Road Boundary Detection”, 

2010 IEEE Intelligent Vehicles Symp. University of 

California, San Diego, CA, USA June 21-24, 2010 

Sebastian Thrun, “Learning Occupancy Grid Maps with 

Forward Sensor Models”, Journal Autonomous Robots, 

Vol. 15 Issue 2, Sept. 2003 Pages 111 – 127 

Y. Chen and G. Medioni, “Object modeling by registration 

of multiple range images,” in IEEE Int. Conf. on 

Robotics and Automation, 9-11 April 1991, pp. 2724 – 

2729. 

Martin A. Fischler and Robert C. Bolles. “Random sample 

consensus: a paradigm for model tting with 

applications to image analysis and automated 

cartography”. Communications of the ACM, vol. 24, 

pages 381-395, 1981. 

Sei Nagashima, Koichi Ito, Takafumi Aoki, Hideaki Ishii, 

Koji Kobayashi, “A High-Accuracy Rotation 

Estimation Algorithm Based on 1D Phase-Only 

Correlation”, ICIAR'07 Proceedings of the 4th 

international conference on Image Analysis and 

Recognition Pages 210-221 

KITTI odometry results, available on : 

http://www.cvlibs.net/datasets/kitti/eval_odometry.php 


