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Introduction

Jordan pairs In the present work we introduce a class of incidence geometries,
more precisely, a class of point-line spaces equipped with an opposition relation,
that is related to a class of algebraic structures, called Jordan pairs. The theory
of Jordan pairs generalises the concept of a Jordan algebra,a commutative, not
necessarily associative algebra over a commutative unitalring. Jordan algebras
go back to Pascual Jordan, a German physicist of the 20th century, who intro-
duced them to formulate quantum mechanical processes as abstract and general
as possible.

A Jordan pairV = (V+,V−) is a pair of modules over a commutative unital ring
k together with a pair(Q+,Q−) of quadratic mapsQσ : Vσ →Hom(V−σ ,Vσ ), for
σ ∈ {+,−}, such that the identities

(JP1) Dσ (x,y)◦Qσ(x) = Qσ(x)◦D−σ (y,x)

(JP2) Dσ (Qσ (x)y,y) = Dσ (x,Q−σ(y)x)

(JP3) Qσ (Qσ (x)y) = Qσ (x)◦Q−σ(y)◦Qσ(x)

hold in all scalar extensions ofV, whereDσ (x,y)(z) := (Qσ(x+ z)−Qσ (x)−
Qσ (z))y. If the twok-modulesV+ andV− coincide, one obtains a Jordan algebra
by identifying the twok-modules.

Buildings Jacques Tits, a contemporary Belgian mathematician, introduced the
theory of buildings, i. e. particular combinatorial structures that provide a geomet-
rical interpretation for semisimple isotropic linear algebraic groups; see [Tit74].
For each type of buildings there exists a Coxeter diagram which is attached to it.
Furthermore, to each type of buildings there is a class of incidence geometries that
is related to this type and hence as well to the attached Coxeter diagram.

In [Loo75], O. Loos classified the Jordan pairs of finite dimension. The types
listed there match in a certain way a part of the list that results from the classifi-
cation of buildings of finite rank. This fact motivates the conjecture that there is
a connection between Jordan pairs and incidence geometries. The present work is
a part of the approach to find such a connection. More precisely, we give a rather
simple axiomatisation for geometries and prove that this axiomatisation holds ex-
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actly for those geometries that we expect to be the ones that are related to the
Jordan pairs.

Jordan pairs and geometries Concerning a connection between Jordan pairs
and geometries some earlier results have already been obtained. W. Bertram
established in [Ber00] a geometric interpretation of Jordan structures by show-
ing a strong correspondence to symmetric spaces. Furthermore, he introduced in
[Ber02] generalisations of projective geometries. These generalisations are based
on what he calls affine pair geometries, i. e. a pair of sets(X+,X−) together with a
relationM ⊂X+×X− such that for alla∈X+, the setVa := {y∈ X− | (a,y)∈ M}
has the structure of an affine space, and dually. The elementsof M are called re-
mote pairs. In this context, an affine space is meant in the algebraic sense which
means thatVa is a module over a commutative ring. Based on the scalar multipli-
cation and the module structure ofVa, Bertram defines ternary product maps from
a subset ofXσ ×X−σ ×Xσ to Xσ , whereσ ∈ {+,−}. He gives a list of certain
“fundamental identities” that are satisfied ifX+ is a projective space andX− is its
dual. In this context, an affine pair geometry that fulfils these identities is called
a generalised projective geometry. Further work concerning the correspondence
of Jordan pairs and geometries such as symmetric spaces and generalised projec-
tive geometries is done by W. Bertram and K.-H. Neeb; see [BN04] and [BN05].
However, all these geometries are based on algebraic laws.

In the present work we use a completely different sight of geometries that is
based on incidence axioms. There are some apparent similarities: Instead of re-
mote pairs we use a relation that we call opposition relation. Furthermore, as in
the work of Bertram, in the case that we have a pair of projective spaces, the set of
opposite points to a given point forms an affine space. Despite these analogies we
expect a direct connection between the introduced class of incidence geometries
and Jordan pairs. More precisely, we think that it should be possible to construct
geometries from Jordan pairs that satisfy our axioms and conversely, to construct
Jordan pairs out of our geometries. Such a connection would provide the possibil-
ity to apply geometric and combinatorial methods to study Jordan pairs. Applying
these methods may lead to some new results for Jordan pairs ofarbitrary dimen-
sion and, eventually, to a classification of them.

The relevant diagrams The Coxeter diagrams that correspond to the list of Jor-
dan pairs are listed below. Some of the diagrams are drawn in an unusual way.
The motivation for doing so is to highlight one vertex in eachdiagram. This ver-
tex is depicted as the leftmost one and represents the objects that are considered
to be the points of the incidence geometries. Also the order in which we list the
diagrams is not the usual, namely the alphabetical one. Instead, we order the
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diagrams by the symplectic rank of the geometries that are represented by the di-
agram together with the leftmost vertex. This symplectic rank can be easily read
out of the diagram: It is the natural numberr such that one can obtain a diagram
of type Cr,1 or Dr,1 by repeatedly erasing the rightmost vertices.
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The incidence geometries that are related to buildings of the listed types are
known (for a short overview see Appendix B). The most common ones are the
ones of type An,1, which are projective spaces, and those of the types Cn,1 and
Dn,1, which are polar spaces; see Appendix A for an introduction.

Point-line spaces The rank of a building of type Xn, j, where Xn, j is a type of the
given list, and the rank of the corresponding geometry both equaln. The buildings
that are related to the Jordan pairs of finite dimension are offinite rank. The aim of
this work is to characterise geometries that are related to Jordan pairs of arbitrary
dimension. Therefore we consider a class of geometries thatcontains the listed
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types related to the Jordan pairs of finite dimension as well as generalisation of
each them that includes geometries of infinite rank.

Note that for all diagrams,n is a natural number. We do not give diagrams for
geometries of infinite rank since this leads to serious problems; see Section 6.7 for
a discussion. Also the geometries of infinite rank themselves provide discouraging
properties of many kinds. A way to avoid some of these problems is to study point-
line truncations of the given geometries, i. e. the subgeometries one obtains by
considering only two kinds of objects (those that are called“points” and “lines”)
and forgetting about the rest. Geometries whose objects arejust points and lines
are also called point-line spaces.

Characterisations The first characterisation of point-line spaces is the one for
projective spaces. It was published in 1965 and is due to O. Veblen and J. Young;
see [VY65]. Almost ten years later, F. Buekenhout and E. Shult gave in [BS74]
a characterisation for polar spaces. This characterisation is astonishingly nice
since it needs solely one simple axiom. In the following years, motivated by this
very nice characterisation there was put a lot of effort to characterise other types
of point-line spaces that arise from buildings. In this context, one should men-
tion among others the work of F. Buekenhout ([Bue82]), P. Cameron ([Cam82]),
A. Cohen and B. Cooperstein ([CC83]), G. Hanssens ([Han86] and [Han88]),
A. Kasikova ([KS02]) and E. Shult ([Shu89], [Shu94] and [Shu03]). For an
overview of characterisations of point-line spaces see [Coh95] and the forthcom-
ing book of Shult. The obtained characterisations include all the types of our list
and many more. However, some of the characterisations provide a list of up to ten
axioms including rather technical ones.

Point-line spaces of infinite rank For each of the types An, j , Cn,1, Dn,1, Cn,n

and Dn,n there is a natural way to give a generalisation that includespoint-line
spaces of infinite rank. Thereby, the polar spaces (types Cn,1 and Dn,1) and the
point-line spaces of type An, j, for any fixed j ∈N, play a special role. The polar
spaces have all diameter 2 and the characterisation of Buekenhout and Shult still
holds for polar spaces of infinite rank. The diameter of the point-line spaces of
type An, j (called Grassmannians), is the minimum ofj andn− j . Hence, for the
ones of infinite rank, we always obtain diameterj . Accordingly, if both j and
n− j increase, we obtain point-line spaces of any finite diameter. The same is true
for point-line spaces of type Cn,n (called dual polar spaces) that have diameter
n and for those of type Dn,n (called half-spin spaces) that have diameter⌊n

2⌋. A
generalisation of all these types that allows the point-line spaces to have infinite
rank leads to point-line spaces that are disconnected. Moreprecisely, one obtains
point-line spaces with infinitely many connected components. Thus, the known
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characterisations do not work anymore.
Using an idea of B. Mühlherr, we pick two of these connected components and

equip the so obtained pair of point-line spaces with an opposition relation that
relates points of the one component with points of the other one. This approach
is in the spirit of the theory of twin buildings allows us to give a characterisation
that is still valid for the infinite rank case. Additionally,one can state axioms that
are less technical and thus, we are able to give a list of four quite nice axioms
that characterises the point-line spaces in question. By the way, the geometrical
objects we are now dealing with consist of two parts that are related to each other;
just like Jordan pairs.

Setup In Chapter 1 we introduce point-line spaces. Moreover, we present the
concept of an opposition relation to consider point-line spaces that are discon-
nected. At this point, the reader might familiarise himselfwith projective and
polar spaces which are introduced in Appendix A since in the following chapters
both of them will appear as well as some of the results stated there. We also will
make some comments about point-line spaces arising from buildings which are
considered in Appendix B. However, the results of Appendix Bare needed in
Chapter 5 at the latest.

The main matter of the present work starts in Chapter 2. Here we introduce
SPO spaces, the class of point-line spaces that is the topic of our research. We
state a list of axioms that characterises the SPO spaces. Moreover, we already
state several strong results which deliver some deep insight into the subsequent
classification.

Chapter 3 provides a first classification of connected subspaces that live in SPO
spaces. Thereby we demand the connected subspaces to have a certain regularity.
We call the subspaces with this regularity rigid subspaces.We will see that the
list of connected rigid subspaces we consider in this chapter coincides with the
types of finite rank that are listed above. The only exceptions are the point-line
spaces of the types An,1, Cn,1 and Dn,1 since for these cases we also obtain their
generalisations to point-line spaces of arbitrary rank.

In Chapter 4 we show that each SPO space can be decomposed intosubspaces
that are all rigid SPO spaces. Conversely, each compositionof rigid SPO spaces
is again an SPO space. This allows us to restrain our study to rigid SPO spaces.
Thus, we may use the classification results of Chapter 3 for the classification of
arbitrary SPO spaces.

Before we give the full classification, we discuss in Chapter5 the point-line
spaces of the types listed above. Moreover, we give generalisations of the distinct
types that allows the point-line spaces to be of arbitrary rank. Thus, the class of
subspaces we obtain is exactly class of the point-line spaces that we wanted to
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characterise.
Chapter 6 provides the main result of this thesis. We give theclassification of

rigid SPO spaces and prove that this classification matches exactly the point-line
spaces presented in Chapter 5.



1 Preliminaries and
notations

1.1 Point-line spaces

A point-line spaceS = (P ,L ) is a pair consisting of a setP , whose elements
are calledpointsand a setL ⊂ P(P) of subsets ofP with cardinality at least
2, which are calledlines (By P(M) we denote the power set of a setM). If all
points are subsets of a common set, we sometimes regard a lineas the union of its
points.

Points on a common line are calledcollinear . We writep0 ⊥ p1 to denote that
p0 andp1 are collinear. The relation⊥ induces a graph on the point setP that we
call thecollinearity graph. If p0 ⊥ p1, then we callp1 a neighbourof p1. By p⊥

we denote the set of all neighbours of a pointp, called theperpof p. For a set of
pointsX we denote byX⊥ :=

⋂

p∈X p⊥ the perp ofX, i. e. the set of all common
neighbours.

We give a list of some elementary rules that are valid in arbitrary point-line
spaces:

Lemma 1.1.1. Let M and N be sets of points of a point-line space with N⊆ M.
Then:

(i) N⊥ ⊇ M⊥

(ii) M ⊆ M⊥⊥

(iii) M⊥ = M⊥⊥⊥

Proof. N⊆M impliesM⊥ =
⋂

p∈M p⊥ = (
⋂

p∈N p⊥)∩(
⋂

p∈MrN p⊥)⊆N⊥. Since
every point ofM is collinear to every point ofM⊥, we obtainM ⊆ M⊥⊥. This
impliesM⊥ ⊆ (M⊥)⊥⊥ andM⊥ ⊇ (M⊥⊥)⊥.

A subspaceof a point-line spaceS = (P ,L ) is a point-line spaceS ′ =
(P ′,L ′) with P ′ ⊆ P and L ′ ⊆ L such that every line inL r L ′ has at
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most one point withP ′ in common and every line inL ′ is contained inP ′.
We write S ′ ≤ S , if S ′ is a subspace ofS andS ′ < S if S ′ is properly
contained. SinceS ′ is determined by its point set, we callP ′ itself a subspace.
Correspondingly, we treatS sometimes as its own point set. A proper subspace
is called ahyperplaneif it intersects every line. For a set of pointsM, we denote
by 〈M〉 the smallest subspace which containsM, called thespanof M. For a
family of pointsp0, . . . ps and a family of sets of pointsM0, . . . ,Mr we will write
〈p0, . . . , ps,M0, . . . ,Mr〉 rather than〈{p0, . . . , ps}∪M0∪·· ·∪Mr〉.

A partially linear spaceis a point-line space such that no two different lines
have two different points in common. Clearly, subspaces of partially linear spaces
are again partially linear. For two distinct collinear points p andq of a partially
linear space, the unique line joiningp and q is denoted bypq. A space that
contains exactly one point is called asingleton.

A point-line space where every two points are collinear is called singular. Sin-
gular partially linear spaces are calledlinear. Therank of a singular spaceS is
denoted by rk(S ) and equalsα −2, whereα is the maximal possible cardinality
of a well-ordered chain of subspaces ofS . Hence, the rank of the empty space
is −1 and the rank of a singleton is 0. Note that there might exist well-ordered
chains that are maximal but not of maximal possible cardinality. For a point-line
spaceS letS(S ) := {X ≤S | X ⊆ X⊥} denote the set of all singular subspaces
of S . Thesingular rankof S is defined as srk(S ) := sup{rk(X) | X ∈S(S )} .

We take for point-line spaces some terminology over from theunderlying
collinearity graph: Apath (of lengthk) between two pointsp0 and pk is a fi-
nite sequence(pi)0≤i≤k of points such thatpi ⊥ pi+1 for everyi < k. We define
thedistancedist(p,q) between two pointsp andq as the length of a shortest path
between them. If no such path exists, the distance betweenp andq is set to be
∞. We call two pointsp andq connected, if their distance is finite anddiscon-
nectedotherwise. A point-line space is called connected if every pair of its points
is connected. A maximal connected subspace is called aconnected component.
Let X be a set of points. Then thediameterof X is the supremum of all distances
between two points ofX and is denoted by diam(X).

A shortest path between two points is called ageodesic. A set of points is
calledconvexif it contains for every pair of points all geodesics. For a set of
pointsM, we denote by〈M〉g the smallest convex subspace which containsM,
called theconvex spanof M.

A gamma spaceis a point-line space with the property that for each pointp
and each linel , the setp⊥ ∩ l is either empty, a singleton or equalsl . In other
words a point-line space is a gamma space if and only if for every point p, the set
p⊥ is a subspace. This property yields some useful applications. The first one is
that the perp of a subspace equals the perp of any set of pointsspanning it:
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Lemma 1.1.2. Let M be a set of points of a gamma space. Then〈M⊥〉 = M⊥ =
〈M〉⊥.

Proof. SinceM⊥ is a subspace, the first equation is trivial. SinceM⊥⊥ is a sub-
space containingM, we obtainM ⊆ 〈M〉 ≤ M⊥⊥. By Lemma 1.1.1 we conclude
M⊥ ≥ 〈M〉⊥ ≥ M⊥⊥⊥ = M⊥.

The second property concerns singular subspaces. More precisely, the span of
a set of points with diameter 1 has again diameter 1.

Lemma 1.1.3. Let M be a set of mutually collinear points of a gamma space.
Then the subspace〈M〉 is singular.

Proof. SinceM ⊆ M⊥, we obtainM⊥ ≥ M⊥⊥. SinceM⊥ = M⊥⊥⊥ by Lemma
1.1.1, this implies thatM⊥⊥ has to be singular. SinceM ⊆M⊥⊥, we obtain〈M〉 ≤
M⊥⊥. Thus,〈M〉 is singular.

A morphismϕ : (P0,L0) → (P1,L1) of point-line spaces is a map fromP0

to P1 such that the image of every line inL0 is contained in some line ofL1. If
for every line inL0, the image under the morphismϕ is an element ofL1, thenϕ
is called ahomomorphism. An isomorphismis a bijective morphismϕ, such that
the inverse mapϕ−1 is again a morphism.

Let I be an index set and let(Si)i∈I be a family of point-line spaces. ForSi ,
we denote byPi the set of point and byLi the set of lines ofSi. We define the
grid productof the point-line spaces(Si)i∈I as

⊗

i∈I

Si :=

(

∏
i∈I

Pi,
⋃

i∈I

{

∏
j∈I

Sj

∣

∣

∣

∣

∣

Sj ∈ L j if j = i

Sj = {p j} with p j ∈ P j if j 6= i

})

.

Even if for everyi ∈ I , the point-line spaceSi is connected, it might happen
that

⊗

i∈I Si is a disconnected point-line space. This is the case ifI is infinite
and every point-line space contains at least two points. Therefore we introduce
a concept that is similar to the grid product and preserves connectedness. For
this we require thatPi is non-empty for everyi ∈ I . We choose a pointpi ∈ Pi

for every i ∈ I . Now we define
⊙

i∈I (Si , pi) ≤
⊗

i∈I Si to be the subspace that
consists of all points(qi)i∈I ∈ ∏i∈I Pi such that the set{i ∈ I | pi 6= qi} is finite.
We call

⊙

i∈I (Si, pi) thegrid sumof (Si)i∈I with origin (pi)i∈I . By definition of
the lines of

⊗

i∈I Si it is clear that
⊙

i∈I (Si , pi) is indeed a subspace of
⊗

i∈I Si .
If there is a pointp such thatPi ∩P j = {p} for every two distinct indicesi and
j of I , we write

⊙

i∈I Si instead of
⊙

i∈I (Si, p).
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1.2 Point-line spaces with a codistance

In a point-line space that is disconnected there is a priori no link at all between
two distinct connected components. In this section we introduce a method to relate
them to each other.

Recall that for a setM a relationR⊂ M ×M is calledleft-total, if M = {x |
∃y∈ M : (x,y)∈ R}. Right-totalis defined in the analogous way. A relation that is
left-total and right-total is calledtotal. For a symmetric relation these three terms
are obviously equivalent.

Definition 1.2.1. Let (P ,L ) be a point-line space with a symmetric, total point-
relationR⊂ P ×P . Then we call codR(x,y) := min{dist(z,y) | (x,z) ∈ R} the
R-codistancefrom x to y.

Note that this definition does not imply cod(x,y) = cod(y,x). Nevertheless, in
the following we will always consider a symmetric, total point-relationR such
that the derivedR-codistance is symmetric.

Since we introduce a codistance function to study point-line spaces that are
disconnected, in most of the cases the underlying symmetric, total point-relation
R will contain only pairs of disconnected points. Thereby thecodistance function
is some kind of refined distance function for points at infinite distance. More
precisely, the pairs contained inRcan be understood as pairs of points at maximal
distance. Therefore, the greater the codistance between two points is, the closer
these points are in a certain sense. For a natural numbern, it is helpful to visualise
“codistancen” as “distance∞−n”, where∞ should be seen as a symbol that stands
for the diameter of the point-line space. Note that finite codistance does not always
imply infinite distance since the concept of the codistance also works for point-line
spaces with a finite diameter. In the following, whenever we consider point-line
spaces of finite diameter with a codistance function, the mentioned symbol∞ can
be substituted by the diameter of the point-line space and weobtain the actual
distance.

This point of view motivates to define theR-codistance for two sets of points
X andY by codR(X,Y) := sup{codR(x,y) | x∈ X∧y∈Y}. Correspondingly, the
R-codiameterfor a set of pointsX is defined by codmR(X) := min{codR(x,y) |
{x,y} ⊆ X}.

Definition 1.2.2. Let U be a subspace and letp be a point of a point-line space
S . If dist(p,U) < ∞, we call the set prU(p) := {u∈U | dist(p,u) = dist(p,U)}
theprojectionof p in U .
Let R be a symmetric, total point-relation. Then we call coprR,U(p) := {u∈ U |
codR(p,u) = codR(p,U)} theR-coprojectionof p in U if codR(p,U) < ∞.
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Definition 1.2.3. LetU andV be two subspaces of a point-line spaceS . Further
let dist(U,V) < ∞. Then we callU one-parallelto V if for every pointu ∈ U ,
dist(u,V) = dist(U,V) and prV(u) is a singleton.
Let R be a symmetric, total point-relation. Further let codR(U,V) < ∞. Then we
callU R-one-coparallelto V if for every pointu∈U , cod(u,V) = cod(U,V) and
coprR,V(u) is a singleton.

Note that our definitions of one-parallel andR-one-coparallel are not symmet-
ric. In most cases, the disconnected point-line spaces witha codistance that we
consider consist of two connected components. Furthermore, they are of the fol-
lowing type:

Definition 1.2.4. Let S + = (P+,L +) andS − = (P−,L −) be two disjoint
partially linear spaces. Further letR⊆ (P+ ×P−)∪ (P−×P+) be a sym-
metric, total relation onP+∪P− such that for every pair(p, l) ∈ P+×L −∪
P−×L +, the following holds:

(OP) If ({p}× l)∩R is non-empty, there is a pointq∈ l such that({p}× l)∩
R= {p}× (l r{q}).

Then we call the pair(S +,S −) a twin spaceandR the opposition relationof
(S +,S −).

Let (p,q) be a pair of points of a twin space that is contained in the opposition
relation. Then we sayp andq areoppositepoints orp is oppositeq and denote it
by p↔ q. With this way of speaking we can reformulate (OP) as follows: Each
point is non-opposite to either all or exactly one point of a given line.

If we talk about a codistance in a twin space, it always refersto the opposition
relation of the twin space.

A morphismϕ : (S +
0 ,S −

0 ) → (S +
1 ,S −

1 ) of point-line spaces is a mapping
of the union of the underlying point sets that preserves opposition and forσ ∈
{+,−}, the restrictionϕ|S σ

0
is a morphism of point-line spaces fromS σ

0 to ei-

therS +
1 or S

−
1 . The morphismϕ is called ahomomorphism(resp. anisomor-

phism) if for σ ∈ {+,−}, the restrictionϕ|S σ
0

is a homomorphism into (resp. an

isomorphism onto) eitherS +
1 or S

−
1 .





2 SPO spaces

In this chapter we introduce a class of point-line spaces that play the main role
in this work. These point-line spaces are equipped with a symmetric, total point-
relation, called “opposition relation”, that gives rise toa codistance. Since in the
majority of the cases there is no doubt about the point-relation we refer to, we talk
about “codistance”, “coprojection” and “one-coparallel”without mentioning the
underlying point-relation in these terms.

We shall classify these point-line spaces in the present work. Therefore we
discuss some extra assumptions each one of which yields niceextra conditions
that facilitate the classification. We will justify why these assumptions can be
made. However, some of them will be motivated in the subsequent chapters. Fur-
thermore, we prove some first properties concerning the structure of the lattice of
subspaces.

2.1 Main Definition and fundamental properties

We start by defining the point-line spaces that will be the objects of interest in
all the present work. For the independence of the four axiomsof the following
definition, see Appendix C. Since at first sight these axioms look rather technical,
we give subsequent to the definition a brief discussion abouttheir intention as well
as a motivation how they should be visualised.

Definition 2.1.1. Let S be a point-line space and letR be a symmetric, total
point-relation that induces a codistance onS . Then we callS an SPO space1

andRanopposition relationof S if the following conditions hold for all pointsx,
y andzwith dist(y,z) < ∞ and cod(x,y) < ∞. We setn := dist(y,z) andV := 〈y,z〉g.

1SPO stands for “strongly parapolar with anopposition relation”. This is because later on we
will see that each non-singular connected component of an SPO space is strongly parapolar.
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(A1) If (x,v) ∈ R for somev∈V, then cod(x,V) = n.

(A2) If (x,v) ∈ R for somev∈V, then coprV(x) is a singleton.

(A3) If z∈ coprV(x) andw⊥ x with cod(x,y) > cod(w,y), then

(a) cod(x,V) ≥ cod(w,V) and coprV(x) ) coprV(w) or
(b) cod(x,V) > cod(w,V) and coprV(x) ⊇ coprV(w).

(A4) If y⊥ zand(x,y) ∈ R, then there is a pointw⊥ x with (w,z) ∈ R.

Mostly, we do not mention any opposition relation explicitly. In this case, the
opposition relation will be denoted by↔. As for twin spaces, we call two points
oppositeif they form a pair of the opposition relation.

We state some immediate consequences of the given axioms anda short moti-
vation how they can be interpreted.

The axiom (A4) is equivalent to the assertion that the codistance of an SPO
space is symmetric as the first claim of the following proposition implies. The
second claim relates the distance and the codistance function. More precisely, it
can be seen as extension of the triangle inequality to the case of infinite distances.

Proposition 2.1.2.Let x, y and z be points of an SPO space such thatcod(x,y)< ∞
anddist(y,z) < ∞. Then

(i) cod(x,y) = cod(y,x) and

(ii) dist(y,z) ≥ cod(x,y)−cod(x,z).

Proof. (i) Let cod(x,y) = n and let(yi)0≤i≤n be a geodesic withyn = y andy0 ↔ x.
Setx0 := x. By (A4) there is for everyi < n a pointxi+1 collinear toxi and opposite
yi+1. We conclude cod(y,x) ≤ n. Equality follows by exchangingx andy.
(ii) Let w be a point withw ↔ x and dist(z,w) = cod(x,z). Then dist(y,w) ≤
cod(x,z)+dist(y,z).

Since this proposition is just what one would usually expectof a refinement
of the distance function, we will use these conditions in thefollowing without
referring to them.

Axiom (A1) controls the size of the convex span of two points at finite distance
as the following proposition shows. Note we do not make use ofany axiom other
than (A1).

Proposition 2.1.3.Let y and z be two points of an SPO space at distance n. Then
diam(〈y,z〉g) = n.

Proof. Let u andv be two points of〈y,z〉g at distancek. Let p be a point opposite
u. Then cod(p,〈u,v〉g) = k and cod(p,〈y,z〉g) = n by (A1). Thus,k≤ n.
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The consequences of (A2) and (A3) are less obvious. Axiom (A2) is a kind of
generalisation of (OP) for twin spaces. Note that the axiom (BS) for polar spaces
is also similar to (A2) if we understand non-collinear points in a polar space as
opposite points. Furthermore, as we will see in the following subsection, (A1) and
(A2) imply that an SPO space can be treated as a partially linear space.

The Axiom (A3) is the least intuitive of the four axioms. Let all notation be
like in Definition 2.1.1. If we understand opposite points tobe points at maximal
distance, then the points in coprV(x) are the points ofV at minimal distance tox.
We know already that the diameter ofV equalsn. Hence,y is a point ofV with
maximal possible distance to a point of coprV(x). One would expect such a point
to have minimal possible codistance tox, what is actually true as we will see later.
Now we decrease this minimal possible codistance toy by stepping fromx onto
w and the claim of (A3) is now that either the codistance toV decreases or the
codistance toV stays the same and the coprojection decreases. One can visualise
this situation in the way that if we move away fromy, we move away fromV.

2.1.1 Simplifications

There are two extra assumptions we will make to simplify studying SPO spaces.
We will motivate why these assumptions can be done and show that they do not
affect the theory of SPO spaces too much. The first one concerns the lines of an
SPO space. We consider the subspaces spanned by single line and show that they
can be regarded as new lines.

Lemma 2.1.4.Let g be a line of an SPO space. Then〈g〉 = 〈g〉g.

Proof. Let p andq be distinct points ong. Then〈g〉g = 〈p,q〉g sinceg ⊆ 〈p,q〉
and therefore diam(〈g〉g) = 1 by Proposition 2.1.3. Since〈g〉 ≤ 〈g〉g, this implies
diam(〈g〉) = 1. Thus,〈g〉 is convex and therefore〈g〉g = 〈g〉.

Lemma 2.1.5. Let g and h be two lines of an SPO space. Then|〈g〉 ∩ 〈h〉| ≥ 2
implies〈g〉 = 〈h〉.

Proof. Let y be an arbitrary point of〈g〉 and letx be a point oppositey. Since
〈g〉 = 〈g〉g, we obtain by (A1) and (A2) that there is a pointz∈ 〈g〉 such that
cod(x,z) = 1 andx is opposite to all points of〈g〉r{z}. Since cod(x,z) = 1, there
is a pointw⊥ x with w↔ z. SetU := 〈w,x〉g. Then diam(U) = 1 by Proposition
2.1.3. Moreover, (A1) and (A2) imply thatx is the unique point ofU that is non-
opposite toz. By (A1) and (A2) there is exactly one point inU that is not opposite
y. Since this point is distinct tox, we may assume thatw is the unique point inU
not oppositey. Again by (A1) and (A2) all points of〈g〉r{y} are oppositew.
Now let p andq be two distinct points of〈g〉. We may assumeq 6= y and hence
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w ↔ q. By (A1) we obtain cod(w,〈p,q〉g) = 1 and thereforey ∈ 〈p,q〉 since
〈p,q〉g = 〈p,q〉 ≤ 〈g〉. We conclude〈g〉 ≤ 〈p,q〉 by the arbitrary choice ofy. Thus,
〈g〉 ≤ 〈h〉 for every lineh with |〈g〉∩ 〈h〉| ≥ 2. The claim follows by symmetric
reasons.

Proposition 2.1.6. Let S = (P ,L ) be an SPO space. ThenS ′ := (P ,{〈g〉 |
g∈ L }) is again an SPO space with the same opposition relation. Moreover, the
distance and the codistance inS andS ′ are the same and a set of points U⊆P

is a subspace ofS if and only if it is a subspace inS ′.

Proof. SetS := (P ,L ) andS ′ := (P ,{〈g〉 | g ∈ L }). Let U be a subspace
of S and letp andq be two distinct points ofU such that there is a lineg∈ L

with {p,q} ⊆ 〈g〉. By Proposition 2.1.3 and Lemma 2.1.4 we know that〈g〉 is a
singular subspace ofS . Thus, there is a lineh∈ L that joinsp andq. Therefore
Lemma 2.1.5 implies〈g〉= 〈h〉 ≤U and hence,U ≤S ′. Now letU be a subspace
of S ′ and letp andq be two distinct points ofU such that there is a lineg∈ L

with {p,q} ⊆ g. Theng⊆ 〈g〉 ≤U and hence,U ≤ S .
Since〈g〉 is singular for ever lineg ∈ L , two points are collinear inS if and
only if they are collinear inS ′. Therefore, in both spaces the distance between
two certain points is the same. Consequently, using the sameopposition relation
in S ′ as inS implies that the codistance is maintained, too.
By the accordance of the distance, a subspace ofS is convex if and only if it
is a convex subspace ofS ′. Now it is easy to check that all four conditions of
Definition 2.1.1 hold inS if and only if they hold inS ′.

Remark2.1.7. For an arbitrary SPO spaceS = (P ,L ) the SPO spaceS ′ :=
(P ,{〈g〉 | g∈ L }) is partially linear by Lemma 2.1.5. Therefore we callS ′ the
associated partially linear SPO space. By Proposition 2.1.6 the point-line spaces
S andS ′ have the same lattice of subspaces. Singularity, convexity, distance
and codistance coincide as well. The main difference between S andS ′ is that
we have to exchange the term “line” by “span of a line”. Obviously, this just
makes the notation more complicated and takes the advantageof having unique
lines away.
These facts allow us to restrict our studies to SPO spaces that are partially linear.
All the results we obtain can be easily transformed into results for arbitrary SPO
spaces. Thus, from now on we consider all SPO spaces to be partially linear. Note
that a partially linear SPO space is still a SPO space if we substitute an arbitrary
line l by a singular subspaceSthat contains the same points asl and coincides with
the span of each of its lines. For example, ifl contains more than 3 points, we may
substitutel by any set of lines of the kind{g⊆ l | |g| = α}, where 3≤ α ≤ |l |.

The second simplification we will make concerns the opposition relation and
the connected components. LetS be an SPO space. For a pointp∈S we denote



2.1. Main Definition and fundamental properties 11

by Sp the connected component ofS containingp. Now letx andy be opposite
points ofS . Then each point ofSx has finite distance tox and consequently, each
point of Sx has finite codistance toy. This implies that for each pointp ∈ Sx

there is a point inSy that is oppositep. Conversely, to every point ofSy we
find an opposite point inSx. This motivates us to call two connected components
oppositeif one of them contains a point that is opposite to a point of the other.
Now we define theconnectivity graphΓC(S ) of S as the graph whose vertex set
consists of the set of connected components ofS and whose edges are the pairs
of opposite connected components.

If ΓC(S ) is disconnected, then the union of the vertices of each connected
component ofΓC(S ) is an SPO space itself. These SPO spaces form a partition
of S . Moreover, each two of these SPO spaces do not interact in anyway what-
soever. Since on the other hand every disjoint union of a family of SPO spaces is
again an SPO space, we may constrain ourselves on SPO spaces whose connec-
tivity graphs are connected.

It might happen thatΓC(S ) hasloops, i. e. edges that join a vertex with itself.
Since↔ is total, every vertex of this graph is contained in at least one edge.
We pick an edge ofΓC(S ) and denote the vertices of this edge byS + andS −.
Then we delete all other edges and all vertices butS + andS −. Now we consider
the subspaceS ′ := S + ∪S − ≤ S . Further we restrict the induced opposition
relation↔|S ′ to pairs of points that have a member in either of the connected
componentsS + andS − and denote the so obtained point-relation by↔′. The
subspaceS ′ together with the relation↔′ is exactly the substructure that matches
to the graph consisting ofS + andS − and the edge joining them. For two points
of S ′ the distance inS ′ between them is the same as their distance inS . The
codistance might differ as long asS + 6= S − andΓC(S ) has a loop atS + or
S −. However, the codistance between a point ofS + and a point ofS − in S ′

is the same as their codistance inS since two pointsp ∈ S + andq ∈ S − are
opposite inS ′ if and only if they are opposite inS . It is now easy to check
that the four axioms of Definition 2.1.1 are still valid inS ′. Since the restricted
opposition relation↔′ is a total relation inS ′, we conclude thatS ′ is again an
SPO space. Thus, every connected component of an SPO space isthe connected
component of an SPO space whose connectivity graph possesses one single edge.

AssumeS is connected and consequently,ΓC(S ) consists of one vertex and a
loop on it. LetS + andS − be disjoint copies ofS . Forσ ∈ {+,−} let ϕσ be the
canonical isomorphism fromS σ ontoσ . We setS ′ := S +∪S −. Since we do
not add any additional lines toS ′ beside the ones ofS + andS −, we obtain for
two pointsp andq of S ′ thatp andq are connected if and only if they both belong
to S σ for σ ∈ {+,−}. Moreover, the distance ofp andq in S ′ coincides with
the distance of their images inS underϕσ . Two points inS ′ are opposite if and
only if one point belongs toS + and the other one toS − and their images under
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ϕ+ andϕ− are opposite inS . We denote the so obtained relation by↔′ and the
opposition relation ofS by ↔. By construction,↔′ is a symmetric, total point-
relation that induces a codistance onS ′. Moreover, for a pointp∈S + all points
of S + are at infinite codistance and all points ofS − are at finite codistance since
S − is connected. Letq andr be points ofS −. Thenp↔′ r ⇔ pϕ+ ↔ rϕ− and
dist(q, r) = dist(qϕ− , rϕ−). We conclude cod(p,q) = cod(pϕ+ , rϕ−). Again it is
easy to check that the four axioms of Definition 2.1.1 are satisfied inS ′. Hence,
S ′ is a SPO space and therefore, every connected component of anSPO space is
a connected component of an SPO space whose connectivity graph possesses one
single edge and two vertices. Therefore, it suffices to studySPO spaces of this
type if one is interested in what connected components of SPOspaces look like.
This motivates us to give them a special name:

Definition 2.1.8. Let S be a partially linear SPO space consisting of two con-
nected componentsS + andS − such that two points have finite codistance if
and only if they have infinite distance. Then we call(S +,S −) a twin SPO space,
where(S +,S −) carries the same opposition relation asS .

This definition is motivated by the following property.

Proposition 2.1.9.Every twin SPO space is a twin space.

Proof. By the definition of the opposition relation in a twin SPO space, it remains
to check that (OP) is fulfilled. Since in a partially linear space every line coincides
with the convex span of any two of its points, (OP) follows directly from (A1) and
(A2).

Although we restrain ourselves from now on to twin SPO spaces, there will
still appear SPO spaces that are not twin SPO spaces, namely those kinds whose
connectivity graphs consist of a single vertex and a loop. This is necessary since
there are connected subspaces of a twin SPO space which are again an SPO space
using a different opposition relation (cf. Proposition 2.1.23).

Since in a twin SPO space two points have either finite distance or finite codis-
tance, we may understand the codistance as a completion of the ordinary distance
where distance 0 is the smallest possible distance and codistance 0 is the biggest
possible distance. In this sense in a twin SPO space there is an exact value for the
distance of any two points.

2.1.2 Subspaces of finite diameter

Regarding the axioms (A1), (A2) and (A3), it is obvious that one of our main
interests concerns the convex subspaces that are spanned bytwo points at a finite
distance. Beside them we study the singular subspaces and explore some proper-
ties of the structure of SPO spaces that are based on these subspaces.
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Definition 2.1.10. Let U be a connected subspace of a point-line spaceS . Fur-
ther let p be a point with dist(p,U) < ∞. If there is a pointq ∈ U such that for
every pointr ∈U there is a geodesic fromr to p passingq, we callq a gatefor p
in U . If every pointr with dist(r,U) < ∞ has a gate inU , we callU gated.
Let S be a point-line space with a codistance. Again letU be a connected sub-
space ofS and letp be a point with cod(p,U) < ∞. If there is a pointq∈U such
that cod(p,q) = cod(p, r)+dist(q, r) for every pointr ∈U , we callq acogatefor
p in U . If every pointr with cod(r,U) < ∞ has a cogate inU , we callU cogated.

In a point-line space with a codistance we can define a gate even for some
disconnected subspaces as follows:

Definition 2.1.11. Let S be a point-line space with a codistance. Further let
U be a subspace such that every two points ofU have finite distance or finite
codistance. Then for a pointp with dist(p,U) < ∞, we callq ∈ U a gate for p
in U if cod(p, r) = cod(q, r)−dist(p,q) for every pointr ∈U with cod(q, r) < ∞
and dist(p, r) = dist(p,q)+dist(q, r) for every pointr ∈U with dist(q, r) < ∞. As
for connected subspaces we callU gatedif every point at finite distance toU has
a gate inU .

Proposition 2.1.12.Let y and z be two points of an SPO space at finite distance
n and set V:= 〈y,z〉g. Further let x be a point at finite codistance to V. Then the
following conditions hold:

(i) For every point u∈V, there is a point v∈V withdist(u,v) = n.

(ii) If coprV(x) contains a single point v, then v is cogate for x in V .

(iii) For every two points u and v of V withdist(u,v) = n, the convex span〈u,v〉g
equals V .

(iv) If there is a point v∈V with cod(x,V) = cod(x,v)+n, then x has a cogate
in V.

Proof. (i) Let p be a point oppositeu. By (A1) there is a pointv ∈ V with
cod(p,v) = n. Hence, dist(u,v) ≥ n. Equality follows from Proposition 2.1.3.
(ii) Let u ∈ V be an arbitrary point. Setd := dist(v,u), k := cod(x,u) andU :=
〈v,u〉g. We prove cod(x,v) = k+ d by induction overk. For k = 0 the claim fol-
lows by (A1). Now letk > 0. Then there is a pointw⊥ x with cod(w,u) = k−1.
Since coprU(x) = {v}, we obtain coprU(w) = {v} and cod(w,v) = cod(x,v)−1 by
(A3). By the induction hypothesis we obtain cod(w,v) = cod(w,u)+ dist(v,u) =
k+d−1 and hence, cod(x,v) = k+d.
(iii) Let p ∈ 〈u,v〉g and letr be a point oppositep. By (A1) and (A2) there is
exactly one pointq∈V with cod(r,q) = n and for all other points ofV the codis-
tance tor is < n. Hence,q ∈ 〈u,v〉g by (A1). By Proposition 2.1.3 we obtain
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dist(p,q) = n. Now let p′ ∈ V be a point collinear top. We want to show
p′ ∈ 〈u,v〉g and therefore we may assumep′ 6= p. By (A1) there is a pointq′

on the linepp′ with cod(r,q′) = 1. Thus, dist(q′,q) = n− 1 by (ii) and hence,
q′ ∈ 〈p,q〉g ≤ 〈u,v〉g. Thus,l ≤ 〈u,v〉g and the claim follows by the connectedness
of V.
(iv) Let x′ ∈ V be a point with cod(x,V) = cod(x,x′). Then dist(x′,v) = n and
henceV = 〈x′,v〉g by (iii). Now let v′ ↔ x be a point with dist(v,v′) = cod(x,v).
Then dist(x′,v′) = cod(x,V) and hence, copr〈x′,v′〉g(x) = {x′} by (A1) and (A2).
Since〈x′,v〉g ≤ 〈x′,v′〉g the claim follows by (ii).

Let V be the convex span of two points of an SPO space at finite distancen.
Further letx be a point that is opposite to some point ofV. Then (A1) and (A2)
imply that there is a pointz∈V at codistancen to x such that coprV(x) = {z}. Now
Proposition 2.1.12(ii) implies thatz is a cogate forx in V. Hence, the following
condition holds for every SPO space:

(A12) If x↔ v for somev∈V, thenx has a cogate at codistancen in V.

The labelling (A12) is motivated since both (A1) and (A2) aredirect consequences
of this condition. Note that (A12) is not just the unificationof (A1) and (A2) since
in the proof of Proposition 2.1.12(ii) we made use of (A3).

Lemma 2.1.13.Let y and z be two points of an SPO space at distance n. Then
there is a point x with x↔ y andcod(x,z) = n.

Proof. SetV := 〈y,z〉g. Let w be a point oppositez. By (A12) there is a point
y′ ∈ V with cod(w,y′) = n such that coprV(w) = {y′}. Take a pointx′ ↔ y′

with dist(w,x′) = n. Then again by (A12) there is a pointx ∈ 〈x′,w〉g =: U
with cod(x,z) = n such that coprU(z) = {x}. By Proposition 2.1.3 we obtain
dist(x,w) = n. Sincex′ ↔ y′, the pointw is a cogate fory′ in U by (A12) and
thereforex↔ y′. Hence again by (A12),z is a cogate forx in V and we conclude
y↔ x.

Lemma 2.1.14. Let y and z be two points of an SPO space at distance n. Set
V := 〈y,z〉g and let x be a point withdist(x,V) < ∞. Further let v∈V be a point
with dist(x,V) = dist(x,v)+n. Then x has a gate in V.

Proof. Set k := dist(x,V) and letu ∈ V be a point with dist(x,u) = k. Then
dist(x,v) = k+ n and hence, Lemma 2.1.13 implies that there is a pointw ↔ v
with cod(w,x) = k+ n. By (A12) the pointx is a cogate forw in 〈x,v〉g. Since
dist(x,u) = k, we obtain cod(w,u) ≥ n and consequently, (A12) implies thatu is
a cogate forw in V with cod(u,w) = n. SinceV ≤ 〈x,v〉g, we obtain dist(x, p) =
k+n−cod(w, p) = k+dist(u, p).
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As a direct consequence of this lemma, we can state a first result concerning
the structure of an SPO space.

Corollary 2.1.15. Every SPO space is a gamma space.

Proof. Let pbe a point of an SPO space and letl be a line. Assume there are points
q andr on l such thatq⊥ p andr 6⊥ p. Then dist(p,q) = 1 and dist(p, r) = 2 and
therefore prl (p) = {q} by Lemma 2.1.14.

We know concentrate our attention to the coprojection of a given point in the
convex span of two points at finite distance.

Proposition 2.1.16. Let y and z be two points of an SPO space at distance n
and set V:= 〈y,z〉g. Further let x be a point at finite codistance to V and set
U := coprV(x). Then

(i) U is a convex subspace of V,

(ii) dist(v,U)+cod(x,v) = cod(x,V) for every v∈V and

Proof. (i) Let l ≤ V be a line. Then by Proposition 2.1.12(iv) the set coprl (x)
is a singleton or the whole line. Hence,U is a subspace. Now, letu andv be
two distinct points ofU . We have to show that an arbitrary pointv′ ⊥ v with
dist(u,v′) = dist(u,v)−1 is contained inU .
Suppose cod(x,v′) = cod(x,v)− 1. Take a pointw ↔ v at distance cod(x,v) to
x and setW := 〈w,x〉g. Suppose cod(v′,W) < dist(x,w). Thenx ∈ coprW(v′).
Moreover, by (A1) there is no point inW oppositev′ and hence, cod(w,v′) =
1. This is a contradiction to (A3) since cod(w,v) < cod(w,v′) but cod(W,v) >
cod(W,v′). Thus, cod(v′,W) ≥ dist(x,w). This impliesx /∈ coprW(v′). By (A12)
we know thatx is a cogate forv in W. Thus, cod(v,W r {x}) = cod(x,v)−1 =
dist(w,x)−1 and we conclude cod(v′,W) = cod(v,W). Hence, for any pointx′ ∈
coprW(v′), we obtainx′ ⊥ x and cod(x′,v′) = cod(x,v) = cod(x′,v)+1. Thus, we
may apply (A3) to conclude cod(x,〈u,v〉g) ≥ cod(x′,〈u,v〉g) and thereforev′ ∈
copr〈u,v〉g(x

′). This is a contradiction to copr〈u,v〉g(x
′) ≤ copr〈u,v〉g(x). Thereforev′

has to be contained inU .
(ii) Let u∈U be a point with dist(v,U) = dist(v,u). SetV ′ := 〈u,v〉g. By Lemma
2.1.13 there is a pointw↔ u with cod(w,v) = dist(u,v). Sincev is a cogate forw
inV ′ by (A12) and on every line there is a point that is not oppositew, we conclude
that every line ofV ′ has at most distance dist(u,v)−1 to v. HenceV ′∩U = {u}
by (i) and consequently, Proposition 2.1.12(ii) implies that u is a cogate forx in
V ′.

Proposition 2.1.17.Let y and z be two points of an SPO space at distance n and
set V:= 〈y,z〉g.
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(i) Let u and v be two points of V at distance k and set U:= 〈u,v〉g. Then
dist(p,U) ≤ n−k for every point p∈V.

(ii) Let x be a point withcod(x,V) < ∞. Thencod(x,V) ≥ n.

Proof. Suppose one of the claims does not hold. Then we may assume that n is
minimal under the condition that there exists a counterexampleV.
If k = n, claim (i) follows from Proposition 2.1.12(iii). Hence, wemay assume
k < n. By Proposition 2.1.12(i) there is a pointq∈V with dist(p,q) = n for every
point p ∈ V. By Lemma 2.1.13 there is a pointr with r ↔ q and cod(p, r) = n.
Thus by Proposition 2.1.12(iv), the pointp is a cogate forr in V. Sincek < n, we
conclude cod(r,U) ≥ k by (ii) and consequently, (i) holds forV.
Thus,V is a minimal counterexample for claim (ii). This implies that (ii) holds
for the convex span of any two points at distancen−1, and therefore cod(x,V) =
n−1. We may assume thatx is a point such that diam(coprV(x)) is minimal. Set
m := diam(coprV(x)). By Proposition 2.1.12(iii) we may assumez∈ coprV(x).
Let p andq be points of coprV(x) at distancem. Then dist(y,〈p,q〉g) ≤ n−m
by (i). Since coprV(x) is a convex subspace by Proposition 2.1.16(i), this im-
plies dist(y,coprV(x) ≤ n−m. Since dist(z,y) = n and z∈ coprV(x), we con-
clude dist(y,coprV(x)) = n−m and therefore cod(x,y) = m− 1 by Proposition
2.1.16(ii). Since cod(x,V) = n− 1, we obtainm−1 > 0 by (A1). Thus, there
is a pointw⊥ x with cod(w,y) = m−2. By (A3) this implies cod(w,V) ≤ n−1
and coprV(w) ≤ coprV(x). SinceV is a minimal counterexample, we conclude
cod(w,V) = n−1 as forx. Thus, dist(y,coprV(w)) ≥ n−m+ 1. Since coprV(w)
is a convex subspace, we conclude diam(coprV(w)) ≤ m− 1 by (i). This is a
contradiction to the choice ofx and the claim follows.

Corollary 2.1.18. The convex span of two points at distance2 of an SPO space is
a non-degenerate polar space of rank≥ 2.

Proof. Let Y be the convex span of two points at distance 2. Letl ≤Y be a line
and let p ∈ Y be a point. Then dist(p, l) ≤ 1 by Proposition 2.1.17(i). Thus,
the Buekenhout-Shult Axiom (BS) follows from Lemma 2.1.14.By Proposition
2.1.12(i)V is non-degenerate. SinceY contains a line, we obtain rk(Y) ≥ 2.

Remark2.1.19. If we do not restrain ourselves to consider SPO spaces that are
partially linear, this corollary does not hold anymore. Hence, we cannot apply
Proposition A.2.7 at this point to prove that there are partially linear subspaces in
an arbitrary SPO space. The reason for this is that in the axioms given in Definition
2.1.1 lines do not occur without their span. An additional axiom that for every line
l , there is no point at codistance 0 tol would avoid this fact. Moreover, such an
axiom would imply that every SPO space is partially linear.
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We are now ready to prove the property that motivates the usage of the term
SPO space. For the definition of parapolar and strongly parapolar spaces, see
Definition B.3.2.

Theorem 2.1.20.Let V be a connected convex subspace of an SPO space with
diam(V) ≥ 2. Then V is a strongly parapolar space.

Proof. We know already thatV is a convex partially linear gamma space. As sym-
plecta we take the subspaces ofV that are convex spans of two points at distance
2. By Corollary 2.1.18 each symplecton is a non-degenerate polar space of rank
≥ 2.
Now let p andq be two points ofV at distance 2. Then every quadrangle that
containsp andq is contained in〈p,q〉g. Moreover, Proposition 2.1.12(iii) implies
that every convex span of two points at distance 2 that contains p andq coincides
with 〈p,q〉g.
It remains to check that every linel ≤ V is contained in a symplecton. Since
diam(V)≥ 2, there is a symplectonY ≤V. We may assumel � Y since otherwise
we are done. First we consider the casel ∩Y = ∅. Let p andq be distinct points
of l such that dist(p,Y) = dist(l ,Y). Then there is a pointy∈Y with dist(p,y)≥ 2
since otherwisep would be contained inY. SinceV is convex, there is a point
z∈ V with dist(p,z) = 2. SinceY′ := 〈p,z〉g is a symplecton ofV, it remains to
check the casel ∩Y = {p}. By Lemma A.2.3(i) there are pointsy andz in V ∩ p⊥

with y 6⊥ z. Sinceq /∈ Y, we concludey 6⊥ q or z 6⊥ q. Thus,〈q,z〉g or 〈q,y〉g is a
symplecton that containsl .

A symplecton is said to be of rankr if it is a polar space of rankr. Let S

be a parapolar space such that every symplecton has rankr. Then we callS a
parapolar space ofsymplectic rank r, denoted by yrk(S ) = r. If every symplecton
of a parapolar spaceS has rank≥ r, we say thatS is of symplectic rank≥ r.

According to the term symplecton we call the convex span of two points of an
SPO space that have finite distance to each other ametaplecton. By this definition,
singletons, lines and symplecta are the three smallest kinds of metaplecta.

The next subspaces we study are the singular subspaces. Our goal is to show
that SPO spaces are paraprojective; see Definition B.3.1. Itis known that every
parapolar space is already paraprojective; see [Bue82] or [BCar]. For SPO spaces,
this is not sufficient since there are connected components of SPO spaces that are
singular and hence they are not parapolar.

Lemma 2.1.21.For n∈N let M := {yi | 0≤ i < n} be a set of mutually collinear
points of an SPO space.

(i) Let x be a point with x= yi for all 0≤ i < n. Then x= p for every point
p∈ 〈M〉.
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(ii) Let cod(x,〈M〉) = 1 andcod(x,yi) = 1 for 0≤ i < n. Then there is a point
yn ↔ x such that yn ⊥ yi for 0≤ i < n.

(iii) Let yi /∈ 〈y j | 0 ≤ j < i〉 for y ∈ M. Then there is a set{xi | 0 ≤ i < n}
of mutually collinear points such that xi ↔ y j ⇔ i = j for 0 ≤ i < n and
0≤ j < n.

Proof. (i) Let y and z be two distinct collinear points withy = x = z. Then
yz= 〈y,z〉g and hence by (A2), there is no point onyzoppositex. SetM0 := M.
For i ∈N, we set recursivelyMi+1 :=

⋃

(y,z)∈Mi×Mi
yz. Sincex = p for every point

p∈ M, we apply induction to conclude fori ∈N thatx = p holds for every point
p∈ Mi.
Since the points ofM are mutually collinear, we know that〈M〉 is singular. Since
by the definition we obtainMi ⊆ 〈M〉 for everyi ∈N, we obtain

⋃

i∈Nat Mi ⊆ 〈M〉.
Moreover, the points ofMi are mutually collinear. Leti ≤ j and take two points
p ∈ Mi andq ∈ M j . Then p ∈ M j and the linepq is contained inM j+1. Thus
〈M〉=

⋃

i∈Nat Mi and the claim follows.
(ii) We proceed by induction overn. Since cod(x,y0) = 1, the claim holds for
n ≤ 1. Now let n > 1 and assume that there is a pointy′n ↔ x such thaty′n ⊥
yi for 0 ≤ i < n− 1. If y′n ⊥ yn−1, we are done. Therefore we may assume
dist(y′n,yn−1) = 2. ThenY := 〈y′n,yn−1〉g is a symplecton that containsM. By
(A12) x has a cogatex′ in Y with cod(x,x′) = 2. Thereforex′ is collinear to every
point of M andS:= 〈x′,M〉 is a singular subspace ofY.
Since rk(S) < ∞, we conclude by Lemma A.2.17 and induction that there is a gen-
eratorG of Y that is disjoint toS. Since cod(x,〈M〉) = 1, we know〈M〉< S. Thus,
Proposition A.2.20 and Lemma A.2.22(ii) imply thatG′ := 〈M〉#G is a generator
of Y with crkG(G∩G′) = rk(〈M〉)+ 1. SinceS∩G = ∅ and rk(S) > rk(〈M〉),
we concludeS� G′ and consequently,x′ /∈ G′. By the maximality ofG′ there is
a pointyn ∈ G′ that is not collinear tox′. Thus,x ↔ yn. The claim follows since
M ⊆ G′.
(iii) We proceed by induction overn. For n ≤ 1 the claim follows from (A4).
Now assume there is a set of mutually collinear points{wi | 0≤ i < n} such that
wi ↔ y j ⇔ i = j for 0≤ i < n and 0≤ j < n. Further letyn be a point withyn ⊥ yi

for 0≤ i < n andyn /∈ 〈yi | 0≤ i < n〉.
Setz0 := yn and for 0≤ i < n, let zi+1 be the unique point on the lineyizi not
oppositewi . Sincezi+1 ∈ 〈yi | 0 ≤ i ≤ n〉 we obtainy j ⊥ zi+1 for j < n. Fur-
thermore we obtainzi+1 /∈ 〈y j | 0≤ j < n〉 sincezi+1 6= yi by zi+1 = wi ↔ yi and
zi /∈ 〈y j | 0≤ j < n〉. Finally, zi+1 = w j wheneveri ≤ j since this is true by def-
inition for i = j and follows recursively byw j = zi andw j = yi if i > j . Thus,
zn = w j for 0≤ i < n and hence cod(zn,w j) = 1 sincezn ⊥ y j .
By (ii) there is a pointwn ↔ zn with wn ⊥ wi for 0 ≤ i < n. Now setu0 := wn

and for i < n define recursivelyui+1 to be the unique point on the linewiui non-



2.1. Main Definition and fundamental properties 19

opposite toyi. Sincewi ↔ yi = ui+1 we obtainwi 6= ui+1 and hencezn ↔ ui+1 by
zn ↔ ui. Furthermore,y j = ui+1 for 0≤ j < i sincey j = ui andy j = wi. Hence,
yi = un for 0≤ i < n. With un ∈ 〈wi | 0≤ i ≤ n〉 we obtainw j ⊥ un for 0≤ j < n.
Setxn := un. With xn ↔ zn andxn = yn−1 we obtainxn ↔ zn−1 and hence analo-
gouslyxn ↔ zi with xn = yi for all 0≤ i < n. Hence,xn has already the demanded
conditions sincez0 = yn. Now letxi for 0≤ i < n be the point on the linewixn that
is not oppositeyn. Sincexn is the unique point onwixn not oppositeyi andxn 6= xi

because ofxn ↔ yn = xi we concludexi ↔ yi. Furthermorexi = y j if j < n and
j 6= i sincey j = wi andy j = xn. Finally, sincexi ∈ 〈w j | 0≤ j ≤ n〉 for i ≤ n the
set{xi | 0≤ i < n} consists of mutually collinear points.

Theorem 2.1.22.Every SPO space is paraprojective.

Proof. Let Sbe a singular subspace of an SPO space. Letg andh be two lines of
S intersecting in a pointp. For i ∈ {0,1} let l i be a line intersectingg in a point
ai 6= p andh in a pointbi 6= p. By Definition A.1.1 we have to show thatl0 andl1
intersect. Therefore we may assumea0 6= a1 andb0 6= b1. By Lemma 2.1.21(iii)
there is a pointq oppositep with q = a1 andq = b1. Sinceq↔ p we conclude
by (A2) thata1 is the unique point on the lineg that is non-oppositeq. Hence,
a0 ↔ q and analogously,b0 ↔ q. Thus by (A1), there has to be a third pointc on
the linel0 with c = q.
Since{c,a1,b1} ⊆ 〈a0,b0, p〉 ≤ Sthe pointsc, p, a0 andb0 are pairwise collinear.
By Lemma 2.1.21(i) there is no point in〈c,a1,b1〉 oppositeq. Therefore,p /∈
〈c,a1,b1〉. Supposec /∈ l1. Then by Lemma 2.1.21(iii) we find a pointr opposite
c with r = p, r = a1 andr = b1. This is a contradiction to Lemma 2.1.21(i) since
c∈ 〈a1,b1, p〉. Hence,l0 andl1 intersect inc.

We conclude this section by studying the metaplecta of an SPOspace. Our first
result is that metaplecta are again SPO spaces:

Proposition 2.1.23.Let y and z be two points of an SPO space at distance n and
set V:= 〈y,z〉g. Set R:= {(u,v) ∈V×V | dist(u,v) = n}. Then V is an SPO space
with opposition relation R. Furthermore,codR(u,v)+dist(u,v) = n for every pair
of points(u,v) ∈V ×V.

Proof. The relationR is symmetric and by Proposition 2.1.12(i) total. Now letu
andv be two points ofV. Further letw↔ v be a point with cod(w,u) = dist(u,v).
Thenw has a cogatew′ in V at codistancen. Hence, dist(w′,u) = n−dist(u,v)
and therefore (A4) holds forR in V. For an arbitrary pointx′ ∈V, we find a point
x with cod(x,x′) = n and coprV(x) = {x′} by Proposition 2.1.12(i) and Lemma
2.1.13. Sincex′ is the cogate ofx in V, we obtain cod(x,u) = codR(x′,u) for every
u∈V and hence, we may carry over the axioms (A1), (A2) and (A3).
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Lemma 2.1.24. Let y and z be two points of an SPO space at distance n and
set V := 〈y,z〉g. Further let x be a point at finite codistance to V such that z∈
coprV(x). Thencod(x,y) = min{cod(x,v) | v∈V}.

Proof. SetU := coprV(x). By Lemma 2.1.13 there is a pointw oppositez with
cod(w,y) = n. Since dist(y,z) = n, we obtain dist(y,U)≥ n−diam(U). By Propo-
sition 2.1.17(i) and Proposition 2.1.16(i) we obtain dist(v,U) ≤ n−diam(U) for
everyv∈V. Now the claim follows by Proposition 2.1.16(ii).

Proposition 2.1.25.Let y and z be two points of an SPO space at distance n and
set V:= 〈y,z〉g. Let x be a point at finite distance k to V and set U:= prV(x).

(i) Let U be a singleton. Then the point of U is a gate for x in V.

(ii) U is a convex subspace of V.

(iii) dist(v,U)+dist(x,V) = dist(x,v) for every v∈V.

(iv) Let z∈U. Thendist(x,y) = max{dist(x,v) | v∈V}.

Proof. (i) Let u∈ V such thatU = {u}. Further letv ∈ V be an arbitrary point.
We prove the claim by induction overm := dist(u,v). For m≤ 1, there is noth-
ing to prove. We assume that the claim holds form−1. Let v′ ⊥ v be a point
with dist(u,v′) = m−1. Then dist(x,v′) = k+m−1. Letw↔ v′ be a point with
cod(w,x) = k+m−1. Then cod(w,u) = m−1. Sincev′ ∈ 〈u,v〉g, the pointw has
a cogatew′ in 〈u,v〉g with cod(w,w′) = m by (A12). This implies dist(w′,v′) = m
andw′ ⊥ u and hence, dist(x,w′) = k+1 sincew′ ∈V rU . Thus,u∈ 〈x,w′〉g and
thereforex /∈ copr〈x,w′〉g

(w) by Lemma 2.1.24. Hence, there is a pointx′ ∈ 〈x,w′〉g
with cod(w,x′) = k+ m. By Proposition 2.1.12(iv) the pointx′ is a cogate forw
in 〈x,w′〉g since cod(w,u) = cod(w,x′)−k−1. This impliesx′ ⊥ x, dist(x′,w) = k
and dist(x′,u) = k+1. Thus, dist(x′,v′) = k+msincew↔ v′.
SetW := 〈x′,v′〉g. Now x, w′ andu are all contained inW since they all lie on
geodesics fromx′ to v′. Consequently,v∈ W since〈u,v〉g = 〈w′,v′〉g. By Propo-
sition 2.1.12(i) and Lemma 2.1.13 there is a points that is opposite to some point
in W such that cod(s,x) = k+ m. Thenx is the cogate fors in W and therefore
cod(s,u) = m. Since〈u,v〉g ≤ V and dist(x,V rU) = k+ 1 there are no other
points in〈u,v〉g at codistance≥ m to s. Hence,u is a cogate fors in 〈u,v〉g and
therefores↔ v. The claim follows.
(ii) By Lemma 2.1.14 the setU is a subspace. Now assumeU is not connected
and letu andv be two points of different connected components ofU such that
dist(u,v) is minimal. ThenU ′ := pr〈u,v〉g(x) does not contain any line, since oth-
erwiseU would have connected components at lower distance than dist(u,v) by
Proposition 2.1.17(i). HenceU ′ is a union of singletons which are pairwise at
distance dist(u,v) to each other. Letu′ be a point collinear tou with dist(u′,v) =
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dist(u,v)− 1. Then pr〈u′,v〉g(x) = {v} and hence, dist(x,u′) = k+ dist(u,v)− 1
by (i). Sinceu⊥ u′, this yields dist(u,v) = 2. Thus,{u,v} ⊂ 〈x,u′〉g and hence,
dist(x,〈u,v〉g) ≤ k− 1 by Proposition 2.1.17(i), a contradiction. ThereforeU is
connected.
To show thatU is convex it suffices to show that for two pointsu andv of U at
distancem, every pointu′ ⊥ u with dist(u′,v) = m−1 is again inU . If m= 1 then
u′ = v, hence letm > 1 and assume the claim holds form−1. Since pr〈u,v〉g(x)
is connected, there is a pointv′ ∈ U with v′ ⊥ u and dist(v′,v) = m−1. Hence,
U ′ := 〈v,v′〉g ≤ U . By Lemma 2.1.14 we conclude thatv′ is a gate foru in U ′.
Hence,v′ is the only point ofU ′ collinear tou. Since foru′ = v′ there is nothing
to prove, we may assumeu′ /∈ U ′. Then dist(u′,U ′) = 1 by Proposition 2.1.17(i)
sinceU ′ ≤ 〈u,v〉g. If prU ′(u′) is a singleton{u′′}, thenu′′ is a gate foru′ in U ′

by (i) and hence, dist(u′′,v) = m−2. If prU ′(u′) contains a line, then there is by
Proposition 2.1.17(i) a pointu′′ on this line with dist(u′′,v) = m−2. Hence, in
both cases we obtainu⊥ u′ ⊥ u′′ and therefore dist(u,u′′) = 2. Supposeu′ /∈ U .
Since bothu andu′′ are contained inU , we conclude{u,u′′} ⊂ 〈x,u′〉g and thus,
dist(x,〈u,u′′〉g) = m−1 by Proposition 2.1.17(i), a contradiction.
(iii) Let u ∈ U be a point with dist(v,U) = dist(v,u). SetV ′ := 〈u,v〉g. By
Proposition 2.1.17(i) there is no line inV ′ ∩U , since otherwise we would ob-
tain dist(v,U) < dist(v,u). Thus,V ′∩U = {u} and the claim follows from (i).
(iv) Since dist(y,z) = n, we obtain dist(y,U) ≥ n− diam(U). By Proposition
2.1.17(i) and (ii) we obtain dist(v,U) ≤ n− diam(U) for every v ∈ V. Hence,
the claim follows with (iii).

Lemma 2.1.26.Let y and z be two points of an SPO space at distance n≥ 2 and
set V := 〈y,z〉g. Further let u and v be points of V that are collinear to y. Then
there is a symplecton Y≤V containing y, u and v.

Proof. Assume thaty, u andv are on a common linel of V. Then dist(z, l) = n−1
by Proposition 2.1.17(i). Hence, there is a pointz′ with dist(z′,z) = n− 2 and
dist(z′, l) = 1. We obtainl ≤V. Thus, we may assume thatuy andvy are distinct
lines. Byu′ we denote the point onuy with dist(u′,z) = n−1 and byv′ the point
on vywith dist(v′,z) = n−1.
If dist(v′,u′) = 2, thenY := 〈u′,v′〉g has the demanded properties. Hence, let
u′ ⊥ v′. Since pr〈u′,z〉g(y) = {u′} by Lemma 2.1.14, we concludev′ /∈ 〈u′,z〉g and
thereforeu′ ∈ pr〈u′,z〉g(v

′). Since dist(v′,z)= n−1, we know thatu′ is not a gate for
v′ in 〈u′,z〉g and therefore, Proposition 2.1.25(ii) implies that pr〈u′,z〉g(v

′) contains
a linel throughu′. By Proposition 2.1.17(i) there is a pointz′ on l with dist(z′,z) =
n−2. NowY := 〈y,z′〉g has the demanded properties.

Proposition 2.1.27.Let V be a metaplecton of an SPO space withdiam(V) ≥ 2.
Further let x be a point at finite distance to V such that U:= prV(x) has diameter
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1. Then U is a maximal singular subspace of V. Furthermore, U iscontained in
a singular subspace M withdist(x,M) = dist(x,V)−1.

Proof. Setd := dist(x,V). Let S≤V be a singular subspace withU ≤ S. Assume
there is a points∈ SrU . Then by Lemma 2.1.13 there is a pointp ↔ s with
cod(p,x) = d+ 1. This implies cod(p,u) = 1 for every pointu∈ U . Let g≤ U
be a line. Then by Lemma 2.1.26 there is a symplectonY ≤V containingg ands.
By (A12) p has a cogateq in Y at codistance 2. Hence,q is collinear to all points
of g and we concludeg≤ 〈q,x〉g. Therefore cod(p,〈q,x〉g) < d+2 by Proposition
2.1.17(i). Thus,x∈ copr〈q,x〉g(p). This is a contradiction to Lemma 2.1.24 and we
concludeS= U .
Now let u and v be distinct points ofU and setW := 〈u,x〉g. By Proposition
2.1.17(i) we obtainuv � W and hence,u ∈ prW(v). Furthermore, by Proposi-
tion 2.1.25(iii) there is a linel throughu in prW(v). Let w ∈ l be the point with
dist(x,w) = d−1. Thenuv≤ prV(w) and hence, prV(w) is a maximal singular
subspace ofV. Since prV(w) ≤U , the claim follows.

Lemma 2.1.28.Let V be a metaplecton of an SPO space and set n:= diam(V).
Further let x be a point at finite codistance to V. Set m:= min{cod(x, p) | p ∈
V}. Then for every point u∈ V, there is a point v∈ V with cod(x,v) = m and
dist(u,v) = cod(x,u)−d.

Proof. It suffices to show that for any pointu∈ V with cod(x,u) > m, there is a
point v∈ V with v ⊥ u and cod(x,v) = cod(x,u)−1. Suppose there is a pointu
such that this claim does not hold. We may assume thatn is minimal under the
condition that there exists a counterexample.
SetU := coprV(x) and letz∈U such that dist(u,z) is maximal. Since by Propo-
sition 2.1.17(ii) for every point opposite tou there is a point at codistance≥
diam(U) in U , we obtain dist(u,z) ≥ diam(U). By Proposition 2.1.23 the meta-
plectonV is a SPO space and hence by Lemma 2.1.13, there is a pointy∈V with
dist(y,z) = n such thatu is on a geodesic fromy to z. By Lemma 2.1.24 we con-
clude cod(x,y) = m. Thus,y 6= u.
For u ∈ U , we obtain dist(u,z) = diam(U). Therefore, every pointv ⊥ u with
dist(v,y) = dist(u,y)−1 has distance diam(U)+ 1 to z and hence,v /∈ U . This
is a contradiction to the assumption that no neighbour ofu in V has codistance
cod(x,u)−1 to x. Thus, we may assumeu /∈ U and consequently, dist(u,y) < n.
Since〈u,y〉g ≤V, this leads to a contradiction to the minimality ofn.

Proposition 2.1.29.Let y and z be two points withdist(y,z) = n < ∞. Set V:=
〈y,z〉g and let x be a point withdist(x,V) < ∞ and prV(x) = {z}. Then there is
a point w withdist(w,x) = n and prV(w) = {y}. For every such point w, the
metaplecta U:= 〈w,x〉g and V are one-coparallel to each other. Moreover, the
bijective mapϕ : U →V with{uϕ} = prV(u) for all u ∈U is an isomorphism.
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Proof. Setd := dist(x,V). By Proposition 2.1.25(i)z is a gate forx in V. Hence,
dist(x,y) = d+n and the metaplecton〈x,y〉g containsz and thereforeV ≤ 〈x,y〉g.
By Proposition 2.1.23〈x,y〉g is an SPO space. Hence, there is a pointw′ ∈ 〈x,y〉g
with dist(w′,x) = n and dist(w′,z) = d+n. By (A1) and Proposition 2.1.12(iv)y
has a gatew in 〈w′,x〉g with dist(y,w) = d. Hence, dist(w,x) = n and prV(w) =
{y}. Now letw be an arbitrary point with dist(w,x) = n and prV(w) = {y}. Then
Proposition 2.1.25(i) implies thaty is a gate forw in V and hence, dist(w,z) =
dist(w,y) + n. Since dist(w,z) ≤ dist(x,z) + dist(w,x) = d + n and dist(w,y) ≥
dist(x,y)−dist(w,x) = d, we conclude dist(w,y) = d and hence,w∈ 〈x,y〉g. Thus,
we stay in the SPO space〈x,y〉g.
Let u∈U r{x} with u⊥ x. Then dist(u,V) ≤ d by Proposition 2.1.17(ii). Since
by Proposition 2.1.25(i)x is a gate forz in U , we obtain dist(u,z) = d+1. Since
z is a gate forx in V, we obtain dist(w,v) ≥ dist(x,v)−1 = d + dist(v,z)−1 ≥
d for all v ∈ V r {z}. Thus, dist(u,V) = d and prV(u) ≤ z⊥. By Proposition
2.1.25(ii) we conclude diam(prV(u)) < 2 since otherwisez∈ prV(u). This implies
that〈z,prV(u)〉 is a singular subspace. Therefore, prV(u) has to be a singleton by
Proposition 2.1.27. Hence by Proposition 2.1.25(i),u has a gatev in V. Since
v ⊥ z, we obtain by symmetric reasons thatu is the gate ofv in U . Thus, we
may repeat this argument to prove that all points ofU that are collinear toU have
a gate inV that is at distanced. SinceU is connected,U is one-parallel toV.
Analogously,V is one-parallel toU .
Since every pointq∈V has a unique gatep in U , we conclude thatϕ is bijective.
Sincez= xϕ , v = uϕ andz⊥ v, we already know thatϕ preserves collinearity. It
remains to check whetherpϕ ∈ zvfor every pointp∈ xu. Supposepϕ /∈ zv. Then
Lemma 2.1.21(iii) implies that there is a points∈ V with dist(s,z) = dist(s,v) =
n− 1 and dist(s, pϕ) = n since by Proposition 2.1.23V is a SPO space. Thus,
dist(p,s) = d+n and dist(x,s) = dist(u,s) = d+n−1, a contradiction to Lemma
2.1.14.

The corresponding assertion for a pointx at finite codistance to a metaplecton
V with coprV(x) = {z} also holds; see Corollary 4.2.8. Anyhow, we do not prove
this claim at this point, since we will use for the proof the classification of rigid
subspaces of finite diameter. These subspace will be introduced in the following
section.

2.2 Rigid subspaces

To prove further conditions for the structure of SPO spaces we study rigid sub-
spaces, i. e. convex subspaces that fulfil an additional property. We will see in
this section that there are some regularities that are validin rigid subspaces. Even
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though for a classification of SPO spaces there is still a longway to go, we get
already at this stage some insight into the list of diagrams attached to the SPO
spaces. In the introduction we mentioned how one can read outof the diagram the
symplectic rank of the associated point-line space. We givesome more facts one
can read from a diagram without any proof. Observing the diagrams should only
motivate the significance of some of the following propositions.

Given a diagram with one branching (where the leftmost vertex of An, j with
1 < j < n counts as a branching) one can obtain a diagram of type Dr,1 by repeat-
edly erasing the rightmost vertices. The symplecta of the associated point-line
space are all of type Dr,1. By erasing either the upper or the lower branch that goes
to the right starting from the branching point one obtains a diagram of type As,1 or
At,1, respectively. This means for the point-line space that themaximal singular
subspaces are projective spaces of the types As,1 and At,1. In this spirit, starting
at the leftmost vertex and ending at a vertex immediately right to the branching
point one obtains a diagram of type Ar−1,1 that corresponds to a generator of a
symplecton.

Definition 2.2.1. We call a symplectonY rigid if Y contains a point that is con-
tained in at least three lines ofY. A subspace is calledrigid if it is convex and all
its symplecta are rigid.

LetY be a symplecton of an SPO space and letp∈Y be a point. By Corollary
2.1.18 every symplecton is a non-degenerate polar space of rank ≥ 2. Hence,
there is a generatorG ≤ Y with p ∈ G and rk(G) ≥ 1. Let q ∈ Gr {p}. Since
by Proposition 2.1.23Y is an SPO space, Lemma 2.1.21(iii) implies that there is
a point r ∈ Y with p ⊥ r 6⊥ q. Hence,rp is a line not contained inG. Assume
rk(Y) ≥ 3. ThenG > g and hence, there is a line inG throughp that is distinct to
g. This implies that every symplecton of rank≥ 3 is rigid. Thus, every symplecton
that is not rigid is of rank 2.

Lemma 2.2.2.Let Y be a rigid symplecton of rank2 and let l≤Y be a line. Then
there is a point p∈ l that is contained in three lines of Y . Furthermore, let p and
q be non-collinear points of Y . Then p is contained in three lines of Y if and only
if q is contained in three lines of Y.

Proof. SinceY is rigid, there is a pointq ∈ Y that is contained in distinct lines
g0, g1 andg2. We may assumeq /∈ l since otherwise we are done. Letp′ ∈ l be
a point collinear toq. Since rk(Y) = 2, we knowl � q⊥ since otherwise〈q, l〉
would be a singular subspace of rank 2. Letp∈ l r{p′}. Thenp 6⊥ q and hence
by (BS), on every line throughq there is a point collinear top. For i ∈ {0,1,2},
let qi ∈ gi ∩ p⊥. Sinceqi 6= p andY does not contain a singular subspace of rank
2, we obtainqi 6⊥ q j for 0≤ i < j ≤ 2. Thus,pq0, pq1 andpq2 are three distinct
lines.
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Every non-rigid symplecton is agrid; see [vM98, Theorem 1.6.2].

Lemma 2.2.3. Let Y be a symplecton of an SPO space withrk(Y) ≥ 3. Further
let V be a metaplecton such that S:= Y∩V is a singular subspace.

(i) Let rk(S) ≥ 2. Then S is a generator of Y.

(ii) Let S be a line. Then v∈V has a gate z in V if and only ifprS(v) = {z}.

Proof. (i) SinceS≤ V, we know thatV is a metaplecton of diameter≥ 2. By
Lemma 2.1.26 there is a symplectonZ ≤ V that contains three points ofS that
are not collinear. Hence, rk(Z∩S) ≥ 2. Thus, it suffices to show that already
S′ := Z∩Y is a generator ofY and consequently,S= S′.
Let s∈S′ andp∈Z be non-collinear points. SinceZ is a polar space, the subspace
p⊥∩S′ contains a lineg. Hence, prY(p) is a generator ofY by Proposition 2.1.27.
SinceY is a polar space,s⊥ contains a hyperplaneH of prY(p). NowH ≤ 〈p,s〉g =
Z and hence,H ≤ S. Sinces /∈ p⊥, we concludes /∈ H and thereforeH < S. This
implies by Lemma A.2.13 that〈s,H〉 is again a generator ofY. The claim follows
with 〈s,H〉 ≤ S′ ≤ S≤Y and the maximality of〈s,H〉.
(ii) Set n := dist(v,z). Let v ∈ V be a point with prS(v) = {z} for a pointz∈ S.
Then prY(v) < Y and hence, prY(v) is singular by Proposition 2.1.25(ii). Lety∈
Sr{z}. Then by Proposition 2.1.25(iii) there is a geodesic fromy to v containing
a point of prY(v). Since〈y,v〉g ≤ V, we obtain prY(v)∩V 6= ∅ and therefore
z∈ prY(v). Moreover, sinceY is a polar space,y⊥∩prY(v) contains a hyperplane
of prY(v). Sincey⊥∩prY(v) ≤ 〈y,v〉g ≤V, we obtainy⊥∩prY(v) ≤ Sand hence,
y⊥∩prY(v) = {z}. Thus, rk(prY(v)) ≤ 1 and with Proposition 2.1.27 this implies
prY(v) = {z}. Now the claim follows from Proposition 2.1.25(i).

The following Proposition shows that whenever a symplectonof rank r has a
generator that is not a maximal singular subspace then this symplecton is of type
Dr , see Theorem B.2.3.

Proposition 2.2.4.Let Y be a symplecton of an SPO spaceS . Further let M be a
generator of Y that is not a maximal singular subspace ofS . Then the following
assertions hold:

(i) Every hyperplane of M is contained in at most two generators of Y.

(ii) Let rk(Y) ≥ 3. Then every hyperplane of M is contained in at most two
maximal singular subspaces ofS .

Proof. (i) First let rk(Y) ≥ 3. Suppose there are generatorsN andN′ of Y such
thatM, N andN′ are pairwise different and intersect in a common hyperplaneH.
Let p∈ N′ rH. By Lemma 2.1.13 and (A12) there is a points at codistance 2 to
p such thatp is a cogate fors in Y. Let x∈ M rH andy∈ N rH. Thenp, x and
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y are pairwise non-collinear and hence,x↔ s↔ y.
Let M′ ≤ S be a singular subspace containingM properly. LetH ′ be the hyper-
plane ofM′ that contains all points that are non-opposites. ThenH ′ containsH
properly sinceH < M < M′. Let z∈ H ′ rH. Thenz 6⊥ y sincez /∈ 〈x,y〉g. Hence
Z := 〈y,z〉g is a symplecton. Sincey andH are contained inZ, the singular space
〈y,H〉= N is a generator ofZ by Lemma 2.2.3(i). Thus,〈z,H〉 is a generator ofZ.
Since〈z,H〉 ≤ H ′, all points of this generator have codistance 1 tos. Sincey∈ Z
there is a cogates′ for s in Z with cod(s,s′) = 2. Thus, all points of〈z,H〉 are
collinear tos′. We conclude that〈s′,z,H〉 is a singular subspace containing〈z,H〉
properly, a contradiction.
Now let rk(Y) = 2. ThenM is a line. LetSbe a singular space that containsM
properly. Suppose there is a pointy∈ M that is contained in three lines ofY. Let
x∈ M r{y} and letsbe a point with cod(s,y) = 1 ands↔ x. Thenshas a cogate
s′ in Y with cod(s,s′) = 2. Hence,s′y is a line. Furthermore, since rk(S)≥ 2, there
is a lineg≤ Scontainingy such that all points ong are at codistance 1 tos. Let
h ≤ Y be a line throughy distinct toM ands′y. Take a pointz∈ hr {y}. Then
we obtains↔ z andx 6⊥ z. Let w∈ gr{y}. Sincew /∈Y = 〈x,z〉g andx⊥ w, we
obtainw 6⊥ z and hence,Z := 〈w,z〉g is a symplecton. By (A12) we conclude that
shas a cogate at codistance 2 inZ. Since this cogate is collinear to all points ofg,
we conclude rk(Z) ≥ 3. Since rk(Y) = 2 andY 6= Z, we obtainZ∩Y = h. Thus,
we may apply Lemma 2.2.3(ii) to conclude thaty is a gate forx in Z. This implies
dist(x,w) = 2, a contradiction.
(ii) Let H be a hyperplane ofM and letM′ be a maximal singular subspace ofS

containingM. Let N′ be a maximal singular subspace ofS with N′ 6= M′ and
H ≤ N′. Let p∈ N′ r M′. Then there is a pointq∈ M′ with q 6⊥ p by the maxi-
mality of M′. SupposeM ≤ p⊥. ThenM is contained in the symplecton〈p,q〉g.
Thus, Lemma 2.2.3(i) implies thatM is a generator of〈p,q〉g, a contradiction to
M < 〈p,M〉 ≤ 〈p,q〉g. Therefore we may assumeq ∈ M. Furthermore, we con-
clude thatM′ is the unique maximal singular subspace ofS ′ containingM.
Assume it is not possible to choosep such thatp /∈Y. Then〈p,H〉 is a generator
of Y by Lemma A.2.13. Hence by (i),M and〈p,H〉 are the only generators of
Y containingH. The claim follows. Now letp /∈ Y. Then by Proposition 2.1.27
N := prY(p) is a generator ofY. Sinceq /∈ N, we knowN 6= M. By (i) M and
N are the only generators ofY containingH. Thus, for every pointr ∈ N′ r H,
we obtain prY(r) = N. Since by Lemma A.2.13H is a hyperplane ofN, there is
a points∈ N such thatN = 〈s,H〉. Sinces⊥ r for every pointr ∈ N′ r H, we
concludes∈ N′ and hence,N ≤ N′ by the maximality ofN′. Analogously toM,
N′ is the only maximal singular subspace containingN.
For a third maximal singular subspaceL of S with H ≤ L, we conclude again
M � Y and thatL∩Y contains a generator ofY. SinceN � Y by analogous rea-
sons, this leads to a contradiction to (i).
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The following proposition implies that the diagrams attached to SPO spaces
have at most one branching. We know that the generators of a symplecton appear
in the diagram as a subdiagram of type A starting at the leftmost vertex and ending
one vertex after the first branching. With a second branchingone would find
generators that are contained in different maximal singular subspaces.

Proposition 2.2.5.Let Y be a rigid symplecton of an SPO spaceS . Then every
generator of Y is contained in a unique maximal singular subspace ofS .

Proof. Let G be a generator ofY. Suppose there are two distinct maximal singular
subspacesM andN of S with G ≤ M ∩N. Then there are non-collinear points
p∈ M andq∈ N. Hence,〈p,q〉g is a symplecton containingG. SinceY 6= 〈p,q〉g,
we obtainY∩〈p,q〉g = G. Since〈p,G〉 ≤ 〈p,q〉g is a singular subspace containing
G properly, we conclude rk(G) < 2 by Lemma 2.2.3(i). Hence, rk(Y) = 2 by
Corollary 2.1.18 and consequently,G is a line. SinceY is rigid, G contains a
point y that is contained in three lines ofY by Lemma 2.2.2. By Proposition
2.2.4(i) this implies thatG is a maximal singular subspace ofS , a contradiction
to 〈p,G〉 > G.

Our next goal is to show that in connected rigid subspaces allsymplecta are
of the same rank and therefore, connected rigid subspaces ofdiameter≥ 2 are
strongly parapolar spaces with symplectic rankr for a cardinalr.

Lemma 2.2.6.Let Y and Z be two rigid symplecta having a line in common. Then
rk(Y) = rk(Z) or Y and Z are both of infinite rank.

Proof. Let g be a common line ofY andZ. If Y∩Z > g, the claim follows from
Lemma 2.2.3(i). Hence, we may assumeY∩Z = g. First let rk(Y) = 2. Theng is
a generator ofY and sinceY is rigid, there is a pointy∈ g that is contained in three
generators ofY. Thus,g is already a maximal singular subspace by Proposition
2.2.4(i). We conclude thatg is a generator ofZ and therefore rk(Z) = 2.
Now assume thatY andZ both have rank≥3. LetM ≤Y be a generator containing
g and choose a pointp ∈ M r g. Analogously, letq ∈ N r g for a generatorN
of Z with g ≤ N. By Proposition 2.1.23 and Lemma 2.1.21(iii) there is a point
r ∈ Y with dist(p, r) = 2 andg ≤ r⊥. Sinceq /∈ Y, it cannot happen thatq is
collinear to bothp andr. Hence, we may assume dist(p,q) = 2. Now 〈p,q〉g is
a symplecton that intersects bothY andZ in a generator by Lemma 2.2.3(i). The
claim follows.

We will see later on that the case where bothY andZ have infinite rank only
occurs for the trivial caseY = Z and therefore rk(Y) = rk(Z) holds for all cases.

Corollary 2.2.7. Let Y and Z be two symplecta of a connected rigid subspace.
Thenrk(Y) = rk(Z) or Y and Z are both of infinite rank.
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Proof. SinceY andZ are contained in a connected rigid subspace, we find a finite
sequence(Yi)0≤i≤n of rigid symplecta such thatY = Y0, Z = Yn andYi ∩Yi+1 6= ∅
for 0≤ i < n. Hence, we may restrain ourselves to the caseY∩Z 6= ∅
If Y∩Z contains a line, we obtain rk(Y) = rk(Z) by Lemma 2.2.6. Hence, let
Y∩Z contain a single points. Let p ∈ Y r {s} be a point collinear tos. Since
p /∈ Z, there is a pointq ∈ Z with q ⊥ s and dist(p,q) = 2. Now 〈p,q〉g is rigid
sincep andq are contained in a common rigid subspace. Sinceps≤ 〈p,q〉g∩Y
andqs≤ 〈p,q〉g∩Z, the claim follows from Lemma 2.2.6.

Again, as we will see later, the case that bothY andZ are of infinite rank only
occurs ifY = Z. In other words, a rigid subspace that contains a symplectonY of
infinite rank already equalsY.

The following proposition considers polar spaces of type Dr,1, see Theorem
B.2.3. In terms of diagrams, the two different subdiagrams of type Ar−1,1 corre-
sponds to the two different classes of generators.

Proposition 2.2.8.Let Y be a polar space of finite rank r such that every singular
space of Y of rank r−2 is contained in exactly two generators of Y . Further let
M, N and L be generators of Y . ThencrkM(M∩N)+crkL(L∩M)+crkL(L∩N)
is even. Equivalently, the dual polar graph of Y is bipartite.

Proof. If M = N, there is nothing to prove. Hence, we may assume thatM, N
andL are pairwise disjoint. AssumeM andN intersect in a common hyperplane
H. Suppose there are pointsp∈ M rH andq∈ N rH that are both contained in
L. Thenp⊥ q and hence,M = 〈p,H〉 ≤ q⊥. SinceM is a generator, this implies
q∈ M, a contradiction. Therefore we may assumeN∩L ≤ H.
Let B be a basis ofH such thatB∩L is a basis ofH∩L. Setr ′ := rk(H∩L). Then
|B| = r −1 and|B∩L| = r ′ + 1. Sinceb⊥∩L is a hyperplane ofL for everyb∈
BrL, we conclude rk(L∩H⊥) = rk(L∩(BrL)⊥)≥ (r−1)−(r−r ′−2) = r ′+1.
Thus, there is a points∈ (L∩H⊥)rH. We conclude that〈s,H〉 is a generator ofY
and sinceM andN are the only generators containingH, this impliesM = 〈s,H〉.
Thus, crkL(L∩N) = crkL(L∩M)+1. The claim follows since crkM(M∩N) = 1.
LetG be the set of generators ofY. Further setG0 := {G∈G | crkL(L∩G)∈2·N}
andG1 := G rG0. We conclude that the dual polar graph ofY is bipartite since
every edge has one vertex inG0 and one inG1. Now the claim follows since
crkM(M∩N) equals the distance ofM andN in the dual polar graph.

Translating the following proposition into the language ofdiagrams provides
a list of strong restrictions to the possible diagrams with one branching. We will
call the branches of the diagram the left, the upper and the lower branch, always
excluding the branching point. We may assume that the upper branch is at least
as long as the lower one. Claim (iii) states that the given symplecton is of type
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Dr,1. Note that this symplecton has a genenerator that is not a maximal singular
subspace and thus, the upper branch has length at least 2. Claim (iv) says that
if the left branch possesses at least one vertex, then the lower branch has exactly
one vertex. Moreover, if the left branch possesses at least two vertices, the upper
branch possesses exactly two vertices by claim (vii). Finally, the left branch has
at most three vertices by claim (viii). This provides exactly the list of diagrams
with a branch given in the introduction.

Proposition 2.2.9.Let Y be a rigid symplecton of an SPO spaceS and let x be a
point withdist(x,Y) = 1 such that X:= prY(x) is a generator of Y . Further letGi

be the set of all generators W≤ Y withcrkX(X ∩W) = 2n+ i where n∈N and
i ∈ {0,1}.

(i) rk(Y) ≥ 3.

(ii) Let W ∈ G0. Then there is a point w∈ 〈x,Y〉g with dist(w,Y) = 1 and
prY(w) = W.

(iii) Let W∈ Gi and W′ ∈ G j . ThencrkW(W∩W′) ∈ 2N if and only if i= j.

(iv) Let rk(Y) ≥ 4 and let W∈ G1. Then W is a maximal singular subspace.

(v) Let rk(Y) ≥ 4 and let W∈ Gi such that W= Y∩Z for some symplecton Z.
Then i= 1.

(vi) Let rk(Y) ≥ 4, W ∈ G0 r{X} and w/∈Y such that〈w,W〉 is singular. Then
x⊥ w impliescrkX(X∩W) = 2.

(vii) Let rk(Y) ≥ 5. Then〈x,X〉 is a maximal singular subspace.

(viii) rk (Y) ≤ 6.

