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Introduction

Jordan pairs In the present work we introduce a class of incidence gedesetr
more precisely, a class of point-line spaces equipped withpgosition relation,
that is related to a class of algebraic structures, calledadopairs. The theory
of Jordan pairs generalises the concept of a Jordan algelm@nmutative, not
necessarily associative algebra over a commutative uniritgd Jordan algebras
go back to Pascual Jordan, a German physicist of the 20tlurgentho intro-
duced them to formulate quantum mechanical processes aaahend general
as possible.

A Jordan paiV = (V*,V ™) is a pair of modules over a commutative unital ring
k together with a paifQ.., Q_) of quadratic mapQy: V¢ — Hom(V~9,v?), for
o € {+,—}, such that the identities

(JP1) Dg(X,y) o Qqg(X) = Qa(X) oD_g(Y,X)
(JP2) Dg(Qs(X)Y.Y) = Do (X, Q-a(¥)X)
(IP3) Qq(Qo(X)y) = Qs(X) 0 Q_g(y) 0 Qq(X)

hold in all scalar extensions &f, whereDg(X,Y)(2) := (Qo(X+2) — Qs (X) —
Qo (2))y. If the twok-modulesv* andV ~ coincide, one obtains a Jordan algebra
by identifying the twak-modules.

Buildings Jacques Tits, a contemporary Belgian mathematiciandatred the
theory of buildings, i. e. particular combinatorial stures that provide a geomet-
rical interpretation for semisimple isotropic linear digaic groups; see [Tit74].
For each type of buildings there exists a Coxeter diagranchwisi attached to it.
Furthermore, to each type of buildings there is a class alénce geometries that
is related to this type and hence as well to the attached €odetgram.

In [Loo75], O. Loos classified the Jordan pairs of finite disien. The types
listed there match in a certain way a part of the list thatltsgtom the classifi-
cation of buildings of finite rank. This fact motivates thenfgxture that there is
a connection between Jordan pairs and incidence geoméihiepresent work is
a part of the approach to find such a connection. More pregisel give a rather
simple axiomatisation for geometries and prove that thisraatisation holds ex-
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actly for those geometries that we expect to be the ones thaketted to the
Jordan pairs.

Jordan pairs and geometries Concerning a connection between Jordan pairs
and geometries some earlier results have already beemebtaiW. Bertram
established in [Ber00] a geometric interpretation of Jordauctures by show-
ing a strong correspondence to symmetric spaces. Furtherim® introduced in
[Ber02] generalisations of projective geometries. Thesegalisations are based
on what he calls affine pair geometries, i. e. a pair of ©6ts X ) together with a
relationM C X x X~ such that for alb € X*, the se¥, :={ye X~ | (a,y) e M}
has the structure of an affine space, and dually. The elernéMsare called re-
mote pairs. In this context, an affine space is meant in thebadgc sense which
means tha¥, is a module over a commutative ring. Based on the scalar piiulti
cation and the module structure\gf, Bertram defines ternary product maps from
a subset oK? x X~? x X? to X%, whereo € {+,—}. He gives a list of certain
“fundamental identities” that are satisfieddf™ is a projective space amxi™ is its
dual. In this context, an affine pair geometry that fulfilsshédentities is called
a generalised projective geometry. Further work concerttie correspondence
of Jordan pairs and geometries such as symmetric spacesneach{ised projec-
tive geometries is done by W. Bertram and K.-H. Neeb; see fgNad [BNO5].
However, all these geometries are based on algebraic laws.

In the present work we use a completely different sight ofngetoies that is
based on incidence axioms. There are some apparent stiaainstead of re-
mote pairs we use a relation that we call opposition relatiurthermore, as in
the work of Bertram, in the case that we have a pair of projecpaces, the set of
opposite points to a given point forms an affine space. Dedpése analogies we
expect a direct connection between the introduced clagscalénce geometries
and Jordan pairs. More precisely, we think that it should d=sible to construct
geometries from Jordan pairs that satisfy our axioms anderealy, to construct
Jordan pairs out of our geometries. Such a connection waolddge the possibil-
ity to apply geometric and combinatorial methods to studgdo pairs. Applying
these methods may lead to some new results for Jordan parbitfary dimen-
sion and, eventually, to a classification of them.