Proof. (i) Suppose rk(Y) = 2. ThenX is a line. SinceY is rigid, there is a point
on X that is contained in two other lines ofY. Thus, Proposition 2.2.4(i) implies
thatX is a maximal singular subspace ofS , a contradiction to the existence ofx.
Hence, rk(Y) ≥ 3.
(ii) Set S := X ∩W. First assume crkX(S) = 2. ThenS 6= ∅ by (i). Take a point
p∈WrS. Then〈p,x〉g is a symplecton that contains a hyperplaneH := prX(p) of
X. Thus,〈p,H〉 is a common generator ofY and〈p,x〉g. Now letq∈W r 〈p,H〉.
ThenM := pr〈p,x〉g(q) contains〈p,S〉 = W∩ 〈p,H〉 and henceM is a generator
of 〈p,x〉g by Proposition 2.1.27. This impliesM > 〈p,S〉. Thus, for any point
w ∈ M rY = M r 〈p,S〉, we obtain prY(w) ≥ 〈q, p,S〉 = W, dist(w,Y) = 1 and
w∈ 〈p,x〉g ≤ 〈x,Y〉g.
For a generatorWn with crkX(X∩Wn) = 2n there is a sequence(Wi)0≤i≤n of gener-
ators ofY with W0 = X and crkWi(Wi ∩Wi+1) = 2 for 0≤ i < n. By induction there
are pointswi with dist(wi ,Y) = 1 such that prY(wi) = Wi andwi ∈ 〈wi−1,Y〉g ≤
〈x,Y〉g for 1≤ i ≤ n andw0 = x.
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(iii) Let M andN be generators ofY that intersect in a common hyperplaneH. If
M ∈G0, thenM is not a maximal subspace inS by (ii). Thus, Proposition 2.2.4(i)
implies thatM andN are the only generators ofY containingH. If M ∈ G1, then
there is a pointp ∈ X r M and we obtainW := p# M ∈ G0 by Lemma A.2.19.
By Lemma A.2.16 the generatorsM andW intersect in a common hyperplane by
H ′. Hence as before,W andM are the only generators containingH ′. If N and
W have a hyperplane in common, thenH ′ ≤ N by Proposition A.2.14 and hence
W = N. If N andW have no hyperplane in common,H andH ′ are distinct and
we obtain crkM(H ′ ∩H) = 2. This implies crkW(W∩N) = 2. By (ii) there is a
pointw with dist(w,Y) = 1 such that prY(w) = W. Hence, again by (ii),N is not a
maximal singular subspace ofS and we conclude by Proposition 2.2.4(i) thatM
andN are the only generators ofY containingH. Now Proposition 2.2.8 implies
that the dual polar graph ofY is bipartite and the claim follows.
(iv) Let W′ be a generator with crkW(W∩W′) = 1. ThenW′ ∈ G0 by (iii) and
hence by (ii), there is a pointw′ /∈ Y such that〈w′,W′〉 is a singular subspace.
Assume there is a pointw with dist(w,Y) = 1 and prY(w) = W. Thenw′ 6⊥ w
since otherwise the generatorW would be contained properly in the singular sub-
space〈w,W〉 of the symplecton〈p,w′〉g, wherep ∈ W rW′, a contradiction to
Lemma 2.2.3(i). Hence,〈w′,w〉g is a symplecton that containsW∩W′. Since
rk(W∩W′) ≥ 2, there is a common generatorW′′ of Y and〈w,w′〉g by Lemma
2.2.3(i). Since〈w,W〉 is singular,W cannot be a generator of〈w,w′〉g and thus,
W 6=W′′. AnalogouslyW′ 6=W′′ and we conclude thatW,W′ andW′′ are pairwise
distinct generators ofY containing the common hyperplaneW∩W′, a contradic-
tion to Proposition 2.2.4(i).
(v) Let Z be a symplecton such thatY ∩Z = W. Then there is a pointw′ ∈ Z
such that prW(w′) is a hyperplane ofW. Hence, prW(w′) intersectsW in a hyper-
plane. Since rk(W) ≥ 3, Proposition 2.1.27 implies that prY(w′) is a generator of
Y. Thus, prY(w′) ∈ G0 by (iv) and thereforeW ∈ G1 by (iii).
(vi) SetS:= X∩W and letp∈ XrS. Assumew⊥ x. Then the symplecton〈p,w〉g
contains a hyperplaneH of W andScontains a hyperplane ofH sincex∈ 〈p,w〉g.
Thus, crkX(S) = 2 by (iv).
(vii) Assume there is a singular subspaceM containing〈x,X〉 properly. Lety ∈
Y rX and setH := X∩y⊥. Then〈x,y〉g is a symplecton containingH. Hence by
Lemma 2.2.3(i),Y and〈x,y〉g have a generator in common since rk(H)≥ 3. Since
H is a hyperplane of this generator,〈x,H〉 is a generator of〈x,y〉g.
Now let v ∈ 〈x,y〉g r 〈x,H〉 with v ⊥ x and letu ∈ M r 〈x,X〉. Thenv 6⊥ u since
otherwiseu∈ 〈x,y〉g and〈x,H〉 would be no generator of〈x,y〉g. Thus,Z := 〈u,v〉g
is a symplecton containing a hyperplaneSof H. Since rk(S)≥ 2, the symplectaY
andZ have a generatorG in common. Since crkX(S) = 2, we obtain crkG(S) = 2
and hence,〈u,x,S〉 is a generator ofZ. This impliesM∩Z = 〈u,x,S〉. Sincex /∈Y,
there is a points∈ Gr M. Let z∈ X with z 6⊥ s. ThenY = 〈s,z〉g and sinces is
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collinear to a point onxu this impliesY∩xu 6= ∅, a contradiction sinceY∩M = X.
(viii) Let W be a generator ofY with crkX(X∩W) = 4. Further letw be a point
with dist(w,Y) = 1 and prY(w) = W. Assume yrk(Y) ≥ 5. Thenw 6⊥ x by (vi).
Hence,〈w,x〉g is a symplecton containingW ∩ X. Set S := 〈w,x〉g ∩Y. Then
crkS(S∩w⊥∩x⊥) = crkS(W∩X) ≤ 2. Hence,S is not a generator ofY and there-
fore rk(W∩X) ≤ 1 by Lemma 2.2.3(i). We conclude rk(X)≤ 5 and consequently
rk(Y) ≤ 6.

We conclude this section by examining the case of symplecta with infinite rank
and revisiting connected rigid subspaces.

Remark2.2.10. LetY be a symplecton with infinite rank of an SPO space. Further
let Z be a symplecton that has a linel with Y in common. Then for every point
p ∈ Z with l ≤ p⊥, the subspacep⊥ contains a generator ofY by Proposition
2.1.27. By Proposition 2.2.9(viii) this impliesp ∈ Y and hence, every generator
of Z containingl is already contained inY. We conclude thatZ equalsY. In a
connected rigid subspace that contains more than one symplecton there are always
two symplecta that have a line in common. Hence by Corollary 2.2.7, a connected
rigid subspace of diameter≥ 2 has always a symplectic rankr. Moreover, this
rank is either finite or the connected rigid subspace is a symplecton of infinite
rank.

2.3 Twin SPO spaces

As already mentioned, in a twin SPO space every two points have either finite
distance or finite codistance. Therefore, every two points of a twin SPO space are
somehow related to each other. This fact has some consequences which we state
in this section.

Definition 2.3.1. Let V be a convex subspace of an SPO space such that for any
two pointsx andy of V with cod(x,y) < ∞, every pointz⊥ y with cod(x,z) =
cod(x,y)+1 is contained inV. Then we callV coconvex.

For a set of pointsM, we denote by〈M〉G thecoconvex spanof M, which is the
smallest coconvex subspace containingM.

Lemma 2.3.2. Let S be a twin SPO space and let x and y be points ofS with
x↔ y. Then〈x,y〉G = S .

Proof. For every pointz⊥ y, we obtain cod(x,yz)= 1 by (A1). Thus,y⊥ ≤〈x,y〉G.
Moreover, there is a pointw⊥ x with w↔ zby (A4). Since by symmetric reasons
w∈ 〈x,y〉G, we may repeat this argument to show, that every point collinear toz is
contained in〈x,y〉G and consequently, every point connected withy is contained
in 〈x,y〉G. Analogously, every point connected withx is contained in〈x,y〉G.
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Let x, y andz be points of an SPO space that are pairwise at infinite distance
and finite codistance> 0. Note that in this casex, y andzare contained in pairwise
distinct connected components that we denote bySx, Sy andSz and the union
of every two of them is a twin SPO space. Then it might happen, that there is a
point z′ ↔ y with cod(x,z′) = cod(x,z)+ dist(z,z′). Since thenz′ ∈ 〈x,y,z〉G, we
conclude by the previous lemma thatSy andSz are contained in〈x,y,z〉G. Con-
sequently, there is a point opposite tox in 〈x,y,z〉G and we obtainSx ≤ 〈x,y,z〉G.
In contrast, for twin SPO spaces, studying coconvex subspaces makes much more
sense.

Lemma 2.3.3.LetS be a twin SPO space that contains two points at distance n.
Further let z be a point ofS .

(i) Let y be a point ofS with cod(y,z) = k < n. Then there is a point x with
cod(y,x) = n anddist(x,z) = n−k.

(ii) Let y be a point ofS with dist(y,z) = k < n. Then there is a point x with
dist(x,y)+k = dist(x,z) = n.

Proof. Let S + andS − be the two connected components of the twin SPO space
S . We may assume thatz is contained inS +. Let p andq be two points at
distancen. Then by Lemma 2.1.13 there is a pointr with r ↔ p and cod(r,q) = n.
Hence, there is a points↔ q with dist(r,s) = n. Sincer andsare contained in the
other connected component asp andq, we may assume thatp andq are contained
in S +.
(i) Sincez∈ S +, we knowy ∈ S −. Since cod(y,〈p,q〉g) ≥ n by Proposition
2.1.17(ii), there is a pointw∈ S + with cod(y,w) = n. By Proposition 2.1.16(ii)
we conclude that there is a pointx∈ 〈w,z〉g with cod(y,x)= nand dist(x,z)= n−k.
(ii) Sincez∈ S +, we knowy∈ S +. By Lemma 2.1.13 there is a pointw∈ S −

that is opposite toz with cod(w,y) = k. By (i) there is a pointx ∈ S + with
cod(w,x) = n and dist(x,y) = n−k. This implies dist(x,z) = n.

As a consequence of this lemma the two connected components of a twin SPO
space have the same diameter. Therefore whenever we speak inthe following
of the diameter of a twin SPO space, we mean the diameter of each of the two
connected components.

Definition 2.3.4. Let U andV be two convex subspaces of an SPO space. Then
we callU andV oppositeif for every point ofU there is an opposite point inV
and for every point ofV there is an opposite point inU .

Proposition 2.3.5. Let S be a singular subspace of finite rank of an SPO space.
Then there is a singular subspace T that is opposite S. Furthermore, every convex
subspace T that is opposite S is singular and has the same rankas S.
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Proof. Let T be a convex subspace that is oppositeS. Suppose there are pointsp
andq in T that are not collinear. Then for a points∈ S, there is by Proposition
2.1.17(ii) a pointt ∈ 〈p,q〉g ≤ T with cod(s, t)≥ 2. SinceS is singular, there is no
point inSoppositet, a contradiction. Thus,T is singular.
There is a basisB of Swith |B| = rk(S)+ 1. SinceS is oppositeT, we conclude
that coprT(p) is a hyperplane ofT for every pointp ∈ B. Furthermore, Lemma
2.1.21(i) implies

⋂

p∈B p⊥ ∩T = ∅. Therefore we conclude rk(T) ≤ rk(S). By
symmetric reasons we obtain rk(S) = rk(T).
We prove the existence ofT by induction. For rk(S) = 0, there is nothing to
prove since↔ is total. Now let rk(S) = n and assume that the claim holds for
every singular space of rankn−1. Let S′ be a hyperplane ofS and letT ′ be a
singular subspace that is oppositeS′. Then rk(S′) = rk(T ′) = n−1. Moreover,T ′

is not oppositeSsince rk(T ′) < rk(S) and hence, there is a pointq∈ Ssuch that
cod(p,q) = 1 for every pointp∈ T ′. Since every point ofT ′ is opposite to a point
in S′ andq is collinear to all points ofS′, we obtain cod(q,T ′) = 1. Therefore we
may apply Lemma 2.1.21(ii) to conclude that there is a pointr ↔ q with T ′ ≤ r⊥.
SetT := 〈r,T ′〉.
Take a points∈ S. If s∈ S′, then there is a point inT ′ that is opposites. If s= q,
thenr ↔ s. Finally, if s /∈ S′∪{q}, then the linesq intersectsS′ in a points′ since
S′ is a hyperplane ofS. Let t ∈ T ′ with t ↔ s′. Sinceq = t, we conclude by (A2)
thatq is the only point onsqthat is non-oppositet and thereforet ↔ s.
Now take a pointt ∈ T. If t ∈ T ′, then there is a point inS′ that is oppositet. If
t = r, thenq↔ t. Finally, if t /∈ T ′∪{r}, then the linetr intersectsT ′ in a point
t ′ sinceT ′ is a hyperplane ofT. Sincet ′ = q, we conclude by (A2) thatt ′ is the
only point ontr that is non-oppositeq and thereforeq ↔ t. Thus,S andT are
opposite.

A consequence of this proposition is that if a twin SPO spaceS = (S +,S −)
has finite singular rank, we obtain srk(S ) = srk(S +) = srk(S −). Furthermore,
if srk(S ) is infinite then both srk(S +) and srk(S −) are infinite.





3 Connected rigid
subspaces

In this chapter we consider connected rigid subspaces and give a rough classifi-
cation of them. By Remark 2.2.10 every connected rigid subspace has a finite
symplectic rank or it is a polar space of infinite rank. It turns out to be convenient
to distinguish the connected rigid subspaces by their symplectic rank. By defini-
tion, a symplectic rank only occurs for subspace of diameter≥ 2. Furthermore,
the symplectic rank is at least 2.

3.1 Maximal singular subspaces

The union of a chain of singular subspaces is again a singularsubspace. Thus,
Zorn’s Lemma implies that each SPO space and each of its subspaces contain
maximal singular subspaces. Moreover, letV be a subspace of an SPO spaceS .
Then every maximal singular subspace ofV is contained in a maximal singular
subspace ofS . Conversely, there are maximal singular subspaces ofS that
intersectV in a maximal singular subspace. These subspaces play an important
role by the classification of connected rigid subspaces.

Lemma 3.1.1.Let V be a connected rigid subspace of an SPO spaceS such that
diam(V) ≥ 2. Further letM be the set of maximal singular subspaces ofS that
contain a maximal singular subspace of V and letG be the set of subspaces that
are a generator of a symplecton of V.

(i) Every singular subspace S withrk(S) < yrk(V) is contained in an element
of G.

(ii) For every subspace M∈ M, there is a subspace G∈ G with M ≥ G.

(iii) Every maximal singular subspace M≤S with rk(M∩V)≥ yrk(V)−2≥ 1
is an element ofM.
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(iv) Let M and N be distinct elements ofM. Then M∩N is properly contained
in an element ofG.

(v) Let yrk(V) < ∞ and let M and N be elements ofM. Then there is a se-
quence(Mi)0≤i≤n ∈ Mn+1 with M0 = M and Mn = N such that Mi ∩Mi+1

is a hyperplane of an element ifG for i < n.

(vi) Let M and N be elements ofM. Thendist(M,N) = dist(M∩V,N∩V).

Proof. (i) Let p∈ S. Since diam(V) = 2, there is a symplectonY ≤V and hence,
there is a pointq∈Y with dist(p,q) = 2. SetY0 := 〈p,q〉g. If S≤Y0, there is noth-
ing to prove. Thus, we assume that fori ∈N, we already definedYi and there is a
point pi ∈ Swith pi /∈Yi. If prYi

(pi) is a singleton, then there is a pointqi ∈Yi with
dist(pi ,qi) = 2 and we obtain〈pi ,Yi ∩S〉 ≤Yi+1, whereYi+1 := 〈pi,qi〉g. If prYi

(pi)
contains a line, then rk(Yi) ≤ 6 by Proposition 2.2.9(viii) and therefore rk(S) ≤ 5.
This implies rk(S∩Yi) ≤ 4 and hence, there is a pointqi ≤ Yi with qi 6⊥ pi and
S∩Yi ≤ qi

⊥ since every singular subspace in a polar space of finite rank is the
intersection of two generators. Thus,〈pi,Yi ∩S〉 ≤ Yi+1, whereYi+1 := 〈pi,qi〉g.
By Proposition 2.2.9(viii) we obtain after finitely many steps a symplecton con-
tainingS.
(ii) First assume yrk(V) is finite. Then rk(M ∩V) ≥ yrk(V)− 1 by (i) and the
maximality ofM∩V. By (i) we obtainG∈G for every subspaceG≤ M∩V with
rk(G) = yrk(V)−1. Now assume that yrk(V) is infinite. Letx ∈ V be a point
with dist(x,M) = 1. Then prM(x)∩V < M∩V sinceM∩V is a maximal singular
subspace ofV. Thus, there is a pointy ∈ M∩V with x 6⊥ y andY := 〈x,y〉g is a
symplecton ofV. Suppose there is a pointz∈ M rY. Then〈y,prM(x)〉 ≤ prY(z)
and hence, prY(z) is a generator ofY. This contradicts Proposition 2.2.9(viii).
Thus,M ≤Y and we concludeM ∈ G by the maximality ofM.
(iii) We assumeM � V since otherwise there is nothing to prove. LetS≤ M∩V
be a subspace with rk(S) = yrk(V)− 2 and letx ∈ M be a point not contained
in V. By (i) there is a symplectonY ≤ V with S≤ Y. Sincex /∈ Y, we obtain
S≤ prY(x). Hence by Proposition 2.1.27, prY(x) is a generator ofY. By Proposi-
tion 2.2.5 there is a unique maximal singular subspaceN in S with prY(x) ≤ N.
This impliesx∈ N andN ∈ M.
We may assumeN 6= M since otherwise we are done. Lety ∈ M r N. Sup-
pose prY(x) ≤ prN(y). Then 〈y,prY(x)〉 is singular and therefore contained in
N, a contradiction. Thus, there is a pointz∈ prY(x) with dist(y,z) = 2. Since
〈z,S〉 ≤Y∩〈y,z〉g, Lemma 2.2.3(i) implies thatY and〈y,z〉g have a common gen-
erator. Since rk(〈z,S〉) = yrk(V)−1, we obtain〈z,S〉 = prY(x). Hence, prY(x) is
a common generator of〈y,z〉g andY. This is a contradiction sincex∈ 〈y,z〉g and
therefore〈x,prY(x)〉 ≤ 〈y,z〉g. We concludeN = M.
(iv) We may assumeM ∩N 6= ∅ since otherwise there is nothing to prove. By
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(ii) there are subspacesG≤ M andH ≤ N with {G,H} ⊆ G. There is no singu-
lar subspace containingG andH since otherwise there would be an element inM

containingG andH, a contradiction to Proposition 2.2.5 andM 6= N. Hence, there
are pointsx∈ G andy∈ H with x 6⊥ y. Thus,M∩N is properly contained in the
singular subspace〈x,M∩N〉 of the symplecton〈x,y〉g of V.
(v) By (ii) there are symplectaY andZ in V such thatY∩M is a generator ofY and
Z∩N is a generator ofZ. SinceV is connected and convex, we find a sequence
(Yi)0≤i≤n of symplecta inV such thatYi ∩Yi+1 6= ∅, whereY0 = Y andYn = Z. If
for i < n, the intersectionYi ∩Yi+1 is not a generator, then there are pointsy∈ Yi

andz∈Yi+1 such thatYi ∩Yi+1 ≤ y⊥∩z⊥ andy 6⊥ z. Hence, we may insert〈y,z〉g
betweenYi andYi+1 to obtain a sequence of symplecta with greater intersections.
Since yrk(V) < ∞, we may assume thatYi ∩Yi+1 is a generator.
Since yrk(Yi) < ∞ for 0≤ i ≤ n, we conclude by Proposition A.2.20 that there is a
finite sequence of generators(Gi, j)0≤ j≤ni in Yi such thatGi, j andGi, j+1 intersect
in a hyperplane forj < ni , whereni ∈N and furthermoreGi+1,0 = Gi,ni =Yi ∩Yi+1

for i < n, G0,0 = M∩Y andGi,nn = N∩Z. Now the claim follows from Proposi-
tion 2.2.5.
(vi) Setd := dist(M,N). Ford = 0 this follows by (iv). Therefore we may assume
d > 0. Letp∈M∩V and letr ∈N with dist(r,M)= d. Assume dist(M∩V,N)> d.
Thenr /∈V since otherwise prM(r)≤ 〈p, r〉g ≤V. Letq∈N∩V. Then dist(p,q) =
d+ 1, since otherwiser ∈ 〈p,q〉g ≤ V. SinceU := 〈p,q〉g ≤V, we obtainr /∈ U
and thereforeq∈ prU(r). By Proposition 2.1.25(i) we obtain prU(r) > {q} since
dist(r, p) = d+ 1 and henceq is no gate forr in U . Thus by Proposition 2.1.27
prU(r) is a maximal singular subspace ofU . Since dist(p,q) ≥ 2, we conclude
by (ii) that prU(r) contains a subspaceG ∈ G. By Proposition 2.2.5 there is a
unique maximal subspaceN′ of S that containsG. This implies〈r,prU(r)〉 ≤ N′.
SinceN ∩ N′ � V, we obtainN = N′ by (iv). This is a contradiction, since
dist(p,prU(r)) = d by Proposition 2.1.17(i). Thus, there is a points∈ M ∩V
with dist(s,N) = d. Since for everyt ∈ N∩V with dist(s, t) = d + 1 we obtain
prN(s) ≤ 〈s, t〉g ≤V, we conclude dist(s,N∩V) = d.

3.2 Connected subspaces of symplectic rank 2

We start our case distinction with the lowest possible symplectic rank 2. Before
we start we prove a condition for arbitrary SPO spaces which we will need in this
section.

Lemma 3.2.1.Let x be a point of an SPO space and let l be a line withdist(x, l) =:
d < ∞ andprl (x) = l. Then there is a point y withdist(x,y) = d−1 and l≤ y⊥.

Proof. Let p andq be distinct points ofl . Thenl ∩〈x, p〉g = {p} by Proposition
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2.1.17(i). Thus, dist(q,〈x, p〉g) = 1. Since dist(q,x) = dist(p,x) = d, we conclude
that p is not a gate forq in 〈x, p〉g. Hence, Proposition 2.1.25(i) implies that
pr〈x,p〉g(q) contains a lineg throughp. By Proposition 2.1.17(i) there is a point
y∈ g with dist(y,x) = d−1. The claim follows sincey /∈ l andp⊥ y⊥ q.

Proposition 3.2.2.Let V be a connected rigid subspace of an SPO spaceS with
yrk(V) = 2. Then V is gated.

Proof. SinceV has a symplectic rank, we know diam(V) ≥ 2. Let x ∈ S be a
point with dist(x,V) < ∞. Suppose there is a linel ≤ prV(x). Then by Lemma
3.2.1 there is a pointy with dist(y,V) = 1 andl ≤ prV(y). Since diam(V) ≥ 2,
Lemma 3.1.1(i) implies thatl is a generator of a symplecton ofV. This is a
contradiction to Proposition 2.2.9(i). Thus, prV(x) contains a single pointy. Now
let p∈V. Since dist(p,y) < ∞, the pointy is a gate forx in 〈p,y〉g by Proposition
2.1.25(i).

This proposition enables us to give a first classification of rigid subspaces of
symplectic rank 2 and finite diameter.

Theorem 3.2.3.Let V be a rigid subspace of an SPO space withyrk(V) = 2 and
diam(V) < ∞. Then V is a metaplecton.

Proof. Setn := diam(V). Let y andz be two point ofV with dist(y,z) = n. Set
U := 〈y,z〉g and letx be a point ofV. By Proposition 3.2.2x has a gatew in U .
Since there is a point inU at distancen to w, we obtainx = w by the diameter of
V. Hence,U = V.

In the rest of this section we study connected subspaces thatcontain a rigid
subspace of symplectic rank 2.

Lemma 3.2.4.Let U be a metaplecton of an SPO space withdiam(U) = 3. Fur-
ther let Y≤U be a rigid symplecton of rank2.

(i) Let X≤U be a symplecton with X∩Y = ∅. Then X and Y are isomorphic.

(ii) Let Z≤U be a symplecton with Y> Z∩Y 6= ∅. Then Y∩Z is a line and
rk(Z) = 2.

(iii) For every line g≤Y, there is a symplecton Z≤U with Y∩Z = g.

(iv) Let X and Z be symplecta of U that are distinct but not disjointto Y. Then
X ∼= Z.

(v) Let Z≤U be a rigid symplecton with Y> Z∩Y 6= ∅. Then U is rigid and
all symplecta of U are isomorphic.
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Proof. (i) Let u andv be points ofX with 〈u,v〉g = X. By Proposition 3.2.2 both
u andv have a gate inY. Thus by Proposition 2.1.29,X andY are isomorphic.
(ii) Let w ∈ Y ∩Z and letz∈ Z with dist(z,w) = 2. Thenz /∈ Y sinceY 6= Z.
By Proposition 2.1.17(i) there is a pointy ∈ Y with y ⊥ z. Thus, Proposition
3.2.2 implies thaty is a gate forz in Y. With Proposition 2.1.25(iii) this implies
y∈ 〈w,z〉g = Z. SinceY 6= Z and rk(Y) = 2, we concludeY∩Z = wy. Since every
symplecton that is not rigid has rank 2, the claim follows by Lemma 2.2.6.
(iii) Let y be a point ong and letz∈ Y be a point with dist(y,z) = 2. SinceU
is an SPO space by Proposition 2.1.23, there is a pointx ∈ U with x ⊥ y and
dist(x,z) = 3. This impliesx /∈ Y andy is a gate forx in Y by Lemma 2.1.14.
Thus,〈x,g〉g is a symplecton. By (ii) we obtain〈x,g〉g∩Y = g.
(iv) By (ii) we know that bothX andZ intersectY in a line. Setg := X ∩Y and
h := Z∩Y. Moreover, rk(X) = rk(Z) = 2.
First assumeg∩h = ∅. Let x∈ g. SinceY contains no triangle, there is a unique
pointy∈ h that is collinear tox. Letz∈ Z with dist(y,z) = 2. Then by Proposition
3.2.2zhas a gate inY and consequently, this gate is onh and distinct toy. Hence,
dist(z,x) = 3. By Lemma 2.1.14 this implies thaty is a gate forx in Z. By
analogous reasons,x is a gate fory in X. Suppose there is a pointp∈ X∩Z. Then
y∈ 〈x, p〉g ≤ X, a contradiction. Hence,X andZ are disjoint. Since dist(x,z) = 3
and dist(z,X) ≤ 1 by Proposition 2.1.17(i), we conclude by Lemma 2.1.14 thatz
has a gate inX. Hence, Proposition 2.1.29 implies thatX andZ are isomorphic.
Now assume thatg andh intersect. Letg′ ≤ Y be a line that is disjoint tog. By
(iii) there is a symplectonX′ ≤U with X′∩Y = g′. As above we obtainX ∼= X′.
If g′ ∩h = ∅, we obtain furtherX′ ∼= Z and hence, we are done. Thus, we may
assumeg′ ∩ h 6= ∅. Let x be the intersection point ofg andh and letx′ be the
intersection point ofg′ andh. Assumeg andh are the only lines ofY throughx.
Then there is a pointy∈ g such that there are three lines ofY meeting iny. Since
Y contains no triangles, we obtain dist(y,x′) = 2 and hence by Lemma 2.2.2, there
are three lines throughx′ in Y. Since we want to showX ∼= Z or X′ ∼= Z, we
may assume by symmetric reasons that there are three lines inY throughx. Let
y′ ∈ g′ r{x′}. Then dist(x,y′) = 2 as above. By Lemma 2.2.2 there are three lines
throughy′ in Y. SinceY contains no triangle,g′ is the unique line throughy′ that
intersectsh. Analogously, there is a unique line throughy′ that intersectsg. Thus,
there is a lineh′ throughy′ that is disjoint to bothh andg. By (iii) there is a
symplectonZ′ ≤U with Z′∩Y = h′. Now we concludeX ∼= Z′ ∼= Z as above.
(v) By (ii) l := Y∩Z is a line. Letx be a point onl . Further lety ∈ Y r l and
z∈ Zr l be points withy⊥ x⊥ z. Then dist(y,z) = 2 since by Proposition 3.2.2x
is a gate fory in Z. Thus,X := 〈y,z〉g is a symplecton ofU . Sincez∈ X rY, we
obtainX 6= Y. Hence, (iv) impliesX ∼= Z. Analogously,X ∼= Y and hence,Y ∼= Z.
Now let W be an arbitrary symplecton ofU that is distinct toY. If Y∩W = ∅,
thenW ∼= Y by (i). OtherwiseW ∼= Z by (ii). The claim follows.
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Proposition 3.2.5. Let V be a rigid subspace of an SPO spaceS such that
yrk(V) = 2 anddiam(V) < ∞. Further let x be a point withdist(x,V) = 1. Then
diam(〈x,V〉g) = diam(V)+1. Let l≤V be a line withprV(x) ≤ l. Then〈x,V〉g is
rigid if and only if 〈x, l〉g is rigid. Moreover, if〈x,V〉g is rigid, then all symplecta
of 〈x,V〉g are isomorphic.

Proof. Setd := diam(V) andX := 〈x, l〉g. By Proposition 3.2.2x has a gatey in V.
Thus,X is a symplecton. By Theorem 3.2.3 there is a pointz∈V with 〈y,z〉g = V
and hence,〈x,V〉g = 〈x,y,z〉g. Sincey is a gate forx in V, this implies〈x,V〉g =
〈x,z〉g and diam(〈x,z〉g) = d+1. If 〈x,V〉g is rigid, X is a rigid symplecton. Thus,
it remains to prove that ifX is rigid, every symplecton of〈x,V〉g is isomorphic to
X.
LetY be a symplecton of〈x,V〉g such thatY∩V 6= ∅. Let p∈Y∩V and letq∈Y
such thatY = 〈p,q〉g. Since dist(q,V)≤1 by Proposition 2.1.17(i) andq has a gate
in V by Proposition 3.2.2, we conclude thatY∩V contains a lineg. Now assume
there is a metaplecton〈u,v〉g ≤ 〈x,V〉g with dist(u,v) = 3 such thatY ≤ 〈u,v〉g.
We may assumep = u. Again by Proposition 2.1.17(i) we obtain dist(v,V) ≤ 1.
Sincev has a gate inV by Proposition 3.2.2, we conclude that there is symplecton
Z that is contained in〈p,q〉g∩V.
SinceV has finite diameter, there is a finite sequence of lines starting with l and
ending withg such that two consecutive lines intersect. Thus, it sufficesto show
X ∼= Y for the caseg∩ l 6= ∅. We may assumeY 6= X since otherwise there is
nothing to prove. First assumel = g. Let u ∈ Y r g. Then by Proposition 3.2.2
u has a gate inX that lies ong. Thus, there is a pointv ∈ X with dist(u,v) = 3.
We obtainX∪Y ⊆ 〈u,v〉g sinceX = 〈prX(u),v〉g. Now 〈u,v〉g∩V contains a rigid
symplectonZ. Sincel ≤ Z, we may apply Lemma 3.2.4 to concludeX ∼= Y.
Now assume thatg andl intersect in a single pointu. Let v∈ gr {u}. Thenu is
the gate ofv in X. Hence,〈v,X〉g is a metaplecton of diameter 3. SinceX ≤ 〈v,X〉g,
we conclude that〈v,X〉g∩V contains a symplectonZ. SinceX � V, we conclude
〈v,X〉g∩V = Z. Now Lemma 3.2.4 implies that there is a symplectonX′ ≤ 〈v,X〉g
with X′∩Z = g andX ∼= X′. Since this impliesX′∩V = g, we obtainX′ ∼= Y as
above.
Finally, letY ≤ 〈x,V〉g be a symplecton that is disjoint toV. Let u andv be points
of Y with 〈u,v〉g = Y. By Proposition 2.1.17(i) and Proposition 3.2.2u has a gate
u′ in V andv has a gatev′ in V. Since dist(u,v′) ≤ 3, we obtain dist(u′,v′) ≤ 2.
Sinceu′ /∈Y, we knowu′ 6= v′. Supposeu′ ⊥ v′. Then〈u,v′〉g is a symplecton that
intersectsV and hence,〈u,v′〉g is rigid and of rank 2. Since〈u,v′〉g 6= Y, we obtain
v /∈ 〈u,v′〉g. Now v ⊥ v′ and dist(v,u) = 2 implies by Proposition 2.1.25(i) that
pr〈u,v′〉g(v) contains a line. This is a contradiction to Proposition 2.2.9(i). Thus,
dist(u′,v′) = 2 and consequently,〈u′,v′〉g is a rigid symplecton. Now the claim
follows since〈u′,v′〉g ∼= Y by Proposition 2.1.29.
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3.3 Connected subspaces of symplectic rank≥ 3

There are some properties for connected rigid subspaces of symplectic rank 3
that are also valid for connected rigid subspaces of higher rank. Therefore we
first study these common properties before we continue with connected rigid sub-
spaces of symplectic rank 3.

Lemma 3.3.1.Let V be a connected rigid subspace of an SPO space.

(i) Let yrk(V) ≥ 3 and let Y be a convex subspace withdiam(Y) ≥ 2 that is
properly contained in V . Then there is a point x∈ V with dist(x,Y) = 1
such thatprY(x) is a singular subspace of rank≥ yrk(V)−1.

(ii) Let yrk(V) ≥ 5 and let x be a point withdist(x,V) = 1 such thatprV(x)
contains a line. Then V is a symplecton.

Proof. (i) Let x∈V rY with dist(x,Y) = 1. Then diam(prY(x)) < 2 sincex /∈Y.
Assume prY(x) = {z} for a point z ∈ Y. Let y ∈ Y with dist(y,z) = 1. Then
dist(x,y) = 2 andZ := 〈x,y〉g is a symplecton. Sincex⊥ contains a hyperplane of
Y∩Z, we concludeY∩Z = yz. Since rk(Z) ≥ 3, there is a pointx′ ∈ Z rY such
thaty ⊥ x′ ⊥ z. Thus, we may assume that prY(x) contains a linel . By Lemma
3.1.1(i) there is a symplectonX ≤ Y with l ≤ X. Hence by Proposition 2.1.27,
prX(x) is a generator ofX. The claim follows since prX(x) ≤ prY(x).
(ii) Set X := prV(x). By Lemma 3.1.1(i) there is a symplectonY ≤ V such that
X∩Y contains a line. By Proposition 2.1.27X contains a generator ofY. Suppose
Y < V. Then by (i) there is a pointw ∈ V rY such that prY(w) is a generator
of Y. By Proposition 2.2.9(iv) we conclude crkX∩Y(prY(w)∩X) ∈ 2 ·N. Thus,
Proposition 2.2.9(ii) implies that there is a pointz∈ 〈w,Y〉g ≤V with prY(z) = X∩
Y. By Proposition 2.2.5 and Proposition 2.2.9(vii)〈z,X∩Y〉 is the only singular
subspace that containsX∩Y properly, a contradiction toX ≤ x⊥.

The map we introduce in the following definition turns out to be a useful tool
for some proofs. Therefore we give this map an own name.

Definition 3.3.2. Let V be a connected rigid subspace of an SPO spaceS with
yrk(V) ≥ 3. Further letM andN be two maximal singular subspaces ofS that
contain a maximal singular subspace ofV such that rk(M∩N) = yrk(V)−3. Then
we setπM,N : P(M) → P(N) : R 7→

⋃

p∈RprN(p), whereP(M) andP(N) denote
the power sets of the point sets of the subspacesM andN.

Lemma 3.3.3. Let V be a connected rigid subspace of an SPO spaceS with
yrk(V) ≥ 3. Further letM be the set of maximal singular subspaces ofS that
contain a maximal singular subspace of V. Let M and N be elements ofM with
rk(M∩N) = yrk(V)−3.
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(i) rk(prM(p)) = yrk(V)−2 for every p∈ N rM andprM(p) ≤V if and only
if p ∈V.

(ii) Let M′ ≤ M and N′ ≤ N be subspaces such that N∩M′ = M ∩N′ = ∅,
〈M∩N,M′〉 = M and〈M∩N,N′〉 = N. Then every point in M′ is collinear
to a unique point in N′. Moreover, the mapϕ : M′ → N′ that maps every
point of M′ to its unique neighbour in N′ is an isomorphism.

(iii) SetSM := {R≤ M | S≤ R} andSN := {R≤ N | S≤ R}. ThenπM,N maps
the latticeSM isomorphically onto the latticeS(N).

(iv) rk(M) = rk(N), rk(M∩V) = rk(N∩V) andcrkM(M∩V) = crkN(N∩V).

Proof. SetS := M ∩N. By Lemma 3.1.1(i) we know thatS is not maximal and
hence,M 6= N. Moreover, rk(M∩V) ≥ yrk(V)−1 and rk(N∩V) ≥ yrk(V)−1.
SinceV has a symplectic rank, we know diam(V) ≥ 2.
(i) SinceN∩V is a maximal singular subspace ofV, we obtain that for every point
p∈ (M∩V)r S, there is a pointq∈ N∩V with dist(p,q) = 2. SetY := 〈p,q〉g.
ThenY ≤V and hence, rk(Y) = yrk(V). Since rk(〈p,S〉) = yrk(V)−2, the sub-
space〈p,S〉 is a hyperplane of a generator ofY. Assume there is a pointr ∈M rY.
Then by Proposition 2.1.27 prY(r) is a generator ofY. Since〈p,S〉 ≤ prY(r) and
rk(〈r, p,S〉) = yrk(V)−1, Lemma 3.1.1(iv) implies that there is at most one el-
ement inM that contains rk(〈r, p,S〉). Thus,〈r,prY(r)〉 ≤ M. If M ≤ Y, thenM
is a generator ofY since rk(M∩V) ≥ yrk(V)−1. Thus in any case,M contains
a generator ofY. Since prM(q) ≤ Y and p /∈ prM(q), we conclude rk(prM(q)) =
yrk(V)−2 and prM(q) ≤V. Analogously, the claim holds forp.
Now let s ∈ N r V. Then s 6⊥ p since prN(p) ≤ V. Set Z := 〈p,s〉g. Since
〈p,prN(p)〉 ≤Y∩Z and rk(〈p,prN(p)〉) ≥ 2, we obtain rk(Z) = rk(Y) by Lemma
2.2.3(i). Letg ≤ M ∩V be a line withg∩S= ∅. Thens /∈ prN(r) for every
r ∈ g, sinceg ≤ V and s /∈ V. Thus, g∩ prM(s) = ∅ and hence,g � Z. Let
r ∈ grZ. By Proposition 2.1.27 prZ(r) is a generator ofZ since〈p,S〉 ≤ prZ(r).
Since rk(〈r, p,S〉) = yrk(V)−1, Lemma 3.1.1(iv) implies thatM is the unique el-
ement ofM that contains rk(〈r, p,S〉). Thus,〈r,prZ(r)〉 ≤ M. Since prM(s) ≤ Z
andp /∈ prM(s), we conclude rk(prM(s)) = yrk(V)−2. Let t ∈ prM(s)rS. Then
prN(t) � V sincet ⊥ r. Thus,t /∈V and the claim follows.
(ii) By (i) we conclude thatS is a hyperplane of prN(p) and hence, prN(p) inter-
sectsN′ in a single pointq. By symmetric reasons every point ofN′ has exactly
one neighbour inM′ and thereforeϕ is bijective.
Now let p andp′ be two distinct points ofM′ and letq andq′ be the points ofN′

with q⊥ p andq′ ⊥ p′. Then〈p,q′〉g is a symplecton that contains the linespp′

andqq′. Hence, every point onpp′ is collinear to a point onqq′ and vice versa.
Thus,(pp′)ϕ = qq′.
(iii) Let M′, N′ and ϕ like in (ii). Further let p ∈ M′ and r ∈ 〈p,S〉r S. Set
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q := pϕ . Then q ⊥ r since we obtain prM(q) = 〈p,S〉 by (i). Analogously,
prN(r) = 〈q,S〉 = prN(p). This implies

πM,N(R) =
⋃

r∈R∩M′

prN(r) = 〈S,{rϕ | r ∈ R∩M′}〉

for everyR∈ SM. The claim follows since by (ii) we know thatR′ 7→ {rϕ | r ∈
R′} yields an isomorphism from the lattice of subspaces ofM′ onto the lattice of
subspaces ofN′.
(iv) Since by (i) we obtainπM,NR≤ V ⇔ R≤ V for everyR∈ SM, the claim
follows with (iii).

Lemma 3.3.4. Let V be a connected rigid subspace of an SPO spaceS with
yrk(V) ∈ {3,4}. Further letM be the set of maximal singular subspaces ofS

that contain a maximal singular subspace of V. Let M and N be elements ofM
with rk(M ∩N) = yrk(V)− 3 and rk(M) ≥ yrk(V). ThenπM,N(〈S,prM(x)〉) =
〈S,prN(x)〉 for every point x∈V, where S:= M∩N.

Proof. By Lemma 3.1.1(i) we know thatS is not maximal and hence,M 6= N.
Moreover, rk(M∩V) ≥ yrk(V)−1 and rk(N∩V) ≥ yrk(V)−1. SinceV has a
symplectic rank, we know diam(V) ≥ 2.
By the maximality ofM there are pointsp∈ M andq∈ N with dist(p,q) = 2. Set
Y := 〈p,q〉g. Then prN(p) ≤ Y. On the other handp⊥ contains a hyperplane of
Y∩N. This impliesY∩N = 〈q,prN(p)〉. Thus, rk(Y∩N) = yrk(V)−1 by Lemma
3.3.3(i). Since yrk(V)−1 > 1, M intersectsY in a generator by Lemma 3.1.1(iii)
and therefore rk(Y) = yrk(V).
Set dist(x,M) = d. Assume dist(x,N) = d + 1. Then every point ofS is at dis-
tanced + 1 to x. Moreover, for every pointp ∈ prM(x) the projection prN(p)
is contained in prN(x). Thus, πM,N(〈S,prM(x)〉) ≤ 〈S,prN(x)〉 = prN(x). Sup-
pose there is a pointp ∈ prN(x) r πM,N(〈S,prM(x)〉). Let q ∈ prM(x). Then
Y := 〈p,q〉g is a symplecton ofV since by Lemma 3.3.3(i) both prM(x) and prN(x)
are contained inV. Moreover, rk(prN(q)) = yrk(V)−2 and thus,〈p,prN(q)〉 is
a generator ofY. Since〈p,prN(q)〉 ≤ prN(x), we conclude dist(x,Y) ≥ d. With
dist(x,q) = d and dist(p,q) = 2 this implies dist(x,Y) = 2 and hence by Propo-
sition 2.1.25(i) and Proposition 2.1.27 that prY(x) is a generator ofY. Sincep /∈
πM,N(〈S,prM(x)〉), we obtain prM(p)∩prM(x) = ∅ and hence, prY(x)∩(M∩Y) =
{q}. With prY(x)∩(N∩Y) = ∅ andM∩N∩Y = Sthis leads to a contradiction to
Proposition 2.2.9(iii) since rk(M) ≥ yrk(V). Thus,πM,N(〈S,prM(x)〉) = prN(x).
By Lemma 3.3.3(iii) this impliesπN,M(prN(x)) = 〈S,prN(x)〉. Hence, it remains
the case dist(x,N) = d.
Let p∈ M rSandq∈ NrprN(p); this is possible since rk(M∩V) > rk(prN(p))
by Lemma 3.3.3(i). SetY := 〈p,q〉g. We have to showp ∈ 〈S,prM(x)〉 ⇔
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prN(p) ≤ 〈S,prN(x)〉. Since by Lemma 3.1.1(iii)M ∩Y is a generator ofY, we
obtain dist(x,Y) ≥ d−1. Let dist(x,Y) = d−1. Assume prY(x) is a generator
of Y. Thenp ∈ prM(x) and prN(p) ≤ prN(x). Now assumex has a gatey in Y.
Then prM(x) intersectsY∩M in a hyperplaneH and〈y,H〉 is a generator ofY.
Analogously, prN(x) intersectsY∩N in a hyperplaneH ′. For the caseS≤ H we
obtain by Proposition 2.2.9(iii) that〈y,H〉 andN∩Y have a hyperplane in com-
mon and thereforeH ′ ≤ 〈y,H〉. Thus,p∈ prM(x) ⇔ p∈ H ⇔ prN(p) = H ′ ⇔
prN(p) ≤ prN(x). For the caseS� H we obtainM ∩Y = 〈S,H〉 ≤ 〈S,prM(x)〉.
Hence,p∈ 〈S,prM(x)〉 and analogously, prN(p) ≤ 〈S,prN(x)〉.
Now let dist(x,Y) = d + 1. Then we obtain〈p,S〉 ∩ prM(x) = ∅ and hence,
p /∈ 〈S,prM(x)〉. Analogously, prN(p)∩prN(x) = ∅ and hence, prN(p) � prN(x).
Finally let dist(x,Y) = d. If prY(x) = Y, thenp ∈ prM(x) and prN(p) ≤ prN(x).
Hence, it remains the case dist(x,Y) = d and prY(x) < Y. First assumex has a
gatey in Y. Theny ∈ Y∩M, since otherwise there would be a pointy′ ∈ Y∩M
with dist(y,y′) = 2 and hence, dist(x,y′) = d+ 2. Analogously,y ∈ N and con-
sequently,y ∈ S. Since py intersects bothS and prM(x) only in y, we obtain
p /∈ 〈S,prM(x)〉. Analogously,p′ /∈ 〈S,prN(x)〉 for every p′ ∈ prN(p) r S and
hence, prN(p) � 〈S,prN(x)〉. By Proposition 2.1.27 it now remains the case that
prY(x) is a generator ofY. SetG := prY(x)∩M and H := prY(x)∩N. Since
S≤ Y∩M, we obtain〈S,prM(x)〉 ∩Y = 〈S,G〉. Analogously,〈S,prN(x)〉 ∩Y =
〈S,H〉. Since rk(S) = yrk(Y)−3, we know crkG(G∩S) ∈ {0,1,2}. Analogously,
crkH(H ∩S) ∈ {0,1,2}. Proposition 2.2.9(iii) implies that rk(G) = rk(H) is even.
Thus, crkG(G∩S)− crkH(H ∩S) is also even. Hence ifS intersectsG in a hy-
perplane, thenS intersectsH in a hyperplane. Since〈G,H〉 ≤ prY(x), this implies
πM,N(〈S,G〉) = 〈S,H〉 and therefore, prN(p) = 〈S,H〉 ⇔ p ∈ 〈S,prM(x)〉. If S
contains bothG andH, there is nothing to prove. Also if〈S,G〉 = Y ∩M and
〈S,H〉 = Y∩N, there is nothing to prove.
By symmetric reasons and Lemma 3.3.3(iii) it remains the case whereH ≤ Sand
〈S,G〉= Y∩M. Then for every points∈ Sthe linepscontains a point ofGr{s}.
Thus, we may assumep ∈ prM(x). SupposeS∩prM(x) = ∅. ThenH = ∅ and
hence, prN(p)∩prN(x) = ∅. Let r ∈ prN(x). Then〈p, r〉g contains prN(p). Since
rk(prN(p)) ≥ 1 and dist(x,prN(p)) = d + 1, we obtain dist(x,〈p, r〉g) = d. This
is a contradiction to Proposition 2.1.25(ii) since dist(x, p) = dist(x, r) = d. Now
supposeS≤ prM(x). Then we obtainM∩Y = prY(x), a contradiction to Proposi-
tion 2.1.27 and Proposition 2.2.5 since dist(x,M) = d. Thus,∅ < S∩G < Sand
therefore yrk(V) = 4 andS∩G is a singleton. This implies rk(G) = 2. Since the
generators prY(x) and(M ∩Y) intersect in the hyperplaneG and(M ∩Y) < M,
we conclude by Proposition 2.2.9(iv) that prY(x) is a maximal singular subspace.
This is a contradiction to Proposition 2.1.27.
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3.4 Connected subspaces of symplectic rank 3

Throughout this section we are dealing with a connected rigid subspaceV of sym-
plectic rank 3 that lives in an SPO spaceS . Thereby, the setM that contains
all maximal singular subspaces ofS that contain a maximal singular subspace
of V plays an important role. For this, we introduce a distance function for the
elements ofM that differs from dist. For two elementsM andN of M we write
M ∼N if and only if they have a line in common. By Lemma 3.1.1(iv) this implies
for M ∼ N that eitherM = N or M∩N is a line. By distM(M,N) we denote the
distance ofM andN in the graph onM that is induced by the relation∼.

Proposition 3.4.1.For V , exactly one of the following assertions hold:

(a) The subspace V is a symplecton and each element ofM is a generator of V .

(b) There is a subspace M∈M with rk(M)≥ 3 and each line of V is contained
in exactly two elements ofM.

Proof. We assume (a) does not hold. Letg be a line ofV. By Lemma 3.1.1(i)
there is symplectonY ≤V with g≤Y. Since rk(Y) < ∞, there are two generators
of Y that intersect ing and hence, there are two elementsN andN′ of M that
containg. If Y is properly contained inV, Lemma 3.3.1(i) implies that there is a
generatorG of Y that is properly contained in a singular subspace ofV. If Y = V,
then there is a generatorG of Y that is properly contained in an element ofM by
the assumption. By Propositions 2.2.9(iii) and 2.2.9(ii) we may assumeg ≤ G.
Hence by Proposition 2.2.4(ii),N andN′ are the only elements ofM containing
g.

Lemma 3.4.2.Let X∈M and setMi := {M ∈M | distM(M,X)∈ 2N+ i} for i ∈
{0,1}. Let M∈Mr{X} and let i∈ {0,1} such that M∈Mi. Set d:= dist(M,X)
and S:= {p∈ M | dist(p,X) = d}. Then the following holds.

(i) The subspace S is contained in V andrk(S) = d+ i.

(ii) Let x∈X. Thenrk(prM(x)) = dist(x,M) andprM(x) �V if and only if x/∈V
and i= 0.

(iii) If d is even, thendistM(M,X) = d+2− i. If d is odd, thendistM(M,X) =
d+1+ i.

Proof. Assume thatV is a symplecton and every element ofM is contained in
V. Then (i) follows from Proposition A.2.20 and (ii) follows directly from (BS).
Hence by Proposition 3.4.1, we may restrain ourselves to thecase where every
line of V is contained in exactly two elements ofM.
For M ∼ X, we obtainS= M∩X and hence, rk(S) = 1. By Lemma 3.1.1(iv) we
obtainS≤ V. Let p ∈ M ∩V r S. SinceX ∩V is a maximal singular subspace
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of V, there is a pointq∈ X ∩V with dist(p,q) = 2. Now 〈p,q〉g is a symplecton
of V and hence rk(〈p,q〉g) = 3. Therefore prX(p) = Ssince prX(p) ≤ 〈p,q〉g and
q /∈ prX(p). Analogously, prM(x) = S if x ∈ V r S. If x /∈ V, then dist(p,x) = 2.
By Lemma 2.2.3(i) the symplecta〈p,q〉g and〈p,x〉g have the generator〈p,S〉 in
common. Again we conclude prM(x) = S. Thus, the claim holds sinceM ∈ M1

and distM(M,X) = 1.
Now let d = 0 andM 6∼ X. ThenM ∩ X is a singleton. Letp ∈ M ∩V r X.
Then rk(prX(p)) = 1 and prX(p) ≤ V by Lemma 3.3.3(i). By Lemma 3.1.1(i)
and Proposition 2.2.5 there is an elementN ∈ M with 〈p,prX(p)〉 ≤ N. Since
M∩X ≤ prX(p), this impliesM ∼ N ∼ X. Thus,M ∈ M0 and the claim follows
from Lemma 3.3.3(i).
Let d > 0 and assume the claim holds for all subspacesN ∈ M with dist(X,N) <
d. By Lemma 3.1.1(vi) there is a geodesic(pi)0≤i≤d in V such thatp0 ∈ X
and pd ∈ M. SetM0 := X. Recursively, letMi+1 be a maximal singular sub-
space ofS containingpi+1 and prMi

(pi+1) for i < d. Since pi pi+1 ≤ Mi+1,
we obtainMi+1 ∈ M by Lemma 3.1.1(iii). Hence, dist(Mi,Mi+1) = 0 implies
rk(prMi

(pi+1)) = 1. Thus by Proposition 2.2.5,Mi+1 is uniquely defined and
Mi ∼ Mi+1. If Md ∩M = {pd}, we setN := Md. If Md ∼ M, let N be the unique
element ofM with N∩Md = pd−1pd. Sincepd−1 ∈ N and prM(pd−1) = Md∩M,
we obtainN∩M ≤ Md ∩M. Since every line ofV is contained in only two ele-
ments ofM, we concludeN∩M = {pd}.
Sincepd−1 ∈ N, we obtain dist(X,N) = d−1 and therefore the claim holds for
N. By Lemma 3.3.4 we knowπM,N(〈pd,prM(x)〉) = 〈pd,prN(x)〉. This implies
rk(〈pd,prM(x)〉) = rk(〈pd,prN(x)〉) by Lemma 3.3.3(iii). In the case dist(x,M) =
dist(x,N) we have eitherpd ∈ prN(x)∩prM(x) or pd /∈ prN(x)∪prM(x) and thus,
rk(prM(x)) = rk(prN(x)) = dist(x,M). In the case dist(x,M) > dist(x,N) we have
pd ∈ prM(x)rprN(x). This implies rk(prM(x)) = rk(prN(x))+1= dist(x,M). The
case dist(x,M) < dist(x,N) is not possible, since dist(x,M) ≥ d and dist(x,N) ≤
dist(X,M)+1= d.
Set T := {p ∈ N | dist(p,X) = d− 1} and R := {p ∈ X | dist(p,N) = d− 1}.
Assume dist(x,N) = dist(x,M) = d. ThenT ≤ prN(x). For N ∈ M1, we obtain
rk(T) = d. Thus,T = prN(x) and we obtain prM(x) ≤ πN,M(〈pd,T〉) by Lemma
3.3.4. ForN ∈ M0, we obtain rk(T) = d−1.
Suppose dist(x, pd) = d+1. Since rk(prN(x)) = d, there is a pointy∈ prN(x)rT
such that prN(x) = 〈y,T〉. SetU := 〈x, pd〉g. Then prN(x) and prM(x) are both con-
tained inU and hence by Lemma 3.1.1(iii), bothM andN intersectU in maximal
singular subspace ofU . Sincepd ∈ N, Proposition 2.1.17(i) implies that prN(x)
is a hyperplane ofU ∩N and hence rk(U ∩N) = d + 1. Sincepd /∈ prN(x), we
obtainypd ∩T = ∅. Hence, an arbitrary pointr ∈ R has distanced to every point
of ypd. By Proposition 2.1.23 we know thatU is an SPO space. Hence, Lemma
2.1.21(ii) implies that there is a points∈U with dist(r,s) = d+1 andypd ≤ s⊥.
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Clearly,s /∈ N since dist(r,N) = d−1. LetN′ be a maximal singular subspace of
S that contains〈s,y, pd〉. ThenN′ ∈M by Lemma 3.1.1(iii) andN′ andN are the
only maximal singular subspaces that contain the lineypd. We know prX(pd)≤U
since dist(pd,X)= d and dist(pd,x) = d+1. Hence, Lemma 3.1.1(iii) implies that
X intersectU in maximal singular subspace ofU . Since every point onypd has
distanced to r and dist(s, r) = d+1, we obtain thatr has distanced+1 to every
point of 〈s,y, pd〉r ypd. Hence by Proposition 2.1.17(i), every point of〈s,y, pd〉
has distanced to X. By Proposition 2.2.5 and Lemma 2.1.21(ii) we conclude
that for every point inX ∩U , there is a point inN′ ∩U at distanced + 1. Since
y 6= pd, we knowy /∈ M and hence, prM(y) is a line. Since prM(y) � N, we ob-
tain 〈y,prM(y)〉 ≤ N′ sinceypd ≤ 〈y,prM(y)〉. ThusM andN′ intersect in the line
prM(y). Let y′ ∈ prM(y)r{pd}. Since both prX(y′) and prX(pd) are hyperplanes
of X ∩U and rk(X ∩U) ≥ 2, there is a pointx′ ∈ prX(y′)∩prX(pd). By Lemma
3.1.1(i) there is a symplectonZ with 〈y,prM(y)〉 ≤ Z. Now x′ has distanced to
every point of prM(y). Thus, dist(x′,Z) = d−1 by Proposition 2.1.17(i). Further-
more, by Propositions 2.1.27 and 2.1.25(i)x′ has either a gate inZ or prZ(x′) is a
generator. In both cases, there is a generatorG≤ Z with dist(x′,G) = d−1 and
prM(y) ≤ G. Hence,G ≤ M or G ≤ N′. With dist(N′,X) = dist(M,X) = d, this
leads to a contradiction. Hence, the case dist(x, pd) = d + 1 is not possible for
dist(x,N) = dist(x,M) = d and we obtain dist(x, pd) = d.
Sincepd /∈ T and rk(T) = rk(prN(x))−1, we obtain prN(x) = 〈pd,T〉 and there-
fore prM(x) = πN,M(〈pd,T〉) by Lemma 3.3.4. Thus, prM(x) ≤ πN,M(〈pd,T〉),
whenever dist(x,M) = d. We concludeS= πN,M(〈pd,T〉) and hence, rk(S) =
rk(T)+1.
Since dist(X,L) ≥ d−1 for everyL ∈ M with L ∼ M, we obtain distM(X,M) ≥
d+ 1. Thus, distM(X,Md) = d and distM(M,Md) ≤ 2 yield distM(X,M) ∈ {d+
1,d+ 2}. If distM(X,M) = d+ 1, we may assumeM ∼ Md and hence,Md 6= N.
Thus, N ∩ Md−1 is a singleton sincepd ∈ N and by Proposition 2.2.5Md is
the unique element ofM that contains〈pd,prMd−1

(pd)〉. This implies rk(T) =

rk(S′)+1, whereS′ := {p∈ Md−1 | dist(p,X) = d−2}. Since the claim holds for
Md−1 and forN, we conclude distM(X,N) = d+1. If distM(X,M)= d+2, we ob-
tain distM(M,Md) = 2 and hence,N = Md. Thus, distM(X,N) = d. We conclude
N ∈ Mi. With rk(T) = d−1+ i we obtain rk(S) = d+ i. By Lemma 3.3.3(i) we
obtain prM(x) � V if and only if prN(x) � V, since prM(x) ≤ πN,M(〈pd,prN(x)〉)
and prN(x) ≤ πM,N(〈pd,prM(x)〉) by Lemma 3.3.4. Since the claim holds forN,
this implies that prM(x) � V if and only if x /∈V andi = 0.

Lemma 3.4.3.Let V contain a singular subspace of rank2 that is not maximal in
S . Further let X∈M. For i ∈{0,1}, setMi := {M ∈M | distM(M,X)∈ 2N+ i}.

(i) Every line of V is contained in unique elements ofM0 andM1.
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(ii) For i ∈ {0,1} let M and N be elements ofMi. Then there is a sequence
(M j)0≤ j≤n ∈ Mi

n+1 with M0 = M and Mn = N such that Mj ∩M j+1 6= ∅
for j < n.

(iii) For i ∈ {0,1} let M and N be elements ofMi. Thenrk(M) = rk(N), rk(M∩
V) = rk(N∩V) andcrkM(M∩V) = crkN(N∩V).

(iv) Let M and N be elements ofM0. Further let x∈ X rV and y∈ 〈prN(x),M∩
V〉rV. Then〈prN(y),N∩V〉 = 〈prN(x),N∩V〉.

Proof. (i) By Proposition 3.4.1 we know that every line is containedin exactly
two elements ofM.
Setd := dist(g,X). Forg≤ X, we may chooseX = N and the claim follows. Now
assume thatg intersectsX in a singleton. Letp∈ grX. Thenh := prX(p) is a line
by Lemma 3.4.2. Thus,h∈ L for everyL ∈ M with L ∼ X andg≤ L. By Lemma
3.1.1(i) and Proposition 2.2.5〈h,g〉 is contained in a unique elementN of M.
Hence, for the other subspaceM ∈M that containsg we obtain distM(X,M) = 2.
Now letd > 0 and assume the claim holds for every linel with dist(l ,X) < d. Let
p andq be two distinct points ong such that dist(p,X) = d. Further letM and
N be the two elements ofM containingg. By the convexity ofV there is a point
x∈ X∩V with dist(x, p) = d.
Assume dist(x,q) = d+1. We suppose that the claim does not hold forM andN
since otherwise we are done. Then there is a pointr ⊥ p with dist(x, r) = d−1
and hence, dist(r,q) = 2. Therefore〈r,q〉g is a symplecton. LetM′ andN′ be the
elements ofM that containpr. Since dist(x, r) = d−1, the claim holds forpr and
we may assumeM′ ∈ M0 andN′ ∈ M1. By Proposition 2.2.8 we know that the
dual polar graph of〈r,q〉g is bipartite. Hence by Proposition A.2.20,M intersect
eitherM′ or N′ in a line, we may assumeM ∼ N′. This impliesN 6∼ N′ and hence,
N ∼ M′ by analogous reasons. Since both linesM∩N′ andN∩M′ are contained
in {r,q}⊥, we conclude that each point of these lines has distanced to x. Since
the claim does not hold for eitherM∩N′ or N∩M′, we may restrain ourselves to
the case dist(x,q) = d.
By Lemma 3.2.1 there is a pointr with g ≤ r⊥ and dist(x, r) = d−1. This im-
plies r ∈ V and hence the singular subspace〈r,g〉 is either contained inM or in
N. We may assumer ∈ N. Since prM(r) = g, we obtain dist(r,s) = 2 for ev-
ery point s∈ M r g. Hence,〈r,s〉g is a symplecton containingg and therefore
r ∈ pr〈r,s〉g(x). By Proposition 2.1.25(iv) this implies dist(x,s) ≥ d and conse-
quently, dist(x,M) = d. Suppose there is a pointy ∈ X with dist(y,M) = d−1.
Then prM(x) ≥ 〈g,prM(y)〉. By Lemma 3.4.2 this implies prM(s)∩g 6= ∅, a con-
tradiction to dist(g,X) = d. Thus, dist(X,M) = d.
For {L,K} ⊆ M setLK := {s∈ L | dist(s,K) = dist(L,K)}. By Lemma 3.4.2 we
know rk(prX(p)) = rk(prX(q)) = d. AssumeN ∈ M0. Then rk(NX) = rk(XN) =
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d− 1 by Lemma 3.4.2. Hence, there is a pointp′ ∈ prX(p) r XN. This im-
plies dist(p′,N) = d and therefore, prN(p′) = 〈p,NX〉 by Lemma 3.4.2. Thus,
dist(p′,q) = d+1 and we conclude prX(p) 6= prX(q). Therefore〈prX(p),prX(q)〉
has at least rankd+1. SinceXM is a subspace, we obtain〈prX(p),prX(q)〉 ≤ XM

and therefore we concludeM ∈ M1 by Lemma 3.4.2. AssumeN ∈ M1. Then
rk(NX) = rk(XN) = d and therefore prX(q′) = XN for every pointq′ ∈ g. Let
y ∈ XM. Then prM(y) is at least a hyperplane ofMX by Lemma 3.4.2. Since
g≤ MX, there is a pointq′ ∈ g with dist(y,q′) = d and thereforey∈ XN. We con-
cludeXM = XN and consequentlyM ∈ M0.
(ii) Set d := dist(M,N). By Lemma 3.1.1(vi) and sinceV is convex there is a
geodesic(pi)0≤ j≤d in V such thatp0 ∈ M andpd ∈ N. By (i) there is a subspace
M j ∈ Mi with p j−1p j ≤ M j for 1≤ j ≤ d. The claim follows withMd+1 := N.
(iii) Let i = 0. By (ii) and Lemma 3.3.3(iv) the claim follows by inductionover
dist(M,N). By (i) the graph onM induced by∼ is bipartite with the partition
{M0,M1}. Hence, choosingX ∈ M1 interchangesM0 andM1.
(iv) Setd := dist(x,M). By Lemma 3.4.2 dist(X,M) = d−1 and there is a sub-
spaceS≤ M∩V with rk(S) = d−1 such that dist(p,X) = d−1 for everyp∈ S.
Since rk(prM(x)) = d andS≤ prM(x)∩V, this implies by Lemma 3.4.2 thatV in-
tersects prM(x) in a hyperplane. Thus,M∩V is a hyperplane of〈prM(x),M∩V〉.
We proceed by induction overn := dist(M,N). Since prM(y) = {y}, the claim fol-
lows for M = N. ForL ∈ M0, we setLV := L∩V andLp := 〈prL(p),LV〉, where
p∈ {x,y}. Now letN 6= M. Forn = 0, letL = M and forn > 0, letL ∈ M0 with
L∩N 6= ∅ and dist(M,L) = n−1. ThenL∩N is a singleton.
By Lemma 3.3.4 we obtainπL,N(〈L∩N,prL(x)〉) = 〈L∩N,prN(x)〉. Furthermore,
Lemma 3.3.3(i) impliesπL,N(LV) = NV and thereforeπL,N(Lx) = Nx. Analo-
gously,πL,N(Ly) = Ny. SinceLx = Ly by the induction hypothesis, we conclude
Nx = Ny.

Theorem 3.4.4.Let V be a rigid subspace that contains a symplecton properly.
Further letdiam(V) < ∞ andyrk(V) = 3. Then every line g≤V is contained in
exactly two maximal singular subspaces M and N of V, whererk(M) = diam(V)
and rk(N) = srk(V). The subspace V is a metaplecton if and only ifdiam(V) =
srk(V).

Proof. By Proposition 3.4.1 every lineg in contained in exactly two elementsM
andN of M. By Lemma 3.1.1(iv) we obtainM∩N = g and hence,M∩V 6= N∩V
by Lemma 3.1.1(i).
Let p andqbe two points ofV with dist(p,q) = diam(V)=: d. SetU := 〈p,q〉g and
let g≤U be a line withq∈ g. Let M andN be the maximal singular subspaces of
V that containg. Then dist(p,M) = dist(p,N) = d−1 since dist(p,g) = d−1 by
Proposition 2.1.17(i). By Lemma 3.4.2 we obtain prM(p) = d−1. Since prM(p)
is a hyperplane ofM∩U by Proposition 2.1.17(i), we obtain rk(M∩U) = d and
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analogously, rk(N∩U) = d. For srk(V) = d the claim follows. Thus, we may
assume srk(V) > d. By Lemmas 3.4.3(i) and 3.4.3(iii) we may assume rk(N) =
srk(V).
By Proposition 2.1.23 we know thatU is an SPO space. Thus, Proposition 2.3.5
implies that there is singular subspaceL′ ≤ U with rk(L′) = d and dist(L′,N∩
U) = d− 1. Let L ≤ V be the maximal singular subspace ofV with L ≥ L′.
Since srk(U) = d, Lemma 3.1.1(vi) implies dist(L,N) = d−1. By Proposition
2.1.17(i) we obtain dist(x,N) = d− 1 for everyx ∈ L′. Since rk(L′) = d, this
implies distM(L,N) ∈ 2·N+1 by Lemma 3.4.2. Letr ∈ NrU . Then dist(r,L) =
d by Lemma 3.4.2. Since diam(V) = d, we obtainL = rk(prL(r)) and therefore
rk(L) = d by Lemma 3.4.2. The claim follows by Lemmas 3.4.3(i) and 3.4.3(iii).

Proposition 3.4.5.Let diam(V) < ∞ and let x be a point withdist(x,V) = 1 such
thatprV(x) contains a line. Then V′ := 〈x,V〉g is a rigid subspace anddist(p,V)≤
1 for every p∈V ′.

(i) Letrk(prV(x))= srk(V). Thendiam(V ′)= diam(V) andsrk(V ′) = srk(V)+
1.

(ii) Let rk(prV(x)) < srk(V). Thendiam(V ′) = diam(V) + 1 and srk(V ′) =
srk(V).

Proof. By Proposition 2.1.27 prV(x) is a maximal singular subspace ofV. Hence,
there exists a subspaceX ∈ M with 〈x,prV(x)〉 ≤ X. Set M0 := {M ∈ M |
distM(X,M)∈ 2·N} andM1 := MrM0. For everyM ∈M, we setMV = M∩V
andMx := 〈prM(x),MV〉. We claimV ′ = U :=

⋃

M∈M Mx. For everyM ∈ M0

with X ∩ M 6= ∅, we obtainMx ≤ V ′ since rk(M) ≥ 2 by Theorem 3.4.4 and
rk(prM(x)) = 1 by Lemma 3.4.2. Lety∈ MxrMV. By Lemma 3.4.3(iv) we know
Nx = Ny for everyN ∈ M0. Hence by Lemma 3.4.3(ii), we may apply induction
to concludeNx ≤V ′ for everyN∈M0. ForN∈M1, we obtainNx ≤V by Lemma
3.4.2 and thus,Nx ≤ V ′. Conversely,x ∈ Xx and for everyp ∈ V, there is a sub-
spaceM ∈ M with p ∈ MV ≤ Mx by Lemma 3.4.3(i). Thus, to proveU = V ′, it
remains to show thatU is a convex subspace.
Let p andq be two distinct points ofU . We have to showW := 〈p,q〉g ⊆U . Set
d := dist(p,q). If p andq are both contained inV, there is nothing to prove. Thus,
we may assumep /∈V. Let M ∈ M with p∈ M and letN ∈ M with q∈ N. Since
Lx = LV for everyL ∈ M1, this impliesM ∈ M0. For M = N there is nothing to
prove, so we may assumeM 6= N. Since by Lemma 3.4.3(i) every point ofV is
contained in an element ofM0, we may assumeN ⊆ M0.
By Lemma 3.4.3(iv) we knowMx = 〈p,MV〉 since prM(p) = {p}. Moreover,
MV is a hyperplane ofMx. Analogously,NV is a hyperplane ofNx. Assume
dist(p,N) = d−1. Then rk(prN(p)) = d−1 and dist(M,N) = d−2 by Lemma
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3.4.2. Consequently,d ≥ 2. By Proposition 2.1.17(i) prN(p) intersectsN∩W
in a hyperplane. Since〈q,prN(p)〉 ≤ W, this implies〈q,prN(p)〉 = W∩N and
rk(N∩W) = d. Analogously,〈p,prM(q)〉 = W∩M and rk(M ∩W) = d. Since
prN(p) ≤ Nx by Lemma 3.4.3(iv) and prN(p) � NV by Lemma 3.4.2, this implies
rk(NV ∩W) = d−1. Hence, sinceNV ∩W 6= prN(p) there is a pointq′ ∈ NV ∩W
with dist(p,q′) = d. Thus, we may assumeq ∈ NV . By Lemma 3.4.2 we obtain
prM(q) = MV ∩W.
We knowNV ∩W = N∩ (V ∩W). Since rk(NV ∩W) ≥ 1 and rk(N∩ (V ∩W)) =
d−1, we conclude diam(W∩V) ≤ d−1 by Lemma 3.4.3(i) and Theorem 3.4.4.
Since prM(q) = MV ∩W and dist(q,M) = d − 1, we conclude by Proposition
2.1.17(i) thatV ∩W is no metaplecton. Hence, srk(W∩V) ≥ d by Theorem 3.4.4
for d ≥ 3. Ford = 2, we obtain srk(V ∩W) = 2 since rk(〈q,prM(q)〉) = 2. By
Lemmas 3.4.3(i) and 3.4.3(iii) this implies fori ∈ {0,1} that every element of
Mi that contains a line ofW∩V intersectsW∩V in a singular subspace of rank
d−1+ i.
Let r ∈ W rV. By Proposition 2.1.17(i) there is a pointr ′ ∈ W∩V with r ⊥ r ′.
Let p′ ∈ W∩V with dist(p′, r ′) = d−1. By Lemma 3.4.3(i) there is a subspace
L ∈ M such thatr ′ ∈ L and rk(L ∩W ∩V) ≥ d. By Lemma 3.4.2 there is a
line g ≤ L∩W∩V with r ′ ∈ g and dist(p′,g) = d−1. Let q′ ∈ gr {r ′}. Then
r ′ /∈ 〈p′,q′〉g. With Proposition 2.1.17(i) this implies that prW∩V(r) contains a line.
Let K be a maximal singular subspace ofS with 〈r,prW∩V(r)〉 ≤ K. ThenK ∈M

by Lemma 3.1.1(iii). Hence by Lemma 3.1.1(iv),K is uniquely determined.
Let s∈W be a point with dist(s, r) = d. As for r, there is a subspaceK′ ∈M with
s∈ K′ and rk(K′

V ∩W) ≥ 1. Since rk(K ∩W) ≥ 2, Proposition 2.1.17(i) implies
dist(s,K) = d−1 and hence rk(prK(s)) = d−1 by Lemma 3.4.2. Sincer ∈K∩W,
Proposition 2.1.17(i) implies that prK(s) is a hyperplane ofK ∩W and therefore
rk(K ∩W) = d. Sincer /∈ V, K ∩ (W∩V) is properly contained inK ∩W and
thereforeK ∈ M0. Supposep /∈ 〈prM(r),(MV ∩W)〉. Then prM(r) ≤ 〈r, p〉g ≤W.
SinceMV ∩W is a hyperplane ofM∩W, this implies prM(r)≤MV , a contradiction
to Lemma 3.4.2. Thus,p∈ 〈prM(r),(MV ∩W)〉. Hence, Lemma 3.4.3(iv) implies
〈r,KV〉 = 〈prK(p),KV〉 = Kx and thereforer ∈U .
It remains to prove that every symplecton ofU is rigid. Hence, we may assume
dist(p,q) = 2 and thatW is a symplecton. Since forW ≤ V there is nothing
to prove, we may again restrain to the casep /∈ V andq ∈ V. Thus as above,
srk(W∩V) = 2. Moreover, sincep∈WrV, we conclude thatW∩V is a singular
subspace of rank 2. Since by Lemma 3.1.1(i)W∩V is a generator of a symplecton
of V, we conclude by Lemma 2.2.3(i) thatW∩V is a generator ofW. The claim
follows.



52 3. Connected rigid subspaces

3.5 Connected subspaces of symplectic rank 4

Throughout this section letV be a connected rigid subspaces of symplectic rank
4 that lives in an SPO spaceS . By M we denote the set of maximal singular
subspaces ofS that contain a maximal singular subspace ofV. Furthermore, we
setM0 := {S∈ M | rk(S) = 3} andM1 := MrM0.

Lemma 3.5.1.Let x be a point withdist(x,V) < ∞. ThenprV(x) is a singleton or
there is a subspace M∈ M1 with prV(x) = M∩V.

Proof. Suppose there are pointsy andz in prV(x) with dist(y,z) = 2. SetY :=
〈y,z〉g and d := dist(x,V). Then dist(x,y) = dist(x,z) = dist(x,Y) = d. Since
x /∈ Y, this impliesd ≥ 2. SetX := 〈x,y〉g. ThenX ∩Y = {y} since otherwise
X∩Y would contain a line and hence, dist(x,Y) ≤ d−1 by Proposition 2.1.17(i).
Thus, dist(z,X) = 2 since otherwiseX ∩Y would contain a line by Proposition
2.1.25(iii). Therefore,y ∈ prX(z) and since dist(z,x) = d, there is a pointx′ ∈
prX(z) with dist(x′,x) = dist(z,x)−dist(z,X) = d−2. Hence, dist(y,x′) ≥ 2. By
Proposition 2.1.17(i) and Proposition 2.1.25(ii) we obtain diam(prX(z))≤ 2 since
otherwise dist(x,prX(z)) < d−2. Hence, dist(x′,y) = dist(x′,z) = 2. Moreover,
dist(x,Y) = 2 since dist(x,x′) = d−2. Thus, we may restrain ourselves to the case
d = 2.
Let w ∈ X with x ⊥ w ⊥ y. Then dist(w,z) = 2 by Proposition 2.1.25(ii). Set
Y′ := 〈w,z〉g. Sincew /∈ Y, we obtainy ∈ prY(w). Since dist(w,z) = 2, we con-
clude by Proposition 2.1.25(i) and Proposition 2.1.27 thatprY(w) is a generator of
Y. Sincez⊥ intersects prY(w) in a hyperplane and prY(w)∩z⊥ ≤Y′ the symplecta
Y andY′ intersect in a common generatorG by Lemma 2.2.3(i). Thus, rk(Y′) = 4.
Analogously, we conclude rk(〈x,z〉g) = 4 and that〈x,z〉g andY′ intersect in com-
mon generatorG′. Now z∈ G∩G′ implies rk(G∩G′) ∈ {1,3} by Propositions
2.2.9(iii) and 2.2.9(v). By Proposition 2.1.17(i) we obtain dist(x,G∩G′) ≤ 1,
a contradiction to dist(x,Y) = 2. Therefore we conclude diam(prV(x)) ≤ 1 by
Proposition 2.1.25(ii).
It remains to check the case diam(prV(x)) = 1. Let y and z be distinct points
of prV(x) and setX := 〈x,y〉g. Thenz /∈ X by Proposition 2.1.17(i) and thus by
Proposition 2.1.25(i), prX(z) contains a line since dist(z,x) = dist(y,x). Hence,
there is a pointw ∈ prX(z) with dist(w,V) = 1 andyz≤ prV(w). We may as-
sume thatw is the point on the lineywwith dist(w,x) = dist(x,y)−1. By Lemma
3.1.1(i) there is symplectonY ≤V containingyz. Hence, prY(w) is a generator by
Proposition 2.1.27. By Proposition 2.2.5, there is a uniquesubspaceM ∈ M con-
taining prY(w). Since〈w,prY(w)〉 is singular, we concludew ∈ M and hence,
M ∈ M1 since rk(prY(w)) = 3. Moreover,M ∩V = prV(x) sincew ∈ M and
diam(prV(x)) = 1.
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Proposition 3.5.2.For V , exactly one of the following assertions hold:

(a) The subspace V is a symplecton, each element ofM0 is a generator of V
andM1 = ∅.

(b) Each subspace S≤V with rk(S) = 2 is contained in exactly one element of
M0 and one element ofM1.

Proof. We assume (a) does not hold. LetS≤ V with rk(S) = 2. By Lemma
3.1.1(i) there is symplectonY ≤ V with S≤ Y. Since rk(Y) < ∞, there are two
generators ofY that intersect inSand hence, there are two elementsN andN′ of
M that containS. If Y is properly contained inV, Lemma 3.3.1(i) implies that
there is a generatorG of Y that is properly contained in a singular subspace ofV.
If Y = V, then there is a generatorG of Y that is properly contained in an element
of M1 sinceM1 6= ∅ by the assumption. By Propositions 2.2.9(iii) and 2.2.9(ii)
we may assumeS≤ G and henceN ∈ M1. By Proposition 2.2.4(ii),N andN′

are the only elements ofM containingS. Moreover,N′ ∈ M0 by Propositions
2.2.9(iii) and 2.2.9(iv).

Lemma 3.5.3.Let V≤ S such thatM1 6= ∅. Let M∈ M1.

(i) Let N∈ M1. Thenrk(M) = rk(N), rk(M∩V) = rk(N∩V) andcrkM(M∩
V) = crkN(N∩V).

(ii) Let N∈ M1 r {M} and let x∈ N. Set d:= dist(M,N), S := {p ∈ M |
dist(p,N) = d} and X := prM(x). Then S≤V, rk(S) = 2d+1 andrk(X) =
2·dist(x,M). Furthermore, X≤V if x∈V andrk(X∩V) = 2·dist(x,M)−1
if x /∈V.

(iii) Let X and N be elements ofM1. Further let x∈X rV and y∈ 〈prM(x),M∩
V〉rV. Then〈prN(x),N∩V〉 = 〈prN(y),N∩V〉.

Proof. (i) By Lemma 3.1.1(v) we may confine ourselves to the case where there
exists an subspaceG ∈ M0 with rk(M∩G) = rk(N∩G) = 2. Then Proposition
3.5.2 implies and rk(M∩N) = 1. The claim follows by Lemma 3.3.3(iv).
(ii) First let M∩N 6= ∅. ThenS= M∩N. By the maximality ofM∩V there are
pointsu∈M∩V andv∈ N∩V with u 6⊥ v. SinceS≤ 〈u,v〉g, Lemma 3.1.1(iii) im-
plies that bothM andN contain a generator of〈u,v〉g. With Propositions 2.2.9(iv)
and 2.2.9(iii) we obtain rk(S) = 1. SinceS≤ V, the claim follows with Lemma
3.3.3(iv).
Now let d > 0. By Lemma 3.1.1(vi) and the convexity ofV there are points
p ∈ S∩V and q ∈ V with p ⊥ q and dist(q,N) = d − 1. By Lemma 3.1.1(i)
and Proposition 3.5.2, there is an elementM′ ∈ M1 with pq≤ M′. We obtain
M∩M′ 6= ∅ and dist(N,M′) = d−1. SetX′ := prM′(x).
We assume that the claim holds forM′ andN. We know thatg := M∩M′ is line.
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Let S′ ≤ M′ be the set of points at distanced−1 to N. Further letT ′ ≤ M′ with
g∩T ′ = ∅ such that〈g,T ′〉 = M′ and〈g∩X′,T ′∩X′〉 = X′ and letT ≤ M with
g∩T = ∅ such that〈g,T〉= M and〈g∩X,T∩X〉= X. Thus, every line inM that
intersectsX, g andT intersectsX∩g or X∩T . The analogous holds forX′, g and
T ′. From Lemma 3.3.3(ii) we know that the mapϕ which maps every point ofT ′

to its unique collinear point inT is an isomorphism fromT ′ ontoT.
First let dist(x,M′) = dist(x,M) = d. ThenS′ ≤ X′. Since rk(S′) = 2d−1 and
rk(X′) = 2d there is a pointv ∈ g with dist(x,v) = d + 1. Suppose dist(x,g) =
d + 1. Then there is a pointp ∈ T ′ with pϕ ∈ X. Sinceg∩ X′ = ∅, we ob-
tain X′ ≤ T ′. Since rk(X′) = 2d, rk(prM′(pϕ)) = 2 andg ≤ prM′(pϕ), there is
a point q ∈ X′ ∩T ′ with q 6⊥ p. Since dist(x, p) = dist(x,q) = d, we conclude
dist(x,〈p,q〉g) ≤ d−1 by Lemma 3.5.1 and Proposition 2.1.25(ii), this is a con-
tradiction to Proposition 2.1.17(i) since dist(x,g) = d+ 1. Thus, there is a point
u∈ g∩X. Again let p∈ X′∩T ′. Further letq∈ T ′ r {p} and setY := 〈p,qϕ〉g.
If dist(x,Y) = d, then by Lemma 3.5.1 prY(x) is a generator that is properly con-
tained in a singular subspace ofS sinceup ≤ prY(x). Now we conclude by
Propositions 2.2.9(iv) and 2.2.9(iii) that〈p, pϕ ,g〉 and〈q,qϕ ,g〉 are both elements
of M0 since both intersectM in a singular subspace of rank 2. Consequently, they
both intersect prY(x) in a singleton or in a hyperplane. This implies dist(x, p) =
dist(x, pϕ) = d sinceX′ = 〈u,T ′ ∩X′〉. Analogously, dist(x,q) = dist(x,qϕ) for
dist(x,q) = d. For dist(x,q) = d− 1, we obtain rk(〈q,qϕ ,g〉 ∩ prY(x)) = 0 and
hence, again dist(x,q) = dist(x,qϕ). If dist(x,Y) = d−1, then dist(x,vq) = d and
hence, dist(x,q) = d. Analogously, dist(x, pϕ) = dist(x,qϕ) = d. Hence, we ob-
tain in all casespϕ ∈ X andq∈ X′ ⇔ qϕ ∈ X. Thus, we concludeX = 〈u,(S′)ϕ〉
sinceX′ = 〈u,S′〉. This implies rk(X) = 2d. Moreover,X ≤V by Lemma 3.3.3(i)
since〈u,S′〉 ≤V. Since the claim holds forN andM′, we concludex∈ V in this
case.
Now letd′ := dist(x,M)= dist(x,M′)+1. ThenX′≤T ′ andg≤X. Let p∈X′ and
q∈ T ′ r {p}. SetY := 〈p,qϕ〉g. Since dist(x, p) = d′−1 and dist(x,g) = d′, we
obtainp∈ prY(x). If prY(x) = {p}, then by Proposition 2.1.25(i)p is a gate forx
in Y and hence, dist(x, pϕ) = dist(x,q) = d′ and dist(x,qϕ) = d′ +1. If prY(x) is a
generator ofY, then prY(x) is properly contained in a singular subspace by Lemma
3.5.1. Thus by Propositions 2.2.9(iv) and 2.2.9(iii), prY(x) intersects〈q,qϕ ,g〉 in
a singleton or in a hyperplane. Analogously,M′ ∩Y intersects prY(x) in a line
sinceg∩prY(x) = ∅ and p ∈ prY(x). This implies dist(x,q) = dist(x,qϕ)−1 =
d′ − 1 and hence, dist(x, pϕ) = d′. Thus, we obtain in both cases dist(x, p) =
dist(x, pϕ)−1 and dist(x,q) = dist(x,qϕ)−1. We concludeX = 〈g,(X′)ϕ〉 and
therefore rk(X) = 2d′ since rk(X′)= 2d′−2. Furthermore, sinceq∈V ⇔ qϕ ∈V
by Lemma 3.3.3(i), we conclude rk(X ∩V) = rk(X′∩V)+ 2. Hence, as regards
X, the claim holds by the hypothesis that the claim holds forM′ andN.
It remains to determine rk(S) and to proveS≤V. For dist(x,M)= dist(x,M′) = d,
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we obtainedX ≤ V and X ≤ 〈g,(S′)ϕ〉. Note that〈g,(S′)ϕ〉 is independent of
the choice ofT ′ andT. For dist(x,M) = d and dist(x,M′) = d−1, we obtained
X = 〈g,(X′)ϕ〉. SinceX′ ≤ S′ in this case andS′ ≤ V, this implies againX ≤ V
andX ≤ 〈g,(S′)ϕ〉. Sinceg≤ Sr S′ and(S′)ϕ ≤ S, we obtainS= 〈g,(S′)ϕ〉 and
hence, rk(S) = rk(S′)+2.
(iii) Set d := dist(x,M). By (ii) dist(X,M) = d−1 and there is a subspaceS≤
M ∩V with rk(S) = 2d−1 such that dist(p,X) = d−1 for everyp ∈ S. Since
rk(prM(x)) = 2d andS≤ prM(x)∩V, this implies by (ii) thatV intersects prM(x)
in a hyperplane. Thus,M∩V is a hyperplane of〈prM(x),M∩V〉.
We proceed by induction overn := dist(M,N). Since prM(y) = {y}, the claim fol-
lows for M = N. ForL ∈ M1, we setLV := L∩V andLp := 〈prL(p),LV〉, where
p∈ {x,y}. Now letN 6= M. Forn = 0, letL = M and forn > 0, letL ∈ M1 with
L∩N 6= ∅ and dist(M,L) = n−1. ThenL∩N is a line by (ii).
By Lemma 3.3.4 we obtainπL,N(〈L∩N,prL(x)〉) = 〈L∩N,prN(x)〉. By Lemma
3.3.3(i) we obtainπL,N(LV) = NV and thereforeπL,N(Lx) = Nx. Analogously,
πL,N(Ly) = Ny. SinceLx = Ly by the induction hypothesis, we concludeNx =
Ny.

Theorem 3.5.4.Let V be a rigid subspace with n:= diam(V)< ∞ andyrk(V)= 4.
Further let x and y be points of V withdist(x,y) = n. Then

(a) srk(V) = 2n−1 and V= 〈x,y〉g or

(b) srk(V) = 2n and for every point p∈ V there is a subspace M∈ M1 that
contains p and intersects〈x,y〉g in a maximal singular subspace.

Proof. If V is a symplecton, there is nothing to prove and we are in situation
(a). Hence by Proposition 3.5.2, we may assumeM1 6= ∅. By Lemma 3.5.3(i)
we know that every element ofM1 intersectsV in a singular subspace of rank
r := srk(V).
SetU := 〈x,y〉g. By Lemma 3.1.1(i) and Proposition 3.5.2 there is an element
M ∈M1 with y∈ M such thatM∩U is a maximal singular subspace ofU . Hence,
rk(M∩U)= srk(〈x,y〉g) as above. By Proposition 2.1.17(i) we obtain dist(x,M)=
n−1 and prM(x) is a hyperplane ofM∩U . Thus, rk(M∩U) = 2n−1 by Lemma
3.5.3(ii) and the claim holds ifV is a metaplecton.
Suppose 2n < r. Then there is a linel ≤ M∩V disjoint toU . Let z∈ prM(x). By
Lemma 3.1.1(i) there is a symplectonY ≤V with 〈y,z, l〉 ≤Y. Since dist(x, l) = n
and dist(x,z) = n−1, we obtainz∈ prY(x). With diam(V) = n and Proposition
2.1.25(i) we obtain prY(x) > {z}. Thus, Lemma 3.5.1 implies that prY(x) is a
generator ofY that is contained in an element ofM1. This is a contradiction to
Proposition 2.2.9(iv) since prY(x)∩ (M∩Y) = {z}. Thus, 2n−1≤ r ≤ 2n.
Assume there is a pointp∈V rU . Since diam(V) = n, we obtain by Proposition
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2.1.25(i) diam(prU(p)) ≥ 1. Thus, prU(p) is a singular subspace of rank 2n−1
by Lemma 3.5.1. By Proposition 2.1.17(i) and Proposition 2.1.25(iii) this implies
dist(p,U) = 1 and hence,〈p,prU(p)〉 is a singular subspace of rank 2n. Thus,
srk(V) = 2n. The claim follows since by Lemma 3.1.1(i) and Proposition 3.5.2
every point ofU is contained in an element ofM1 that intersectsU in a maximal
singular subspace.

Proposition 3.5.5. Let diam(V) < ∞. Further let x be a point at distance1
to V such thatprV(x) contains a line. Then〈x,V〉g is a rigid subspace with
srk(〈x,V〉g) = srk(V)+1 anddiam(〈x,V〉g) < ∞.

Proof. Setn := diam(V). By Lemma 3.5.1 prV(x) is a maximal singular subspace
of V. Hence, by Proposition 3.5.2 and Theorem 3.5.4 there is a subspaceX ∈ M1

with X ≥ 〈x,prV(x)〉 and rk(prV(x)) = srk(V). For elementsM andN of M1 we
setMV := M∩V andMp = 〈prM(p),MV〉, wherep∈ N rV.
SetU :=

⋃

M∈M1
Mx. We claim〈x,V〉g = U . Let M ∈ M1. If there is a point

p ∈ MV r prM(x), then prM(x) ≤ 〈x, p〉g ≤ 〈x,V〉g and thereforeMx ≤ 〈x,V〉g.
Hence, we may assumeMV ≤ prM(x). Since rk(MV)≥ 3, this implies dist(x,M)=
dist(X,M)+ 1≥ 2 by Lemma 3.5.3(ii). Thus, there is a subspaceN ∈ M1 with
X∩N 6= ∅ and dist(N,M)< dist(X,M). Lety∈NxrV. Then by Lemma 3.5.3(ii)
prM(y)∩V < prM(x)∩V and hence, there is a pointp∈ MV rprM(y). By Lemma
3.5.3(iii) we obtainMx = My ≤ 〈x,V〉g. Thus,U ⊆ 〈x,V〉g.
By Lemmas 3.1.1(i) and Proposition 3.5.2 there exists for every p∈V a subspace
M ∈ M1 with p∈ M and thereforep∈ Mx. Sincex∈ Xx, it remains to show, that
U is convex. Lety andz be points ofU . If both points are contained inV then
〈y,z〉g ≤ V ⊆ U . Hence, we assumez /∈ V. Then by Lemma 3.5.3(iii)Mz = Mx

for everyM ∈ M1 and prV(z) = NV , whereN ∈ M1 with z∈ Nx. Thus, we may
assumez= x. Setd := dist(x,y) andW := 〈x,y〉g.
First lety∈V. Then prX(y)≤V by Lemma 3.5.3(ii) and hence, dist(y,X) = d−1.
Thus, diam(W∩V) = d−1 and therefore dist(p,V)≤ 1 for every pointp∈W by
Proposition 2.1.17(i). Furthermore, rk(prX(y)) = 2d−2 and hence, rk(X∩W) =
2d−1 since〈x,prX(y)〉 ≤W and prX(y) is a hyperplane ofX∩W by Proposition
2.1.17(i). If d = 1, thenW = xy≤ X and thus, there is nothing to prove. There-
fore we may assumed ≥ 2. Ford = 2, the subspaceW is a symplecton. Since
prX(y)≤W∩V, there is by Lemma 3.1.1(i) a symplectonY ≤V with prX(y)≤Y.
Hence, Lemma 2.2.3(i) implies thatW andY have a generatorG in common and
therefore rk(W) = 4. Now for every pointp∈W rV, the subspaceH := G∩ p⊥

is contained in prV(p) and hence by Lemma 3.5.1 there is a subspaceM ∈ M1

with 〈p,H〉 ≤ M. If M = X, then〈p,H〉 = X ∩W = 〈x,X ∩G〉 ≤ Xx ⊆ U . If
M 6= X, then by Lemma 3.5.3(ii)X∩M is a line sinceX∩H 6= ∅ and prM(x) is a
hyperplane ofM∩W with prM(x) � H. Thus,M∩W = 〈prM(x),H〉 ≤ Mx ⊆U .
Now we may assumed > 2. Since prX(y)≤W∩V, we obtain srk(W∩V) = 2d−2
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by Theorem 3.5.4. Letp ∈ W r V. Then there are pointsq and r in W ∩V
with p ⊥ q and dist(q, r) = d− 1. By Proposition 3.5.2 and 3.5.3(i) there is
a subspaceM ∈ M1 with r ∈ M and rk(M ∩ (V ∩W)) = 2d − 2. By Lemma
3.5.3(ii) there is a lineh ≤ MV ∩W with dist(q,h) = d− 1. Since by Propo-
sition 2.1.17(i) there is no line inW at distanced to p, we may assume that
r is a point onh with dist(p, r) < d. Now Proposition 2.1.25(i) implies that
p⊥∩〈q, r〉g contains a line and hence by Lemma 3.5.1, there is a subspaceN∈M1

with p ∈ N and rk(N∩W∩V) = 2d−2. By Lemma 3.5.3(ii) prN(x) � V. By
Proposition 2.1.17(i) we know dist(x,N) < d and hence, rk(prN(x)) ≤ 2d− 2.
Hence,(NV ∩W) r prN(x)) 6= ∅ and therefore prN(x) ≤ W. If x /∈ prX(p), then
prX(p) ≤ W. Thus, Lemma 3.5.3(ii) implies thatXV ∩W is a hyperplane of
〈prX(p),XV ∩W〉. Since rk(XV ∩W) = 2d−2 and rk(X∩W) = 2d−1, this implies
X ∩W ≤ Xp. If x /∈ prX(p), then againX ∩W ≤ Xp sinceX ∩W = 〈x,XV ∩W〉.
Applying Lemma 3.5.3(iii) leads toNx = Np and hence,p∈U .
Now let y /∈ V and letM ∈ M1 with y ∈ Mx. Assumey /∈ prM(x). Let x′ ∈
prM(x)rV. Thenx′y intersectsMV in a pointy′ /∈ prM(x). Hence,W = 〈x,y′〉g and
we obtainW ⊆U as above. Thus, we may assumey∈ prM(x). If there is a point
y′ ∈ Mx /∈ prM(x), thenW ≤ 〈x,y′〉g ⊆ U . Thus, we may assume prM(x) = Mx.
With Theorem 3.5.4 and Lemma 3.5.3(ii) this implies dist(x,y) = n, dist(X,M) =
n−1 and rk(MV) = 2n−1. Letu∈ XV . Then by Lemma 3.5.3(ii) there is a point
v∈ MV with dist(u,v) = n. We obtainV = 〈u,v〉g by Theorem 3.5.4. By Proposi-
tion 2.1.12(iii) and sinceW has finite diameter, it suffices to show that every line
g≤ 〈x,y〉g with x∈ g is contained inU . Let p ∈ g with dist(p,y) = n−1. Then
dist(p,u) ≤ 2 and dist(p,v) ≤ n. With Lemma 3.5.1 and Proposition 2.1.25(iii)
this implies dist(p,V) ≤ 1. Supposep∈V. Thenp∈ XV and hence,g∈ Xx. This
implies dist(y,X) < dist(x,prN(x)) and hence,y ∈ V by Lemma 3.5.3(ii), a con-
tradiction. Thus, dist(p,V) = 1. Let q ∈ V with p ⊥ q. If q /∈ X, then〈x,q〉g is
a symplecton that containsp and prX(q). Since〈x,q〉g ∈ U as above, we obtain
g⊆U . If q∈X, then by Lemma 3.5.3(ii) there is a pointr ∈MV with dist(q, r)= n.
Since dist(p, r) ≤ n Proposition 2.1.25(i) implies thatp⊥∩〈q, r〉g contains a line.
Thus, prV(p) is a singular subspace of rank 2n−1 by Lemma 3.5.1. Moreover,
there is subspaceN ∈ M1 with 〈p,prV(p)〉 ≤ N. Since dist(p,y) = n−1, Lemma
3.5.3(ii) implies dist(N,M)≤ n−2 and hence,X 6= N. Sinceq∈ X∩N, we obtain
rk(prN(x)) = 2. Thus, there is a pointq′ ∈NV rprN(x). We obtaing≤ 〈x,q′〉g ⊆U
as above. We conclude〈x,V〉g = U and therefore diam(〈x,V〉g) < ∞.
To prove thatU is rigid, it suffices to check thatW is rigid if W is a symplecton.
For y ∈ V, this is already done. Hence, by Proposition 2.1.12(iii) itremains the
caseW∩V = ∅. Let M be the elements ofM1 with y∈ M. SinceW∩V = ∅, we
obtainX ∩M = ∅ by Lemma 3.1.1(iv) and therefore dist(X,M) = 1 by Lemma
3.5.3(ii). Letw ∈ W with x ⊥ w ⊥ y and letN ∈ M1 with w ∈ N. Then bothX
andM intersectN in a line by Lemma 3.5.3(ii). Letq∈ M∩N. ThenY := 〈x,q〉g
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is a symplecton since prV(x) ≤ M. We obtain rk(Y) = 4 as above sinceq ∈ V.
With w ∈ Y we obtainwq≤ prY(y) and hence by Lemma 3.5.1, prY(y) is a gen-
erator ofY. Sincex⊥ contains a hyperplane of prY(y), this implies rk(W) = 4 by
Lemma 2.2.3(i). Thus,U is rigid. Since by Lemma 3.1.1(iv)M∩X ≤V for every
M ∈ M1 r{X}, we obtainX∩U = Xx and hence, srk(U) = rk(Xx) = srk(V)+1
by Lemma 3.5.3(i).

3.6 Connected subspaces of symplectic rank 5

Compared to connected rigid subspaces of symplectic rank 3 and 4, the maximal
singular subspaces are less important for studying connected rigid subspaces of
symplectic rank at least 5. This is because there is a rather low upper bound
for the singular rank of subspaces of symplectic rank at least 5. Moreover, rigid
subspace of symplectic rank at least 5 are very limited in their maximal diameter,
as we will see. Therefore, the following quite technical lemmas concern all the
intersection of symplecta of rank 5. More precisely, the assertions are mostly of
the form that two given symplecta have non-empty intersection or even that they
have at least one generator in common.

Lemma 3.6.1. Let Y and Z be symplecta of rank5. Further let p and q be two
distinct points of Z.

(i) Let p and q be contained in Y. Then Y and Z have a generator in common.

(ii) Let dist(p,Y) = dist(q,Y) = 1 and letprY(p) and prY(q) be generators of
Y . Then Y and Z intersect.

Proof. (i) We assumeY 6= Z since otherwise there is nothing to prove. Hence
p ⊥ q. Let r ands in be points ofZ such thatpq≤ r⊥ ∩ s⊥ and dist(s, r) = 2.
We may assume that neitherr nors is contained inY since otherwise we are done
by Lemma 2.2.3(i). Then prY(r) and prY(s) are both generators by Proposition
2.1.27 since they both containpq. Hence, prY(r)∩prY(s)≤ pq implies rk(prY(r)∩
prY(s)) ≥ 2 by Proposition 2.2.9(iv). Since prY(r)∩ prY(s) ≤ Y ∩Z the claim
follows by Lemma 2.2.3(i).
(ii) SetP := prY(p) andQ := prY(q). By Proposition 2.2.9(iv) we obtainP∩Q 6=
∅. Thus, the claim follows if dist(p,q) = 2 and so we may assumep ⊥ q. If
pq intersectsY there is nothing to prove. Hence, we may assumepq∩Y = ∅
and thereforeP 6= Q by Proposition 2.2.9(vii). Letr ∈ Pr Q. ThenX := 〈r,q〉g
is a symplecton that contains a hyperplane ofQ. Hence,X ∩Y is a generator
by Lemma 2.2.3(i). On the other handX containspq and and henceX ∩Z is a
generator by (i). The generatorsX∩Y andX∩Z intersect by Propositions 2.2.9(v)
and 2.2.9(iii). We concludeY∩Z 6= ∅.
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Lemma 3.6.2.Let y and z be two points of an SPO space such that X:= 〈y,z〉g is a
symplecton of rank5. Further let x be a point withdist(x,X) = 2 andprX(x) = X.
Let u∈ 〈x,y〉g and v∈ 〈x,z〉g.

(i) rk(〈x,y〉g) = rk(〈x,z〉g) = 5.

(ii) If dist(u,X) = 1, thenprX(u) is a generator of X.

(iii) dist(u,v) ≤ 2.

(iv) If dist(u,v) = 2, thenrk(〈u,v〉g) = 5 and〈u,v〉g∩X 6= ∅.

Proof. We setY := 〈x,z〉g andZ := 〈x,y〉g. Since dist(x,X) = 2 we obtainX∩Y =
{z} and X ∩Z = {y} by Proposition 2.1.17(i). This implies dist(y,Y) = 2 and
dist(z,Z) = 2 by Proposition 2.1.25(iii). Since dist(y,x) = dist(y,z), we obtain
prY(y)=Y by Proposition 2.1.25(ii) and analogously, prZ(z)= Z. Thus, it remains
to prove (i) to show that we are in a completely symmetric situation concerningx,
y andz.
(i) Let z′ be a point withz⊥ z′ ⊥ y. Sincez′ /∈ Z there is a pointx′ ∈ Z with
y⊥ x′⊥ xsuch that dist(x′,z′)= 2. By Lemma 2.2.3(ii) we obtain〈z′,x′〉g∩X > z′y
since dist(z,x′) = 2 andz′y∩z⊥ = {z}. Analogously,〈z′,x′〉g∩Z > x′y. Thus by
Lemma 2.2.3(i), the symplecton〈x′,y′〉g intersects bothX and Z in a common
generator. We conclude rk(X) = rk(Z) = 5 and analogously, rk(Y) = 5.
(ii) By Proposition 2.1.25(iii) we obtainy∈ prX(u) since〈u,y〉g∩X = {y}. With
dist(z,u) = 2 the claim follows by Proposition 2.1.25(i) and Proposition 2.1.27.
(iii) For u∈Y, there is nothing to prove. If dist(u,x) = 1, then prY(u) is a generator
of Y by (ii) and hence the claim follows. Now let dist(u,x) = 2. Thenx∈ prY(u)
by Proposition 2.1.25(iii) since〈u,x〉g∩Y = {x}. Since dist(z,u) = 2, we obtain
prY(u) = Y and therefore dist(u,v) = 2 by Proposition 2.1.25(ii).
(iv) Set X′ := 〈u,v〉g. We may assumev /∈ Z since otherwiseX′ = Z and there
is nothing to prove. For dist(v,Z) = 1, we obtain rk(prZ(v)) = 4 by (ii). Thus,
rk(X′) = 5 by Lemma 2.2.3(i). For dist(v,Z) = 2, we obtain prZ(v) = Z by (iii)
and hence rk(X′) = 5 by (i).
Since rk(Z) = 5, the subspacex⊥∩y⊥ contains a line. Hence, there is a pointu′ ∈
Zr{u} collinear tou, x andy. SetY′ := 〈u′,z〉g. Since dist(u′,X) = dist(u′,Y), we
obtain rk(prY(u′))= rk(prX(u′))= 4 by (ii). Hence, we may apply Lemma 2.2.3(i)
to conclude thatY′ intersects bothX andY in a generator. Since dist(z,Z) = 2,
we obtainZ∩Y′ = {u′} by Proposition 2.1.17(i). Hence by Proposition 2.1.27,
prY′(u) is a generator sinceu ⊥ u′ and dist(u,z) = 2. For v ∈ Y′, let u∗ be a
point of prY′(u)∩v⊥. For v /∈ Y′, the subspace prY′(v) is a generator ofY′ since
v⊥ contains a hyperplane ofY′ ∩Y. Hence by Proposition 2.2.9(iv), there is a
pointu∗ ∈ prY′(u)∩prY′(v). We may assumeu∗ /∈ X since otherwise we are done.
Since(u∗)⊥ contains a hyperplane ofX∩Y′, we conclude dist(u∗,X) = 1 and that
prX(u∗) is a generator ofX.
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Since prX(u∗) cannot contain bothy andz we may for symmetric reasons assume
z /∈ prX(u∗). LetG≤X be a generator withG∩prX(u∗) = ∅ andz∈G. Further let
p andq be distinct points ofG∩y⊥. By (ii) both prY(p) and prY(q) are generators.
Moreover, rk(prY(p)∩prY(q)) ≥ 2 by Proposition 2.2.9(vi). Thus, there is a line
g ≤ prY(p) ∩ prY(q)∩ x⊥. Let v′ ∈ g such thatv ⊥ v′ and v 6= v′. We obtain
rk(prZ(v′)) = rk(prX(v′)) = 4 by (ii). Thus, the symplectonZ′ := 〈v′,y〉g intersects
bothX andZ in a generator by Lemma 2.2.3(i). Since dist(y,Y) = 2, we obtain
Y∩Z′ = {v′} by Proposition 2.1.17(i). Hence by Proposition 2.1.27, prZ′(v) is
a generator sincev ⊥ v′ and dist(v,y) = 2. For u ∈ Z′, let v∗ be any point of
prZ′(v)∩u⊥. Foru /∈Z′, the subspace prZ′(u) is a generator ofZ′ sinceu⊥ contains
a hyperplane ofZ′ ∩ Z. Hence by Proposition 2.2.9(iv), there is a pointv∗ ∈
prZ′(u)∩prZ′(v). We may assumev∗ /∈X since otherwise we are done. Since(v∗)⊥

contains a hyperplane ofX∩Z′, we conclude dist(v∗,X) = 1 and that prX(v∗) is a
generator ofX. Sincepq≤ Z′, we obtain prX(v∗)∩G 6= ∅. This impliesu∗ 6= v∗

and therefore the claim follows by Lemma 3.6.1(ii).

The following lemma is in a certain way similar to (VY) if we exchange the
terms “projective space” and “line” by “rigid subspace of symplectic rank 5” and
“symplecton”.

Lemma 3.6.3.Let Y0, Y1 and Y2 be symplecta of rank5 that intersect pairwise. Set
Si := Yj ∩Yk for {i, j ,k} = {0,1,2}. Let Si ∪Sj contain two points for i6= j. Then
every symplecton〈x0,x1〉g with x0 ∈Y0 and x1 ∈Y1 is of rank5 and intersects Y2.

Proof. SetY := 〈x0,x1〉g. We may assumex0 /∈ Y1 andx1 /∈ Y0 since otherwise
there is nothing to prove. This impliesY0 6= Y1. ForY0 = Y2, we obtainS0 = S2

and hence,S2 contains a line. Thus, Lemma 3.6.1(i) implies thatS2 is a generator
of bothY0 andY1. Since rk(S2∩ x0

⊥ ∩ x1
⊥) ≥ 2, the claim follows by Lemma

2.2.3(i). By symmetric reasons it remains the case whereY0, Y1 andY2 are pair-
wise distinct. Hence by Lemma 3.6.1(i), for{i, j ,k} = {0,1,2}, the subspaceSi

is a singleton or a common generator ofYj andYk.
Let S2 be a generator. Then prY0

(x1) contains a hyperplane ofS2 and therefore
prY0

(x1) is a generator by Proposition 2.1.27. Analogously prY1
(x0) is a generator

and hence by Lemma 2.2.3(i),Y intersects bothY0 andY1 in a common generator.
This implies rk(Y) = 5. SinceS0 ∪S1 contains more than one point, there are
pointss0 ∈ S0 ands1 ∈ S1 with s0 6= s1. We may assumes0 /∈ Y ands1 /∈Y since
otherwise we are done. Then prY(s0) is a generator since it contains a hyperplane
of Y∩Y1. Analogously, prY(s1) is a generator and the claim follows by Lemma
3.6.1(ii).
From now on we may assume thatS2 contains a single points2. LetS1 be a genera-
tor. SinceS2 6= S0, there is a points0 ∈S0rS2. NowH := s0

⊥∩S1 is a hyperplane
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of S1. SinceH ≤Y0 andS2 = {s2}, we obtainH � Y1 and therefores0 ⊥ s2. Sup-
pose there is a pointp∈H rs2

⊥. Thens0∈ 〈s2, p〉=Y0, a contradiction tos0 /∈S2.
Thus,H ≤ s2

⊥. Now letq∈Y0 be a point with dist(q,s2) = 2. Then by Proposi-
tion 2.1.25(iii) dist(q,Y1) = 2 sinceS2 = {s2}. Let p andp′ be two distinct points
of H ∩q⊥. Thenpp′ ∩Y1 = ∅. Sinces0s1 ≤ prY1

(p)∩prY1
(p′), we conclude by

Proposition 2.2.9(vii) that prY1
(p) and prY1

(p′) are distinct generators. Since both
generators are contained in prY1

(q), we conclude prY1
(q) = Y1. If dist(x1,Y0) = 1,

we obtain by Proposition 2.1.25(iii)x1 ⊥ s2 sinceS2 = {s2}. Hence, prY0
(x1) is a

generator by Proposition 2.1.25(i) and Proposition 2.1.27. Hence, Lemma 2.2.3(i)
implies thatY andY0 intersect in a common generator. Thus, rk(Y) = 5 and the
claim follows sinceY∩Y0 intersectsS1 by Propositions 2.2.9(v) and 2.2.9(iii). If
dist(x1,Y0) = 2, then prY0

(x1) = Y0 since dist(x1,s2) = dist(x1,q) = 2. Hence,
rk(Y) = 5 by Lemma 3.6.2(i) andY ∩Y0 = {x0} by Proposition 2.1.17(i). If
dist(x0,s2) = 2, the claim follows by Lemma 3.6.2(iv) sinces0 /∈ Y0 and hence
there is a points∈ S1 with 〈s,s0〉g = Y2. If dist(x0,s2) = 1, then prY1

(x0) is a gen-
erator. This implies by Lemma 2.2.3(i) thatY∩Y1 is generator and consequently,
prY(s0) is a generator. On the other hand there is a points∈ S1 with s⊥ x0. Then
prY(s) is a generator since dist(s1,x1) = 2. Sinces0 6= s1 the claim follows by
Lemma 3.6.1(ii).
Since the case whereS0 is a generator is analogous, it remains the case where
Si contains a single pointsi for 0 ≤ i ≤ 2. Thensi /∈ Yi for 0 ≤ i ≤ 2 since
otherwises0 = s1 = s2. Let dist(s0,s1) = 2. ThenY2 = 〈s0,s1〉g and hence,
dist(s0,s2) = 2 or dist(s1,s2) = 2 sinces2 /∈ Y2. We may assume dist(s0,s2) = 2.
ThenY1 = 〈s0,s2〉g. Assume dist(s1,s2) = 1. Then prY1

(s1) is a generator since
s1 ⊥ s2 and dist(s1,s0) = 2. Thus,〈s0,s1〉g contains a hyperplane of prY1

(s1),
a contradiction toS0 = {s0}. Hence, dist(s1,s2) = 2. Now S1 = {s1} implies
dist(s2,Y2) = 2 and sinceY2 = 〈s0,s1〉g, this leads to prY2

(s2) =Y2. Hence, Lemma
3.6.2(iv) proves the claim.
By symmetric reasons it remains the case where the pointss0, s1 ands2 are pair-
wise collinear. Then prY2

(s2) is a generator sinces0s1 ≤ prY2
(s2). Hence, there are

pointsp0 ∈ prY2
(s2) andp1 ∈Y2 such thatpi ⊥ sj for {i, j} ≤ {0,1} andp0 6⊥ p1.

ThenY0∩ p0
⊥ is a generator since it containss1s2. Since prY2

(s2) is a generator of
Y2, we conclude by Lemma 2.2.3(i) that〈p1,s2〉g andY2 have a generator in com-
mon. Thus, Lemma 3.6.1(i) implies that〈p1,s2〉g andY0 have a generator in com-
mon and thereforeY0∩ p1

⊥ is a generator. Thus, forr ∈Y0, we obtain dist(pi , r)≤
2 wherei ∈ {0,1}. Furthermore,Y0∩Y2 = {s1} implies dist(r,Y2) = dist(r,s1) by
Proposition 2.1.25(iii). Hence, prY2

(r) = Y2 if dist(r,s1) = 2. Thus, we ma apply
Lemma 3.6.2(ii) to conclude that prY2

(r) is a generator if dist(r,s1) = 1. The anal-
ogous holds forsi, Yj andr ∈Yk where{i, j ,k} = {0,1,2}.
Let x0 ⊥ s2. Then prY1

(x0) is a generator. Hence by Lemma 2.2.3(i),Y intersects
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Y1 in a common generator and therefore rk(Y) = 5. Now there are two points in
Y∩Y1∩s0

⊥ r {s0}. Since for both points the projection inY2 is a generator, the
claim follows by Lemma 3.6.1(ii). By symmetric reasons the claim follows if x1⊥
s2. Hence, we may assume dist(x0,s2)= dist(x1,s2) = 2. Then dist(x0,Y1) = 2 and
prY1

(x0) = Y1. Thus, rk(Y) = 5 by Lemma 3.6.2(i). This impliesY∩Yi = {xi} for
i ∈ {0,1} and hence, dist(s2,Y) = 2 by Proposition 2.1.25(iii) and consequently,
prY(s2) = Y. If dist(s0,Y) = dist(s1,Y) = 1, then Lemma 3.6.2(ii) implies that
prY(s0) and prY(s1) are both generators ofY and hence, the claim follows by
Lemma 3.6.1(ii). Thus, we may assume dist(s0,Y) = 2.
For i ∈ {0,1}, let qi ∈ Yi be a point withs1−i ⊥ qi 6⊥ s2. Then si 6⊥ qi since
dist(si,Yi) = 1 ands2 ∈ prYi

(si). ThenZi := 〈si,qi〉g is a symplecton of rank 5 with
s0s1 ≤ Zi . By Lemma 3.6.2(iv)Zi intersectsY. Sinces0 ∈ Zi and dist(s0,Y) = 2,
the symplectaZi andY intersect in a single pointr i. Since dist(q0,s2) = 2, we
obtain dist(q0,Y1) = 2 and hence,Z0∩Y1 = {s0}. With q1s0 ≤ Z1∩Y1 this implies
r0 6= r1 sinceZi = 〈r i,s0〉g. By Lemma 3.6.1(i)Zi andY2 have a generator in com-
mon since they both contains0s1. Hence,r i

⊥∩Y2 contains a generator ofY2 and
the claim follows by Lemma 3.6.1(ii).

Proposition 3.6.4.Let Y be a symplecton of an SPO space withrk(Y) = 5. Fur-
ther let x be a point withdist(x,Y) = 1 such thatprY(x) contains a line. Then
V := 〈x,Y〉g is a connected rigid subspace withsrk(V) = 5 and diam(V) = 2.
Moreover, there is a point y∈V withdist(y,Y) = 2 such that V=

⋃

v∈Y〈y,v〉g.

Proof. SetX := prY(x). By Proposition 2.1.27X is a generator ofY. LetW ≤Y
be a generator with crkX(W∩X) = 4 and letz be the unique point ofW∩X. By
Proposition 2.2.9(ii) there is a pointw at distance 1 toY such that prY(w) = W
and w ∈ V. By Proposition 2.2.9(vi) we obtainw 6⊥ x and hence,Z := 〈w,x〉g
is a symplecton ofV. Since bothw⊥ andx⊥ contain a hyperplane ofZ∩Y, we
conclude rk(Z∩Y)≤ rk(W∩X)+2= 2. With Lemma 2.2.3(i) this implies rk(Z∩
Y)≤ 1. SinceX is a generator ofY, there is no point inY at distance 3 tox. Thus,
Lemma 2.2.3(ii) impliesZ∩Y ≤ x⊥. Analogously,Z∩Y ≤ z⊥ and thereforeY∩
Z = {z}. Lety∈ Z with dist(y,z) = 2 andx⊥ y. We may assume thaty is the point
onxywith y⊥w. SinceZ∩Y = {z}, Proposition 2.1.25(iii) implies dist(y,Y) = 2.
Thus,W andX are both contains in prY(y). By Proposition 2.1.25(ii) this implies
prY(y) = Y sinceY = 〈W,X〉g. Sincew∈ V we obtainy∈ V. On the other hand
x∈ 〈y,z〉g ≤ 〈y,Y〉g and therefore〈y,Y〉g = V.
SetU :=

⋃

v∈Y〈y,v〉g. Let u andv be points ofY and letp∈ 〈y,u〉g andq∈ 〈y,v〉g.
By Lemma 3.6.2(i) we obtain rk(〈y,u〉g) = rk(〈y,v〉g) = 5. If dist(u,v) = 2, we
obtain dist(p,q) ≤ 2 by Lemma 3.6.2(iii). For dist(u,v) < 2, Proposition 2.1.25(i)
implies thatv⊥ contains a generator of〈y,u〉g. Thus by Lemma 2.2.3(i),〈y,u〉g
and〈y,v〉g have a generatorG in common. With rk(G∩ p⊥∩q⊥)≥ 2 we conclude
dist(p,q) ≤ 2. We showZ := 〈p,q〉g ⊆ U and if dist(p,q) = 2, thenrk(Z) = 5.
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For u = v there is nothing to prove. If dist(p,q) < 2, there is a pointq′ ∈ 〈y,v〉g
with dist(p,q′) = 2 andZ ≤ 〈p,q′〉g. Thus, we may straiten to the caseu 6= v and
dist(p,q) = 2. Sinceu, v andy are pairwise disjoint, we may apply Lemma 3.6.3
to conclude thatZ is a symplecton of rank 5 andZ∩Y 6= ∅. If p = u andq = v,
we obtainZ = Y and there is nothing to prove. Hence, by symmetric reasons we
may assumeq 6= v. If Z∩Y = {v}, thenu /∈ Z sinceu 6= v. Thus, we obtainp 6= u
and{u} 6= Z∩Y. Therefore, we may assumeq 6= v andZ∩Y 6= {v} by symmetric
reasons.
Let s ∈ Z. If dist(y, p) = 1, then by Proposition 2.1.25(i) prZ(y) 6= {p} since
dist(y,q) ≤ 2. Thus, dist(y,s) ≤ 2 for dist(y, p) ≤ 1. Analogously, dist(y,s) ≤
2 for dist(y,q) ≤ 1. Now let dist(y, p) = dist(y,q) = 2. Assume dist(y,Z) = 1.
Then prZ(y)∩ 〈y, p〉g 6= ∅ by Proposition 2.1.25(iii). Sincep ∈ Z∩ 〈y, p〉g and
p /∈ prZ(y), Lemma 3.6.1(i) implies thatZ and〈y, p〉g have a generator in common.
Thus, prZ(y) is a generator by Proposition 2.1.27 and we obtain dist(y,s)≤ 2. For
dist(y,Z) = 2, we obtain dist(y,s) = 2 by Proposition 2.1.25(ii). Thus, there is a
pointt ∈ Z such that dist(y, t) = 2 and〈y,s〉g ≤ 〈y, t〉g. SinceZ∩Y 6= {v}, there is a
pointz′ ∈Z∩Yr{v}. Since dist(y,Y)= 2 andv 6= q, we obtainq /∈Y and therefore
z′ 6= q. Thus,z′, v andq, are pairwise disjoint and we may apply Lemma 3.6.3 to
the symplecta〈y,v〉g, Z andY to conclude that〈y, t〉g andY intersect. Hence, we
may assumet ∈Y since dist(y,Y) = 2. We concludeZ ⊆U . This impliesV = U
and yrk(U) = 5. Since dist(y, p) ≤ 2 for everyp ∈ U , we obtain diam(V) = 2.
Since〈x,X〉 ≤ V, we obtain srk(V) ≥ 5. By Lemma 3.1.1(i) and Proposition
2.2.9(vii) every singular subspaceS≤ 〈u,v〉g with rk(S) = 5 is maximal.

Theorem 3.6.5.Let V be a connected rigid subspace of an SPO space with sym-
plectic rank5 and let Y< V be a symplecton. Thendiam(V) = 2, yrk(V) =
srk(V) = 5 and there is a point x∈V withdist(x,Y) = 2 such that V=

⋃

y∈Y〈x,y〉g.

Proof. By Lemma 3.3.1(i) there is a pointz∈ V such that prY(z) is a generator
of Y. Thus by Proposition 3.6.4,〈z,Y〉g is a rigid subspace with diam(V) = 2 and
yrk(V) = srk(V) = 5. Moreover, there is a pointx ∈ 〈z,Y〉g with dist(x,Y) = 2
such that〈z,Y〉g =

⋃

y∈Y〈x,y〉g. SupposeV > 〈z,Y〉g. Then by Lemma 3.3.1(i)
there is a pointy∈V r 〈z,Y〉g such that pr〈x,Y〉g(y) contains a line, a contradiction
to Lemma 3.3.1(ii).

3.7 Connected subspaces of symplectic rank≥ 6

We conclude this chapter by considering the case of connected rigid subspace of
symplectic rank≥ 6. As for the case of symplectic rank 5, there exists only one
type of such a subspace beside being a symplecton. This type turns out to be of
symplectic rank 6. Therefore, we first consider subspaces ofsymplectic rank 6.
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Proposition 3.7.1. Let Y be a connected rigid subspace of an SPO space with
symplectic rank6. Further let x be a point withdist(x,Y) = 1 such thatprY(x)
contains a line. Then Y is a symplecton of rank6. Moreover, V:= 〈x,Y〉g is a
connected rigid metaplecton withdiam(V) = 3 andsrk(V) = 6.

Proof. SetX := prY(x). By Lemma 3.3.1(ii)Y is a symplecton and by Proposition
2.1.27X is a generator ofY. Let W ≤ Y be a generator with crkX(W∩X) = 4.
Then l := W∩X is a line. By Proposition 2.2.9(ii) there is a pointw∈ V at dis-
tance 1 toY such that prY(w) = W. By Proposition 2.2.9(vi) we obtainw 6⊥ x
and hence,Z := 〈w,x〉g is a symplecton. Sincex /∈Y, we obtain diam(Y∩Z) ≤ 1.
Since bothw⊥ andx⊥ contain a hyperplane ofY∩Z, we conclude rk(Y∩Z) ≤
rk(W∩X)+ 2 = 3. With Lemma 2.2.3(i) this implies rk(Y ∩Z) ≤ 1 and thus,
l = Y∩Z.
Let p andq be distinct point ofl . Further letu∈ Z with u⊥ p and dist(u,q) = 2
andv∈ Y with v⊥ q and dist(v, p) = 2. Then dist(u,v) = 3 by Lemma 2.2.3(ii).
Sincep andq are both contained in〈u,v〉g, we conclude thatx∈ Z = 〈u,q〉g and
Y = 〈v, p〉g are contained in〈u,v〉g and therefore,V ≤ 〈u,v〉g. On the other hand
w∈V impliesu∈ Z ≤V and hence,〈u,v〉g = V.
Now let Z be an arbitrary symplecton ofV with Z 6= Y. Let y ∈ Z rY. Then
dist(y,Y) = 1 by Proposition 2.1.17(i). Thus, there is a pointz ∈ Y r Z with
dist(y,z) = 2. Again by Proposition 2.1.17(i) we obtain dist(z,Z) = 1. By Propo-
sition 2.1.25(iii) this implies that bothY andZ have a common line with〈y,z〉g.
With Lemma 2.2.6 we conclude rk(〈y,z〉g) = rk(Z) = 6. Thus,〈u,v〉g is rigid.
Since〈x,X〉 ≤ V, we obtain srk(V) ≥ 6. By Lemma 3.1.1(i) and Proposition
2.2.9(vii) every singular subspaceS≤ 〈u,v〉g with rk(S) = 6 is maximal.

Theorem 3.7.2.Let V be a connected rigid subspace of an SPO space with sym-
plectic rank≥ 6. Then V is either a symplecton or V is a metaplecton with
diam(V) = 3 andyrk(V) = srk(V) = 6.

Proof. LetY ≤V be a symplecton. AssumeY <V. Then by Lemma 3.3.1(i) there
is a pointx ∈ V such that prY(x) is a generator ofY. By Proposition 2.2.9(viii)
this implies rk(Y) = 6. Thus by Proposition 3.7.1,〈x,Y〉g is a rigid metaplec-
ton with diam(V) = 3 and yrk(V) = srk(V) = 6. SupposeV > 〈x,Y〉g. Then by
Lemma 3.3.1(i) there is a pointy∈V r 〈x,Y〉g such that pr〈x,Y〉g(y) contains a line,
a contradiction to Proposition 3.7.1.



4 Maximal rigid
subspaces

In this chapter we study the maximal rigid subspaces of an SPOspace. As we will
see, SPO spaces are composed in a very nice way by maximal rigid subspaces.
More precisely, the maximal connected rigid subspaces yield a decomposition of
the set of lines. Moreover, each connected component of an SPO space is the grid
sum of its maximal rigid subspaces through any given point. Acorresponding
property can also be found for twin SPO spaces. This fact justifies to restrain our
studies to rigid SPO spaces.

4.1 Maximal connected rigid subspaces

Firstly, we consider maximal rigid subspaces of a given connected component.
The aim of this chapter is to show that each line is contained in precisely one max-
imal connected rigid subspace. Furthermore, there exists acanonical equivalence
relation on the set of maximal rigid subspace of a given connected component
such that every two equivalent spaces are isomorphic and disjoint.

Let C be a chain of connected rigid subspaces of an SPO space. Then the
union of the members ofC is a again a connected rigid subspace. Hence, every
chain of connected rigid subspaces has an upper bound and we may apply Zorn’s
Lemma to conclude that every connected rigid subspace is contained in a maximal
connected rigid subspace. Of course all subspaces occurring in this section live in
an SPO space.

Lemma 4.1.1.Let V be a connected rigid subspace. Further let x/∈V be a point
and let l≤V be a line withdist(x, l) = 1 such that〈x, l〉g is rigid. Then〈x,V〉g is
connected and rigid.

Proof. LetF be the set of finite sets of points ofV. We first show diam(〈M〉g) < ∞
for everyM ∈ F by induction over the cardinality ofM. SinceV is connected, we
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obtain diam(〈M〉g) < ∞ for |M| < 3 by Proposition 2.1.3. Now let|M| ≥ 3. If M
consists of mutually collinear points,〈M〉g is singular. Thus, we may assume that
there are two non-collinear points inM. Since|M| ≥ 3, there is a pointp ∈ M
such that diam(〈M r{p}〉g) ≥ 2. SetU := 〈M r{p}〉g. By the induction hypoth-
esis we may assume diam(U) < ∞. Since dist(p,U) < ∞, it suffices to consider
the case dist(p,U) = 1. Since diam(U) ≥ 2, we know by Remark 2.2.10 that
V has a symplectic rank. If yrk(V) = 2, thenU is a metaplecton by Theorem
3.2.3. Moreover,p has a gateq in U by Proposition 3.2.2. Hence, for any point
p′ ∈U with dist(p′q) = diam(U), we obtain dist(p, p′) = diam(U)+1 and there-
fore 〈M〉g = 〈p,U〉g = 〈p, p′〉g is again a metaplecton.
Now let yrk(V) ≥ 3. Assume prU(p) contains a single pointq. Let r ∈ U r {q}
with q⊥ r. Since rk(〈p, r〉g) ≥ 3, there is a points∈ 〈p, r〉g r qr that is collinear
to all points ofqr. We may assume thats is the point on the linesr that is collinear
to p. This impliess /∈ U . Hence, prU(s) contains a line. Sincep is collinear to
two points of〈s,U〉g, we may constrain ourselves to the case where prU(p) con-
tains a lineg. Since by 3.1.1(i) there is a symplecton ifU that containsg, we
conclude yrk(U) ≤ 6 by Proposition 2.2.9(viii). Thus, diam(〈M〉g) < ∞ follows
from Propositions 3.4.5, 3.5.5, 3.6.4 and 3.7.1.
SetW :=

⋃

M∈F〈x, l ,M〉g. Since〈x, l ,M〉g ≤ 〈x,V〉g for every M ∈ F and v ∈
〈x, l ,v〉g ⊆W for everyv∈V, we obtain〈W〉g = 〈x,V〉g. Letu andv be two points
of W. Further letM andN be the finite sets of points ofV such thatu∈ 〈x, l ,M〉g
andv∈ 〈x, l ,N〉g. Then〈u,v〉g ≤ 〈x, l ,M∪N〉g ⊆W yieldsW = 〈W〉g and hence,
W = 〈x,V〉g. Thus, it remains to show dist(u,v) < ∞ and that〈u,v〉g is rigid. Since
〈u,v〉g ≤ 〈x, l ,M∪N〉g and(M∪N) ∈ F, it suffices to show that〈x, l ,M〉g is rigid
and connected forM ∈ F.
SetU := 〈l ,M〉g. Since for two distinct pointsp andqof l we obtain〈p,q,M〉g =U
and(M∪{p,q}) ∈ F, we know diam(U) < ∞. First assume〈x, l〉g is a symplecton
of rank 2. Then Proposition 2.2.4(i) implies thatl is a maximal singular subspace
since l is a generator of the rigid symplecton〈x, l〉g and hence, there are three
lines of 〈x, l〉g meeting in a point ofl . Thus, we may assume diam(U) ≥ 2 since
otherwiseU = l and there is nothing left to prove. By Lemma 3.1.1(i) we con-
clude yrk(U) = 2. Hence,U is a metaplecton by Theorem 3.2.3. This implies
diam(〈x,U〉g) < ∞ and〈x,U〉g is rigid and connected by Proposition 3.2.5.
Now assume〈x, l〉g is a singular subspace or a symplecton of rank≥ 3. In the lat-
ter case there is a pointy∈ 〈x, l〉gr l with y⊥ x such that〈y, l〉g is singular. Then
U ∩y⊥ contains a line and〈y,U〉g∩x⊥ contains a line. Since〈x,U〉g = 〈x,y,U〉g,
we may restrain ourselves to the casel ≤ x⊥.
For diam(U) ≥ 2, there is a symplectonY ≤ U such thatl ≤ prY(x) by Lemma
3.1.1(i). Thus, 3≤ yrk(V) ≤ 6 by Propositions 2.2.9(i) and 2.2.9(viii). Now the
claim follows from Propositions 3.4.5, 3.5.5, 3.6.4 and 3.7.1. Hence, it remains
the case thatU is singular. IfU ≤ prV(x), then〈x,U〉g is singular and we are
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done. Thus, we may assume that there is a pointy∈ M with dist(x,y) = 2. Since
〈x, l〉 ≤ 〈x,y〉g, the symplectonY := 〈x,y〉g is rigid. Now prY(p) contains the line
l for every pointp∈ M. Since diam(Y) = 2 andM is finite, the claim follows by
induction.

Proposition 4.1.2. Every line is contained in a unique maximal connected rigid
subspace.

Proof. Let l be a line. Sincel is a rigid subspace, there is a maximal connected
rigid subspaceV that containsl . Now letU be an arbitrary connected rigid sub-
space withl ≤U . Suppose there is a pointx∈ U rV. SinceU is connected and
U ∩V 6= ∅, we may assume dist(x,V) = 1. Since diam(U ∩V) ≥ 1, there is a
line g ∈ U ∩V with dist(x,g) = 1. Now 〈x,g〉g is rigid since〈x,g〉g ≤ U . Thus,
Lemma 4.1.1 implies that〈x,V〉g is rigid, a contradiction the maximality ofV.
Thus,U ≤V andV is uniquely defined.

Corollary 4.1.3. Let U and V be two connected rigid subspaces with a common
line. Then〈U,V〉g is a connected rigid subspace.

Proof. Let l ≤ U ∩V be a line. By Proposition 4.1.2 there is a unique maximal
connected rigid subspaceW that containsl . This impliesU ≤ W andV ≤ W.
Thus, the intersection of all subspaces ofW that containU andV is defined and
equals〈U,V〉g.

Proposition 4.1.4. Every maximal connected rigid subspace of an SPO space is
gated.

Proof. Let V be a maximal connected rigid subspace and letx be a point with
dist(x,V) < ∞. Suppose there is a linel ≤ prV(x). Then by Lemma 3.2.1 there
is a pointy with dist(y,V) = 1 andl ≤ prV(y). By Lemma 4.1.1 this implies that
〈y,V〉g is rigid and connected, a contradiction to the maximality ofV. Thus, prV(x)
contains a single pointz. For any pointv∈V, Proposition 2.1.25(i) implies thatz
is a gate forx in 〈v,z〉g. The claim follows.

Our next goal is to show that the maximal rigid subspaces of a given con-
nected component can be partitioned into equivalence classes such that any two
subspaces of a given equivalence class are isomorphic and one-parallel to each
other.

Lemma 4.1.5.Let g and h be one-parallel lines of an SPO space. Further let U
and V be maximal connected rigid subspaces with h≤U and g≤V. Then U and
V are one-parallel to each other.
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Proof. Sinceg and h are one-parallel, we obtaind := dist(g,h) < ∞. Let w
and x be two distinct points ofh and lety and z be the points ong such that
dist(w,y) = dist(x,z) = d. Set n := dist(w,V). By Proposition 4.1.4w has a
gatew′ in V. This implies dist(w′,y) = d−n and dist(w′,z) = d−n+ 1. Since
〈w,z〉g containsx andw′, we obtain dist(x,〈w′,z〉g) ≤ n by Proposition 2.1.17(i).
Sincey ∈ 〈w′,z〉g and dist(x,y) = d + 1, Lemma 2.1.14 implies thatx has a gate
x′ in 〈w′,z〉g with dist(x,x′) = n. Thus, dist(x′,z) = d− n and hence,w′ 6= x′.
Since dist(x,w′) ≤ dist(w,w′) + 1, we obtainw′ ⊥ x′. Therefore, dist(w,x′) =
dist(x,w′) = n+1 and Proposition 2.1.29 implies thath andw′x′ are one-parallel to
each other. Sincew′x′ ≤V, we may assume prV(w) = {y}. Now if prU (y) 6= {w},
we repeat this argument to obtain a lineh′ ≤ U that is one-parallel tog with
dist(h′,g) < n. Thus and since dist(U,V) < ∞, we may assume thatw is the gate
of y in U and consequently, dist(w,V) = dist(y,U) = d.
Suppose dist(x,V) < d. Then we may apply the same argument as above to ob-
tain a lineg′ ≤ V that is one-parallel toh with dist(h,g′) < d, a contradiction to
dist(w,V) = d. Since dist(x,z) = d, we obtain dist(x,V) = d and hence by Propo-
sition 4.1.4,z is the gate forx in V. Analogously,x is the gate forz in U . Moreover,
for every pointp∈U r{w} with p⊥ w, we obtain dist(p,V) if there is line inV
throughy that is one-parallel topw.
Now let p∈U rh with p⊥ w. Then dist(p,y) = d+1, sincew is a gate fory in
wp. First assume dist(x, p) = 2. Then dist(p,z) = d+ 2 sincex is a gate forz in
U . Thus,〈p,z〉g containsx andw and consequently,y ∈ 〈p,z〉g. By Proposition
2.1.23〈p,z〉g is an SPO space. Since dist(x,y) = d+1, there is a pointq∈ 〈p,z〉g
with dist(x,q) = d+2 andy⊥ q. This implies dist(q,z) = 2. Nowx is a gate for
z in 〈p,x〉g since〈p,x〉g ≤ U . By (A12) we know thatq has a gate in〈p,x〉g at
distanced sinceq andx are opposite in〈p,z〉g. Thus, Proposition 2.1.29 implies
that〈x, p〉g and〈z,q〉g are one-parallel to each other and isomorphic. The gate ofp
in 〈z,q〉g has distance 2 tozand hence distanced+2 tox. Moreover, the gate ofp
in 〈z,q〉g is collinear toy since dist(p,y) = d+1. Therefore we may assume that
q is the gate forp in 〈z,q〉g. Now 〈x, p〉g is rigid since it is contained inV. This
implies that〈z,q〉g is rigid. Sinceg≤ 〈z,q〉g andV is maximal, Proposition 4.1.2
implies 〈z,q〉g ≤ V. Sincewp andyq are one-parallel to each other, we obtain
dist(p,V) = d and hence, prV(p) = {q}.
Now assumep ⊥ x. Then dist(p,y) = dist(p,z) = d + 1. Thus, Proposition
4.1.4 implies dist(p,V) ≤ d. Hence,y /∈ prV(p). Now d < dist(w,prV(p)) ≤
dist(p,prV(p))+ 1 yields dist(p,V) = d. By Proposition 4.1.4p has a gateq in
V. Since dist(p,y) = d+ 1, we obtainy 6= q andy⊥ q. Thus again, the lineswp
andyq are one-parallel to each other. SinceU is connected this implies thatU is
one-parallel toV. Analogously,V is one-parallel toU .

Proposition 4.1.6.Let V be a maximal connected rigid subspace of an SPO space.
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Further let x be a point withdist(x,V) < ∞. Then there is exactly one maximal
rigid subspace U with x∈U such that V and U are one-parallel to each other.

Proof. Setd := dist(x,V). We may assumed > 0 since otherwise there is nothing
to prove. By Proposition 4.1.4x has a gatez in V. Sinced > 0, there is a line
throughz and hence,V > {z} by Proposition 4.1.2. Lety ∈ V r {z} be a point
with y⊥ z. Then dist(x,y) = d+1. Thus,z∈ 〈x,y〉g. Since〈x,y〉g is an SPO space
by Proposition 2.1.23, there is a pointw ∈ 〈x,y〉g with w ⊥ x, dist(w,y) = d and
dist(w,z) = d + 1. LetU be a maximal connected rigid subspace withwx≤ U .
Since by Proposition 2.1.29 the lineswx and yz are one-parallel to each other,
Lemma 4.1.5 implies thatU andV are one-parallel to each other.
Now let W be a maximal connected rigid subspace withx ∈ W such thatV and
W are one-parallel to each other. Then dist(y,W) = d since dist(x,V) = d. By
Proposition 4.1.4 the pointu ∈ W with dist(y,u) = d is a gate fory in W and
therefore dist(u,x) = 1. Supposeu 6= w. Thenu /∈ U since prU(y) = {w}. By
Lemma 4.1.1 and the maximality ofU this implies that〈u,xw〉g is not rigid and
thereforeu 6⊥w. Thus,〈u,w〉g is a symplecton and the only lines in〈u,w〉g through
x are ux and wx. Since prU(z) = prW(z) = {x}, this implies that all points in
〈u,w〉g∩ x⊥ r {x} have distanced + 1 to z. Thus,x is a gate forz in 〈u,w〉g by
Propositions 2.1.25(ii) and 2.1.25(i). Since〈u,w〉g ≤ 〈y,x〉g, this is a contradiction
to Proposition 2.1.17(i). We concludeu = w and hence,U = W by Proposition
4.1.2.

Proposition 4.1.7.Let U and V be two maximal connected rigid subspaces that
are one-parallel to each other. Then the mapϕ : U →V with prV(u) = {uϕ} for
every point u∈U yields an isomorphism from U onto V.

Proof. SinceU andV are one-parallel to each other,ϕ is a bijection. Setd :=
dist(U,V). By Proposition 4.1.4ϕ maps every point ofU onto its gate inV. Now
let w andx be distinct collinear points ofU . Further lety be the gate ofw and
let z be the gate ofx in V. Since conversely,w is the gate fory in U , we obtain
dist(y,x) = d+1 and hence,y⊥ z. Since dist(w,z) = d+1 by analogous reasons,
Proposition 2.1.29 implies thatwx andyzare one-parallel lines. Thus, for every
point u on wx the gate ofu in V is contained inyz. By symmetric reasons, the
preimage of every point ofyzis contained inwx. Hence,ϕ is an isomorphism.

4.2 Rigid subspaces at finite codistance

Now that we know something about maximal rigid subspaces of agiven con-
nected component of an SPO space, we proceed with rigid subspaces of distinct
connected components that are adjacent in the connectivitygraph. Therefore we
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first we study the coprojection of a point in convex subspace of finite diameter.
Throughout this sectionS is always an SPO space.

Lemma 4.2.1. Let x∈ S be a point and let l be a line withcod(x, l) < ∞ and
coprl (x) = l. Then there is a point y↔ x withdist(y, l) = cod(x, l) andprl (y) = l.

Proof. Setd := cod(x, l). Let z be a point withz↔ x and dist(z, l) = d. We may
assume that there is a pointq ∈ l with dist(z,q) = d + 1 since otherwise we are
done. By (A12) we conclude thatx has a cogatex′ in 〈q,z〉g with cod(x,x′) = d+1.
Hence,〈x′, l〉 is a singular space of rank 2. By Proposition 2.1.23 we know that
〈q,z〉g is an SPO space. Thus by Lemma 2.1.21(iii), there is a pointy ∈ 〈q,z〉g
with dist(y, p) = d for every pointp∈ l and dist(y,x′) = d+ 1. We obtainx ↔ y
sincex′ is a cogate forx.

Lemma 4.2.2.Let V≤S be a metaplecton and let x be a point at finite codistance
to V such thatcoprV(x) contains a line. Then there is a point z withdist(z,V) = 1
andcod(x,z) < cod(x,v) for every v∈V such thatprV(z) contains a line.

Proof. Setd := cod(x,V) andn := diam(V). By Proposition 2.1.17(ii) we obtain
d ≥ n. Let g ≤ coprV(x) be a line. By Proposition 2.1.23V is an SPO space
and hence, there is a lineh ≤ V such thath andg are one-parallel to each other
with dist(g,h) = n−1. Hence by Lemma 2.1.24, we obtain cod(x, p) = m for
every pointp∈ h, wherem := min{cod(x,v) | v∈V}. By Lemma 4.2.1, there is
a pointy↔ x with dist(y,h) = m and prh(y) = h. Hence by Lemma 3.2.1, there is
a pointz with dist(z,y) = m−1 andh≤ z⊥. We conclude cod(x,z) = m−1 and
consequently,z /∈V.

Proposition 4.2.3. Let V ≤ S be a connected rigid subspace withyrk(V) = 2
anddiam(V) < ∞. Then V is cogated.

Proof. By Theorem 3.2.3V is a metaplecton. Letx be a point with cod(x,V) < ∞.
Suppose coprV(x) contains a lineg. Then by Lemma 4.2.2 there is a pointz
with dist(z,V) = 1 such that prV(z) contains a line. This is a contradiction to
Proposition 3.2.2. Hence, coprV(x) is a singleton and the claim follows from
Proposition 2.1.12(ii).

Proposition 4.2.4. Let V ≤ S be a connected rigid subspace withyrk(V) ≥ 5.
Further let x be a point withcod(x,V) < ∞. Then one of the following holds.

(a) V is a symplecton and x has a cogate in V.

(b) V is a symplecton of rank5 or 6 andcoprV(x) is a generator of V .

(c) V is a symplecton of rank5 andcoprV(x) = V.
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(d) V is a maximal connected rigid subspaces withyrk(V) = srk(V) = 5 and
coprV(x) is a symplecton.

(e) V is a metaplecton withdiam(V) = 3 andyrk(V) = 6 and x has a cogate in
V.

Proof. First assume yrk(V) ≥ 6. Then by Theorem 3.7.2V is either a symplec-
ton or metaplecton with diam(V) = 3 and yrk(V) = 6. Hence, if coprV(x) is
a singleton, Proposition 2.1.12(ii) implies that we are either in case (a) or (e).
Therefore we may assume coprV(x) contains a line. Thus by Lemma 4.2.2, there
is a pointz with dist(z,V) = 1 such that prV(z) contains a line. Hence by Lemma
3.3.1(ii),V is a symplecton. Moreover, Proposition 2.2.9(viii) implies rk(V) = 6
and by Proposition 3.7.1W := 〈z,V〉g is a rigid metaplecton with diam(V) = 3 and
yrk(V) = 6. Now coprW(x) does not contain a line, since we already know that
this would imply thatW is a symplecton of rank 6. Thus, Proposition 2.1.12(ii)
implies thatx has a cogatex′ in W. Since coprV(x) contains a line, we obtain
x′ /∈V and hence, dist(x′,V) = 1 by Proposition 2.1.17(i). Thus, prV(x′) is singu-
lar and hence by Proposition 2.1.27, prV(x) is either a singleton or a generator of
V. Sincex′ is a cogate forx in W andV ≤ W, we conclude coprW(x) = prV(x′)
and therefore we are in case (b).
Now let yrk(V) = 5. First assume thatV contains a symplecton properly. Then
yrk(V) = srk(V) = 5 and diam(V) = 2 by Theorem 3.6.5. Setd := cod(x,V). Let
v∈V with cod(x,v) = min{cod(x, p) | p∈V} and letu∈ coprV(x). If v⊥ v, then
by 3.1.1(i) there is a symplecton inV that containsu andv. Hence by Lemma
2.1.24, we may assume dist(u,v) = 2. SetY := 〈u,v〉g. Suppose cod(x,v)≥ d−1.
Then by Proposition 2.1.12(ii) coprY(x) contains a lineg. Thus by Lemma 4.2.2,
there is a pointz with cod(x,z) = cod(x,v)−1 such thatz⊥ contains a line ofY.
This impliesz /∈ V, a contradiction to Lemma 3.3.1(ii). Hence, cod(x,v) = d−2
since diam(V) = 2.
By Theorem 3.6.5 there is a pointw ∈ V with dist(w,Y) = 2. SetZ := 〈v,w〉g.
ThenZ is a symplecton. Since dist(w,Y) = 2, Proposition 2.1.17(i) implies that
Y ∩Z contains no line and hence,Y ∩Z = {v}. Suppose cod(x,Z) < d. Then
x has no cogate inZ sinceZ ≤ V and cod(x, p) ≥ d− 2 for every pointp ∈ V.
Thus, Proposition 2.1.12(ii) implies that coprZ(x) contains a lineg. Now Lemma
4.2.2 implies that there is a pointzwith cod(x,z) = cod(x,v)−1 such thatz⊥ con-
tains a line ofZ. This impliesz /∈V, a contradiction to Lemma 3.3.1(ii). Hence,
cod(x,Z) = d and Proposition 2.1.12(iv) implies thatx has a gatew′ in Z. Since
Z∩Y = {v}, Proposition 2.1.25(iii) implies dist(u,Z) = 2. Hence,X := 〈u,w′〉g
is a symplecton that is contained in coprY(x). By Theorem 3.6.5 there is a point
y∈ V such that dist(y,X) = 2 andV =

⋃

p∈X〈y, p〉g. There is a pointp ∈ X such
thatu∈ 〈p,y〉g. By Proposition 2.1.12(iv)p is a cogate forx in 〈p,y〉g and hence,
cod(x,y) = d−2. This implies that for every pointq ∈ X, q is a cogate forx in
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〈q,y〉g. Thus, coprV(x) = X and we have case (d).
Finally let V be a symplecton of rank 5. If coprV(x) is a singleton, (a) holds by
Proposition 2.1.12(ii). Therefore we assume that coprV(x) contains a lineg. Then
Lemma 4.2.2 implies that there is a pointz with cod(x,z) = cod(x,v)−1 such
thatz⊥ contains a line ofZ. By Proposition 3.6.4W := 〈x,V〉g is a rigid subspace
with diam(W) = 2 and yrk(W) = srk(W) = 5. Setd := cod(x,W). As before
X := coprW(x) is a symplecton and there is a pointy∈W with cod(x,y) = d−2
such thatW =

⋃

p∈X〈y, p〉g. Letu∈ g and letp∈ X such thatu∈ 〈p,y〉g. Letv∈V
such that〈u,v〉g = V andq∈ X such thatv∈ 〈q,y〉g. Sincep is a cogate forx in
〈p,y〉g, we know〈p,y〉g 6= V and hence,v /∈ 〈p,y〉g. This impliesq 6= p. Thus, we
may apply Lemma 3.6.3 to conclude thatV andX intersect. Hence, cod(x,V) = d
andg≤ X. Now Lemma 3.6.1(i) implies thatV andX are either equal or intersect
in a generator. In other words, either (c) or (b) holds.

The following two assertions are the counterpart to Proposition 2.1.27. Note
that we make use of the classification of rigid subspaces withfinite diameter given
in Chapter 3.

Proposition 4.2.5. Let V ≤ S be a rigid metaplecton and let x be a point with
cod(x,V) < ∞ such thatdiam(coprV(x)) = 1. Thenrk(coprV(x)) = srk(V).

Proof. Setd := cod(x,V) andn := diam(V). We may assumen ≥ 2, since oth-
erwise there is nothing to prove. By Proposition 4.2.3 we conclude yrk(V) ≥ 3.
For yrk(V) ≥ 5, the claim follows from Proposition 4.2.4. Thus, we may assume
yrk(V) ∈ {3,4}.
Let z be a point of coprV(x) and letg ≤ coprV(x) be a line throughz. For ev-
ery point p ∈ V with dist(p,z) = n, we obtain cod(x, p) ≤ d− n+ 1 by Propo-
sition 2.1.16(ii) since diam(coprV(x)) = 1. By Proposition 2.1.17(i) this implies
cod(x, p) = d−n+1= min{cod(x,q) | q∈V}. Now we may apply Lemma 4.2.2
to conclude that there is a pointywith cod(x,y)= d−n such thaty⊥ contains a line
of V. SetW := 〈y,V〉g. Then Propositions 3.4.5 and 3.5.5 imply diam(W) = n.
Thus, cod(x,W) = d sinceW containsz andy. Moreover, if yrk(V) = 3, then
Theorem 3.4.4 and Proposition 3.4.5 imply srk(W) = n+ 1. If yrk(V) = 4, then
Theorem 3.5.4 and Proposition 3.5.5 imply srk(W) = 2n. SetU := 〈z,y〉g. Then
we conclude by Proposition 3.4.5 and Theorem 3.5.4 dist(p,U) = 1 for every
point p∈WrU .
Let w∈ coprW(x)r {z}. Suppose dist(w,z) ≥ 2. Then by Proposition 2.1.25(iii)
there is a pointw′ ∈U with w′ ⊥ w andw′ ∈ 〈w,z〉g. Since〈w,z〉g ≤ coprW(x) by
Proposition 2.1.16(i), this is a contradiction to coprU(x) = {z}. Thus, coprW(x)≤
z⊥ and therefore diam(coprW(x)) = 1 by Propositions 2.1.16(i) and 2.1.12(i).
Assume yrk(V) = 3. Lety′ be a point collinear toz with dist(y,y′) = n−1. Then
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there is a symplectonY ≤ W containingg andy′; if 〈y′,g〉g is singular, this fol-
lows from Lemma 3.1.1(i). We obtain dist(y,Y) = n−1. Hence, diam(W) = n
implies thaty has no gate inY. By Proposition 2.1.27 we conclude that prY(y)
is a generator ofY and moreover, prY(y) is properly contained in singular sub-
space ofS . Hence by Lemma 3.4.3(i) and Proposition 2.2.4(ii), there are ex-
actly two maximal singular subspacesM andN of S that containg. By Lemma
3.1.1(iii) bothM andN contain a generator ofY. Since bothM ∩Y andN∩Y
containg, Proposition 2.2.9(iii) implies that prY(y) is disjoint to eitherM∩Y or
N∩Y. We may assumeN∩Y∩prY(y) = ∅. Now dist(y,M) = n−1 and hence,
rk(prM(y)) = n− 1 and prM(y) ≤ W by Lemma 3.4.2. Since srk(W) = n+ 1,
this impliesM ∩W = 〈g,prM(y)〉 and rk(M ∩W) = n+ 1. By Theorem 3.4.4
we conclude rk(N∩W) = n. Analogously toM, dist(y,N) = n−1 would imply
rk(N∩W) ≥ n+ 1 and therefore dist(y,N) = n. SinceM∩W = 〈g,prM(y)〉 and
cod(x,prM(y)) ≤ d−1, we obtain coprW(x)∩M = g and consequently, coprW(x)
is contained inN.
Now assume yrk(V) = 4. If rk(coprW(x)) ≥ 3, let G ≤ coprW(x) be a subspace
with g ≤ G and rk(G) = 3. Otherwise, Lemma 3.1.1(i) implies that there is a
singular subspaceG≤W with coprW(x) < G and rk(G) = 3. By Lemma 3.1.1(i)
there is a symplectonY ≤ W such thatG is a generator ofY. Sinceg ≤ Y, we
obtain dist(y,Y) ≥ n−1. Since diam(W) = n, Proposition 2.1.25(i) implies that
prY(y) contains a line. Hence by Lemma 3.5.1, prY(y) is a generator ofY and
dist(y,Y) = n−1. Since cod(x,prY(y))≤ d−1, we obtain coprW(x)∩prY(y) = ∅.
Hence,G∩prY(y) = ∅ if G≤ coprW(x). If G > coprW(x), then there is a genera-
tor ofY containing coprW(x) and being disjoint to prY(y). Hence, we may assume
G∩ prY(y) = ∅. By Proposition 2.2.5 there is a unique maximal singular sub-
spaceN ≤ S containingG. By Proposition 2.1.27 we know that prY(y) is not a
maximal singular subspace ofW. Thus,G < N by Proposition 2.2.9(ii). This im-
plies rk(N∩W) = 2n by Lemma 3.5.3(i) and Theorem 3.5.4. Suppose dist(y,N) =
n−1. Then rk(prN(y)) = 2n−2 by Lemma 3.5.3(ii). SinceG∩prN(y) = ∅, this
implies rk(N∩W) ≥ 2n+2, a contradiction. Thus, dist(y,N) = n.
Thus, for both possibilities of yrk(V), there is a maximal singular subspaceN
with coprW(x)≤N and dist(y,N) = n that intersectsW in a maximal singular sub-
space ofW. Suppose there is a pointw∈ NrcoprW(x). Then dist(y,w) = n since
dist(y,N) = n and diam(W) = n. Hence,〈w,y〉g∩N contains no line since other-
wise Proposition 2.1.17(i) would imply dist(y,N) ≤ n−1. Hence,〈w,y〉g∩N =
{w} and therefore coprW(x)∩〈w,y〉g = ∅. This implies cod(x,〈w,y〉g) = d−1 and
w∈ copr〈w,y〉g(x). Since cod(x,y)= d−n, the pointw is not a cogate forx in 〈w,y〉g
and thus, copr〈w,y〉g(x) contains a line by Proposition 2.1.12(ii). Now Lemma
4.2.2 implies that there is a pointy′ with cod(x,y′) < cod(x,y) = d−n such that
(y′)⊥∩〈w,y〉g contains a line. Since diam(W) = n and cod(x,W)= d, we conclude



74 4. Maximal rigid subspaces

y′ /∈ W. Since cod(x,W)− cod(x,y′) ≥ n+ 1, we obtain diam(〈y′,W〉g) ≥ n+ 1.
For yrk(V) = 3, we obtain by Proposition 3.4.5 that〈y′,W〉g has the same singu-
lar rankW and hence,〈y′,W〉g is a metaplecton with diametern+ 1 by Theorem
3.4.4. For yrk(V) = 4, we obtain srk(〈y′,W〉g) = srk(W)+1 = 2n+1 and hence,
〈y′,W〉g is a metaplecton with diametern+1 by Theorem 3.5.4. Now Proposition
2.1.12(iv) implies thatx has a cogate in〈y′,W〉g which is at codistanced to x, a
contradiction tog≤W. Thus we conclude coprW(x) = N∩W.
Sinceg ≤ N ∩V andV ≤ W, we obtain coprV(x) = N ∩V. For yrk(V) = 3,
Lemma 3.1.1(iii) implies thatN contains a maximal singular subspace ofV since
g≤ N∩V. Thus, rk(N∩V) = srk(V) = n by Theorem 3.4.4. For yrk(V) = 4, we
know rk(N∩W) = 2n. SupposeN∩V = g. Then there is a pointp∈ N∩W rV.
By Lemma 3.1.1(i) there is symplectonZ ≤ V that containsg. Now Lemma
3.5.1 implies that prZ(p) is a generator ofZ that containsg. Since by Proposi-
tion 3.5.2 the singular subspace〈p,g〉 is contained in a unique maximal singular
subspace of rank≥ 4, we conclude〈p,prZ(p)〉 ≤ N, a contradiction toN∩V = g.
Hence, rk(N∩V) ≥ 2 and consequently,N contains a maximal singular subspace
of V by Lemma 3.1.1(iii). By Proposition 3.5.2 and Lemma 3.5.3(i) we conclude
rk(N∩V) = srk(V).

Corollary 4.2.6. Let V be a metaplecton and let x be a point withcod(x,V) < ∞
such thatdiam(coprV(x)) = 1. ThencoprV(x)) is a maximal singular subspace of
V.

Proof. Letg≤ coprV(x) be a line. We may assume thatg is not a maximal singular
subspace ofV, since otherwise coprV(x) = g and we are done. Then there is
a point p ∈ V r g with g ≤ p⊥. By Lemma 2.1.26 there is a symplectonY ≤
V that contains〈p,g〉. This implies rk(Y) ≥ 3 and thereforeY is rigid. Since
coprV(x) is singular andg≤ coprV(x)∩Y, Proposition 4.2.5 implies that coprY(x)
is a generator ofY.
Now let q ∈ V r g be another point withg ≤ q⊥. As before, there is a rigid
symplectonZ that contains〈q,g〉 and coprZ(x) is a generator ofZ. Hence,q ∈
coprZ(x) or coprZ(x) � q⊥. Thus, coprV(x) is a maximal singular subspace of
V.

Now we are ready to study how convex subspaces at finite codistance are re-
lated to each other. The following two assertions are the counterpart to Proposition
2.1.29.

Lemma 4.2.7.Let x and z be two points of an SPO space withcod(x,z) = n< ∞.
Further let w and y be points with w↔ z, y↔ x anddist(w,x) = dist(y,z) = n. Set
U := 〈w,x〉g and V := 〈y,z〉g. Then

(i) U and V are one-coparallel to each other withcod(U,V) = n and
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(ii) the bijective mapϕ : U → V with coprV(u) = {uϕ} for all u ∈ U is an
isomorphism.

Proof. By (A12) w andx have a cogate at codistancen in V. Hence, the cogate
for x in V is z. Let y′ be the cogate forw in U . Then dist(y′,z) = n sincew↔ z.
Thus,x↔ y′ and we may assumey = y′. Again by (A12)x is a cogate forw in U
andz is a cogate fory in U .
Let u∈U r{x} with u⊥ x. Then cod(u,V) ≥ n by Proposition 2.1.17(ii). Since
x is a cogate forz in U , we obtain cod(u,z) = n− 1. Sinceu ⊥ x and z is a
cogate forx in V, we obtain cod(u,v) ≤ n−dist(v,z)+ 1 for all v ∈ V. Hence,
cod(u,V) = n and coprV(u) ≤ z⊥. Thus, diam(prV(u)) < 2 since otherwisez∈
coprV(u) by Proposition 2.1.16(i). This implies that〈z,coprV(u)〉 is a singular
subspace. Hence, coprV(u) is no maximal singular subspace ofV and therefore,
coprV(u) is a singleton by Corollary 4.2.6. Thus, Proposition 2.1.12(ii) implies
thatu has a cogatev in V with z⊥ v. By symmetric reasons,u is the cogate forv
in U .
Now (i) follows by induction. Since every pointp∈U has a cogateq in V andp
is then the cogate forq in U , we conclude thatϕ is bijective. Sincez= xϕ , v= uϕ

andz⊥ v, we know already thatϕ preserves collinearity. It remains to check that
pϕ ∈ zv for every p ∈ xu. Supposepϕ /∈ zv. Since by Proposition 2.1.23V is
an SPO space, we may apply Lemma 2.1.21(iii) to conclude thatthere is a point
s∈ V with dist(s,z) = dist(s,v) = n−1 and dist(s, pϕ) = n. This impliess↔ p
andx = s= u, a contradiction to (A2).

Corollary 4.2.8. Let x, y and z be points of an SPO space such thatdist(y,z) = n
andcod(x,z) = n+cod(x,y) < ∞. Then there is a point w at distance n to x such
that cod(w,y) = n+ cod(w,z). For every such point, the metaplecta〈w,x〉g and
〈y,z〉g are one-coparallel to each other. Moreover, the mapϕ : 〈w,x〉g→〈y,z〉g that
maps every point p∈ 〈w,x〉g to the unique point ofcopr〈y,z〉g(p) is an isomorphism.

Proof. Let y′ ↔ x be a point with dist(y,y′) = cod(x,y) and letw′ ↔ z be a point
with dist(x,w′) = cod(x,z). Sincex↔ y′ and dist(z,y)+dist(y,y′) = cod(x,z), we
obtain dist(z,y′) = cod(x,z) and hence dist(w′,x) = dist(y′,z). Thus by Lemma
4.2.7, the metaplecta〈w′,x〉g and 〈y′,z〉g are one-coparallel to each other with
cod(〈w′,x〉g,〈y′,z〉g) = cod(x,z). Let w ∈ 〈w′,x〉g be the point with cod(x,z) =
cod(w,y). Since cod(w,y) = n+ cod(x,y) and by Proposition 2.1.12(ii)w is the
cogate fory in 〈x,w′〉g, we obtain dist(x,w) = n. Sincex is the cogate forz in
〈w′,x〉g, we conclude cod(w,y) = cod(x,z) = n+cod(w,z).
Now let w be an arbitrary point with cod(w,y) = n+ cod(w,z) and dist(x,w) =
n. Then cod(x,z) ≤ cod(w,z) + n since dist(w,x) = n and hence, cod(x,z) ≤
cod(w,y). Analogously, cod(w,y) ≤ cod(x,z) and therefore equality holds. Let
y′ ↔ x be as above and letw′ ↔ z be a point with dist(w,w′) = cod(w,z). Then
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dist(y′,z) = dist(w′,x) = cod(x,z) and againU := 〈w′,x〉g andV := 〈y′,z〉g are
one-coparallel to each other with cod(U,V) = cod(x,z). Now let ψ : U → V be
the unique isomorphism mapping every point ofU to its cogate inV. Theny= wϕ

since cod(w,y) = cod(x,z). Thus, sinceψ is an isomorphism, we obtainv∈ 〈w,x〉g
if and only if vψ ∈ 〈y,z〉g. Hence,ϕ := ψ|U yields an isomorphism fromU onto
V.

Remark4.2.9 (Opposite metaplecta). Let U andV be metaplecta that are one-
coparallel to each other with cod(U,V) = diam(U) = diam(V). Then every point
p∈U has a cogate inV by Proposition 2.1.12(ii) and hence, there is a pointq∈V
with q↔ p by Proposition 2.1.12(i). Analogously, for every pointq∈V, there is
a pointp∈U with p↔ q. Thus,U andV are subspaces that are opposite to each
other.
Let V be an arbitrary metaplecton of an SPO space and lety and z be points
with 〈y,z〉g = V. Since by Lemma 2.1.13 there is a pointx oppositey with
cod(x,z) = dist(y,z), Corollary 4.2.8 implies that there is a metaplectonU that
is oppositeV. Hence, to every metaplecton there is an opposite metaplecton.
Finally, let U andV be metaplecta that are opposite to each other. Setn :=
diam(U) and letv ∈ V. Since there is a point inU that is oppositev, (A12)
implies thatv has a gateu in U with cod(u,v) = n. This implies cod(U,V) = n.
Now u is opposite to a point ofV and hence, diam(V) ≥ n sincev∈V. With (A1)
and cod(U,V) = n we conclude diam(V) = n. As above, this implies that every
point ofU has a cogate inV at codistancen. Hence,U andV are metaplecta that
are one-coparallel to each other with cod(U,V) = diam(U) = diam(V).

Lemma 4.2.10.Let V be a maximal connected rigid subspace. Further let x be
a point such thatcod(x,y) = d < ∞ for a point y∈V andcod(x,v) ≥ d for every
point v∈V. Thencod(x, l) ≥ d+1 for every line l≤V.

Proof. Suppose there is a linel ≤ V with cod(x, l) = d. Then by Lemma 4.2.2
there is a pointz with dist(z, l) = 1 and cod(x,z) < d such that prl (z) = l . Since
cod(x,z) < d, we obtainz /∈V. Sincel ≤ prV(z), this is a contradiction to Propo-
sition 4.1.4

By (A1) the codistance between two maximal connected rigid subspaces that
have infinite diameter is always infinite. Hence by definition, two such subspaces
can never be one-coparallel to each other. For this, we introduce the following
terminology.

Definition 4.2.11. Let d ∈N and letU andV be subspaces of an SPO space with
codm(U ∪V) = d. Furthermore, for every pointu∈U , there is a pointv∈V with
cod(u,v) = d and no linel ≤V with cod(u, l) = d. Then we callU d-oppositeto
V.
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Let U andV be two metaplecta. Note that ifU is one-coparallel toV with
cod(U,V) = d, then Proposition 2.1.12(ii) and Proposition 2.1.17(i) imply thatU
is (d−diam(V))-opposite toV. By this definition 0-opposite is just the same as
opposite.

Lemma 4.2.12.Let g and h be one-coparallel lines of an SPO space. Further let
U and V be maximal connected rigid subspaces with h≤U and g≤V. Then U is
d-opposite V for a natural number d.

Proof. Sinceg andh are one-coparallel, we obtaind := cod(g,h)−1< ∞. Hence,
we may assume thatg≤U andh≤V are one-coparallel lines with minimal pos-
sible codistance. Letw andx be two distinct points ofh and lety andz be points
on g such that cod(w,y) = cod(x,z) = d+1.
Suppose there is a pointq∈V with cod(w,q) < d. Since dist(z,q) < ∞, we may
assumeq ⊥ z and cod(w,q) = d− 1 by Lemma 2.1.28. Hence, dist(q,y) = 2
and by Proposition 2.1.12(iv)y is a cogate forw in 〈q,y〉g. Sincez∈ 〈q,y〉g and
cod(x,z) > cod(x,y), we knowy /∈ copr〈q,y〉g(x). Thus by (A3), there is a point
p∈ 〈q,y〉g with cod(x, p) < cod(x,q) = d. By Proposition 2.1.12(iv) this implies
that z is a cogate forx in 〈q,y〉g. Since by Proposition 2.1.23〈q,y〉g is an SPO
space, there is a lineg′ in 〈q,y〉g that is one-parallel tog with dist(g,g′) = 1. Then
w andx have both a cogate ing′ at codistanced in g′ and these cogates are distinct.
By Corollary 4.2.8 this implies thath andg′ are one-coparallel to each other and
cod(h,g′). This is a contradiction to the minimality ofd sinceh′ ≤ 〈q,y〉g ≤ V.
Thus, for every pointp∈ h and every pointq∈V, we obtain cod(p,q)≥ d. More-
over, cod(p, l) > d for every linel ≤V by Lemma 4.2.10. By symmetric reasons
cod(p,q)≥ d for every pair of points(p,q)∈U×g and cod(l ,q)≥ d+1 for every
line l ≤U and every pointq∈ V. SinceU is connected, it remains to show that
for every pointp∈U rh with p⊥ w there is a linel ≤V such thatpw andl are
one-coparallel to each other with cod(pw, l) = d+1.
First assume dist(p,x) = 2 and setY := 〈p,x〉g. Supposex∈ coprY(z). Sincew∈Y
and cod(p,z)≥d for every pointp∈Y, this implies diam(coprY(z))= 1 by Propo-
sitions 2.1.12(ii). Thus, there is a linek≤Y that is disjoint to coprY(z), a contra-
diction to cod(z,k) ≥ d+1. Hence,x /∈ coprY(z) and therefore cod(z,Y) = d+2.
Analogously, cod(y,Y) = d+ 2. By Proposition 2.1.12(iv)z has a cogateq in Y.
This impliesq⊥ x. Hence, cod(q,y) = d+1 since cod(x,y) = d andz⊥ y. Now
let r be a point withr ↔ z and dist(r,w) = d. Further lets be a point withq↔ s
and dist(s,y) = d+ 1. By Lemma 4.2.7 the metaplecta〈s,z〉g and〈q, r〉g are iso-
morphic via mapping every point of〈s,z〉g to the unique point at codistanced+2
in 〈q, r〉g. Thus, there is a symplectonZ ≤ 〈s,z〉g with Z ∼= Y such thatY andZ are
one-coparallel with cod(Y,Z) = d+2. Since bothy andzhave distanced+2 toY
andy∈ 〈s,z〉g, we concludeg≤ Z. SinceY ≤U , we know that bothY andZ are
rigid and hence,Z ≤ V by Proposition 4.1.2. Letl ′ := 〈coprZ(p),coprZ(w)〉 and
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let l ≤ Z be a line that is one-parallel tol ′ with dist(l , l ′) = 1. Then by Corollary
4.2.8l andpw are one-coparallel to each other with cod(l , pw) = d+1.
Now assume dist(p,x) = 1. ThenS := 〈p,h〉 is a singular subspace of rank 2.
Assume cod(p,q) = d for a pointq∈ g. Let p′ ∈ h be the unique point ofh with
cod(p′,q) = d+1. Thenp′ is a cogate forq in pp′. Since every point ofgr{q}
has codistanced+ 1 to pp′ and codistanced to p′, Corollary 4.2.8 implies that
pp′ andg are one-coparallel to each other with cod(pp′,g) = d + 1. Thus, we
assume cod(p,g) = d+1 and coprl (p) = l . Then Lemma 4.2.2 implies that there
is a pointq with dist(q,g) = 1 andg≤ q⊥ such that cod(p,q) = d. Since〈q,g〉
is rigid, Proposition 4.1.2 impliesq ∈ V. Now y is a cogate forp in yq. Since
cod(x,y) = d and cod(x,qy) = d+ 1, Corollary 4.2.8 implies thatpx andqy are
one-coparallel to each other with cod(pp′,g) = d+1.

Corollary 4.2.13. Let V and U be maximal connected rigid subspaces such that
U is d-opposite V for d∈N. Then V is d-opposite U.

Proof. Assume thatV is a singleton. Then there is no line containingV by the
maximality ofV. Hence, cod(u,V) = 0 for every pointu∈ U . This implies that
U is a singleton that is oppositeV.
Now let diam(V) ≥ 1. Letx∈U and lety∈V such that cod(x,y) = d. Let z∈V
be a point withz⊥ y. By Lemma 4.2.10 we may assume cod(x,z) = d+1. Hence
by Corollary 4.2.8, there is a linel throughx such thatl andyzare one-coparallel
to each other. Sincel is rigid, we obtain diam(U) ≥ 1.
Let w≤U r{x} be a point withw⊥ x. SinceU is d-opposite toV, we conclude
cod(y,wx) = d+1 by Lemma 4.2.10. Therefore we may assume cod(y,w)= d+1.
SinceV is connected there is a pointz∈V with y⊥ zand cod(w,z) = d by Lemma
2.1.28. Since cod(x,yz) = d + 1 and cod(x,y) = d, Corollary 4.2.8 implies that
wx andyz are one-coparallel to each. With Lemma 4.2.12 this implies thatV is
c-oppositeU for somec ∈ N. Since cod(x,y) = d and cod(u,y) ≥ d for every
u∈U , we concludec = d.

Proposition 4.2.14.Let V be a maximal connected rigid subspace. Further let
x be a point such thatcod(x,y) < ∞ for a point y∈ V. Then there is exactly one
maximal rigid subspace U with x∈U that is d-opposite V for some d∈N.

Proof. Setd := cod(x,y). Sinced < ∞, we may assume that we chosey∈V such
that cod(x,v) ≥ d for every pointv∈ V. If V is a singleton, then there is no line
containingy by the maximality ofV. Hence, cod(x,y) = 0 and cod(w,y) = 0 for
every pointw⊥ x. By (A1) this implies that there is no line throughx. Hence,{x}
is already a maximal connected rigid subspace.
Now let diam(V)≥ 1. By Proposition 4.2.10, there is a pointz∈V with z⊥ y such
that cod(x,z) = d+ 1. Hence by Corollary 4.2.8, there is a pointw⊥ x such that
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wx andyzare one-coparallel to each other with cod(wx,yz) = d+ 1. LetU be a
maximal connected rigid subspace withwx≤U . Then Lemma 4.2.12 implies that
U is d-opposite toV since cod(x,y) = d and cod(x,v)≥ d for every pointv∈V.
Now letW be a maximal connected rigid subspace that isc-oppositeV and con-
tainsx. Since cod(x,y) = d and cod(x,v) ≥ d for every pointv ∈ V, we obtain
c= d. SupposeW 6= U . ThenU ∩W = {x} by Proposition 4.1.2. Since by Corol-
lary 4.2.13V is d-oppositeW, there is a pointu ⊥ x with cod(u,z) = d. Since
〈u,xw〉g andV have the linexw in common andu /∈ V, Proposition 4.1.2 implies
that〈u,xw〉g is not rigid. Thus, dist(u,w) = 2 and the only lines in〈u,w〉g through
x are ux and uw. Hence, all points in〈u,w〉g ∩ x⊥ r {x} have codistanced to
z. Thus by Propositions 2.1.16(i) and 2.1.16(ii), we obtain copr〈u,w〉g(z) = {x}.
Proposition 2.1.12(ii) implies thatx is a cogate forz in 〈u,w〉g. On the other hand
cod(y,ux) = cod(y,wx) = d+ 1 and cod(y,x) = d implies cod(y,〈u,w〉g) = d+ 2
by Proposition 2.1.16(i). Letv∈ 〈u,w〉g with cod(v,y)= d+2. Then dist(x,v) = 2
and hence, cod(z,v) = d−1, a contradiction toy⊥ z.

4.3 Rigid twin SPO spaces

The aim of this section is to show that the equivalence relation for maximal rigid
subspaces of one connected component we introduced in the first section of this
chapter, can be extended to another connected component. More precisely, we are
dealing with the two connected components of a twin SPO spaceand show that
there is a canonical one-to-one correspondence between theequivalence classes
of these two components.

Throughout this section letS = (S +,S −) be a twin SPO space. Further
let M be the set of maximal connected rigid subspaces ofS , i. e. of one of the
components ofS . LetU andV be two elements ofM. Then we writeU ‖V if U
andV are one-parallel to each other or if there is a natural numberd such thatU
andV ared-opposite to each other. Otherwise we writeU ∦ V.

Proposition 4.3.1.The relation‖ is an equivalence relation onM.

Proof. Since every subspace is one-parallel to itself,‖ is reflexive. Thus, we may
assume that bothS + andS − are non-empty and hence, that every element of
M is non-empty. Assume thatM contains a singleton. Then this singleton is not
contained in a line and hence, both connected components aresingletons that are
opposite. Thus, we may assume that every element ofM contains a line. By defi-
nition, the relation‖ is symmetric. Hence, it remains to show that‖ is transitive.
Let U , V andW be distinct elements ofM such thatU ‖ V ‖ W. First assume
U andV are one-parallel to each other with dist(U,V) = 1. Let u ∈ U and let
v∈V be the point withu⊥ v. Further letp∈U r{u} be a point withp⊥ u and
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let q ∈ V be the point withp ⊥ q. By Proposition 4.1.7 mapping every point of
U onto its unique collinear point inV yields an isomorphism and hencepu and
qv are one-parallel to each other at distance 1. This implies thatY := 〈p,v〉g is a
symplecton that containsq andu. SinceY andV have the lineqv in common and
u∈Y rV, Proposition 4.1.2 implies thatY is not rigid.
AssumeV is d-oppositeW for somed ∈N. Let r ∈W be a point with dist(v, r) =
d. By Lemma 4.2.10 there is a pointq′ on qv at codistanced + 1 to r. By
Lemma 2.1.28 there is a pointw ∈ W collinear tor with cod(q′,w) = d. Since
cod(w,qv) = d + 1 by Lemma 4.2.10 andr and w have distinct cogates inqv,
Corollary 4.2.8 implies thatqvandrw are one-coparallel to each other. Hence, we
may assume cod(v,w) = cod(q, r) = d+1.
First let cod(u,w) = d + 2. Then Proposition 2.1.12(iv) implies thatu is co-
gate forw in Y. Furthermore, cod(u, r) = d + 1 sincer ⊥ w andu ⊥ v. Since
cod(q, r) = d + 1, cod(u, r) = d and 〈r,u〉g = Y, Proposition 2.1.16(i) implies
cod(r,Y) ≥ d + 2. Thus again by Proposition 2.1.12(iv),r has a cogate inY.
This cogate is collinear to bothu andq. SinceY is not rigid, the only lines ofY
throughu areuv andpu and the only lines ofY throughq areqv andpq. Hence,
cod(p, r) = d + 2 and Corollary 4.2.8 implies thatrw and pu are one-coparallel
to each other. Thus,U ‖ W by Lemma 4.2.12. Now let cod(u,w) = d. Since
uv and qv are the only lines ofY throughv, we conclude coprY(w) = {v} by
Proposition 2.1.16(ii). Hence, by Proposition 2.1.12(ii)v is a cogate forw in
Y. This implies cod(p,w) = d−1. Since cod(q, r) = d + 1, q ⊥ p and r ⊥ w,
we obtain cod(p, r) = d. Hence by analogous reasons,q is a cogate forr in Y
and cod(u, r) = d− 1. Again rw and pu are one-coparallel to each other and
thereforeU ‖ W. Finally let cod(u,w) = d + 1. If there is a pointu′ ∈ uv with
cod(u′,w) = d + 2, then we obtain as for the case cod(u,w) = d + 2 that the
unique linel ≤ Y throughu′ that is disjoint touv is one-coparallel torw with
cod(l , rw) = d + 2. Moreover, both pointsr and w have a cogate inY that is
contained inl . Sinceuv is the only line throughu′ that intersectspu, the linesl
andpu are one-parallel and hence,r andw have distinct cogates inpu that are at
codistanced+ 1. Thus,rw and pu are one-coparallel at codistanced+ 1. Now
consider the case cod(u,w) = d+1 and copruv(w) = uv. Since cod(w,q) = d, there
is no point inY collinear tov at codistanced+2 to w. Hence, cod(w,Y) = d+1
by Proposition 2.1.16(ii) and therefore coprY(w) = uv by Corollary 4.2.6. Since
cod(r,v) = d, we obtain cod(r,uv) ≤ d+ 1. Since cod(w,Y r uv) = d andw⊥ r,
this impliesq∈ coprY(r). By Proposition 2.1.16(i), we conclude cod(r,u) < d+1
sinceu /∈ coprY(r). Hence, cod(u,w) = d + 1 implies cod(u, r) = d. Thus,q is
no cogate forr in Y and Corollary 4.2.6 implies that coprY(r) is a line. Since
pq and qv are the only lines ofY through q and cod(r,v) = d, we conclude
cod(r,q) = d+1. Againrw andpu are one-coparallel at codistanced+1. Thus,
U ‖W by Lemma 4.2.12.
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Now let U andV be one-parallel at distancen > 1 and letW be d-oppositeV.
Let p and u be distinct collinear points ofU . By Proposition 4.1.7 the points
q andv of V with cod(u,v) = cod(p,q) = n are collinear and the linespu and
qv are one-parallel. Thus, the metaplectonZ := 〈u,q〉g containsp and v. Let
(vi)0≤i≤n be a geodesic fromv to u. Setq0 := r. For i < n let qi+1 be a point of
〈p,vi+1〉g that is collinear toqi . Sincep⊥ u and dist(p,v) = n+ 1, we conclude
dist(p,vi) = n+ 1− i. Sinceqi ∈ 〈p,vi〉g and 〈p,vi〉g ≤ 〈p,vi+1〉g, Proposition
2.1.17(i) implies that we always find such a pointqi+1. Now for everyi ≤ n the
sequences(q0, . . . ,qi,vi, . . .vn) and(v0, . . . ,vi,qi, . . .qn) are geodesics. As a direct
consequence the linesqivi are mutually one-parallel to each other. LetVi be the
maximal connected rigid subspace that containsqivi. Then Lemma 4.1.5 implies
that the subspacesVi are mutually one-parallel to each other. Applying induction
yieldsU ‖W.
LetU andV ared-opposite andV andW arec-opposite for natural numbersc and
d. Further letw ∈ W. By Proposition 4.1.6 there is a unique subspaceW′ ∈ M

with w∈W′ that is one-parallel toU . Now W′ ‖U yieldsW′ ‖V sinceU andV
ared-opposite. By Proposition 4.2.14W is the only element ofM containingw
that isb-opposite toV for someb∈N. Hence, we concludeW =W′ and therefore
U andW are one-parallel.
Since‖ is symmetric, it remains the case thatV is one-parallel to bothU andW.
By Proposition 4.2.14 there is subspaceV ′ ∈ M that is oppositeV. By the above
we obtain that there are natural numbersc andd such thatU is c-oppositeV ′ and
W is d-oppositeV ′. Hence,U andW are one-parallel.

The next proposition shows that every twin SPO space contains rigid subspaces
that are again twin SPO spaces.

Proposition 4.3.2.Let U and V be maximal connected rigid subspaces such that
U is d-opposite V for some d∈ N. Then U∪V is a rigid twin SPO space with
opposition relation↔d := {(u,v) ∈ (U ∪V)× (U ∪V) | cod(u,v) = d}.

Proof. SetW := U ∪V. By definition↔d is symmetric and by Corollary 4.2.13
it is total. Now Lemma 2.1.28 implies that for every two pointsx andy of W with
cod(x,y) = n > d, there is a pointz∈ W with y ⊥ z and cod(x,z) = n−1. This
implies cod(x,y) = codd(x,y)+ d, where codd is the codistance with respect to
↔d. Thus, (A3) and (A4) are satisfied.
Let x, y andz be points ofW with x ↔d y and dist(y,z) = n. SetY := 〈y,z〉g.
Let Z ≤ coprY(x) be a metaplecton such that diam(Z) = diam(coprY(x)). Since
Y is an SPO space by Proposition 2.1.23, there is a metaplectonZ′ ≤ Y that is
oppositeZ in Y. By Lemma 2.1.24 we conclude codd(x,Z′) = 0 sincey∈Y. By
Lemma 4.2.10 this implies diam(Z′) = 0 and consequently, diam(Z) = 0. Thus,



82 4. Maximal rigid subspaces

coprY(x) is a singleton and (A2) holds. By Proposition 2.1.12(ii)x has a cogate in
Y. Hence, (A1) follows from Proposition 2.1.3.

Let I be an index set and let(Si)i∈I be a family of twin SPO spaces. Fori ∈ I ,
we denote byS +

i andS
−
i the two connected components ofSi . Let pi ∈ S

+
i

andqi ∈ S
−
i be points withpi ↔ qi in Si . Then we define thegrid sumof the

twin SPO spaces(Si)i∈I with thepair of origins((pi)i∈I ,(qi)i∈I ) as

⊙

i∈I

(Si,(pi ,qi)) :=

(

⊙

i∈I

(S +
i , pi) ,

⊙

i∈I

(S −
i ,qi)

)

.

The opposition relation for
⊙

i∈I (Si,(pi ,qi)) is induced in the natural way, i. e.
two points(xi)i∈I and(yi)i∈I are opposite if and only ifxi ↔ yi in Si for every
i ∈ I . For a pointx := (xi)i∈I of

⊙

i∈I (Si,(pi ,qi)), we define by supp(x) := {i ∈
I | pi 6= xi 6= qi} the supportof x. Let p and q be points of

⋂

i∈I Si such that
Si ∩S j = {p,q} for every two distinct indicesi and j of I andp↔ q in Si. Then
we write

⊙

i∈I Si instead of
⊙

i∈I (Si ,(p,q)).

Proposition 4.3.3. Let I be an index set and let(Si)i∈I be a family of twin
SPO spaces. For i∈ I, let pi and qi be points ofSi that are opposite. Then
⊙

i∈I(Si ,(pi ,qi)) is a twin SPO space.

Proof. For i ∈ I , let S
+
i be the connected component that containspi and let

S
−
i be the connected component that containsqi . SetS :=

⊙

i∈I (Si,(pi ,qi)).
Furthermore, forσ ∈ {+,−}, setS σ :=

⊙

i∈I (S
σ
i , r i), wherer i := pi for σ = +

andr i := qi otherwise. Letx = (xi)i∈I andy = (yi)i∈I be two points ofS +. Then
by definitionx⊥ y if and only if there is an indexi ∈ I such thatxi ⊥ yi andx j = y j

for j ∈ I r{i}. Furthermore, since the set{i ∈ I | xi 6= y j} ≤ supp(x)∪supp(y) is
finite, we obtain dist(x,y) = ∑i∈I dist(xi,yi), where the distance function always
refers to the corresponding point-line space. As a direct consequence, for every
pointv= (vi)i∈I on a geodesic fromx to y, we obtain supp(v)⊆ supp(x)∪supp(y).
Analogously to the distance, we obtain cod(x,y) = ∑i∈I cod(xi,yi) if X ∈S + and
y∈ S −. Consequently, (A4) holds inS .
In all four axioms of Definition 2.1.1 we are dealing with finitely many points
and the convex spans of two of them. LetJ be the union of the supports of these
points. Then we do not leave the subspaceS ′ := {v∈ S | supp(v) ≤ J}. Since
S ′ is isomorphic to

⊙

i∈J(Si,(pi ,qi)) it suffices to prove the claim for a finite
index set. Moreover, by induction we may restrain to the caseI = {0,1}.
Let y = (y0,y1) andz= (z0,z1) be points ofS − and letx = (x0,x1) ∈ S +. Set
Yi := 〈yi,zi〉g for i ∈ {0,1}. By the observation above, concerning the distance of
two points ofS −, we conclude that{(v0,v1) | v0 ∈ Y0 ∧ v1 ∈ Y1} is a convex
subspace. Hence,Y := 〈y,z〉g = {(v0,v1) | v0 ∈ Y0 ∧ v1 ∈Y1}. Assume there is a
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point(v0,v1)∈Y with x↔ (v0,v1). Then there is a pointu= (u0,u1)∈Y such that
for i ∈ {0,1}, the pointui is a cogate forxi in Yi. This implies cod(x,Y) = cod(x,u)
and coprY(x) = {u}. With

cod(x,u) = cod(x0,u0)+cod(x1,u1)

= dist(y0,z0)+dist(y1,z1) = dist(y,z)

we conclude, that (A1) and (A2) hold.
Now assumez∈ coprY(x) andY does not necessarily contain a point that is op-
positex. Since coprY(x) = {(v0,v1) | v0 ∈ coprY0

(x0) ∧ v1 ∈ coprY1
(x1)}, we

conclude thatzi ∈ coprYi
(xi) for i ∈ {0,1}. Now let w = (w0,w1) be a point

with w ⊥ x and cod(w,y) < cod(x,y). We may assumew0 ⊥ x0 and w1 = x1

and hence, cod(w0,y0) = cod(x0,y0)−1. Thus by (A3), coprY0
(w0) ≤ coprY0

(x0)
and cod(w0,Y0)≥ cod(x0,Y0), whereat equality does not hold in both cases. Since
coprY1

(w1) = coprY1
(x1) and cod(w1,Y1) = cod(x1,Y1), we conclude that (A3) is

fulfilled in S .

The corresponding assertion for grid products of twin SPO spaces does not
hold since for an infinite index setI the point-line spaces

⊗

i∈I S
−
i is disconnected

if for every i ∈ I , there at least two points inSi.

Lemma 4.3.4.Let U and V be two maximal connected rigid subspaces of an SPO
space such thatdist(U,V) < ∞ and U ∦ V. Then there is a point u∈U such that
prU(v) = {u} for every point v∈V.

Proof. Let v ∈ V be a point. Then by Proposition 4.1.4 there is a pointu ∈
U such that prU(v) = {u}. Now let q ∈ V r {v} with q ⊥ v and let p ∈ U
with prU(q) = {p}. For dist(v,U) < dist(q,U), we obtainu∈ prU (q) and hence,
u = p. Analogously,u = p for dist(v,U) > dist(q,U). Hence, we may assume
dist(v,U) = dist(q,U) =: d.
Supposep 6= u. Then dist(q,u) = d+1 sinceq⊥ v. This impliesp⊥ u sincep is
a gate forq in U by Proposition 4.1.4. Now Corollary 4.2.8 implies thatpuandqv
are one-parallel to each other, a contradiction to Lemma 4.1.5. The claim follows
sinceV is connected.

Remark4.3.5. For a pointp∈ S we denote byMp := {V ∈ M | p∈ V} the set
of maximal connected rigid subspaces that containp. By Proposition 4.1.2 every
two distinct elements ofMp intersects in the pointp. Let q be another point of
S . By Propositions 4.1.6 and 4.2.14 there is a bijectionϕ : Mp → Mq such that
V ‖Vϕ for everyV ∈ Mp andV ∦ U for everyU ∈ Mq r{Vϕ}.

Proposition 4.3.6.LetS be a twin SPO space and let x and y be opposite points
of S . Further letϕ : Mx → My be the bijection with V‖Vϕ for every V∈ Mx.
ThenS ∼=

⊙

V∈Mx
(V ∪Vϕ).
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Proof. SetS ′ :=
⊙

V∈Mx
(V ∪Vϕ). ForV ∈ Mx let π(V) : S → V ∪Vϕ be the

map withpπ(V) ∈ prV∪Vϕ (p) for every pointp∈ S . Since either dist(p,V) < ∞
or dist(p,Vϕ) < ∞, this map exists. Moreover, by Proposition 4.1.4 this map is
uniquely defined. Now defineψ : S → S ′ : p 7→ (pπ(V))V∈Mx.
Let p andq be points ofS with pψ = qψ . Since for dist(p,x) < ∞ we obtain
pψ ∈

⊙

V∈Mx
V and for dist(p,y)< ∞ we obtainqψ ∈

⊙

V∈My
V, the pointsp andq

are in the same connected component ofS . Thus, we may assume dist(p,x) < ∞
and dist(q,x) < ∞. Supposep 6= q. Then there is a linel ≤ 〈p,q〉g through p.
Let Y ≤ 〈p,q〉g be a maximal rigid subspace of〈p,q〉g with l ≤ Y. Further let
U ∈ Mp with Y ≤U and letV ∈ Mx with V ‖U . Since by Proposition 2.1.23 the
metaplecton〈p,q〉g is an SPO space, we may apply Lemma 4.1.4 to conclude that
q has a gateq′ in Y. Now setZ := 〈q,q′〉g. Since dist(q,Y) = dist(q,q′), we obtain
Z∩Y = {q′} by Proposition 2.1.17(i). Let(qi)0≤i≤n be a geodesic fromq to q′.
Let r ∈ Z be an arbitrary point. Then by Proposition 4.1.4r has a gater ′ in U .
We concluder ′ ∈ 〈r,q′〉g ≤ Z. SinceU ∩〈p,q〉g = Y, this impliesr ′ = q′. Hence,
every lineqiqi+1 for i < n is contained in a maximal connected rigid subspace that
is not one-parallelU and consequently, not one-parallelV. By Lemma 4.3.4 this
implies prV(qi) = prV(qi+1) for everyi < n and therefore prV(q) = prV(q′).
Let px be the gate ofp in V and letqx be the gate ofq in V. Since dist(q, l) =
dist(p,q)−1 by Proposition 2.1.17(i), we know dist(q,Y) < dist(p,q) and hence,
q′ 6= p. Sinceqx is the gate forq′ in V andU andV are one-parallel to each
other, this impliespx 6= qx by Proposition 4.1.7. This is equivalent toqπ(V) 6= px,
a contradiction topψ = qψ . Thus,ψ is injective.
Let l ≤ S be a line. We may assume dist(x, l) < ∞. By Proposition 4.1.2 there is
a unique subspaceW ∈ M with l ≤W. LetV ∈ Mx with V ‖W. By Proposition
4.1.7 there is a linel ′ ≤ V that is one-parallel tol with dist(l , l ′) = dist(W,V).
Then lπ(V) = l ′. By Lemma 4.3.4 we obtain thatlπ(U) is a singleton for every
U ∈Mx r{V}. Thus,lψ is a line ofS ′ and thereforeψ is an injective morphism
of point-line spaces.
Let (pV)V∈Mx be a point ofS ′. We may assume(pV)V∈Mx ∈

⊙

V∈Mx
V. Let

M be the support of(pV)V∈Mx. By definitionM is finite. Setn := |M| and let
Vi for 0 ≤ i < n such thatM = {Vi | 0 ≤ i < n}. Now setp0 := pV0. Further we
recursively define pointspi ∈S for 0< i < n and subspacesWi ∈M for 0≤ i < n
as follows: LetWi ∈ M with pi−1 ∈ Wi andWi ‖ Vi. By Proposition 4.1.6Wi is

uniquely defined. Letpi be the gate ofpVi in Wi. In other wordspi = pπ(Wi)
Vi

and

sinceWi ‖ Vi, this impliespi
π(Vi) = pVi by Proposition 4.1.7. By Lemma 4.3.4

we obtainpi
π(V) = pi−1

π(V) for everyV ∈ Mx r {Vi}. Now p0
π(V0) = pV0 and

p0
π(V) = pV = x for V ∈ Mx r M by Lemma 4.3.4. Thus, induction provides

pn−1
π(V) = pV for everyV ∈ Mx and hence,pn−1

ψ = (pV)V∈Mx. We conclude
thatψ is surjective.
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Now let (qV)V∈Mx be a point ofS ′ that is collinear and distinct to(pV)V∈Mx.
Then there is a subspaceU ∈ Mx such thatpU ⊥ qU andpV = qV for V ∈ Mx r
{U}. Hence,pn−1

π(V) = qV for everyV ∈ Mx r {U}. Let Wn ∈ M with Wn ‖U
and letpn be the gate ofqU in Wn. Thenpn

ψ = (qV)V∈Mx as above. SincepU ⊥
qU , Proposition 4.1.7 implies thatpn−1 andpn are collinear points. We conclude
that(pn−1pn)

ψ equals the line ofS ′ through(pV)V∈Mx and(qV)V∈Mx. Thus,ψ
is an isomorphism.

We conclude this chapter with a fundamental property of twinSPO spaces. As
a consequence of this property, for the classification of twin SPO spaces, we may
restrain ourselves to the rigid ones.

Theorem 4.3.7.A point-line spaceS is a twin SPO space if and only if there is a
family of rigid twin SPO spaces(Si)i∈I for an index set I such thatS =

⊙

i∈I Si .

Proof. By Proposition 4.3.6 there are opposite pointsx and y in S such that
S ∼=

⊙

V∈Mx
(V ∪Vϕ), whereϕ : Mx → My is the bijection withV ‖ Vϕ for

everyV ∈ Mx. By Proposition 4.3.2V ∪Vϕ is a rigid twin SPO space. The claim
follows since every grid sum of rigid twin SPO spaces is a twinSPO space by
Proposition 4.3.3.





5 Twin spaces

In this chapter we study some twin spaces that arise from connected point-line
spaces with finite diameter. First we introduce a method how to construct for a
point-line spaceS + with finite diameter a second point-line spaceS − such that
(S +,S −) is a twin space. In this case,S − has always the same diameter as
S +. In a second method, we construct out of a point-line spaceS with finite
diameter two point-line spacesS + andS − such that(S +,S −) is a twin space.
In this second approach the two obtained point-line spaces have the same diameter
which can be infinite. As we will show, all these twin spaces are twin SPO spaces.

5.1 Twin spaces with finite diameter

In this section we consider a point-line spaceS + of finite diametern. From
this point-line space we construct a new point-line spaceS − whose points are
subspaces ofS −. More precisely, we take maximal convex subspaces ofS +

such that there exists a point inS + that has distancen to this subspace. We ask
the point-line spaceS + to have a sufficient regularity, namely, for two pointsp
andq of S +, those maximal convex subspaces that have distancen to p and those
having distancen to q should be of the same type. Moreover, every pointr that
has distancen to p should be contained in such a maximal convex subspace of
distancen to p.

5.1.1 Twin polar spaces

The most intuitive case is the situation where the distance between a point and a
line is always smaller than the diameter ofS +. In this case the maximal convex
subspaces that have distance diam(S +) to a given point are just singletons. Thus,
S − will be canonically isomorphic toS +.
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Definition 5.1.1. Let S be a non-degenerate polar space. Further letS ′ be a
copy of S and letϕ be an isomorphism fromS onto S ′. Then we call the
pair of point-line spaces(S ,S ′) with the opposition relation{(x,yϕ),(xϕ ,y) |
{x,y} ⊆ S ∧ x 6⊥ y} a twin polar space.

Proposition 5.1.2.Every twin polar space is a twin space.

Proof. By Proposition A.2.7 each non-degenerate polar space is partially linear.
Furthermore, (OP) follows directly from (BS).

Theorem 5.1.3.Every twin polar space is a twin SPO space.

Proof. Let S = (S +,S −) be a twin polar space. Further letϕ : S + → S − be
the isomorphism such thatx↔ y ⇔ xϕ 6⊥ y for a pair of points(x,y)∈S +×S −.
Let y andzbe two points ofS −. Then〈y,z〉g equals the lineyz if y andz are dis-
tinct collinear points. Ify andzare not collinear, then〈y,z〉g = S − by Proposition
A.2.6.
Let x∈ S +. By Lemma A.2.3(i) there is for every pointp∈ S − r{xϕ} a point
q∈ S − with p ⊥ q andxϕ 6⊥ q. This impliesx↔ q and we conclude thatxϕ is
the unique point ofS − at codistance 2 tox. Moreover, the points at distance 1 to
xϕ have all codistance 1 tox. Therefore, cod(p,qϕ) = 2−dist(p,q) for two points
p andq of S +. Sinceϕ is an isomorphism, the codistance is symmetric.
Now lety andzbe points ofS −. For dist(y,z) = 1, (A1) and (A2) follow directly
from (BS). Fory = z, there is nothing to prove and for dist(y,z) = 2, (A1) and
(A2) are fulfilled sincexϕ ∈ 〈y,z〉g. Now assume cod(x,〈y,z〉g) = cod(x,z). Fur-
ther letw ∈ S + with dist(w,x) = 1 and cod(w,y) = cod(x,y)−1. This implies
x = y and hence,x = z. For y = z, (A3) is always true. The case dist(y,z) = 2
is not possible, since in this case we obtainz= xϕ and hence,x ↔ y. Therefore
we may assume that〈y,z〉g is a line. Sincexϕ is the only point at codistance 2 to
x, we obtain cod(x,y) = 1 and hence,w↔ y. Thus, (A3) holds for cod(x,z) = 1.
For z= xϕ , we conclude cod(w,z) = 1 sinceϕ is an isomorphism and therefore
dist(wϕ ,xϕ) = 1. Hence, (A3) is always satisfied. Finally, (A4) follows from the
symmetry of the codistance.

5.1.2 Twin projective spaces

The next class of point-line spaces we consider is the most famous one, the class
of projective spaces. Here, the maximal convex subspaces that are at maximal
distance to a given point are hyperplanes.

Definition 5.1.4. Let S be a projective space. Further letM be a non-empty
set of hyperplanes ofS such that

⋂

M = ∅ and every hyperplaneH of S that
contains the intersection of two elements ofM is contained inM. LetS be the set
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of subspaces ofS that arise from intersecting two distinct elements ofM and set
L := {{M ∈ M | S≤ M} | S∈ S}. Then we call the pair(S ,(M,L )) with the
opposition relation{(p,M),(M, p) | (p,M)∈S ×M ∧ p /∈ M} a twin projective
spaceof S .

By the definition ofL it is clear that(M,L ) is a point-line space. Further-
more, since for every point of a projective space there is a hyperplane not con-
taining this point, it follows that for every projective space there exists a twin
projective space.

Later on, we will see that a twin projective space(S ,D) of a projective space
S is a twin space. Therefore, as usual, we will call every twin space that is
isomorphic to(S +,S −) a twin projective space.

Lemma 5.1.5.Let (S ,D) be a twin projective space of the projective spaceS .
Let F ⊆ D be a non-empty finite subset of hyperplanes ofS . Then every hyper-
plane ofS that contains

⋂

F is a point ofD .

Proof. By M we denote the set of hyperplanes ofS that are points ofD . We
proceed by induction over the size ofF. For |F|= 1, there is nothing to prove and
for |F|= 2, the claim follows from the definition of the lines ofD . Now let|F|> 2
and assume that the claim holds for every subset ofM that has less elements than
F.
Let M ∈ F and setS :=

⋂

(F r {M}). By the induction hypothesis every hyper-
plane that containsS is an element ofM. If S≤ M, there is nothing to prove.
Therefore we assumeS� M. Let N be a hyperplane ofS that containsS∩M.
We have to showN ∈ M and therefore may assumeM 6= N. ThenM ∩N is a
common hyperplane ofM andN and thus, crkS M∩N = 2. SinceM intersects
S in a hyperplane andS∩M ≤ M ∩N, we conclude thatN′ := 〈S,M ∩N〉 is a
hyperplane ofS . SinceS≤ N′, we knowN ∈ M andN′ 6= M. SinceM∩N is a
hyperplane of bothM andN′, we concludeM∩N′ = M∩N. Thus,N∈M follows
from {M,N′} ⊆ M.

Proposition 5.1.6.Let (S ,D) be a twin projective space of the projective space
S . ThenD is a projective space.

Proof. Let M be the set of hyperplanes ofS that are points ofD and letLm be
the line set ofD . By definition ofLm we know thatD is linear. Hence, it remains
to show that (VY) holds.
Let P∈ M and leth0 andh1 be two distinct lines ofD with P /∈ h0∪h1. Further
let g0 andg1 be two distinct lines ofD that containP and intersect bothh0 andh1.
We have to show thath0 andh1 intersect. Fori ∈ {0,1}, let Si be the subspace of
corank 2 inS that is contained in every element ofgi . ThenS0 andS1 are distinct
hyperplanes ofP and hence,S:= S0∩S1 is a subspace of corank 3 inS . Since
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D is linear, we obtaing0∩g1 = {P}. Moreover, sinceP /∈ h0, we conclude for
i ∈ {0,1} that there is a hyperplanePi ∈ Mr{P} of S such thath0∩gi = {Pi}.
Sinceg0 ∩ g1 = {P} and P 6= P0, we obtainP0 6= P1 and hence,T0 := P0 ∩ P1

is the subspace of corank 2 inS contained in all elements ofh0. This implies
that every hyperplane ofS that is an element ofh0 containsS. Let T1 be the
subspace of corank 2 inS that is contained in every element ofh1. ThenS≤ T1

by analogous reasons. SinceS is a hyperplane of bothT0 andT1, we conclude
thatQ := 〈T0,T1〉 is a hyperplane ofS . By Lemma 5.1.5 we obtainQ∈ M since
P∩P0∩P1 = S0∩S1 = S≤ Q. Thus,Q is a common point ofh0 andh1.

Let S be a projective space and let(S ,D) be the twin projective space ofS

such that every hyperplane ofS is a point ofD . Then we callD thedual of the
projective spaceS .

Proposition 5.1.7.Every twin projective space is a twin space.

Proof. Let S be a projective space and let(S ,D) be a twin projective space of
S . Further letM be the set of hyperplanes ofS that are points ofD . Since
both S andD are projective spaces, both point-line spaces are partially linear.
Since

⋂

M is empty, there is for every pointp ∈ S a hyperplaneH ∈ M with
p /∈ H. Conversely, for every hyperplaneH of S , there is a point inS that is not
contained inp. Thus, the opposition relation of(S ,D) is total.
Every line ofS is contained in a given hyperplane or intersects this hyperplane
in a single point. Conversely, letl be a line ofD . Then the elements ofl have a
subspaceSwith crkS (S) = 2 in common. For an arbitrary pointp∈S we obtain
eitherp∈ Sand hence,p is contained in every element ofl or p /∈ Sand hence,
〈p,S〉 is the unique element ofl that containsp. The claim follows.

Proposition 5.1.8. Let (S +,S −) be a twin projective space. Then(S −,S +)
is a twin projective space.

Proof. SetM := {coprS −(p) | p∈ S +}. SinceS − is singular and(S +,S −)
is a twin space, we know that coprS −(p) is a hyperplane ofS − for every point
p ∈ S +. Moreover, for every pointq ∈ S − there is a pointp ∈ S + with q /∈
coprS −(p). Thus, it remains to prove thatϕ : S + → M : p 7→ coprS −(p) is
a bijection that maps a line ofS + onto the set of all hyperplanes ofS − that
contain a given subspace of corank 2 ofS −.
Let p andq be two distinct points ofS + and letx ∈ S − with p ↔ x. Since
(S +,S −), there is a pointr on the linepqsuch thatr = x. Hence, there is a point
y ∈ S − with y↔ r and thereforez 6= y. By definition of twin projective spaces
both coprS +(x) and coprS +(y) are hyperplanes ofS +. Sincer /∈ coprS +(y)
andpq∩coprS +(x) = {r}, the subspaces coprS +(x) and coprS +(y) intersect in
a subspaceSwhich is disjoint topq and has corank 2 inS +. Hence,〈p,S〉 is a
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hyperplane ofS + and by the definition of a twin projective space, there is a point
z in S − such that coprS +(z) = 〈p,S〉. We obtainz↔ q andz= p and therefore
ϕ is bijective.
SetH := coprS −(p)∩coprS −(q). Sinceϕ is bijective, we obtain crkS −(H) = 2.
For every pointx ∈ H, we know p = x = q and therefore,pq≤ coprS +(x) by
(OP). Thus,H ≤ coprS −(r) for every pointr ∈ pq. Conversely, every hyperplane
of S − that containsH, is of the kind〈y,H〉 for a point y ∈ S − r H. Since
coprS +(y) is a hyperplane ofS +, we find a pointr ∈ pq with r = y. Since
coprS −(r) contains bothy andH, we obtain coprS −(r) = 〈y,H〉. This concludes
the proof.

Example 5.1.9.Consider the vector spaceQ(N) of all infinite sequences of ra-
tional numbers that contain a finite number of non-zero elements. Denote by
PG(Q(N)) the projective space whose points are the 1-dimensional subspaces and
whose lines are the 2-dimensional subspaces ofQ(N). Then the set of points
of PG(Q(N)) is of smaller cardinality as the set of the hyperplanes and even of
lower rank. Moreover, the dual of the dual of PG(Q(N)) is not isomorphic to
PG(Q(N)). This fact justifies to ask in the definition of twin projective spaces that
the constructed point-line space does not necessarily contain all hyperplanes of
the underlying projective space. Otherwise Proposition 5.1.8 would not be true
anymore.

Remark5.1.10. As a matter of fact, the rank of the dual of any projective spaceS

is≥ rk(S ). Furthermore, PG(Q(N)) is a projective space of lowest possible infi-
nite rank and there is no projective space whose dual is isomorphic to PG(Q(N)).
Nevertheless, since for a twin projective space(S +,S −) the projective space
S − is isomorphic to a subspace ofS + there are twin projective spaces such that
the two components are both isomorphic to PG(Q(N)).

Theorem 5.1.11.Every twin projective space is a twin SPO space of diameter
≤ 1.

Proof. Let (S +,S −) be a twin projective space. Since bothS + andS − are
projective spaces, all convex spans of two points at finite distance are either single-
tons or lines. Moreover, the maximal possible finite codistance is 1. By Proposi-
tion 5.1.7 we know that(S +,S −) is a twin space. Thus, all axioms of Definition
2.1.1 follow immediately from (OP).

5.1.3 Exceptional strongly parapolar spaces

The last class of point-line spaces we consider in this section is a class of point-
line spaces arising from weak buildings; see Appendix B. At this point, we are
interested in only two types, namely E6,1 and E7,1.
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Let S be a point-line space of type E6,1. Further letPm be the set of sym-
plecta ofS and letLm ⊆ P(Pm) contain all sets of symplecta that intersect in a
common generator. We call(Pm,Lm) thedual of S .

Definition 5.1.12. Let S = (P ,L ) be a point-line space of type E6,1. Further
let Sm = (Pm,Lm) be the dual ofS . Then we call the pair(S ,Sm) with
the opposition relation{(x,Y),(Y,x) | {x,Y} ∈ P ×Pm ∧ dist(x,Y) = 2} a twin
E6-space.

As usual, isomorphic images of a twin E6-space are also called twin E6-spaces.

Remark5.1.13. Let S = (P ,L ) be the point-line space of a weak building of
type E6,1 and letSm = (Pm,Lm) be the dual ofS . From Theorem B.3.5 and by
the symmetry of the diagram E6 we conclude that(Pm,Lm) is again the point-
line space of a weak building of type E6,1. Moreover, every pointp∈P represents
a symplecton ofSm which is the set of symplecta ofS containingp. Therefore,
the dual ofSm, denoted byD , is canonically isomorphic toS .
By Propositions B.3.6(iv) and B.3.6(ii) we conclude that two distinct symplecta
of S intersect either in a point or in a common generator. Hence byProposition
B.3.6(iii), two symplecta ofS are collinear inSm if they have a generator in
common and they have distance 2 inSm if they intersect in a single point.
Let p ∈ P andY ∈ Pm such that dist(p,Y) = 2 in S . Further letZ be a sym-
plecton ofS that containsp. Since every line ofZ has distance≤ 1 to p, the
symplectaZ andY have no line in common. Thus, every symplecton ofS con-
taining p is non-collinear toY in Sm. This implies that the symplecton ofSm

which is represented byp has distance 2 toY in Sm. Therefore we conclude that
the twin E6-space(Sm,D) is canonically isomorphic to(Sm,S ) using as oppo-
sition relation for(Sm,S ) the opposition relation of the twin E6-space(S ,Sm).
Thus, a pair of point-line spaces(S +,S −) with an opposition relation↔ is
a twin E6-space if and only if(S −,S +) with opposition relation↔ is a twin
E6-space.

Proposition 5.1.14.Every twinE6-space is a twin space.

Proof. Let S = (P ,L ) be a point-line space of type E6,1 and denote the dual
of S by Sm = (Pm,Lm). SinceS is a parapolar space by Theorem B.3.5, it
is partially linear. By Proposition B.3.6(vi), the opposition relation of(S ,Sm)
is total. Hence by Remark 5.1.13 it suffices to show that for a point p ∈ P and
a symplectonY ∈ Pm with dist(p,Y) = 2 in S , there is on every linel ∈ L

throughp exactly one point at distance 1 toY.
SinceS is a parapolar space, there is a symplectonZ ∈ Pm containingl . By
Proposition B.3.6(iv) the symplectaZ andY intersect. Since dist(p,Y) = 2, we
conclude thatY andZ have no line in common and thereforeY andZ intersect
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in a single pointq. Since dist(q, p) = 2 there is exactly one pointp′ on l that is
collinear toq. Hence by Proposition B.3.6(v),p′ is the only point onl at distance
1 toY.

Theorem 5.1.15.Every twinE6-space is a twin SPO space.

Proof. Let S = (P ,L ) be a point-line space of type E6,1 and denote the dual
of S by Sm = (Pm,Lm). We show that the twin E6-space(S ,Sm) fulfils the
axioms of Definition 2.1.1.
Let x ∈ P and letY ∈ Pm such that dist(x,Y) = 1 in S . Then by Proposition
B.3.6(vi) there is a pointy ∈ P such that dist(y,Y) = 2. SinceS is a strongly
parapolar space, we conclude by Proposition B.3.6(iii) that there is a symplecton
Z∈Pm that contains bothx andy. Sincey∈Z and dist(y,Y)= 2 there is no line of
S contained inY∩Z. Thus, Proposition B.3.6(iv) implies thatY andZ intersect
in a single pointp. By Proposition B.3.6(v) we may assume thaty is a point with
y ⊥ x and dist(p,y) = 2. Hence,y ↔ Y and consequently, cod(Y,x) = 1. Since
x /∈Y, there is a pointz∈Y with z⊥ p and dist(x, p) = 2. Then〈x,z〉g is a symplec-
ton that contains the linepz. Sincepz≤Y, Proposition B.3.6(ii) implies that〈x,z〉g
andY are collinear points ofSm. Thus, the symplecton ofSm consisting of all
elements ofPm that containx has distance 1 toY. By Remark 5.1.13 this implies
cod(x,Y) = 1. Therefore (A4) holds and we conclude cod(x,Y) = 2− cod(x,Y)
for any pair(x,Y) ∈ P ×Pm.
Let y andz be points ofS and setV := 〈y,z〉g. Further letX ∈ Pm. By Remark
5.1.13 it suffices to show that (A1), (A2) and (A3) hold forX, y andz. Fory = z,
we obtainV = {y} and hence there is nothing to prove. By Proposition B.3.6(iii)
this leaves the cases dist(y,z) = 1 and dist(y,z) = 2. SinceS is a strongly para-
polar space, we know thatV is a line if dist(y,z) = 1 andV is a symplecton if
dist(y,z) = 2. First assume thatX contains a pointx ∈ P with x ↔ X. Then
there is a linel throughx and a symplectonY ∈ Pm with l ≤ V ≤ Y. Since
dist(x,X) = 2 and every line ofY has at most distance 1 tox, we conclude by
Proposition B.3.6(iv) thatY andX intersect in a single pointp. Moreover, there is
a unique point onl that is collinear top and hence by Proposition B.3.6(v) there
is a unique point onl at distance 1 toX. SinceV equals eitherl orY, we conclude
that (A1) and (A2) are fulfilled.
Now V does not necessarily contain a point opposite toX. Assumez∈ coprV(X)
and hence, dist(z,X) = dist(V,X) in S . Further letW ∈ Pm be a symplecton of
S such that dist(y,W) = dist(y,X)+ 1. If dist(y,X) = 0, then dist(z,X) = 0 and
henceV ≤ X sinceX is convex. Thus,V = coprV(X) and (A3) holds. Therefore
we may assume dist(y,X)≥1. By Proposition B.3.6(iii) this implies dist(y,X) = 1
and dist(y,W) = 2. First assume dist(z,X) = 1. ThenX∩V = ∅ and hence,V is
a line by Proposition B.3.6(iv). Since (A2) holds, we know that there is no point
onV that is oppositeX. Thus,V = coprV(X) and (A3) is fulfilled sincey ↔W.
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It remains the casez∈ X and dist(y,X) = 1. If V is a line, then there is a unique
point onV that is not oppositeW since (A2) holds. SinceW andX are collinear
points ofSm, we conclude thatz is the unique point onV not opposite toW and
hence, (A3) is fulfilled. IfV is a symplecton, thenV intersects bothX andW by
Proposition B.3.6(iv). Thus,z∈ X. Moreover, since dist(y,W) = 2 and every line
of V has at most distance 1 toy, there is a pointp ∈ P such thatV ∩W = {p}.
By Proposition B.3.6(v) we knowX∩V > {z} since dist(y,X) < dist(y,z). Thus,
X andV intersect in a common generatorG by Proposition B.3.6(ii). SinceW and
X are collinear points ofSm, we obtain cod(q,W) ≥ 1 and hence, dist(q,W) ≤ 1
for every pointq∈ G. By Proposition B.3.6(v) this impliesG≤ p⊥ and therefore
p ∈ G sinceG is a maximal singular subspace ofV. We conclude that (A3) is
satisfied.

We conclude this section by considering point-line spaces of type E7,1.

Definition 5.1.16. Let S be the point-line space of type E7,1. Further letS ′ be a
copy ofS and letϕ be an isomorphism fromS ontoS ′. Then we call the pair
(S ,S ′) with the opposition relation{(xϕ ,y),(x,yϕ) | {x,y} ⊆ S ∧ dist(x,y) =
3} a twin E7-space.

Proposition 5.1.17.Every twinE7-space is a twin space.

Proof. Let (S +,S −) be a twin E7-space and letϕ be the isomorphism from
S + ontoS − such thatp ↔ q if and only if dist(pϕ ,q) = 3 for a pair of points
(p,q) ∈ S + ×S −. Let (p,q) ∈ S + ×S − be a pair of opposite points and let
l ≤ S − be a line throughq. By Proposition B.3.7(iv) we know dist(pϕ , l) = 2.
Moreover, Proposition B.3.7(iii) implies that the opposition relation is total.
It remains to show that on a linel ≤ S − that contains two points at distance 2 to
pϕ there is no point opposite top. We may assume dist(pϕ , l) = 2 since otherwise
we are done. Letq andq′ be distinct points onl at distance 2 topϕ . Then Propo-
sition B.3.7(i) implies thatY := 〈pϕ ,q〉g andZ := 〈pϕ ,q′〉g are both symplecta.
Hence by Proposition B.3.7(ii), there is a lineg≤Y∩Z throughpϕ . SinceY is a
polar space, there is a unique pointsong that is collinear toq. Analogously, there
is a points′ ong collinear toq′. Supposes 6= s′. Then dist(q,s′) = 2 and〈q,s′〉g is
a symplecton that containssandq′. Hence,g andl are both contained in〈q,s′〉g, a
contradiction since dist(pϕ , l) = 2. Thus,s= s′ and sinceS − is a gamma space,
we obtainl ≤ s⊥. Therefore, every point onl has distance 2 topϕ .

Theorem 5.1.18.Every twinE7-space is a twin SPO space.

Proof. Let (S +,S −) be a twin E7-space and letϕ be the isomorphism fromS +

ontoS − such thatp↔ q if and only if dist(pϕ ,q) = 3 for a pair of points(p,q) ∈
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S +×S −. By Proposition B.3.7(iii) we conclude cod(p,q) = 3−dist(pϕ ,q) for
a pair of points(p,q) ∈ S +×S −. This implies that (A4) is fulfilled.
Letyandzbe points ofS − and setV := 〈y,z〉g. Further letxbe a point ofS +. We
have to check (A1), (A2) and (A3) forx, y andz. Fory= z, we obtainV = {y} and
there is nothing to prove. Now assume dist(y,z) = 3. By Proposition B.3.7(iv) we
know that all lines throughy and all lines throughzare contained inV. Moreover,
by Proposition B.3.7(iii) we know that for every point collinear toy there is a point
at distance 3 that is collinear toz. Therefore we conclude that all points that are
connected toy are contained inV and hence,V = S . Sincexϕ is the only point
of S − at codistance 3 tox, we conclude that (A1), (A2) and (A3) hold. Hence,
we may restrain ourselves to the cases dist(y,z) = 1 and dist(y,z) = 2.
SinceS − is a strongly parapolar space, we know thatV is a line if dist(y,z) = 1
andV is a symplecton if dist(y,z) = 2. If V is a line, then (A1) and (A2) are
fulfilled since(S +,S −) is a twin space. IfV is a symplecton and contains a
point that is oppositex, then by Proposition B.3.7(iv) there is a pointp∈V with
dist(xϕ , p) = 2. By Proposition B.3.7(ii) the symplectaV and〈xϕ , p〉g intersect in
a line and hence, there is a pointx′ ∈ V with xϕ ⊥ x′. Suppose there is a second
point x′′ in V that is collinear toxϕ . Thenx′′ ⊥ x′ sincexϕ /∈ V. SinceS − is a
gamma space all points onx′x′′ are collinear toxϕ . SinceV is a polar space every
point of V has at most distance 2 toxϕ , a contradiction. Thus,x′ is the unique
point ofV collinear toxϕ and we conclude coprV(x) = {x′}. Thus, (A1) and (A2)
are fulfilled.
Now assumez∈ coprV(x) and letw⊥ x be a point with cod(w,y) = cod(x,y)−1.
If xϕ ∈V, thenz= xϕ . If V is a line then cod(x,y) = 2 and hence, cod(w,y) = 1.
Sincew⊥ x, we obtain cod(w,z) = 2. SinceS − is a gamma space,z is the only
point onV that is collinear towϕ and therefore (A3) holds. IfV is a symplecton,
then cod(x,y)= 1 and hence,w↔ y. Thus,V contains a unique point at codistance
2 to w. Sincew ⊥ x, we obtain coprV(w) = {z} and (A3) is satisfied. Therefore
we may assumexϕ /∈ V. If cod(x,y) = 2. Then bothy andz are collinear toxϕ

and we conclude thatV is a line and all points ofV are collinear toxϕ . Since
cod(w,y) = 1 andw⊥ x, we know that all points ofV have codistance 1 or 2 tow
and hence, (A3) holds.
It remains the case cod(x,y)= 1 andxϕ /∈V. This impliesw↔ y. First assume that
V is a line. Then there is a unique point at codistance 1 tow in V. If cod(x,z) = 2,
this implies thatz is the unique point onV not opposite tow sincew ⊥ x. If
cod(x,z) = 1, then there is no pointV opposite tox since(S +,S −) is a twin
space. Thus, (A3) holds in both cases. Now assumeV is a symplecton. Since
dist(xϕ ,y) = 2, we know that〈xϕ ,y〉g is a symplecton. By Proposition B.3.7(ii) the
symplectaV and〈xϕ ,y〉g intersect in a lineg throughy and hence dist(xϕ ,V) ≤ 1.
Thus, there is a pointz′ ∈ g with cod(x,z′) = 2 and consequently, cod(x,z) = 2.
Since dist(y,z) = 2, we obtainz 6= z′. Sincexϕ /∈V, we obtainz⊥ z′.
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Sincew↔ y we know that there is a unique point inw′ in V with cod(w,w′) = 2. If
cod(x,w′)= 2, (A3) holds and we are done. Thus, we suppose cod(x,w′)= 1. This
implies cod(w,z) = cod(w,z′) = 1 sincew ⊥ x. Hence,〈wϕ ,z〉g is a symplecton
and by Proposition B.3.7(ii) there is a line throughz in V∩〈wϕ ,z〉g. Since this line
contains a point that is collinear towϕ , we conclude that this line goes throughw′.
Thus,w′ ⊥ z and analogously,w′ ⊥ z′. Since dist(xϕ ,w′) = 2, this implies that
bothz andz′ are contained in the symplectonZ := 〈xϕ ,w′〉g. Moreover, sinceϕ
is an isomorphism, we obtainwϕ ⊥ xϕ . Since cod(w,w′) = 2, we knowwϕ ⊥ w′

and thereforewϕ ∈ Z. Sincewϕ /∈ V, the intersection ofZ andV is singular.
Both y⊥ and(wϕ)⊥ contain a hyperplane ofZ∩V. Sincew ↔ y, we conclude
y⊥∩ (wϕ)⊥ = ∅. Thus, rk(Z∩V) ≤ 1. Since bothzandz′ are contained inZ∩V,
we concludeZ∩V = zz′. Now w′ ∈ Z∩V impliesw′ ∈ zz′. Since bothzandz′ are
collinear toxϕ and dist(xϕ ,w′) = 2, this is a contradiction to the fact thatS − is a
gamma space. Thus, (A3) holds in all cases.

5.2 Dual polar spaces

As a consequence of Proposition A.2.24 a dual polar space is disconnected when-
ever the underlying polar spaceS has infinite rank. Moreover, two generatorsM
andM′ of S are connected in the dual polar space if and only if they are com-
mensurate. Thus, viewing just the dual polar space, we lose some information:
For instance we cannot tell the rank ofM∩M′ if M andM′ are contained in dis-
tinct connected components of the dual polar space. In this chapter we introduce
a method how to construct out of polar space a twin space whichis (viewed as the
union of its components and without taking the opposition relation into account)
a substructure of the dual polar space. Thereby we gain information compared to
the dual polar space for the generators that are involved.

Throughout this section letS be a polar space and letSm be the dual polar
space ofS . By distD we denote the distance function inSm.

The goal of this section is to show that the twin spaces that weconstruct out of
S are twin SPO spaces. Since this twin spaces consist of subspaces ofSm it is
useful to know what the convex span of two points ofSm at finite distance looks
like.

Proposition 5.2.1.Let M and N be generators ofS with crkM(M∩N) < ∞. Let
G be the convex span of M and N inSm.

(i) A generator L≤ S belongs to G if and only if L≥ M∩N.

(ii) For every generator L≤ S with M∩N ≤ L, there is a generator L′ such
that L∩L′ = M∩N.
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Proof. (i) Let H be the set of all generators ofS containingS:= M∩N. Let K
andL be distinct adjacent generators contained inH. ThenK∩L≥Sand therefore
all generators containingK ∩L belong toH. Thus,H is a subspace ofSm. Now
let K andL be two arbitrary generators ofH with distD(K,L) = k > 1 and let
L′ ∈ Sm with distD(K,L′) = k−1 andL ∼ L′. By Proposition A.2.20 there is a
point p∈ K ∩L′ rL. We obtainL′ = p#L by Lemma A.2.16. SinceK ∩L ≤ p⊥,
we concludeS≤ K ∩L ≤ L′. Hence,H is convex and thereforeG≤ H.
To proveH ≤ G we apply induction overn. For n = 0 there is nothing to prove.
For n = 1 we obtainH = G by the definition of the lines inSm. Now let n > 1
and letL be a generator ofS with S≤ L. Assume there is a pointp∈ L∩M rS.
SetN′ := p#N. Then distD(M,N′) = n−1 and thereforeM∩N′ = 〈p,S〉. Since
〈p,S〉 ≤ L, we may apply the induction hypothesis to concludeL ∈ 〈M,N′〉g (here
M andN′ are treated as points ofSm and hence the convex span of them is a
subspace ofSm). SinceN′ ∈ G, this impliesL ∈ G. Therefore we may assume
M∩L = Sand analogouslyN∩L = S.
Let p∈ LrS. SetM′ := p#M andN′ := p#N. Assume there is a pointq∈NrS
with q ∈ M′. ThenM′ = q# M and hence distD(M′,N) = n−1. Thus,M′ ∈ G
sinceM ∼ M′. The line pq meetsM in a point r sinceM intersectsM′ in a
hyperplane. This impliesr ∈ M∩N′. With pq∩N = {q} we obtainr ∈ M r S.
Therefore we concludeM′∩N > S if and only if M∩N′ > S.
First let M′ ∩N = S. Then distD(M′,N) = n and hence distD(M′,N′) = n− 1
since〈p,S〉 ≤ M′∩N′. Since〈p,S〉 ≤ L, the induction hypothesis providesL ∈
〈M′,N′〉g. SinceS≤ M′∩M and crkM(S) = n, there is a singular subspaceU ≤
M∩M′ with rk(U) = n−2 andS∩U = ∅. This impliesN∩U = ∅ and therefore
crkN(U⊥∩N) = n−1 by Lemma A.2.22(i). SinceS≤M ≤U⊥, we conclude that
S is a hyperplane ofU⊥∩N. Hence, there is a pointq∈ NrSwith U ≤ q⊥. Set
M′′ := q#M. ThenM∩M′ = 〈U,S〉≤M′′ sinceU ≤M∩q⊥. Thus,M, M′ andM′′

lie on a common line inSm. SinceM ∼ M′′ and distD(M′′,N) = n−1, we obtain
M′′ ∈ G. Hence, the line inSm that containsM andM′′ is entirely contained in
G and thus,M′ ∈ G. Analogously,N′ ∈ G and we conclude〈M′,N′〉g ≤ G. This
impliesL ∈ G.
It remains the caseM′ ∩N > S. Hence, we may assume(r # M)∩N > S and
(r #N)∩M > S for every pointr ∈ LrS. Let q∈ M′∩N rS. ThenM′ = q#M
and therefore distD(M′,N) = n−1. This impliesM′ ∈ G. Sinceq ∈ N r S, we
obtainq /∈ L and sinceL is a generator, there is a pointr ∈ Lrq⊥. SetN′′ := r #N.
ThenM′∩N′′ < M′∩N by Lemma A.2.17. SinceS≤M′∩N′′ andM′∩N = 〈q,S〉,
we concludeM′∩N′′ = S and hence, distD(M′,N′′) = n. Sincep ∈ L∩M′ and
p /∈ S, we obtainL ∈ 〈M′,N′′〉g as above. Nowr ∈ LrS implies(r #N)∩M > S.
Hence, distD(M,N′′) = n−1 and thereforeN′′ ∈ G. Thus,L ∈ G and we conclude
H = G.
(ii) By Proposition A.2.20 every two elements ofH have finite distance inSm.
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SinceG is a convex subspace ofSm we may restrain ourselves to the caseL ∼ M.
Furthermore, we may assumeL∩N > Ssince otherwise there is nothing to prove.
SinceL andM have a hyperplane in common,S is a hyperplane ofL∩N. Let
p∈ (L∩N)r S. Thenp /∈ M and by the maximality ofM there is a pointq∈ M
that is not collinearp. By Lemma A.2.17 we conclude(q#N)∩L < L∩N. Since
S≤ q⊥, this implies(q#N)∩L = S.

5.2.1 Spanning pairs

An opposition relation in a twin space denotes the pairs of points that should be
seen as points at maximal distance. By Proposition A.2.20 weknow that for two
generatorsM andN of S with distD(M,N) < ∞ the corank ofM∩N in M equals
distD(M,N). In other words, the smaller the intersection of two generators the
greater is their distance in the dual polar graph. The smallest intersection two
generators can possibly have is if they intersect in the radical.

In polar spaces of arbitrary rank it might happen that there is a line in the dual
polar space such that all generators of the polar space that are elements of this
line intersect a given generator in the radical. By Definition 1.2.4 this implies that
the pairs of generators that intersect in the radical do not always give rise to an
opposition relation for a twin space. The aim of this subsection is to introduce an
extra condition to resolve this problem:

Definition 5.2.2. Let M+ and M− be two generators ofS such that for every
point p∈ S there are pointsp+ ∈ M+ andp− ∈ M− with p∈ (M+∪{p−})⊥⊥∩
(M−∪{p+})

⊥⊥. Then we call(M+,M−) aspanning pair.

Proposition 5.2.3. Let (M+,M−) be a spanning pair ofS . Then M+ ∩M− =
Rad(S ).

Proof. SinceM+ and M− are both maximal, we obtain Rad(S ) ≤ M+ ∩ M−.
Now let p ∈ S and q ∈ M+ ∩M−. Then there is a pointp+ ∈ M+ such that
p ∈ (M− ∪ {p+})

⊥⊥. Thus,q ⊥ p sinceq ∈ (M− ∪ {p+})
⊥ and thereforeq ∈

Rad(S ).

A direct consequence of this proposition is that in a non-degenerate polar space
the two generators of a spanning pair are always disjoint. The dual polar space of a
polar space is isomorphic to the dual polar space of the associated non-degenerate
polar space, see Theorem A.2.15. Moreover, as a consequenceof Proposition
A.2.10 and Lemma A.2.9(v) we know the intersection of two generators when-
ever we know the intersection of the corresponding generators in the associated
non-degenerate polar space. In the following we consider subspaces of the dual
polar space and generators as well as intersections of generators. Hence, we may
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restrain ourselves to non-degenerate polar spaces. Thus, in the remainder of this
sectionS is always a non-degenerate polar space. Generalising the statements
to the case of arbitrary polar spaces is straightforward andwithout any additional
interest.

The following proposition gives two alternative conditions that characterise a
spanning pair. Particularly condition (b) will be used quite often in the following
to prove that a pair of generators is a spanning pair.

Proposition 5.2.4. Let M+ and M1 be two generators ofS . Then the following
statements are equivalent:

(a) (M+,M−) is a spanning pair.

(b) For σ ∈ {+,−} and p∈ S r (M+∪M−), there is a point pσ ∈ Mσ with
p⊥∩M−σ = pσ

⊥∩M−σ .

(c) For σ ∈ {+,−} and p∈ S r (M+∪M−), there is a non-empty subspace
Uσ ≤ Mσ of finite rank with p⊥∩M−σ ≥Uσ

⊥∩M−σ .

Proof. Note that for (b) and (c) the casesσ = + andσ = − are analogous.
(a)⇒ (b): Let p∈S r(M+∪M−). Then there is a pointp+ ∈M+ with p∈ (M−∪
{p+})

⊥⊥ and hence(M− ∪{p+})
⊥ ≤ p⊥. SinceM− is a generator, we obtain

M−
⊥ = M− and therefore(M−∪{p+})

⊥ = p+
⊥∩M−. This impliesp+

⊥∩M− ≤
p⊥∩M−. The claim follows sincep⊥∩M− andp+

⊥∩M− are both hyperplanes
of M−.
(b)⇒ (a): First letp∈ S r (M+∪M−). Then there is a pointp+ ∈ M+ such that
p⊥∩M− = p+

⊥∩M−. SinceM− is a generator, we conclude(M−∪{p+})
⊥⊥ =

(M−∩ p+
⊥)⊥ = (M−∩ p⊥)⊥ ≥ (p⊥)⊥ ∋ p. Now let p ∈ M−. Thenp ∈ (M−∪

{p+})
⊥⊥ for every choice ofp+ ∈ M+ since(M−∪{p+})

⊥ ≤ M−. Finally, for
p∈ M+, we obtainp∈ (M−∪ p)⊥⊥. Hence, we setp+ := p.
(b)⇒ (c): This follows withUσ := {pσ}.
(c)⇒ (b): Let p∈ S r (M+∪M−) and letU+ ≤ M+ be a subspace of finite rank
such thatp⊥∩M− ≥U+

⊥∩M−. Lemma A.2.22(i) implies crkM−(U+
⊥∩M−) <

∞. Hence, the corankk of U+
⊥∩M− in p⊥∩M− is finite. If k > 0, then there is

a pointq ∈ (p⊥ ∩M−) rU+
⊥. SetV+ := q⊥ ∩U+. ThenV+ is a hyperplane of

U+ and hence, for a pointu∈U+ rV+, we obtainV+
⊥∩u⊥ = U+

⊥. Thus,U+
⊥

is a hyperplane ofV+
⊥ and thereforeV+

⊥∩M− = 〈q,U+
⊥∩M−〉. Sinceq∈ p⊥,

the corankV+
⊥∩M− in p⊥ ∩M− is k−1. After finitely many steps we end up

with a non-empty subspaceV+ with p⊥ ∩M− = V+
⊥∩M−. Sincep⊥ ∩M− is a

hyperplane ofM−, we obtainV+ � M− since otherwiseV+
⊥∩M− = M−. Hence,

there is a pointp+ ∈V+ rM−. Sincep+
⊥∩M− is a hyperplane ofM− containing

V+
⊥∩M−, we concludep+

⊥∩M− = p⊥∩M−.

Remark5.2.5. Let S be a non-degenerate polar space of finite rank. Then for
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an arbitrary generatorM of S there is a generatorN ≤ S that is disjoint toM.
Let p be a point ofS r (M∪N). ThenH := N∩ p⊥ is a hyperplane ofN. By
Lemma A.2.22(i) we conclude thatH⊥ intersectsM in exactly one pointq. We
obtainq⊥N = p⊥N. Therefore, inS every generator is part of a spanning pair.
Furthermore, every pair of disjoint generators is a spanning pair.

A non-degenerate polar space with a spanning pair has, in fact, many spanning
pairs. More precisely, we will show that for a given spanningpair (M0,M1) and a
generatorN0 that is commensurate toM0, there is a generatorN1 such thatM1 and
N1 are commensurate and(N0,N1) is a spanning pair. Hence, the set of spanning
pairs induces a symmetric, total relation on the set of generators that are com-
mensurate toM0 or M1. Since the symmetry of this relation is clear by Definition
5.2.2, we just show that it is total.

Lemma 5.2.6. Let (M0,M1) be a spanning pair ofS . Further let M2 be a gen-
erator with M1∩M2 = ∅ and distD(M0,M2) = 1. Then(M1,M2) is a spanning
pair.

Proof. Let p∈ S r (M1∪M2). We show that there are pointsp1 ∈ M1 andp2 ∈
M2 with p1

⊥∩M2 = p⊥∩M2 andp2
⊥∩M1 = p⊥∩M1.

Let q∈ M2 r M0. Sincep andq are not contained inM1, there are pointsp0 and
q0 in M0 with p0

⊥ ∩M1 = p⊥ ∩M1 =: Hp andq0
⊥ ∩M1 = q⊥ ∩M1 =: Hq. If

Hp = Hq we setp2 := q. Otherwisep0 6= q0 and the linep0q0 meetsM2 in a point
s sinceM2 intersectsM0 in a hyperplane. We setH := Hp∩Hq. SinceH ≤ p0

⊥

andH ≤ q0
⊥, we concludeH ≤ s⊥. SinceH ≤ q⊥, every point onsq is collinear

to all points inH. SinceHq is a hyperplane inM1, H is a hyperplane ofHp. Let
r ∈ Hp rH and letp2 ∈ sq∩ r⊥. Thenp2

⊥ contains〈r,H〉 = Hp. Sincep2
⊥∩M1

is a hyperplane ofM1, we concludep2
⊥∩M1 = Hp.

Sinceq /∈ M0∪M1, there is a pointq1 ∈ M1 with q1
⊥∩M0 = q⊥∩M0 = M0∩M2.

Sinceq1 /∈ M2, the subspaceq1
⊥ ∩M2 is a hyperplane ofM2 and we conclude

q1
⊥∩M2 = M0∩M2. We may assumep⊥∩M2 6= M0∩M2 since otherwise we are

done by settingp1 := q1. Hence,p /∈ M0 and there is pointr ∈ M1 with r⊥∩M0 =
p⊥∩M0. Nowq1

⊥∩M2 ≤ M0 yields{r,q1}
⊥∩M2 ≤ p⊥. Thus, Proposition 5.2.4

implies that there is a pointp1 ∈ M1 with p1
⊥∩M2 = p⊥∩M2.

Lemma 5.2.7.Let (M0,M1) be a spanning pair ofS . Let p0 ∈ M0 and p1 ∈ M1

be two points that are not collinear. Then(p1 #M0, p0 #M1) is a spanning pair.

Proof. SetM′
0 := p1#M0 andM′

1 := p0#M1. Sincep1 6⊥ p0, we obtainp1 /∈ M′
1.

SinceM1 ≤ p1
⊥, the hyperplanesp1

⊥∩M′
1 andM1∩M′

1 of M′
1 are equal. With

p1 ∈ M′
0 we concludeM′

0∩M′
1 ≤ p1

⊥∩M′
1 ≤ M1. Hence,M′

0∩M1 = {p1} yields
M′

0∩M′
1 = ∅. Let p∈ S r (M′

0∪M′
1). Because of symmetric reasons, we only

have to show that there is a pointq∈ M′
1 with p⊥∩M′

0 = q⊥∩M′
0. It suffices to
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showp⊥∩M′
0 ≤ q⊥∩M′

0 sinceq /∈ M′
0 and hence,q⊥∩M′

0 andp⊥∩M′
0 are both

hyperplanes inM′
0.

Assumep ∈ M0. Thenp⊥ ∩M′
0 = M0∩M′

0 = p0
⊥ ∩M′

0. Henceq := p0 has the
asked property. Forp∈ M1, we obtainp 6= p1 sincep1 ∈ M′

0. Hence, the linepp1

intersects the hyperplaneM1∩M′
1 of M1 in a pointq. Sincep1 ∈ M′

0, we obtain
p⊥∩M′

0 ≤ p1
⊥. With p⊥∩M′

0 ≤ p⊥ this impliesp⊥∩M′
0 ≤ q⊥.

It remains the casep /∈ M0∩M1. Let r ∈ M1 be the point withp⊥∩M0 = r⊥∩M0.
If r⊥∩M0 = p1

⊥∩M0, thenp⊥∩M0 = M0∩M′
0 and thereforep⊥∩M′

0 = M0∩
M′

0 = p0
⊥ ∩M′

0 and the claim follows withq := p0. Hence, we may assume
r⊥∩M0 = p1

⊥ ∩M0 and thereforer 6= p1. The linep1r meetsM′
1 in a pointq1

sinceM′
1 intersectsM1 in a hyperplane. Sincep1 ∈ M′

0 andq1 /∈ M′
0, we obtain

r⊥∩M′
0 = q1

⊥∩M′
0. Sincep0

⊥∩M′
0 = M0∩M′

0, we conclude{p0,q1}
⊥∩M′

0 =
q1

⊥ ∩M0∩M′
0 = r⊥ ∩M0∩M′

0 = p⊥ ∩M0∩M′
0 ≤ p⊥ ∩M0. Thus, Proposition

5.2.4 implies that there is a pointq∈ M′
1 with q⊥∩M′

0 = p⊥∩M′
0.

Proposition 5.2.8. Let (M0,M1) be a spanning pair ofS and let(M′
0,M

′
1) be a

pair of disjoint generators withdistD(M0,M′
0) = n< ∞ anddistD(M1,M′

1) = m<
∞. Then(M′

0,M
′
1) is a spanning pair.

Proof. We proceed by induction over(n,m) using the strict total order(n0,m0) ≺
(n1,m1) if and only if n0 + m0 < n1 + m1 or (n0 + m0 = n1 + m1 ∧ n0 < n1).
If n+ m≤ 1 the claim follows by Lemma 5.2.6. So from now on, we assume
n+m≥ 2.
Assume there is a pointp∈ M′

i rMi for i = 0 or i = 1 such that(p#Mi)∩M1−i =
∅. Then(p# Mi,M1−1) is a spanning pair by Lemma 5.2.6. Since distD(p#

Mi,M′
i ) = n−1, the claim follows from the induction hypothesis. Hence, we may

from now on assume that there is no such point.
First assumen 6= 0. Let p∈ M′

0 r M0. Then there is a pointp1 ∈ (p#M0)∩M1.
We obtainp#M0 = p1 #M0. SinceM0∩M1 = ∅, there is a pointp0 ∈ M0 which
is not collinear top1. By Lemma 5.2.7 the pair(p1 #M0, p0 #M1) is a spanning
pair. Since distD(p1#M0,M′

0) = n−1 and distD(p0#M1,M′
1)≤m+1, the claim

follows from the induction hypothesis.
Finally, assumen = 0 andm≥ 2. Then by Lemma A.2.19 there are generatorsNi

for 0≤ i ≤ m and pointssi ∈ M′
1 for 0≤ i < m such thatNi+1 = si #Ni , N0 = M1

andNm = M′
1. As assumed, there is a pointp0 ∈ N1∩M0. SinceM0 = M′

0 and
M′

0∩M′
1 = ∅, there is a pointsj for 1≤ j < m that is not collinear top0. Again

there is a pointq0 ∈ (sj # M1)∩M0. Sinceq0 ∈ M0, sj ∈ M′
1 andM0∩M′

1 = ∅,
we obtainsj 6= q0. SinceM1 intersectssj # M1 in a hyperplane, the linesjq0

meetsM1 in a pointq1. Sincep0 6⊥ sj , p0 ⊥ q0 andq0 6= q1, we obtainp0 6⊥ q1.
Now (q1 #M0,N1) is a spanning pair by Lemma 5.2.7 sinceN1 = p0 # M1. With
sj ∈ q0q1 ≤ q1 # M0 we use again Lemma 5.2.7 to conclude that(p0 # (q1 #

M0),sj # N1) is a spanning pair. Sincep0 ∈ M0 r q1 # M0, we obtainp0 # (q1 #
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M0) = M0 by Lemma A.2.19. Withsj ∈ M′
1 rN1 we obtain distD(sj #N1,M′

1) =
dist(N1,M′

1)− 1 = m− 2 by Lemma A.2.19. Hence, the claim follows by the
induction hypothesis.

Corollary 5.2.9. Let (M+,M−) be a spanning pair ofS . For σ ∈ {+,−}, let
Dσ be the connected component ofSm that contains Mσ . Then for every gen-
erator N+ ∈ D+, there is a disjoint generator N− ∈ D−. Moreover, every pair
(N+,N−) ∈ D+×D− with N+∩N− = ∅ is a spanning pair.

Proof. Let distD(M+,N+) = 1. If N+ ∩M− = ∅, we setN− := M−. Otherwise
N+ and M− intersect in a pointp. Let q ∈ M+ r p⊥ and setN− := q# M−.
ThenN−∩N+ = ∅ since(N+,N−) is a spanning pair by Lemma 5.2.7. Thus, the
first claim follows by induction. Applying Proposition 5.2.8 proves the second
claim.

5.2.2 Twin dual polar spaces

In this subsection we show how to construct a twin space from apolar space using
spanning pairs.

Definition 5.2.10. Let S be a polar space with spanning pair(M+,M−). Forσ ∈
{+,−}, letDσ be the connected component of the dual polar space ofS that con-
tainsMσ . Then the pair(D+,D−) with the opposition relation{(M,N),(N,M) |
(M,N) ∈ D+×D− ∧ M∩N = ∅} is called atwin dual polar spaceof S .

Note that by Proposition 5.2.8 we know that the opposition relation consists of
all spanning pairs that have one generator inD+ and one inD−. An isomorphic
image of a twin dual polar space ofS is simply called a twin dual polar space.

Note that if the polar spaceS has finite rank, thenD+ andD− are both iden-
tical toSm and hence,(D+,D−) consists of two isomorphic point-line spaces. If
S has infinite rank, thenD+ ∪D− is a proper subspace of the dual polar space
of S by Proposition A.2.25.

By S we still denote a non-degenerate polar space. Furthermore,in the fol-
lowing (M+,M−) is always a spanning pair ofS andD = (D+,D−) is a twin
dual polar space withM+ ∈ D+ andM− ∈ D−. We denote the distance inD by
distD . Since bothD+ andD− are connected components ofSm and the distance
of two elements of one of those halfs of the twin dual polar space is the same as
their distance inSm, we might still use distD as well for the distance inSm. Note
that for M ∈ D+ andN ∈ D− we always have distD(M,N) = ∞ in D , whereas
distD(M,N) is finite if the rank ofS is finite.

By Corollary 5.2.9 we know already that the spanning pairs form a symmetric,
total relation on the points ofD . We now show thatD is a twin space using this
relation as an opposition relation.
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Proposition 5.2.11.Every twin dual polar space is a twin space.

Proof. By the definition of the lines in the dual polar space it follows directly that
D+ andD− are partially linear spaces.
We know already that the spanning pairs ofS form a symmetric, total relation
on the points ofD . Now letM ∈ D+ andN ∈ D− such that(M,N) is a spanning
pair. Note that by Proposition 5.2.3 the generators of a spanning pair ofS are
always disjoint. LetG be a line ofD− that containsN. Further letN′ ∈ Gr{N}.
ThenH := N∩N′ is a hyperplane of bothN andN′. Hence, there is a pointp in
N′ such that〈p,H〉 = N′. By the maximality ofN′ we concludeN∩ p⊥ = H.
Since(M,N) is a spanning pair, we know by Proposition 5.2.4 that there isa point
q∈ M such thatN∩q⊥ = H. Now NM := q#N is a generator ofS that contains
H and thus,NM ∈ G. By the maximality ofNM we obtainH⊥∩M = {q}. Hence,
every element ofG that intersectsM, containsq. ThereforeNM is the only element
of G that intersectsM. Hence,D is a twin space by Proposition 5.2.8.

In the following we denote the codistance function of the twin spaceD by
codD .

Proposition 5.2.12.Let M∈D+ and N∈D−. ThencodD(M,N) = rk(M∩N)+
1.

Proof. By Proposition 5.2.3 we obtain codD(M,N) = 0 if and only ifM∩N = ∅
for a pair of generators(M,N) ∈ D+ ×D−. Moreover, we have rk(M,N) < ∞
since distD(M,M+) < ∞ and distD(N,M−) < ∞. Hence, Lemma A.2.17 together
with induction implies codD(M,N) = rk(M∩N)+1.

Before checking whether a twin dual polar space satisfies thedefinition of a
twin SPO space, we consider two special situations. First weshow for a span-
ning pair(M+,M−) that the convex span ofM+ and a commensurate generatorX
contains a unique generator which has maximal possible intersection withM−.

Lemma 5.2.13. Let (M+,M−) be a spanning pair ofS . Further let X be a
generator withdistD(M+,X) = k < ∞. Then there is a generator Y with Y∩
M+ = X ∩M+ and rk(Y∩M−) = k− 1. This generator is unique and satisfies
Y = (X∩M+)#M− = (Y∩M−)#M+.

Proof. SetH := M+∩X. Since crkX(H) = r, there is an independent set of points
{bi | 0≤ i < k} such that〈bi | 0≤ i < k〉∩H = ∅ andX = 〈b0, . . . ,bk−1,H〉. Then
for every j ≤ k, Lemma A.2.22(i) implies crkM+(M+ ∩〈bi | i < j〉⊥) = j . Since
H ≤ bi

⊥ for everyi < k, this impliesM+∩{bi | i < k}⊥ = M+∩〈bi | i < k〉⊥ = H.
Since(M+,M−) is a spanning pair andbi /∈ M+, there is a pointpi ∈ M− with
bi
⊥ ∩M+ = pi

⊥ ∩M+ for every i < k. We obtain{pi | i < k}⊥ ∩M+ = H and
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therefore rk(〈pi | i < k〉) = k−1 by Lemma A.2.22(i). By Lemma A.2.22(ii) the
subspaceY := {pi | i ∈ k}# M+ is a generator with distD(M+,Y) = k. Since
H = {pi | i < k}⊥∩M+ ≤Y, we concludeY∩M+ = H.
SinceY = 〈H, pi | i < k〉, H ≤M+ and〈pi | i < k〉 ≤M−, we obtainY∩M− = 〈pi |
i < k〉 and thereforeY = (Y∩M−)# M+. Now let p be any point ofH⊥ ∩M−.
Thenp is collinear topi for i < k. Hence,p⊥ ≥ 〈H, pi | i < k〉 = Y and therefore
〈p,Y〉 is singular. Thus,p ∈ Y sinceY is a generator. Therefore,Y is uniquely
determined andY = H #M−.

In the following lemma we show for a more general situation that whenever we
have a convex spanG≤Sm of two commensurate generators, we can choose two
generators whose convex span isG such that one of them has maximal possible
intersection and the other one has minimal possible intersection to a certain given
generator.

Lemma 5.2.14.Let (M+,M−) be a spanning pair ofS . Further let X, Y and
Z be generators such that X and M+ are commensurate and Y, Z and M− are
commensurate. Set V:=Y∩Z. Then there are generators Y′ and Z′ with Y′∩Z′ =
V such that Y′∩X = V ∩X andcrkZ′∩X(V ∩X) = distD(Y,Z).

Proof. By Corollary 5.2.9 there is a generatorM with distD(M−,M)< ∞ such that
(X,M) is a spanning pair. Then distD(M,Y) and distD(M,Z) are finite. Hence,
we may assumeX = M+ andM− = M.
SetYX := (M∩Y)#X, ZX := (M∩Z)# X andU := 〈X ∩YX,X ∩ZX〉. ThenYX

andZX are generators with distD(M,YX) < ∞ and distD(M,ZX) < ∞ by Lemma
5.2.13. Hence,X∩YX andX∩ZX have both finite rank and therefore rk(U) < ∞.
By Lemma 5.2.13 we obtainYX ∩M = Y∩M and(X∩YX)⊥∩M = (YX ∩M) and
the corresponding forZX. We conclude

U⊥∩M = ((X∩YX)∪ (X∩ZX))⊥∩M

= ((X∩YX)⊥∩ (X∩ZX)⊥)∩M

= ((X∩YX)⊥∩M)∩ ((X∩ZX)⊥)∩M)

= (YX ∩M)∩ (ZX ∩M) = (Y∩M)∩ (Z∩M) = V ∩M .

Thus,VX := U # M = 〈U,V ∩M〉 is a generator by Lemma A.2.22(ii). Now let
B be a basis ofV containing a basisB0 of V ∩M and a basisB1 of V ∩VX. This
is possible sinceV ∩M ≤VX and henceB0 ⊆ B1. SinceVX = 〈U,V ∩M〉, every
subspace ofVX has a basis contained inM∪X. Hence, we may assume that we
choseB such thatB1rB0 ⊆X. SinceVX is a generator, we obtain(V∩M)⊥∩X =
U . With V ≤ (V ∩M)⊥ this impliesV ∩X ≤ U and consequently,〈B1 r B0〉 =
V ∩X sinceX∩M = ∅.
SetBV := Br B1 and setZ′ := BV #VX. Then〈BV〉 is disjoint fromVX since
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B1 is a basis ofV ∩VX. Since crkVX(V ∩VX) ≤ crkVX(V ∩M) < ∞, we obtain
crkY(V∩VX) < ∞ by Proposition A.2.20 and hence, crkV(V∩VX) < ∞. Thus,Z′ is
a generator with distD(VX,Z′) = |BV | by Lemma A.2.22(ii). SinceB1⊆BV

⊥∩VX,
we obtainB⊆ Z′ and hence,V ≤ Z′. This impliesZ′∩X ≤ (V ∩M)⊥∩X = U .
SinceU = X∩(V ∩M)⊥ andV∩M ≤ Z′, we concludeZ′∩VX = 〈V∩M,Z′∩U〉.
Hence,

crkZ′∩X(V ∩X) = crkU(V ∩X)−crkU(Z′∩X)

= crkVx(〈V ∩M,V ∩X〉)−crkVx(〈V ∩M,Z′∩U〉)

= crkVx(〈B0〉,〈B1rB0〉)−crkVx(Z
′∩VX)

= crkVx(〈B1〉)−distD(VX,Z′) = crkY(〈B1〉)−|BV|

= crkY(〈B1,BV〉) = crkY(V) = distD(Y,Z) .

SetY0 :=Y. Let i < distD(Y,Z) be a natural number such thatYi exists andYi∩X �
Z. Then we choose a pointyi ∈Yi ∩X rZ. SinceZ is a generator, there is a point
zi ∈ Z that is not collinear toyi. SetYi+1 := zi #Yi. SinceYi+1∩X ≤ yi

⊥ and
yi
⊥∩Yi+1 =Yi∩Yi+1, we concludeYi+1∩X ≤Yi∩X. Together withyi ∈ (Yi∩X)r

Yi+1 this impliesYi ∩X > Yi+1∩X. Hence, after finitely many steps we obtain a
generatorYj for somej ≤ distD(Y,Z) with Yj ∩X ≤Z. SetY′ :=Yj . ThenY′∩X ≤
V ∩X sinceY′∩X ≤Yi for everyi ≤ j and henceY′∩X ≤Y. On the other hand
we obtainV ≤Y′ sinceV ≤Y0 andV ≤ zi

⊥ for everyi ≤ j . Thus,Y′∩X = V ∩X.
Now crkZ′∩X(Y′∩X) = distD(Y,Z) yields distD(Y′,Z′)≥ distD(Y,Z). Since both,
Y′ andZ′ containV, this implies distD(Y′,Z′) = distD(Y,Z) andY′∩Z′ = V.

Theorem 5.2.15.Every twin dual polar space is a twin SPO space with singular
rank≤ 1.

Proof. Let S be a non-degenerate polar space. Further let(M+,M−) be a span-
ning pair ofS and denote by(D+,D−) the twin dual polar space ofS with
(M+,M−) ∈ D+ ×D−. Since bothD+ andD− are subspaces of the dual polar
spaceSm of S , we conclude by the definition of the lines ofSm that the singular
rank of(D+,D−) is at most 1.
To prove that(D+,D−) is a twin SPO space it suffices to show that the conditions
given in Definition 2.1.1 are fulfilled for a generatorX ∈D+ and generatorsY and
Z that are contained inD−. Setn := distD(Y,Z) and letG be the convex span of
Y andZ in D−.
Assume there is a generatorX′ ∈ G that is oppositeX. ThenY∩Z∩X∅ since
by Proposition 5.2.1 every element ofG containsY∩Z andX ∩X′ = ∅. Since
crkY(Y∩Z) = n, Proposition A.2.20 implies crkN(Y∩Z) = n for every generator
N ∈ G and hence, codD(X,N) ≤ n. Since by Lemma 5.2.14 there is a generator
Z′ ∈G such that the corank of(Y∩Z)∩X in Z′∩X is n, we obtain codD(X,Z′) = n
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and hence (A1) holds. SinceX ∩X′ = ∅, we obtain distD(Z′,X′) ≥ n and there-
fore Z′∩X′ = Y∩Z. Since(X,X′) is a spanning pair, Lemma 5.2.13 implies that
Z′ is the unique generator with rk(X,Z′) = n−1 that containsY∩Z. Thus, (A2)
is satisfied.
Axiom (A4) is a direct consequence of Lemma A.2.17. Hence, itremains to check
(A3). Therefore we assume codD(X,Z) = codD(X,G). Since crkN(Y∩Z) = n for
everyN ∈ G, we know thatY∩Z∩X has corank≤ n in N∩X. Hence, Lemma
5.2.14 implies thatY∩Z∩X has corankn in Z∩X. Since crkZ(Y∩Z) = n, we
concludeZ = 〈X∩Z,Y∩Z〉. Let p∈Y∩X. SinceX∪Y ⊆ p⊥, we obtainZ = 〈X∩
Z,Y∩Z〉 ≤ p⊥ and therefore〈p,Z〉 is singular. By the maximality ofZ we con-
cludep∈ Z and hence,X∩Y = X∩ (Y∩Z). Now letW be a generator that is ad-
jacent toX with codD(W,Y) < codD(X,Y). SinceW andX intersect in a common
hyperplane, we conclude thatW∩Y is a hyperplane ofX∩Y. SinceX∩Y = X∩
(Y∩Z), this impliesW∩(Y∩Z) =W∩Z. Since crkW∩N(W∩Y∩Z)≤ n for every
N ∈ G and crkX∩Z(X∩Y∩Z) = n, this implies codD(W,G) < codD(X,Z). Since
W andX are adjacent, we obtain codD(W,G) = codD(W,Z) = codD(X,Z)−1.
Since codD(X,Y) < ∞, there is a generatorX′ ∈ D− such that(X,X′) is a span-
ning pair and distD(Y,X′) = codD(X,Y). Since codD(X,Z) = codD(X,Y)+n, we
obtain distD(Z,X′) = distD(Z,Y)+distD(Y,X′). Since

crkZ(Z∩Y)+crkY(Y∩X′) ≥ crkZ(Z∩Y)+crkZ∩Y(Z∩Y∩X′)

= crkZ(Z∩Y∩X′) ≥ crkZ(Z∩X′) ,

this impliesZ∩Y∩X′ = Z∩X′ and hence,Z∩X′ ≤ Y∩Z. Now we may apply
Lemma 5.2.13 to show thatZ is the unique generator at codistance codD(X,Z)
to X that containsZ∩X′. Hence, it is also the unique generator contained inG
at this codistance toX. Analogously,Z is the only element ofG at codistance
codD(W,G) to W. Thus, (A3) is satisfied.

5.3 Partial twin Grassmannians

A Grassmannianof a projective spaceS is a point-line space whose point setP

consists of all subspaces ofS of rank k ∈ N and whose lines are the maximal
subsets ofP whose elements intersect in a common subspace of rankk−1 and
are contained in a common subspace of rankk+ 1. To be more specific, this
point-line space is also called a Grassmannian ofk-spaces. The Grassmannian of
0-spaces is canonically isomorphic toS .

For a projective space of infinite rankS , there is an analogous way to define
a point-lines space whose points are the subspaces of corankk. The so obtained
point-line space can be seen as the Grassmannian of corank-k-spaces. Thus, the
Grassmannian of corank-1-spaces is just the dual ofS .
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In the following we introduce a point-line space that is constructed out of a
projective space and can be seen as a generalisation of a Grassmannian. This
construction allows us for a projective spaceS of infinite rank to take as points
of the new point-line space subspaces ofS that have infinite rank and infinite
corank.

LetU be a subspace of a projective spaceS . Then we call a subspaceV ≤ S

a complementof U if and only if U andV are disjoint and〈U,V〉 = S . Since by
this definitionU is a complement toV, we callU andV complementarysubspaces.

Definition 5.3.1. Let S be a projective space and letU+ andU− be non-trivial
subspaces ofS that are complementary. Forσ ∈ {+,−}, let Uσ be the set of
subspaces ofS that are commensurate toUσ . Further set:

L
σ
m :=

{

{Z ∈ Uσ | X∩Y < Z < 〈X,Y〉}
∣

∣ {X,Y} ⊆ Uσ ∧ crkX(X∩Y) = 1
}

R := {(M,N),(N,M) | (M,N) ∈ U+×U− ∧ M∩N = ∅}

Then we call the pair((U+,L +
m ),(U−,L −

m )) with the opposition relationR the
twin Grassmannianof S with respect to(U+,U−).
Forσ ∈ {+,−}, letPσ

m ⊆Uσ be a subset that containsUσ such that the following
conditions are satisfied:

(TG1) For every subspaceV ∈ Pσ
m, there is a subspaceW ∈ P−σ

m such that
V ∩W = ∅.

(TG2) 〈V |V ∈ Pσ
m〉 = S .

(TG3) Let V andW be two elements ofPσ
m. Then{X ∈ Uσ | V ∩W ≤ X ≤

〈V,W〉} ⊆ Pσ
m.

For σ ∈ {+,−}, setL ′σ
m := {L ∈ L σ

m | L ⊆ Pσ
m} andR′ := R∩ ((P+

m ∪P−
m)×

(P−
m ×P+

m)). Then((P+
m,L ′+

m ),(P−
m,L ′−

m )) with the opposition relationR′ is
called apartial twin Grassmannianof S with respect to(U+,U−).

We will see later on that every (partial) twin Grassmannian is a twin space.
Therefore we call a twin space a (partial) twin Grassmannianif it is isomorphic to
a (partial) twin Grassmannian of a projective space. Throughout this sectionS is
always a projective space andU+ andU− are non-trivial subspaces ofS that are
complementary. Forσ ∈ {+,−}, we denote byUσ the set of subspaces ofS that
are commensurate toUσ .

Note that ifU+ is a singleton andU− is a hyperplane, then every partial twin
Grassmannian is a twin projective space. This follows directly from (TG1) and
(TG2). On the other hand, every twin projective space fulfils(TG1) and (TG2).
Moreover, (TG3) follows in this case by the definition of the lines. Hence, every
twin projective space is a partial twin Grassmannian.
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The following remark concerns some immediate consequencesthat follow by
the Axioms (TG1) and (TG3).

Remark5.3.2. Every subspace ofS has a basis that is contained inU+ ∪U−.
Hence, for a subspaceV ∈ U+, there is a basisB of S such thatB ⊆ U+ ∪U−

andB∩V is a basis ofV. We conclude that〈BrV〉 is a complement toV that is
commensurate toU−. Moreover, for two pointsb ∈ B∩U+ andc∈ BrU+, we
obtain〈c,B∩U+ r {b}〉 ∈ U−. Therefore, every twin Grassmannian is a partial
twin Grassmannian.
SinceU+ andV are commensurate, we obtain crkU+(U+∩V) = |B∩V ∩U−|. By
symmetric reasons this implies that a subspaceW ∈ U− is disjoint toV if and only
if 〈V,W〉 = S . Therefore, the subspacesV andW of (TG1) are always comple-
ments.
From (TG3) and the definition of the lines of the twin Grassmannian it follows
directly that every partial twin Grassmannian with respectto (U+,U−) is a sub-
space of the twin Grassmannian with respect to(U+,U−). A second consequence
of (TG3) is that for a partial twin Grassmannian((P+

m,L +
m ),(P−

m,L −
m )), both

subspaces(P+
m,L +

m ) and(P−
m,L −

m ) are connected.

The Axiom (TG2) plays a special role. As we will see omitting it does not
change anything about the definition of partial twin Grassmannians, but it would
change the definition of a partial twin Grassmannian of a given projective space.
Nevertheless, we cling to this axiom since it turns out to be useful.

Remark5.3.3. For σ ∈ {+,−}, let Pσ
1 ⊆ Uσ be a subset withUσ ∈ Pσ

1 such
that (TG1) and (TG3) are fulfilled, but (TG2) is not. SetS ′ := 〈U | U ∈ P

+
1 〉.

Further setP−
0 := {V ∩S ′ |V ∈ P

−
1 }. LetU ∈ P

+
1 andV ∈ P

−
1 such thatU

andV are complements. ThenU andV ∩S ′ are complements inS ′. Thus, there
is a twin GrassmannianD ′ of S ′ with respect to(U+,U−∩S ′). We denote by
U+

0 andU−
0 the point sets of this twin Grassmannian ofS ′, whereU+ ∈ U+

0 and
U−∩S ′ ∈ U−

0 .
For two elementsV andW of P

−
1 there are complementsV ′ andW′ in P

+
1 . Since

V ′ andW′ are complements ofV ∩S ′ andW∩S ′ in S ′ and furthermoreV ′ and
W′ are commensurate, we conclude thatV ∩S ′ andW∩S ′ are commensurate.
Therefore we obtainP−

0 ⊆ U−
0 .

Assume thatV andW are distinct. Then rk(U ∩〈V,W〉) = crk〈V,W〉(V)−1 since
U is complementary toV. This implies crk〈V,W〉∩S ′(V ∩S ′) = crk〈V,W〉(V) and
consequently, crkV∩S ′(V ∩W∩S ′) = crkV(V ∩W). Hence,P−

1 → P
−
0 : X 7→

X∩S ′ is a bijection that maps lines of(P−
m ,L −

m ) onto lines ofD ′.
LetX′≤S ′ be a subspace that is commensurate toV∩S ′ such thatV∩W∩S ′≤
X′≤ 〈V,W〉∩S ′. ThenX := 〈X′,V∩W〉 is commensurate toV withV∩W≤X ≤
〈V,W〉 and (TG3) impliesX ∈ P

−
1 . SinceX′ = X ∩S ′, we concludeX′ ∈ P

−
0

and hence, (TG3) holds forP−
0 . Therefore, restricting the elements ofP

+
1 and
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P
−
1 to the subspaceS ′ leads to an isomorphic structure that still fulfils (TG1)

and (TG3).
SupposeS ′′ := 〈U |U ∈ P

−
0 〉 < S ′. Then we setP+

0 := {V ∩S ′′ |V ∈ P
+
1 }.

By repeating the arguments we obtain that restricting the elements ofP+
1 and

P
−
1 to the subspaceS ′′ leads to an isomorphic structure. Since now (TG1),

(TG2) and (TG3) are all fulfilled, we conclude that the subspaces contained in
P+ andP− are the points of a partial twin Grassmannian. Therefore (TG2) can
be seen as a condition that makes sure thatS is “entirely utilised”.

In the followingSm := ((P+
m,L +

m ),(P−
m,L −

m )) is a partial twin Grassman-
nian ofS with respect to(U+,U−). Forσ ∈ {+,−}, we setS σ

m := (Pσ
m,L σ

m ).
Moreover, we denote byD = (D+,D−) the twin Grassmannian ofS with respect
to (U+,U−).

Proposition 5.3.4.Every partial twin Grassmannian is a twin space.

Proof. Let R be the opposition relation of the partial twin GrassmannianSm. By
(TG1) R is a symmetric, total relation onP+

m ∪P−
m . LetU ∈ P+

m andV ∈ P−
m

such thatU andV are complements. Further letW ∈ P−
m be a subspace such

that V andW are distinct collinear points in(P−
m,L −

m ) and letL ∈ L −
m with

{V,W} ⊆ L. ThenV andW intersect in a common hyperplane. Hence,U and
〈V,W〉 intersect in a single pointp sinceU is a complement toV. We conclude
that〈p,V ∩W〉 is the only element ofL that is not disjoint toU . By the definition
of the lines of a twin Grassmannian we conclude thatSm is partially linear.

Let F be the set of finite subsets ofP+
m and setS ′ :=

⋃

F∈F〈F〉, where〈F〉 is
understood as the span inS . ThenS ′ is a subspace ofS since the union of two
finite sets is again finite. This implies〈U |U ∈ P+

m〉 ≤ S ′ and hence,S ′ = S

by (TG2). We will make use of this fact for proving the following lemma.

Lemma 5.3.5. Let p be a point ofS . Then there are elements U∈ P+
m and

V ∈ P−
m such that p∈U ∩V.

Proof. Since〈U |U ∈P+
m〉= S , there is a finite setF := {Ui | 0≤ i < n} ⊆P+

m
wheren∈N such thatp∈ 〈F〉. For 0≤ j < n, setS j := 〈Ui | i ≤ j〉. We prove
by induction that every point ofS j is contained in a subspaceU ∈ P+

m .
For j = 0 there is nothing to prove sinceS0 = U0. Now assume the claim holds
for j < n− 1. We may assumeU j � S j since otherwiseS j+1 = S j . Let q ∈
S j+1 rS j . Then there are pointsr ∈U j ands∈ S j such thatq is on the liners.
By the induction hypothesis we know that there is a subspaceW ∈ P+

m such that
s∈ W. Sincer ∈ 〈U j ,W〉, (TG3) implies that there is a subspaceU ∈ P+

m with
〈q,U j ∩W〉 ≤U . The claim follows by analogy.
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Lemma 5.3.6.Let n∈N and let(Ui)0≤i≤n be a family of elements ofP+
m . Then

every subspace V∈ U+ with
⋂

0≤i≤nUi ≤ V ≤ 〈Ui | 0 ≤ i ≤ n〉 is an element of
P+

m.

Proof. For n = 0 there is nothing to prove and forn = 1 this is just (TG3). We
prove the claim by induction overn. Hence we may assume that every subspace
V ∈ U+ with

⋂

0≤i<nUi ≤ V ≤ 〈Ui | 0 ≤ i < n〉 is an element ofP+
m . SetS :=

⋂

0≤i<nUi andW := 〈Ui | 0 ≤ i < n〉. In the proof we distinguish three different
situations:
(I) First consider the caseS≤ Un. SinceU0 andUn are commensurate, there
is a natural numberm∈ N and a family of points(pi)0≤i<m such that〈pi ,W |
0 ≤ i < m〉 = 〈Un,W〉. We proceed by another induction. Letj < m such that
every subspaceV ∈ U+ with S≤ V ≤ W′ := 〈pi ,W | 0 ≤ i < j〉 is contained in
P+

m andp j /∈ W′. Let V ∈ U+ with S≤ V ≤ 〈p j ,W′〉. We may assumeV � W′

since otherwise we know alreadyV ∈ P+
m . SinceW′ is a hyperplane of〈p j ,W′〉,

the subspaceV ∩W′ is a hyperplane ofV. Moreover,S≤ V ∩W′. Hence, for
an arbitrary subspaceU ′ ≤ W′ that containsV ∩W′ as a hyperplane, we obtain
U ′ ∈P+

m. LetH be a hyperplane ofU ′ that containsU ′∩Un. Then (TG3) implies
〈p j ,H〉 ∈P+

m . If H =V∩W′, we obtain〈p j ,H〉=U ′ and consequently,V ∈P+
m.

Therefore we may assumeH 6= V ∩W′. ThenU ′ = 〈H,V ∩W′〉. SinceU0 6= U1,
we concludeU ′ < W′ and hence, there is a pointp ∈ W′ rU ′. We knowV ′ :=
〈p,V ∩W′〉 ∈ P+

m . Now V ′ ∩ 〈p j ,H〉 ≤ W′ and thus,V ′ ∩ 〈p j ,H〉 ≤ U ′. Since
V ′∩U ′ =V∩W′, we concludeV ′∩〈p j ,H〉 ≤V = 〈p j ,V∩W′〉 ≤ 〈V,〈p j ,H〉〉 and
thereforeV ∈P+

m by (TG3). Thus, induction providesV ∈P+
m for everyV ∈ U+

with S≤V ≤ 〈Un,W〉.
(II) Now consider the caseUn ≤ W. Let crkS(S∩Un) ≥ 2. ThenU0 contains a
hyperplaneH with U0∩Un ≤ H andS� H. SinceS≤U0, we obtain〈S,H〉 = U0

andS∩Un ≤ H. Hence, for a pointp ∈ Un rU0, we concludeS� 〈p,H〉 =: U ′
n

and thereforeU0∩U ′
n = H. By (TG3) we concludeU ′

n ∈ P+
m. SinceH intersects

Sin a hyperplane, we obtainS∩Un < S∩U ′
n < S. By the finiteness of crkS(S∩Un)

we may constrain ourselves to the case crkS(S∩Un) = 1. Now letV ∈ U+ with
S∩Un ≤ V ≤ W. We may assumeS� V since otherwise we know alreadyV ∈
P+

m. SinceS∩Un is a hyperplane ofS and S∩Un ≤ S∩V < S, we conclude
S∩Un = S∩V. SetW′ := 〈Un,V〉. AssumeS≤ W′. Then there is a subspace
V ′ ∈ U+ with S≤V ′ andUn∩V ′ = Un∩V and〈Un,V ′〉 = W′. SinceS≤V ′ ≤W,
we obtainV ′ ∈ P+

m and consequently by (TG3)V ∈ P+
m sinceUn∩V ′ ≤ V ≤

〈Un,V ′〉. Hence, we may assumeS� W′ and thereforeS∩W′ = S∩V. LetH be a
hyperplane ofV that containsS∩V . ThenU ′ := 〈S,H〉 ∈U+. Moreover,U ′ ∈P+

m
sinceS≤ U ′ ≤ W. SinceS � W′, we obtainU ′ ∩W′ = H and consequently,
U ′∩Un ≤ H. Let p∈UnrV. Then〈p,H〉 ∈ U+ and thereforeU ′∩Un ≤ 〈p,H〉 ≤
〈Un,U ′〉 yields〈p,H〉 ∈P+

m by (TG3). SinceU0 6= U1, we knowS<U0 and thus,
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crkV(S∩V) ≥ 2. Hence, there is a hyperplaneH ′ of V that is distinct toH and
containsS∩V. As for U ′, we obtain〈S,H ′〉 ∈ P+

m . SinceS� W′, we conclude
〈S,H ′〉 ∩ 〈p,H〉 ≤ 〈S,H ′〉 ∩W′ = H ′. Thus,〈p,H〉 ∩ 〈S,H ′〉 ≤ V = 〈H,H ′〉 and
(TG3) impliesV ∈ P+

m .
(III) Finally, considerS� Un � W. Let p ∈ Un rW. SinceU0 6= Un, there is a
hyperplaneH of U0 that containsU0∩Un. By (TG3) we concludeU ′

n := 〈p,H〉 ∈
P+

m. LetV ∈ U+ with S∩U ′
n ≤V ≤ 〈p,W〉. If S≤U ′

n, thenV ∈P+
m follows from

(I). If 〈U0,U ′
n〉 = 〈p,W〉, thenV ∈ P+

m follows from (TG3). Therefore we may
assumeS� U ′

n and〈U0,U ′
n〉< 〈p,W〉. SinceH is a hyperplane ofU0 andH ≤U ′

n,
we conclude thatS∩U ′

n = S∩H is a hyperplane ofS. SinceS< U0, we obtain
S∩H < H. Hence there is a hyperplaneH ′ of H such thatS∩H ≤H ′. Then〈S,H ′〉
is a hyperplane ofU0. Now letq∈WrU0. ThenU ′ := 〈q,S,H ′〉 ∈U+. Moreover,
U ′ ∈ P+

m sinceS≤U ′ ≤W. SinceU ′
n∩W ≤U0, we concludeU ′∩U ′

n ≤ 〈S,H ′〉
and thereforeU ′∩U ′

n = H ′. Thus,V0 := 〈p,S,H ′〉 ∈P+
m by (TG3). SinceU0 and

Un are commensurate, we obtain crkUn(W∩Un) < ∞. Hence, there is a family
(Vi)0≤i<m for a natural numberm such thatS= (

⋂

0≤i<nUi)∩ (
⋂

0≤i<mVi) and
〈W,Un〉 = 〈Ui,Vj | i < n ∧ j < m〉. Thus, the claim follows from the two cases (I)
and (II).

The following proposition is Axiom (TG3) in a much stronger version.

Proposition 5.3.7. Let n∈ N and let(Ui)0≤i≤n be a family of elements ofP+
m .

Then every subspace V∈ U+ with
⋂

0≤i≤nUi ≤V is an element ofP+
m .

Proof. SetS:=
⋂

0≤i≤nUi. SinceU0 is commensurate to every element ofP+
m, the

intersection ofU0 andUi has finite corank inU0 for everyi ≤ n. Sincen is finite,
this implies crkU0(S) < ∞. Now letV ∈ U+ with S≤V. Then crkV(S) = crkU0(S).
Hence by Lemma 5.3.5, there is a family(Ui)n<i≤m of elements ofP+

m such that
V ≤ 〈S,Ui | n < i ≤ m〉, wherem∈ N with n ≤ m. Now

⋂

0≤i≤mUi ≤ V ≤ 〈Ui |
0≤ i ≤ m〉 and the claim follows from Lemma 5.3.6.

Corollary 5.3.8. Let rk(U+) < ∞. ThenS +
m = D+.

Proof. Let V ∈ U+ and take an arbitrary elementW0 of P+
m . SetS0 := W0. By

Lemma 5.3.5 there is for every pointp∈ S0rV a subspaceW ∈P−
m with p∈W.

Hence by (TG1), there is a subspaceW1 ∈ P+
m with p /∈W1 and we obtainS1 :=

S0∩W1 < S0. Since rk(V) < ∞, we may repeat this argument to obtain a finite
family (Wi)0≤i≤n of elements ofP+

m such that
⋂

0≤i≤nUi ≤ V. Now the claim
follows from Proposition 5.3.7.

The analogous of this corollary for finite corank does not hold as we know
from the observations of twin projective spaces we made.
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Remark5.3.9. Partial twin Grassmannians can be seen as a generalisation of
Grassmannians. This is because every subspace of a projective space has a com-
plement and hence, every Grassmannian ofk-spaces is together with the Grass-
mannian of corank-(k+1)-spaces a twin Grassmannian.
Conversely, Corollary 5.3.8 implies that wheneverU+ has finite rank thenD+ is a
Grassmannian in the usual sense. Hence, the two parts of a partial twin Grassman-
nian can be seen as Grassmannians ofα-spaces, whereα is an arbitrary cardinal.
However, the reader should keep in mind that ifα is infinite and equals the rank
of S , then the corankβ of the considered subspaces can be of any possible car-
dinal between 1 andα. Hence, in this case, it does not suffice to mention the rank
of the considered subspace. As long asβ is smaller thanα one can talk about
a Grassmannian of corank-β -spaces. Ifβ equalsα one should mention both the
rank and the corank.

Remark5.3.10. The only case whereU+ andU− are not disjoint is rk(S ) < ∞
and rk(U+) = rk(U−). Moreover, by Corollary 5.3.8 this implies thatU+ andU−

are disjoint or equal.

The following proposition characterises the singular subspaces ofSm.

Proposition 5.3.11.Let U and V be two elements ofP+
m that intersect in a com-

mon hyperplane H and let W be the span of U and V inS . Set MH := {X ∈P+
m |

H < X} and MW := {X ∈P+
m |X <W}. Further let L:= {X ∈P+

m |H < X <W}
be the element ofL +

m that contains U and V.

(i) If U is a hyperplane ofS , then MH = L. Otherwise MH is a maximal
singular subspace ofS +

m with rk(MH) = crkS (U).

(ii) If U is a singleton, then MW = L. Otherwise MW is a maximal singular
subspace ofS +

m .

(iii) Every subspace Z∈P+
m that intersects both U and V in a hyperplane is an

element of MH or of MW.

Proof. Let H ′ be a complement toH in S . Further letX andY be two distinct
elements ofMH . ThenH = X∩Y is a common hyperplane ofX andY since both
are commensurate toU . SinceH ′ is a complement toH andX 6= Y, there are
distinct pointsx andy in H ′ such thatX ∩H ′ = {x} andY∩H ′ = {y}. We con-
clude thatG := {Z ∈ U+ | H ≤ Z ≤ 〈xy,H〉} is the element ofL +

m that contains
bothX andY. SinceG⊆ MH , we obtain thatMH is a singular subspace ofS +

m .
Furthermore, a subspaceZ ∈ MH is contained inG if and only if Z intersectsxy.
Since by Proposition 5.3.7 we know〈p,H〉 ∈ S +

m for everyp∈ H ′, we conclude
thatH ′ →MH : p 7→ 〈p,H〉 is an isomorphism fromH ′ onto the singular subspace
MH of S +

m . Therefore rk(MH) = rk(H ′) = crkS (H)+1= crk(U).
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Now let X andY be two distinct elements ofMW. Then bothX andY are hyper-
planes ofW and hence, we conclude thatX andY intersect in a common hyper-
plane. Thus, there is an elementG ∈ L +

m that contains bothX andY and every
element ofG is contained in〈X,Y〉 = W. Thus,MW is a singular subspace of
S +

m . If U is a singleton, thenH = ∅ and hence,MW = L. OtherwiseH contains
a pointp. By Lemma 5.3.5 there is a subspaceZ ∈ P−

m with p∈ Z. Thus, (TG1)
implies that there is a subspaceY ∈ P+

m with p /∈Y. Let X be a hyperplane ofW
that containsH ∩Y and does not containp. Then by Proposition 5.3.7 we obtain
X ∈P+

m and consequently,X ∈ MW. Sincep /∈ X, we obtainH � X and therefore
MW > L.
To show that bothMH andMW are maximal singular subspaces if they are not
equal toL, it remains to prove (iii). LetZ ∈P+

m be a subspace that intersects both
U andV in a hyperplane. AssumeH � Z. ThenU ∩Z andV ∩Z are distinct hy-
perplanes ofZ. This impliesZ = 〈U ∩Z,V ∩Z〉 and hence,Z ≤ 〈U,V〉 = W.

Our goal is to prove thatSm is a twin SPO space. Therefore, we first show
how the distance of two elements ofP+

m and their convex span inSm can be
expressed in terms ofS .

Proposition 5.3.12.Let{U,V} ⊆ P+
m. Then the following claims hold:

(i) The distance of U and V inS +
m is finite and equalscrkU(U ∩V).

(ii) The subspace〈U,V〉g ofS +
m consists of all subspaces W∈U+ with U∩V ≤

W ≤ 〈U,V〉.

Proof. (i) By definition ofL +
m the distance betweenU andV is at least crkU(U ∩

V). SinceU andV are commensurate, crkU(U ∩V) is finite. ForU = V, there
is nothing to prove. Hence we may assume that there is a pointp ∈ V rU . Let
H be a hyperplane ofU containingU ∩V. SetU ′ := 〈p,H〉. ThenU andU ′ are
commensurate and hence,U ′ ∈ P+

m by (TG3). SinceU andU ′ are collinear in
S +

m and〈p,U ∩V〉 ≤U ′∩V, the claim follows by induction.
(ii) By G we denote the convex span〈U,V〉g viewed as a subspace ofS +

m . Further
we setH := {W ∈ U+ |U ∩V ≤W ≤ 〈U,V〉}.
LetW ∈ H. ThenW ∈ P+

m by (TG3). IfU andV have a hyperplane in common,
we obtainW ∈ G by definition ofL +

m . Now let crkU(U ∩V) = d > 1. We prove
W ∈ G by induction and hence we assume that the claim holds for every two
elementsU ′ andV ′ of P+

m with crkU ′(U ′ ∩V ′) < d. For 0≤ i < d, there are
points pi ∈ W such that〈pi ,U ∩V | 0 ≤ i < d〉 = W. If W∩ (U ∪V) ≥ U ∩V,
we may assumepd−1 ∈ U ∪V. SinceW ≤ 〈U,V〉, for everyi < d there is a line
through pi that intersects bothU andV. Hence for 0≤ i < d, there are points
qi ∈U andr i ∈V such that〈qi,U ∩V | 0≤ i < d〉 = U , 〈r i,U ∩V | 0≤ i < d〉 = V
and pi ∈ 〈q j , r j ,U ∩V | 0 ≤ j ≤ i〉. Since crk〈U,V〉(U ∩V) = 2d, the set{qi, r i |
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0≤ i < d} is independent.
First assumepd−1 ∈U . SetV ′ := 〈pd−1, r i,U ∩V | 0≤ i < d−1〉. ThenV andV ′

are collinear inSm and the distance ofU andV ′ is d−1. Hence,V ′ ∈ G. Then
U ∩V ′ = 〈pd−1,U ∩V〉 and thereforeU ∩V ′ ≤W. Sincepd−1 ∈U and〈pi | 0≤
i < d−1〉 ≤ 〈qi , r i,U∩V | 0≤ i < d−1〉 ≤ 〈U,V ′〉, we concludeW∈ 〈U ′,V〉g≤G
by the induction hypothesis.
The casepd−1 ∈V is analogous, therefore we may now assumeW∩U = W∩V =
U ∩V. SetV ′ := 〈q0, r i,U ∩V | 1≤ i < d〉. ThenV andV ′ are collinear inSm.
Let L ∈ L +

m such that{V,V ′} ⊆ L. Since the distance ofU andV ′ is d−1 we
obtainV ′ ∈ G. NowV ∩V ′ = 〈r i,U ∩V | 1≤ i < d〉 and〈V,V′〉 = 〈q0, r0,V ∩V ′〉
and thereforeW′ := 〈p0, r i,U ∩V | 1 ≤ i < d〉 ∈ L. SinceV is a hyperplane of
〈V,V′〉, we concludeU ∩〈V,V ′〉= 〈q0,U∩V〉. Thus,V ′ is the only element ofL at
distanced−1 toU . This implies crkU(U ∩W′) = d. SinceW∩W′ = 〈p0,U ∩V〉,
we obtainW ∈ 〈U,W′〉g as above. SinceV ′ ∈ G, we obtainL ≤ G and hence
W ∈ 〈U,W′〉g ≤ G.
Now as we knowH ⊆ G it remains to show thatH is a convex subspace ofS +

m .
Let U ′ andV ′ be two elements ofH. AssumeU ′ andV ′ are collinear inS +

m
and letL ∈ L +

m such that{U ′,V ′} ⊆ L. Then by definition every element ofL is
contained in〈U ′,V ′〉 ≤ 〈U,V〉 and containsU ′∩V ′ ≥U ∩V. Now assumeU ′ and
V ′ are at distanced≥ 1 in S +

m . LetW ∈P+
m such thatW is collinear toV ′ in S +

m
and has distanced−1 toU ′. Then there is a pointp∈U ′∩WrV ′. SinceV ′ and
W have a hyperplaneH in common, we obtainW = 〈p,H〉 ≤ 〈U ′,V ′〉 ≤ 〈U,V〉.
This implies crkU ′(U ′∩V ′) = crkU ′(U ′∩H) and hence,U ′∩V ′ = U ′∩H. Thus,
W ≥U ′∩V ′ ≥U ∩V.

We now study the codistance of the twin spaceSm. If we talk in the following
of a codistance, we mean always the codistance inSm since the distance or the
codistance inS it at most 2 and therefore can be expressed by collinearity and
intersection.

Proposition 5.3.13.Let U ∈ P+
m and V∈ P−

m . Then the codistance of U and V
is finite and equalsrk(U ∩V)+1.

Proof. We obtainr := rk(U ∩V) < ∞ sinceU has a complementU ′ in P−
m and

every two elements ofP−
m are commensurate inS . Since rk(U ∩V) = r andV is

commensurate toU ′, we obtain crkS (〈U,V〉) = r +1. Hence, there is a subspace
S≤U ′ with rk(S) = r such thatS∩〈U,V〉 = ∅. Moreover,S is a complement of
〈U,V〉. SinceU ∩U ′ = ∅, there is a subspaceT ≤V with V ∩U ′ ≤ T such thatT
is a complement toU in 〈U,V〉. Since rk(U ∩V) = r, we obtain crkV(T) = r +1.
Hence,V ′ := 〈S,T〉 andV are commensurate and thereforeV ′ ∈ U−.
Since〈U,V ′〉 = 〈U,T,S〉 = 〈U,V,S〉 = S , we conclude thatV ′ is a complement
toU . SinceV∩U ′ ≤ T ≤V ′ andV ′ = 〈S,T〉 ≤ 〈U ′,V〉, we concludeV ′ ∈P−

m by
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(TG3). NowV andV ′ have distancer +1 inS −
m . Furthermore, every complement

of U that is an element ofP−
m is disjoint toU ∩V and hence has distance≥ r +1

to V. Thus, cod(U,V) = r +1.

As preparation to show thatSm satisfies the conditions given in Definition
2.1.1 we study the codistance of a given point ofS +

m to the elements of the convex
span of two points inS −

m .

Lemma 5.3.14. Let X ∈ P+
m and {Y,Z} ≤ P−

m. Set m:= rk(X ∩Y ∩Z) + 1,
d := rk(X ∩〈Y,Z〉)+ 1 andcrkY(Y∩Z) = n. Thenmax{m,d−n}−1 ≤ rk(X ∩
V) ≤ min{m+ n,d}−1 for every V∈ 〈Y,Z〉g. Moreover, both bounds are sharp
andrk(X∩Z) = min{m+n,d}−1 impliesrk(X∩Y) = max{m,d−n}−1.

Proof. We know thatd, n andm are all finite. Since crkV(Y∩Z) = n for every
V ∈ 〈Y,Z〉g, we obtainm−1≤ rk(X∩V) ≤ m+n−1. Since crk〈Y,Z〉(V) = n for
everyV ∈ 〈Y,Z〉g, we obtaind−n−1≤ rk(X∩V) ≤ d−1.
Let {pi | 0 ≤ i < d−m} be a set of points such that〈pi,X ∩Y ∩ Z | 0 ≤ i <
d−m〉 = X ∩ 〈Y,Z〉. If d ≤ m+ n, then the corank of(Y ∩ Z) in 〈pi ,Y ∩ Z |
0 ≤ i < d−m〉 is at mostn. Thus there is a subspaceV ∈ U− with V ∈ 〈Y,Z〉g
such thatV ≥ 〈pi,Y∩Z | 0≤ i < d−m〉 and hence, rk(X∩V) = d−1. Assume
rk(X∩Z) = d−1. ThenX∩Z = X∩〈Y,Z〉 and thereforeX∩Y = X∩Y∩Z. Thus,
rk(X ∩Y) = m−1. If d > m+ n, thenV := 〈pi ,Y∩Z | 0≤ i < n〉 ∈ 〈Y,Z〉g and
rk(X ∩V) = m+ n−1. Assume rk(X ∩Z) = m+ n−1. Since rk(X ∩ 〈Y,Z〉) ≥
rk(X∩Y)+ rk(X∩Z)− rk(X∩Y∩Z), we conclude rk(X∩Y) = d−n−1.

Theorem 5.3.15.Every partial twin Grassmannian is a rigid twin SPO space
whose symplecta are all of rank3 and whose lines are contained in at most two
maximal singular subspaces.

Proof. LetSm = (S +
m ,S −

m ) be a partial twin Grassmannian of a projective space
S , whereS σ

m = (Pσ
m,L σ

m ) for σ ∈{+,−}. For elementsU ∈P+
m andV ∈P−

m ,
we writeU ↔V if and only if U andV are complements inS .
Let X ∈ P+

m and letY andZ be elements ofP−
m . Thenn := crkY(Y∩Z) < ∞ is

the distance ofY andZ in S −
m . In the following〈Y,Z〉g denotes the subspace of

Sm that is the convex span of the two pointsY andZ of P−
m . By 〈Y,Z〉 we always

mean the subspace ofS that is spanned by the two subspacesY andZ of S .
First assume that the subspace〈Y,Z〉g contains an elementU ↔ X. By Lemma
5.3.12(ii) we obtainY ∩ Z ≤ U ≤ 〈Y,Z〉. Since crk〈Y,Z〉(Y) = n andU andY
are commensurate, we conclude crk〈Y,Z〉(U) = n. SinceU and X are comple-
ments, this implies rk(X∩〈Y,Z〉) = n−1. Let{pi | 0≤ i < n} be a set of points
of S such that〈pi | 0 ≤ i < n〉 = X ∩ 〈Y,Z〉. SetX′ := 〈pi ,Y∩Z | 0 ≤ i < n〉.
SinceX ∩U = ∅, we knowX ∩Y∩Z = ∅. Thus,〈pi | 0 ≤ i < n〉 ∩Y∩Z = ∅
and therefore crkX′(Y∩Z) = n. Hence, Lemma 5.3.12(ii) impliesX′ ∈ 〈Y,Z〉g.
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Since every elementV ∈ 〈Y,Z〉g containsY ∩Z and is contained in〈Y,Z〉, we
conclude rk(X ∩V) ≥ n− 1 if and only if 〈pi | 0 ≤ i < n〉 ≤ V. We conclude
cod(X,〈Y,Z〉g) = n andX′ is the only element in the coprojection ofX′ in 〈Y,Z〉g.
Thus, (A1) and (A2) are fulfilled.
From now on〈Y,Z〉g does not necessarily contain an element that is oppositeX.
Setm:= rk(X∩Y∩Z)+1 andd := rk(X∩〈Y,Z〉)+1. Then we obtain max{m,d−
n}−1≤ rk(X∩V) ≤ min{m+n,d}−1 for everyV ∈ 〈Y,Z〉g by Lemma 5.3.14.
AssumeZ is in the coprojection ofX in 〈Y,Z〉g. Then Lemma 5.3.14 implies
rk(X∩Z) = min{m+n,d}−1 and rk(X∩Y) = max{m,d−n}−1. LetW ∈P+

m
such thatX andW intersect in a common hyperplane and rk(W∩Y) = rk(X ∩
Y)−1. First assumeW∩〈Y,Z〉 ≤ X ∩〈Y,Z〉. Since rk(W∩Y) = rk(X∩Y)−1,
we obtainW∩ 〈Y,Z〉 6= X ∩ 〈Y,Z〉 and hence,W∩ 〈Y,Z〉 < X ∩ 〈Y,Z〉. Further-
more,V ∩W ≤ V ∩X for everyV ∈ 〈Y,Z〉g. If W ∩Y ∩ Z < X ∩Y ∩ Z, then
V ∩W < V ∩X for everyV ∈ 〈Y,Z〉g and hence (A3) is fulfilled. Therefore we
may assumeW∩Y∩Z = X∩Y∩Z. Supposed ≤ m+n. Then rk(X∩Z) = d−1
and hence,Z ≥ X ∩ 〈Y,Z〉. This impliesX ∩Y = X ∩Y ∩ Z = W ∩Y ∩ Z, a
contradiction toW∩Y < X ∩Y. Thus,W∩Y∩Z = X ∩Y∩Z yields d > m+
n. SinceW∩ 〈Y,Z〉 contains a hyperplane ofX ∩ 〈Y,Z〉, Lemma 5.3.14 implies
cod(W,〈Y,Z〉g) = cod(X,〈Y,Z〉g) = m+n. SinceW∩〈Y,Z〉 < X∩〈Y,Z〉, there is
a subspaceS≤ 〈Y,Z〉∩X with rk(S) = n−1 such thatS∩Y∩Z = ∅ andS� W.
SetZ′ := 〈S,Y∩Z〉. We concludeZ′ ∈P−

m by (TG3) and thereforeZ′ ∈ 〈Y,Z〉g by
Lemma 5.3.12(ii). Since rk(X∩Z′) = 〈S,X∩Y∩Z〉, we obtain cod(X,Z′) = n+m
and consequently,Z′ is in the coprojection ofX in 〈Y,Z〉g. SinceS�W, we obtain
X∩Z′ > W∩Z′ and hence, cod(W,Z′) = n+m−1. Thus, the coprojection ofW
in 〈Y,Z〉g is properly contained in the coprojection ofX in 〈Y,Z〉g. Therefore (A3)
is fulfilled.
Now assumeW∩ 〈Y,Z〉 � X ∩ 〈Y,Z〉. SinceW∩Y < X ∩Y, we concludeW∩
〈Y,Z〉 � X ∩ 〈Y,Z〉 and consequently, rk(W ∩ 〈Y,Z〉) = d − 1 sinceW and X
have a hyperplane in common. Furthermore,W ∩Y < X ∩Y yields W ∩Y ∩
Z ≤ X ∩Y ∩Z. Setm′ := rk(W∩Y ∩Z) + 1. By Lemma 5.3.14 we conclude
rk(X ∩Y) = max{m,d−n} and rk(W∩Y) = max{m′,d−n}. SinceW∩Y is a
hyperplane ofX ∩Y, this impliesm′ = m−1 ≥ d−n. Thus,W∩Y∩Z is a hy-
perplane ofX ∩Y∩Z. Consequently,W∩V � X ∩V for everyV ∈ 〈Y,Z〉g and
therefore rk(W∩V) ≤ rk(X ∩V). Sincem′ + n = m+ n−1 ≥ d, we conclude
cod(W,〈Y,Z〉g) = cod(X,〈Y,Z〉g) = d by Lemma 5.3.14. This implies that the co-
projection ofW in 〈Y,Z〉g is contained in the coprojection ofX in 〈Y,Z〉g. Set
S := 〈X ∩ 〈Y,Z〉,Y∩Z〉. Then crkS(Y∩Z) = d−m sinceX ∩Y∩Z has corank
d−m in X ∩ 〈Y,Z〉. Since crk(W∩〈Y,Z〉)(W ∩Y ∩Z) = d−m+ 1, we conclude
W∩ 〈Y,Z〉 � S and more precisely,S intersectsW∩ 〈Y,Z〉 in a hyperplane. Let
p∈ (W∩〈Y,Z〉)rSand letT ≤ 〈Y,Z〉 be a subspace of rankn+m−d−1 that is
disjoint to〈p,S〉. Then〈T,S〉 ∈ P−

m by (TG3) and hence,〈T,S〉 ∈ 〈Y,Z〉g. Since
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〈T,S〉 ≥ X ∩ 〈Y,Z〉, we obtain cod(X,〈T,S〉) = d. Sincep /∈ 〈T,S〉, we obtain
cod(W,〈T,S〉) < d and therefore the coprojection ofW in 〈Y,Z〉g is properly con-
tained in the coprojection ofX in 〈Y,Z〉g. Thus, (A3) holds.
We already know thatSm consists of two connected components. Moreover, by
Proposition 5.3.11 we know that every line ofSm is contained in at most two
maximal singular subspaces. Therefore it remains to prove that all symplecta of
Sm have rank 3 if there are any. Let{Y,Z} ⊆ P−

m with crkY(Y∩Z) = 2. Further
let U andV be elements of〈Y,Z〉g such thatU andV intersect in a common hy-
perplaneH. SinceV is a hyperplane of〈U,V〉 and crk〈Y,Z〉(V) = 2, there is a point
p∈ 〈Y,Z〉r 〈U,V〉. SetW := 〈p,H〉. We obtainW ∈ 〈Y,Z〉g. SinceH ≤W, both
U andV are collinear toW in Sm. SinceW � 〈U,V〉, there is no line ofSm that
containsU , V andW. Hence, rk(〈Y,Z〉g) ≥ 3.
Now let X ∈ 〈Y,Z〉g such thatX has a common hyperplane with allU , V andW.
ThenH ≤ X by Proposition 5.3.11. Letq∈U andr ∈V such that〈q,H〉= U and
〈r,H〉=V. Since〈p,q, r,H〉= 〈Y,Z〉 and crk〈Y,Z〉(X)= 2, we obtainX∩〈p,q, r〉 6=
∅. Thus, there is a points∈ qr such thatX ∩ ps 6= ∅. SetW′ := 〈s,H〉. Then
W′ ∈ L, whereL ∈ L −

m such that{U,V} ⊆ L. Consequently,X ∈ K, where
K ∈ L −

m such that{W,W′} ⊆ K. This implies that{〈x,H〉 | x ∈ 〈p,q, r〉} is a
generator of〈Y,Z〉g and hence, the symplecton〈Y,Z〉g has rank 3.

Proposition 5.3.16.Let U and V be two elements ofP+
m that intersect in a com-

mon hyperplane. Let W be the span of U and V inS and set MW := {X ∈ P+
m |

X < W}. Thenrk(W) = rk(MW) or bothrk(W) andrk(MW) are infinite.

Proof. Let L ∈ L +
m be the line that containsU andV. By Proposition 5.3.11 we

know thatMW is a singular subspace ofS +
m . Moreover, it follows that the claim

holds for the case rk(U) = 0. Thus, we may assume rk(U) ≥ 1 and consequently,
thatMW contains a subspaceSof rank 2 withL ≤ S.
By Theorem 5.3.15 we know that(S +,S −) is a twin SPO space. Proposition
2.3.5 implies that there is a singular subspaceS′ ≤ S −

m of rank 2 such thatS′ and
S are opposite. Since every element ofL is opposite to an element inS′ and no
element ofS′ is opposite to all elements ofL, we conclude by Corollary 4.2.8 that
there is a lineL′ ≤ S′ that is oppositeL. Let U ′ ∈ L′ with cod(U,U ′) = 1 and
V ′ ∈ L′ with cod(V,V′) = 1.
SetH :=U ′∩V ′ andW′ := 〈U ′,V ′〉. SinceU andV ′ are complementary subspaces
of S , we knowH ∩U = ∅. For an arbitrary pointp ∈ W rU , the subspace
〈p,U ∩V〉 is contained inL and hence, there is an element ofL′ that is disjoint to
〈p,U ∩V〉. Thus,p /∈ H and we conclude thatH is a complement toW. SinceH
has corank 2 inW′, the subspacesW andW′ intersect in a linel of S .
By Proposition 5.3.11 we know thatS′ is either a subspace ofMH := {X ∈ P−

m |
H < X} or of MW′ := {X ∈ P−

m | X < W′}. Let T be an arbitrary subspace of
rank 2 of MW′ that containsL′ and letX ∈ T r L′. ThenH � X and sinceX
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is a hyperplane ofW′, we conclude thatX ∩H has corank 3 inW′. Sincel is
disjoint toX ∩H, we know thatY := 〈l ,X∩H〉 is a hyperplane ofW′ and since
X∩H = X∩U ′∩V ′ we concludeY ∈ MW′ by Proposition 5.3.7. Every element of
MW is a hyperplane ofW and hence, intersectsl . Thus,Y intersects all elements of
MW. If X 6= Y, thenX∩Y has corank 2 inW′ and〈X,Y〉= W′. Since〈l ,H〉= W′,
we obtainH � X∩Y. Furthermore, sinceX∩H is a hyperplane ofH, we conclude
thatX′ := 〈H,X∩H〉 is an element of the line ofS −

m that containsX andY. Since
X′ ∈ L′ andX ∈ T r L′, this implies thatY is an element ofT. Thus,T is not
opposite toSand we concludeS′ 6= T. ThereforeS′ ≤ MH .
Now letR≤MW be a subspace of finite rank that containsS. If MW has finite rank,
we may assumeR= MW. Again by Proposition 2.3.5 there is a singular subspace
R′ ≤ S −

m of rank rk(R) that is oppositeR. Since this implies thatR′ contains a
subspace that is oppositeS, we may assumeS′ ≤ R′ and hence,R′ ≤ MH . Thus, if
rk(MW) is finite we conclude rk(MW)≤ rk(MH) and if rk(MW) is infinite, rk(MH)
is infinite, too. AssumeR′ < MH . ThenMH is not oppositeRby Proposition 2.3.5.
Hence, there is an elementX ∈ MH that intersects every element ofR. By Lemma
2.1.21(ii) this implies thatR is not a maximal singular subspace and consequently
R< MW by Proposition 5.3.11. We conclude that eitherMW andMH have the same
finite rank or both are of infinite rank. Now the claim follows from Proposition
5.3.11 since crkS (V) = rk(U)+1.

5.4 Half-spin spaces

In [Shu94, p. 441] half-spin spaces are introduced as geometries arising from a
certain polar space: Letq be a quadratic form on a vector space of finite dimension
2r with r > 1 such that there exist totally singular subspaces of dimension r. Let
Sq be the point-line space whose points are the 1-dimensional singular subspaces
and whose lines are the totally singular 2-dimensional subspaces. ThenSq is a
polar space of rankr with bipartite dual polar graph. Let{M0,M1} be a partition
of the generators ofSq such that every edge of the dual polar graph has exactly
one vertex inM0. SinceSq has finite rankr, every singular subspace of rank
r −2 is the intersection of two generators ofSq. Since the dual polar graph ofSq

is bipartite, this implies that every singular subspace of rankr −2 is contained in
unique elements ofM0 andM1.

Let Ur−3 be the set of singular subspaces ofSq of rank r −3. The elements
of Ur−3 correspond canonically to the totally singular subspaces of dimension
r −2 with respect toq of the underlying vector space. Two distinct elements of
M0 that are adjacent to a common element ofM1 intersect in an element ofUr−3.
Conversely, every element ofUr−3 is contained in a singular subspace of rankr−2
and hence, in an element ofM0. SinceSq has finite rank, this implies that every
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element ofUr−3 is the intersection of two generators where one is an element
of M0. By Proposition 2.2.8 we conclude that in this case, both generators are
elements ofM0. Hence, there is a point-line space whose points are the elements
of M0 and whose lines are determined by the elements ofUr−2 in the canonical
way. Such a point-line space is called ahalf-spin space.

5.4.1 Local half-spin spaces

Similar to the definition of half-spin spaces there is a way todefine point-line
spaces out of polar spaces of arbitrary rank:

Definition 5.4.1. Let S be a polar space and letM ≤ S be a generator such that
the connected component of the dual polar graph containingM is bipartite. Let
M0 be the set of generators ofS that are commensurate withM and have even
distance toM in the dual polar graph. SetU2 := {N∩L | {N,L} ⊆M0 ∧ crkN(N∩
L) = 2}. Then we call the point-line space(M0,{{N ∈ M0 | S≤ N} | S∈ U2}) a
local half-spin space ofS .

Compared to half-spin spaces we consider for defining the lines in a local half-
spin space only those subspaces of a generator with corank 2 which can be ob-
tained as intersection of two generators. This is because for polar spaces of arbi-
trary rank it can happen that there are subspaces of corank 2 in a generator that are
contained in no other generator. Hence, by the definition ofU2 we make sure that
a local half-spin space is a point-line space. A point-line space that is isomorphic
to a local half-spin space of a polar space is called a local half-spin space.

Note that a local half-spin space of a polar space is a structure that can be
recovered out of the dual polar space. Hence, as for dual polar spaces, we may
restrain ourselves to local half-spin spaces of non-degenerate polar spaces.

Remark5.4.2. Since by Proposition A.2.20 the dual polar space of a polar space
of finite rank is connected, we know that a half-spin space of apolar space of finite
rank is a local half-spin space. Conversely, a local half-spin space of a polar space
of finite rank is already a half-spin space.

Throughout this section letS be a non-degenerate polar space. Further letD

be a local half-spin space ofS . The point set ofD is denoted byM0 and the line
set byL . Further letSm be the dual polar space ofS .

To avoid confusion, we denote the distance inD by distD although the dis-
tance function ofS will be not used since it always can be expressed in terms of
collinearity or intersection. First we show how the distance function distD of D

can be expressed in terms ofS .

Proposition 5.4.3. Let M and N be two generators ofS that are both elements
of D . Then1

2 ·crkM(M∩N) = distD(M,N).
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Proof. A geodesic fromM to N in Sm can be transformed into a path fromM
to N in D by erasing every second element. Conversely, two distinct generators
that are collinear inD have distance 2 inSm by Proposition A.2.20. Hence, a
geodesic fromM to N in D can be transformed into a path inSm from M to N
that has double length. Therefore, the distance ofM andN in D is just the half of
their distance inSm. Thus, the claim follows from Proposition A.2.20.

In the following two propositions we study subspaces ofD . First we show
what kinds of maximal singular subspaces exist and give a correspondence to
subspaces ofS .

Proposition 5.4.4. Let M0, M1 and M2 be elements ofM0 that are pairwise
collinear in D but are not contained in a common element ofL . Set U :=
M0∩M1∩M2 and N := 〈Mi ∩M j | 0 ≤ i < j ≤ 2〉. Then the following claims
hold for every i∈ {0,1,2}.

(i) crkMi (U) = 3.

(ii) N is a generator ofS that intersects Mi in a hyperplane.

(iii) SU := 〈M ∈ M0 | U ≤ M〉 is a maximal singular subspace ofD and has
rank 3.

(iv) SN := 〈M ∈ M0 | crkM(N∩M) = 1〉 is a maximal singular subspace ofD

or equals SN ∩SU .

(v) SU ∩SN is a singular subspace of rank2 of D .

(vi) Every element M∈ M0 that is inD collinear to all of M0, M1 and M2 is an
element of SU or of SN.

Proof. For {i, j ,k} = {0,1,2}, setUi = M j ∩Mk and letLi ∈ L be the line ofD
that containsM j andMk. SinceMi /∈ Li, we obtainUi � Mi for i ∈ {0,1,2} and
consequently,Ui 6= U j for 0≤ i < j ≤ 2.
Let p ∈ M0 rU0. Then by Lemma A.2.16p# M0 is a generator ofS that is
adjacent toM0. Hence,p#M0 is a point ofSm that is not contained inM. Since
p∈M1, we obtainU2≤ p⊥ and thereforeU2≤ p#M0. Analogously,U1≤ p#M0.
SinceU1 6= U2 this implies thatH0 := 〈U1,U2〉 is the common hyperplane ofM0

andp# M0. Moreover,U1 andU2 are both hyperplanes ofH0 and thereforeU =
U1∩U2 has corank 3 inM0. Now (i) follows by symmetric reasons. Thus,U is a
hyperplane ofU0 and we concludeU0 = 〈p,U〉. SinceH0 = 〈U1,U2〉 = M0∩ p⊥,
this impliesN = p#M0 and hence, (ii) follows.
Let M ∈ SU ∩SN. AssumeM /∈ L0 andM 6= M0. SinceU ≤ M∩M0, we obtain
by Proposition 5.4.3 that crkM(M∩M0) = 2. Since bothM andM0 intersectN in
a hyperplane, we concludeM∩M0 ≤ N. Take a pointq∈ (M∩M0)rU . Since
q ∈ M0 rU , we obtainq /∈ U0. By Proposition 5.2.1 we know that there is a
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generatorN′ of S with N∩N′ = U0. Hence,q /∈ N′ and we obtain by Lemma
A.2.16 thatM′ := q# N′ andN′ are adjacent generators. Sinceq ∈ N, we know
U0 ≤ q⊥ and therefore〈q,U0〉 ≤ M′. SinceN andN′ are not adjacent, this implies
thatN andM′ intersect in the common hyperplane〈q,U0〉. Hence,M′ ∈ M0 and
more precisely,M′ ∈ L0. Since〈q,U〉 is contained in allM, M0 andM′, there is
an element inL that contains{M,M0,M′} and (v) follows.
Let r ∈U0rU . Then by Lemma A.2.16 we know thatr #M0 is the only generator
adjacent toM0 that containsr. Sincer ∈ N, this impliesr # M0 = N and hence,
N is the only generator adjacent toM0 that containsU0. SinceN andN′ have
distance 2 inSm andU0 ≤ N′, we conclude thatN′ andM0 have distance 3 in
Sm. Thus,N′∩M0 = U andN′ /∈ M0. Now Proposition 5.2.1 implies that there
is a generatorM3 ∈ S with N∩M3 = U and hence,M3 ∈ M0.
By Proposition 5.4.3 we know that every two elements ofSU are collinear in
D . By definition ofL this implies thatSU is a singular subspace ofD . Since
M3 ∈ SU r SN, (v) implies thatSu has at least rank 3. Now letM ∈ SU r SN with
M 6= M3. Since crkM(M ∩M3) = 2, there is a pointr ∈ (M ∩M3) rU . Since
M3∩N = U , we conclude thatM′ := r # N is a generator that intersectsN in a
hyperplane. Hence,U ≤ r⊥ yieldsM′ ∈ SU ∩SN. Now all M, M′ andM3 contain
〈r,U〉 and thus, they are contained in a common element ofL . This concludes
claim (iii).
Let M andM′ be two distinct elements ofSN. Since bothM andM′ intersectN in
a hyperplane, we obtain crkM(M∩M′∩N) ≤ 2. Thus, Proposition 5.4.3 implies
that M andM′ are collinear inD and furthermore,M ∩M′ ≤ N. Hence, every
element ofM0 that containsM ∩M′ has a hyperplane withN in common since
N /∈ M. Thus, the line ofD that containsM andM′ is fully contained inSN.
ThereforeSN is a singular subspace ofD . Hence, it remains to show (vi) to prove
(iv).
Let M ∈ M such thatM is collinear to allM0, M1 andM2 in D . We may assume
M /∈ SU since otherwise there is nothing left to show. Then by (i) we conclude that
M∩M1∩M2 has corank 3 inM. In other wordsM intersectsU0 in a hyperplane.
Analogously,M intersectsU1 in a hyperplane. SinceM /∈ SU , we knowM∩U0 6=
U andM∩U1 6=U . SinceU =U0∩U1, this impliesM∩U0 6= M∩U1 and therefore
M ∩ N ≥ 〈M ∩U0,M ∩U1〉 > M ∩U0. Since crkM(M ∩ N) has to be odd, we
conclude thatM andN intersect in a hyperplane. This finishes the proof.

We now show what the convex span of two points ofD looks like and how
such a convex span can be expressed in terms concerning the polar spaceS .

Proposition 5.4.5.Let M and N be generators ofS that are contained inD and
let G be the convex span of M and N inD . Then a generator L≤ S is contained
in G if and only if L≥ M∩N.
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Proof. SetS:= M∩N and letH be the set of all generators ofS that are elements
of D and containS. Let K and L be distinct generators contained inH with
crkK(K ∩L) = 2. ThenK ∩L ≥ S and therefore all generators containingK ∩L
belong toH. Thus,H is a subspace ofD . Now let K andL be two arbitrary
generators ofH with crkK(K ∩L) = 2m> 2 and letL′ ∈ D with crkK(K ∩L′) =
2m−2 and crkL(L∩L′) = 2. Then

2m= crkK(K ∩L) ≤ crkK(K ∩L∩L′) ≤ crkK(K∩L′)+2= 2m

and thereforeK ∩L = K ∩L∩L′. This impliesS≤ L′. Hence,H is convex and
consequently,G≤ H.
To proveH ≤ G we apply induction overn := distD(M,N). For n = 0, there is
nothing to prove. Forn = 1, we obtainH = G by the definition of the lines inD .
Now letn> 1 and assume that the claim holds for two generators at distance< n in
D . LetK be a generator ofS with S≤ K. Assume there is a pointp∈ K∩M rS.
Then crkM(K∩M) ≤ 2n−2 since crkM(〈p,S〉) = 2n−1. Thus,M∩K contains a
line l that is disjoint toS. This implies thatl is disjoint toN. SetN′ := l #N. By
Lemma A.2.22(ii) we conclude thatN andN′ have distance 2 inSm and therefore
N andN′ are collinear inD . This implies distD(M,N′) = n−1 and moreover,
M ∩N′ = 〈l ,S〉 sinceS≤ Y∩ l⊥. Since〈l ,S〉 ≤ K, we may apply the induction
hypothesis to concludeK ∈ 〈M,N′〉g. SinceN′ ∈ G, this impliesK ∈ G.
Now assumeM ∩K = S. Since crkK(S) = 2n, there is a pointp ≤ K r S. Set
M̃ := p# M. ThenM̃ is a generator ofS that has distance 1 toM in Sm. Since
S≤ p⊥, we concludeS≤ M̃ and hence, crkN(M̃∩N) ≤ 2n. SinceM andM̃ are
adjacent and hencẽM /∈ M0, we conclude crkN(M̃∩N) = 2n−1 by Proposition
A.2.20. Thus, there is a pointq∈ M̃∩N r S. Since crkK(S) ≥ 4, there is a point
p′ ∈ K r 〈p,S〉 with p′ ⊥ q. SetM′ := p′#M̃. Sincep′ /∈ M̃, we concludeM′ ∈D

sinceM′ and M̃ are adjacent and̃M is not contained inD . Moreover,M and
M′ are collinear inD . Since〈q,S〉 ≤ K ∩ M̃, we obtain〈q,S〉 ≤ M′ and hence,
crkN(N∩M′) ≤ 2n−1. This implies distD(M,M′) = 1 and distD(N,M′) = n−1
and hence,M′ ∈ G. Sinceq /∈ M, there is a pointr ∈ M with r 6⊥ q. Now Lemma
A.2.17 implies thatr #N∩M′ is a hyperplane ofN∩M′. Hence, there is a point
q′ ∈ r #N∩M′ rS. Let r ′ ∈ M with r ′ 6⊥ q′ and setN′ := r ′ # (r #N). Applying
Lemma A.2.17 again yieldsN′ ∩ M′ = S sinceS≤ {r, r ′}⊥. Thus, M′ and N′

have distance 2n in Sm and we concludeM′ ∈ D . Sincer ∈ N′ ∩M andr /∈ S,
we obtain distD(M,N′) ≤ n−1. Sincer # N is adjacent to bothN andN′, we
conclude distD(M,N′) = n−1 and distD(N,N′) = 1 and hence,N′ ∈ G. Since
M′∩K > M′∩N′ = S, we obtain as above thatK is contained in the convex span
of M′ andN′ in D . Since this convex span is contained inG, the claim follows.
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5.4.2 Twin half-spin spaces

The goal of this section is to give a generalisation of half-spin spaces which yields
a class of twin SPO spaces. Therefore we now introduce a method how to con-
struct a twin space out of a polar space such that both halfs ofthe twin space are
local half-spin spaces.

Definition 5.4.6. Let S be a polar space with a spanning pair(M+,M−). Further
letΓ be the dual polar graph ofS and forσ ∈{+,−}, denote byΓσ the connected
component ofΓ that containsMσ . Let Γ+ be bipartite and letMσ be the set of
vertices ofΓσ that have even distance toMσ . Further define the following sets:

L
σ :=

{

{L ∈ Mσ | M∩N < L}
∣

∣ {M,N} ⊆ Mσ ∧ crkM(M∩N) = 2
}

R := {(M,N),(N,M) | (M,N) ∈ M+×M− ∧ M∩N = ∅}

Then we call((M+,L +),(M−,L −)) with the opposition relationR the twin
half-spin space ofS with respect to(M+,M−).

Later on we will see that a twin half-spin space is a twin space. Therefore, a
twin space that is isomorphic to a twin half-spin space of a polar space is called a
twin half-spin space.

Remark5.4.7. We know that in a polar space of finite rank every generator is part
of a spanning pair and the dual polar graph is connected. Thus, if D+ is a half-
spin space of a polar spaceS of finite rank, then there is a half-spin spaceD−

of S such that(D+,D−) is a twin half-spin space. Conversely, a twin half-spin
space of a polar space of finite rank consists of two half-spinspaces.
Let (D+,D−) be a twin half-spin space of a polar spaceS of finite rank. Since
two generators ofS form a spanning pair if and only if they are disjoint, we
conclude by Proposition A.2.20 that the two half-spin spaces D+ andD− are
identical if the rank ofS is even. If the rank ofS is odd, then every generator of
S is either a point ofD+ or of D−.

Remark5.4.8. Let S , M+ and M− be as in the definition above. Further let
(S +

m ,S −
m ) be the twin dual polar space ofS with (M+,M−) ∈ S +

m ×S −
m . By

Theorem 5.2.15 we know that(S +
m ,S −

m ) is a twin SPO space of singular rank≤
1. Since the collinearity graph ofS +

m is bipartite, all lines ofS +
m have cardinality

2. Since for every line inS −
m there is an opposite line inS +

m , we conclude that
every line ofS −

m has cardinality 2. Letp be a point ofS −
m . By Lemma 3.2.1p

has a gate in every line ofS −
m and we conclude that the collinearity graph ofS −

m
is bipartite, too, where the set of points at even distance top and the set of points
at odd distance top form a partition. We conclude that both components of a twin
half-spin space are local half-spin spaces.
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From now on let(M+,M−) be a spanning pair of a non-degenerate polar space
S . Further letD = (D+,D−) be a twin half-spin space ofS with respect to
(M+,M−). Forσ ∈ {+,−} we denote the point set ofDσ by Mσ and the line set
by L σ . To avoid confusion, we denote the distance inD by distD although the
distance function ofS will be not used since it always can be expressed in terms
of collinearity or intersection. Since bothD+ andD− are local half-spin spaces,
we may restrain ourselves to the case thatS is a non-degenerate polar space.

The dual polar graph ofS will be denoted byΓ and forσ ∈ {+,−} we denote
the connected component ofΓ that containsMσ by Γσ . Further letSm be the
dual polar space ofS and let(S +

m ,S −
m ) be the twin dual polar space ofS with

respect to(M+,M−).

Lemma 5.4.9.Let M∈ M+ be a generator ofS . Then there is a generator N∈
M− such that(M,N) is a spanning pair. Moreover, every generator K≤ S that
is commensurate to N and forms together with M a spanning pairis an element of
M−.

Proof. By Corollary 5.2.9 we know already that there is a generatorN ∈ Γ− such
that(M,N) is a spanning pair ofS . Thus, it remains to showN ∈ M−.
By the definition of a twin half-spin space there is a spanningpair (M+,M−) ∈
M+ ×M− of S . Let (Mi)0≤i≤m be a geodesic fromM+ to M in Γ+. Thenm is
even sinceΓ+ is bipartite andM andM+ are both contained inM+. We know
that all lines of the component of the dual polar space ofS that containsM+ have
cardinality 2. Thus, fori < m, the set{Mi,Mi+1} is a line of the dual polar space of
S . By Lemma 5.2.14 we conclude that rk(Mi ∩M−) and rk(Mi+1∩M−) differ by
1. This implies that rk(Mi ∩M−) is odd if and only ifi is even and consequently,
rk(M ∩M−) is odd. Now let(Ni)0≤i≤n be a geodesic fromM− to N in Γ−. By
analogous reasons we conclude fori ≤ n that rk(M∩Ni) is odd if and only ifi is
even. Thus,n is even and the claim follows.

Corollary 5.4.10. The opposition relation ofD consists of all spanning pairs that
are contained in(M+×M−)∪ (M−×M+).

Proof. By Proposition 5.2.8 we know that each pair of the oppositionrelation of
D is a spanning pair. The converse follows since generators ofa spanning pair are
disjoint.

Proposition 5.4.11.Every twin half-spin space is a twin space.

Proof. By the definition ofL + andL − it follows directly thatD+ andD− are
partially linear spaces.
By Corollary 5.2.9 and Lemma 5.4.9 we conclude that the opposition relation of
D is total since it consists of the spanning pairs of(M+×M−)∪ (M−×M+).
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Let M ∈ M+ andN ∈ M− such that(M,N) is a spanning pair. LetG∈ L − such
thatG containsN. Further letN′ ∈ Gr {N}. ThenS := N∩N′ has corank 2 in
bothN andN′. Hence, there are pointsp andq in N′ such that〈p,q,S〉 = N′. By
the maximality ofN′ we concludeN∩ p⊥∩q⊥ = S.
Since(M,N) is a spanning pair, we know by Proposition 5.2.4 that there are points
p′ andq′ in M such thatN∩{p′,q′}⊥ = S. Since the points ofN that are collinear
to p′ form a hyperplane ofN, we obtainp′ 6= q′ and henceShas corank 2 inNM :=
〈p′,q′,S〉. By Proposition A.2.20 we conclude thatNM is a generator ofS and
thus,NM ∈ G. By the maximality ofNM we obtainS⊥∩M = p′q′. Hence, every
element ofG that intersectsM, contains a point of the linep′q′ and consequently,
has a common hyperplane withNM. By Proposition 5.4.3 this implies thatNM is
the only element ofG that intersectsM. Hence,D is a twin space by Proposition
5.2.8.

In the following we denote by codD the codistance function of the twin space
D .

Proposition 5.4.12.Let M ∈ D+ and N∈ D−. ThencodD(M,N) = 1
2(rk(M ∩

N)+1).

Proof. By Proposition 5.4.3 we conclude codD(M,N) ≥ 1
2(rk(M ∩N) + 1). By

Proposition 5.2.12 there is a generatorM′ ∈ Γ− with crkN(N∩M′) = rk(M∩N)+
1 such that(M,M′) is a spanning pair. Lemma 5.4.9 impliesM′ ∈ M−. Hence,
distD(N,M′) = 1

2(rk(M∩N)+1) by Proposition 5.4.3.

Theorem 5.4.13.Every twin half-spin space is a rigid twin SPO space whose
symplecta are all of rank4 and whose singular subspaces of rank2 are contained
in at most two maximal singular subspaces one of which has rank 3.

Proof. Let S be a polar space. Further let(M+,M−) be a spanning pair ofS and
let D = (D+,D−) be the twin half-spin space ofS with (M+,M−) ∈ D+×D−.
By Sm = (S +

m ,S −
m ) we denote the twin dual polar space with(M+,M−) ∈

S +
m ×S −

m . Forσ ∈ {+,−}, we denote the point set ofDσ by Mσ and the point
set ofS σ

m by Pσ
m. The distance function inD is denoted by distD . By Lemma

5.4.9 the set of spanning pairs ofS induces a symmetric, total point-relation on
the twin point-line spaceD . The thereby induced codistance function is denoted
by codD . We prove thatD is a twin SPO space by showing that the four axioms
of Definition 2.1.1 hold if we use the codistance codD . The axiom (A4) follows
directly from Proposition 5.4.12.
Let X ∈M+ and letY andZ be elements ofM−. By G we denote the convex span
of Y andZ in D . By G̃ we denote the convex span ofY andZ in Sm. Comparing
Proposition 5.2.1 with Proposition 5.4.5 yieldsG= G̃∩M−. Letn be the distance
of Y andZ in D . Comparing Proposition A.2.20 with Proposition 5.4.3 implies
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thatY andZ have distance 2n in Sm.
First consider thatG contains a generatorY′ of S such that(X,Y′) is a spanning
pair. Since by Theorem 5.2.15Sm is a twin SPO space, we conclude by (A12)
thatX has codistance 2n to G̃ in Sm and there is exactly one elementZ′ ∈ G̃ that
has codistance 2n to X. Since by Proposition 2.1.3 this implies thatZ′ andY′

have distance 2n in Sm, we concludeZ′ ∈ M−. By Proposition 5.2.12 we obtain
rk(X∩Z′) = 2n−1. Hence, Proposition 5.4.12 implies codD(X,Z′) = n. Analo-
gously, we conclude that all other elements ofG have codistance< n to X in D .
Hence, (A1) and (A2) are fulfilled.
In the following G does not necessarily contain an element that forms a span-
ning pair with X. Assume codD(X,Z) = codD(X,G) and letW ∈ M+ with
distD(X,W) = 1 such that codD(W,Y) = codD(X,Y)−1. Setd := codD(X,Z).
ThenX andZ have codistance 2d in Sm. By Lemma 5.2.14 we conclude that
there are elementsY′ ∈ G̃ andZ′ ∈ G̃ such that the codistance ofZ′ to X exceeds
the codistance ofY′ to X by 2n. Hence, Proposition 2.1.12(iv) implies thatZ′ is a
cogate ofX in G̃. Analogously,W has inSm a cogate inG̃.
First assumeZ′ ∈ M−. ThenZ′ is in D a cogate forX in G since the distance and
the codistance inSm of two points ofD is just the double as inD . Hence,Z′ = Z
and since distD(Z,Y) = n, we obtain codD(X,Y) = d−n. With distD(X,W) = 1
and codD(W,Y) = d−n−1 we conclude codD(W,Z) = d−1. Thus, Proposition
2.1.12(iv) implies forSm thatZ is a cogate forX in G̃. Again this implies thatZ
is in D a cogate forX in G and (A3) is fulfilled inD for this case.
Now assumeZ′ /∈ M−. Then all elements ofG̃ that intersectZ′ in a hyper-
plane are contained inG and are precisely the elements ofG that have codis-
tance codD(X,G) to X in D . Hence,Z andZ′ are collinear inSm. We obtain
rk(X ∩Z′) = 2d. Furthermore, since{Z,Z′} is a line ofG̃, Proposition 2.1.17(i)
implies thatZ′ andY have distance 2n−1 in Sm. Thus, rk(X∩Y) = 2d−2n+1
and consequently, rk(W∩Y) = 2d−2n−1. Assume there is an elementV ∈ G̃
with rk(W∩V) = 2d−2n−2. Then the codistance ofX to G̃ in Sm is at most
2d−1. SinceW andX have distance 2 inSm, this implies that rk(X∩Z′) = 2d−2
andZ′ is the cogate ofW in G̃. We conclude that an element ofG has codis-
tance codD(W,G) to W if and only if it has codistance codD(X,G) to X. Hence,
(A3) is fulfilled in D for this case. Now assume rk(W∩V) ≥ 2d− 2n− 1 for
every elementV ∈ G̃. Then we obtain rk(W∩W′) = 2d− 1 for the cogateW′

of W in G̃. This implies thatW′ and Y have distance 2n in Sm and there-
fore W′ ∈ M. Thus,W′ is a cogate forW in G regarding the point-line space
D . SinceW and X have distance 2 inSm, we obtain rk(W ∩ Z′) ≥ 2d − 2.
SinceW′ 6= Z′ this implies thatW′ andZ′ are collinear inSm and we conclude
codD(W,W′) = codD(X,W′) = 2d. This concludes thatD is a twin SPO space.
By Proposition 5.4.4 every singular subspace ofD+ that has rank 2 is contained
in a maximal singular subspace of rank 3 and in at most one other maximal sin-
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gular subspace. By symmetric reasons it remains to show thatevery symplecton
of D− has rank 4. LetY andZ be elements ofM− with distD(Y,Z) = 2. Then by
Proposition 5.4.5 the symplectonG of D− which is the convex span ofY andZ
consists of all elements ofM− that containS:= Y∩Z. Moreover, crkY(S) = 4 by
Proposition 5.4.3. LetY0 ∈ M− such that bothY andZ are collinear toY0 in D−.
ThenS≤Y0 sinceY0 ∈ G and furthermore,Y0∩Y andY0∩Z have both corank 2
in Y0. Let p∈ (Y0∩Z)r Sand setN := p#Y. Sincep /∈Y, we conclude thatN
andY are distinct adjacent generators and hence,N /∈ M−. Sincep∈ Y0, we ob-
tainY0∩Y ≤ p⊥ and hence,〈p,Y∩Y0〉 is a common hyperplane ofY0 andN. Let
p′ ∈ (Y0∩Y)rS. Sincep′ /∈ Z, there is a pointq∈ Z with q 6⊥ p′. SetY1 := q#N.
SinceY1 andN are adjacent generators, we know thatY1 is collinear to bothY and
Y0 in D−. Sinceq ∈ Y1, we obtainp′ /∈ Y1 and thereforeY∩Y0 � Y1. Hence,Y,
Y0 andY1 are not on a common line inD−. Thus, we may apply Proposition 5.4.4
to conclude that{V ∈ M− |Y∩Y0∩Y1 ≤ V} is a maximal singular subspace of
D− that has rank 3. SinceS≤Y∩Y0∩Y1, we conclude that this maximal singular
subspace is a generator ofG and consequently, rk(G) = 4.





6 Twin SPO spaces

This chapter states the main result of the present work. We show that every twin
SPO space is a grid sum of the twin spaces we studied in Chapter5, that are twin
polar spaces, twin E6-spaces, twin E7-spaces, twin dual polar spaces, partial twin
Grassmannians and twin half-spin spaces (note that twin projective spaces are a
subclass of partial twin Grassmannians). By Theorem 4.3.7 it suffices to show
that every rigid twin SPO space is a grid sum of the mentioned twin spaces. Nev-
ertheless, we include in two cases the non-rigid twin SPO spaces, this is because
twin polar spaces and twin dual polar spaces are not always rigid.

As in Chapter 3 we proceed by a case differentiation with respect to the sym-
plectic rank of the twin SPO space. Before we do so, we discusstwo cases of twin
SPO spaces with small diameter, which are the ones that matchthe twin projective
and the twin polar spaces. The twin SPO spaces of symplectic rank≥ 5 will be
considered in the end of this chapter and are the ones that match the twin spaces
that come from exceptional parapolar spaces. The twin SPO spaces of symplectic
rank 2, 3 and 4 match the twin dual polar spaces, the partial twin Grassmannians
and the twin half-spin spaces, respectively. Each of these twin spaces is con-
structed out of a point-line spaceSm of finite diameter that is either a polar space
or a projective space. Our strategy is to construct this point-line spaceSm out
of the twin SPO spaceS and in the next step, to show thatS is isomorphic to
a twin dual polar space, a partial twin Grassmannian or a twinhalf-spin space
of Sm. Thereby, the points ofSm are always coconvex spans of a point and a
maximal singular subspace ofS that are at almost minimal codistance.

From Section 2.3 we know already that for a twin SPO space(S +,S −), the
diameter ofS + andS − are equal and furthermore, srk(S +) and srk(S −) are
equal or both are infinite. Moreover, by Corollary 4.2.8 we conclude that ifS +

has an finite symplectic rank, then yrk(S +) = yrk(S −).
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6.1 General properties

Before we start with the classification of rigid twin SPO spaces by giving a case
differentiation, we prove some facts that are true for any rigid twin SPO space.

Lemma 6.1.1.Let S be a rigid twin SPO space. Further let x be a point and let
l be a line withcod(x, l) < ∞ andcoprl (x) = l. Then there is a point y with l≤ y⊥

andcod(x,y) = cod(x, l)−1.

(a) For diam(S +) > cod(x, l), there is a point z with l≤ z⊥ and cod(x,z) =
cod(x, l)+1.

(b) For diam(S +) = cod(x, l) ≥ 2, there is a maximal singular subspace M≤
S with l ≤ M andcoprM(x) = M.

Proof. Setd := cod(x, l). By Lemma 4.2.1 there is a pointx′ ↔ x with dist(x′, l) =
d and prl (x

′) = l . Hence by Lemma 3.2.1, there is a pointy with dist(x′,y) = d−1
andl ≤ y⊥. This implies cod(x,y) = d−1. Let p be point ofl .
Assume diam(S +) > d. Since there is a point at finite distance top and at codis-
tanced+ 1 to x, there is a pointz′ with dist(z′, p) = 1 and cod(x,z′) = d + 1 by
Proposition 2.1.16(ii). We may assume that there is a pointq∈ l with dist(z′,q) =
2 since otherwise we are done. HenceY := 〈z′,q〉g is a symplecton. Sincel ≤Y,
we obtain cod(x,Y) ≤ d+ 1. Sincez′ is not a cogate forx in Y, we conclude by
Propositions 2.1.12(ii) and 4.2.5 that coprY(x) is a generator ofY. This implies
y /∈ Y. Sincel ≤ prY(y) andY is rigid, we conclude rk(Y) > 2 by Proposition
2.2.9(i). Thus, there is a pointz∈ coprY(x) with l ≤ z⊥.
Now assume diam(S +) = d ≥ 2. Then there is a pointy′ ⊥ y with dist(y′,x′) =
d− 2. Then cod(x,y′) = d− 2 and hence by Proposition 2.1.12(iv),p is a co-
gate forx in the symplecton〈p,y′〉g. Thus for a pointq ∈ l r {p}, we obtain
q /∈ 〈p,y′〉g. Sinceq ⊥ p and dist(q,y′) = 2, Proposition 2.1.12(ii) implies that
〈p,y′〉g∩ q⊥ contains a line. Since〈p,y′〉g is rigid, Proposition 2.2.9(i) implies
yrk(S +) ≥ 3. Hence by Lemma 3.1.1(i), there is a symplectonY that contains
〈y, l〉. Sincel ≤ coprY(x), Proposition 4.2.5 implies that coprY(x) is a generator
of Y. We may assume that coprY(x) is properly contained in a maximal singular
subspaceM since otherwise we are done. Then Proposition 2.2.4(ii) implies that
y⊥∩coprY(x) = y⊥∩M =: H is contained in exactly two maximal singular sub-
spaces ofS . SupposeM contains a pointz with cod(x,z) = d−1. Thenz /∈ H
and hence,〈y,z〉g is a symplecton that containsH. Thus, Proposition 4.2.5 implies
that copr〈y,z〉g(x) is a generator of〈y,z〉g. This is a contradiction, since〈z,H〉 and
〈y,H〉 are the only generators of〈y,z〉g that containH. Thus, cod(x,z) = d for
every pointz∈ M.
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Lemma 6.1.2.LetS be a rigid twin SPO space withyrk(S +) ∈ {3,4}. Further
let M and N be two maximal singular subspaces withrk(M∩N) = yrk(S )−2.
Let G≤ M and H≤ N. Then〈M∩N,G,H〉g∩M = 〈M∩N,G〉.

Proof. SetS:= M∩N andV := 〈S,G,H〉g. ForG≤ M∩N, we obtainV ≤ N and
hence,V ∩M = S. ForH ≤ M∩N, we obtainV = 〈S,G〉g = 〈S,G〉. Therefore we
assume that there are pointsx∈ GrN andy∈ H rM.
SetF := {P⊆ G∪H | |P| < ∞ ∧ {x,y} ≤ P} andU :=

⋃

P∈F〈P〉g. ThenU ⊆V.
Let u andv be points ofU . Further letP andQ be elements ofF such thatu∈ 〈P〉g
and v ∈ 〈Q〉g. Then 〈u,v〉g ≤ 〈P,Q〉g. SinceP∪Q ∈ F, this implies thatU is
a convex subspace. SinceS≤ 〈x,y〉g and for every pointp ∈ G∪H, we obtain
{p,x,y} ∈ F, this impliesV ≤U and hence,V = U .
The subspace〈P〉g contains the symplecton〈x,y〉g. Since rk(S) = rk(〈x,y〉g)−2,
we obtain〈x,y〉g∩M = 〈x,S〉. SinceP is finite, we conclude〈P〉g∩M = 〈P∩M,S〉
by Propositions 3.4.5 and 3.5.5 together with induction. Thus,U ∩M ≤ 〈G,S〉.
Since〈G,S〉 ≤V, the claim follows.

6.2 Twin SPO spaces with small diameter

In this section we consider the twin SPO spaces of diameter atmost 2. Throughout
this section letS = (S +,S −) be a twin SPO space. In this section we do not
have to demandS to be rigid since there is only one case whereS can be non-
rigid. However in this case, the non-rigid case is just analogous to the rigid one.
More restrictively, we consider twin SPO spaces where each component contains
at most one symplecton. We start with the case without any symplecta.

Lemma 6.2.1. Let S + and S − both be singular. Further let U≤ S + be a
subspace of rank k. Then

⋂

p∈U coprS −(p) has corank k+ 1 in S −. Moreover,
q∈U if and only if

⋂

p∈U coprS −(p) ≤ coprS −(q) for every point q∈ S +.

Proof. By Theorem 2.1.22 bothS + andS − are projective spaces. Let{pi | 0≤
i ≤ k} be a basis ofU and setV :=

⋂

p∈U coprS −(p). ThenV =
⋂

i≤kcoprS −(pi).
For every pointp∈ P+, the subspace coprS −(p) is a hyperplane ofS −. This
implies crkS −(V) ≤ k+ 1. By Proposition 2.3.5 there is a subspaceU ′ ≤ S −

with rk(U ′) = k that is oppositeU . This impliesV ∩U ′ = ∅ and consequently,V
has corankk+1 in S −.
By Lemma 2.1.21(i) we obtainU ≤ coprS +(q) for every pointq∈V and hence,
⋂

p∈U coprS −(p) = V. Now let q ∈ S + rU . Then〈q,U〉 has rankk+ 1. This
implies that

⋂

p∈〈q,U〉coprS −(p)=
⋂

i≤kcoprS −(pi)∩coprS −(q) has corankk+2
in S − and hence,V � coprS −(q).
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This lemma already enables us to classify the twin SPO spaceswithout sym-
plecta. Note that in this case there are no non-rigid examples.

Theorem 6.2.2.Every twin SPO space of diameter≤ 1 is a twin projective space.

Proof. Let (S ,D) be a twin SPO space such thatS is singular. By Theorem
2.1.22 we know thatS andD− are both projective spaces. LetM be the set
of hyperplanes ofS . We know coprS (p) ∈ M for every point p ∈ D . Set
M′ := {coprS (p) | p ∈ D} and letS be the set of subspaces ofS that arise
from intersecting two distinct elements ofM′. We now prove that

(

S ,
(

M′,
{

{M ∈ M′ | S≤ M}
∣

∣ S∈ S
}))

is a twin projective space ofS that is isomorphic to(S ,D).
By Lemma 2.1.13 we conclude that for two distinct pointsp and q of D , the
hyperplanes coprS (p) and coprS (q) are distinct. This implies that the mapD →
M′ : p 7→ coprS (p) is bijective. Now take two distinct pointp andq of D . Then
Lemma 6.2.1 impliesS:= coprS (p)∩coprS (q) ∈S and every pointr ∈ D is on
the linepq if and only if S≤ coprS (r). Hence,

D →
(

S ,
(

M′,
{

{M ∈ M′ | S≤ M}
∣

∣ S∈ S
})

: p 7→ coprS (p)

is an isomorphism. LetH ∈ M with S≤ H and lets∈ H r S. Then there is a
point r ∈ pq that is non-opposites. We obtain coprS (r) = H and consequently,
H ∈ M′.

Before we go on with the other cases, we give a method how to construct a
Grassmannian out of a singular twin SPO space.

Proposition 6.2.3. Let S + be singular. For a natural number k∈N, let U+ be
the set of subspaces of rank k ofS + and letU− be the set of subspaces of corank
k+1 of S −. Set

ψ : U+ → U− : U 7→
⋂

p∈U

coprS −(p)

Pm :=
{

U ∪Uψ |U ∈ U+
}

Lm :=
{

{R∈ Pm | P∩Q≤ R}
∣

∣ {P,Q} ⊆ Pm ∧ rk(P∩Q) = k−1
}

.

Then(Pm,Lm) is isomorphic to the Grassmannian of k-spaces ofS + via the
mapϕ : U+ → Pm : U 7→U ∪Uψ .

Proof. By Lemma 2.3.3S − is singular. Hence, we may apply Lemma 6.2.1 to
concludeUψ ∈ U− for everyU ∈ U+ and moreover,ψ is injective.
The mapϕ is a bijection by the definition ofPm. By the definition ofLm the pair
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(Pm,Lm) is a point-lines space and moreover,ϕ preserves collinearity. Now let
U andV be two distinct elements ofU+ such thatU andV have a hyperplaneH in
common. SetW := 〈U,V〉. ThenW has rankk+1. By Lemma 6.2.1 we conclude
thatS:=

⋂

p∈W coprS −(p) has corankk+2 in S −. SinceUψ andVψ are distinct
subspaces of corankk+ 1 in S −, this implies thatUψ andVψ intersect in the
common hyperplaneS. Hence, for a subspaceX ∈ U+, we obtain by Lemma 6.2.1
S≤ Xψ if and only if X ≤ W. This impliesX ∪Xψ ∈ {R∈ Pm | H ∪S≤ R} if
and only ifS< X < W. SinceH ∪S= (U ∪Uψ)∩ (V ∪Vψ), we conclude thatϕ
maps lines of the Grassmannian ofk-spaces ofS + bijectively onto elements of
Lm.

The second case of this section is the case whereS + andS − are opposite
symplecta. We will see that we just have to ask that one of the components con-
tains exactly one symplecton. Note that in this case we do notrely on the rigid
case.

Theorem 6.2.4. Let (S +,S −) be a twin SPO space such thatS + contains
exactly one symplecton. Then(S +,S −) is twin polar space.

Proof. By Lemma 2.3.3 we know that every point ofS + is contained in a sym-
plecton and hence,S + is a symplecton. LetY ≤ S − be a symplecton that is
oppositeS +. Further letq be a point ofS −. Since there is a point inS + oppo-
site toq, (A12) implies thatq has a gatep in S + with cod(p,q) = 2. Letp′ be the
cogate ofp in Y. Then cod(p, p′) = 2. By Lemma 2.3.3 we obtain dist(p′,q) ≤ 2
and moreover there is a symplectonZ ≤ S − containing bothp′ andq. SinceS +

has to be opposite toZ, we concludeq = p′ and thereforeY = Z = S −.
ThereforeS + andS − are isomorphic via mapping every point onto its cogate
by Corollary 4.2.8. This concludes thatS is a twin polar space.

6.3 Twin SPO spaces of symplectic rank 2

Throughout this section letS = (S +,S −) be a twin SPO space such that all
symplecta have rank 2. We do not ask the twin SPO space to be rigid. Further-
more,S does not necessarily contain a symplecton. But we demand as an extra
condition thatS contains no triangle or equivalently, srk(S ) ≤ 1. The following
proposition shows that every rigid twin SPO space of symplectic rank 2 satisfies
this condition. Hence, the class of twin SPO spaces that we consider in this section
includes the class of rigid twin SPO spaces of symplectic rank 2.

Proposition 6.3.1.A rigid subspace of an SPO space with symplectic rank2 con-
tains no triangles.
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Proof. LetV be a connected rigid subspace of an SPO space with symplecticrank
2 and letl ≤V be a line. It suffices to show that there is no triangle containing l .
By Lemma 3.1.1(i) there is a symplectonY ≤ V containingl . SinceY is a rigid
symplecton of rank 2, there is a point onl that is contained in three lines ofY. By
Proposition 2.2.4(i) this implies thatl is maximal singular subspace ofV.

We consider twin SPO spaces of singular rank≤ 1 because they behave some-
how similar to rigid twin SPO spaces of symplectic rank 2. Thereason for this is
that rigid twin SPO spaces of symplectic rank 2 are, as we willsee in this section,
twin dual polar spaces. The grid sum of at least two non-trivial twin dual polar
spaces is again a twin dual polar space that is not rigid anymore but has singular
rank 1, as one can see by the definition of a grid sum.

By Proposition 4.1.2 both connected components ofS are either singletons or
every maximal rigid subspace ofS is either a single line or has symplectic rank
2 and diameter≥ 2.

Proposition 6.3.2.Let U≤ S be a non-empty coconvex subspace and let p∈S

be a point.

(i) If dist(p,U) < ∞, then p has a gate in U.

(ii) If dist(p,U) = ∞, then p has a cogate in U.

Proof. If dist(p,U) < ∞, setV := prU(p). Otherwise, setV := coprU(p). Since
S is a twin SPO space andU 6= ∅, we obtainV 6= ∅. Moreover,V is contained
in one of the two connected components. By Propositions 2.1.16(i) and 2.1.25(ii)
V is convex since the convex span of every two points ofV is contained inV.
SupposeV contains a linel . If dist(p, l) = ∞, then by Lemma 4.2.1 there is a point
p′ ∈ S with dist(p′, l) < ∞ and prl (p′) = l . Now Lemma 3.2.1 implies thatS
contains a triangle, a contradiction. Thus,V contains a single pointv.
Now let q ∈ U be an arbitrary point. First assume dist(p,U) = ∞. ThenU is
connected and hence dist(q,v) < ∞. Applying Proposition 2.1.12(ii) top and
the metaplecton〈q,v〉g implies cod(p,v) = cod(p,q) + dist(q,v). Thus, v is a
cogate forp in U . Now assume dist(p,U) < ∞. If dist(q,v) < ∞, we apply
Proposition 2.1.25(i) top and〈q,v〉g to conclude dist(p,v)+dist(v,q) = dist(p,q).
If dist(q,v) = ∞, then 〈p,v〉g is a metaplecton with diameter dist(x,U). Since
dist(q,〈p,v〉g) = ∞, we know thatq has a cogateq′ in 〈p,v〉g. SinceU is co-
convex andv and q are contained inU , we obtainq′ ∈ U and consequently,
〈q′,v〉g ≤ U . This implies dist(p,〈q′,v〉g) = dist(p,v) and thereforev = q′ by
Proposition 2.1.17(i). Thus, dist(p,v) = cod(q,v)−cod(q, p).

Every line ofS is already a maximal singular subspace ofS . Moreover, each
point has a cogate in every line at finite codistance. Hence, the coconvex span of
a point and a maximal singular subspace at finite codistance is always a coconvex
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span of two points at finite codistance. Therefore we consider in this section the
coconvex spans of two points.

We show that the nice property for rigid subspaces of symplectic rank 2 with
finite diameter that we stated in Theorem 3.2.3 also holds in the present situation.

Proposition 6.3.3. Let U ≤ S be a metaplecton and let p∈ S be a point with
dist(p,U)< ∞. Then〈p,U〉g is a metaplecton with diameterdist(p,U)+diam(U).

Proof. By Proposition 6.3.2p has a gateq in U . By Proposition 2.1.12(iii) there is
a pointr ∈U with 〈q, r〉g = U . This implies〈p,U〉g = 〈p, r〉g. Sinceq is a gate for
p in U , we obtain dist(p, r) = dist(p,q)+dist(q, r) = dist(p,U)+diam(U).

Corollary 6.3.4. Let U≤ S be a convex subspace of finite diameter. Then U is a
metaplecton.

Proof. Let u andv be points ofU with dist(u,v) = diam(U). Then〈u,v〉g ≤ U .
For every pointp∈U , we obtain〈p,u,v〉g ≤U . Hence, Proposition 6.3.3 implies
p∈ 〈u,v〉g.

For the classification of the twin SPO spaces of singular rank≤ 1, we use
coconvex subspaces that have non-empty intersection with both parts ofS . More
precisely, we consider coconvex spans of two points at finitecodistance. The
following two rather technical lemmas are useful tools to discover the shape of
such coconvex subspaces.

Lemma 6.3.5. Let U ≤ S − be a metaplecton withdiam(U) = n. Further let
u∈U, v∈ S − and x∈ S + be points such thatcod(x,v) = cod(x,u)+dist(u,v).
Thencod(x,〈v,U〉g) = cod(x,U)+dist(v,U).

Proof. By Proposition 6.3.2v has a gateu′ in U andx has a cogatex′ in U . Since
cod(x,v) = cod(x,u)+dist(u,v) = cod(x,u)+dist(v,u′)+dist(u′,u), we conclude
cod(x,v) = cod(x,u′)+dist(u′,v). Thus, we may assumeu= u′. Setk := dist(v,u)
and let(vi)0≤i≤k be a geodesic fromu to v. Further setm := dist(u,x′) and let
(ui)0≤i∈m be a geodesic fromu to x′.
We recursively define pointswi for 0≤ i ≤mwith wi ⊥ ui, wi /∈U and cod(wi ,x)=
cod(ui,x) + 1. Setw0 := v1. Now let i < m such thatwi is defined. Then
〈wi,ui+1〉g ≤ 〈wi,U〉g. Sincewi /∈ U and wi ⊥ ui , we obtain prU(wi) = {ui}
and thus dist(wi,ui+1) = 2 by Proposition 6.3.2. Letwi+1 be the cogate ofx in
〈wi,ui+1〉g. Then cod(ui+1,x) = cod(wi,x) = cod(ui,x)+1 yields cod(wi+1,x) =
cod(ui+1,x)+1 and dist(wi+1,ui) = 2. Nowwi /∈U yieldswi+1 /∈U sinceui ∈U
and〈wi+1,ui〉g = 〈wi ,ui+1〉g. Sincewi+1 is the cogate ofx in 〈wi,ui+1〉g, the points
wi+1 andui+1 are collinear.
Since〈ui,wi+1〉g = 〈wi ,ui+1〉g, we conclude〈wi ,U〉g = 〈wi+1,U〉g and therefore
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〈v1,U〉g = 〈wm,U〉g =: V. Proposition 6.3.3 implies diam(V) = diam(U) + 1.
Together with coprU(x) = {um} and cod(wm,x) = cod(um,x) + 1 this leads to
coprV(x) = {wm} by Proposition 6.3.2 and therefore cod(x,V) = cod(x,U)+ 1.
Sinceu∈V, the claim follows by repeating this procedurek times.

Lemma 6.3.6. Let U ≤ S − and V ≤ S + be two metaplecta such that U is
one-coparallel to V. Further let v∈ V, u∈ U and w∈ S + be points such
that cod(w,u) = cod(v,u)+ dist(w,v). Then U is one-coparallel to〈w,V〉g and
cod(〈w,V〉g,U) = cod(V,U)+dist(w,V).

Proof. Setd := dist(w,V) andW := 〈w,V〉g. We may assumed > 0 since oth-
erwise we are done. By Lemma 6.3.5 we obtain cod(u,W) = cod(u,V) + d =
cod(U,V)+d. By Proposition 6.3.3W is a metaplecton and hence by Proposition
6.3.2,u has a cogatew′ in W. Let v′ be the cogate ofu in V. Then dist(w′,v′) = d
since cod(u,v′) = cod(u,w′)−d.
Now let p ∈ U be an arbitrary point and letp′ be the cogate ofp in V. Further
let q ∈ W be a point with dist(p′,q) < d. Sinceu is the cogate ofv′ in U , we
obtain cod(v′, p) = cod(v′,u)−dist(u, p). Since cod(p, p′) = cod(u,v′), this im-
plies dist(v′, p′) = dist(u, p). Since cod(u, p′) = cod(u,v′)−dist(v′, p′) we obtain
dist(w′, p′) = dist(v′, p′)+d and consequently,

cod(w′, p) ≥ cod(w′,u)−dist(u, p) = (cod(v′,u)+d)−dist(v′, p′)

= (cod(p′, p)+d)− (dist(w′, p′)−d)

> cod(q, p)−dist(w′,q) .

Thus,q is not a cogate forp in W and hence, cod(p,W) ≥ cod(p, p′)+d sincep
has a cogate inW by Proposition 6.3.2. Since by Proposition 2.1.17(i) dist(r,V)≤
d for every pointr ∈W, we conclude cod(p,W) = cod(p,V)+d.

In the following lemma provides a method how to decide whether a point be-
longs to the coconvex span of two points or not.

Lemma 6.3.7. Let x∈ S + and y∈ S − be two points. Then〈x,y〉G∩S + =
⋃

{〈x,z〉g | z∈ S + ∧ cod(x,y)+dist(z,x) = cod(z,y)}.

Proof. First we define the following two sets:

U+ :=
⋃

{〈x,z〉g | z∈ S
+ ∧ cod(x,y)+dist(z,x) = cod(z,y)}

U− :=
⋃

{〈y,z〉g | z∈ S
− ∧ cod(x,y)+dist(z,y) = cod(z,x)}

Now letz∈S + be a point with cod(x,y)+dist(z,x) = cod(z,y). Thenz∈ 〈x,y〉G
and hence〈x,z〉g ≤ 〈x,y〉G. Thus,U+ ⊆ 〈x,y〉G and analogously,U− ⊆ 〈x,y〉G.
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Hence, it suffices to show thatU+∪U− is a coconvex subspace.
For i ∈ {0,1}, letzi ∈S + be a point with cod(x,y)+dist(zi,x) = cod(zi,y). Then
we obtain by Proposition 6.3.3 that〈x,z0,z1〉g is a metaplecton with diameter
dist(x,z0)+ dist(z1,〈x,z0〉g). Let z2 be the cogate ofy in 〈x,z0,z1〉g. By Lemma
6.3.5 we conclude cod(y,z2) = dist(z1,〈x,z0〉g)+cod(y,〈x,z0〉g). Thus,

cod(y,z2)−cod(y,x) = dist(z1,〈x,z0〉g)+cod(y,〈x,z0〉g)−cod(y,x)

= dist(z1,〈x,z0〉g)+dist(z0,x)

= diam(〈x,z0,z1〉g).

Therefore we obtain cod(x,y)+ dist(x,z2) = cod(z2,y) and hence,〈x,z0,z1〉g =
〈x,z2〉g ≤ U+. Thus,U+ is a convex subspace. Analogously,U− is a convex
subspace and we conclude thatU+∪U− is a convex subspace.
For symmetric reasons it remains to show that for arbitrary points u ∈ U+ and
v ∈ U−, every pointw with w ⊥ u and cod(w,v) = cod(u,v)+ 1 is contained in
U+. Let zu ∈U+ andzv ∈U− be points with cod(x,y) = cod(zu,y)−dist(zu,x) =
cod(zv,x)−dist(zv,y) such thatu ∈ 〈x,zu〉g andv ∈ 〈y,zv〉g. By Corollary 4.2.8
there is a pointwv at distance dist(y,zv) to x such that cod(wv,y) = cod(x,y)+
dist(zv,y) and hence〈x,wv〉g ≤U+. Moreover, the metaplectaV+ := 〈x,wv〉g and
V− := 〈y,zv〉g are one-coparallel to each other with cod(V+,V−) = cod(x,zv). By
Proposition 6.3.3〈zu,V+〉g is a metaplecton with diam(〈zu,V+〉g) = diam(V+)+
dist(zu,V+). Moreover, Lemma 6.3.6 implie thatV− is one-coparallel to〈zu,V+〉g
with cod(V−,〈zu,V+〉g) = cod(V−,V+)+dist(zu,V+). Analogously,〈w,zu,V+〉g
is a metaplecton with diameter diam(V+)+ dist(zu,V+)+ dist(w,〈zu,V+〉g) and
V− is one-coparallel to〈w,zu,V+〉g with

cod(V−,〈w,zu,V
+〉g) = cod(V−,V+)+dist(zu,V

+)+dist(w,〈zu,V
+〉g)

= cod(V−,V+)+diam(〈w,zu,V
+〉g)−diam(V+)

= cod(y,x)+diam(〈w,zu,V
+〉g) .

Thus, diam(〈w,zu,V+〉g) = dist(x,z), wherez is the cogate ofy in 〈w,zu,V+〉g.
This implies〈x,z〉g = 〈w,zu,V+〉g and moreover,〈x,z〉g ≤ U+ since cod(x,y)+
dist(z,x) = cod(z,y).

For coconvex spans of two points at finite codistance in twin SPO spaces of
singular rank≤ 1, we obtain a regularity that corresponds to the property ofmeta-
plecta stated in Propositions 2.1.3, 2.1.12(i) and 2.1.12(iii).

Proposition 6.3.8. Let x and y be two points ofS with cod(x,y) = n. Then
codm(〈x,y〉G) = n and for every point u∈ 〈x,y〉G there is a point v∈ 〈x,y〉G at
codistance n. Moreover,〈x,y〉G = 〈u,v〉G for every two points u and v in〈x,y〉G
with cod(u,v) = n.
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Proof. We may assumex∈ S + andy∈ S −. SetU := 〈x,y〉G. Further setUσ =
S σ ∩U for σ ∈ {+,−}. Let u ∈ U+. By Lemma 6.3.7 there is a pointz∈ U+

such thatu∈ 〈x,z〉g =: V+ and cod(y,z)−dist(z,x) = n. By Corollary 4.2.8 there
is a pointv′ with dist(v′,y) = dist(x,z) such that cod(x,v′) = cod(x,y)+dist(y,v′)
andV− := 〈v′,y〉g andV+ are one-coparallel to each other with cod(V+,V−) =
n+dist(x,z). By Lemma 6.3.7 we obtainV− ≤U−. SinceV+ is one-coparallel to
V− with cod(V+,V−) = n+ diam(V−) andu has a cogate inV− by Proposition
6.3.2, there is a pointv∈V− with cod(u,v) = n.
Now let v ∈ U− be an arbitrary point with cod(u,v) = n. Then there exists a
point z′ ∈ U− such thatv ∈ 〈y,z′〉g and cod(x,z′)− dist(z′,y) = n. By Lemma
6.3.6V+ is one-coparallel to〈z′,V−〉g with cod(V+,〈z′,V−〉g) = cod(V+,V−)+
dist(z′,V−). Moreover, diam(〈z′,V−〉g) = diam(V−)+dist(z′,V−) by Proposition
6.3.3. Thus, for every pointp ∈ V+ and every pointq ∈ 〈z′,V−〉g, we obtain
cod(p,q) ≥ cod(V+,〈z′,V−〉g)− diam(〈z′,V−〉g) = cod(V+,V−)−diam(V−) =
n. Since cod(u,v) = n, Proposition 6.3.2 implies cod(V+,v) = n+diam(V+) and
analogously, cod(u,〈z′,V−〉g) = n+diam(〈z′,V−〉g). Thus,V+ = 〈u,coprV+(v)〉g
and cod(v,coprV+(v)) = cod(u,v) + diam(V+). Therefore, coprV+(v) ∈ 〈u,v〉G
and hence,V+ ≤ 〈u,v〉G. Analogously,〈z′,V−〉g ≤ 〈u,v〉G and we conclude thatx
andy are contained in〈u,v〉G. Thus,〈x,y〉G = 〈u,v〉G.
By Lemma 6.3.7 we obtain cod(u, p) ≥ n and cod(p,v) ≥ n for all p ∈ U and
hence, codm(U) = n.

Proposition 6.3.9.Let U ≤ S be the coconvex span of two points at finite codis-
tance. Further let p∈S be a point. Thencodm(〈x,U〉G)= codm(U)−dist(p,U).

Proof. Since codm(U) < ∞, we obtainU ∩S + 6= ∅ andU ∩S − 6= ∅. Hence,
n := dist(p,U) < ∞. By Proposition 6.3.2p has a gateq in U . By Proposition
6.3.8 there is a pointr ∈U such that〈q, r〉G = U and cod(q, r) = codm(U). Then
cod(p, r) = cod(q, r)−dist(p,q) and hence,q ∈ 〈p, r〉G. Thus,〈q, r〉G ≤ 〈p, r〉G
and therefore〈p,U〉G = 〈p, r〉G. The claim follows from Proposition 6.3.8.

Proposition 6.3.10.Every coconvex subspace U≤ S with codm(U) < ∞ is the
coconvex span of two points at finite codistance.

Proof. Let u andv be points ofU with cod(u,v) = codm(U). Then〈u,v〉G ≤U .
For every pointp∈U , we obtain〈p,u,v〉G ≤U . Hence, Proposition 6.3.9 implies
p∈ 〈u,v〉G.

Our goal in this section is to prove thatS is a twin dual polar space. For this
we construct a polar space from the twin SPO spaceS and show that this polar
space has a twin dual polar space that is isomorphic toS . We define the following



6.3. Twin SPO spaces of symplectic rank 2 139

sets:

Pm := {〈p,q〉G | (p,q) ∈ S
+×S

− ∧ cod(p,q) = 1}

Lm :=
{

{P∈ Pm | P > 〈p,q〉G}
∣

∣ (p,q) ∈ S
+×S

− ∧ cod(p,q) = 2
}

The setPm will be the point set andLm will be the line set of the polar space we
construct.

Lemma 6.3.11. Let P∈ Pm and let V be the coconvex span of two points at
codistance n. Then V≤ P or V∩P = ∅ or codm(V ∩P) = n+1.

Proof. AssumeV ∩P 6= ∅ andV � P. Let u∈V ∩P. Then by Proposition 6.3.8
there is a pointv ∈ V such thatV = 〈u,v〉G. SinceV � P, we obtainv /∈ P.
By Proposition 6.3.2v has a gatew in P. Since there is a pointw′ ∈ P with
cod(w,w′) = 1, we obtainv⊥ w. Sinceu∈ P, we obtain cod(u,w) = cod(u,v)+
dist(v,w) = n+1 and thereforew∈V. This implies codm(V ∩P) ≥ n+1. Since
V ∩P is coconvex andV ∩P < V, the claim follows from Lemma 6.3.8.

Lemma 6.3.12.Let P∈Pm. Then for every point p∈S rP there is a subspace
Q∈ Pm with p∈ Q and P∩Q = ∅.

Proof. By Proposition 6.3.2p has a gatep′ in P. Let q ∈ S be a point that is
oppositep′ and letq′ be the gate ofq in P. Since codm(P) = 1, we obtainq /∈ P.
SinceP contains a point at codistance 1 top′, we obtainp⊥ p′ and analogously
q⊥ q′. Hence, Proposition 6.3.2 implies cod(p′,q′) = 1 and consequentlyp↔ q′.
Thus, the lineqq′ contains exactly one pointr at codistance 1 top. Sincer 6= q′

andq /∈ P, we concluder /∈ P. Hence,q′ is the gate ofr in P. SetQ := 〈p, r〉G.
Let s∈ P. Assume thats is in the same connected component asp. Then p′ ∈
〈p,s〉g sincep′ is the gate forp in P. Sincep′ ↔ p, we obtainp′ /∈ Q and hence,
s /∈ Q. Analogously,s /∈ Q if dist(s,q) < ∞. Thus,P∩Q = ∅.

In the following there are two cases that play a special role.The first is that
S + andS − are both singletons. In this case there are no two points inS at
codistance 1 to each other. Hence,Pm is the empty set and so isLm. In the
second caseS + andS − are both lines. Then for every point inS + there is
precisely one point inS − that is not opposite. Hence,Pm contains the unordered
pairs of points that are at codistance 1. Furthermore,Lm is empty.

Proposition 6.3.13.The pair(Pm,Lm) is a non-degenerate polar space.

Proof. For diam(S +) ≤ 1, thenLm is empty and hence, (BS) is vacuously true.
Moreover, if diam(S +) = 0, thenPm is empty and consequently, the radical of
(Pm,Lm) is empty. If diam(S +) = 1, thenPm contains more than one point
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and the radical is again empty.
Now let diam(S +) ≥ 2. SetD := (Pm,Lm). To avoid ambiguity, we use in this
proof the character⊥ only to denote collinear points inD . ForS , we do not use
any character to denote collinearity. Furthermore, dist, cod and↔ always refer to
S .
Let G ≤ S be a coconvex subspace with codm(G) = 2. Then there is a point
p∈ S with dist(p,G) = 1. By Proposition 6.3.9 we obtainP := 〈p,G〉G ∈ Pm.
Now let q ∈ S r P. Then by Lemma 6.3.12 there is a subspaceQ ∈ Pm with
q∈ Q andQ∩P= ∅. Let r ′ ∈ G and letr be the gate ofr ′ in Q. Then Proposition
6.3.9 implies dist(r, r ′) = 1 sincer ′ /∈ Q. Again by Proposition 6.3.9 we obtain
R := 〈r,G〉G ∈ Pm. Thus,|{S∈ Pm | S> G}| ≥ 2 and we conclude thatD is a
point-line space.
Now letG as before and letP be an arbitrary element ofPm. We prove thatD is a
polar space by showing that either all or exactly one elementof {R∈Pm |R> G}
is contained inP⊥. First assumeG∩P 6= ∅. Then every subspaceQ∈ Pm with
G < Q intersectsP and hence{R∈ Pm | R> G} ⊆ P⊥ by Lemma 6.3.11. Now
assumeG∩P = ∅ and letv andu be points ofG with cod(u,v) = 2. Let u′ be
the gate ofu in P. Then dist(u,u′) = 1 by Proposition 6.3.9 sinceu /∈ P. Since
u′ /∈ G, we conclude by Proposition 6.3.2 thatu is the gate ofu′ in G and therefore
cod(v,u′) = 1. Hence,Q := 〈v,u′〉G ∈Pm. Moreover, by Lemma 6.3.11u′ ∈Q∩P
yieldsQ∈ P⊥ andu∈ 〈v,u′〉G impliesG< Q. Conversely, letR∈ P⊥ with G< R.
Then there is a pointw∈P∩R. Sinceu is the gate ofu′ in G andu′ /∈G, we obtain
u′ ∈ 〈u,w〉G ≤ R. By Proposition 6.3.9 we obtain〈u′,G〉G ∈Pm. With u′ ∈ Q∩R
andG ≤ Q∩R we concludeQ = R by Proposition 6.3.8. Thus,Q is the unique
element ofP⊥ that containsG. ThereforeD is a polar space. Since for every
P∈Pm, we find a pointp∈S rP, the polar space(Pm,Lm) is non-degenerate
by Lemma 6.3.12.

We determine some objects of the polar space(Pm,Lm) by using terms of the
twin SPO spaceS . This provides some correspondences between objects ofS

and those of(Pm,Lm).

Lemma 6.3.14.Let x∈ S + and let y be a point opposite to x. Set M:= {S∈
Pm | x∈ S} and N:= {S∈ Pm | y∈ S}.

(i) M is a generator of the polar space(Pm,Lm).

(ii) Let P∈ Pm rM and let z be the gate of x in P. Then z∈ S for every S∈ M
with S∩P 6= ∅.

(iii) (M,N) is a spanning pair of the polar space(Pm,Lm).

Proof. SetD := (Pm,Lm). If S + is a singleton, then(Pm,Lm) is the empty
space. This implies thatM is empty and hence,M is a generator ofD . For (ii)



6.3. Twin SPO spaces of symplectic rank 2 141

there is nothing to prove. SincePm = ∅, the condition in Definition 5.2.2 is
vacuously fulfilled. IfS + is a line, thenM = {{x,x′}}, wherex′ is the unique
point in S − that is not oppositex. SinceD contains no lines, the singletonM is
a generator ofD . Since every two distinct elements ofPm are disjoint, (ii) holds.
By the same reason and sinceM andN are disjoint,(M,N) is a spanning pair.
Hence, from now on let diam(S +) ≥ 2.
(i) By the definition ofLm, the setM is a subspace ofD . Moreover, Lemma
6.3.11 implies that every two elements ofM are collinear inD and hence,M is
singular. Finally, Lemma 6.3.12 implies that for everyP ∈ Pm r M, there is a
Q∈ M with Q∩P = ∅. ThereforeM is a generator ofD .
(ii) Since x /∈ P, Proposition 6.3.9 provides dist(x,P) = 1. The gatez of x in P
exists by Proposition 6.3.2. Further letS∈ M with P∩S 6= ∅ and letp ∈ P∩S.
Sincez is the gate forx in P, we obtainz∈ 〈p,x〉G ≤ S.
(iii) Now let P ∈ Pm r M∪N. By symmetric reasons and Proposition 5.2.4 we
have to show that there is aQ ∈ N such thatQ ⊥ S ⇔ P ⊥ S for everyS∈ M.
Let z be the gate ofx in P. Again x andz are collinear. Sincex ↔ y, there is a
unique pointz′ on the linexzwith z′ = y. SetQ := 〈y,z′〉G. ThenQ∈ N andz′

is the gate forx in Q sincex /∈ Q. By (ii) everyS∈ M with S∩P 6= ∅ containsz
and hence,z′ ∈ S∩Q. Analogously,z∈ S∩Q for everyS∈ M with S∩Q 6= ∅.
Thus,S∩P 6= ∅ if and only if S∩Q 6= ∅. Now the claim follows from Lemma
6.3.11.

Lemma 6.3.15. Let G be the set of generators of(Pm,Lm). Setϕ : S →
G : p 7→ {S∈ Pm | p∈ S}. Further let x∈ S + be a point.

(i) Let y∈S be a point distinct to x. Then xϕ = yϕ if and only ifdiam(S +) <
∞ and y is the cogate for x inS −.

(ii) Let M be a generator of(Pm,Lm) that is commensurate to xϕ . Then there
is a point y∈ S + such that M= yϕ .

(iii) Let y∈ S +. Then xϕ and yϕ have a common hyperplane if and only if x
and y are collinear.

Proof. (i) Assumey∈S +. Then there is a pointz∈S with z↔ x and cod(z,y)=
dist(x,y). Let x′ ∈ S with dist(x,x′) = 1 and dist(x′,y) = dist(x,y)− 1. Then
〈x′,z〉G ∈ yϕ rxϕ and hence,yϕ 6= xϕ .
Now assumey ∈ S −. Setd := cod(x,y). Assume there is a pointx′ ∈ S with
dist(x,x′) = 1 and cod(x′,y) = d+1. Then for a pointz↔ x with dist(z,y) = d, we
obtain〈x′,z〉G ∈ yϕ rxϕ and hence,yϕ 6= xϕ . Now assume that there is no point in
S + at codistanced+ 1 to y that is collinear tox. Then by Proposition 2.1.16(ii)
there is no point inS + at codistanced+ 1 to y. By (A1) this implies thatS +

has diameterd. Thus by Corollary 6.3.4,S + is a metaplecton of diameterd.
Consequently,S + andS − are opposite metaplecta andy is a cogate forx in S +
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by Proposition 6.3.2.
Conversely, letS + andS − be opposite metaplecta and lety be the cogate ofx in
S −. Further letS∈ Pm with x∈ S. Since there is a pointz∈ S∩S −, we obtain
y∈ 〈x,z〉G ≤ S. Analogously,x∈ S for everyS∈ yϕ and hence,xϕ = yϕ .
(ii)&(iii) Since for two commensurate generators there is afinite sequence of gen-
erators such that two consecutive generators are adjacent,we may restrain our-
selves to the case thatxϕ andM intersect in a common hyperplaneH. Then there
is aP∈ Pm with P∈ M andx /∈ P. Let y be the gate ofx in P. For everyS∈ H,
we obtainy∈ Sby Lemma 6.3.14(ii). Since for everyQ∈ M there isS∈ H and a
L ∈Lm such that{P,Q,S} ⊆ L, this leads toy∈ Q by the definition ofLm. Thus,
M = yϕ since both are generators. Proposition 6.3.9 provides dist(x,y) = 1. This
proves the forward direction of (iii).
Conversely, lety be a point collinear tox. Let L ∈ Lm with L ≤ xϕ . Let V ≤ S

be the coconvex subspace of codiameter 2 that is contained inall elements ofL.
If y∈ V, thenL ≤ yϕ . If y /∈ V, then〈y,V〉G ∈ Pm by Proposition 6.3.9. Hence,
L∩yϕ 6= ∅ and the claim follows.

Theorem 6.3.16.Every twin SPO space with singular rank≤ 1 is a twin dual
polar space.

Proof. By Proposition 6.3.13D := (Pm,Lm) is a non-degenerate polar space.
Let G be the set of generators ofD and setϕ : S → G : p 7→ {S∈ Pm | p∈ S}.
Let x ∈ S + andy ∈ S − be opposite points ofS . By Lemma 6.3.14(iii) we
know that(xϕ ,yϕ) is a spanning pair. LetB be the dual polar space ofD . Further
let B+ be the connected component ofB that containsxϕ and letB− be the
connected component that containsyϕ . We claim thatS is isomorphic to the
twin dual polar space(B+,B−).
We conclude by Lemma 6.3.15 thatϕ mapsS + bijectively ontoB+. Moreover,
ϕ|S + preserves collinearity. Since every set of mutually collinear points ofS in
contained in a line ofS and every set of mutually adjacent generators ofD is
contained in a line ofB, we conclude thatϕ induces an isomorphism fromS +

ontoB+. Analogously,ϕ mapsS − isomorphically ontoB−.

6.4 Twin SPO spaces of symplectic rank 3

In this section we consider the rigid twin SPO spaces of symplectic rank 3. There-
fore, throughout this section letS be a twin SPO space of symplectic rank 3. This
implies thatS is rigid and has diameter≥ 2. ByS + andS − we denote the con-
nected components ofS . Further we denote byM the set of maximal singular
subspaces ofS .
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Since we have have already covered the case whereS + is a symplecton, we
may constrain ourselves to the case whereS + contains a symplecton properly.
By Proposition 3.4.1 this implies that every line is contained in exactly two ele-
ments ofM. For reasons of convenience, we include in this section the case where
S +, and therefore alsoS −, is a symplecton whose lines are contained in exactly
two elements ofM.

The subspaces we are interested in are the coconvex spans of an element ofM
and a point at finite codistance. Therefore we examine the coprojection of a point
at finite codistance in an element ofM.

Lemma 6.4.1. Let M ∈ M and let x be a point withcod(x,M) < ∞. Then the
corank ofcoprM(x) in M equalscod(x,M) or M equalscoprM(x) and rk(M) =
cod(x,M) = diam(S +).

Proof. We may assumex∈ S + andM ≤ S −. Setd := min{cod(x, p) | p∈ M}
and lety be a point withy ↔ x and dist(y,M) = d. By Lemma 3.4.2 we obtain
rk(prM(y)) = d and therefore rk(M)≥ d. If rk(M)= d, then coprM(x) = prM(y) =
M and cod(x,M) = d. By Theorem 3.4.4 this implies diam(S −) = d.
Now assume rk(M) > d and letz∈ M r prM(y). Then by (A12)x has a cogate
z′ ∈ 〈y,z〉g with cod(x,z′) = d+ 1. Thusz′ is collinear to all points ofM∩〈y,z〉g.
Since〈z,prM(y)〉 is a maximal singular subspace of〈y,z〉g by Theorem 3.4.4, this
impliesz′ ∈ 〈z,prM(y)〉 ≤ M. We conclude cod(x,M) = d + 1 and〈z,prM(y)〉 ∩
coprM(x) 6= ∅. Thus, crkM(coprM(x)) = d+1 since prM(y)∩coprM(x) = ∅.

For srk(S −)≥ 3, Lemma 3.4.3(i) implies that there is a subsetM− ⊂M such
that every line ofS − is contained in exactly one element ofM− and every ele-
ment ofM− is contained inS −. AssumeS − is a symplecton. Then Proposition
2.2.8 implies that there is a subsetM− of the set of generators ofS − such that
every line ofS − is contained in exactly one element ofM−. Note that there is no
given distinction betweenS + andS −. Furthermore, there is no given distinction
betweenM− and the maximal singular subspaces ofS − that are not contained in
M−. Hence, we may carry over all the results for the three other possible choices
of M−.

There is a correspondence between the bipartition of the elements ofM con-
tained inS − and the bipartition of those contained inS + as the following shows.

Lemma 6.4.2. Let M∈ M and let l be a line withcod(l ,M) = 1. Then there is
exactly one subspace N∈ M with l ≤ N andcod(M,N) = 1.

Proof. Let y andzbe distinct points onl . Since rk(M)≥ 2, Lemma 6.4.1 implies
that there is a pointx∈ M with cod(x,y) = cod(x,z) = 1. With cod(l ,M) = 1 this
implies coprl (x) = l . By Lemma 4.2.1 there is a pointw ↔ x with l ∈ w⊥. By
Lemma 3.1.1(i) there is a symplectonY that contains〈w, l〉. Now (A12) implies
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that x has a cogate at codistance 2 inY. Hence, there is an element inM that
containsl and the cogate ofx in Y. Hence, there is at most one subspace inM that
containsl ≤ N and has codistance 1 toM.
Since〈w, l〉 is a generator ofY, Proposition 2.2.5 implies that there is a unique
subspaceN ∈ M with 〈w, l〉 ≤ N. Let p be an arbitrary point of〈w, l〉. Then
p = x if and only if p∈ l . Furthermore, ifp∈ l , then there is a pointq∈ M with
p↔ q by Lemma 6.4.1 since cod(l ,M) = 1. Thus, every point of〈w, l〉 is opposite
to a point ofM and we obtain cod(q,〈w, l〉) = 1 for every pointq ∈ M. With
Lemma 6.4.1 this implies cod(p,N) = 1 since rk(〈w, l〉) = 2 and consequently,
cod(M,N) = 1.

Proposition 6.4.3. Let l ≤ S + be a line. Then there is exactly one subspace
M ∈ M with l ≤ M such thatcod(M,K) = 1 for a subspace K∈ M−.

Proof. Let w andx be distinct points ofl . Further letg be a line that is opposite
l . Let K ∈ M− with g≤ K. By Lemma 6.4.2 there is a unique subspaceM ∈ M

with l ≤ M and cod(M,K) = 1. LetN ∈ Mr{M} with l ≤ N.
Now letL ∈M−r{K} be a subspace with cod(l ,L) = 1. We show cod(M,L) = 1
and cod(N,L) = 2. By Lemma 6.4.1 there is a pointw′ ∈ L with w↔w′. Letw0 be
the cogate ofx in g. Thenw↔w0. Assume dist(K,L)≥ 3. SetW := 〈w0,w′〉g and
let x′ ∈W with dist(x′,w′) = dist(w0,w′)−1 andw′ ⊥ x′. By (A2) w has a cogate
in 〈x′,w′〉g at codistance dist(x′,w′). Since cod(w,x′) ≤ 1 and〈x′,w′〉g is an SPO
space by Proposition 2.1.23, there is a pointw1 ∈ 〈x′,w′〉g that is collinear tox′ and
at distance dist(x′,w′) to the cogate ofw in 〈x′,w′〉g. This yieldsw↔ w1. Since
dist(w0,w1) ≤ 2 and dist(w1,w′) < dist(w0,w′), repeating this argument leads to
a finite sequence of points(wi)0≤i≤n that are all oppositew such thatwn = w′ and
dist(wi ,wi+1) ≤ 2 for i < n. By Corollary 4.2.8 there is a linegi throughwi that
is oppositel . Let Ki ∈ M− with gi ≤ Ki. Then cod(l ,Ki) = 1. Thus, it suffices to
consider the case dist(K,L) ≤ 2. Moreover, we may assume dist(w0,L) ≤ 2.
Assumed := dist(K,L) ≥ 1. By Lemma 6.4.1 there is a pointx′ ∈ L with x ↔
x′. Since dist(w0,L) ≤ 2, we obtain dist(w0,x′) ≤ 3. As before, we find a point
x0 ∈ 〈w0,x′〉g with x↔ x0 andw0 ⊥ x0. Since cod(x,w0) = 1, we obtainw0 6= x0.
Let L0 ∈ M− with w0x0 ≤ L0. By Corollary 4.2.8w0x0 is oppositel and hence,
cod(l ,L0) = 1. If dist(w0,x′) = d + 1, we obtain prL(w0) ≤ 〈w0,x′〉g and hence
L intersects〈w0,x′〉g in a singular subspace of rankd + 1 by Lemma 3.1.1(iii)
and Theorem 3.4.4. Sincew0x0 ≤ 〈w0,x′〉g, we conclude by the same reason that
L0 intersects〈w0,x′〉g in a singular subspace of rankd+ 1. Since by Proposition
2.1.17(i) dist(r,L∩ 〈w0,x′〉g) ≤ d for every pointr ∈ L0∩ 〈w0,x′〉g, we conclude
dist(L,L0) < d by Lemma 3.4.2. If dist(w0,x′) = d, then dist(w0x0,x′) = d−1 by
Proposition 2.1.17(i). In both casesK ∩L0 6= ∅ and dist(L,L0) < d and therefore
we may restrain ourselves to the caseK ∩L 6= ∅.
SinceK 6= L, Lemma 3.4.2 implies thatK andL intersect in a single points. Since
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cod(s,M)= 1 there is a points′ ∈M with s↔ s′ by Lemma 6.4.1. Since cod(s, l)=
1, we may assume cod(s,x)= 1. Again by Lemma 6.4.1 there is a pointx′ ∈ L with
x↔ x′ since cod(x,L) = 1. LetK′ ∈ Mr{L} with sx′ ≤ K′. ThenK′ /∈ M− and
therefore,K ∩K′ is a line by Lemma 3.4.2. Hence, cod(K′,M) = 2 by Lemma
6.4.2. Since coprsx′(x) = {s} and cod(s,M) = 1, we conclude cod(sx′,M) = 1.
Again by Lemma 6.4.2 this implies cod(L,M) = 1 and consequently, cod(L,N) =
2.

Motivated by this proposition, we set

M+ := {M ∈ M | ∀K ∈ M− : 2≤ cod(M,L) < ∞}.

With this definition it follows from the proposition above, that every line ofS is
contained in exactly one element ofM+∪M−.

Remark6.4.4. Let M andN be two elements ofM with cod(M,N) = 1. Then by
the definition ofM+ it follows thatM ∈M− impliesN /∈M+. By symmetric rea-
sons,M ∈S − andM /∈M− impliesN ∈M+. Thus, exactly one of the subspaces
M andN is an element ofM+∪M−.
Let V ≤ S − be a metaplecton with diametern≥ 2. By Proposition 2.1.23V is
an SPO space. LetSandT be maximal singular subspace ofV with dist(S,T) =
n−1, or in other words at codistance 1 with respect to the opposition relation in
V. Since by Proposition 2.1.17(i) every point ofShas distancen−1 toT, Lemma
3.4.2 implies that exactly one of the subspacesSandT is contained in an element
of M−. This confirms that we made the “right” choice when definingM+.

Lemma 6.4.5.Let M∈ M− and N≤ S + with N∈ MrM+. Thenrk(M) < ∞
impliesrk(M) = rk(N).

Proof. Assumer := rk(M) < ∞. By Proposition 2.3.5 there is a singular subspace
S≤S + with rk(S)= r such thatM andSare opposite. LetK ∈M be the subspace
with S≤ K. SupposeS< K. Then by Proposition 2.3.5M andK are not opposite
and hence, there is a pointp∈ K with cod(q, p) = 1 for every pointq∈ M. Thus,
Lemma 2.1.21(ii) implies thatM is not maximal, a contradiction. This leads to
S= K and cod(M,K) = 1. Therefore,K /∈M+ and we conclude rk(N) = rk(K) =
r with Lemmas 3.4.3(i) and 3.4.3(iii).

To study coconvex spans of a point and a maximal singular subspace at finite
codistance, we need some more properties concerning coprojections in a maximal
singular subspace.

Lemma 6.4.6. Let M and N be elements ofM that intersect in a single point
s. Further let x be a point withcod(x,M) < ∞ such thatcoprM(x) < M and
coprN(x) < N. ThenπM,N(〈s,coprM(x)〉) = 〈s,coprN(x)〉.
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Proof. Setd := cod(x,M). Further setS := coprM(x) andT := coprN(x). First
let cod(x,N) 6= d. By Lemma 3.3.3(iii) we may assume cod(x,N) = d−1. That
implies cod(x,s) = d−1. Thus, crkM(S) = d by Lemma 6.4.1 and consequently,
rk(M) ≥ d sinces∈ M r S. Hence by Lemma 3.3.3(iv), rk(N) ≥ d and conse-
quently, crkN(T) = d− 1 by Lemma 6.4.1. For every pointp ∈ S, we obtain
prN(p) ≤ T. ThusπM,N(〈s,S〉)≤ T. Since crkM(〈s,S〉) = d−1, Lemma 3.3.3(iii)
implies crkN(πM,N(〈s,S〉)) = d−1 and thereforeπM,N(〈s,S〉) = T.
Now let cod(x,N)= d. First assume cod(x,s)= d−1. Then crkM(S)= crkN(T)=
d by Lemma 6.4.1. Ford = 1, this impliesM = 〈s,S〉 and hence,πM,N(〈s,S〉) =
N = 〈s,T〉. Therefore we may assumed > 1 and hence by Lemma 6.4.1, that
there is a pointq ∈ N r {s} such that cod(x,sq) = d− 1. Let p ∈ M such that
prN(p)∩T 6= ∅. Thenq /∈ prN(p) since by Lemma 3.4.2 prN(p) is a line. Thus,
Y := 〈p,q〉g is a symplecton. By Lemma 3.1.1(iii), bothM andN contain a gener-
ator ofY. Sincesq≤Y, we obtain cod(x,Y)≤ d and since cod(x,prN(p)) = d, we
conclude cod(x,Y) = d. Supposex has a cogate inY. Then this cogate would be
contained in prN(p)r{s} and hence there is a point inM∩Y at codistanced−2 to
x, a contradiction. Thus by Proposition 4.2.5, coprY(x) is a generator ofY. Since
cod(x,prN(p)) = d and cod(x,sq) = d−1, the generators coprY(x) andY∩N in-
tersect in a single pointq′. Applying Proposition 2.2.8 yields that the corank of
coprY(x)∩M in M ∩Y is even. Withs∈ Y∩M this implies, that coprY(x) and
Y ∩M intersect in a single pointp′. Sinces∈ prN(p) and cod(x,prN(p)) = d,
we conclude prN(p) = sq′. Sinceq′ ⊥ p′, we obtainπN,M(sq′) = sp′ and hence,
p∈ sp′ by Lemma 3.3.3(iii). Thus, prN(p) ≤ 〈s,T〉 implies p∈ 〈s,S〉 and there-
fore πM,N(〈s,S〉) ≥ 〈s,T〉. Since coprM(S) = coprN(T) = d, the claim follows
from Lemma 3.3.3(iii).
Finally assumes∈ S. SinceM > S, there is a pointr ∈ M with cod(x, r) = d−1.
Let q∈ N such that prN(r) = sq. Let p∈ Sr{s}. Sincesp≤ Sand prM(q) = sr,
this implies thatY := 〈p,q〉g is a symplecton. By Lemma 3.1.1(iii), bothM and
N contain a generator ofY. Assume cod(x,Y) = d + 1. Then by Proposition
2.1.12(iv)x has a cogatey in Y. Thus〈y,sp〉 is a generator ofY. Since〈y,sp〉 and
M∩Y are the only generators that containsp, we conclude〈p,prN(p)〉 = 〈y,sp〉
and therefore prN(p) ≤ T. Now assume cod(x,Y) = d. Then by Proposition 4.2.5
coprY(x) is a generator ofY sincer ∈ Y r coprY(x) andsp≤ coprY(x). Since
M ∩Y and coprY(x) intersect in a common line, we conclude by Proposition
2.2.8 that the corank of coprY(x)∩N in N∩Y is odd. Thus,s∈ coprY(x)∩N
yields that coprY(x)∩ N is a line l . This implies coprY(x) = 〈p, l〉 and hence,
prN(p) = l ≤ T. Again we concludeπM,N(〈s,S〉) ≤ 〈s,T〉 and the claim follows
by Lemma 3.3.3(iii).

Corollary 6.4.7. Let V be a connected convex subspace withdiam(V) ≥ 2 and
let M ∈ M− be a subspace that contains a line of V. Further let x∈ S + be a
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point withcoprM(x) ≤ V. ThencoprN(x) ≤ V for every subspace N∈ M− with
rk(N∩V) ≥ 1 andcoprN(x) < N.

Proof. By Lemma 3.1.1(iii)M∩V andN∩V are maximal singular subspaces of
V. First assume there is a subspaceK ∈M− with rk(K∩V)> 1 and coprK(x)= K.
ThenK ≤ coprS −(x) by Lemma 6.4.1 and hence,K ∩V ≤ coprV(x). Moreover,
rk(K) = diam(S −) =: d. By Proposition 2.1.16(ii) there is a pointp∈ coprV(x)
such that dist(p,N) = d−cod(x,N∩V). Let l ≤ coprV(x) be a line throughp and
let K′ ∈ M− with l ≤ K′. By Lemma 3.4.3(iii) we know rk(K′) = d and hence,
crkK′(l) = d−1. Thus, Lemma 6.4.1 impliesK′ ≤ coprS −(x). Therefore we may
assumep∈ K and hence dist(K,N) = d−cod(x,N∩V).
For every pointq∈ NrV, we obtain prN(p) ≤ 〈p,q〉g by Lemma 3.4.3(iii). Since
p is in the projection ofx in 〈p,q〉g, we conclude cod(x,q) ≤ cod(x,prN(p))
by Lemma 2.1.24. Thus, coprN(x) ∩ prN(p) 6= ∅ and we obtain cod(x,N) =
cod(x,N∩V). By Lemma 3.4.3(iii) we know rk(N) = d. Moreover,N∩V con-
tains a subspaceSof rankd−cod(x,N) whose points are all at distance dist(K,N)
to K. Hence,S corank cod(x,N) in N. Since crkN(coprN(x)) = cod(x,N) by
Lemma 6.4.1, we concludeS= coprN(x).
Now assume coprK(x) < K for every subspaceK ∈ M− with rk(K ∩V) ≥ 1.
Then by Lemma 3.4.3(ii) and sinceV is connected, we may assume thatN inter-
sectsM in a single points. Applying Lemma 6.4.6 yieldsπM,N(〈s,coprM(x)〉) =
〈s,coprN(x)〉. By Lemma 3.4.2 this implies〈s,coprN(x)〉 ≤V.

Lemma 6.4.8. Let M∈ M+ and N∈ M− be maximal singular subspaces. Set
S:= {p∈ M | cod(p,N) = cod(M,N)}. Then one of the following holds:

(a) The diameter ofS + is equal tocod(M,N). Furthermore, S= M and
crkN(

⋂

p∈N coprM(p)) = cod(M,N)+1.

(b) The corank of S in M equalscod(M,N) andcoprM(p) = S for every point
p∈ N with cod(p,M) = cod(M,N).

Proof. Setd := cod(M,N). SinceS + is connected, we knowd < ∞. Moreover,
d ≥ 2 sinceM ∈ M+ andN ∈ M−. Let x ∈ N be a point with cod(x,M) = d. If
coprM(x) = M, then rk(M) = d and diam(S +) = d by Lemma 6.4.1. By (A12),
we conclude thatS + is not a metaplecton of diameterd. With Theorem 3.4.4
this implies srk(S ) > d and hence, rk(N) > d by Lemma 6.4.5. SinceS= M,
we obtain cod(p,q) ≥ d−1 for every pair(q, p) ∈ M×N. By Lemma 6.4.1 this
implies cod(p,M) = d for every pointp ∈ N since rk(M) = d. Another conse-
quence of Lemma 6.4.1 is coprN(q) < N for everyq∈ M since rk(N) > d. Thus,
for every pointq ∈ M there is a pointp ∈ N with q /∈ coprN(q) and we obtain
⋂

p∈N coprM(p) = ∅. Hence, (a) holds.
Now let coprM(x) < M for every pointx ∈ N with cod(x,M) = d. Assume there



148 6. Twin SPO spaces

are pointsx andy in N with cod(x,M) = cod(y,M) = d and coprM(x) 6= coprM(y).
Since crkM(coprM(x)) = crkM(coprM(y)) = d by Lemma 6.4.1, there are points
x′ ∈ coprM(x)rcoprM(y) andy′ ∈ coprM(y)rcoprM(x). Letz↔ x′ andz′ ↔ x be
points such that dist(y,z) = dist(y′,z′) = d−1. ThenV := 〈x,z〉g andU := 〈x′,z′〉g
are opposite by Lemma 4.2.7. By Theorem 3.4.4 and Lemma 3.1.1(iii) we obtain
rk(M∩U) = d and analogously, rk(N∩V) = d. By Lemma 4.2.7 there is a singu-
lar subspaceN′ ∈M with rk(N′∩U) = d such that coprU(p) ≤ N′ for every point
p∈ N∩V. Since by Proposition 2.1.23U is an SPO space, we may apply Propo-
sition 2.3.5 to conclude that there is a subspaceM′ ∈ M with rk(M′∩U) = d and
dist(N′,M′) = d−1. By Lemma 3.4.2 every point ofN′ ∩U has distanced to a
point in M′∩U . Since every pointp∈ N∩V has a cogate inU that is contained
in N′, this impliesp↔ q for a pointq∈ M′∩U . Thus, cod(r,N∩V) = 1 for ev-
ery pointr ∈ M′. Since rk(N∩V) = d ≥ 2, this implies cod(r,N) = 1 by Lemma
6.4.1 and therefore, cod(M′,N) = 1. SinceN ∈M−, this impliesM′ /∈M+. Since
cod(M′,N′) = d−1 and cod(p,N′) = d−1 for every pointp∈ N′∩U , we con-
cludeN′ ∈ M+ by Lemma 3.4.2. Sincey∈V andy′ ∈U , we know thaty′ is the
cogate ofy in V. Hence,y∈ N impliesy′ ∈ N′. Analogously,x′ ∈ N′ and therefore
N′ = M.
Now for M ≤U , Theorem 3.4.4 implies diam(S +) = d. Hence, (a) holds since
⋂

p∈N∩V coprM(p) = ∅. Therefore we may assume rk(M) > d. Since rk(M) > d
and crkM(coprM(x)) = d there is a linel ≤ coprM(x) throughx′. Let v ∈ V with
dist(x,v) = d. Thenx′ ↔ v sincex is the cogate forx′ in V. Let w be the cogate
of v in l . Thenx is not a cogate forw in V. Let p ∈ V r N. Then there is a
point q ∈ N∩V with dist(p,q) ≥ 2. Hence, cod(p,q′) ≤ d−2, whereq′ is the
cogate forq in U . Sinceq′ ∈ M, this implies cod(w, p) < d and consequently,
x∈ coprV(w) ≤ N. Sincex is no cogate forw in V, Proposition 2.1.12(ii) implies
coprV(w) > {x} and hence, Proposition 4.2.5 implies coprV(w) = N∩V. There-
fore we conclude thatH :=

⋂

p∈N∩V coprM(p) intersects every line of coprM(x)
throughx′. Sincey∈ N∩V andx′ /∈ coprM(y), we obtainx′ /∈ H and thereforeH
is a hyperplane of coprM(x). By Lemma 6.4.1 this implies crkM(H)d+ 1. Since
H ∩ (M ∩U) = ∅ and rk(M∩U) = d, we concludeM = 〈H,M∩U〉. Thus, for
every pointq∈ M, there is a pointp∈ M∩U such thatq∈ 〈p,H〉. Let p′ be the
cogate ofp in V. Then coprM(p′) = 〈p,H〉 and hence,q∈ S. Since cod(w,N) = d
andN∩V ≤ coprN(w), we obtain by Lemma 6.4.1N∩V = N since rk(N∩V) = d
and consequently, diam(S +) = d. Again (a) holds.
Finally let coprM(x) = coprM(y) < M for every two distinct pointsx andy of N
with cod(x,M) = cod(x,M) = d. ThenS= coprM(x) and the claim follows with
Lemma 6.4.1

Corollary 6.4.9. Let M∈ M. Further let h be a line that is one-coparallel to a
line g≤M. Then there is a subspace H≤M with g∩H = ∅ such thatcoprM(p) =



6.4. Twin SPO spaces of symplectic rank 3 149

〈coprg(p),H〉 for every point p∈ h.

Proof. We may assumeM ∈ M−. Let x andy be distinct points ofh. Sinceh is
one-coparallel to a lineg≤ M, we obtainh≤ S +. Let N ∈ M+ such thath≤ N.
Setd := cod(h,g) andS:= {p∈ M | cod(p,N) = cod(M,N)}. Since coprM(x) 6=
coprM(y), Lemma 6.4.8 implies crkM(S) = cod(M,N) = d+ 1 or S= M. In the
second case we obtain cod(M,N) = d sinceg≤Sandg andh are one-coparallel at
codistanced. Hence by Lemma 6.4.8, there is a subspaceH ≤M with crkM(H) =
d+1 that is contained in coprM(p) for every pointp∈ h and thereforeg∩H = ∅.
Since coprM(x) 6= coprM(y), Lemma 6.4.1 implies crkM(coprM(p)) = d and the
claim follows. In the case crkM(S) = cod(M,N) = d+1, we conclude by Lemma
6.4.1 thatS is a hyperplane of coprM(p) for everyp∈ h.

A coconvex subspace ofS of finite codiameter consists of two parts of infinite
diameter as long asS + andS − have infinite diameter. The following lemma
gives another possibility to make assertions about the sizeof convex subspaces of
infinite diameter by taking the intersection with the maximal singular subspaces
into account.

Lemma 6.4.10.Let U and V be two convex subspaces withU≤V ≤S −. Further
let M ∈ M− and N∈ M r M− be two subspaces that contain a line of V. Let
M∩V ≤U and N∩V ≤U. Then U= V.

Proof. Let M′ ∈M− such thatM′ andN intersect in a line ofV. SinceN∩V ≤U ,
we know M′ ∩N ≤ U . By Lemma 3.4.3(ii) and sinceU is connected, there is
a finite sequence(Mi)0≤i≤m ∈ (M−)m+1 with M0 = M andMm = M′ such that
Mi ∩Mi+1 6= ∅ andMi contains a line ofU for i < m. ThenMi intersects both
U andV in maximal singular subspace by Lemma 3.1.1(iii) fori ≤ m. Assume
Mi∩V ≤U . ThenMi∩V = Mi∩U . By Lemma 3.4.2 we obtainπMi ,Mi+1(Mi∩V)≤
V andπMi+1,Mi (Mi+1∩V)≤V. Thus, Lemma 3.3.3(iii) impliesπMi ,Mi+1(Mi∩V) =
Mi+1∩V. Analogously,πMi ,Mi+1(Mi ∩U) = Mi+1∩U and thereforeMi+1∩V =
Mi+1∩U . Induction leads toM′∩V ≤U and hence,M′∩V = M′∩U .
Now let p ∈ V be a point. By Lemmas 3.4.3(ii) and 3.1.1(v) there is a finite
sequence(Ni)0≤i≤n ∈Mn+1 with N0 = N, N1 = M′ andp∈ Nn such thatNi ∩Ni+1

is line of V for i < n andNi ∩Ni+2 6= ∅ for i < n−1. AssumeNi ∩V ≤ U and
Ni+1∩V ≤ U for i < n−1. ThenNi+1∩Ni+2 ≤ U . Thus,Ni+2 contains a line
of U and we obtainNi+2∩V ≤U as before. Induction leads toNn∩V ≤ U and
hence,p∈U .

The following proposition shows that the coconvex span of a point and of
a maximal singular subspace at finite codistance has properties that correspond
to the properties of metaplecta stated in the Propositions 2.1.3, 2.1.12(i) and
2.1.12(iii).
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Proposition 6.4.11.Let M≤M− and let x∈S + be a point with d:= codm(M∪
{x}) < diam(S +).

(i) Let l ≤ 〈x,M〉G be a line. Further let L∈M+∪M− and K∈Mr{L} such
that K∩L = l. Then L≤ 〈x,M〉G andcrkK(K ∩〈x,M〉G) = d.

(ii) Let K∈M such that M∩K is a line. Then K∩〈x,M〉G = 〈M∩K,coprK(x)〉
or coprK(x) = K.

(iii) codm(〈x,M〉G) = d.

(iv) For every point u∈ 〈x,M〉G, there is a subspace K∈ M+ ∪M− with K ≤
〈x,M〉G and codm(K ∪ {u}) = d. Moreover,〈u,K〉G = 〈x,M〉G for every
such subspace K.

Proof. SetV := 〈x,M〉G. Since we demandedd < diam(S +), Lemma 6.4.1 im-
plies crkM(coprM(x)) = d+ 1. Let x′ ∈ M be a point with cod(x,x′) = d and let
g≤ M be a line throughx′ that intersects coprM(x) in a pointy. Then by Corol-
lary 4.2.8 there is a lineg′ throughx that is one-coparallel tog with cod(g,g′) =
d+ 1. Let M′ ∈ M+ be the subspace that containsg′. By Lemma 6.4.8 we ob-
tain cod(M,M′) = d + 2 or cod(p,M′) = cod(p′,M) = d + 1 for every pair of
points(p, p′) ∈ M×M′. SinceV is coconvex, we conclude coprM′(x′) ≤ V and
hence,〈x,coprM′(x′)〉 ≤V. Let p∈ M′ r 〈x,coprM′(x′)〉. Thenp /∈ coprM′(y) by
Corollary 6.4.9 and hence, cod(p,M) = d + 1. Thus, coprM(p) 6= coprM(x) and
hence by Lemma 6.4.1, there is a pointq ∈ coprM(p) r coprM(x). This implies
p∈ 〈q,x〉G ≤V. We concludeM′ ≤V.
Let N ∈ MrM− such thatg ≤ N. SetU− := 〈M,coprN(x)〉g. Let analogously
N′ ∈ MrM+ such thatg′ ≤ N′ and setU+ := 〈M′,coprN′(x′)〉g. We will show
V = U+ ∪U−. Since cod(x,N) = d + 1 andx′ ∈ N, we obtain coprN(x) ≤ V
by the coconvexity ofV and therefore,U− ≤ V. Analogously,U+ ≤ V. Since
U+∪U− is a convex subspace andM∪{x} ⊆ U+∪U−, it remains to show that
U+∪U− is coconvex to concludeV =U+∪U−. By symmetric reasons it suffices
to show that for a pair of points(u,v) ∈ U+ ×U− and a pointw with w⊥ v and
cod(u,w) = cod(u,v)+1, we obtainw∈U−.
Sinceg ≤ N, we obtain crkN(coprN(x)) = d + 1 by Lemma 6.4.1 and hence,
crkN(N ∩U−) = d by Lemma 6.1.2. Letl ≤ M be an arbitrary line and let
K ∈MrM− be the subspace that containsl . If U− is singular and henceU− = M,
we obtainK ∩U− = l . Furthermore,N ∩U− = g and hence, rk(N) = d + 1.
This implies rk(K) = d + 1 by Lemma 3.4.3(iii) and thus, crkK(K ∩U−) = d.
If l ∩ coprM(x) = ∅, then Lemma 6.1.1 implies cod(x,K) = d and hence,l =
coprK(x) by Lemma 6.4.1. Ifl intersects coprM(x) in a singleton, then this sin-
gleton equals coprK(x) by Lemma 6.4.1. Ifl ≤ coprM(x), thenK = coprK(x) by
Lemma 6.1.1. Hence, (ii) holds forU− if it is singular.
Now let diam(U−) ≥ 2. Then crkK(K ∩U−) = d by Lemma 3.4.3(iii). Assume
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l ∩coprM(x) = ∅. Then Lemma 6.1.1 implies thatK contains a point at codistance
d−1 tox and therefore crkK(coprK(x)) = d by Lemma 6.4.1. By Corollary 6.4.7
we obtain coprK(x)≤U− since coprN(x)≤U−. Thus, coprK(x)= 〈l ,coprK(x)〉=
K ∩U−. Assumel intersects coprM(x) in a single point. Then again coprK(x) ≤
U− by Corollary 6.4.7. Since coprK(〈l ,coprK(x)〉) = d by Lemma 6.4.1, this im-
plies 〈l ,coprK(x)〉 = K ∩U−. Finally assumel ≤ coprM(x). For diam(S −) =
d + 1, we obtainK = coprK(x) by Lemma 6.1.1. For diam(S −) ≥ d + 2, we
obtain cod(x,K) = d + 2 by Lemma 6.1.1. Hence, crkK(coprK(x)) = d + 2 by
Lemma 6.4.1 and again〈l ,coprK(x)〉 = K ∩U− since coprK(x) ≤ U− by Corol-
lary 6.4.7. Therefore we conclude that (ii) holds forU−.
Now let v ∈ U−. Further letw ⊥ v with cod(x,w) = cod(x,v) + 1. Suppose
w /∈ U−. First assume that prU−(w) contains a linel through v and letK ≤
M be the subspace that contains〈w, l〉. Thenw ∈ coprK(x) < K sincev ∈ K.
If U− is singular and hence equalsM, this is a contradiction since (ii) holds
for U−. If diam(U−) ≥ 2, we obtain a contradiction by Corollary 6.4.7 since
coprM(x) < M ≤U− and coprN(x) < N∩U−. Thus, prU−(w) = {v}. Let l ≤U−

be a line throughv. ThenY := 〈w, l〉g is a symplecton. Sincew⊥ contains a hy-
perplane ofU− ∩Y, we concludeU− ∩Y = l . Let G ≤ Y be a generator with
l ≤ G. Thenl ′ := w⊥ ∩G is a line. Letw′ ∈ l ′ r {v} and letv′ ∈ l r {v}. Then
cod(x,w′) ≥ cod(x,w)−1. Sincel ≤ prU−(w′), we obtain cod(x,w′) ≤ cod(x,v)
and cod(x,w′) ≤ cod(x,v′), otherwise we would obtain a contradiction as before.
Hence, cod(x,w′) = cod(x,v) ≤ cod(x,v′). This implies coprl ′(x) = l ′ and there-
fore, cod(x,Y) = cod(x,w). Since cod(x,v′)≥ cod(x,w)−1, w is not a cogate ofx
in Y and hence by Proposition 4.2.5, coprY(x) is a generator ofY. Thus, coprY(x)
contains a pointw′′ with l ≤ prU−(w′′), a contradiction. We concludew∈U−.
To prove that for every pointu ∈ U+ and every pointw ⊥ v with cod(u,w) =
cod(u,v)+1, we obtainw∈U−, it suffices now to show that there are subspaces
Mu ∈ M− andNu ∈ M such thatgu := Mu∩Nu is a line that intersects coprMu

(u)
in a single point andU− = 〈Mu,coprNu

(u)〉g =: Uu. By Lemmas 6.4.1 and 6.1.2
we know crkNu(〈gu,coprNu

(u)〉) = cod(u,gu)−1. Hence by Lemmas 6.4.10 and
3.4.3(iii), it suffices to show cod(u,gu) = d+ 1 and〈gu,coprNu

(u)〉 ≤U−. Since
U+ is connected, we may restrict ourselves to the caseu⊥ x.
Assumeu /∈M′. LetK ∈M+ be the subspace that containsux. ThenK∩M′ = {x}
by Lemma 3.4.2 and hence,K ≤U+ by Lemma 3.4.3(iii). Since crkN(N∩U−) =
d, we conclude by symmetric reasons crkN′(N′ ∩U+) = d. Hence, the sub-
space coprN′(x′) is a hyperplane ofN′ ∩U− by Lemma 6.4.1. SinceN′ and
K intersect in a line ofU+ by Lemma 3.4.2, we obtainK ∩ coprN′(x′) 6= ∅.
This implies cod(x′,K) = d + 1 and hence again by Lemma 6.4.1, we obtain
crkK(coprK(x′)) = d+1 since cod(x,x′) = d. Suppose cod(p,q)≥ d+1 for every
pair (p,q) ∈ coprK(x′)×M. Then cod(K,M) = d+2 since otherwise every point
of M would have codistanced + 1 to K, which is case (a) of Lemma 6.4.8, but



152 6. Twin SPO spaces

coprK(x′) ≤
⋃

q∈M coprK(q) contradicts this case. Since cod(x,M) = d+ 1, case
(b) of Lemma 6.4.8 holds and consequently, there is a pointp ∈ coprK(x′) with
cod(p,M) = d+1. Hence, coprM(p) = M by the supposition. Since cod(K,M) =
d+2, we know diam(S −) ≥ d+2 and hence, rk(M)≥ d+2 by Theorem 3.4.4.
This is a contradiction to Lemma 6.4.1. Thus, there is a pointz∈ coprK(x′) with
codm(M∪{z}) = d. Sincex′ ∈ coprM(z)r coprM(x), Lemma 6.4.1 implies that
there is a pointz′ ∈ coprM(x)rcoprM(z). By Corollary 4.2.8 the linesxzandx′z′

are one-coparallel to each other with cod(xz,x′z′) = d+ 1. Thus, we could have
chosenx′z′ instead ofg andK instead ofM′. Therefore may restrain ourselves to
the caseu∈ M′.
First assume cod(u,y) = d. Then cod(u,M) = d+ 1 and coprM(u) 6= coprM(x).
By Lemma 6.4.1 there is a pointz ∈ coprM(u) r coprM(x) and hence,ux and
yz are one-coparallel to each other by Corollary 4.2.8. LetNu ∈ M r M− with
yz≤ Nu. Then coprNu

(x) and coprNu
(u) intersect in a common hyperplaneH by

Corollary 6.4.9. Since coprNu
(x) ≤ U−, we obtain coprNu

(u) = 〈z,H〉 ≤ U−.
Thus, Uu = U− follows with Mu := M and gu := yz. We consider a special
case for cod(u,y) = d: Let y′ be the cogate ofx′ in g′. Then cod(y′,y) = d.
For u = y′, we can choosez = x′ and hence,Nu = N. Thus, the above implies
U− = 〈M,coprN(y′)〉g. Therefore we may exchange the role ofx andy′. As a
consequence, the case cod(u,x′) = d is also done. Therefore we may assume
u∈ coprM′(y)∩coprM′(x′) =: H.
By Corollary 6.4.9, we know thatH is a hyperplane of coprM′(x′). By Lemma
6.4.1 this implies crkM′(H) = d + 2. In the case cod(M,M′) = d + 1 we obtain
cod(p,M′) = cod(p′,M) = d+1 for every pair of points(p, p′) ∈ M×M′. Hence,
Lemma 6.4.8 impliesH =

⋃

p∈M coprM′(p) and therefore coprM(u) = M. For
cod(M,M′) = d + 2, Lemma 6.4.8 implies thatH consists exactly of the points
that have codistanced + 2 to M and hence, cod(u,M) = d + 2. We conclude
codm(M∪{u}) = d+1 for both cases. Sinceg′ ≤ u⊥ andg′ is one-coparallel to
g with cod(g′,g) = d+1, we obtain cod(u,g) = d+1. Thus, codm(N∪{u}) = d
by Lemma 6.1.1. Sinceg � coprN(x), we obtain coprN(x) 6= coprN(u). Hence by
Lemma 6.4.1, there is a pointz∈ coprN(x) r coprN(u). By Corollary 4.2.8 the
lines zx′ andux are one-coparallel to each other. By Corollary 6.4.9 this yields
that coprN(u) ≤ 〈x′,coprN(x)〉. Hence,U− = Uu for Nu := N andgu := zx′. This
concludesV = U+∪U−.
We obtain crkN(N∩V) = d sinceN∩V = N∩U−. Thus, crkN′(N′∩V) = d by
symmetric reasons. Hence, (i) follows from Lemma 3.4.3(iii). Claim (ii) holds
since we know that it holds forU−. Now suppose there are pointsu andv in
V with cod(u,v) = d − 1. Since diam(S −) > d, there is a pointw ⊥ v with
cod(u,w) = d. By the coconvexity ofV this impliesw∈V and hence, the subspace
K ∈M+∪M− with wv≤ K is contained inV. Hence,〈u,K〉G ≤V and we obtain
crkN(N∩V) = d−1 by (i), a contradiction. Thus, codm(V) = d and (iii) follows
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from cod(x,x′) = d. Finally, we already showed that for every pointu∈U+ there
is a subspacesMu ∈ M− such thatMu ≤ V and codm(Mu∪{u}) = d. Now let
K ∈ M− be an arbitrary subspace withK ≤ V and codm(K ∪{u}) = d. Then
〈u,K〉G ≤V and therefore we conclude〈u,K〉G∩S − = U− and〈u,K〉G∩S + =
U+ by (i) and Lemma 6.4.10. Thus,〈u,K〉G = V and (iv) follows by symmetric
reasons.

Among the coconvex spans of a point and a maximal singular subspace at finite
codistance the ones of codiameter 1 play a special role.

Lemma 6.4.12.Let M∈ M− and let x∈ S + such thatcodm(〈x,M〉G) = 1. Set
V := 〈x,M〉G.

(i) Let p∈ S rV. Then〈p,pr〈x,M〉G
(p)〉 is an element ofMr (M+∪M−).

(ii) Let N∈ M such that N∩V contains no line. Then N∩V 6= ∅ if and only if
N ∈ M+∪M−.

Proof. (i) By Proposition 6.4.11(iv) we may assumep ∈ S −. By Lemma 6.4.1
there is lineg≤M with cod(x,g) = 1 and setd := dist(p,g). Further letz∈ g with
dist(p,z) = d. Then cod(x,〈p,z〉g)≥d by Proposition 2.1.17(ii). Since cod(x,z)=
1, there is by Proposition 2.1.16(ii) a pointz′ ∈ 〈p,z〉g with cod(x,z′) = d and
dist(z,z′) = d−1. SinceV is coconvex, we obtainz′ ∈V and hence,〈z,z′〉g ≤V.
By Proposition 2.1.17(i) this implies dist(p,V) = 1.
Now let l ≤V be a line with dist(p, l) = 1. LetL∈M− with l ≤ L. ThenL ≤V by
Proposition 6.4.11(i). Thus, dist(p,L) = 1 and Lemma 3.4.2 implies that prL(p)
is a line. We may assume prL(p) = l . Let L′ ∈ M with 〈p, l〉 ≤ L′. By Lemma
3.4.3(i) and Proposition 6.4.11(i)V intersectsL′ in a hyperplane. Sincep /∈V and
dist(p,V) = 1 this implies prV(p) = L′∩V and therefore,〈p,prV(p)〉 = L′.
(ii) By Proposition 6.4.11(iv) we assumeN ≤ S −. Let p ∈ N rV. Then by (i)
there is a subspaceK ∈ M r M− such thatK = 〈p,prV(p)〉. AssumeN /∈ M−.
ThenN∩K = {p} by Lemma 3.4.3(i). Sincep⊥∩V ≤ K this impliesN∩V = ∅.
Now assumeN∈M−. Thenl = N∩K is a line by Lemma 3.4.2. Thus,l intersects
K ∩V in a single point sinceK ∩V = prV(p) is a hyperplane ofK.

The following two claims show that the elements the coconvexspans of a point
of S + and an element ofM− induce a lattice structure.

Proposition 6.4.13.Let N∈ M− and z∈ S + with codm(〈z,N〉G) = 1. Set W:=
〈z,N〉G. Further let M∈ M− and y∈ S + such that V:= 〈y,M〉G � W and d:=
codm(V) < diam(S +).

(a) If diam(S +) = d + 1, then there is a point x∈ S −σ such that V∩W =
{x} ∪ coprS σ (x), whereσ ∈ {+,−}, such thatrk(K) = d + 1 for every
K ∈ Mσ .
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(b) If diam(S +) > d+1, then there is a subspace L∈M− and a point x∈S +

with codm(〈x,L〉G) = d+1 such that V∩W = 〈x,L〉G.

Proof. Note that cod(y,M) = d + 1 by Lemma 6.4.1 since rk(M) ≥ d + 1 by
Theorem 3.4.4. Letp ∈ M and assumep /∈ W. By Lemma 6.4.12(i) we obtain
K := 〈p,prW(p)〉 ∈ M r M−. With Lemma 3.4.2 this implies thatM ∩K is a
line. ThereforeM∩W contains a points since crkK(K ∩W) = 1. By Proposition
6.4.11(iv) there is a subspaceM′ ∈M+ such that〈s,M′〉G =V. Then analogously,
M′∩W 6= ∅. Thus by Proposition 6.4.11(iv), we may assumey∈W. SinceV �W,
this impliesM � W and hence,M ∩W = {s} by Proposition 6.4.11(i). Hence,
there is indeed a pointp∈ M rW as assumed. By the coconvexity ofW, we con-
cludes∈ coprM(y). SetU := V ∩W. With ps≤V we conclude crkK(K ∩V) = d
by Proposition 6.4.11(i). Hence, crkK(K ∩U) = d+ 1 sincep ∈ K ∩V rW and
crkK(K ∩W) = 1.
SupposeU ∩S − contains a singular subspaceSsuch that crkK′(S) = d for a sub-
spaceK′ ∈ MrM−. ThenScontains a linel since rk(K′) ≥ d+ 1 by Theorem
3.4.4. LetL′ ∈ M− with l ≤ L′. Then by Proposition 6.4.11(i)L′ is contained
in bothV andW and thus,L′ ≤U . Since crkK′(K′∩U) ≤ d andU is convex we
concludeU ∩S − =V∩S − by Lemma 6.4.10. This is a contradiction toM �W.
SupposeU ∩S − contains a pointq with cod(y,q) = d. SinceU is convex
〈q,s〉g ≤U and therefore Proposition 2.1.16(ii) implies that there isa pointq′ ∈U
with q′ ⊥ q and cod(y,q′) = d + 1. Let K′ ∈ M r M− with qq′ ≤ K′. Then
crkK′(〈q,coprK′(y)〉) = d by Lemma 6.4.1. Since〈q,coprK′(y)〉 ≤ U by the co-
convexity ofU , this is contradiction. Thus, cod(y,q) ≥ d+1 for everyq∈U .
Assume diam(S −) = d+1. Then by Theorem 3.4.4 we conclude rk(K) = d+1
or rk(M) = d+1. Assume rk(K) = d+1. Then for every subspaceK′ ∈MrM−

with K′ ≤ S −, we obtain rk(K′ ∩U) < 1. Thus by Lemma 3.1.1(iii),U ∩S −

does not contain any line. SinceU ∩S − is convex, this impliesU ∩S − = {s}.
By Lemma 6.4.5 we know rk(K) = d+1 if and only if every element ofM+ has
rankd+ 1. Thus, rk(M) = d + 1 impliesU ∩S + = {y} by symmetric reasons.
Consequently, for rk(K) = rk(M) = d + 1, we obtainU = {s,y}. Furthermore,
S − is a metaplecton by Theorem 3.4.4. Hence, coprS −(y) = {s} by (A12).
Now let rk(M) = d+1 and rk(K) > d+1. ThenK∩U contains a linel throughs,
since crkK(K∩U) = d+1. LetL ∈ M− with l ≤ L. ThenL ≤U since by Propo-
sition 6.4.11(i)L is contained in bothV andW. Since diam(S −) = d + 1 and
cod(y,q) ≥ d+ 1 for everyq ∈ U we obtainU ∩S − ≤ coprS −(y), this implies
L≤ coprS −(y). Thus,K � coprS −(y) by Lemma 6.1.1. Hence, crkK(coprK(y))=
d+1 by Lemma 6.4.1 and therefore,K∩U = coprK(y). Applying Lemma 6.4.10
we concludeU∩S − = coprS −(y) since both coprS −(y) andU are convex. Anal-
ogously, we obtainU = {s}∪coprS +(s) for rk(M) > d+1 and rk(K) = d+1.
Finally let diam(S ) > d+ 1. Then againK ∩U contains a linel throughs and
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hence,L ≤U for the subspaceL ∈ M− wit l ≤ L. By symmetric reasons there is
are subspacesL′ ∈ M+ andK′ ∈ MrM+ that intersect in a line ofU such that
L′ ≤U and crkK′(K′∩U) = d+1. Sinces∈ L, we obtain codm(〈y,L〉G) ≤ d+1.
SinceU is coconvex, we obtain〈y,L〉G ≤ U . Thus, we concludeU ∩S σ =
〈y,L〉G∩S σ for σ ∈ {+,−} by Proposition 6.4.11(i) and Lemma 6.4.10.

Lemma 6.4.14. Let x∈ S + and let M∈ M− such thatcodm(M ∪ {x}) > 0.
Set V:= {x} ∪ coprS −(x) if coprM(x) = M and V := 〈x,M〉G otherwise. Fur-
ther let y∈ S − with dist(y,V) = 1 such thatprV(y) contains a line. Then there
is a subspace M′ ∈ M− with codm(M′ ∪ {x}) = codm(M ∪ {x})− 1 such that
〈x,M′〉G = 〈y,V〉G.

Proof. Let l ≤ prV(y) be a line and letK ∈ M such that〈y, l〉 ≤ K. Sincel ≤ V
andM ≤ V, we obtainK /∈ M− by Lemmas 3.1.1(iii) and 3.4.3(iii). Setd :=
codm(M ∪ {x}). If coprM(x) = M, then Lemma 6.4.1 implies rk(M) = d and
diam(S −) = d. Thus,M ≤ coprS −(x) and we obtain codm(K ∪{x}) = d− 1
by Lemma 6.1.1. SinceV ∩S − = coprS −(x), we obtain crkK(K ∩V) = d by
Lemma 6.4.1. If coprM(x) < M, then crkK(K ∩V) = d follows from Proposition
6.4.11(i).
By Lemma 6.4.1 there is a lineg≤ M with cod(x,g) = d. Let N ∈ MrM− with
g ≤ N. Then codm(N ∪ {x}) = d− 1 by Lemma 6.1.1. SetV− := V ∩S −.
By Lemma 6.1.2 we obtainK ∩ 〈y,V−〉g = 〈y,K ∩V〉 and therefore crkN(N ∩
〈y,V−〉g) = d− 1 by Lemma 3.4.3(iii). Since crkN(coprN(x)) = d by Lemma
6.4.1, there is a lineh ≤ N∩ 〈y,V−〉g that intersects coprN(x) in a single point.
Let M′ ∈ M− with h ∈ M′. Then M′ ≤ 〈y,V−〉g by Lemma 3.4.3(iii). Since
codm(V) = d by Proposition 6.4.11(iii) and crkN(coprN(x)) = d, we conclude
N∩V = coprN(x) by the coconvexity ofV. Thus,N∩ 〈y,V−〉g = 〈h,coprN(x)〉.
By Proposition 6.4.11(ii) this equalsN∩〈x,M′〉G. Applying Lemma 6.1.2 leads
to 〈y,V−〉g = 〈h,coprN(x),M′〉g = 〈x,M′〉G∩S −. Sincey andM are both con-
tained in〈x,M′〉G, we obtainV∪{y} ⊆ 〈x,M′〉G. Hence,M′∪{x} ⊆ 〈y,V〉G yields
〈x,M′〉G = 〈y,V〉G.

As already mentioned, the coconvex spans of a point ofS + and an element of
M− induce a lattice structure. IfS + has infinite diameter, this follows already
from the last two claims. The same is true for the case where every point ofS +

has a cogate inS −. For the remaining cases we do not prove this fact since it is
an immediate consequence of the following.

Our goal is to prove thatS is a partial twin Grassmannian. Therefore we
show that there is projective space arising fromS . Moreover,S is isomorphic
to a partial twin Grassmannian of this projective space. Forthis we define the
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following two sets:

Pm :=
{

〈x,M〉G | (x,M) ∈ S
+×M− ∧ codm(M∪{x}) = 1

}

Lm :=
{

{P∈ Pm |U ∩V ≤ P}
∣

∣U ∈ Pm ∧ V ∈ Pm r{U}
}

Proposition 6.4.15.The pair(Pm,Lm) is a projective space.

Proof. From the definition we know that every element ofLm has at least two ele-
ments. Thus,(Pm,Lm) is a point-line space. Moreover, by definition(Pm,Lm)
is singular. By Lemma 6.4.5 and symmetric reasons we may assume rk(M−) ≤
rk(M+) for diam(S +) < ∞, whereMσ ∈ Mσ for σ ∈ {+,−}. By Lemma 6.4.5
and Theorem 3.4.4 this implies rk(M−) = diam(S +) in this case.
Let U andV be two distinct elements ofPm. Further letX andY be two distinct
elements ofPm such thatU ∩V ≤ X ∩Y. First assume diam(S +) = 2. Then
every element ofM− has rank 2 and hence, Proposition 6.4.13 implies that there
is a pointx∈ S + such thatU ∩V = {x}∪coprS −(x). Sincex∈ X∩Y, Proposi-
tion 6.4.13 impliesX∩Y = {x}∪coprS −(x) and therefore,U ∩V = X∩Y. Now
assume diam(S +) > 2. Then by Proposition 6.4.13 there is a pointx∈ S + and
a subspaceM ∈ M− with codm(M∪{x}) = 2 such thatU ∩V = 〈x,M〉G. Anal-
ogously, there is a pointy and a subspaceN ∈ M− with codm(N∪{y}) = 2 such
that X ∩Y = 〈y,N〉G. Since〈x,M〉G = U ∩V ≤ 〈y,N〉G, we conclude〈x,M〉G =
〈y,N〉G by Proposition 6.4.11(iv). Thus,(Pm,Lm) is linear.
We show that(Pm,Lm) satisfies (VY). LetG andH be two distinct elements of
Lm and letP∈Pmr (G∪H) such that fori ∈ {0,1} there existLi ∈Lm, Ai ∈ G
andBi ∈ H with {P,Ai,Bi} ≤ Li andL0 6= L1. SinceL0 6= L1 andP � G, we obtain
A0 6= A1 since(Pm,Lm) is linear. Analogously,B0 6= B1. Since we want to show
G∩H 6= ∅, we may assumeBi /∈ G andAi /∈ H for i ∈ {0,1}.
First assume diam(S −) ≥ 3. Then by Proposition 6.4.13 there is a pointx∈ S +

and a subspaceM ∈ M− with codm(M∪{x}) = 2 such thatA0∩A1 = 〈x,M〉G.
SetS:= 〈x,M〉G∩P. SinceP 6= A0 andS≤ A0∩P, we obtain that every element
of L0 containsS. Thus,S≤ B0 and analogously,S≤ B1. SinceP /∈ G, we ob-
tain 〈x,M〉G � P. AssumeScontains a subspaceN ∈ M− and letK ∈ MrM−

such thatK ∩N is a line. For diam(S −) ≥ 4 this is the case by Proposition
6.4.13 and moreover,S= 〈y,N〉G for a pointy∈ S + with codm(N∩{y}) = 3 by
Proposition 6.4.11(iv). Hence by Proposition 6.4.11(i), crkK(K ∩S) = 3 in this
case. For diam(S −) = 3, we have rk(N) = 3. Moreover,S= {y}∪ coprS −(y)
for a pointy ∈ S + by Proposition 6.4.13. SinceN ≤ coprS −(y), we know by
(A2) that S − is no metaplecton and hence, rk(K) > 3 by Theorem 3.4.4. By
Lemma 6.1.1 we conclude codm(K ∪{y}) = 2 and hence, crkK(K ∩S) = 3 by
Lemma 6.4.1. SinceS≤ 〈x,M〉G, we obtain crkK(K ∩ 〈x,M〉G) = 2 by Propo-
sition 6.4.11(i). Letp ∈ K ∩ 〈x,M〉G r S. Then 〈p,S〉G ≤ 〈x,M〉G and hence
〈p,S〉G = 〈x,M〉G by Lemma 6.4.14. Analogously, there is a pointq∈ K∩B0∩B1
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such that〈q,S〉G = B0 ∩B1. SinceG 6= H this impliesq /∈ 〈p,S〉G and hence,
〈p,q,S〉G ∈ Pm by Lemma 6.4.14. Moreover,〈p,q,S〉G ∈ G∩H.
For diam(S −) ≥ 3 it remains the case where diam(S −) = 3 andS contains
no element ofM−. By Proposition 6.4.13 there is a pointy ∈ S + such that
S= {y} ∪ coprS −(y). If S∩S − contains a line, then the unique element of
M− that contains this line is contained in allA0, A1 and P and hence inS, a
contradiction. Thus, coprS −(y) contains a single pointz andS= {y,z}. Since
for every subspace ofM r M− that containsz, the coprojection ofy is {z},
we conclude by Lemma 6.4.1 that all maximal subspaces ofS − have rank 3.
Hence by Theorem 3.4.4,S − is a metaplecton of diameter 3. This implies
〈x,M〉G∩S − = M because of Proposition 6.4.11(i). Thus, Proposition 6.4.11(iv)
implies〈x,M〉G = 〈y,M〉G. Analogously,B0∩B1 = 〈y,N〉G, whereN ∈ M−. We
know z∈ M∩N sincez is the cogate ofy in S − and bothM andN are cocon-
vex. SinceM � S, we obtainM � P. With P≥ A0∩B0 this impliesM � B0 and
thereforeM ∩N = {z} by Lemma 3.4.2. LetK ∈ M r M− with z∈ K. Then
K ∩M andK ∩N are distinct lines by Lemma 3.4.2. Letp ∈ K ∩M r {z} and
q ∈ K ∩ N r {z} and letM′ ∈ M− with pq ≤ M′. Then z /∈ M′ by Proposi-
tion 2.2.5 since〈z, pq〉 has rank 2. SinceM′ ∈ M, there is pointp′ ∈ M′ with
z′ 6⊥ z. Sincez is the cogate fory in S −, this implies codm(M′∪{y}) = 1 and
hence,〈y,M′〉G ∈ Pm. We obtainz∈ 〈y,M′〉G by the coconvexity of〈y,M′〉G.
Thus by Proposition 6.4.11(i),zp≤ 〈y,M′〉G yields M ∈ 〈y,M′〉G. Analogously,
N ∈ 〈y,M′〉G and therefore,〈q,M′〉G ∈ G∩H.
Now assume diam(S −) = 2. Then every element ofM− has rank 2. Thus,
Lemma 6.4.5 implies rk(K) = 2 for everyK ∈ MrM+ with K ≤ S +. Hence,
Q∩S + ∈M+ for everyQ∈Pm by Proposition 6.4.11(i). Furthermore by Propo-
sition 6.4.13,Q∩Q′ ∩S + contains a single point for everyQ′ ∈ Pm r {Q}.
Now let x ∈ Q∩S +. By Proposition 6.4.11(iv) there is a subspaceM ∈ M−

such that〈x,M〉G = Q and codm(M ∪{x}) = 1. By Lemma 6.4.1 there is a line
l ∈ M with cod(x, l) = 2 such thatx has a cogate inl . Let K ∈ M r M− with
l ≤ K. By Proposition 6.4.11(i)Q intersectsK in a hyperplane. Hence there
is a line l ′ ≤ K such thatl ′ ∩ Q is a singleton that is contained in coprK(x).
Since coprK(x) ≤ Q by Proposition 6.4.11(ii), we obtain codm(l ′∪{x}) = 1. Let
M′ ∈ M− with l ′ ≤ M′. ThenQ′ := 〈x,M′〉G ∈ Pm. Sincel ′ ≤ Q′, we know
Q 6= Q′ and therefore,Q∩Q′ ∩S + = {x} ∪ coprS −(x) by Proposition 6.4.13.
This implies coprS −(x) ≤ Q for every pointq∈ Q∩S +. By the coconvexity of
Q together with Proposition 2.1.16(ii) there is for every point p∈ Q∩S − a point
q∈ Q∩S + with cod(p,q) = 2. Thus,Q∩S − =

⋃

q∈Q∩S + coprS −(q).
For i ∈ {0,1} let xi the unique point inAi ∩P∩S +. Sincex0 andx1 are both
contained inP andP∩S + is an element ofM+, we obtainx0 ⊥ x1. Further-
more,L0 6= L1 yieldsx0 6= x1. Let y be the unique point ofA0∩A1∩S +. Then
y ⊥ xi for i ∈ {0,1} sinceAi ∩S + contains bothxi andy. SinceP /∈ G, we ob-
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tain y /∈ P and thereforey /∈ x0x1. Thus, there is a unique subspaceK ∈ M with
{x0,x1,y} ⊆ K. SinceP∩S − is the unique element ofM+ that containsx0x1

andy /∈ P, we obtainK /∈ M+. Analogously, the unique pointz of B0∩B1∩S +

lies in a subspace ofM r M+ that containsx0x1. Hence,z∈ K by the unique-
ness of such a space. This impliesy ⊥ z. Moreover,y 6= z sinceG 6= H. Thus,
there is a subspaceN ∈ M+ with yz≤ N. Let p∈ S − with codm(N∪{p}) = 1.
Then〈p,N〉G ∈ Pm. Furthermore,〈p,N〉G contains{y}∪ coprS −(y) = A0∪A1

and{z}∪coprS −(z) = B0∪B1. Thus,〈t,N〉G ∈ G∩H and the claim follows.

Our next aim is to study correspondences between the subspaces ofS and the
ones of(Pm,Lm).

For a pointp∈ S , we defineΓ(p) := {P∈ Pm | p∈ P}. Furthermore, for a
set of pointsM ⊆ S , we defineΓ(M) := {P∈ Pm | M ⊆ P} =

⋂

p∈M Γ(p). For
two pointsp andq, we writeΓ(p,q) rather thanΓ({p,q}).

Lemma 6.4.16.For every set of points M⊆ S , the setΓ(M) is a subspace of
(Pm,Lm).

Proof. Let P andQ be two distinct elements ofΓ(M). Then for everyM ⊆ P∩Q
and hence,{R∈ Pm | R≥ P∩Q} ⊆ Γ(M). The claim follows by the definition
of Lm.

Proposition 6.4.17.Let p and q be two points ofS −. ThencrkΓ(p)(Γ(p,q)) =
dist(p,q).

Proof. Setd := dist(p,q). We proceed by induction overd. For p = q, there
is nothing to prove. Now letd > 0 and assume that there is a pointr ⊥ q with
dist(p, r) = d−1 such that crkΓ(p)(Γ(p, r)) = d−1. LetG∈ Lm with G≤ Γ(r)
and setS:=

⋂

P∈GP.
First assume diam(S −) ≥ 3 or rk(K) ≥ 3 for everyK ∈ M+. If diam(S −) ≥ 3,
then Proposition 6.4.13 implies thatSis the coconvex span of a pointx∈S + and
an element ofN ∈ M− with codm(N∪{x}) = 2. Hence, Proposition 6.4.11(i)
implies that there is a linel ≤ S throughr. If diam(S −) = 2 and rk(K) ≥ 3 for
everyK ∈ M+, then Proposition 6.4.13 impliesS= {x}∪coprS −(x) for a point
x ∈ S +. By Lemma 6.4.5 we know rk(N) ≥ 3 for everyN ∈ M r M− with
r ∈ N. Hence, Lemma 6.4.1 implies that there is a linel ≤ S throughr. Now let
M ∈ M− with l ≤ M. Sincel ≤ P for everyP∈ G, we obtainM ≤ Sby Proposi-
tion 6.4.11(i). AssumeG � Γ(q). Thenq /∈ Sand therefore dist(q,M) = 1. Thus,
prM(q) is a line by Lemma 3.4.2. By Lemma 6.4.14 we conclude〈q,S〉G ∈ Pm

and therefore〈q,S〉G ∈ G∩Γ(q). We conclude thatΓ(q) contains a hyperplane of
Γ(r).
Now assume rk(K) = 2 for everyK ∈ M+. ThenS∪coprS +(r) by Proposition
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6.4.13. By the definition ofLm this implies thatG is uniquely defined and con-
sequently,G = Γ(r). By Lemma 3.1.1(i) there is a symplectonY ≤ S − that
containsrq. Let s ∈ S + be the cogate ofr in a symplecton that is opposite
Y. Then cod(r,s) = 2 and cod(q,s) = 1. Let M ∈ M− with rq ≤ M. Then
〈s,M〉G ∈ Γ(r)∩ Γ(q). SinceG = Γ(r), we conclude thatΓ(q) contains a hy-
perplane ofΓ(r).
By Lemma 2.1.13 there is a points∈ S + with s↔ q and cod(s, p) = d. This
implies cod(s, r) = 1. We conclude by Proposition 2.1.16(ii) that there is a line
l throughs with cod(r,s) = 2. Let M ∈ S + with l ≤ M. Then〈r,M〉G ∈ Pm.
Sinces∈ 〈r,M〉G ands↔ pq, we conclude〈r,M〉G ∈ Γ(r)r Γ(q) by Proposition
6.4.11(iii). Thus,Γ(q) intersectsΓ(r) in a proper hyperplane. Since dist(p, r) =
cod(s, p)− cod(s, r), we obtainp ∈ 〈r,M〉G by the coconvexity of〈r,M〉G and
thereforeΓ(p, r) � Γ(q). This leads to crkΓ(p)(Γ(p,q)∩ Γ(r)) = d. Sincer ∈
〈p,q〉g and 〈p,q〉g ≤ P for every P ∈ Γ(p,q), we concludeΓ(p,q) ≤ Γ(r) and
consequently, crkΓ(p)(Γ(p,q)) = d.

Proposition 6.4.18.Let p∈ S − and q∈ S +. Then the following holds:

(i) Let p↔ q. ThenΓ(p) and Γ(q) are complementary subspaces of the pro-
jective space(Pm,Lm).

(ii) rk (Γ(p,q)) = cod(p,q)−1.

Proof. (i) From Proposition 6.4.11(iii) we deduceΓ(p)∩Γ(q) = ∅. Let P∈ Pm

with P /∈ Γ(p)∪Γ(q). Then Lemma 6.4.12(i) impliesKx := 〈x,prP(x)〉 ∈ M r
(M+ ∪M−), wherex ∈ {p,q}. By the definition ofM+ and M− we know
cod(Kp,Kq) = 2 sincep ↔ q. For {x,y} = {p,q}, Lemma 6.4.8 implies that
the setSx := {r ∈ Kx | cod(r,Ky) = 2} is a subspace ofKx with corank 2. Fur-
thermore, by Lemma 6.4.1 we know that coprKx

(y) is a hyperplane ofKx. Thus,
there is a linelx ≤ coprKx

(y). Let Mx ∈ M+ ∪M− with lx ≤ Mx. By Lemma
6.1.1 we obtain codm(Mx ∪ {y}) = 1 and thereforePy := 〈y,Mx〉G ∈ Γ(y). Set
G := {Q∈ Pm | Pp∩Pq ≤ Q}.
By Proposition 6.4.11(ii) and sincelp ≤ coprKp

(q), we obtain coprKp
(q) = Kp∩Pq

and thereforeSp ≤ Pq. Now let p′ ∈ Sp. Then Lemma 6.4.1 implies coprKq
(p′) =

Sq. ThusSq ≤ 〈q, p′〉G ≤ Pq and analogously,Sp∪Sq ≤Pp. Since〈p,coprKp
(q)〉=

Kp, we conclude coprKp
(q) � Pp by Proposition 6.4.11(i). SinceSp is a hyper-

plane of coprKp
(q), this impliesKp∩Pp∩Pq = Sp. Since crkKq(prP(q)) = 1, there

is a pointq′ ∈ prP(q) r Sq. Sinceq′ /∈ Sq, we know cod(q′,Kp) = 1 and hence,
Kp∩P ≤ coprKp

(q′) by Proposition 6.4.11(iii). By Lemma 6.4.1 and Proposition
6.4.11(i) this impliesKp∩P = coprKp

(q′). Thus,Sp ≤ coprKp
(q′) ≤ P and analo-

gously,Sq ≤ P.
AssumeSp contains a linel . Let M ∈ M− with l ≤ M. ThenM ≤ Pp∩Pq∩P
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by Proposition 6.4.11(i). With Lemma 6.4.10 we conclude〈Sp,M〉g = Pp∩Pq∩
S − ≤ P sinceKp ∩ Pp ∩Pq = Sp. Now assume thatSp is a singleton. Then
rk(Kp) = 2 and hence, rk(Mq) = 2 by Lemma 6.4.5. This impliesPp∩Pq∩S − =
Sp by Proposition 6.4.13 and therefore againPp∩Pq∩S − ≤ P. We conclude
analogouslyPp∩Pq∩S + ≤ P and thereforeP∈ G.
(ii) Set d := cod(p,q). We proceed by induction overd. For d = 0, the claim
follows by (i). Now we assumed > 0 and that there is a pointr ⊥ p with
cod(r,q) = d−1 = rk(Γ(r,q))−1. Sincep ∈ 〈r,q〉G and hence,p∈ P for every
P∈ Γ(r,q), we obtainΓ(r,q) ≤ Γ(p,q). Let q′ ↔ q with dist(r,q′) = d−1. Since
by Proposition 2.1.23〈p,q′〉g is an SPO space, Lemma 2.1.21(ii) implies that there
is a pointr ′ ∈ 〈p,q′〉g with r ′ ⊥ q′ such that dist(r, r ′) = d and dist(p, r ′) = d−1.
We obtain cod(q, r ′) = 1. Let l be a line throughr ′ with cod(q, l) = 2 and let
M ∈ M− with l ≤ M. Then〈q,M〉G ∈ Γ(q). With r ′ ∈ M andp∈ 〈r ′,q〉G we con-
clude〈q,M〉G ∈ Γ(p,q). Supposer ∈ 〈q,M〉G. Then〈r, r ′〉g = 〈p,q′〉g ≤ 〈q,M〉G
and hence,q′ ∈ 〈q,M〉G, a contradiction to Proposition 6.4.11(iii). Thus,Γ(p,q) >
Γ(r,q). By Proposition 6.4.17 we know thatΓ(r) contains a hyperplane ofΓ(p)
and hence, crkΓ(p,q)(Γ(r,q)) = 1. The claim follows.

Lemma 6.4.19.Let x and y be two distinct collinear points ofS −. Further let
P ∈ Pm with P /∈ Γ(x)∪Γ(y). Then there is a unique point z∈ S − such that
Γ(x,y)∪{P} ⊆ Γ(z). Moreover, z∈ xy if and only ifΓ(z) ≤ 〈Γ(x),Γ(y)〉.

Proof. Let M ∈ M− with xy ≤ M. By Lemma 6.4.12(i) there is a subspace
Kp ∈ MrM− such thatp∈ Kp andKp∩P = prP(p) for p∈ {x,y}. If Kx = Ky,
thenxy intersectsP in a single pointzsinceKx∩P is a hyperplane ofKx by Lemma
6.4.12(i). We obtainz∈ M in this case. IfKx 6= Ky, theny /∈ Kx and hence, prKx

(y)
is a line by Lemma 3.4.2. Since this line containsx, it intersectsP in a single
point z. By Proposition 2.2.5 there is a unique subspaceM′ ∈ M that contains
〈y,prKx

(y)〉. SinceKx is the only element ofM r M− that contains prKx
(y) and

y /∈ Kx, we concludeM′ ∈ M−. Now xy≤ M′ impliesM = M′ and thus,z∈ M.
Let Q∈ Γ(x,y). Thenxy≤ Q and hence,M ≤ Q by Proposition 6.4.11(i). With
z∈ M andz∈ P this impliesΓ(x,y)∪{P} ⊆ Γ(z). The uniqueness ofz follows by
Proposition 6.4.17 sinceΓ(x,y) is a hyperplane ofΓ(z) that does not containP.
Let K ∈ M r M− such thatxy≤ K. AssumeP ∈ 〈Γ(x),Γ(y)〉. Then there are
elementsPx ∈ Γ(x) andPy ∈ Γ(y) such thatP≥ Px∩Py =: S. By Lemma 6.4.12(i)
we obtain〈x,prPy

(x)〉 ∈ MrM− and hence,〈x,prPy
(x)〉 = K since both contain

xy. Analogously, prPx
(y) is a hyperplane ofK. Sincex ∈ prPx

(y) r prPy
(x) we

conclude crkK(K ∩S) = 2. Since rk(K) ≥ 2 this impliesK ∩S 6= ∅ and hence,
K ∩P 6= ∅. ThereforeP intersectsK in a hyperplane by Lemma 6.4.12(ii) and
Proposition 6.4.11(i). This impliesK = Kx = Ky and hencez∈ xyas above.
Conversely, letz∈ xy. Sincex /∈ P andy /∈ P we knowx 6= z 6= y. By Proposition
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6.4.17 there is an elementPx ∈ Γ(x)r Γ(z). With x ∈ Px andz∈ P we conclude
by Lemma 6.4.12(ii) and Proposition 6.4.11(i) that bothPx andP contain a hy-
perplane ofK. Thus, crkK(K ∩P∩Px) = 2 sincez∈ Pr Px. SetS := P∩Px. If
diam(S −) ≥ 3, then〈y,S〉G ∈ Γ(y) by Proposition 6.4.13 and Lemma 6.4.14. If
diam(S −) = 2 and rk(K) > 2, thenS= {w}∪coprS −(w) for a pointw∈S + by
Proposition 6.4.13. FurthermoreK∩Scontains a line and hence,〈y,S〉G ∈ Γ(y) by
Lemma 6.4.14. It remains the case diam(S −) = rk(K) = 2. By Lemma 6.4.5 and
Proposition 6.4.13 we obtainS= {w}∪ coprS +(w) for a pointw ∈ S −. Since
K ∩S 6= ∅, we knoww ∈ K and hence,y ⊥ w. Moreover,w 6= y sincey /∈ P.
By Lemma 3.1.1(i) there is a symplectonY containingK. Since there exists a
symplecton that is oppositeY, there is a pointp ∈ coprS +(w)r coprS +(y). Let
M ∈ M− with wy≤ M. Then codm(M∪{p}) = 1 and thereforePy := 〈p,M〉G ∈
Γ(y). Sincez /∈ Px, we know y /∈ Px and hence,Px 6= Py. Hence,w ∈ Px ∩Py

implies Px ∩Py = {w} ∪ coprS +(w) by Proposition 6.4.13. Thus in the point-
line (Pm,Lm), the pointP lies on the line throughPx and Py and therefore
P ∈ 〈Γ(x),Γ(y)〉. Thus,Γ(z) = 〈P,Γ(x,y)〉 ≤ 〈Γ(x),Γ(y)〉, since by Proposition
6.4.17Γ(x,y) is a hyperplane ofΓ(z).

Lemma 6.4.20.Let x and y be two distinct points ofS −. Further letΘ be a sub-
space of(Pm,Lm) with Γ(x,y) ≤ Θ andcrkΘ(Γ(x,y)) = crkΓ(x)(Γ(x,y)). Then
there is a unique point z∈ S − such thatΓ(z) = Θ. Moreover, z∈ 〈x,y〉g if and
only if Θ ≤ 〈Γ(x),Γ(y)〉.

Proof. By Proposition 6.4.17 there exists at most one such pointz. Set d :=
dist(x,y). We may assumed > 0 since otherwise there is nothing to prove. By
Proposition 6.4.17 we know crkΓ(x)(Γ(x,y)) = d and hence, crkΘ(Γ(x,y)) = d.
Thus there is a set{Pi | 0≤ i < d} ⊆ Pm and a natural numberk ≤ d such that
Θ = 〈Pi,Γ(x,y) | 0≤ i < d〉 andΘ∩〈Γ(x),Γ(y)〉= 〈Pi,Γ(x,y) | 0≤ i < k〉.
Assume there are pointsx j andy j in S − such thatΓ(x j ,y j) = 〈Pi,Γ(x,y) | 0 ≤
i < j〉 for some j < d. We show that there are pointx j+1 and y j+1 such that
Γ(x j+1,y j+1) = 〈Pi,Γ(x,y) | 0 ≤ i < j + 1〉. By the definition ofPj we know
Pj /∈ Γ(x j ,y j) and crkΓ(xj )(Γ(x j ,y j)) = d− j . This implies dist(x j,y j) = d− j by
Proposition 6.4.17.
First assumePj ∈ Γ(x j). Sinced > j , there is a pointw∈S − such thatw⊥ y j and
dist(w,x j) = d− j−1. By Lemma 6.4.19 there is a pointy j+1 such thatΓ(y j+1)≥
Γ(w,y j)∪{Pj}. SinceΓ(y j) andΓ(w) intersect in common hyperplane we know
y j+1 ⊥ y j . Moreover, since dist(w,x j) = dist(x j ,y j)−1, we conclude by Propo-
sition 6.4.17 thatΓ(x j,y j) is a hyperplane ofΓ(x j,w) and therefore〈Pi ,Γ(x,y) |
0 ≤ i < j + 1〉 = Γ(x j ,w) ≤ Γ(y j+1). Since dist(x j ,y j+1) ≥ dist(x j ,y j)−1, this
leads to dist(x j ,y j+1) = d− j −1 andΓ(x j,y j+1) = 〈Pi,Γ(x,y) | 0 ≤ i < j + 1〉.
Hence, the claim follows withx j+1 := x j . Moreover, we obtainx j+1 ∈ 〈x j ,y j〉g
andy j+1 ∈ 〈x j ,y j〉g for this case.
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Now assumePj ∈ 〈Γ(x j),Γ(y j)〉. We may assumePj /∈ Γ(x j) and analogously,
Pj /∈ Γ(y j) since this case is already done. Then there are subspacesPx ∈ Γ(x j)
andPy ∈ Γ(y j) such thatPx∩Py ≤ Pj . Assumed > j +1. Then by Lemma 6.4.10
we know that〈x j,y j〉g is the convex span of the singular subspaces of〈x j ,y j〉g that
containx j . Thus,〈x j,y j〉g is the convex span of all pointsw⊥ x j with dist(w,y j) =
d− j −1. SupposePx ∈ Γ(w) for every pointw⊥ x j with dist(w,y j) = d− j −1
and hence,w∈ Px. ThenPx ≥ 〈x j ,y j〉g and we concludey j ∈ Px∩Py, a contradic-
tion to Pj /∈ Γ(y j). Thus, there is a pointw⊥ x j with dist(w,y j) = d− j −1 such
thatPx /∈ Γ(w). Ford = j +1, this is still true sincey j /∈ Pj and hence,y j /∈ Px. By
Lemma 6.4.19 there is a pointx j+1 such thatΓ(x j+1) ⊇ Γ(w,x j)∪{Pj}. Analo-
gously, there is a pointw′ such thatΓ(w′)⊇ Γ(w,x j)∪{Py}. SinceΓ(w,x j) is a hy-
perplane of allΓ(x j), Γ(x j+1) andΓ(w′) and thereforeΓ(x j+1) ≤ 〈Γ(x j),Γ(w′)〉,
we conclude by Lemma 6.4.19 thatx j , x j+1 andw′ are on a common line inS .
Sincew∈ 〈x j ,y j〉g, we knowΓ(w) ≥ Γ(x j ,y j) and thereforeΓ(w,x j) ≥ Γ(x j,y j).
Thus,Γ(w′,y j) ≥ 〈Py,Γ(x j ,y j)〉 > Γ(x j ,y j). By Proposition 6.4.17 this implies
thatw′ is the unique point on the linex jx j+1 with dist(w′,y j) = d− j−1. Suppose
w′ = x j+1. Then{Py,Pj}⊆ Γ(w′). Thus,Px ∈ Γ(w′) sincePx, Py andPj are distinct
points on a common line in(Pm,Lm). SincePx /∈ Γ(w), Lemma 6.4.19 implies
thatx j is the unique point withΓ(x j) ⊇ Γ(w,x j)∪{Px} and hence,x j = w′, a con-
tradiction to dist(x j,y j) = d− j . Therefore we conclude dist(x j+1,y j) = d− j .
SincePj ∈ Γ(x j+1) we are in the situation above and hence, we find a point
yi+1 ∈ 〈x j+1,y j〉g such thatΓ(x j+1,y j+1) = 〈Pi,Γ(x,y) | 0 ≤ i < j + 1〉. Since
w′ ∈ 〈x j ,y j〉g, we obtainx j+1 ∈ 〈x j ,y j〉g and consequently,y j+1 ∈ 〈x j,y j〉g. Thus
we conclude by induction that forΘ ≤ 〈Γ(x),Γ(y)〉, there are pointsz= xd = yd

in 〈x,y〉g such thatΓ(z) = 〈Pi,Γ(x,y) | 0≤ i < d〉 = Θ.
Finally assumePj /∈ 〈Γ(x j),Γ(y j)〉. Let w ∈ S − be a point withw ⊥ x j and
dist(w,y j) = d− j − 1. ThenΓ(x j ,w) is a hyperplane ofΓ(x j) by Proposition
6.4.17. SincePj /∈ Γ(x j), Lemma 6.4.19 implies that there is a pointx j+1 ∈ S −

such that〈Pj ,Γ(x j ,w)〉= Γ(x j+1). Sincew∈ 〈x j ,y j〉g, we obtainΓ(x j ,y j)≤ Γ(w)
and hence,Γ(x j ,y j) ≤ Γ(x j+1). SupposeΓ(x j+1,y j) > Γ(x j ,y j). Then there
is an elementP ∈ Pm with P ∈ Γ(x j+1,y j) r Γ(x j) and we obtainΓ(x j+1) =
〈P,Γ(x j ,w)〉 ≤ 〈Γ(x j),Γ(y j)〉. SincePj ∈ Γ(x j+1), this is a contradiction toPj /∈
〈Γ(x j),Γ(y j)〉. Thus,Γ(x j ,y j) = Γ(x j+1,y j) and consequently, dist(x j+1,y j) =
d− j . SincePj ∈ Γ(x j+1), there is as above a pointyi+1 ∈ 〈x j+1,y j〉g such that
Γ(x j+1,y j+1) = 〈Pj ,Γ(x j ,y j)〉.
It remains to show thatz∈ 〈x,y〉g implies Γ(z) ≤ 〈Γ(x),Γ(y)〉. Let u andv be
distinct points of〈x,y〉g such that〈Γ(u),Γ(v)〉 ≤ 〈Γ(x),Γ(y)〉. It suffices to show
Γ(w) ≤ 〈Γ(u),Γ(v)〉 for every pointw∈ uv if u⊥ v and for every pointw∈ 〈u,v〉g
with w⊥ u and dist(w,v)= dist(u,v)−1 otherwise. The first follows from Lemma
6.4.19. Hence, letw be a point withw ⊥ u and dist(w,v) = dist(u,v)−1. Then
Proposition 6.4.17 implies thatΓ(u) andΓ(w) have a hyperplane in common and
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crkΓ(v)(Γ(w,v)) = crkΓ(v)(Γ(u,v))+ 1. Thus,Γ(u,v) is a hyperplane ofΓ(w,v).
Let P ∈ Pm such thatP ∈ Γ(w,v) r Γ(u). We obtainΓ(w) = 〈P,Γ(u,w)〉 ≤
〈Γ(u),Γ(v)〉.

We are no ready the prove the main result of this section.

Proposition 6.4.21.Let x and y be opposite points ofS . Further letD be the
Grassmannian of(Pm,Lm) with respect to(Γ(x),Γ(y)). Thenµ : S →D : p 7→
Γ(p) is an injective homomorphism that maps every line ofS bijectively onto a
line ofD .

Proof. By Proposition 6.4.18 the subspacesΓ(x) andΓ(y) are complementary in
(Pm,Lm). Hence, the twin GrassmannianD exists. By Proposition 6.4.17 we
obtain crkΓ(p)(Γ(p)∩Γ(q)) = crkΓ(q)(Γ(p)∩Γ(q)) < ∞ for two pointsp andq
of S +. Analogously,Γ(p) andΓ(q) are commensurate ifp andq are points of
S −. Thus, the image ofS is contained inD . Moreover, the mapµ is injective
by Proposition 6.4.17.
Let l be a line ofS and let p and q be two distinct points onl . ThenΓ(p)
and Γ(q) have a hyperplaneH in common by Proposition 6.4.17. Thus,L :=
{S≤ (Pm,Lm) | H < S< 〈Γ(p),Γ(q)〉} is a line inD . By Lemma 6.4.20 every
element ofL has a preimage. Moreover,l is mapped bijectively ontoL.

Theorem 6.4.22.A rigid twin SPO space whose symplecta have rank3 and whose
lines are contained in at most two maximal singular subspaces is a partial twin
Grassmannian of a projective space.

Proof. We denote the rigid twin SPO space byS and its two connected compo-
nents byS + andS −. Let x∈ S + andy∈ S − be opposite points ofS .
First assume diam(S +) < 2 and hence, diam(S −) < 2. ThenS + is a projec-
tive space by Theorem 2.1.22. IfS + is a singleton, thenS − is a singleton, too.
Moreover,S is isomorphic to the unique twin Grassmannian of the projective
spaceS +.
Now assume thatS + contains a line. Then the subspace coprS +(y) is a comple-
ment of{x} in S +. Let D = (D+,D−) be the twin Grassmannian ofS + with
respect to({x},coprS +(y)). Define a map

µ : S → D :

{

p 7→ {p} if p∈ S +

p 7→ coprS +(p) if p∈ S −
.

By Corollary 5.3.8 we conclude thatµ mapsS + bijectively ontoD+. Moreover,
by the definition of the lines inD+ we see directly thatµ induces an isomorphism
from S + ontoD+. Now let p andq be distinct points ofS −. Then by Lemma
2.1.13 there is a pointr ∈ S + with r ↔ p with r = q. Sincepµ andqµ are both
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hyperplanes ofS + and therefore commensurate,µ mapsS − injectively into
D−. Let r ∈ pq. Then〈pµ ,qµ〉 = S +. By (A2) every points∈ S + with p =
s= q is non-oppositer and hence,pµ ∩qµ < coprS +(r) < 〈pµ ,qµ〉. Conversely,
for a hyperplaneH of S + with H > pµ ∩qµ there is a points∈ H r (pµ ∩qµ).
We obtains↔ p or s↔ q and hence, there is a unique pointr ∈ pq with r = s
and hencerµ = H. Thus,µ maps lines ofS − bijectively onto lines ofD−.
For p∈ S + andq∈ S −, we obtainpµ ∩qµ∅ if and only if p /∈ coprS +(q) and
hencep↔ q. Since↔ is total, (TG1) holds. Sinceµ mapsS + bijectively onto
the singletons ofS +, the image ofS + underµ fulfills the conditions (TG2) and
(TG3). For everyp ∈ S +, we obtainp ∈ qµ for everyq ∈ coprS −(p), hence
(TG2) holds for the image ofS − underµ . Let p andq be two distinct points of
S − and letH be a hyperplane ofS + that containspµ ∩qµ . ThenH, pµ andqµ

are on a common line inD−. Sinceµ maps lines ofS − bijectively onto lines of
D−, we conclude that there is a pointr ∈ pqsuch thatrµ = H. Thus, (TG3) holds
and the claim follows.
Now assume diam(S +) ≥ 2. Since every line ofS is contained in at most two
maximal singular subspaces ofS , we may use the notations of this section. Let
D be the twin Grassmannian of(Pm,Lm) with respect to(Γ(x),Γ(y)) and set
µ : S → D : p 7→ Γ(p). By Proposition 6.4.21 we know thatµ : S → D : p 7→
Γ(p) is an injective homomorphism. Hence,S µ is isomorphic toS . Since↔ is
total in S , Proposition 6.4.18 implies (TG1). LetP ∈ Pm. Then by 6.4.11(iii)
there are pointsp ∈ P∩S + andq ∈ P∩S +. SinceP ∈ pµ ∩qµ , we conclude
that (TG2) holds. Finally, (TG3) follows from Lemma 6.4.20.

By Proposition 3.4.1 the restriction that every line ofS is contained in at
most two maximal singular spaces does not affect the case where S + contains
a symplecton properly. If the two connected components are singular subspaces,
this condition is obviously true. Hence, the only case that is affected is the case
whereS + andS − are opposite symplecta.

Remark6.4.23. Let P ∈ Pm. By Proposition 6.4.11(i) the elements ofM+ ∪
M− that contain a line ofP are entirely contained inP whereas no element of
Mr (M+ ∪M−) is a subspace ofP. Interchanging the roles ofM+ ∪M− and
Mr (M+ ∪M−) leads to exactly the same results. This is because every partial
twin Grassmannian of a projective spaceD is also a partial twin Grassmannian of
a subspace of the dual of the projective spaceD .

6.5 Twin SPO spaces of symplectic rank 4

In this section we consider the rigid twin SPO spaces of symplectic rank 4. There-
fore, throughout this section letS be a twin SPO space of symplectic rank 4.
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This implies thatS is rigid and has diameter≥ 2. By S + = (P+,L +) and
S − = (P−,L −) we denote the connected components ofS . Further we de-
note byM the set of maximal singular subspaces ofS . Further we denote byM
the set of maximal singular subspaces ofS .

Since we have have already covered the case whereS + is a symplecton, we
may constrain ourselves to the case whereS + contains a symplecton properly.
By Proposition 3.5.2 this implies that every singular spaceof rank 2 is contained
in exactly two elements ofM. For reasons of convenience, we include in this sec-
tion the case whereS +, and therefore alsoS −, is a symplecton whose singular
subspaces of rank 2 are contained in exactly two elements ofM.

By Theorem 3.5.4 we know srk(S )= 3 if S + is a symplecton and srk(S )≥4
otherwise. In the latter case we setM1 := {M ∈ M | rk(M) ≥ 4}. Moreover, for
σ ∈ {+,−}, we setMσ

1 := {M ∈ M1 | M ≤ S σ}. For the case whereS + is a
symplecton, we demanded that every singular subspace of rank 2 is contained in
exactly two elements ofM. Hence, Proposition 2.2.8 implies that the dual polar
graph ofS + is bipartite. Thus, there is a subsetM+

1 ⊆M such that every singular
subspace of rank 2 ofS + is contained in exactly one element ofM+

1 . We choose
a subspaceM ∈ M+

1 and a singular subspaceN ≤ S − that is oppositeM which
exists by Proposition 2.3.5. Then we defineM−

1 to be the subset ofM such that
N ∈M−

1 and every singular subspace of rank 2 ofS − is contained in exactly one
element ofM−

1 . We setM1 := M+
1 ∪M−

1 .
The setM r M1 is denoted byM0. For σ ∈ {+,−}, we setMσ

0 := {M ∈
M0 | M ≤ S σ}. The following lemma affirms that we made the right choice
determining the setM−

1 for the case srk(S ) = 3.

Lemma 6.5.1. Let M and N be two elements ofM with cod(M,N) = 1. Then
M ∈ M0 if and only if N∈ M0.

Proof. By symmetric reasons it suffices to show thatM ∈ M1 impliesN ∈ M1.
Since rk(N) ≥ 3 there is an independent set of points{pi | 0 ≤ i ≤ 3} such that
S:= 〈pi | 0≤ i ≤ 3〉 ≤ N is a subspace of rank 3.
Let srk(S ) > 3. Then rk(M) > 3, sinceM ∈M1. Since cod(M,N) = 1, we obtain
cod(pi ,M) = 1 for i ≤ 3. Moreover, coprM(pi) contains a hyperplane ofM and
therefore

⋂

i≤3coprM(pi) 6= ∅. Thus, there is a pointq ∈ M with cod(q, pi) =
1 for i ≤ 3 and cod(q,S) = 1. Hence, Lemma 2.1.21(ii) implies that there is a
point p4 ↔ q with S≤ p4

⊥. Thus,〈p4,S〉 is singular. We concludeN > S and
consequently,N ∈ M1 by Lemma 3.1.1(i) and Proposition 2.2.5.
Now let srk(S ) = 3. ThenS + andS − are opposite symplecta and there is
an isomorphismϕ : S + → S − that maps every point ofS + onto its cogate in
S −. By definition ofM−

1 there are subspacesM′ ∈ M+
1 andN′ ∈ M−

1 such that
M′ and N′ are opposite. Since cod(M′,N′) = 1, we conclude(M′)ϕ ∩ N′ = ∅
and hence,(M′)ϕ ∈ M1 by Proposition 2.2.8. Sinceϕ is an isomorphism, this
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impliesMϕ ∈ M1. Now cod(M,N) = 1 yieldsMϕ ∩N = ∅ and hence again by
Proposition 2.2.8N ∈ M1.

Lemma 6.5.2.Let M∈ M0 and N∈ M1 such that M and N have a line in com-
mon. Thenrk(M∩N) = 2.

Proof. For srk(S ) = 3, this is a consequence of Proposition 2.2.8. Therefore we
may assume srk(S ) ≥ 4. By Proposition 3.5.2 we know rk(M∩N) ≤ 2. Hence,
there is a pointp ∈ M r N. SinceN is maximal, there is a pointq ∈ N with
dist(p,q) = 2. The symplecton〈p,q〉g contains〈p,M∩N〉 and thus,M ≤ 〈p,q〉g
by Lemma 3.1.1(iii). Hence, prM(q) is a hyperplane ofM. By Proposition 3.5.2
we conclude that〈q,prM(q)〉 is contained in an element ofM1 and consequently,
N ≥ 〈q,prM(q)〉 sinceN is the unique element ofM1 that contains〈q,M ∩N〉.
ThereforeM∩N = prM(q).

In this section the subspaces we are interested in are the coconvex spans of
an element ofM0 and a point at finite codistance. Therefore we examine in the
following the coprojection of a point at finite codistance inan element ofM and
furthermore, how elements ofM at finite codistance are related to each other.

Lemma 6.5.3.Let M∈ M and let x be a point withcod(x,M) < ∞.

(a) If M ∈ M0, thencoprM(x) is a singleton or a hyperplane of M.

(b) If M ∈ M1 andcoprM(x) = M, thencod(x,M) = diam(S +) and rk(M) =
2·diam(S +).

(c) If M ∈ M1 andcoprM(x) < M, thencrkM(coprM(x)) = 2·cod(x,M)−1.

Proof. By symmetric reasons we may assumex ∈ S +. First letS − be a sym-
plecton. Thenx has a cogatex′ in S − andM is a generator ofS −. If x′ ∈M, then
coprM(x) = {x′} and crkM({x′}) = 3= 2·cod(x,x′)−1. If x′ /∈M, thenM contains
a point that is not collinear tox′ and equivalently is oppositex. This implies that
coprM(x) is a hyperplane ofM and hence, crkM(coprM(x)) = 1= 2·cod(x,M)−1.
Now let S − be not a symplecton and hence, srk(S −) > 3 by Theorem 3.5.4.
First assumeM ∈ M1. Let y ∈ M such that cod(x, p) ≥ cod(x,y) for every p ∈
M. Further letz↔ x with cod(x,y) = dist(y,z). If y = z, then coprM(x) is a
hyperplane ofM and the claim follows. Thus we may assume cod(x,y) ≥ 1.
Since cod(x, p) ≥ cod(x,y) for every p ∈ M, we obtain dist(z,M) = cod(x,y)
and hence, rk(prM(z)) = 2 · cod(x,y) by Lemma 3.5.3(ii). Suppose prM(z) = M.
Then cod(x,M) = cod(x,y) and the claim follows since coprM(y) = M and hence,
diam(S −) = cod(x,y) by Theorem 3.5.4. Therefore we may assume prM(z) < M.
Let S≤ M be a subspace such that prM(z) is a proper hyperplane ofS. Then there
is a pointx′ ∈ Swith dist(x′,z) = cod(x,y)+1. Since prM(z)≤ 〈x′,z〉g and rk(S) =
2 · cod(x,y)+ 1, Theorem 3.5.4 implies thatS is a maximal singular subspace of
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〈x′,z〉g. By (A12)xhas a cogate in〈x′,z〉g and cod(x,〈x′,z〉g)= cod(x,y)+1. Since
cod(x, p) ≥ cod(x,y) for everyp∈ S, all points ofSare collinear to the cogate of
x in 〈x′,z〉g. By the maximality ofS in 〈x′,z〉g this implies copr〈x′,z〉g(x) < S and
hence, coprM(x)∩S 6= ∅. We conclude that coprM(x) is a complement to prM(z)
in M and therefore crkM(coprM(x)) = rk(prM(z))+1= 2·cod(x,M)−1.
Now assumeM ∈ M0. Assume coprM(x) is not a hyperplane ofM. Then there
is a line g such that cod(x, p) ≥ cod(x,g) for every point p ∈ M. Let y ∈ g.
Since coprg(x) = g, Lemma 6.1.1 implies that there is a pointz with cod(x,z) =

cod(x,y)−1 andg ≤ z⊥. If z∈ M, then by Lemma 3.1.1(i) there is a symplec-
ton Y that contains〈z,g〉. If z /∈ M, then there is a pointz′ ∈ M with z′ 6⊥ z we
setY := 〈z,z′〉g. For both cases Lemma 3.1.1(iii) impliesM ≤ Y. Suppose that
x has no cogate inY. Since cod(x,g) > cod(x,z), Proposition 2.1.12(iv) implies
g≤ coprY(x). Furthermore, by Propositions 4.2.5 we conclude that coprY(x) is a
generator ofY. Hence, coprY(x) = M since cod(x, p)≥ cod(x,g) for everyp∈ M.
Let M′ be a generator ofY with M∩M′ = ∅. Then coprM′(x) = M′ and Proposi-
tion 2.2.9(iii) impliesM′ ∈ M0. Since cod(x,M′) = cod(x,M)−1 we may repeat
this construction to obtain after finitely many steps a subspaceM′′ ∈ M0 with
cod(x,M′′) = 0, a contradiction. Thus,x has a cogatex′ in Y. Then coprM(x) is
a hyperplane ofM if x′ /∈ M, a contradiction. Hence,x′ ∈ M and coprM(x) is a
singleton.

Lemma 6.5.4. Let M∈ M and let x and y be distinct collinear points such that
cod(x,M) = cod(y,M) < ∞.

(i) Let M∈ M0. Further letcoprM(x) be a hyperplane of M and letcoprM(y)
be a singleton. ThencoprM(y) < coprM(x).

(ii) Let M∈ M1. Further letcoprM(x) andcoprM(y) be both proper subspaces
of M. ThencoprM(x) andcoprM(y) have a hyperplane in common.

Proof. Setd := cod(x,M).
(i) Since rk(coprM(x)) = 2, there is a lineg ≤ coprM(x) with g∩ coprM(y) =
∅. Thus by Lemma 6.1.1, there is a pointz with cod(z,y) = d − 2 andg ≤
z⊥. Hence,Y := 〈z,coprM(y)〉g is a symplecton that contains〈coprM(y),g〉. By
Lemma 3.1.1(iii) this impliesM ≤Y. By Proposition 2.1.12(iv) we conclude that
the point in coprM(y) is a cogate fory in Y. Since cod(x,coprM(y)) ≤ d and
x ⊥ y, we obtain cod(x,Y) = d. Hence, coprM(x) ≤ coprY(x) and consequently,
cod(x,z) = d−1. We conclude by Proposition 4.2.5 that coprY(x) is a generator
of Y. Since every point of coprY(x) has at least codistanced−1 toy, we conclude
coprY(y) ≤ coprY(x) and hence, coprM(y) ≤ coprM(x).
(ii) Suppose there is a linel ≤ coprM(x) that is disjoint to coprM(y). Then by
Lemma 6.5.3 there is a pointp∈ coprM(y)rcoprM(x). By Proposition 3.5.2 there
is a subspaceN ∈ M0 such that〈p, l〉 ≤ N. Thenl ≤ coprN(x) and Lemma 6.5.3
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implies that coprN(x) is a hyperplane ifN. On the other handl ∩ coprN(y) = ∅
and hence, coprN(y) = {p} by Lemma 6.5.3. Sincep∈ coprN(y)rcoprN(x), this
is a contradiction to (i).

Lemma 6.5.5.Let M∈ M0. Further let N be a singular subspace of rank3 that
is one-coparallel to M. Then N∈ M0.

Proof. Setd := cod(M,N). Let x ∈ M andy ∈ N be points with cod(x,y) = d.
Let g ≤ M be a line withx /∈ g and leth ≤ N be a line withy /∈ h. By Lemma
4.2.1 there are pointsw ↔ y with dist(w,g) = d−1 and prg(w) = g andz↔ x
with dist(z,h) = d−1 and prh(z) = h. Since dist(w,x) = dist(y,z) = d, w ↔ y
andx↔ z, we conclude by (A12) and Corollary 4.2.8 that the metaplecta 〈w,x〉g
and〈y,z〉g are opposite and there is an isomorphismϕ : 〈w,x〉g → 〈y,z〉g that maps
every point onto its cogate. By Lemma 3.1.1(iii)〈x,g〉 ≤ 〈w,x〉g implies M ≤
〈w,x〉g. AnalogouslyN ≤ 〈y,z〉g. Now Mϕ is a maximal singular subspace of
〈y,z〉g with rk(Mϕ) = 3. If d > 2, then srk(〈y,z〉g) > 3 by Theorem 3.5.4 and hence
we concludeMϕ ∈ M0 by Proposition 3.5.2. Ifd = 2, then there is a generator
M′ ≤ 〈y,z〉g disjoint toMϕ . Since for a point inp∈ M, the cogate forp in 〈y,z〉g is
contained inMϕ , there is a point inM′ that is oppositep. Thus, cod(M,M′) = 1
and we obtainM′ ∈ M0. By Proposition 2.2.9(iii) this impliesMϕ ∈ M0.
Sincey and every point onh have codistanced to a point inM, we obtain〈y,h〉 ≤
Mϕ . Let p∈ Mϕ r 〈y,h〉 and letp′ be the preimage ofp with respect toϕ. Then
coprh(p′) = h and cod(p′,h) = d−1. Thus by Lemma 6.1.1, there is a pointq with
cod(p′,q) = d−2 andh≤ q⊥. Then〈p,q〉g is a symplecton and Lemma 3.1.1(iii)
implies Mϕ ≤ 〈p,q〉g since〈p,h〉 ≤ 〈p,q〉g. Let N′ ∈ M1 such that〈y,h〉 ≤ N′.
ThenN ≤ N′ or N = Mϕ by Proposition 3.5.2. Sincep /∈ 〈y,h〉 andN′ ∩Mϕ =
〈y,h〉, we obtainp /∈ N′. By Proposition 2.1.12(iv)p is the cogate forp′ in 〈p,q〉g.
By Proposition 3.5.2N′ intersects〈p,q〉g in a generator and hence there is a point
q′ ∈ N′ ∩ 〈p,q〉g with cod(p′,q′) = d−2. Therefore cod(p′,N) = d−1 and we
concludeN = Mϕ .

A coconvex subspace ofS of finite codiameter consists of two parts of infinite
diameter as long asS + andS − have infinite diameter. Similarly to the last sec-
tion, the following lemma gives a possibility to make assertions about the size of
convex subspaces of infinite diameter by taking the intersection with the maximal
singular subspaces into account.

Lemma 6.5.6.Let U and V be two convex subspaces with U≤V ≤S −. Further
let M ∈ M0 and N∈ M1 with M ≤ U and rk(N∩U) ≥ 2. Then N∩U = N∩V
implies U= V.

Proof. If U is singular, thenU = M and hence by Proposition 3.5.2,N∩U is a
proper hyperplane ofM. Thus, rk(N∩V) = 2 and Lemma 3.1.1(iii) implies that
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V is singular, too. The claim follows. Therefore we may from now on assume
diam(U) ≥ 2 and hence, rk(N∩U) > 2 by Lemma 3.1.1(iii).
Let p ∈ V be a point. Sincep is contained in an element ofM that intersects
V in a maximal singular subspace, Lemma 3.1.1(v) implies thatthere is a finite
sequence(Ni)0≤i≤n ∈ Mn+1 with N0 = N and p ∈ Nn such thatNi ∩Ni+1 ≤ V
and rk(Ni ∩Ni+1) = 2 for i < n. By Proposition 3.5.2 we concludeNi ∈ M1 if
and only if i is even. AssumeNi ∩V = Ni ≤ U for i ≤ n−1 andi even. Then
Ni+1 ≤ U by Lemma 3.1.1(iii). Ifi ≤ n−2, this implies rk(Ni+2∩U) ≥ 2 and
hence, rk(Ni+2∩U) ≥ 3 by Lemma 3.1.1(iii). For a pointq∈ Ni+2, we conclude
by Lemma 3.3.3(i)

q∈V ⇔ prNi
(q) ≤V ⇔ prNi

(q) ≤U ⇔ q∈U .

SinceN∩V = N∩U , induction providesNi ∩V = Ni ∩U for every i ≤ n and
thereforep∈U .

Lemma 6.5.7.Let M and N be elements ofM1 such that l:= M∩N is a line. Fur-
ther let x be a point withcod(x,M) < ∞ such thatcoprM(x) < M andcoprN(x) <
N. ThenπM,N(〈l ,coprM(x)〉) = 〈l ,coprN(x)〉.

Proof. We may assumex ∈ S +. Setd := cod(x,M). Further setS := coprM(x)
and T := coprN(x). Then Lemma 6.5.3 implies crkM(S) = 2d − 1. First let
cod(x,N) 6= d. By Lemma 3.3.3(iii) we may assume cod(x,N) = d− 1. This
implies cod(x, l) = d− 1 and coprl (x) = l . Furthermore, Lemma 6.5.3 implies
crkN(T) = 2d−3. For everyp∈ Swe obtain prN(p)≤ T. Thus,πM,N(〈l ,S〉)≤ T.
Since crkM(〈l ,S〉) = 2d−3, Lemma 3.3.3(iii) implies crkN(πM,N(〈l ,S〉))= 2d−3
and thereforeπM,N(〈l ,S〉) = T.
Now let cod(x,N) = d. Then Lemma 6.5.3 implies crkN(T) = 2d−1. First sup-
pose cod(x, l) = d− 1. Thend > 1 and hence, there is a pointq ∈ N r l such
that 〈q, l〉 is disjoint toT. By Lemma 3.3.3(iii) there is a pointp ∈ M such that
prN(p)∩T 6= ∅. Thenq /∈ prN(p) since rk(prN(p)) = 2 by Lemma 3.5.3(ii) and
l ≤ prN(p). Thus,Y := 〈p,q〉g is a symplecton. By Lemma 3.1.1(iii), bothM
andN contain a generator ofY. Sincel ≤ Y, we obtain cod(x,Y) ≤ d and since
cod(x,prN(p)) = d, we conclude cod(x,Y) = d. Supposex has a cogate inY. Then
this cogate would be contained in prN(p)r l and hence there is a point inM∩Y
at codistanced−2 to x, a contradiction. Thus by Proposition 4.2.5, coprY(x) is
a generator ofY. As a consequence this implies srk(S −) > 3, since otherwise
S − = Y by Theorem 3.5.4 and thereforex has a cogate inY by (A12). Since
cod(x,prN(p)) = d and cod(x,〈q, l〉) = d−1, the generators coprY(x) andY∩N
intersect in a single pointq′. Hence, Proposition 2.2.9(iv) implies coprY(x) ∈M0,
a contradiction to Lemma 6.5.3. Thus, cod(x, l) = d.
Assume thatl andS intersect in a single points. Ford = 1, we obtainM = 〈l ,S〉
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andN = 〈l ,T〉 and hence the claim follows from Lemma 3.3.3(iii). Therefore we
may assumed > 1. Then there is a pointq∈ N r l such that〈q, l〉∩T = {s}. Let
p ∈ M be a point such that prN(p)∩T > {s}. Since rk(prN(p)) = 2 by Lemma
3.5.3(ii), we obtainq /∈ prN(p) and conclude thath := prN(p)∩T is a line. Thus,
Y := 〈p,q〉g is a symplecton. By Lemma 3.1.1(iii), bothM andN contain a gen-
erator ofY. Since〈q, l〉 ≤Y, we conclude cod(x,Y) = d. We obtainh≤ coprY(x)
and therefore Proposition 4.2.5 implies that coprY(x) is a generator ofY. Since
〈q, l〉∩T = {s}, the generators coprY(x) andY∩N intersect in the lineh. Apply-
ing Proposition 2.2.8 provides that the corank of(Y∩M)∩coprY(x) in coprY(x)
is even. Withl ≤ Y∩M we conclude that coprY(x) andY∩M intersect in a line
g. Since〈p,prN(p)〉 is a generator ofY that intersectsN∩Y in a hyperplane and
h≤ prN(p)∩coprY(x), Proposition 2.2.8 implies that〈p,prN(p)〉 and coprY(x) in-
tersect in a common hyperplane. Hence,〈p,prN(p)〉∩M = 〈p, l〉 contains a line of
S. Thereforeg≤〈p, l〉 and we obtainp∈ 〈l ,S〉. We concludeπM,N(〈l ,S〉)≥〈l ,T〉.
Since crkM(S) = crkN(T) = 2d−1 the claim follows from Lemma 3.3.3(iii).
Now assumel ≤ S. SinceS< M, there is a pointr ∈ M with cod(x, r) = d−1.
Let q ∈ N such that prN(r) = 〈q, l〉. Further letp ∈ Sr l . Since〈p, l〉 ≤ S and
prM(q) = 〈r, l〉 by the collinearity ofr andq, this implies thatY := 〈p,q〉g is a
symplecton. By Lemma 3.1.1(iii), bothM andN contain a generator ofY. As-
sume cod(x,Y) = d + 1. Then by Proposition 2.1.12(iv)x has a cogatey in Y.
Thus,y is collinear to all points of〈p, l〉 and hence,〈y, p, l〉 is a generator ofY.
Since〈y, p, l〉 andM∩Y are the only generators that contain〈p, l〉, we conclude
〈p,prN(p)〉= 〈y, p, l〉 and therefore prN(p)≤T. Now assume cod(x,Y) = d. Then
by Proposition 4.2.5 coprY(x) is a generator ofY sincer ∈ Y and l ≤ coprY(x).
Sincer ∈ M r coprY(x), we obtain coprY(x)∩M = 〈p, l〉. Hence by Proposition
2.2.8 and sincel ≤ coprY(x)∩N we conclude thatN∩Y and coprY(x) intersect
in a common hyperplane. Sincep∈ coprY(x) this implies prN(p) = coprY(x)∩N
and hence again prN(p) ≤ T. We concludeπM,N(S) ≤ T and the claim follows
from Lemma 3.3.3(iii).

Corollary 6.5.8. Let V be connected convex subspace withdiam(V) ≥ 2 and
let M ∈ M1 be a subspace withrk(M ∩V) ≥ 2. Further let x be a point with
cod(x,M)< ∞ andcoprM(x)≤V. ThencoprN(x)≤V for every subspace N∈M1

with rk(N∩V) ≥ 2 andcoprN(x) < N.

Proof. Let N ∈ M1 with rk(N∩V) ≥ 2. By Lemma 3.1.1(iii)M∩V andN∩V
are maximal singular subspaces ofV. First assume there is a subspaceK ∈ M1

with rk(K ∩V) ≥ 2 and coprK(x) = K. ThenK ≤ coprS −(x) by Lemma 6.5.3.
Moreover, cod(x,K) = diam(S −) =: d and rk(K) = 2d. Since by Lemma 6.5.3
there is no element ofM0 contained in coprS −(x), we conclude by Proposi-
tion 2.1.16(i) that coprS −(x) is singular and hence equalsK. By Proposition
2.1.16(ii) every pointp∈ coprN(x) has distanced− cod(x, p) to K. This implies
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dist(K,N) = d−cod(x, p) and hence coprN(x) ≤V by Lemma 3.5.3(ii).
Now assume coprK(x) < K for every subspaceK ∈M1 with rk(K∩V) ≥ 2. Then
by Lemma 3.1.1(v) and sinceV is connected, we may assume that there is a sub-
spaceL ∈ M0 such that bothN andM intersectL in a hyperplane. ForM = N
there is nothing to prove. Hence by Proposition 3.5.2 we may assume thatM
andN intersect in a linel . Applying Lemma 6.5.7 yieldsπM,N(〈l ,coprM(x)〉) =
〈l ,coprN(x)〉. With Lemma 3.5.3(ii) this implies〈l ,coprN(x)〉 ≤V.

Lemma 6.5.9. Let x∈ S +. Further let H≤ S − be a singular subspace with
rk(H) = 2 andcoprH(x) = H. Set d:= cod(x,H). Let M∈M0 and N∈ M1 such
that H = M∩N and set d:= cod(x,H). Then either

(a) cod(x,M) = d+1 andcod(x,N) = d or

(b) coprM(x) = H andcod(x,q) ≥ d for every point q∈ N.

Proof. Let p ∈ M r H. Then for every pointq ∈ N r H, the subspace〈p,q〉g
is a symplecton and the only generators of〈p,q〉g that containH are〈p,H〉 and
〈q,H〉. By Lemma 6.5.3 we conclude that either cod(x,M) = d and coprM(x) = H
or cod(x,M) = d+1 and coprM(x) is a singleton.
First consider the case cod(x,M) = d + 1. Then we may assume thatp is the
unique point ofM at codistanced+1 tox. Suppose that is a pointq∈ NrH with
cod(x,q) = d+1. SetY := 〈p,q〉g. Then cod(x,Y) = d+1 sinceH ≤Y. Hence,
p andq are both contained in coprY(x), a contradiction to Proposition 2.1.16(i).
Thus, cod(x,N) = d and (a) holds.
Now consider the case cod(x,M) = d and coprM(x) = H. Letq∈ NrH andY :=
〈p,q〉g. If cod(x,Y) = d+1, then Proposition 2.1.12(iv) implies thatx has a cogate
x′ in Y. Since this cogate is collinear to all point ofH, we conclude that〈x′,H〉 is
a generator ofY. Since cod(x,M) = d, we conclude〈x′,H〉= 〈q,H〉 and therefore
cod(x,q) ≥ d. If cod(x,Y) = d, then Proposition 4.2.5 implies that coprY(x) is
a generator ofY. Since cod(x, p) = d− 1, we conclude coprY(x) = 〈q,H〉 and
therefore cod(x,q) = d. Thus, (b) holds.

Lemma 6.5.10.Let x∈ S + and M∈ M−
0 . Then there is a subspace N∈ M+

0
with x∈ N such thatcod(p,M) = cod(q,N) andrk(coprM(p)) = rk(coprN(q)) for
every pair of points(p,q) ∈ N×M.

Proof. Set d := cod(x,M) andk := rk(coprM(x)). Thenk ∈ {0,2} by Lemma
6.5.3. Hence, there is a pointx′ ∈ M with cod(x,x′) = d. Let y be a point of
coprM(x).
First letk= 0. Then by Lemma 4.2.1 there is a pointz↔ x with dist(z,M) = d−1
and rk(prM(z))≥ 1. Thus, rk(M∩〈y,z〉g)≥ 2 and thereforeM ≤ 〈y,z〉g by Lemma
3.1.1(iii). By Corollary 4.2.8 there is a metaplecton containing x that is opposite
〈y,z〉g. Moreover, this metaplecton contains a singular subspaceN of rank 3 such
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thatM andN are one-coparallel to each other with cod(M,N) = d andx∈ N. By
Lemma 6.5.5 we obtainN ∈ M0.
Now letk= 2. Further assume diam(S +)≥ d+1, then Lemma 6.1.1 implies that
there is a pointz⊥ y with cod(x,z) = d+ 1 and prM(z) > {y}. Thus by Lemma
3.1.1(iii), 〈z,x′〉g is a symplecton that containsM. By Corollary 4.2.8 there is a
symplectonY with x∈ Y such that〈z,x′〉g andY are one-coparallel to each other
at codistanced+1. LetM′ be the generator ofY that is one-coparallel toM with
cod(M,M′) = d+1. ThenM′ ∈M0 by Lemma 6.5.5. Sincex /∈ M′ there is a gen-
eratorN ∈ Y with x∈ N that is disjoint toM′. By Proposition 2.2.8 we conclude
N ∈M0. Since every pointq∈ M has a cogate at codistanced+1 inY that is con-
tained inM′, we obtain cod(q,N) = d and coprN(q) is a hyperplane ofN. On the
other hand, every pointp∈ N has a cogate in〈z,x′〉g at codistanced+1 that is not
contained inM sincep /∈ M′. This implies cod(p,M) = d and rk(coprM(p)) = 2.
Finally, letk = 2 and diam(S +) = d, then coprM(x) ≤ coprS −(x) and hence by
(A2), S − is not a metaplecton. By Theorem 3.5.4 this implies srk(S ) = 2d. By
Proposition 2.1.16(ii) there is a pointy′ ∈ S + with x ⊥ y′ and cod(y′,x′) = d.
By Proposition 3.5.2y′ is contained in a singular subspace of rank 2d. Hence,
Lemma 6.5.3 implies that this singular subspace contains a line l of coprS +(x′).
We may assumey′ ∈ l . If l ≤ x⊥, Lemma 3.1.1(i) implies that there is a symplec-
tonY that containsx and l . Otherwise, we setY := 〈x, l〉g. By Proposition 4.2.5
coprY(x′) is a generator and hence there is a generatorN ≤Y such thatx∈ N and
N intersects coprY(x′) in a hyperplane. By Lemma 6.5.3 the generator coprY(x′)
is contained in an element ofM1. Thus,N ∈ M0 by Proposition 3.5.2. Since
coprN(x′) is a hyperplane ofN that does not containx, we conclude by Lemma
6.5.4(i) that coprN(p) is a hyperplane ofN for every pointq ∈ coprM(x). More-
over, cod(q,N) = d. Analogously for every pointp ∈ coprN(x′), we conclude
cod(p,M) = d and rk(coprM(p)) = 2. For every pointq ∈ M r coprM(x), there
is a pointq′ ∈ coprM(x) such thatq∈ q′x′. Since coprN(q′)∩coprN(x′) contains
a line, Proposition 2.1.12(iv) implies that every point on this line has codistance
d to p. Hence, cod(q,N) = d. Moreover, Lemma 6.5.3 implies that coprN(p) is
a hyperplane ofN. Analogously for every pointp ∈ N r coprN(x′), we obtain
cod(p,M) = d and rk(coprM(p)) = 2.

The following proposition shows that the coconvex span of a point of S + and
an element ofM−

0 has properties that correspond to the properties of metaplecta
stated in the Propositions 2.1.3, 2.1.12(i) and 2.1.12(iii).

Proposition 6.5.11.Let x∈ S + and M∈ M−
0 . Set V:= 〈x,M〉G and n:= 2 ·

cod(x,M)+ 1
2 · rk(coprM(x))−3.

(i) Let S≤V be a singular subspace withrk(S) = 2. Further let L∈ M0 and
K ∈ M1 such that K∩L = S. Then L≤V andcrkK(K∩V) = n.
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(ii) Let K∈ M1 such thatrk(M∩K) = 2. Then K∩V = 〈M∩K,coprK(x)〉 or
coprK(x) = K.

(iii) codm(V) = cod(x,M)−1.

(iv) For every point u∈ V there is a subspace K∈ M0 with K ≤ V and 2 ·
cod(u,K)+ 1

2 · rk(coprK(u))−3 = n. Moreover,〈u,K〉G = V for every such
subspace K.

Proof. Setd := cod(x,M)−1 andk := rk(coprM(x)). Thenn= 2d+ k
2 −1. Lety

be a point of coprM(x). Sincek∈ {0,2} by Lemma 6.5.3, there is a pointx′ ∈ M
with cod(x,x′) = d.
By Lemma 6.5.10 there is a subspaceM′ ∈M+

0 with x∈M′ such that cod(p,M) =
cod(q,M′) and rk(coprM(p)) = rk(coprM′(q)) for every pair of points(p,q) ∈
M′×M. This implies 2· cod(x′,M′)+ 1

2 · rk(coprM′(x′))−3 = n. If k = 0, then
for every pointp ∈ M′, there is a pointq ∈ M with cod(p,q) = d + 1. Since
coprM′(q) = {p}, we obtainp ∈ 〈x,q〉G ≤ V and hence,M′ ≤ V. If k = 2, then
coprM′(x′) is a hyperplane ofM′ that does not containx and thereforeM′ =
〈x,coprM′(x′)〉 ≤ 〈x,x′〉G ≤V.
Let H ≤ M be a hyperplane ofM such thatx′y ≤ H. Then rk(coprH(x)) = k

2.
By Proposition 3.5.2 there is a subspaceN ∈ M1 such thatH ≤ N. Let analo-
gouslyN′ ∈ M1 such thatH ′ := M′∩N′ is a hyperplane ofM′ with x ∈ H ′ and
cod(x′,H ′) = d + 1. Then rk(coprH ′(x′)) = k

2. Lemma 6.1.2 impliesN∩U− =
〈H,coprN(x)〉. Sincex′y ≤ N, we obtain crkN(coprN(x)) = 2d + 1 by Lemma
6.5.3. Since crkH(H ∩coprN(x)) = 2− k

2, we conclude crkN(N∩U−) = 2d+1−
(2− k

2) = n. By symmetric reasons crkN′(N′∩U+) = n.
SetU− := 〈M,coprN(x)〉g andU+ := 〈M′,coprN′(x′)〉g. We will showV = U+ ∪
U−. Since cod(x,N) = d+ 1 andx′ ∈ N, we obtain coprN(x) ≤ V by the cocon-
vexity of V and therefore,U− ≤ V. Analogously,U+ ≤ V. Thus,U+ ∪U− is
a convex subspace ofV. Sincex ∈ U+ and M ≤ U−, it remains to show that
U+∪U− is coconvex. By symmetric reasons it suffices to show that fora pair of
points(u,v) ∈U+×U− and a pointw with w⊥ v and cod(u,w) = cod(u,v)+1,
we obtainw∈U−.
First assume thatU− is singular. ThenU− = M andN∩U− = H. Thus, rk(N) =
n+ 2 and therefore rk(N) = 2d + 1 if k = 0 and rk(N) = 2d + 2 if k = 2. We
conclude diam(S −) = d + 1 by Theorem 3.5.4. Moreover, ifk = 0, thenS +

andS − are opposite metaplecta and thereforeM andM′ are one-coparallel to
each other at codistanced + 1. Hence,M ∪ M′ is coconvex and we conclude
V = M∪M′. Since srk(S ) = 2d + 1, claim (i) follows by Lemma 3.5.3(i). By
Lemma 6.5.3 we obtain (ii). For (iii) and (iv), there is nothing to prove. Now let
k = 2. Assume there are pointsu∈ M′, v∈ M andw⊥ v such that cod(u,v) = d
and cod(u,w) = d + 1. Thenw ⊥ p for every pointp ∈ coprM(u) since other-
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wise the symplecton〈p,w〉g would be contained in coprS −(u) by Proposition
2.1.16(i), a contradiction to cod(u,v) = d. Thus,w is collinear to all points of
〈v,coprM(u)〉. Since coprM(u) is a hyperplane ofM andv /∈ coprM(u), we obtain
〈v,coprM(u)〉 = M and thereforew ∈ M by the maximality ofM. By symmet-
ric reasons this implies thatM∪M′ is coconvex and hence,V = M ∪M′. Since
srk(S ) = 2d+ 2, claim (i) follows by Lemma 3.5.3(i). LetK ∈ M1 such thatK
intersectsM in a hyperplane. Then coprM(x)∩K contains a line. Since by Lemma
6.5.3 we obtain that coprK(x) is a line if K contains a point at codistanced to x,
this implies (ii). For (iii) and (iv), there is nothing to prove. Thus, from now on
we may assume diam(U−) ≥ 2.
Let S be an arbitrary hyperplane ofM with S 6= H and letK ∈ M1 be the sub-
space that containsS. Then crkK(K ∩U−) = n by Lemma 3.5.3(i). SinceS and
H have a line in common, we obtain coprK(x) ≤U− or coprK(x) = K by Lemma
6.5.7. AssumeS∩coprM(x) = ∅. Then necessarilyk = 0. By Lemma 6.5.9 we
obtain cod(x,K) = d and consequently, Lemma 6.5.3 implies crkK(coprK(x)) =
2d−1 = n. Hence, coprK(x) = 〈S,coprK(x)〉 = K ∩U−. AssumeS∩ coprM(x)
is a point or a line. Then crkK(〈S,coprK(x)〉) = n by the same reason as forN.
This implies again〈S,coprK(x)〉 = K ∩U−. Finally assumeS≤ coprM(x). Then
necessarilyk = 1. By Lemma 6.5.9 implies cod(x, p) ≥ d + 1 for every point
p ∈ K and we conclude that either coprK(x) = K or cod(x,K) = d + 2 holds.
In the latter case we obtain crkK(coprK(x)) = 2d + 3 by Lemma 6.5.3. Thus,
crkK(〈S,coprK(x)〉) = 2d = n and again〈S,coprK(x)〉 = K ∩U−. Therefore (ii)
holds forU−.
Now let w ⊥ v for a pointv ∈ U− such that cod(x,w) = cod(x,v)+ 1. Suppose
w /∈U−. First assume that prU−(w) contains a linel throughv. Since by Lemma
3.1.1(i) l is contained in a symplecton ofU−, we obtain rk(prU−(w)) ≥ 3 by
Proposition 2.1.27. Thus there is a subspaceK ≤ M1 with w∈ K andK ∩U− =
prU−(w). This impliesw ∈ coprK(x) < K sincev ∈ K, a contradiction to Corol-
lary 6.5.8 since coprN(x) < N∩U−. Thus, prU−(w) = {v}. Let l ≤ U− be a
line throughv. ThenY := 〈w, l〉g is a symplecton. Sincew⊥ contains a hyper-
plane ofU−∩Y, we concludeU−∩Y = l . Let G≤Y be a generator withl ≤ G.
Then there is a linel ′ ≤ w⊥ ∩G that is disjoint tol . For every pointw′ ∈ l ′, we
conclude cod(x,w′) ≤ cod(x,v) since prU−(w′) containsl and hence, cod(x,w′) =
cod(x,w)−1 sincew ⊥ w′. This impliesw ∈ coprY(x). Let v′ ∈ l r {v}. Then
cod(x,v′) ≥ cod(x,w′) for every pointw′ ∈ l ′ sincev′ ∈ l ≤ prU−(w′). Thus,w
is not a cogate ofx in Y and we conclude by Proposition 4.2.5 that coprY(x) is a
generator. This generator contains a pointw′′ with l ≤ prU−(w′′), a contradiction.
Therefore,w∈U−.
To prove that for every pointu ∈ U+ and every pointw ⊥ v with cod(u,w) =
cod(u,v)+1, we obtainw∈U−, it suffices now to show that there are subspaces
Mu ∈ M−

0 and Nu ∈ M1 such thatHu := Mu ∩ Nu is a hyperplane ofMu with
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coprHu
(u) < Hu andU− = 〈Mu,coprNu

(u)〉g =: Uu. By Lemma 6.5.3 we know
crkNu(〈Hu,coprNu

(u)〉) = 2·cod(u,Hu)−1−crkHu(coprHu
). By Lemma 6.1.2 we

obtain〈Hu,coprNu
(u)〉 = Nu∩Uu. Since by Lemma 6.5.3 coprMu

(u) is either a
singleton or a hyperplane ofMu, this implies crkNu(Nu∩Uu) = 2 · cod(u,Mu)+
1
2 · rk(coprMu

(u))−3. Hence with Lemmas 6.5.6 and 3.5.3(i), it suffices to show
cod(u,Hu) = d+1, rk(coprMu

) = k and〈Hu,coprNu
(u)〉 ≤U− to proveU− = Uu.

SinceU+ is connected, we may restrict ourselves to the casex⊥ u.
Assumeu∈ M′. Then rk(coprM(u)) = rk(coprM(x)) and cod(u,M) = d+1. As-
sume coprM(u) = coprM(x). In the casek = 0 this impliesu = x sinceM and
M′ are one-coparallel. In the casek = 2 we obtain coprM(q) = coprM(x) for ev-
ery pointq∈ 〈u,x〉. Hence,〈u,x〉∩coprM′(p) = ∅ for a pointp∈ M rcoprM(x)
since cod(p,M′) = d + 1. Since coprM′(p) is a hyperplane ofM′, we conclude
againu = x. Thus we may assume coprM(u) 6= coprM(x). Then there is a hy-
perplaneHu of M such that coprHu

(x) and coprHu
(u) are both properly contained

in Hu and coprHu
(x) 6= coprHu

(u). Let Nu ∈ M1 such thatHu ≤ Nu. By Lemma
6.5.4(ii) coprNu

(x) and coprNu
(u) intersect in a common hyperplaneH and there-

fore coprNu
(u)≤ 〈coprNu

(x),Hu〉. Since coprNu
(x)≤U−, this implies coprNu

(u)≤
U−. Thus forMu := M, we concludeUu = U−. As a consequence,K ∩U− =
〈M∩K,coprK(p)〉 for everyp ∈ M′ andK ∈ M1 with rk(M∩K) = 2. By sym-
metric reasonsK ∩U+ = 〈M′∩K,coprK(q)〉 for everyq ∈ M andK ∈ M1 with
rk(M′∩K) = 2.
Now let dist(u,M′) = 1. Assume prM′(u) = {x}. Let y′ ∈ coprM′(x′). Since
cod(x,x′) 6= cod(x,y) we obtain coprM′(x′) 6= coprM′(y). Hence, we may assume
y′ ∈ coprM′(x′)rcoprM′(y). By Corollary 4.2.8 we know thatxy′ andx′y are one-
coparallel. Now〈u,y′〉g is a symplecton that contains the linexy′. By Proposition
3.5.2 there is a generatorG′ of 〈u,y′〉g with xy′ ≤ G′ andG′ ∈ M0. Sinceu∈U+,
we obtainG′ ≤U+. We show that there is a subspaceG∈ M0 contained inU−

with cod(p,G) = cod(q,G′) = d + 1 and rk(coprG(p)) = rk(coprG′(q)) = k for
every pair of points(p,q) ∈ G′×G such that〈G,coprL(x)〉g = U− for a subspace
L∈M1 with rk(G∩L) = 2 and coprG∩L(x)≤G∩L. Since prG′(u) is a hyperplane
of G′, this allows us to constrain ourselves to the case prM′(u) > {x}.
First consider the casek = 0. Thenx′ is the cogate ofy′ in M. If G′ is one-
coparallel toM, we are done. Hence we may assume thatG′ and M are not
one-coparallel. Letp ∈ G′ r M′. Then there is a subspaceK ∈ M1 such that
〈p,xy′〉 ≤ K. By Lemma 6.5.2K intersectsM in a hyperplane and therefore
p ∈ 〈M′ ∩K,coprK(q)〉 for everyq ∈ M. This implies cod(p,q) ≥ d for every
q∈ M and hence, cod(p,M)≥ d+1 by Lemma 6.5.3. Sincex andy′ have distinct
cogates inM, we obtain cod(p,M) = d+1. Hence, if every point ofG′ has a co-
gate inM, we conclude by Lemma 6.5.3 thatG′ andM are one-coparallel to each
other. Thus, we may assume rk(coprM(p)) = 2. By Lemma 6.5.4(i) we obtain
x′y≤ coprM(p). By Lemma 6.5.3 this implies that both coprG′(x′) and coprG′(y)



176 6. Twin SPO spaces

are hyperplanes ofG′. Hencel ′ := coprG′(x′)∩coprG′(y) is a line throughp since
cod(x,y) = d+1 and cod(x,x′) = d. Let l ≤ M be a line disjoint tox′y. Now let p
be an arbitrary point ofl ′. Since cod(p,M) = d+1 andx′y≤ coprM(p), Lemma
6.5.3 implies that there is a unique pointq ∈ l at codistanced + 1. Conversely,
since cod(q,xy′) = d, Lemma 6.5.3 implies thatp is the unique point ofG′ at
codistanced+1 toq. Thusl andl ′ are one-coparallel at codistanced+1.
Let L ∈ M1 be the subspace that contains〈y, l〉 and letp andp′ be distinct point
of l ′. Then cod(p,L) = cod(p′,L) = d+ 1 sincel ≤ L. Moreover, Lemma 6.5.3
implies crkL(coprL(p)) = crkL(coprL(p′)) = 2d+1. Since cod(x,y) = d+1 and
cod(x, l) = d, we obtain cod(x,L) = d + 1 and hence crkL(coprL(x)) = 2d + 1.
Moreover, crkL(〈l ,coprL(x)〉) = 2d−1= n and thereforeL∩U− = 〈l ,coprL(x)〉.
By Lemma 6.5.4(ii) we conclude coprL(p) ≤ 〈l ,coprL(x)〉 since cod(p, l) = d+1
and cod(x, l) = d. Analogously, coprL(p′) ≤ 〈l ,coprL(x)〉. Since l intersects
coprL(p) in a single point, we conclude that the subspace〈l ,coprL(p)〉 is a hy-
perplane ofL∩U−. Sincey∈ coprL(p), we obtain〈y, l〉 = M∩L ≤ 〈l ,coprL(p)〉.
Thus, there is a pointq ∈ L∩U− r M such thatp has a cogate in〈q, l〉. Since
coprL(p′)≤〈l ,coprL(x)〉 by Lemma 6.5.4(ii) and〈q, l〉∩〈l ,coprL(x)〉= l , we con-
clude that alsop′ and hence every point onl ′ has a cogate in〈q, l〉. Let G∈ M0

such that〈q, l〉 ≤ G. Then Lemma 6.5.3 implies that every point ofl ′ has a co-
gate at codistanced+ 1 in G. Since〈q, l〉 ≤ U−, we obtainG≤ U− by Lemma
3.1.1(iii). For every pointr ∈ xy′, we have cod(r, l) = d and coprl (r) = l . Let s
be an arbitrary point ofGr l . Then by Lemma 6.5.2 the subspaceL′ that contains
〈s, l〉 intersectsM in a hyperplane and hence,L′∩U− = 〈L′∩M,coprL′(r)〉. This
implies cod(r,s)≥ d and hence,r has a cogate at codistanced+1 in G by Lemma
6.5.3. Now letr ∈ G′ r (xy′∪ l ′). Then there are pointsp0 ∈ xy′ andp1 ∈ l ′ such
that p∈ p0p1. Let qi be the cogate ofpi in G for i ∈ {0,1}. Since cod(l ,xy′) = d
andq1 ∈ l , we obtainq0 6= q1. Thus by Corollary 4.2.8, the linesp0p1 andq0q1

are one-coparallel to each other. Since cod(r, l) = d, this implies cod(r,G) = d+1
and rk(coprG(p)) = 0 by Lemma 6.5.3. Hence, every point ofG′ has a cogate at
codistanced + 1 in G. By Lemma 6.5.4(i) we conclude thatG andG′ are one-
coparallel to each other. Since crkL∩U−(coprL(x)) = 2, the cogate ofx in G has
to be contained inL. Hence〈L∩G,coprL(x)〉 = 〈l ,coprL(x)〉 = L∩U− and we
obtain〈G,coprL(x)〉g = U− by Lemma 6.5.6.
Now consider the casek = 2. Let p∈ G′ rM′. Then there is a pointq∈ M′ with
dist(p,q) = 2. SetY := 〈p,q〉g. ThenY ≤U+ and by Lemma 3.1.1(iii)M′ andG′

are generators ofY. Let K ∈ M1 be the subspace that contains coprM′(x′). Then
K contains a generator ofY by Lemma 3.1.1(iii). Suppose cod(x′,K) = d + 1
and coprK(x′) < K. Then K ∩U+ = 〈K ∩ M′,coprK(x′)〉 = coprK(x′). Since
crkK(coprK(x′)) = 2d + 1 by Lemma 6.5.3, this is a contradiction to crkK(K ∩
U+) = n = 2d. Now suppose cod(x′,K) = d + 1 and coprK(x′) = K. Then
rk(K) = 2d + 2 by Lemma 6.5.3, a contradiction to crkK(K ∩U+) = 2d and
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rk(K∩U+)≥ 3. Thus, cod(x′,K) = d+2 and therefore crkK(coprK(x′)) = 2d+3
by Lemma 6.5.3. Since coprK(x′) ≤ U+ and crkK(K ∩U+) = 2d, we obtain
crkK∩Y(coprK(x′)∩Y)≤ 3. Thus there is a pointz∈ K∩Y with cod(x′,z) = d+2.
By Proposition 2.1.12(iv) we conclude thatz is a cogate forx′ in Y.
Now let r ∈ M r {x′}. Suppose coprM′(r) = coprM′(x′). Then coprM′(r ′) =
coprM′(x′) for every point pointr ′ ∈ rx′ and hencerx′∩coprM(x)= ∅, a contradic-
tion to rk(coprM(x)) = 2. Thus there is a points∈ coprM′(x′) with cod(s, r) = d.
Since coprM′(x′) = K∩M′ = prM′(z), we conclude cod(z, r) = d+1 and therefore
coprM(z) = {x′}. LetL ∈M1 such thatL intersectsM in the hyperplane coprM(x).
Then cod(z,L) = d + 1 by Lemma 6.5.9. Hence by Lemma 6.5.3, this implies
crkL(coprL(z)) = 2d+ 1. Since crkL(L∩U−) = 2d, there is a pointz′ ∈ L∩U−

with cod(z,z′) = d. We concludez′ 6⊥ x′ and hence,Y′ := 〈x′,z′〉g is a symplecton
of U−.
By Lemma 6.5.9 we know that cod(x,L) = d + 2 or coprL(x) = L holds. Since
diam(S −) > d+1, Lemma 6.5.3 implies cod(x,L) = d+2 and hence,L∩U− =
〈L ∩ M,coprL(x)〉. Consequently, coprM(x) and coprL(x) are complements in
L∩U−. Since〈z′,coprM(x)〉 is a generator ofY′ that is contained inL∩U−,
Proposition 2.1.12(iv) implies thatx has a cogate at codistanced+2 in Y′ that is
contained inL. SinceY = 〈x,z〉g, we conclude by Corollary 4.2.8 that the sym-
plectaY andY′ are one-coparallel to each other at codistanced + 2. Let G̃ be
the generator ofY′ that is one-coparallel toG′ at codistanced+ 2. Sincexy′ and
x′y are one-coparallel at codistanced+ 1, we obtainx′y∩ G̃ = ∅. Thus there is
generatorG≤ 〈x′,z′〉g with x′y≤ G andG∩ G̃ = ∅. We conclude that every point
of G′ has codistanced+ 1 to G and the its coprojection inG has rank 2. Since
G′ andG̃ are one-coparallel, we obtaiñG∈ M0 by Lemma 6.5.5. Thus,G∈ M0

by Proposition 2.2.8. Since crkN(N∩U−) = 2d and crkN(coprN(x)) = 2d+1, we
obtainN∩U− = 〈x′,coprN(x)〉 and thereforeN∩U− = 〈G∩N,coprN(x)〉. Thus,
〈G,coprN(x)〉g = U− by Lemma 6.5.6. This concludesV = U+∪U−.
We know alreadyM ≤ U−, M′ ≤ U+ and crkN(N∩U−) = crkN′(N′ ∩U+) = n.
Thus, (i) follows by Lemma 3.5.3(i). Claim (ii) holds since it holds forU−. Now
suppose there are pointsu andv in V with cod(u,v) = d−1. Since diam(S −) ≥
d+1, there is a pointw⊥ v with cod(u,w) = d. This impliesw∈V by the cocon-
vexity ofV. By Lemma 3.1.1(i) and Proposition 3.5.2 there is a subspaceK ∈M0

with wv ≤ K such thatK ≤ V. This implies crkN(N∩V) ∈ {2d − 3,2d − 2}
by (i), a contradiction. Thus, codm(V) = d. Finally, we showed that for every
point u∈U+ there is a subspacesMu ∈ M0 with Mu ≤V such that cod(u,Mu) =
d + 1 and rk(coprMu

(u)) = k. Now let K ∈ M0 be an arbitrary subspace with
K ≤ V, cod(u,K) = d + 1 and rk(coprK(u)) = k. Then〈u,K〉G ≤ V and hence
〈u,K〉G∩S − = U− by (i) and Lemma 6.5.6. Analogously,〈u,K〉G∩S + = U+.
Thus,〈u,K〉G = V and (iv) follows by symmetric reasons.
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Lemma 6.5.12. Let M ∈ M0 and let x∈ S such thatcod(x,M) < ∞. Then
dist(p,〈x,M〉G) < cod(x,M) for every point p∈ S .

Proof. SetV := 〈x,M〉G andd := cod(x,M)−1. By symmetric reasons we may
assumep∈ S −. Moreover, by Proposition 6.5.11(iv) we may assumeM ≤ S −.
By Lemma 6.5.3 there is a pointz∈ M with cod(x,z) = d. Setn := dist(p,z).
We may assumen > d since otherwise we are done. By Proposition 2.1.17(ii) we
obtain cod(x,〈p,z〉g)≥n. Thus by Proposition 2.1.16(ii) there is a pointz′ ∈ 〈p,z〉g
with cod(x,z′) = n and dist(z,z′) = n−d. SinceV is coconvex, we obtainz′ ∈V
and hence,〈z,z′〉g ≤V. Now Proposition 2.1.17(i) yields dist(p,V) ≤ d.

For a pointp∈ P+ and a subspaceM ∈ M0 the minimal codistance is 1. In
this case, the coconvex span of them equalsS as follows from Lemma 2.3.2. The
next greater possible codistance cod(p,M) = 2 and among the two possibilities
the case|coprM(p)| = 1 can be seen as the lower codistance ofp andM. The
coconvex subspaces of such two objects play a special role. More precisely, the
will be the points of a point-line space we construct out ofS .

Lemma 6.5.13.Let M∈M0 and let x∈S such thatcod(x,M) = 2 andcoprM(x)
is a singleton. Set V:= 〈x,M〉G.

(i) For every point p∈ S rV the subspace〈p,prV(p)〉 is an element ofM1.

(ii) Let N∈ M1. Then N∩V is either a singleton or a hyperplane of N.

Proof. (i) By Lemma 6.5.12 we know dist(p,V) = 1. AssumeV∩S − is singular
and hence equalsM. We conclude srk(S −) = 3 by Proposition 6.5.11(i). Thus,
S − is a symplecton by Theorem 3.5.4. The claim follows by Proposition 2.2.8
since〈p,prM(p)〉 is a generator ofS − that intersectsM in a hyperplane.
Now assume diam(V ∩S −) ≥ 2. Then by Lemma 3.1.1(i) there is a singular
subspaceS≤V with dist(p,S) = 1 and rk(S) = 2. By Proposition 3.5.2 there is a
subspaceL ∈M1 with S≤ L. By Proposition 6.5.11(i) we obtain crkL(L∩V) = 1.
If p ∈ L we are done. Thus, we may assumep /∈ L and hence rk(prL(p)) = 2
by Lemma 3.5.3(ii). This implies that there is a linel ≤ prL(p)∩V. By Lemma
3.1.1(i) there is a symplectonY ≤ V with l ≤Y. Hence, Proposition 2.1.27 pro-
vides that prY(p) is a generator ofY. Let K ∈ M be the subspace that contains
〈p,prY(p)〉. ThenK ∈M1 since rk(〈p,prY(p)〉) = 4. By Proposition 6.5.11(i) we
obtain crkK(K ∩V) = 1 since prY(p) ≤ K ∩V. Since dist(p,V) = 1, we conclude
that prY(p) is singular. Thus,K ∩V = prV(p).
(ii) By Proposition 6.5.11(i) we know that there is a pointp ∈ N rV. Then
L := 〈p,prV(p)〉 is an element ofM1 by (i). If L = N we are done, hence we
assumeL 6= N. Then by Lemma 3.5.3(ii)L∩N is a line. SinceL∩V = prV(p) is a
hyperplane ofL, there is a pointq∈V such thatL∩N = pq. SinceL is maximal,
there is for every pointx∈ NrL a pointy∈ L with dist(x,y) = 2. Sincey 6= p and
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py meetsL∩V , we may assumey∈V. Sincep∈ 〈x,y〉grV, we concludex /∈V
and thereforeN∩V = {q}.

Together with Proposition 6.5.11(i) and Lemmas 6.4.10 and 2.3.2 we conclude
that the coconvex subspace of a pointp∈ P+ and a subspaceM ∈ M−

0 such that
p has a cogate at codistance 2 inM are maximal coconvex proper subspace ofS .
In the following proposition we consider the next smaller coconvex subspaces.
These subspaces will induce the lines of the point-line space we are going to
construct.

Proposition 6.5.14.For i ∈ {0,1}, let Mi ∈ M0 be a subspace and let xi ∈ S

be a point such thatcod(xi,Mi) = 2 and rk(coprMi
(xi)) = 0. Set Vi := 〈xi,Mi〉G.

Let V0∩V1 6= ∅ and V0 6= V1. If srk(S ) = 3, then V0∩V1 consists of two one-
coparallel lines at codistance2. Otherwise, there is a point x and a subspace
M ∈ M0 with cod(x,M) = 2 andrk(coprM(x)) = 2 such that V0∩V1 = 〈x,M〉G.

Proof. Letx∈V0∩V1 6= ∅. By Proposition 6.5.11(iv) we may assumex= x0 = x1.
SinceV0 6=V1, Proposition 6.5.11(iv) impliesM0 �V1. SinceV1 is coconvex, there
is a pointp∈ M0rV1 with cod(p,x) = 1. By Lemma 6.5.13(i) there is a subspace
N ∈ M1 such that〈p,prV1

(p)〉 = N. By Proposition 6.5.11(iii) there is no point
in N∩V1 oppositex. Sincep = x, there is no point inN oppositex. By Lemma
6.5.3 this implies cod(x,N) = 2 and crkN(coprN(x)) = 3. By the coconvexity of
V0 andV1 we obtain coprN(x) ≤ V0∩V1. Thus,S − ∩V0∩V1 andS + ∩V0∩V1

are both non-empty and we may assumex∈ S +.
Consider the case srk(S ) = 3. ThenS + and S − are both symplecta andx
has a cogatex′ in S −. Moreover,M0 andM1 are both generators ofS − and
coprN(x) = {x′}. SinceV0∩S − is convex, we knowV0∩S − = M0. Analo-
gously,V1∩S − = M1. Thus, we conclude by Proposition 2.2.8 thatM0∩M1 is
a line sinceM0 � V1 andx′ ∈ M0∩M1. By symmetric reasonsS + ∩V0∩V1 is a
line, too. For every point onS +∩V0∩V1, we conclude analogously tox that its
cogate inS − is contained inV0∩V1. Hence,S +∩V0∩V1 andS −∩V0∩V1 are
one-coparallel lines at codistance 2.
Now consider the case srk(S )≥ 4. Then rk(N)≥ 4 by Lemma 3.5.3(i) and hence,
coprN(x) contains a linel . Since〈p,coprN(x)〉 ≤V0, we obtain coprN(N∩V0) = 1
by Proposition 6.5.11(i). Sincep ∈ V0 rV1, this implies crkN(N∩V0∩V1) = 2.
Because of crkN(coprN(x)) = 3 there is a pointy∈ N∩V0∩V1 with cod(x,y) = 1.
By Proposition 3.5.2 there is a subspaceM ∈ M0 with 〈y, l〉 ≤ M. Since〈y, l〉 ≤
V0∩V1, Lemma 3.1.1(iii) impliesM ≤V0∩V1 and hence,〈x,M〉G ≤V0∩V1.
Since cod(x,y) = 1 andl ≤ coprN(x), we obtain cod(x,M) = 2 and consequently,
rk(coprM(x)) = 2 by Lemma 6.5.3. Hence by Proposition 6.5.11(i), we obtain
crkN(N∩ 〈x,M〉G) = 2. This impliesN∩ 〈x,M〉G = N∩V0∩V1. Together with
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M ≤ 〈x,M〉G we conclude〈x,M〉G∩S − =V0∩V1∩S − by Lemma 6.5.6. For ev-
ery pointx′ ∈ M, there are subspaceM′ ∈M+

0 andM′
0 ∈M−

0 such that〈x′,M′〉G =
〈x,M〉G and 〈x′,M′

0〉G = V0 by Proposition 6.5.11(iv). SinceV0 6= V1, we con-
cludeM′

0 �V1 by Proposition 6.5.11(iv) and hence,V0∩V1∩S + < V0∩S +. Let
N′ ∈ M+

1 such thatN′ contains a hyperplane ofM′. SinceM′ ≤ V0∩V1∩S +,
Proposition 6.5.11(i) implies crkN′(N′∩V0) = 1. Hence, we conclude crkN′(N′∩
V0 ∩V1) ≥ 2 by Lemma 6.5.6. Since crkN′(N′ ∩ 〈x,M〉G) = 2 by Proposition
6.5.11(i) and〈x,M〉G ≤V0∩V1, Lemma 6.5.6〈x,M〉G∩S + = V0∩V1∩S +.

Motivated by this proposition we define the following two sets:

Pm :=
{

〈x,M〉G | (x,M) ∈ S
+×M−

0 ∧ cod(x,M) = 2 ∧ |coprM(x)|= 1
}

Lm :=
{

{P∈ Pm |U ∩V ≤ P}
∣

∣ {U,V} ⊆ Pm ∧ ∅ 6= U ∩V < U
}

By the definition ofLm the pair(Pm,Lm) is a point-line space which in the
following will be denoted bySm.

Lemma 6.5.15.Let U and V be elements ofPm with U ∩V 6= ∅. Further let
N ∈ M1. Thenrk(N∩U) 6= rk(N∩V) implies N∩U < V or N∩V < U.

Proof. By Lemma 6.5.13(ii) and symmetric reasons if suffices to consider the case
crkN(U ∩N) = 1 and rk(V ∩N) = 0. Let p ∈ N rU . ThenN = 〈p,prU(p)〉 by
Lemma 6.5.13(i). By Proposition 6.5.14 and Lemma 6.5.12 we obtain dist(p,U ∩
V) = 1. Thus, prU(p)∩V 6= ∅. Let q ∈ prU(p)∩V. Thenq ∈ N and hence,
V ∩N = {q}.

Proposition 6.5.16.Let U ∈ Pm and let x be a point with x/∈U. Then there is a
subspace V∈ Pm such that x∈V and U∩V = ∅.

Proof. By Proposition 6.5.13(i) there exists a subspaceN ∈ M1 such thatN =
〈x,prU(x)〉. Let G ≤ N be a subspace with rk(G) = 3 andx ∈ G. By Lemma
3.1.1(i) there is a symplectonY ≤ S such thatG is a generator ofY. Let M be a
generator ofY such thatG∩M = {x}. Then Proposition 2.2.8 impliesM ∈ M0.
Let Z be a symplecton that is oppositeY and letz∈ Z such that cod(z,M) = 2.
ThenV := 〈z,M〉G ∈ Pm. SinceY contains a point oppositez, we obtainY � V.
Thus,Y ∩V = M and hence,V ∩N = {x} by Lemma 6.5.13(ii). Therefore we
concludeU ∩V = ∅ by Lemma 6.5.15.

Lemma 6.5.17.Let V and W be distinct elements ofPm with S:= V ∩W 6= ∅.
Let p be a point such thatprS(p) contains a line. Then there is a unique element
U ∈ Pm that contains S and p. Moreover, ifsrk(S ) > 3, then〈p,S〉G = U.
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Proof. Let l ≤ prS(p) be a line. By Proposition 6.5.14 and Lemma 6.5.12 we
obtain dist(p,S) = 1 and hence〈p, l〉 is a singular space of rank 2. By symmet-
ric reasons we may assumel ≤ S −. First consider the case srk(S ) = 3. Then
S + andS − are opposite symplecta and every element ofPm consists of two
elements ofM0 that are one-coparallel to each other at codistance 2. Moreover,
by Proposition 6.5.14S consists of two one-coparallel lines at codistance 2. By
Proposition 3.5.2 there is a unique subspaceM ∈ M0 with 〈p, l〉 ≤ M. For an
arbitrary pointx ∈ S + with cod(x,M) = 2, the subspace〈x,M〉G consists ofM
and the unique generator ofS + that is one-coparallel toM at codistance 2. Thus,
S≤ 〈x,M〉G and〈x,M〉G is unique.
Now consider the case srk(S ) > 3. Let y ∈ l . Then by Propositions 6.5.14 and
6.5.11(iv) there is a subspaceN ∈ M0 with cod(y,N) = 2 and rk(coprN(y)) = 2
such that〈y,N〉G = S. Let x∈ N r coprN(y) and letL ∈ M1 such that〈p, l〉 ≤ L.
By Lemma 6.5.13(ii) and Proposition 6.5.11(i) bothV andW contain a hyper-
plane ofL. Thus, crkL(L∩S) ≤ 2 and since rk(L) > 3 this implies rk(L∩S) ≥ 2.
By Proposition 6.5.11(i) we conclude crkL(L ∩ S) = 2. Let H be a subspace
of L∩S with rk(H) = 2 and l ≤ H. Further letM ∈ M0 with H ≤ M. Then
M ≤ S by Lemma 3.1.1(iii). SinceH ≤ 〈x,M〉G, Proposition 6.5.11(i) implies
crkL(L∩ 〈x,M〉G) = 2 · cod(x,M)+ 1

2rk(coprM(x))− 3. Since〈x,M〉G ≤ S and
crkL(L∩S) = 2, this implies cod(x,M) > 1. Moreover, since cod(x,y) = 1, we
conclude cod(x,M) = 2 and rk(coprM(x)) = 2. Hence,S= 〈x,M〉G by Proposi-
tion 6.5.11(iv).
Since rk(coprM(x)) = 2, we obtain cod(x,H) = 2 and hence cod(x,L) ≥ 2. With
cod(x,y) = 1, we conclude crkL(coprL(x)) = 3 by Lemma 6.5.3. Since crkL(L∩
S) = 2 andp /∈ S, we know that〈p,L∩S〉 is a hyperplane ofL. Thus〈p,L∩S〉
contains a subspaceH ′ with rk(H ′) = 2 that intersects coprL(x) is a singleton.
Let M′ ∈ M0 with H ′ ≤ M′. Then cod(x,M′) = 2 and coprM′(x) is a singleton
by Lemma 6.5.3. Therefore,U := 〈x,M′〉G ∈ Pm. By Proposition 6.5.11(ii)
we obtain coprL(x) ≤ S and 〈H ′,coprL(x)〉 = L∩U . SinceH ′ ≤ 〈p,L∩S〉 and
crkL(L∩U) = 1 by Proposition 6.5.11(i), this implies〈H ′,coprL(x)〉 = 〈p,L∩S〉.
Thus,H ≤U and Lemma 3.1.1(iii) impliesM ≤U . We concludeS= 〈x,M〉G≤U
and consequently,〈p,S〉G ≤U . SinceH ′ ≤ 〈p,L∩S〉 ≤ 〈p,S〉G, Lemma 3.1.1(iii)
implies M′ ≤ 〈p,S〉G and therefore〈p,S〉G = U . This proves the uniqueness of
U .

Theorem 6.5.18.The point-line spaceSm is a non-degenerate polar space.

Proof. We show thatSm fulfils the Buekenhout-Shult Axiom (BS). LetU ∈ Pm

and letΛ ∈ Lm. Further letV andW be distinct but not disjoint elements ofPm

such thatΛ = {P ∈ Pm | P ≥ V ∩W}. SetS := V ∩W. By Proposition 6.5.14
there is a lineg≤S. Sinceg is not a maximal singular subspace ofS , Proposition
3.5.2 implies that there is subspaceN ∈ M1 with g≤ N. By Lemma 6.5.13(ii)N
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contains a pointp of U . We may assumep /∈ Ssince otherwiseU has non-empty
with every element ofΛ and we are done. Thus,g ≤ prS(p) and Lemma 6.5.17
implies that there is a unique element inΛ that has an non-empty intersection with
U .
By Lemma 6.5.13(ii) bothV andW contain a hyperplane ofN. By Proposition
6.5.14 this implies crkN(N∩S) = 2. Moreover, for every two distinct elements
V ′ andW′ of Λ, we obtainN∩V ′ ∩W′ = N∩S. AssumeV ′ andW′ have both
non-empty intersection withU . By Lemma 6.5.13(ii)U ∩N is a hyperplane ofN
or a singleton. In the first case we obtainU ∩g 6= ∅. Hence,U ∩S 6= ∅ andU
intersects every element ofΛ. In the second case we conclude by Lemma 6.5.15
thatU ∩N is contained in bothV ′ andW′. Hence,U ∩N ≤ S and again every
element ofΛ has non-empty intersection withU .
By Proposition 6.5.11(iii) we obtainU < S . Hence, there is a pointq ∈ S r
U . Thus by Proposition 6.5.16, there is a subspaceU ′ ∈ Pm with U ∩U ′ = ∅.
ThereforeSm is non-degenerate.

Our goal is to prove thatS is a twin half-spin space ofSm. Therefore we
show some correspondences between subspaces ofS and subspaces ofSm. For
a pointp∈ S , we setΓ(p) := {U ∈ Pm | p∈ U}. For a subspaceN ∈ M1, we
setΓ(N) := {U ∈ Pm | rk(N∩U) ≥ 2}.

Proposition 6.5.19.Let p be a point ofS and let N be a subspace with N∈ M1.

(i) If cod(p,N) = 1, thenΓ(p)∩Γ(N) contains a single element.

(ii) BothΓ(p) andΓ(N) are generators ofSm.

(iii) If p ∈ N, then the generatorsΓ(N) andΓ(p) of Sm intersect in a common
hyperplane. Moreover,Γ(p) and Γ(N) are the only generators ofSm that
containΓ(p)∩Γ(N).

Proof. (i) By Lemma 6.5.3 we know that coprN(p) is a hyperplane ofN. Let
H ≤ coprN(p) and letM ∈ M0 such thatH ≤ M. Then Lemma 6.5.9 implies
cod(p,M) = 2. We conclude that coprM(p) is a singleton and thus,〈p,M〉G∈Pm.
Sincep andH are contained in〈p,M〉G, we obtain〈p,M〉G ∈ Γ(p)∩Γ(N).
Now let P ∈ Γ(p)∩Γ(N). Proposition 6.5.11(i) implies thatP contains a hyper-
plane ofN. By Proposition 6.5.11(iii) this hyperplane has to be coprN(p). Thus,
H ≤ P and we obtainM ≤ P by Proposition 6.5.11(i). ThereforeR= 〈p,M〉G by
Proposition 6.5.11(iv).
(ii) Let P andQ be two distinct elements ofΓ(p). ThenP∩Q 6= ∅ since both
containp. Moreover, every element ofPm that containsP∩Q is an element of
Γ(p). Thus,Γ(p) is a singular subspace ofSm. Now letR∈ Pm r Γ(p). Then
by Proposition 6.5.16 there is element ofΓ(p) that is disjoint toR. Hence,Γ(p)
is a maximal singular subspace.
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Let N ∈ M1. Further letP and Q be two distinct elements ofΓ(N). Then
crkN(N∩P∩Q) ≤ 2. Since rk(N) ≥ 3, this impliesP∩Q 6= ∅. Now letR∈ Pm

such thatR≥ P∩Q. SinceN∩P∩Q contains a line, we conclude by Lemma
6.5.13(ii) thatN contains a hyperplane ofR. Thus,R∈ Γ(N) and consequently
Γ(N) is a singular subspace ofSm.
Now let R∈ Pm r Γ(N). Then by Lemma 6.5.13(ii) there is a pointy∈ N such
that R∩ N = {y}. Let x be a point that is oppositey. By (i) there is an ele-
mentR′ ∈ Γ(x)∩Γ(N). By Proposition 6.5.11(iii) we obtainy /∈ R′ and hence,
R′∩R= ∅ by Lemma 6.5.15. We conclude thatΓ(N) is a maximal singular sub-
space.
(iii) Let U andV be two distinct elements ofΓ(N). SetS:= U ∩V. Since bothU
andV contain a hyperplane ofN, we obtain crkS(S∩N) = 2 by Proposition 6.5.14.
By Lemma 6.5.17 this implies that there is an element ofPm that containsSand
p. Thus,Γ(p) contains a hyperplane ofΓ(N).
Now letq be a point oppositep. By Proposition 6.5.11(iii) we conclude thatΓ(p)
andΓ(q) are disjoint. On the other hand, cod(q,N) = 1 and hence,Γ(q) andΓ(N)
are not disjoint. Hence,Γ(p)∩ Γ(N) is a hyperplane ofΓ(N) and by Lemma
A.2.13 it is also a hyperplane ofΓ(p)
Let W ∈ Pm such thatW has non-empty intersection with every element of
Γ(p)∩Γ(N). SupposeW /∈ Γ(p)∪Γ(N). ThenW intersectsN in a single point,
q say, that is distinct top. By Lemma 2.1.13 there is a pointx with x ↔ q and
cod(x, p) = 1. By (i) there is an elementP ∈ Γ(x)∪ Γ(N). Since by Proposi-
tion 6.5.11(i)P contains a hyperplane ofN, Proposition 6.5.11(iii) impliesp∈ P.
Thus,P ∈ Γ(p)∩ Γ(N). Again by Proposition 6.5.11(iii) we obtainq /∈ P and
hence, Lemma 6.5.15 impliesW∩P = ∅, a contradiction. ThereforeW ∈ Γ(p)
or W ∈ Γ(N).

Lemma 6.5.20.Let p be a point ofS and let N∈ M1. Every generator ofSm

that intersectsΓ(N) in a hyperplane is of the kindΓ(q) for a point q∈ N. Every
generator ofSm that intersectsΓ(p) in a hyperplane is of the kindΓ(L) for a
subspace L∈ M1 with p∈ L.

Proof. Let Θ be generator ofSm that intersectsΓ(N) in a hyperplane. Then there
is an elementU ∈ Pm with U ∈ Θ /∈ Γ(N). By Lemma 6.5.13(ii) this implies
thatU intersectsN in a single pointq. By Lemma 6.5.15 we know that every
element ofΓ(N) that has non-empty intersection withU containsq and hence
Θ∩Γ(N) ≤ Γ(q). SinceΘ 6= Γ(N), Proposition 6.5.19(iii) impliesΘ = Γ(q).
Now let Θ be generator ofSm that intersectsΓ(p) in a hyperplane. Then there
is an elementV ∈ Pm with V ∈ Θ /∈ Γ(p). Then by Lemma 6.5.13(i) there is a
subspaceL∈M1 such thatL = 〈p,prV(p)〉. By Lemma 6.5.15 we know that every
element ofΓ(p) that intersectsL in the single pointp is disjoint toV. Thus by
Lemma 6.5.13(ii) every element ofΓ(p) that has non-empty intersection withV
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is an element ofΓ(L). Therefore,Θ∩Γ(p) ≤ Γ(L). SinceΘ 6= Γ(p), Proposition
6.5.19(iii) impliesΘ = Γ(L).

Corollary 6.5.21. Let p be a point ofS +. Let∆ be the connected component of
the dual polar graph ofSm that containsΓ(p). Then∆ is bipartite. Moreover,
every edge of∆ is of the form{Γ(q),Γ(N)}, where q is a point ofS + and N∈
M+.

Proof. This is a direct consequence of Lemma 6.5.20.

Proposition 6.5.22.Let (p,q) ∈ S + ×S − be a pair of opposite points. Then
(Γ(p),Γ(q)) is a spanning pair ofSm.

Proof. Let R∈ Pm r (Γ(p)∪Γ(q)). By Proposition 5.2.4 we have to show that
there are elementsP∈ Γ(p) andQ∈ Γ(q) with the following properties:

R∩X 6= ∅ ⇔ P∩X 6= ∅ for everyX ∈ Γ(q)

R∩X 6= ∅ ⇔ Q∩X 6= ∅ for everyX ∈ Γ(p)

By symmetric reasons it suffices to show that such aP exists. Sinceq /∈ R, Lemma
6.5.13(i) implies that there is a subspaceN ∈ M1 such thatN = 〈q,prR(q)〉. By
Proposition 6.5.19(i) there is an elementP∈ Pm in Γ(p)∩Γ(N).
Let X ∈ Γ(q) with X∩R 6= ∅. We know thatR∩N = prR(q) is a hyperplane ofN
that does not containq. Sinceq∈ X, we conclude by Lemma 6.5.15 rk(X∩N) =
rk(R∩N) and hence,X ∈ Γ(N). SinceΓ(N) is a singular subspace ofSm that
containsP, we conclude thatX∩P 6= ∅.
Now let X ∈ Γ(q) with X∩R= ∅. ThenX∩N = {q} sinceR∩N is hyperplane
of N. Sincep↔ q, we obtainq /∈ P by Proposition 6.5.11(iii). SinceP∈ Γ(N),
Lemma 6.5.15 impliesX∩P = ∅.

We now prove the main result of this section.

Theorem 6.5.23.Let S be a twin SPO space satisfying the following two prop-
erties:

(T4a) Every symplecton ofS is of rank4.

(T4b) Every singular subspace of rank2 is contained in a maximal singular
subspace of rank3 and in at most one other maximal singular subspace.

ThenS is a twin half-spin space.

Proof. We denote the two connected components ofS by S + = (P+,L +) and
S − = (P−,L −).
First assume diam(S +) < 2 and hence, diam(S −) < 2. ThenS + is a projective
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space by Theorem 2.1.22. IfS + is a singleton, thenS − is a singleton, too.
Moreover,S is isomorphic to the twin half-spin space of the polar space that
consists of two points and no lines. IfS + is a line, thenS − is a line that is
one-coparallel toS +. In this caseS is isomorphic to every twin half-spin space
of the polar spaceS +⊗S +.
Now let S + be a projective space of rank≥ 2. Then (T4b) yields rk(S +) = 3.
Hence,S − is a singular space of rank 3, too. We set:

ψ : L
+ → L

− : l 7→
⋂

p∈l

coprS −(p)

Pm :=
{

l ∪ lψ | l ∈ L
+
}

Lm :=
{

{P∈ Pm |U ∩V ≤ P}
∣

∣ {U,V} ⊆ Pm ∧ ∅ 6= U ∩V < U
}

By Proposition 6.2.3 the pair(Pm,Lm) is isomorphic to the Grassmannian of
lines ofS + that we denote bySm. Let l be a line ofSm and letg andh be two
lines ofS + with {g,h} ⊆ l . By Propositions 5.3.11 and 5.3.16 we conclude that
l is contained in exactly two maximal singular subspaces ofSm that are both of
rank 2. Moreover, one of these maximal singular subspaces consists of all lines
of S + through the intersection point ofg andh. The other maximal singular
subspaces consists of all lines ofS + contained in〈g,h〉. By Theorem 5.3.15
and Lemma 3.3.1(i) we conclude thatSm is a symplecton. More precisely, by
Corollary 2.1.18 we know thatSm is a non-degenerate polar space of rank 3
whose lines are contained in exactly two generators. Hence,by Proposition 2.2.8
the dual polar graph ofSm is bipartite. More precisely, for two distinct adjacent
generators ofSm, one of them consists of all the lines through a given point of
S + and the other one consists of all the lines in a given hyperplane of S +.
SinceSm have finite rank,Sm contains a spanning pair and hence, there exists a
twin half-spin space(D+,D−) of Sm. Since by Proposition A.2.20 two disjoint
generators ofSm have distance 3 in the dual polar graph, we may assume thatD+

contains all the generators ofSm that contains all lines ofS + through a given
point andD− contains all the generators ofSm that contains all lines of a given
hyperplane ofS +.
We define the following map:

ϕ : (S +,S −) → (D+,D−) : p 7→

{

{l ∈ L + | p∈ l} if p∈ P+

{l ∈ L + | l ≤ coprS +(p)} if p∈ P−

By Lemma 6.2.1 every hyperplane ofS + is the coprojection of a point ofS − and
for two distinct points ofS − the coprojections inS + are distinct, we conclude
that ϕ is a bijection. Letl ∈ L +. Then for two distinct pointsp andq on l ,
we obtainpϕ ∩ qϕ = {l}. Since for a pointr ∈ P+, we obtainl ≤ rϕ if and
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only if r ∈ l , we conclude by the definition of the lines ofD+ thatϕ mapsS +

isomorphically ontoD+. Now let l ∈ L − and letp andq be two distinct points
on l . Then coprS +(p) and coprS +(q) are distinct hyperplanes ofS + and hence,
they intersect in a linel ′ ∈ L +. By Lemma 6.2.1 we know that every pointr ∈
P− with l ′ ≤ coprS +(r) lies onl and therefore,ϕ mapsS − isomorphically onto
D−. Finally, for pointsp∈ P+ andq∈ P−, we have

p↔ q ⇔ p /∈ coprS +(q) ⇔ pϕ ∩qϕ = ∅ .

Thereforeϕ is an isomorphism of twin spaces.
Now assume diam(S +)≥ 2. Since this is precisely the situation we considered in
the beginning of this section, we may use the notations and the results of this sec-
tion. Letx∈ P+ andy∈ P− be opposite points ofS . Then Proposition 6.5.22
is a spanning pair. By Corollary 6.5.21 the connected component of the dual polar
graph ofSm that containsΓ(x) is bipartite. Thus, there is a twin half-spin space
(D+,D−) of Sm with respect to(Γ(x),Γ(y)). Moreover,Dσ = {Γ(p) | p∈Pσ}
for σ ∈ {+,−}.
Let w ∈ P+ be a point collinear and distinct tox. Then there is a subspace
N ∈ M+

1 such thatxw≤ N. By Proposition 6.5.19(iii) both generatorsΓ(x) and
Γ(w) are adjacent toΓ(N) and hence,Γ(x) and Γ(w) are collinear inD+. By
Lemma 2.1.13 we may assume cod(w,y) = 1. By Proposition 6.5.19(i) we know
that the subspacesΓ(y) andΓ(N) of Sm intersect in a single elementU ∈ Pm.
By Proposition 6.5.11(i) we conclude thatU intersectsN in a hyperplane. Hence,
Proposition 6.5.11(iii) yieldsx /∈ U andw∈ U and thereforeΓ(x) 6= Γ(w). Con-
versely, letw ∈ P+ such thatΓ(x) andΓ(w) are collinear inD+. Then there is
a generatorΘ of Sm that is adjacent to bothΓ(x) andΓ(w). By Lemma 6.5.20
this implies that there is a subspaceN ∈ M+

1 such thatΓ(N) = Θ. Moreover,x
andw are both points ofN and thereforex andw are collinear inS +. Thus,
S + → D+ : p 7→ Γ(p) is a bijection that preserves collinearity.
Let l be the line joiningx andw and letzbe a point collinear to bothx andw. Since
every element ofΓ(x)∩Γ(w) is a subspace ofS , it containsl and hence,z∈ l
impliesΓ(z) ≥ Γ(x)∩Γ(w). Now assumez /∈ l . Then by Lemma 2.1.21(iii) we
may assumey↔ z and cod(y,x) = cod(y,w) = 1. By Proposition 3.5.2 there is a
subspaceN ∈ M+

1 of S that contains〈w,x,z〉. By Proposition 6.5.19(i) we know
thatΓ(y) andΓ(N) intersect in a single elementU ∈ Pm. SinceN∩U is a hyper-
plane ofN by Proposition 6.5.11(i), we conclude coprN(x) = N∩U by Proposition
6.5.11(iii). Thus,U ∈ Γ(x)∩Γ(w) andU /∈ Γ(z). Therefore{Γ(p) | p ∈ l} is a
line of D+. This concludes thatS + → D+ : p 7→ Γ(p) is an isomorphism of
point-line spaces.
Analogously,S − →D− : p 7→Γ(p) is an isomorphism of point-line spaces and it
remains to prove that for a pair of point(w,z) ∈ P+×P−, the pair(Γ(w),Γ(z))
is a spanning pair if and only ifw↔ z. By Corollary 5.2.9 we just have to show
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that Γ(w) andΓ(z) are disjoint if and only ifw ↔ z. By Proposition 6.5.11(iii)
we conclude know thatw ↔ z implies Γ(w)∩Γ(z) = ∅. Now assumew = z.
Then there is are pointsz′ and w′ in P− with w′ ⊥ z′ such thatw ↔ w′ and
dist(z,z′) = cod(w,z)− 1. Hence, cod(w,z′) = 1. Let N ∈ M1 with w′z′ ≤ N.
Then there is an elementU in Γ(w)∩Γ(N) by Proposition 6.5.19(i) and we obtain
z′ ∈U . SinceU is convex andw andz′ are contained inU , we concludez∈U and
hence,Γ(w)∩Γ(z) 6= ∅.

6.6 Twin SPO spaces of symplectic rank≥ 5

Throughout this section letS be a twin SPO space of symplectic rank≥ 5. By
S + andS − we denote the connected components ofS . Further we denote by
M the set of maximal singular subspaces ofS .

By Theorem 6.2.4 we know that wheneverS + is a symplecton,S is a twin
polar space. Thus, we may restrain ourselves in this sectionto the case whereS +

contains a symplecton properly and analogously,S − contains a symplecton prop-
erly. By Theorem 3.7.2 this leaves the two cases yrk(S +) = 5 and yrk(S +) = 6.

In the following k always denotes the symplectic rank ofS . We setM0 :=
{M ∈M | rk(M) = k−1} andM1 := MrM0. Furthermore, we setMσ := {M ∈
M | M ≤ S σ} andMσ

i := Mi ∩Mσ for σ ∈ {+,−} andi ∈ {0,1}.

Proposition 6.6.1.The setsM+
0 andM+

1 are non-empty. Moreover, every element
of M+

1 has rank k.

Proof. Let Y < S + be a symplecton. By Lemma 3.3.1(i) there is a pointx ∈
S + rY such that prY(x) contains a line. Then prY(x) is a generator ofY by
Proposition 2.1.27. Thus, rk(〈x,prY(x)〉) = k and we conclude〈x,prY(x)〉 ∈ M+

1 .
Moreover, Proposition 2.2.9(iv) implies that every generator of Y that intersects
prY(x) in a hyperplane is a maximal singular subspace ofS + and hence an ele-
ment ofM+

0 .
Now let M ∈ M+

1 and let S < M be a singular subspace of rankk− 1. By
Lemma 3.1.1(i) there is a symplectonZ ≤ S + that containsSas a generator. Let
z∈ M rS. Then prZ(z) = Sand we conclude〈z,S〉 = M by Proposition 2.2.9(vii)
and hence, rk(M) = k.

Theorem 6.6.2.Let S = (S +,S −) a twin SPO space of symplectic rank≥ 5
such thatS + contains a symplecton properly. Then one of the following cases
holds:

(a) S is a twinE6-space andyrk(S +) = 5.

(b) S is a twinE7-space andyrk(S +) = 6.
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Proof. We first show thatS + is a strongly parapolar space. SinceS + is strongly
parapolar by Theorem 2.1.20 andS + has an symplectic rankr ∈N by Corollary
2.2.7, it remains to check whetherS + is of spherical type.
The axiom (Bu4) is vacuously fulfilled sinceS + is strongly parapolar. Let
S≤S + be a singular subspace of rankr −1. ThenSis contained in a symplecton
of S + by Lemma 3.1.1(i) and therefore it is a generator of this symplecton. Now
Proposition 2.2.5 implies that (Sph1) is satisfied.
Now letV andW be singular subspaces of rankr −1 such that rk(V ∩W) = r −2
andV � W⊥. Further letX be a subspace of rankr containingV. SinceV � W⊥,
there are pointsv∈V andw∈W that are not collinear. We conclude that〈v,w〉g is
a symplecton containingV ∩W. Moreover,V = 〈v,V ∩W〉 andW = 〈w,V ∩W〉.
Since rk(〈v,w〉g) = r, this implies thatV andW are adjacent generators of〈v,w〉g.
Now Proposition 2.2.9(vii) implies thatX is a maximal singular subspace and
Proposition 2.2.9(iv) implies thatW is a maximal singular subspace. Thus, (Sph2)
holds.
Now let U , V andW be singular subspaces of rankr −1 with that rk(U ∩V) =
rk(V ∩W) = r −2 such thatV � W⊥ andU is maximal singular subspace. Let
v∈V rU . ThenU � v⊥ sinceU is maximal. Hence, there is a pointu∈U such
thatY := 〈u,v〉g is a symplecton. The subspacesU andV are adjacent generators
of Y. SinceS + contains a symplecton properly, we obtainY 6= S +. Hence,
Lemma 3.3.1(i) implies that there is a pointx∈ S + rY such thatX := x⊥∩Y is
a generator ofY. By Proposition 2.2.9(ii) we conclude that crkX(X ∩U) is odd.
Hence, crkX(X ∩V) is even by Proposition 2.2.9(iii). Using again Proposition
2.2.9(ii) implies that there is a singular subspaceV ′ of rank r such thatV ≤ V ′.
Now (Sph2) implies thatW is maximal and therefore (Sph3) holds.
The axioms (Sph4) follows from Lemma 2.2.3(i) sincer ≥ 5. By symmetric
reasons this concludes thatS + andS − are both exceptional strongly parapo-
lar spaces. By Theorem 3.7.2 we know yrk(S +) ∈ {5,6}. Moreover, Theorem
B.3.10 implies that bothS + andS − are point-line spaces of type Er+1,1.
First assumer = 5. We denote byD+ the dual of the point-line spaceS + of
type E6,1. Let x ∈ S −. Then Proposition 4.2.4 implies thatX := coprS +(x) is
a symplecton. Moreover, cod(x,X) = 2 by Theorem 3.6.5. Hence, there exists a
mapϕ : S − → D+ such thatpϕ = coprS +(p).
Now let y ∈ S − be a point distinct tox and setY := yϕ . By Proposition 2.1.13
there is a pointz∈ S + with z↔ x andz= y. Let Z ≤ S + be a symplecton that
containsz. Then (A12) implies thatx is a cogate inZ. By Proposition 2.1.17(ii)
we obtain cod(z,Y) = 2. Moreover, coprZ(y) 6= coprZ(x) since otherwisez↔ y
by Proposition 2.1.12(ii). Thus,Y andX are distinct symplecta. This implies that
ϕ is injective.
Let Z be an arbitrary symplecton ofS + and letx′ andy′ be non-collinear points
of Z. By symmetric reasonsX′ := coprS −(x′) andY′ := coprS −(y′) are distinct
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symplecta ofS −. Since cod(y′,X′) = 2 by Proposition 2.1.17(ii), we conclude
that there is a pointz∈ X′ ∩Y′. This implieszϕ = Z by Proposition 2.1.16(i).
Hence,ϕ is bijective.
Assumex 6⊥ y. Then by Proposition 2.1.13 there is a point inX that is opposite
y and hence by (A12),Y andX intersect in the cogate ofy in X. Now assume
x⊥ y. Then there is no point inX that is opposite toy. Hence, Proposition 4.2.4
implies that coprX(y) is a generator ofX and we conclude thatY andX intersect
in a common generator. Thus,ϕ preserves collinearity.
Again assumex ⊥ y and letG be the common generator ofX andY. By sym-
metric reasons we obtain for two distinct points ofG, the points ofS − that are
at codistance 2 to both of them form a singular subspace. Hence, every point
z∈ S − with G≤ zϕ is contained in{x,y}⊥. Let zbe a point on the linexy. Then
by Proposition 2.1.12(iv) every point ofG has codistance 2 toz and therefore
G ≤ zϕ . Now let z∈ {x,y}⊥ r xy. Then by Lemma 2.1.21(iii) there is a point
w∈S + with w↔ zand cod(w,x) = cod(w,y) = 1. By Propositions 2.2.9(iv) and
2.2.9(v) we know thatG is a maximal singular subspace. Hence, there is a point
w′ ∈G with dist(w,w′) = 2 andW := 〈w,w′〉g is a symplecton. Since cod(x,w) = 1
and cod(x,w′) = 2, Proposition 2.1.12(ii) yields coprW(x) > {w′}. Thus,W and
X intersect in common generator by Proposition 4.2.4. Analogously,W∩Y is a
generator ofY. AssumeW does not contain a hyperplane ofG. Then there is are
linesg ≤ W∩X andh ≤ W∩Y with g∩G = h∩G = ∅. Let p be a point ofg.
Thenp⊥ intersectsG in a hyperplane ofG. Thus, prY(p) is a generator ofY by
Proposition 2.1.27. Since prY(p) andG have a common hyperplane, we conclude
that there is a pointq∈ h with dist(p,q) = 2. This implies〈p,q〉g = W and since
both p⊥ andq⊥ contain a hyperplane ofG, we obtain rk(G∩W) ≥ 2. Hence,
G∩w⊥ is not empty and thereforeG � zϕ . This concludes that lines ofS − are
mapped bijectively onto lines ofD+ and thus,ϕ is an isomorphism.
To prove thatS is twin E6-space, it remains to show that for a pair a points
(x,y) ∈ S +×S − we obtainx↔ y if and only if dist(x,yϕ) = 2. LetZ ≤ S + be
a symplecton that containsx. SinceZ andyϕ intersect by Proposition 2.1.17(ii),
we conclude dist(x,yϕ) = 2−cod(x,y) by Proposition 2.1.16(ii). This proves the
claim.
Now assumer = 6. ThenS + is a metaplecton of diameter 3 by Theorem 3.7.2.
This implies thatS − is metaplecton that is oppositeS +. Moreover, Corollary
4.2.8 implies thatS + and S − are isomorphic and the map that sends every
point of S + onto its cogate inS − is an isomorphism. Hence,S is a twin
E7,1-space.
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6.7 Final result

We summarize the results of this chapter and, in fact, the main result of the whole
work in the following table. This table yields a complete classification of SPO
spaces.

We discussed in Chapter 2 why we may restrain ourselves to partially linear
twin SPO spaces. Moreover, in Theorem 4.3.7 we showed that each twin SPO
space is exactly the same as a grid sum of rigid twin SPO spaces. Hence, a classi-
fication of rigid twin SPO spaces yields a classification of all twin SPO spaces.

Since every rigid twin SPO space consists either of two singular components
or possesses a symplectic rank that is at least 2, we have in the following table a
complete list of possible cases at the left hand side. Note that in the first case it is
also possible that both components consist of a single point. In this case one may
consider the twin SPO space as an empty grid sum or as the twin projective space
of a projective space of rank 0. In the latter case, one may attach to this situation
the empty diagram and call this diagram A0,1. The collection of the theorems in
this chapter provides a proof for the correctness of this table.

Even though we mention diagrams at the right hand side, we do not claim
that all rigid twin SPO spaces belong to a point-line of a (weak) building of this
type since the twin spaces named in the middle column are generalisations of the
Xn, j-spaces. There are good reasons to avoid diagrams of infiniterank. Consider
the projective spaceS := PG(Q(N)) of Example 5.1.9 and letB be a basis of
S . ThenB has cardinalityω := |N|. SinceP(B) has cardinality 2ω , there is a
setS of subspaces ofS all of which are spanned by elements ofB. For a given
subspaceS the set{T ∈ S | crkS(T ∩S)} has cardinalityω. Thus, a diagram that
possesses a vertex for each element ofS would consist of 2ω vertices. Now let
(Si)i∈N be a chain of subspaces that are all elements ofS such that rk(Si) = i for
i ∈ N. Then each element ofS r {Si | i ∈ N} is not incident with all elements
of {Si | i ∈N}. Hence,(Si)i∈N is a maximal flag that contains onlyω elements.
Let ϕ be a bijection fromB ontoQ. Then{〈b | bϕ < x〉 | x ∈ R} is a chain of
elements ofS which has cardinality 2ω . Therefore one sees immediately that we
do not obtain a chamber complex if we consider all subspaces of S . A second
approach is to consider only the subspaces of finite rank and of finite corank in
S (note that if we would take only the ones of finite rank the diagrams of types
An,1, Cn,1 and Dn,1 would lead to the same infinite diagram). Again regarding the
flag {Si | i ∈N} shows that there are maximal flags that do not have elements of
each type. One can find maximal flags that contain only subspaces of finite corank
as well as flags that contain subspaces of any given finite rankand finite corank.
However, the more suitable approach is the second one as longas we forget about
chambers and flag complexes. For further comments see [KS96]. In the diagrams
below one may regard any occurrence of dots as a chain of vertices of possibly
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infinite length.

twin space diagram
diam: 1 twin projective space An,1 (n≥ 1) r r r r r r

yrk : 2 twin dual polar space Cn,n (n≥ 2) r r r r r r

yrk : 3 twin polar space C3,1 r r r

partial twin GrassmannianAn, j (n > j > 1) r
r

r

r

r

r

r

r

r

r
��
HH

yrk : 4 twin polar space C4,1 r r r r

twin half-spin space Dn,n (n≥ 4) r r
r

r r r r
��
HH

yrk : 5 twin polar space C5,1 r r r r r

D5,1 r r r
r

r
��
HH

twin E6-space E6,1 r r r
r

r r
��
HH

yrk : 6 twin polar space C6,1 r r r r r r

D6,1 r r r r
r

r
��
HH

twin E7-space E7,1 r r r r
r

r r
��
HH

yrk : ≥ 7 twin polar space Cn,1 (n≥ 7) r r r r r r

Dn,1 (n≥ 7) r r r r r
r

r
��
HH

Some of the theorems in this chapter are stated more generally than they occur
in the table above. The reason for this is that the classes in the middle column are
not always entirely used. Therefore we enlarged the subclasses of the considered
twin SPO spaces in the sections of this chapter slightly to obtain a perfect match
with one of the classes introduced in Chapter 5. The partial twin Grassmannians
and twin half-spin spaces can be singular. For partial twin Grassmannians, one
obtains an arbitrary twin projective space. For twin half-spin spaces, one obtains
a twin projective space of rank 1 or 3. These cases are alreadycovered by the first
row. Twin dual polar spaces do not have to be rigid, but if theyare not, they are
still of symplectic rank 2 and a grid sum of rigid twin SPO spaces. Furthermore,
they can be singular. In this case the connected components are both singletons
or both lines and we are again in the first row. Hence, the case where both com-
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ponents of the twin SPO space are lines is a twin dual polar space, a partial twin
Grassmannian and a twin half-spin space at the same time.

Conversely, as one can see, a case in the left column leads to more than one
class in the middle column. The reason for this is that there are polar spaces of
any given rank. In any case, if the point-line spaces are large enough (where large
should be interpreted as “many vertices in the diagram”), the cases in the left
column coincide with one class of the middle column.

The class of rigid twin SPO spaces is properly contained in the union of the
classes of the middle column since twin dual polar spaces do not need to be rigid.
The union of the classes of the middle column is properly contained in the class of
twin SPO spaces. Finally, the class of twin SPO spaces coincides with the union
of the classes of the middle column closed under taking grid sums. The classes in
the middle column are precisely the generalisations of the point-line spaces that
are related to those diagrams whose types match the list of Jordan pairs. Therefore
we achieved the aim of this work.



A Famous point-line
spaces

We introduce two well-known classes of point-line spaces, i. e. projective and po-
lar spaces. Both of them are strongly related to algebraic structures and thus, it
is not surprising that they appear as subspaces of the point-line spaces we con-
sider in the present work. Both classes of point-line spacesare well studied. The
aim of this chapter is to give a short introduction of projective and polar spaces.
Furthermore, we give a list of results that we use in the main part of this work.

A.1 Projective spaces

Projective spaces are, besides the affine spaces, certainlythe most famous point-
line spaces and are studied in several fields of mathematics.A projective space
can easily be obtained by taking the 1- and 2-dimensional subspaces of aK-vector
space, whereK is a division ring. Moreover, every projective space is a composi-
tion of projective spaces of this kind, projective planes and lines; see [VY65].

Definition A.1.1. A possibly degenerate projective spaceis a linear space satis-
fying the following property:

(VY) For every pair(l ,k) of disjoint lines and every pointp∈P r(l ∪k) there
is at most one line throughp meeting bothl andk.

The characterisation (VY) of O. Veblen and J. Young given in this definition
is based on Pasch’s Axiom. A projective space is called degenerate if it contains
at most one line or at least one short line, i. e. a line of cardinality 2. Usually,
projective spaces are required to be non-degenerate. However, if we talk about
projective spaces, we always allow them to be degenerate. Itis obvious by the
definition that every subspace of a projective space is againa projective space.

We first show how degenerate projective spaces are composed of non-degener-
ate ones.
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Lemma A.1.2. Let S = (P ,L ) be a projective space. For two points p and q
we write p≈ q if and only if they are joined by a thick line or p= q. Then≈ is an
equivalence relation.

Proof. We only have to check the transitivity of≈. Let {p,q, r} ⊆ P with q≈
p ≈ r. If these three points are on a common line, we obtainq ≈ r. Hence we
assume they are not collinear. Letl denote the line joiningp and q and letk
denote the line joiningp andr. Since both lines are thick, we findq′ ∈ l r{p,q}
andr ′ ∈ kr{p, r}. Let h be the line joiningq andr and leth′ be the line joining
q′ andr ′. Sincer ∈ h∩k but r /∈ l ∩k = {p}, we concludeh 6= l . Sinceq∈ h∩ l ,
this leads top /∈ h. Analogously we obtainp /∈ h′. Sincel andk are lines through
p meeting bothh and h′, the two linesh and h′ intersect in some pointp′ by
Definition A.1.1. Sincep /∈ h′, we obtainh′ 6= l and sincep′ ∈ h′∩ l , we conclude
q /∈ h′. Analogously,r /∈ h′ and thereforeq 6= p′ 6= r. Thus,h is a thick line and
q≈ r.

Corollary A.1.3. Let S be a projective space and U an equivalence class of≈
in S . Then U≤ S and U is either a singleton, a thick line or a non-degenerate
projective space.

Proof. Let p andq be two points ofU . Then the line joiningp andq is thick.
Hence, for every pointr on this line, we obtainr ≈ p. So the whole line is con-
tained inU andU has to be a subspace.
If U contains at least one line,U is a singleton or a thick line. IfU contains more
than one line, it is a non-degenerate projective space sinceevery line is thick.

Let I be an index set and let(Si)i∈I be a family of projective spaces. Then we
define thedirect sumof the projective spaces(Si)i∈I as

⊕

i∈I

Si :=

(

⋃

i∈I

Pi ,
⋃

i∈I

Li ∪
{

{p,q}
∣

∣ (p,q) ∈ Pi ×P j ∧ i 6= j
}

)

.

Proposition A.1.4. Every projective space is a uniquely determined direct sum of
projective spaces, thick lines and singletons.

Proof. By definition of the direct sum, every projective space is just the direct sum
of the equivalence classes of≈. Thus, Corollary A.1.3 proves the claim except
for the uniqueness.
Let I be an index set and let(Si)i∈I be a family of disjoint projective spaces.
Further letSi be a point, a thick line or a non-degenerate projective spacefor
everyi ∈ I . Then in the point-line space∏i∈I Si every thick linel is contained in a
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non-degenerate projective spaceSi for somei ∈ I or l ∈{Si | i ∈ I}. Furthermore,
every short line of∏i∈I Si joins two points of two distinct members of{Si | i ∈ I}
since no element of{Si | i ∈ I} contains short lines. This proves the uniqueness.

As already mentioned, there is a strong connection between projective spaces
and vector spaces. As consequence of this fact is that projective spaces are gener-
ated by subsets of their elements that are similar to the bases of vector spaces and
therefore are also called bases. We will see that each of these bases is obtained by
adding bases of the non-degenerate components.

Lemma A.1.5. Let S be a projective space and X a set of points ofS . Further
let U be an equivalence class of≈. Then〈X∩U〉 = 〈X〉∩U.

Proof. We denote byS /≈ the set of equivalence classes inS with respect to
≈. The direct sumS ′ := ∏V∈(S /≈)r{U}V is a subspace ofS since all thick
lines ofS are completely contained inS ′ or disjoint toS ′. By the definition of
the direct sum we see thatS is the disjoint union ofS ′ andU . HenceX is the
disjoint union ofX0 := X ∩S ′ andX1 := X∩U . For every two distinct pointsp
andq of 〈X0〉∪〈X1〉 the line joining them is contained in〈Xi〉 if {p,q} ⊂ 〈Xi〉 for
i ∈ {0,1} and equals{p,q} otherwise. Thus, the set〈X0〉∪〈X1〉 is a subspace. It
follows that〈X0〉∪〈X1〉 = 〈X〉 and since〈X0〉∩U = ∅ andX1 ⊆U , we conclude
〈X1〉 = 〈X〉∩U .

Let S be a projective space and letX ⊆S be a set of points. Ifp /∈ 〈X r{p}〉
for every pointp∈X, we callX independent. An independent set of pointsB⊆S

with 〈B〉 = S is called abasisof S . A set of points which is not independent
will be calleddependent.

Lemma A.1.6. Let S be a projective space and let U be a non-empty subspace
of S . Then for every point p∈ S with U 6= {p} the subspace〈p,U〉 is the union
of lines through p that intersect U.

Proof. Let Up be the union of lines throughp meetingU . SinceS is singular,
we only have to show thatUp is a subspace. Letl be a line containing two distinct
pointsq andr of Up. If p ∈ l or p∈ U the claim becomes trivial, hence we may
assumep /∈U ∪ l .
Let q′ be the intersection point ofU andpq and letr ′ be the intersection point of
U andpr. If q′ = r ′ we obtainpq= pr = qr ⊆Up. Thus, we may assumeq′ 6= r ′.
Setl ′ := q′r ′. If q= q′ andr = r ′, thenl ∈U ⊆Up. Hence, we may assumer 6= r ′.
This impliesl 6= l ′ sincel ≤U andr /∈U . Since the two linespq andpr intersect
bothl andl ′ andp /∈ l ∪ l ′, there is a points∈ l ∩ l ′ by (VY). For an arbitrary point
t ∈ l the two distinct linespr and l contain the pointr and intersect bothl ′ and
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pt. Sincel ′ 6= pt andr /∈U , (VY) implies l ′∩ pt 6= ∅ and thereforept ⊆Up. We
concludet ∈Up and hencel ⊆Up.

Lemma A.1.7. LetS be projective space. Further let X⊆ S be an independent
set of points and let p be a point ofS r 〈X〉. Then X∪{p} is independent.

Proof. SupposeX∪{p} is dependent. Then there is a finite setX0 ⊆ X such that
p ∈ 〈X0〉 or x ∈ 〈X0, p〉 for some pointx ∈ X r X0. The first leads top ∈ 〈X〉,
a contradiction. Hence, we may assume that the second case holds. SinceX is
independent, we obtainx /∈ 〈X0〉. Thus Lemma A.1.6 implies that the pointx has to
be on a line joiningp and a pointy∈ 〈X0〉. We concludep∈ 〈x,y〉 ≤ 〈x,X0〉 ≤ 〈X〉,
a contradiction.

Proposition A.1.8. In a projective space every independent set of points is con-
tained in a basis.

Proof. Let S be a projective space. Further letI be an index set and let(Xi)i∈I be
a chain of independent subsets ofS . SetX :=

⋃

i∈I Xi. SupposeX is dependent.
Then there is a pointx∈ X with x∈ 〈Y〉 for some finite subsetY ⊆ X r{x}. For
every pointy ∈ Y∪{x} there is an elementiy ∈ I with y ∈ Xiy. SinceY∪{x} is
finite, the union

⋃

y∈Y∪{x}Xiy is contained in{Xiy | y ∈ Y∪{x}} and therefore a
member of the family(Xi)i∈I . Let Xj denote this member. Then the dependent set
of pointsY∪{x} is contained inXj , a contradiction to the independence ofXj .
We apply Zorn’s Lemma to conclude that there are maximal independent sets of
points.
Let X be a maximal independent set of points. Further letp∈ S rX be a point.
By the maximality ofX we know thatX ∪{p} is dependent. Hence, there is a
finite subsetX0 ⊆ X such thatp∈ 〈X0〉 or x∈ 〈X0, p〉 for some pointx∈ X r X0.
In the first case we obtainp ∈ 〈X〉. In the second case we obtainx /∈ 〈X0〉 since
X is independent. Thus, Lemma A.1.6 implies that the pointx is on a line joining
p an a pointy ∈ 〈X0〉. This leads top ∈ 〈x,y〉 ≤ 〈x,X0〉 ≤ 〈X〉. We conclude
〈X〉 = S .

Corollary A.1.9. Every projective space has a basis.

Proof. Since the independent set∅ is contained in every projective space the
claim follows from Proposition A.1.8.

Corollary A.1.10. LetS be a projective space. Further let(Ui)0≤i<n be a chain
of subspaces ofS , where n∈N. Then there is a basis B ofS such that B∩Ui is
a basis of Ui for all 0≤ i < n.

Proof. SetUn := S . AssumeBi is a basisBi of Ui for 0 ≤ i < n. Then by
Proposition A.1.8 there is a basisBi+1 of Ui+1 which containsBi. SinceBi+1∩Ui

has to be independent andBi is maximal under this condition, we concludeBi+1∩
Ui = Bi. SinceU0 has a basis, the claim follows by induction.
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Let S be a projective space with a basisB. Then for every pointp∈ S , there
is a finite subsetB0⊆Bwith p∈ 〈B0〉. Now letB0 andB1 be two finite subsets ofB
with p∈ 〈Bi〉 for i ∈{0,1}. Since they both are finite, we may assume that they are
minimal under this condition. SupposeB0 6⊆B1. Then there is a pointb∈B0rB1.
By the minimality ofB0 we know p /∈ 〈B0 r {b}〉. Thus, Lemma A.1.6 implies
that there is a line joiningb, p and some pointq ∈ 〈B0 r {b}〉. We conclude
〈p,B0 r {b}〉 = 〈B0〉. By Lemma A.1.7 the set{p} ∪B0 r {b} is independent
and therefore a basis of〈B0〉. Sincep ∈ 〈B1〉, this impliesb∈ 〈B0 r {b},B1〉, a
contradiction to the independence ofB. We concludeB0 ⊆ B1 and analogously,
B1 ⊆ B0. Hence, there is a unique minimal subsetBp ⊆ B with p∈ 〈Bp〉. We call
Bp thesupportof p with respect to the basisB.

Lemma A.1.11.LetS be a projective space. For i∈ {0,1}, let Ui ≤S be a non-
empty subspace such that U0∪U1 contains more than one point. Then〈U0,U1〉 is
the union of lines meeting both U0 and U1.

Proof. SinceS is singular, it suffices to show that the union of all lines meet-
ing bothU0 andU1 is a subspace. We may assumeU0 � U1 andU1 � U0 since
otherwise there is nothing to prove. Letpi andqi be points ofUi for i ∈ {0,1}.
Further letp be a point ongp := p0p1 and letq be a point ongq := q0q1 with
p 6= q. Finally let r be an arbitrary point ofg := pq. We have to show that there
are distinct pointsr0 ∈U0 andr1 ∈U1 such thatr ∈ r0r1.
We may assumep 6= r 6= q andr /∈U0∩U1 since otherwise we are done. Further
we assumep0 6= q0 andp1 6= q1 since otherwise the claim is a direct consequence
of Lemma A.1.6. First letp ∈ U0. Thenp andq are both contained in〈q1,U0〉
and the claim follows from Lemma A.1.6. Hence, we may assumep /∈ U0 and
analogously,p /∈U1 andq /∈U0∪U1.
If g = gp, the claim follows withr0 := p0 andr1 := p1. Thus, we may assume
g 6= gp and analogouslyg 6= gq. Now g andgp both containp and intersect the
lines p1q andp0r. Sinceg 6= gp, we obtainp /∈ p1q∪ p0r andp1q 6= p0r. Thus,
there is a pointr ′ ∈ p1q∩ p0r by (VY). We may assumer ′ /∈ U1 since otherwise
we are done. Sincegq∩U1 = {q1} andp1 6= q1, we obtaingq 6= p1q. Furthermore,
r /∈U0 implies p0r ∩U0 = {p0} and thereforeq0 6= r ′. Now gq andp1q both con-
tain q and intersect the linesq0r ′ andg1 := p1q1. Sinceq /∈ U1, we knowq /∈ g1

andq0 /∈ g1 and henceq0r ′ 6= g1. If q∈ q0r ′, we obtainq0r ′ = gq and setr1 := q1.
Otherwise, we apply (VY) to conclude thatq0r ′ andg1 intersect in a pointr1.
It remains to show thatrr1 andg0 intersect. Ifr ′ ∈ rr1, thenrr1 = r ′r1 = q0r1 and
hence, we are done. Thus, we may assumer ′ /∈ rr1. If r ′ ∈ g0, thenr ′ = p0 since
p0r ∩U0 = {p0}. Again rr1 andg0 intersect. Thus, we may assumer ′ /∈ g0. Now
the linesq0r ′ andp0r both containr ′ and intersectrr1 andg0. Sincep0 6= q0 and
r /∈U0, we knowq0r ′ 6= p0r. Hence, applying (VY) proves the claim.
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Lemma A.1.12. Let S be projective space. Further let X⊆ S and Y⊆ S be
independent sets of points with X∩Y = ∅. Then X∪Y is independent if and only
if 〈X〉∩〈Y〉 = ∅.

Proof. Assume〈X〉 ∩ 〈Y〉 = ∅. Let X0 ⊆ X be a finite subset and let{yi | 0 ≤
i < n} ⊆ Y for somen ∈N. Set recursivelyXi+1 := Xi ∪{yi} for 0≤ i < n. By
Lemma A.1.11 the subspace〈Xi〉 consists of the lines joining a point of〈X0〉 with
a point of〈y j | 0 ≤ j < i〉. We showyk /∈ 〈Xi〉 for all i ≤ k ≤ n. Suppose this is
not the case. Then there is a lineg throughyk that meets〈X0〉 in some pointx and
〈y j | 0≤ j < i〉 in some pointy. Since{yi | 0≤ i < n} is independent, we obtain
y 6= yk and thereforex ∈ yyk ≤ 〈Y0〉, a contradiction to〈X〉 ∩ 〈Y〉 = ∅. Since
X0 is independent, the independence ofXn follows by induction using Lemma
A.1.7. Hence,X ∪Y contains no dependent finite subset and thereforeX ∪Y is
independent.
Now letX∪Y be independent. ThenX∪Y is a basis of〈X,Y〉. Let p be a point in
〈X〉. Then the support ofp in 〈X,Y〉 with respect to the basisX∪Y is contained
in X. Since the support is unique we obtainp /∈ 〈Y〉.

Lemma A.1.13. Let B and C be two bases of the same projective space. Further
let c∈Cr B. Then there exists an element b∈ BrC, such that{c}∪Br {b} is
again a basis.

Proof. SetA := B∩C, B′ := Br A andC′ := Cr A. Thenc∈ C′. Let B0 be the
support ofc with respect toB. SinceC is a basis,c /∈ 〈A〉 and henceB0 6⊆ A.
Let b ∈ B0 r A. By the minimality ofB0 we know c /∈ 〈B0 r {b}〉. Hence by
Lemma A.1.6,c is on a line joiningb and a pointp ∈ 〈B0 r {b}〉. Sincec /∈
〈B0 r {b}〉, we obtainc 6= p. This impliesb ∈ cp≤ 〈c,B0 r {b}〉 and therefore
〈c,B0 r {b}〉 = 〈B0〉. Sinceb is contained in the support ofc with respect toB,
we concludec /∈ 〈Br{b}〉. Hence by Lemma A.1.7, the set{c}∪Br{b} has to
be independent. On the other handb∈ 〈c,Br{b}〉 and thus,〈c,Br{b}〉 ≥ 〈B〉.
Hence,{c}∪Br{b} is a basis.

Proposition A.1.14. Every two bases of a projective space have the same cardi-
nality.

Proof. Let B andC be two bases of a projective spaceS . First letB be finite. As
long as there is an elementb ∈ BrC, we find by Lemma A.1.13 a basisB′ and
an elementc ∈ Cr B with B = (B∩B′)∪{b} andB′ = (B∩B′)∪{c}. Hence,
|B| = |B′| and |B′ ∩C| = |B∩C|+ 1. Induction leads to a basis with the same
cardinality asB that is contained inC. Since there cannot be a basis properly
contained in another one, this basis equalsC. Thus,|B|= |C|.
Now let B andC both be infinite sets. For allc ∈ C let Bc be the support ofc
with respect toB and setB′ :=

⋃

c∈C Bc. Thenc∈ 〈B′〉 for all c∈C and therefore
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〈B〉 = 〈C〉 ≤ 〈B′〉. This impliesB′ = B sinceB is a basis. Thus,|B| ≤ ∑c∈C |Bc|.
Since|Bc| < |N| for everyc∈C, this leads to|B| ≤ |C| · |N|. Since|C| is infinite,
we obtain|N| ≤ |C| (by [Bou68, §6.3, Lemma 1]) and therefore|B| ≤ |C| · |C|.
Finally |B| ≤ |C| (by [Bou68, §6.3, Theorem 2]). ExchangingB andC finishes the
proof.

Corollary A.1.15. Let S be a projective space and let U≤ S be a subspace.
Further let BU and CU be bases of U and let B and C be bases ofS with BU ⊆ B
and CU ⊆C. Then|BrBU |= |CrCU | and(BrBU)∪CU is again a basis ofS .

Proof. Since〈BU〉= 〈CU〉, we obtain〈BrBU ,CU〉= 〈BrBU ,BU〉= 〈B〉. Lemma
A.1.12 implies〈BU〉∩ 〈Br BU〉 = ∅ sinceB is independent. Moreover,〈BU〉 =
〈CU〉 implies that(BrBU)∪CU is independent and therefore a basis.
If |B| is finite, |BrBU | = |CrCU | is a direct consequence of Proposition A.1.14.
In the infinite case we define for everyc∈CrCU the setBc to be the intersection
of Br BU and the support ofc with respect toB. The rest is just the same as in
the proof of Proposition A.1.14.

Let S be a projective space and letU ≤ S be a subspace. Further letBU be a
basis ofU and letB be a basis ofS containingBU . We call|BrBU | thecorank
of U in S and denote it by crkS (U). As a consequence of the previous corollary,
the corank is well-defined and does not depend of the choice ofthe basis.

Proposition A.1.16. Let S be a projective space with basis B. Then|B| =
rk(S )+1.

Proof. Let≺ be a well-order onB. For everyb∈B, setRb := 〈c∈B | c≺ b〉. Then
{Rb | b∈ B}∪{S } is a chain of subspaces such thatRb < Rc for every unordered
pair {b,c} ⊆ B with b≺ c sinceb∈ Rc r Rb. Hence,(B,≺) → ({Rb | b∈ B},<
) : b 7→ Rb is an isomorphism of well-ordered chains. We conclude rk(S ) ≥
|B|+1−2= |B|−1.
Now letC be some maximal chain of subspaces ofS that is well-ordered under
<. For everyR∈ Cr {S }, let n(R) be the successor ofR in C and letbR be
a point of n(R) r R. Let {R,S} ⊆ C be an unordered pair withR < S. Then
bR ∈ Sand therefore〈bQ | Q∈C ∧ Q < S〉 ≤ S. Suppose{bQ | Q∈Cr{S }} is
dependent. Then there is a finite subchainC0 of Cr{S } such that{bR | R∈C0}
is dependent. SinceC0 is finite, Lemma A.1.7 implies that there is an element
T ∈C0 such thatbT ∈ 〈bR | R∈C0 ∧ R< T〉. SincebR ∈ T for all R< T, this is a
contradiction tobT /∈ T. Thus,{bR | R∈Cr{S }} is independent. We conclude
|B| ≥ |C|−1= rk(S )+1.

Note that the proof of this proposition works for any maximalwell-ordered
chain of subspaces and not only for those of maximal possiblecardinality. Hence,
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for projective spaces all maximal well-ordered chains of subspace have the same
cardinality. This is not true for arbitrary linear spaces.

Corollary A.1.17. Let S be a projective space and let U≤ S be a subspace.
Thenrk(S ) = crkS (U)+ rk(U).

Proof. This is an immediate consequence of Proposition A.1.16.

A.2 Polar spaces

Polar spaces are point-line spaces with a surprisingly nicecharacterisation that
yields rather strong properties. Polar spaces are also studied outside the field of
incidence geometry. For instance, they appear in disguise as solutions of quadratic
forms on a vector space.

The following definition goes back to F. Buekenhout and E. Shult; see [BS74].

Definition A.2.1. A polar spaceis a point-line spaceS = (P ,L ) satisfying the
following property:

(BS) Let (p, l) ∈ P ×L . Thenp is collinear to either all or exactly one point
of l .

An equivalent condition to (BS) is that for every pointp the setp⊥ is a hyper-
plane ofS or equalsP , see [Coh95]. We mention both conditions since each of
them has its advantages in certain situations.

Let S = (P ,L ) be a polar space. Theradical Rad(S ) := {p ∈ P | p⊥ =
P} = P⊥ consists of all points which are collinear to all others. By definition
a polar space is a gamma space and thereforeM⊥ is a subspace for every set of
pointsM ⊆ P . Since Rad(S ) = P⊥, the radical is a singular subspace ofS . A
maximal singular subspace of a polar space is called agenerator.

Therank of a non-degenerate polar spaceS is defined as rk(S ) := srk(S )+
1. A more general definition, which includes degenerate polar spaces is given
in [Joh90]: The rank ofS is the largest integern, such that there is a chain of
lengthn+ 1 of singular subspaces all containing Rad(S ). If there is no such
integer, the rank is set to be∞. In the finite rank case, the rank equals srk(S )−
rk(Rad(S )). To include the cases which have infinite rank, we take the largest
cardinalα such that there is a well-ordered chain of lengthα + 1 of singular
subspaces all containing Rad(S ), instead. Note that a singular polar space has
always rank 0. Hence, this rank might differ from the rank we obtain if the space
is treated as a singular space.
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Using Zorn’s Lemma one sees that every polar space has generators and that
every singular subspace of a polar space is contained in somegenerator. Further-
more, by Lemma 1.1.3 above, every set of mutually collinear points is contained
in a generator.

In a non-degenerate polar space of finite rankn, all lines of which have cardi-
nality at least 3, every singular subspace is contained in some singular subspace
of rankn−1; see [Tit74, 7.2.1]. In other words, every generator has rank n−1.
The equivalence between the axioms used there ([Tit74, 7.1]) and the ones used
here is shown in [BS74, Theorem 4].

We will see later on that even if we have short lines, all generators of a non-
degenerate polar space of finite rank have the same rank. In polar spaces of arbi-
trary rank it may occur that there are generators of different rank1; see [Joh90] for
an example. But there are some weaker conditions that still hold.

A.2.1 The associated non-degenerate polar space

Among the class of polar spaces the class of non-degenerate polar spaces plays a
prominent role. One reason is that non-degenerate polar spaces have a structure
that is much nicer. We will see later that they are partially linear and their gener-
ators are even projective spaces. Both facts do not hold for arbitrary polar spaces.
A second reason is that there is a functor from the category ofpolar spaces onto
the category of non-degenerate polar spaces, which means that one can associate
each polar space with a uniquely determined non-degeneratepolar space.

Definition A.2.2. Let S = (P ,L ) be a polar space. For every pointp∈ P , we
setpρ := 〈p,Rad(S )〉 and for every linel ∈L , we setlρ := {pρ | p∈ l}. Define
the following two sets:

P
ρ := {pρ | p∈ P rRad(S )}

L
ρ := {lρ | l ∈ L ∧ l ∩Rad(S ) = ∅}

ThenS ρ := (Pρ ,L ρ) is called theassociated non-degenerate polar spaceof
S .

By construction,S ρ is again a point-line space provided that|lρ | ≥ 2 holds
for every linel ⊆ S r Rad(S ). The notation used here corresponds with the
one in [Coh95, 2.4]. In [Joh90] a different notation is used.The first part of the
following lemma will show that the both notations lead to isomorphic point-line

1In this case, of course, both ranks are∞, but there is no bijection between maximal well-
ordered chains of pairwise properly contained singular subspaces.
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spaces since usingpρ r Rad(S ) instead ofpρ provides the notation of [Joh90].
Therefore we may use some of the results given in [Joh90].

Lemma A.2.3. LetS = (P ,L ) be a polar space.

(i) Let l ∈ L be disjoint fromRad(S ). Then for every point p∈ l, there is a
point q∈ P with l∩q⊥ = {p}.

(ii) pρ = {q∈ P | q⊥ = p⊥}∪Rad(S ) for every point p∈ P rRad(S ).

(iii) Let l ∈ L be disjoint fromRad(S ). Then for every point p∈ l, the line l
intersects pρ in exactly one point.

(iv) Let l ∈L intersectRad(S ) in a single point p. Then〈l ,Rad(S )〉= qρ for
all points q∈ l r{p}.

(v) Let pρ and qρ be points ofS ρ on a common line lρ ∈ L ρ . Further let
(p′,q′)∈ pρ ×qρ be a pair of points inS . Then there is a line inS joining
p′ and q′.

Proof. (i) See [Joh90, Proposition 3.1(i)].
(ii) See [Joh90, Proposition 3.1(ii)].
(iii) Let p andq be two points onl . Then (i) impliesp⊥ = q⊥ if and only if p= q.
Thus by (ii),pρ = qρ if and only if p = q. Hence,l → lρ : p 7→ pρ is a bijection.
Since by (ii) we obtainpρ = qρ if q∈ pρ , the claim follows.
(iv) Let q ∈ l r {p}. Since{q, p} ⊆ qρ andqρ ≤ S we get l ⊆ qρ and hence
〈l ,Rad(S )〉 ≤ qρ . The other inclusion is trivial.
(v) If p′ ∈ Rad(S ) or q′ ∈ Rad(S ), this is clear, hence we assume{p′,q′} ⊆
P rRad(S ). By (iii) we may assume{p,q} ⊆ l without loss of generality. We
get q′ ∈ qρ r Rad(S ) and therefore by (ii) we getq⊥ = q′⊥. Hencep′ ∈ pρ =
〈p,Rad(S )〉 ≤ q⊥ = q′⊥ and thus there is a line joiningp′ andq′.

By Lemma A.2.3(iii) we obtain|l | = |lρ | for every line disjoint to the radical.
Hence,S ρ is indeed a point-line space. Moreover, the following proposition
justifies the name associated non-degenerate polar space.

Proposition A.2.4. Let S = (P ,L ) be a polar space. ThenS ρ is a non-
degenerate polar space.

Proof. First we show that (BS) holds inS ρ . Therefore we choose an arbitrary
pair (pρ , lρ) ∈ Pρ ×L ρ . Since (BS) holds inS , we find a pointq ∈ l with
q⊥ p. Sincel ∩Rad(S ) = ∅, we obtainq /∈ Rad(S ) and thereforeqρ ∈ lρ . Let
k be the line joiningp andq. If k∩Rad(S ) = ∅, thenkρ containspρ andqρ .
Otherwisepρ = qρ by Lemma A.2.3(iv). Thus,pρ andqρ are collinear.
Assume there is a second pointrρ ∈ lρ being collinear topρ . Let r ′ ∈ rρ be the
point of S belonging tol . By Lemma A.2.3(v) we obtainp⊥ r ′ 6= q and hence
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l ⊆ p⊥ by (BS). Analogously to the first part of this proof,pρ is collinear tosρ

for everys∈ l . This implies that all points onlρ are collinear topρ . ThusS ρ

satisfies (BS).
Now assume that there is a pointpρ ∈ Rad(S ρ). Then Lemma A.2.3(v) implies
that every pointp′ ∈ pρ is collinear to every pointq′ ∈ qρ for every pointqρ ∈Pρ .
This implies

⋃

qρ∈Pρ qρ ⊆ p′⊥. By Lemma A.2.3(ii) the set{qρ rRad(S ) | qρ ∈
Pρ} is a partition ofP rRad(S ). Thus,p′ ∈ Rad(S ) andpρ ≤ Rad(S ). We
concludepρ /∈ Pρ and thereforeS ρ has to be non-degenerate.

Note that if a polar space is singular, then the associated non-degenerate polar
space is just the empty space, which is of course also a non-degenerate polar space.
As mentioned above, non-degenerate polar spaces have nice properties that do not
hold in general for degenerate ones. These properties, stated in the following
two propositions, makes studying non-degenerate polar spaces much easier than
studying arbitrary ones:

Proposition A.2.5. Let p and q be non-collinear points of a non-degenerate polar
spaceS . Then{p,q}⊥ is a non-degenerate polar space. Moreover, ifS has finite
rank, thenrk(S ) = rk({p,q}⊥)+1.

Proof. The first property is [Coh95, Theorem 3.1(iii)]. Now letG be a generator
of S that containsp. ThenG∩ q⊥ is a hyperplane ofG that is contained in
{p,q}⊥. Conversely, ifH is a generator of{p,q}⊥, then 〈p,H〉 is a singular
subspace ofS .

Proposition A.2.6. Let p and q be non-collinear points of a non-degenerate polar
spaceS . Then〈p,q〉g = S .

Proof. By (BS) we obtain that〈p,q〉g contains all lines throughp and all lines
throughq. Let p′ 6= p be a point collinear top. Then by Lemma A.2.3(i) there
is a pointq′ such thatp is the only point onpp′ that is collinear toq′. Sincep′

andq′ are not collinear and both are contained in〈p,q〉g, we conclude that〈p,q〉g
contains all points collinear top′ and consequently, all points at distance 2 top.
This proves the claim.

Proposition A.2.7. Every non-degenerate polar space is partially linear.

Proof. See [Joh90, Proposition 3.1(vii)] .

Proposition A.2.8. Every singular subspace of a non-degenerate polar space is
a possibly degenerate projective space.

Proof. See [Joh90, Theorem 3.2].
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This knowledge helps us to investigate the lattice of subspaces of the associated
non-degenerate polar space.

Lemma A.2.9. LetS be a polar space and U≤ S .

(i) The set Uρ := {pρ | p∈U rRad(S )} is a subspace ofS ρ .

(ii) Let V≤ S . Then V≤U implies Vρ ≤Uρ .

(iii) Let U† ≤ S ρ . Then U′ :=
⋃

pρ∈U† pρ ≤ S and U′ρ = U†.

(iv) Set U′ := (
⋃

pρ∈Uρ pρ)∪Rad(S ). Then U≤ U ′, where U= U ′ holds, if
Rad(S ) ≤U.

(v) U is singular if and only if Uρ is singular.

Proof. (i) Let lρ be a line ofS ρ on which there are two distinct points,pρ and
qρ say, which are contained inUρ . Then there are pointsp′ ∈ pρ andq′ ∈ qρ with
{p′,q′} ⊆U rRad(S ). By Lemma A.2.3(v) there is a linel ′ of S joining p′ and
q′. SinceU is a subspace,l ′ is contained inU . Sincel ′ρ and lρ intersect in two
different points, we obtainl ′ρ = lρ by Proposition A.2.7. Hence,lρ is contained
in Uρ and thereforeUρ ≤ S ρ .
(ii) We obtainVρ ⊆Uρ by definition. The rest follows with (i).
(iii) Let p′ andq′ be two collinear distinct points inU ′. Further letl be the line
joining p′ andq′. We choose two pointspρ andqρ in U† with p′ ∈ pρ andq′ ∈ qρ .
If p′ ∈ Rad(S ), thenl is contained inq⊥. Hence we may assume that neitherp′

nor q′ is contained in Rad(S ). Then p′ρ = pρ andq′ρ = qρ and lρ is just the
line joining pρ andqρ . SinceU† is a subspace, it containslρ and thereforel is
contained in

⋃

pρ∈U† pρ . For every pointp′ ∈ U ′, there is a pointpρ ∈ U† with
p′ ∈ pρ . Sincep′ρ ≤ pρ , we obtainU ′ρ ≤ U† and sincep ∈ pρ ≤ U ′, equality
holds.
(iv) If U ≤Rad(S ), thenUρ = ∅ and there is nothing to prove. Hence we assume
U � Rad(S ). Let p∈U andqinU rRad(S ). Thenp∈ pρ ≤U ′, if p /∈ Rad(S )
andp∈ qρ ≤U ′, if p∈Rad(S ). Hence,U ≤U ′. On the other hand, if Rad(S )≤
U , we obtainpρ ≤U for everyp∈U and thereforeU ′ ≤U .
(v) If U is singular, then two pointspρ andqρ in Uρ are joined by the linelρ ,
wherel is a line joiningp andq in U . Hence,Uρ is singular. Now letUρ be
singular and setU ′ := (

⋃

pρ∈Uρ pρ )∪Rad(S ). ThenU ≤U ′ by (iv). SinceU ′ is
singular by Lemma A.2.3(v), the subspaceU ≤U ′ is singular, as well.

Proposition A.2.10. Let S be a polar space. Further letU0 be the set of all
subspaces U≤ S containingRad(S ) and letU1 be the set of all subspaces of
S ρ . Then the lattices(U0,≤) and(U1,≤) are isomorphic viaϕ : U0 → U1 : U 7→
Uρ .
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Proof. LetU† ∈ U1 andU := (
⋃

pρ∈U† pρ)∪Rad(S ). By Lemma A.2.9(iii)U ≤

S and henceU ∈ U0. Again by Lemma A.2.9(iii) we obtainUρ = U† and thus,
ϕ is surjective. For every subspaceV ∈ U0 with Vρ = U†, we obtainV = U by
Lemma A.2.9(iv). Hence,ϕ is bijective.
Let U andV be in U0. ThenU ≤ V impliesUρ ≤ Vρ by Lemma A.2.9(ii). If
Uρ ≤ Vρ , thenU = (

⋃

pρ∈Uρ pρ)∪Rad(S ) ⊆ (
⋃

pρ∈Vρ pρ)∪Rad(S ) = V and
thereforeU ≤V by Lemma A.2.9(iii). Hence,ϕ is an isomorphism of lattices.

Corollary A.2.11. Every polar space has the same rank as its associated non-
degenerate polar space.

Proof. Let S be a polar space. By Proposition A.2.10 and Lemma A.2.9(v) a
chain of singular subspaces inS all containing Rad(S ) can be mapped iso-
morphically on a chain of singular subspaces ofS ρ and vice versa. The claim
follows.

In a non-degenerate polar space the maximal well-ordered chains of subspaces
of a given generator are all of the same cardinality since this generator is a projec-
tive space. Like in the corollary above, this implies for a given generatorM of an
arbitrary polar spaces that all maximal well-ordered chains of subspaces ofM all
containing Rad(S ) are of the same cardinality. Note that this is no longer true if
the singular subspaces are not demanded to contain the radical.

A.2.2 Dual polar spaces

In a polar spaceS , two generatorsM andN are calledadjacentwhen they inter-
sect in a common hyperplane, denoted byM ∼ N. Let G be the set of generators.
The graph onG induced by∼ is called thedual polar graphof S . Let C ∗ be
the set of maximal cliques, i. e. sets of vertices of maximal complete subgraphs,
of the dual polar graph. SetC := {x∈ C ∗ | |x| ≥ 2}. Then(G,C ) is a point-line
space, called thedual polar space. Point-line spaces which are isomorphic to such
a space, are also called dual polar spaces.

There are non-isomorphic polar spaces whose dual polar spaces are isomor-
phic. To study dual polar spaces it suffices to check only one representative of
each class of polar spaces with isomorphic duals. In the following we will show
that we can always pick a non-degenerate representative.

Lemma A.2.12. Let U be a singular space with a hyperplane H< U. Further let
p be a point of Ur H. Then U= 〈p,H〉. More precisely, U is the union of the
lines joining a point of H with p.

Proof. Let q be an arbitrary point ofU r{p}. SinceU is singular, there is a line
joining p andq. SinceH is a hyperplane ofU , this line intersectsH. The claim
follows.
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Lemma A.2.13. Let S be a polar space and let M and N be two generators of
S . Then M∩N is a hyperplane of M if and only if M∩N is a hyperplane of N.

Proof. Assume thatH := M ∩N is a hyperplane ofM. If N does not contain a
line, there is nothing to prove. Thus, letl be a line inN. Now we take a point
p ∈ M r H. Then by (BS) there is a pointq on l which is collinear top. Since
q⊥∩M containsH andp, we obtainM ≤ q⊥ by Lemma A.2.12. Hence, Lemma
1.1.3 implies that there is a singular subspace which containsM andq. SinceM
is a generator, we obtainq∈ M. Thus,H intersectsl . SinceN 6= H by maximality
of N, we conclude thatH is a hyperplane ofN.

Proposition A.2.14. Let X, Y and Z be generators of a polar space which are
pairwise adjacent. Then X, Y and Z have a hyperplane in common.

Proof. We may assume thatX, Y andZ are pairwise distinct since otherwise the
claim becomes trivial. SinceX andY are adjacent, they have a hyperplaneH in
common. AssumeH ≤ Z. SinceZ intersectsX in a hyperplane,Z∩X = H by
Lemma A.2.12 and thereforeH is hyperplane ofZ by Lemma A.2.13.
Now assumeH � Z. ThenZ intersectsX in a hyperplane which is by Lemma
A.2.12 not contained inH. Hence, there is a pointx∈ X rH, which is contained
in Z. Analogously, there is a pointy∈ (YrH)∩Z. Sincex andy are contained in
Z, they are collinear. Thus,x andH are contained iny⊥ and thereforeX ≤ y⊥ by
Lemma A.2.12. By Lemma A.2.13 there is a singular subspace containingX and
y. This is a contradiction toy /∈ X and the maximality ofX.

From this proposition it follows that every line of a dual polar space corre-
sponds to a hyperplane of a generator of the underlying polarspace. Conversely,
hyperplanes of generators which are contained in two different generators corre-
spond to lines of the dual polar space. Note that there might be hyperplanes of
generators, which are contained in only one generator and therefore do not corre-
spond to any line of the dual.

Theorem A.2.15. Every dual polar space is isomorphic to the dual of a non-
degenerate polar space. More precisely, for a polar spaceS , the dual polar
space ofS and the dual polar space ofS ρ are isomorphic.

Proof. LetS be a singular. Then the dual polar space ofS is clearly a singleton.
This is still true for the empty space which is of course singular, too. Since the
empty space is also the associated non-degenerate polar space of any singular
polar space, this case is done. Hence, we assume thatS is non-singular.
Let U0 be the set of singular subspaces ofS containing Rad(S ) and letU1 be
the set of singular subspaces ofS ρ . By Proposition A.2.10 and Lemma A.2.9(v)
there is an isomorphismϕ between the posets(U0,≤) and(U1,≤). By Lemma
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1.1.3 all generators ofS contain Rad(S ). Henceϕ induces a bijection between
the generators ofS and the generators ofS ρ .
Now letM ≤S be a generator. SinceS is non-singular, we obtain Rad(S ) < M
by Lemma 1.1.3. LetH be a hyperplane ofM containing Rad(S ). ThenHρ < Mρ

by Proposition A.2.10. Letlρ be a line ofMρ . Thenl is contained inM by Lemma
A.2.9(iv). We choose a pointp ∈ H ∩ l . Sincel is disjoint from Rad(S ), we
obtainpρ ∈ Hρ ∩ lρ . Hence,Hρ is a hyperplane ofMρ . Conversely, letHρ be a
hyperplane ofMρ and setH := (

⋃

pρ∈Hρ pρ )∪Rad(S ). By Proposition A.2.10
we obtainH < M. Let l be a line ofM. If l intersects Rad(S ), then it also
intersectH. If l is disjoint from Rad(S ), then lρ intersectsHρ in some point
pρ . By Lemma A.2.3(iii) and Lemma A.2.3(ii) we may assume thatp is the point
contained inl . Thus,p∈ l ∩H andH is a hyperplane ofM.
Sinceϕ is an isomorphism of the posets(U0,≤) and(U1,≤), it follows that a set
of maximal singular subspaces inS intersect in a common hyperplane if and only
if their images underϕ do. Hence, lines of the dual ofS are mapped bijectively
onto lines of the dual ofS ρ . We conclude that the two dual polar spaces are
isomorphic.

In the rest of this section we study generators of polar spaces and their dis-
tances in the dual polar space. All subspaces that occur in this context contain
the radical, since they are intersections of generators. Taking Proposition A.2.10
and the theorem above in account, we may always consider the associated non-
degenerate polar space. Generalising the following statements and proofs to the
case of arbitrary polar spaces is straightforward and without any additionally in-
terest.

Let S be a polar space. Further letU ⊆ S be a set of points and letV ≤ S

be a subspace. Then we setU #V := 〈U,U⊥∩V〉. For a single pointp, we will
write p#V rather than{p}#V.

Lemma A.2.16. Let M be a generator of a non-degenerate polar spaceS and
let p be a point. Then N:= p# M is again a generator. Moreover, if p∈ M, then
M = N and if p /∈ M, then N is the unique generator being adjacent to M and
containing p.

Proof. If p∈ M, thenM ≤ p⊥ and hencep# M = 〈p,M〉 = M. Now let p /∈ M.
SinceM is a generator, Lemma 1.1.3 implies thatp is not collinear to all points
of M. Hence,H := M ∩ p⊥ < M. Sincep⊥ is a hyperplane ofS , H has to be
a hyperplane ofM. By Lemma 1.1.3 the subspaceN = 〈p,H〉 is again singular.
Sincep /∈ M we obtainH < N. Let N′ be a generator containingN. With p ∈
N′ rM, we obtainH ≤ M∩N′ < M and thereforeM∩N′ = H by Lemma A.2.12.
Thus, Lemma A.2.13 implies thatH is a hyperplane ofN′. Applying Lemma
A.2.12 again leads toN′ = 〈p,H〉 = N and thereforeN ∼ M.
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Now let L be a generator containingp and being adjacent toM. SinceL ≤ p⊥,
we obtainL∩M ≤ p⊥ ∩M ≤ N. SinceL∩M is a hyperplane ofL, this implies
L = 〈p,L∩M〉 ≤ 〈p, p⊥∩M〉 = N. SinceL is a generator, the claim follows.

Lemma A.2.17. Let M and N be two generators of a non-degenerate polar space
with M∩N 6= ∅. Further let p be a point not collinear to all points of M∩N. Set
N′ := p# N. Then M∩N′ is a hyperplane of M∩N.

Proof. Let q be a point ofM∩N not collinear top. By Lemma A.2.12N′ is the
union of the lines throughp that meetN. Sincep /∈ q⊥, each of these lines contains
exactly one point being collinear toq by (BS). SinceN ≤ q⊥, this point has to be
the intersection point withN. Hence,q⊥∩N′ = N∩N′ =: H and sinceM ≤ q⊥, we
concludeM∩N′ ≤ H. With H ≤ N′, we obtainM∩N′ = M∩H ≤ M∩N. Since
q∈ M∩N andq /∈ N′, we obtainM∩N′ < M∩N. Finally, the claim follows since
H is a hyperplane ofN.

RemarkA.2.18. Let M be a generator of a non-degenerate polar space of finite
rank. As a consequence of Lemma A.2.17, there is for every generatorN with
N∩M 6= ∅ a generatorN′ with N′∩M < N∩M. Since the rank ofM is finite, this
implies that there exists a generator that is disjoint toM.

Lemma A.2.19. Let M and N be two distinct generators of a non-generate polar
space. Further let p be a point of Mr N and set N′ := p# N. Then N∩M is a
hyperplane of N′∩M.

Proof. Take a pointq∈ NrN′. Sincep⊥∩N ≤ N′, the pointq is not collinear to
p. Sincep∈ M∩N′, we may apply Lemma A.2.17 to conclude that(q#N′)∩M
is a hyperplane ofN′∩M. Finally, Lemma A.2.16 impliesq#N′ = N.

We call two singular subspacesM andN of a point-line spacecommensurate
if crkM(M∩N) = crkN(M∩N) ∈N.

Proposition A.2.20. Let M and N be two generators of a non-degenerate polar
space. Further let d be the distance of M and N in the dual polarspace. Then M
and N are commensurate and d= crkM(M∩N) or d, crkM(M∩N) andcrkN(M∩
N) are all infinite.

Proof. SetH := M∩N. First let crkM(H) =: r < ∞. We proved≤ r by induction.
If r = 0, thenM = N and therefored = 0. Forr > 0 let {bi | 0≤ i < r} be a set
of points such that〈H,bi | 0 ≤ i < r〉 = M. SetN0 := N andNi+1 := bi # Ni for
0≤ i < r. ThenNi andNi+1 are adjacent by Lemma A.2.19. Moreover,〈H,b j |

0≤ j ≤ i〉 ≤ Ni+1 sinceH ≤ N0 and〈H,b j | 0≤ j < i〉 ≤ Ni ∩bi
⊥. We conclude

Nr = M and thus,d ≤ r.
Now let d < ∞. Then there are generatorsNi for 0 ≤ i ≤ d with N0 = N and
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Nd = M such thatNi andNi+1 are adjacent fori < d. Since crkNi (Ni ∩Ni−1) = 1
for i > 0, we obtain crkNi (Ni ∩N0) ≤ i and hence crkM(H) ≤ d.

RemarkA.2.21. A direct consequence of Proposition A.2.20 is that all generators
that are contained in a common connected component of the dual polar space
are commensurate. Together with Corollary A.1.17 this implies, that all these
generators have the same rank provided that the polar space is non-degenerate.
Moreover, it suffices that one generator has finite rankn to prove that all generators
are of rankn.
In non-degenerate polar spaces of arbitrary rank it might happen that there are
generatorsM andN such that rk(M) > rk(N). Since rk(M∩N) ≤ rk(N) < rk(M)
and both generators are of infinite rank, we obtain crkM(M ∩N) = rk(M); see
[Bou68, §6.3, Corollary 4].

Lemma A.2.22. Let U be a singular subspace of a non-degenerate polar space
S with rk(U) < ∞ and let M≤ S be a generator. Then

(i) rk(U) = crkM(M∩U⊥)+ rk(M∩U) and

(ii) U # M is a generator with distancecrkU(U ∩M) to M in the dual polar
space.

Proof. Setk := rk(M∩U) andn := rk(U). Let (pi)0≤i≤n be a basis ofU such that
(pi)0≤i≤k is a basis ofM∩U . Then〈pi | k< i ≤ n〉∩M = ∅ by Lemma A.1.12. Set
M0 := M andMi+1 := pk+i+1#Mi for i < n−k. Then Lemma A.2.16(Mi)0≤i≤n−k

is a sequence of pairwise adjacent generators. Hence,d ≤ n− k, whered is the
distance ofM andMn−k in the dual polar space.
We know〈p j | j ≤ k〉 ≤M0. Hence we obtain〈p j | j ≤ k+ i +1〉≤Mi+1 since〈p j |
j ≤ k+ i〉 ≤ pk+i+1

⊥ for i < n−k. Analogously,M∩U⊥ ≤ Mn−k sinceM∩U⊥ ≤
M0 andM∩U⊥ ≤ p⊥ for every p ∈ U . Since〈pi | k < i ≤ n〉 ⊆ Mn−k r M, we
obtain crkMn−k(Mn−k∩M)≥ n−k. Sinced ≤ n−q, we conclude crkMn−k(Mn−k∩

M) = d = n−k by Proposition A.2.20. This implies crkM(M∩U⊥) ≥ n−k since
M∩U⊥ ≤ Mn−k. On the other handM∩ p⊥ is a hyperplane ofM for everyp ∈
U rM andU⊥ =

⋂

k<i≤n pi
⊥. Therefore crkM(M∩U⊥) = n−k. This implies (i)

andM∩U⊥ = M∩Mn−k. Since crkMn−k(M∩Mn−k) = n− k, we obtainMn−k =
〈U,M∩Mn−k〉 and the claim follows.

RemarkA.2.23. Let S be a non-maximal singular subspace of a non-degenerate
polar spaceS of finite rank. Then there is a generatorM containingS. Since
S has finite rank, there is a generatorN that is disjoint toM. Now S# N is
a generator that intersectsM in S. We conclude that inS every non-maximal
singular subspace is the intersection of two generators.

We conclude this section by considering generators of a polar spaces that have
infinite distance in the dual polar graph.
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Proposition A.2.24. In a non-degenerate polar space of infinite rank there are
two generators M and N that are not connected in the dual polarspace.

Proof. Let M be a generator and letS be the set of all singular subspaces that are
disjoint toM. We have to show thatS contains an element with infinite rank. By
Zorn’s Lemma it suffices to show thatH ∈ S with rk(H) < ∞ is not a maximal
element ofS. SetMH := M ∩ H⊥. Then crkM(MH) = rk(H) + 1 by Lemma
A.2.22(i). Let p be a point that is not collinear to all points ofMH . If H ≤ p⊥,
then rk(〈p,H〉) = rk(H)+ 1 andM∩ 〈p,H〉⊥ < MH . Thus,〈p,H〉 ∩M = ∅ by
Lemma A.2.22(i) and we are done. Hence, we may assumeH � p⊥.
SetG := p# H andMG := M∩G⊥. Sincep⊥ ∩H is hyperplane ofH, we know
thatG∩H is common hyperplane ofG andH. Hence, Lemma A.2.22(i) implies
thatMH is a hyperplane ofM∩(G∩H)⊥. SinceMH � p⊥ andG= 〈p,G∩H〉, we
conclude thatMG is a hyperplane ofM∩ (G∩H)⊥. Thus crkM(MH) = crkM(MG)
and Lemma A.2.22(i) impliesG∈ S since rk(G) = rk(H).
SinceMH 6= MG, there is a pointq ∈ MG r MH . Let s be an arbitrary point of
H r G. Sincep⊥ andq⊥ contain the hyperplaneG∩H of H, there is a point
r ∈ pq with H = 〈s,G∩H〉 ≤ r⊥. Sincer ⊥ q, we obtainr /∈ H and hence,〈r,H〉
is a singular subspace containingH properly. This impliesr 6= q and hencer⊥M =
p⊥ M. Thus,MH � r⊥ and consequently,〈r,H〉⊥∩M is a hyperplane ofMH . By
Lemma A.2.22(i) this implies〈r,H〉∩M = ∅.

Proposition A.2.25. A dual polar space never consists of exactly two connected
components.

Proof. We consider the underlying non-degenerate polar spaceS of a dual polar
space. IfS has finite rank, then crkM(M∩N) < ∞ for every two generatorsM
andN of S . Hence, the dual ofS is connected by Proposition A.2.20.
Now letS be of infinite rank. Then by Proposition A.2.24 there are two genera-
torsM andN that have infinite distance in the dual polar space. LetM be the set
of pairs(X,Y,ϕ) such thatX ⊆ M andY ⊆ N are independent sets of points with
〈X〉∩N = ∅ and〈Y〉∩M = ∅ such thatX ⊆Y⊥ andϕ is a bijection fromX toY.
Further let≺ be a strict partial order onM with (X,Y,ϕ) ≺ (X′,Y′,ϕ ′) ⇔ (X <
X′ ∧ Y < Y′ ∧ ϕ ′|X = ϕ). Now let (Xi,Yi,ϕi)i∈I be a chain inM with respect to
≺ for an index setI . ThenX :=

⋃

i∈I Xi is again an independent set of points with
〈X〉∩N = ∅. Analogously,Y :=

⋃

i∈I Yi is independent with〈Y〉∩M = ∅. Since
for everyx∈ X and everyy∈ Y there is an indexi ∈ I with x∈ Xi andy∈Yi, we
obtainx⊥ y and hence,X ⊆Y⊥.
Setϕ : X →Y, such thatxϕ = xϕi for everyx ∈ Xi wherei ∈ I . By the construc-
tion of ≺ this map is well-defined. Since for two pointsx andx′ of X and a point
y∈ Y there is a setXi with i ∈ I such that{x,x′} ≤ Xi andy∈ Yi, the mapϕ has
to be bijective. Hence(X,Y,ϕ) is an upper bound for the chain(Xi,Yi,ϕi)i∈I . We
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may apply Zorn’s Lemma to conclude that there are maximal elements inM with
respect to≺.
Let (X,Y,ϕ) ∈ M be such a maximal element. SupposeX andY are finite. Set
S:= M∩N. Then crkM(〈X,S〉) is infinite since crkM(S) is infinite. SinceS≤ N ≤
Y⊥, we obtain〈X,S〉 ≤Y⊥∩M. Thus,M∩Y⊥ > 〈X,S〉 since crkM(M∩Y⊥) < ∞
by Lemma A.2.22(i). Letx ∈ (M ∩Y⊥) r 〈X,S〉 and setX′ = X ∪ {x}. Then
〈X′〉∩S= ∅ and therefore〈X′〉∩N = ∅. SinceX′ ⊆ Y⊥, we obtainN∩X′⊥ >

〈Y,S〉 by repeating the same arguments as above. Lety ∈ N∩X′⊥ r 〈Y,S〉 and
setY′ := Y∪{y}. Further letϕ ′ : X′ →Y′ be the map withϕ ′|X = ϕ andxϕ = y.
Then(X′,Y′,ϕ ′) ∈ M and(X,Y,ϕ) ≺ (X′,Y′,ϕ ′), a contradiction. Hence,X and
Y have to be infinite sets. LetL be a generator containingX∪Y. Then crkL(L∩M)
is infinite since〈Y〉 ≤ L rM and analogously crkL(L∩N) is infinite. Thus,L, M
andN are contained in three different connected components of the dual polar
space ofS .





B Point-line spaces
arising from buildings

In this appendix we consider point-line spaces that are related to (Tits) buildings.
Therefore we first introduce buildings in the way of [Tit74].We know already
some of the point-line space that arise from the buildings, namely the projective,
the polar and the dual polar spaces. Besides these spaces we obtain lots of other
point-line spaces. Some of them occur in the present work andhence, will be
studied here.

B.1 Buildings

An abstractsimplicial complex∆ is a collection of sets such thatB ∈ ∆ for any
subsetB with B ⊆ A ∈ ∆. A partial ordered set of sets that is isomorphic to a
simplicial complex is also called a simplicial complex. A simplicial complex
possesses a smallest element that we denote by 0. An elementsthat only contains
0 properly is called avertex. An arbitrary elementA of a simplicial complex∆
is called asimplexor, more specifically, ann-simplex, wheren+ 1 is the number
of vertices that are contained inA. Hence, the vertices are that 0-simplices. A
subcomplex∆′ of a simplicial complex∆ is a subset of∆ such that∆′ is again a
simplicial complex. LetA be a simplex of a simplicial complex∆. Then the set of
all simplices of∆ containingA is again a simplicial complex called theresidueof
A in ∆ and denoted by res∆(A) or simply by res(A) if there is no confusion about
the underlying simplicial complex.

A simplicial complex∆ is called achamber complexif every element of∆ is
contained in a maximal element of∆ and if for two maximal elementsC andC′ of
∆, there exists a finite sequence(Ci)0≤i≤m such that|Ci rCi+1| = |Ci+1 rCi| = 1
for everyi < m. The maximal elements of a chamber complex are calledchambers
. Two chambersC andC′ are calledadjacentif |CrC′| = 1. A chamber complex
is call thick (respectivelythin) if for any two adjacent chambersC andC′ the
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subsetC∩C′ is contained in at least three (respectively exactly two) chambers.
It follows immediately that in a chamber complex every two chamber have the
same cardinality. In other words, there is a natural numbern such that the set of
chambers of∆ is the set ofn-simplices. We calln therank of ∆.

A morphism of simplicial complexesis a mapϕ : ∆ → ∆′ from a simplicial
complex into another such that the restriction ofϕ on the subsets of any simplex
A ∈ ∆ is an isomorphism ontoP(Aϕ). Note thatϕ induces a map from the set
of vertices of∆ into the set of vertices of∆′ which determinesϕ uniquely. A
morphism of chamber complexesis a morphism of simplicial complexes such that
chambers are mapped onto chambers.

Proposition B.1.1. An endomorphism of a thin chamber complex that is injective
on the set of chambers and leaves all simplices contained in agiven chamber
invariant is the identity.

Proof. [Tit74, Corollary 1.7].

Definition B.1.2. Let∆ be a simplicial complex and letA be a set of subcomplexes
of ∆. The pair(∆,A) is called abuilding of which the elements ofA are called
apartmentsif the following conditions hold:

(B1) ∆ is thick.

(B2) The elements ofA are thin chamber complexes.

(B3) Any two elements of∆ belong to an apartment.

(B4) If two apartmentsΣ andΣ′ contain two common simplicesA andA′, there
exists an isomorphism ofΣ onto Σ′ which leavesA, A′ and all simplices
contained in one of them invariant.

A pair (∆,A) is called aweak buildingif it satisfies the axioms (B2), (B3) and
(B4).

Let (∆,A) be a weak building. From the axioms it follows directly that∆ is
a chamber complex and that the apartments are isomorphic subcomplexes. Any
representative of the isomorphism class of the thin chambercomplexes to which
belong the apartments will be called theWeyl complexof (∆,A).

An idempotent endomorphismϕ : ∆ → ∆ of a thin chamber complex is called
a retraction. A retraction is called afolding if every chamber that is contained in
the image ofϕ has exactly two preimages. The image of a folding is called aroot.

Proposition B.1.3. Let ϕ be a folding of a chamber complex∆. Then there is a
pair (C,C′) of adjacent chambers such that C∈ ϕ and C′ /∈ ϕ. Moreover, for every
such a pair,ϕ is the unique folding of∆ mapping C′ onto C.
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Proof. [Tit74, Proposition 1.10].

A Coxeter complexis a thin chamber complexΣ such that for every pair(C,C′)
of adjacent chambers, there exists a root containingC and notC′. Let ϕ be the
unique folding ofΣ mappingC′ ontoC and letϕ ′ be the folding mappingC onto
C′. Then every element ofΣ is either contained in the image ofϕ or in the image
of ϕ ′. Moreover, for two distinct elementsA andB of Σ, we obtainB = Aϕ if and
only if A = Bϕ ′

; see [Tit74, Corollary 1.11]. The map

ψ : Σ → Σ : A 7→

{

Aϕ if A /∈ Σϕ

Aϕ ′
if A∈ Σϕ

is an involutoric automorphism ofΣ which is called thereflection associated with
ϕ. SetB := C∩C′. SinceΣ is thin,C andC′ are the unique chambers containing
B. Thus,B determinesψ uniquely and thereforeψ is also called thereflection
with respect to B. The group that is generated by all reflections ofΣ is called the
Weyl groupof Σ.

Proposition B.1.4. Let Σ be a Coxeter complex and let C be a chamber ofΣ.
There exists a unique retractionρC of Σ whose image equalsP(C).

Proof. [Tit74, Proposition 2.4].

Motivated by this proposition we introduce a type function for the elements of
a Coxeter complexΣ. LetC be a chamber ofΣ. Then two elements ofΣ are said
to be of thesame typeif their images underρC coincide. Note that this definition
is independent of the choice ofC. We denote by I(Σ) the partition of the vertices
of Σ that consists of the preimages of the vertices underρC. Now we define the
map typ:Σ → P(I(Σ)) such that typ(B) := {i ∈ I(Σ) | ∃A ⊆ B: A ∈ i} for every
B∈ Σ. For A∈ Σ, the image typ(A) is called thetype of A. In other words, for a
vertexA∈ Σ, the type typ(A) of A is a singleton containing the unique element of
I(Σ) that containsA. For an arbitrary simplexB of Σ the type ofB is the union of
the types of the vertices ofB. Every chamberC contains a unique simplex of any
given type. The type ofC equals I(Σ). Hence, typ induces the simplex structure
of C on the set I(Σ). Therefore we call I(Σ) thefundamental simplex.

Theorem B.1.5.The Weyl complex of a building is a Coxeter complex.

Proof. [Tit74, Theorem 3.7].

In the following we will also consider weak buildings but only the ones whose
Weyl complex is a Coxeter complex.

Let Σ be an apartment of a weak building(∆,A) such thatΣ is a Coxeter com-
plex. Further letC ∈ Σ be a chamber. For every simplexA ∈ ∆, consider an
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apartmentΣ′ containingC andA. By Proposition B.1.1 there is a unique isomor-
phism fromΣ′ onto Σ which leaves all simplices contained inC invariant. Let
A′ ∈ Σ be the image ofA under this isomorphism. By (B4) it follows thatA′ does
not depend on the choice ofΣ′. Hence, from Proposition B.1.4 it follows that
there exists a retractionλC from ∆ ontoP(C). SinceλC induces on every apart-
ment that containsC the unique retraction ontoP(C), it follows from (B3) that
λC is unique. Furthermore, for any chamberD ∈ ∆, there is an automorphismα
from P(D) onto P(C) which is induced byλC. The compositionα−1 ◦λC is a
retraction of∆ ontoP(C) and hence, it equalsλD. This implies that the preimages
of λC form a partition of∆ that does not depend on the choice ofC. Therefore we
denote as for Coxeter complexes the partition of the vertices of ∆ that consists of
the preimages of the vertices underλC by I(∆). The type function of∆ is the map
typ: ∆ →P(I(∆)) such that typ(B) := {i ∈ I(∆) | ∃A⊆ B: A∈ i} for everyB∈ Σ.
There is a canonical isomorphism from the fundamental simplex I(∆) of ∆ and the
one ofΣ such that each image is a subset of its preimage. Hence, the fundamental
simplices I(∆) and I(Σ) can be identified in a natural way.

A Coxeter matrixor adiagramover a setI or over a the simplex of all subsets
of I is defined as a symmetric matrixM = (mi j )(i, j)∈I×I whose entries are elements
of N∪{∞} such thatmii = 1 for all i ∈ I andmi j ≥ 2 for j ∈ I r{i}. The elements
of I are represented by dots and calledverticesof the diagram. The cardinality of
I is called therank of the diagramM.

We use the following pictorial representation ofM: Every two vertices are
joined by a stroke which is labelled with the numbermi j . For reasons of clearness,
we omit the stroke if it is labelled with a 2. Furthermore, instead of a stroke with
a 3, we draw a single stoke without any number and a stroke witha 4 is replaced
by a double stroke. We give an example of a matrix and a diagramthat belong to
each other:









1 4 3 2
4 1 3 2
3 3 1 5
2 2 5 1









u

u

u u

"
"

"

b
b

b
5

Let Σ be a Coxeter complex of rank 2. Then there is an index setI ⊆ Z such
there exists an bijection fromI onto the set of vertices ofΣ. For i ∈ I , we denote
the image ofi under this bijection byAi. Moreover,I can be chosen in the way
that for two elementsi and j of I with i < j , the set{Ai,A j} is a chamber if and
only if j = i +1 or i = 0 and j = sup(I). If I is infinite, thenI equalsZ and if I is
finite, thenI = {i ∈N | i ≤ m}, wherem∈N is odd withm> 2; see [Tit74, 2.2].
Two verticesAi andA j are of the same type if and only ifi + j is even. Calling the
vertices with odd index “points” and those with even index “lines”, we obtain in
a natural way the structure of a (possibly infinite) polygon.
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Proposition B.1.6. The residue of a simplex of a Coxeter complex is itself a Cox-
eter complex.

Proof. [Tit74, Proposition 2.9].

Let C be a chamber of a Coxeter complexΣ. For everyi ∈ I(Σ), let Bi be
the simplex of typeI r {i} with Bi ⊆C and letr i denote the reflection ofΣ with
respect toBi. For {i, j} ⊆ I(Σ), let mi j be the order of the productr ir j in the
Weyl group. Then for any simplexA ∈ Σ of type I(Σ) r {i, j}, the residue of
A possesses 2mi j chambers; see [Tit74, 2.11]. Moreover, ifi 6= j , then res(A)
carries the structure of anmi j -gon. The matrix(mi j )(i, j)∈I(Σ)×I(Σ) is a diagram
over I(Σ), called thediagram ofΣ. This diagram does not depend on the chamber
C. For any simplexA ∈ Σ, the diagram of the Coxeter complex res(A) is the
submatrix(mi j )(i, j)∈J×J, whereJ = I(Σ)r typ(A). Hence, the diagram of res(A)
is deduced from the diagram ofΣ by removing the vertices belonging to typ(A)
and all affected strokes.

Let (∆,A) be a building and letΣ ∈ A be an apartment. By the canonical
identification of I(∆) with I(Σ), the diagram ofΣ becomes a diagram over I(∆).
This diagram does not depend on the choice ofΣ and hence will be called the
diagram of(∆,A).

Proposition B.1.7. Let (∆,A) be a building and let A∈ ∆ be a simplex. Further
setA(A) := {Σ∩ res(A) | A ∈ Σ ∈ A}. Then(res(A),A(A)) is a building whose
diagram is obtained by removing from the diagram of(∆,A) all vertices which
belong totyp(A).

Proof. [Tit74, Proposition 3.12].

We give a list of diagrams that are well-known and will play a role in the
following. Each of these diagrams is a diagram over a set{1,2, . . . ,n} where
n∈ N is the rank of the diagram. The vertices are labelled by the numbers they
represents. All these diagrams have names that are listed atthe left hand side.

An, n≥ 1 s s s

1 2 3
s s s

n−2 n−1 n

Cn, n≥ 2 s s s

1 2 3
s s s

n−2 n−1 n

Dn, n≥ 3 s s s

1 2 3
s s

s

s

�
��

H
HH

n−3 n−2

n−1

n
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En, n≥ 4
s s s

1 2 3
s

s

s s

n−3

n−2

n−1 n

For X∈ {A,C,D,E}, we speak of weak building(∆,A) of type Xn, or simply
of type X, if there is a bijectionϕ : I(∆) → {1, . . . ,n} such that labelling the ver-
tices of the diagram of∆ by its image underϕ provides the diagram Xn. We call
a simplexB of ∆ to be of typeJ ⊆ {1, . . . ,n} if (typ(B))ϕ = J. A vertexA∈ ∆ of
type{i} with 1≤ i ≤ n, is also said to be of typei.

B.2 Shadow spaces

Let V be a set endowed with a reflexive, symmetric relation called the incidence
relation. Two elements that form a pair of the incidence relation are called inci-
dent. The subsets ofV whose elements are pairwise incident form a simplicial
complex Flag(V) whose vertices are the singletons ofV. A simplicial complex
that is isomorphic to Flag(V) is called aflag complex. The simplices of a flag
complex are also calledflags.

Motivated by this concept we call two vertices of a chamber complex incident
if they are contained in a common chamber. Moreover, we call two simplicesA
andB of a chamber complex incident if they are contained in a common cham-
ber or, equivalently, if every vertex contained inA is incident with every vertex
contained inB.

Let S = (P ,L ) be a projective space of finite rankr. For 0≤ i < r, letUi be
the set of the subspaces ofS that have ranki. Then we call(Ui)i<r a projective
geometryof rankr. There is a natural identification betweenP andU0. Moreover,
U1 coincides withL . Thus,(Ui)i<r can be understood as an enrichment of the
pair (P ,L ).

According to this, we define apolar geometryof rank r as a tuple(Ui)i<r ,
whereUi is the set of the singular subspaces of a non-degenerate polar spaceS
that have ranki andr ∈N is the rank ofS . Note thatUr−1 is the set of generators
of S .

Let r ∈ N and letS = (Ui)i<r be a projective or polar geometry. SetU :=
⋃

i<r Ui. We define an incidence relation onU such that two elements ofU are
incident if and only if one is a subspace of the other. Then Flag(S ) contains all
chains ofU and is a chamber complex of rankr.

Theorem B.2.1. Let (∆,A) be a weak building of typeAn. Then there exists a
projective geometryS of rank n and an isomorphismϕ : Flag(S ) → ∆ sending
the vertices that correspond with the subspaces of rank i ofS onto the vertices of
type i+1 of ∆.
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Proof. [Tit74, Theorem 6.3].

Theorem B.2.2.Let (∆,A) be a weak building of typeCn with n≥ 2. Then there
exists a polar geometryS of rank n and an isomorphismϕ : Flag(S ) → ∆ send-
ing the vertices that correspond with the singular subspaces of rank i ofS onto
the vertices of type i+1 of ∆.

Proof. [Tit74, Theorem 7.4].

Let S = (Ui)i<r be a polar geometry of rankr. SetU :=
⋃

i<r Ui andU′ := Ur
Ur−2. We call two elements ofU′ incident if and only if either one is a subspace of
the other or they intersect in an element ofUr−2. This gives raise to a flag complex
which we call theoriflamme complexof S , denoted by Orifl(S ).

Theorem B.2.3.Let (∆,A) be a weak building of typeDn with n≥ 3. Then there
exists a polar geometryS of rank n and an isomorphismϕ : Orifl(S ) → ∆ such
that for i < n−2 the vertices that correspond with the singular subspaces ofrank
i of S are sent onto the vertices of type i+ 1 of ∆ and furthermore, the vertices
that correspond with generators ofS are sent onto the vertices of the types n−1
and n in such a way that two generators ofS have even distance in the dual polar
graph if and only if their images underϕ are of the same type.

Proof. [Tit74, Theorem 7.12].

Let (∆,A) be a weak building of type Dn and letS be a polar geometry such
that the flag complex Orifl(S ) is isomorphic to∆ in the way as in the theorem
above. Then it follows directly that the dual polar graph ofS is bipartite.

Let ∆ be a chamber complex and letM ⊆ ∆ be a set of simplices of∆. For a
simplexA of ∆, we call the set of all elements ofM that are incident withA the
shadow of A on M.

Now let (∆,A) be a building of type Xn, where X∈ {A,C,D,E} andn ∈ N.
Let 1≤ i ≤ n and defineP as the set of all vertices of typei of ∆ andM as the
set of all simplices of type{1, . . . ,n}r{i}. Further setL := {{A∈ P | A∪B∈
∆} | B∈ M}. Note thatL is the set of shadows of the elements ofM on the set
P . Then by (B2) and (B3) the pair(P ,L ) is a point-line space which we call
the i-space of(∆,A). A point-line space that is isomorphic to(S ,L ) is called a
point-line space of typeXn,i or simply Xn,i-space..

From Theorem B.2.1 it follows that spaces of type An,1 or An,n are projective
spaces of rankn. The spaces of types Cn,1 for n ≥ 2 and Dn,1 for n ≥ 3 are
non-degenerate polar spaces of rankn which follows from Theorems B.2.2 and
B.2.3. Furthermore, a space of type Cn,n is a dual polar space; see [Tit74, 12.1].
By definition, the lines of these point-line spaces are the shadows of a simplex
of type J on the set of vertices of typei, wherei is either 1 orn andJ equals
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{1, . . . ,n}r {i}. Note that in all these cases the shadow of a simplexA of typeJ
depends on only one vertex ofA, namely the simplex of type 2 ifi = 1 and the
simplex of typen−1 if i = n.

B.3 Exceptional types

Before we consider some types of point-line spaces of weak buildings, we intro-
duce some classes of point line spaces who are named after some subspaces they
possess.

Definition B.3.1. A point-line spaceS is calledparaprojectiveif every singular
subspace ofS is a projective space.

Definition B.3.2. Let S be a connected partial linear gamma-space possessing a
collection of convex subspaces calledsymplectaeach of which is a non-degenerate
polar space of rank≥ 2 such that the following two properties are satisfied:

(PP1) Every line ofS is contained in a symplecton.

(PP2) Every pair of non-collinear points having at least two common neigh-
bours is contained in a unique symplecton.

Then we callS a parapolar space.
A pair of points at distance 2 is called aspecial pairif they have exactly one com-

mon neighbour and asymplectic pairotherwise. A parapolar space that possesses
no special pair is called astrongly parapolar space.

Since by Proposition A.2.6 a non-degenerate polar space equals the convex
span of any pair of its points that are non-collinear, it follows directly from (PP2)
that the convex span of a symplectic pair is always the uniquesymplecton con-
taining it.

In [Bue82] F. Buekenhout defines two classes of point-line spaces that are quite
similar to parapolar spaces. To adopt the results of [Bue82], we introduce these
point-line spaces and compare them with parapolar spaces.

A polarised spaceis a point-line spaceS satisfying the following conditions:

(Bu1) S is a gamma space.

(Bu2) Let p andq be points at distance 2. Then{p,q}⊥ is either a singleton or
a non-degenerate polar space1 of finite rank≥ 2.

(Bu3) S is connected and non-singular.

1Note that in [Bue82] a polar space is non-degenerate by definition.
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(Bu4) Let p andq be points at distance 2 such that{p,q}⊥ contains a single
points. Then there are pointsp′ andq′ in s⊥ r{s} such that(p, p′,q′,q)
is a path of length 3.

As for parapolar space, we call a pair of points at distance 2 aspecial pair if they
have exactly one common neighbour and symplectic pair otherwise.

A polarised spaceS has the following properties; see [Bue82]:

(BuA) S is partial linear.

(BuB) S is paraprojective.

(BuC) Let p andq be points at distance 2. Then〈p,q〉g is a non-degenerate
polar space of finite rank. Moreover,〈p,q〉g = 〈x,y〉g for every two non-
collinear pointsx andy of 〈p,q〉g.

We determine the following correspondence between parapolar and polarised
spaces.

Proposition B.3.3.LetS be a point line space. Then the following two properties
are equivalent:

(a) S is a parapolar space of symplectic rank≥ 3 that fulfils (Bu4).

(b) S is a polarised space.

Proof. (a)⇒ (b): A parapolar space satisfies by definition (Bu1) and (Bu3). Now
let (p,q) be a symplectic pair ofS . Then p andq are contained in a unique
symplectonY which is a non-degenerate polar space. Since a symplecton isa
convex subspace, we obtain{p,q}⊥ ≤Y. Now it follows from Proposition A.2.5
that{p,q}⊥ is a non-degenerate polar space. This implies that a parapolar space
fulfils (Bu2).
(b)⇒ (a): Let(p,q) be a symplectic pair ofS . Then〈p,q〉g is a non-degenerate
polar space of finite rank by (BuC). Moreover,〈p,q〉g = 〈x,y〉g for every two
non-collinear pointsx andy of 〈p,q〉g. Since{p,q}⊥ has rank≥ 2, we obtain
rk(〈p,q〉g) ≥ 3.
Now let l be a line ofS and letp andq be distinct point onl . Assume there is a
point r ∈ p⊥ rq⊥. Then dist(r,q) = 2 andl ≤ 〈r,q〉g. Now assumep⊥ = q⊥ and
p⊥ is non-singular. Then there are pointr ands in p⊥ at distance 2 and we obtain
l ≤ 〈r,s〉g. Finally assumep⊥ = q⊥ andp⊥ is singular. Then by (Bu3) there is a
point r such that dist(p, r) = 2. Since〈p, r〉g is a non-degenerate polar space there
are non-collinear points inp⊥, a contradiction. Thus,S is a parapolar space.

Beside polarised spaces there is another kind of point-linespaces that occurs
in [Bue82]: Letr ∈N with r ≥ 2. A uniform polarised spaces of rank ris a point-
line spaces that satisfies (Bu1), (Bu4), (BuA), (BuB) and thefollowing variations
of (Bu2) and (Bu3):
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(Bu2’) Let p andq be points at distance 2. Then〈p,q〉g is either a polar space
of rankr or consists of 2 lines.

(Bu3’) S is connected.

RemarkB.3.4. The axiom (Bu3’) is weaker then (Bu3). With (BuA), (BuB) and
(BuC) we conclude that a polarised spaceS is a uniform polarised spaces of rank
r if and only if rk(〈p,q〉g) = r for every two pointp andq of S with dist(p,q) = 2
and |{p,q}⊥| ≥ 2. Conversely, a uniform polarised spaces of rankr with r ≥ 3
fulfils (Bu2) by Proposition A.2.5. Hence, a uniform polarised space of rankr is
a polarised space if and only if it is not singular andr ≥ 3.

A uniform polarised spaceS of rank r is said to be ofspherical typeif it
satisfies the following properties:

(Sph1) Every singular subspace of rankr −1 of S is contained in a unique
maximal singular subspace.

(Sph2) LetV andW be singular subspace of rankr −1 with rk(V∩W) = r −2
andV � W⊥ such thatV is contained in a singular subspaceX of rank
r. ThenX andW are maximal singular subspace.

(Sph3) Let U , V andW be singular subspaces of rankr −1 with rk(U ∩V) =
rk(V ∩W) = r − 2 such thatV � W⊥ andU is a maximal singular
subspace. ThenW is a maximal singular subspace.

(Sph4) Let Y andZ be distinct symplecta that intersect in at least one singular
subspace of rankr −2. ThenY∩Z is a singular subspace of rankr −1.

We merge two of the main results of [Bue82] and transfer this into the termi-
nology of parapolar spaces.

Theorem B.3.5. Let S be a point-line space. Then the following two condition
are equivalent:

(a) S is a parapolar space with symplectic rank r, where r≥ 5, that contains
more than one symplecton and satisfies (Bu4), (Sph1), (Sph2), (Sph3) and
(Sph4).

(b) There is a weak building(∆,A) of typeEr , where r∈ {6,7,8}, such thatS
is isomorphic to the1-space of(∆,A). Moreover, letϕ be an isomorphism
from S onto the1-space of(∆,A), denoted by(P ,L ). Thenϕ maps the
singular subspaces of rank i ofS , where i< r − 3, bijectively onto the
shadows onP of a vertex of type i+1 and the symplecta ofS are mapped
bijectively onto the shadows onP of a vertex of type n.

Proof. By Proposition B.3.3 and Remark B.3.4 the classes of polar spaces, po-
larised spaces and uniform polarised spaces of rankr coincide if we demand (Bu4)
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to be fulfilled and that every symplecton has to be of rankr, wherer ≥ 3. Hence,
the claim follows from [Bue82, Theorems 2 and 3].

Motivated by this theorem we call a parapolar space to be ofspherical typeif
it fulfils (Bu4), (Sph1), (Sph2), (Sph3) and (Sph4).

Proposition B.3.6. Let S be a point-line space of typeE6,1. ThenS has the
following properties:

(i) There is no special pair inS .

(ii) Let Y and Z be symplecta ofS that contain a common line. Then Y and Z
contain a common generator.

(iii) The diameter ofS equals2. Moreover, for every point p∈ S there is a
point q withdist(p,q) = 2.

(iv) Every two symplecta ofS intersect.

(v) Let Y and Z be two symplecta that intersect in a single point p.Then
dist(q, p) = dist(q,Z) for every point q∈Y.

(vi) For every point p∈S there is a symplecton at distance2 to p and for every
symplecton Y≤ S there is a point at distance2 to Y.

Proof. By Theorem B.3.5 we know thatS is a parapolar space of symplectic
rank 5 that contains two symplecta.
(i) Let p andq be two points at distance 2 and lets be a point that is collinear
to both p andq. Then the residue of{s} is the geometry of a building of type
D5. By Theorem B.2.3, the symplecta ofS that contains are the points of a
non-degenerate polar spaceD of rank 5. Moreover, the dual polar graph ofD

is bipartite such that for any two adjacent generators ofD , exactly one of them
consists of all symplecta ofS that contain a given linel ≤S throughs. Hence by
Proposition A.2.20, two generators ofD that consist of the symplecta containing
a given line throughs cannot be disjoint. In other words, there is a symplecton
containing the linespsandqsand the claim follows.
(ii) For any pointp∈ l the residue of the flag{p, l} is the geometry of a building
of type A4. By Theorem B.2.1, the symplecta ofS containingl are the points
of a projective spaceD of rank 4 and every line ofD consists of the symplecta
containing a given subspaceS≤ S with rk(S) = 4 andl ≤ S. Since projective
spaces are linear, we conclude that every two symplecta ofS that containl have
a singular subspace of rank 4 in common. Since yrk(S ) = 5, this subspace is a
common generator.
(iii) SinceS contains a symplecton, we know diam(S ) ≥ 2. Now suppose there
are pointsp andq in S with dist(p,q) = 3. Then there is a linel ≤ S such
that dist(p, l) = dist(q, l) = 1. By (i) we know that both〈p, l〉g and 〈q, l〉g are
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symplecta. Sincep⊥ andq⊥ are disjoint and bothp⊥ andq⊥ contain a hyperplane
of 〈p, l〉g∩〈q, l〉g, we conclude〈p, l〉g∩〈q, l〉g = l . This is a contradiction to (ii)
and therefore diam(S ) = 2. SinceS is a parapolar space, every line through a
given pointp is contained in a symplecton. Thus, there is a point at distance 2 to
p.
(iv) By the symmetry of the diagram E6 this is equivalent to the claim that every
two distinct points ofS are contained in a symplecton. For collinear points this
follows from the fact thatS is a parapolar space. For non-collinear points, the
claim follows from (iii) together with (i).
(v) For dist(p,q) = 0 there is nothing to prove. For dist(p,q) = 1 the claim follows
sinceY∩Z = {p} and henceq /∈ Z. It remains the case dist(p,q) = 2. Suppose
there is a pointq′ ∈ Z with q⊥ q′. Every pointp′ ∈Zr{p} that is collinear top is
non-collinear toq since otherwisep′ ∈ 〈p,q〉g = Y and consequently,p′ ∈ Y∩Z.
Thus, dist(q′, p) = 2 and for any pointp′ with p⊥ p′ ⊥ q′, we obtain dist(q, p′) =
2. By (i) Z′ := 〈q, p′〉g is a symplecton. Sinceq′ ∈ 〈q, p′〉g, the symplectaZ′ andZ
have the linep′q′ in common. Thus, (ii) implies thatZ′ andZ have a generatorG in
common. Sinceq∈ Z′, p∈ Z and rk(G) = 4, we conclude thatS:= G∩ p⊥∩q⊥

is a singular subspace of rank≥ 2. SinceS≤ 〈p,q〉g, we obtainS≤ Y ∩Z, a
contradiction. Thus, dist(q,Z) = 2.
(vi) By (i) and (iii) there is a symplectonZ such thatp ∈ Z for a given pointp.
SinceZ is a non-degenerate polar space, we know that there is a pointq∈ Z with
dist(p,q) = 2. In other words, for every point ofZ, there exists a point such that
Z is the only symplecton containing these two points. By the symmetry of the
diagram E6, we conclude equivalently that there is a symplectonY such thatq is
the only point contained in bothY andZ. Thus, dist(p,Y) = 2 by (v).
Conversely, for a given symplectonY we choose a pointq∈Y. As above there is
a symplectonZ such thatY∩Z = {q} and a pointp∈ Z with dist(p,q) = 2. This
is the same situation as above. Hence, it remains to prove dist(p,Y) = 2. Again
dist(p,Y) = 2 by (v).

Proposition B.3.7. Let S be the point-lines space of typeE7,1. ThenS has the
following properties:

(i) There is no special pair inS .

(ii) Let Y and Z be symplecta ofS that have a point p in common. Then Y and
Z have a line through p in common.

(iii) The diameter ofS equals3. Moreover, for every two point p and p′ in S

there is a point q withdist(p,q) = dist(p, p′)+dist(p′,q) = 3.

(iv) Let p be a point and let l be a line ofS . Thendist(p, l) ≤ 2.

Proof. By Theorem B.3.5 we know thatS is a parapolar space of symplectic
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rank 6 that contains two symplecta. For any pointp ∈ S , the residue of{p} is
the geometry of a building of type E6. More precisely, the lines ofS throughp
are the points of a point-line space of type E6,1 that we denote byDp. The lines
of Dp consist of all lines throughp that are contained in a given singular subspace
S≤S with p∈ Sand rk(S) = 2. The symplecta ofDp consist of all lines through
p that are contained in a given symplecton ofS containingp.
(i) Let p andq be points at distance 2 and lets∈ p⊥∩q⊥. Sincep 6⊥ q, there is no
singular subspace inS that containsp andq. Thus, the linesspandsqare non-
collinear points inDs. By Proposition B.3.6(iii) this implies thatspandsqhave
distance 2 inDs. By Proposition B.3.6(i) we conclude that there is a symplecton
in Ds containingspandsqand thus, there is a symplecton inS containingp and
q.
(ii) Let p ∈ Y ∩Z. Since every two symplecta ofDp intersect by Proposition
B.3.6(iv), we conclude thatY andzhave a line throughp in common.
(iii) Suppose there are pointsp andq in S with dist(p,q) = 4. Then there is a
pointssuch that dist(p,s) = dist(q,s) = 2. By (i) bothY := 〈p,s〉g andZ := 〈q,s〉g
are symplecta ofS . By (ii) there is a linel that is contained in bothY andZ. We
obtain dist(p, l) = 1 and dist(q, l) = 1 and consequently, dist(p,q) ≤ 3, a contra-
diction.
For the second claim we may assume dist(p, p′) < 3 since otherwise there is
nothing to show. Furthermore, we may restrain ourselves to the casep 6= p′

since the casep = p′ follows from any other case. Letl be a line throughp
with dist(p′, l) = dist(p, p′)− 1. Further letY ≤ S be a symplecton contain-
ing l . SinceY is a non-degenerate polar space, there is a points∈ Y such that
dist(s, p) = dist(s, p′)+dist(p′, p) = 2. Hence, we have to find a pointq⊥ swith
dist(q, p) = 3 to finish the proof.
By Proposition B.3.6(vi) there is for each symplecton inDs a point inDs at dis-
tance 2. Hence, there is a lineg throughssuch that every lineh≤Y throughs is a
point ofDs that is non-collinear tog. In other words, there is no singular subspace
in S that containsg andh. Thus,s is the only point ofY∩s⊥ that is collinear top.
Suppose there is a pointp′ ∈ (Yrs⊥)∩ p⊥. Thenp∈ 〈s, p′〉g =Y, a contradiction
to g � Y. Thus,Y∩ p⊥ = {s}.
Let h ≤ Y be an arbitrary line throughs. Sinces is the only point onh that is
collinear top, we conclude by (i) thatZ := 〈p,h〉g is a symplecton ofS . Since
Y 6= Z and every symplecton is the convex span of any non-collinearpair of its
points, we conclude thatY ∩Z is singular. Sincep⊥ contains a hyperplane of
Y∩Z, we obtainY∩Z = h. Letq∈Y be a point that is not collinear tos. Suppose
dist(p,q) = 2. Then〈p,q〉g is a symplecton ofS by (i). Hence by (ii),〈p,q〉g and
Y have a linel throughq in common. We obtains /∈ l since dist(s,q) = 2. Since
p⊥ ∩ l 6= ∅, this is a contradiction toY ∩ p⊥ = {s}. Thus, dist(p,q) = 3 since
p⊥ s.
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(iv) Let q∈ l . By (iii) we may assume dist(p,q) = 3 since otherwise there is noth-
ing to prove. Lets be a point withs⊥ q and dist(p,s) = 2. ThenY := 〈p,s〉g is
a symplecton ofS by (i). Assumel � s⊥. Then〈s, l〉g is a symplecton. By (ii)
there is a lineg of S throughs that is contained in bothY and〈s, l〉g. Hence, there
is a pointp′ ∈ g with p′ ⊥ p. Sincep′ ∈ 〈s, l〉g, there is a point onl that is collinear
to p′ and we obtain dist(p, l) = 2.
Now assumel ≤ s⊥. We may assumes /∈ l since otherwise we are done. Then〈s, l〉
is a singular subspace of rank 2. inDs every line is contained in a symplecton.
This implies that there is a symplectonZ ≤ S containing〈s, l〉. Again there is a
line g≤ S throughs that is contained inY∩Z since inDs every two symplecta
intersect. As before there is a pointp′ ∈ g with p′ ⊥ p and dist(p′, l) = 1.

Proposition B.3.8.LetS be the point-lines space of a weak building of typeE8,1.
ThenS has a special pair.

Proof. Let p be a point ofS . The residue of{p} is the geometry of a building
of type E7. More precisely, the lines ofS throughp are the points of the point-
lines space of a weak building of type E7,1 that we denote byD . Moreover, for a
symplectonY ≤ S with p∈Y, the set of lines ofY throughp is a symplecton of
D . For a singular subspaceS≤ S with p∈ S, the set of lines ofS throughp is a
line of D .
By Proposition B.3.7(iii) there are linesg andh of S throughp such thatg andh
are points ofD at distance 3. Letq∈ gr{p} andq′ ∈ hr{p}. Supposeq⊥ q′.
Thenh ≤ q⊥ and hence〈g,h〉 is a singular subspace ofS of rank 2. Hence,g
andh are collinear inD , a contradiction. Thus, dist(q,q′) = 2. Suppose(q,q′) is
a symplectic pair. Then〈q,q′〉g containsp. Thus, the linesg andh are points of
the symplecton ofD that consists of all lines of〈q,q′〉g throughs. This leads to a
contradiction sinceg andh have distance 3 inD .

Definition B.3.9. A strongly parapolar space of spherical type with symplectic
rankr, wherer ≥ 5, that possesses at least two symplecta is called anexceptional
strongly parapolar space.

Theorem B.3.10.LetS be a point-line space and let r∈N. Then the following
two properties are equivalent:

(a) S is an exceptional strongly parapolar space with symplecticrank r−1.

(b) S is a point-line space of typeEr,1 with r ∈ {6,7}

Proof. Since a strongly parapolar space possesses no special pair,(Bu4) is vac-
uously fulfilled. By Propositions B.3.6(i) and B.3.7(i) we know that point-line
spaces of types E6,1 and E7,1 are strongly parapolar. In contrast, point-line spaces
of type E8,1 are not strongly parapolar by Proposition B.3.8. Thus, the claim fol-
lows immediately from Theorem B.3.5.



C The independence of
the axioms

In this chapter we prove that the axioms given in Definition 2.1.1 are independent
by giving counterexamples that fulfil precisely three of thegiven axioms.

Example C.1. SetP := Z/6Z andL := {{v,v+ 1,v+ 2} | v ∈ P}. Call two
points of the point-line spaceS := (P ,L ) opposite if and only if they are dis-
tinct. The convex span of any two distinct points equalsS since whenever a
subspace contains the line{v,v+ 1,v+ 2} for a pointv∈ P , it also contains the
line {v+ 1,v+ 2,v+ 3}. Hence, the convex span of two points ofS is either a
singleton orS .
Since for any pointv∈P the only point non-oppositev is v itself, (A2) is always
fulfilled. Furthermore, for (A3) there is only case to check which is the case where
x, y andz coincide since otherwise there is no way to decrease the codistance to
y. Since in this case〈y,z〉g = {y} holds, (A3) is also fulfilled. Finally, (A4) is
fulfilled since for any choice of the pointsx andz there is a point collinear tox
and oppositez.
For any pointv∈ P , we obtain dist(v,v+3) = 2 and〈v,v+3〉g = S . Sincev is
the unique non-opposite point tov, we obtain cod(v,S ) = 1. Thus, (A1) does not
hold inS .

Example C.2. SetP := Z andL := {Z}. Call two pointsu andv of the point-
line spaceS := (P ,L ) opposite if and only ifu+ v < 0. SinceZ is the only
line of S , we conclude that the convex span of any pair of distinct points equals
S .
Since for every pointx we obtainx↔−x−1, the opposition relation ofS is total.
Moreover, sincex = −x, we conclude cod(x,S ) = 1 for every pointx and there-
fore (A1) is fulfilled. Now letw, x, yandzbe points such that cod(w,y)< cod(x,y)
andz∈ copr〈y,z〉g(x). Since cod(x,S ) = 1, this impliesw↔ y and cod(x,y) = 1.
Thereforew+ y < 0≤ x+ y and we concludew < x. Now w+ v < x+ v implies
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that every point that is oppositex is oppositew and thus, coprS (w) < coprS (x).
Since〈y,z〉g is either{y} or S , (A3) holds. SinceS is singular (A4) holds, too.
For every pointx, the points−x and 1−x are contained inS = 〈x,x+1〉g. Since
x↔−x−1∈ S andx⊥ x+1, (A2) is not fulfilled.

Example C.3. SetP := Z/9Z andL := {{v,v+ 1},{v,v+ 3} | v ∈ P}. Call
two pointsu andv of the point-line spaceS := (P ,L ) opposite ifu = v+2 or
v= u+2. Letv∈P , then{v+1,v+3,v+6,v+8} is the set of points at distance
1 tov and every point ofP rv⊥ has distance 2 tov. Sincev+2 andv+7 are the
points that are oppositev, we conclude that for a pointu, we obtainu = v if and
only if cod(v,u)= 2 andu∈Pr{v,v+2,v+7} if and only if cod(v,u)= 1. Since
all lines ofS are short, we obtain〈u,v〉g = {u,v} for any two collinear pointsu
andv. Now let dist(u,v) = 2. If u = v+2, thenv+1 andv+3 are both contained
in {u,v}⊥ and hence in〈u,v〉g. This implies〈v+ 1,v+ 3〉g ≤ 〈v,v+ 2〉g and by
repeating this argument〈u,v〉g = S . Analogously,〈u,v〉g = S for v = u+2 and
henceu= v+7. If u= v+4, thenv+1 andv+3 are both contained in{u,v}⊥ and
we obtain〈u,v〉g ≥ 〈v+1,v+3〉g = S . Analogously,〈u,v〉g = S for u = v+5.
For a pointx, the two opposite pointsx+2 andx+7 are not collinear and hence,
on every line there is at least one point non-oppositex. Since coprS (x) = {x} and
cod(x,S ) = 2, we conclude that (A1) and (A2) are both fulfilled. Since every
point has codistance 2 to only itself, we conclude cod(u,v) = cod(v,u) for any
two pointsu andv of S and therefore (A4) is fulfilled.
Letx∈P and setz:= x andy := x+4. Then〈y,z〉g = S . Moreover,z∈ coprS (x)
and cod(x,y)= 1. Now setw := x+6. Thenx⊥w andw↔ y. Hence, coprS (w)=
{w} * coprS (x) and (A3) does not hold.

Example C.4. SetP := Z/6Z andL := {{v,v+1} | v∈ P ∧ v⊆ 2Z}. Then
the point-line spaceS := (P ,L ) has three connected components each of which
consists of a single line that contains two points. Letv∈P . If v⊆ 2Z, thenv+5
is the only point oppositev, otherwisev+1 is the only point oppositev. Note that
this opposition relation is symmetric.
Let y andz be two points at finite distance and setV := 〈y,z〉g. Then eithery = z
and hence,V = {y} or y ⊥ z andV = {y,z}. Let x ∈ P such that cod(x,V) is
finite. Thenx ↔ y or x ↔ z sinceV is a connected component ofS . We may
assumey↔ x. Sincey is the only point opposite tox, (A1) and (A2) are satisfied.
Moreover, (A3) is vacuously fulfilled.
Now letx∈ P with x⊆ 2Z. Then cod(x,x+2) = ∞ and cod(x+2,x) = 1. Thus,
(A4) does not hold.
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adjacent generators, 205
apartment, 214

basis of a projective space, 195
building, 214

weak, 214

chamber, 213
chamber complex, 213
coconvex

span, 31
subspace, 31

codiameter, 4
codistance, 4
cogate, 13
cogated subspace, 13
collinear, 1
collinearity graph, 1
commensurate subspaces, 208
complementary subspaces, 107
connected

component, 2
point-line space, 2
points, 2

connectivity graph, 11
convex

span, 2
subspace, 2

coprojection, 4
corank, 199
Coxeter complex, 215

dependent set of points, 195
diagram, 216
diameter, 2

twin SPO space, 32
direct sum

projective spaces, 194
distance, 2

dual
E6,1-space, 92
projective space, 90

dual polar graph, 205
dual polar space, 205

twin, 102

E6-space, twin, 92
E6,1-space, dual, 92
E7-space, twin, 94
En,1-space, 220

gamma space, 2
gate, 13
gated subspace, 13
generator of a polar space, 200
geodesic, 2
Grassmannian, 106

partial twin, 107
twin, 107

grid sum, 3
grid product, 3
grid sum

twin SPO spaces, 82

half-spin space, 118
local, 119
twin, 123

hyperplane, 2

independent set of points, 195

linear space, 2
local half-spin space, 119

metaplecton, 17
morphism

point-line spaces, 3
twin spaces, 5
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neighbour, 1

one-coparallel, 5
one-parallel, 5
opposite

connected components, 11
convex subspaces, 32
metaplecta, 76
points, 8

opposition relation, 5, 7

pair
spanning, 98
special, 220
symplectic, 220

parapolar space, 220
spherical type, 223
strongly, 220

paraprojective space, 220
partial twin Grassmannian, 107
partially linear space, 2
path, 2
perp, 1
point-line space, 1

of type Xn,i, 220
polar geometry, 218
polar space, 200

associated non-degenerate, 201
twin, 88

projection, 4
projective geometry, 218
projective space, 193

dual, 90
twin, 89

radical, 200
rank

polar space, 200
singular, 2
singular space, 2
symplectic, 17
symplecton, 17

relation
opposition, 5
total, 4

residue, 213
rigid

subspace, 24
symplecton, 24

root, 214

shadow, 219
singleton, 2
singular rank

twin SPO space, 33
singular space, 2
space

linear, 2
singular, 2
twin, 5

span, 2
coconvex, 31
convex, 2

spanning pair, 98
special pair, 220
spherical type, 222
SPO space, 7

partially linear, 10
strongly parapolar space, 220

exceptional, 226
subspace, 1

coconvex, 31
cogated, 13
gated, 13
rigid, 24

symplectic pair, 220
symplecton, 220

rigid, 24

total relation, 4
twin

dual polar space, 102
E6-space, 92
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E7-space, 94
Grassmannian, 107
Grassmannian, partial, 107
half-spin space, 123
polar space, 88
projective space, 88

twin space, 5
twin SPO space, 12

diameter, 32
singular rank, 33

Weyl complex, 214
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List of Notations

P, 1
⊥, 1
〈 〉, 2
rk, 2, 199, 200
srk, 2
dist, 2
diam, 2
〈 〉g, 2
⊙

, 3, 82
cod, 4
codm, 4
pr, 4
copr, 4
↔, 5
yrk, 17
〈 〉G, 31
‖, 79
⊕

, 194
crk, 199
Rad, 200
#, 207