The relevant diagrams The Coxeter diagrams that correspond to the list of Jor-
dan pairs are listed below. Some of the diagrams are drawn imasual way.
The motivation for doing so is to highlight one vertex in eaéfgram. This ver-
tex is depicted as the leftmost one and represents the shifedtare considered
to be the points of the incidence geometries. Also the omlerhich we list the
diagrams is not the usual, namely the alphabetical one.eddstwe order the
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diagrams by the symplectic rank of the geometries that gnesented by the di-
agram together with the leftmost vertex. This symplectitkrean be easily read
out of the diagram: It is the natural numlyesuch that one can obtain a diagram
of type G 1 or Dy 1 by repeatedly erasing the rightmost vertices.

Chn ——eo o o o
n n-1 n-2 2 1
n>2
-1 j-2 3 2 1
Anj . : .
. J j+1 j+2 n-1 n
n>j>1 .. e—o
3 PR S
n— n— 1
Dn,n ~_<—¢
n n-2 n-1
n>3
5 6
Ee.1 1 2 34
6 7
E71 1 2 3 4 5
n-1
Dn.1 — o o -
1 2 3 n-3 n-2 n
n>3
Cn1 o o o——o—
1 2 3 n-2 n-1 n
n>2

The incidence geometries that are related to buildings eflitted types are
known (for a short overview see Appendix B). The most commioescare the
ones of type A1, which are projective spaces, and those of the types ahd
Dn.1, which are polar spaces; see Appendix A for an introduction.

Point-line spaces The rank of a building of type X, where X, j is a type of the
given list, and the rank of the corresponding geometry bqttain. The buildings
that are related to the Jordan pairs of finite dimension afieité rank. The aim of
this work is to characterise geometries that are relatedraad pairs of arbitrary
dimension. Therefore we consider a class of geometriestirdtins the listed
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types related to the Jordan pairs of finite dimension as veefjemeralisation of
each them that includes geometries of infinite rank.

Note that for all diagrams) is a natural number. We do not give diagrams for
geometries of infinite rank since this leads to serious gmist see Section 6.7 for
a discussion. Also the geometries of infinite rank themsgbvevide discouraging
properties of many kinds. A way to avoid some of these problisrto study point-
line truncations of the given geometries, i.e. the subgéneseone obtains by
considering only two kinds of objects (those that are cdlpeints” and “lines”)
and forgetting about the rest. Geometries whose objectsisireoints and lines
are also called point-line spaces.

Characterisations The first characterisation of point-line spaces is the one fo
projective spaces. It was published in 1965 and is due to Glevieand J. Young;
see [VY65]. Almost ten years later, F. Buekenhout and E. tSiae in [BS74]
a characterisation for polar spaces. This characterisédi@stonishingly nice
since it needs solely one simple axiom. In the following geamnotivated by this
very nice characterisation there was put a lot of effort tarabterise other types
of point-line spaces that arise from buildings. In this eatt one should men-
tion among others the work of F. Buekenhout ([Bue82]), P. ©am ([Cam82]),
A. Cohen and B. Cooperstein ([CC83]), G. Hanssens ([Han8€] [&lan88]),
A. Kasikova ([KS02]) and E. Shult ([Shu89], [Shu94] and [8B}). For an
overview of characterisations of point-line spaces se&@Gpand the forthcom-
ing book of Shult. The obtained characterisations inclubhe types of our list
and many more. However, some of the characterisationsge@viist of up to ten
axioms including rather technical ones.

Point-line spaces of infinite rank For each of the types#, Cn 1, Dn1, Can
and Dy there is a natural way to give a generalisation that inclymtest-line
spaces of infinite rank. Thereby, the polar spaces (typgsadd D 1) and the
point-line spaces of type 4, for any fixedj € IN, play a special role. The polar
spaces have all diameter 2 and the characterisation of Bhekéand Shult still
holds for polar spaces of infinite rank. The diameter of thiatpline spaces of
type A, j (called Grassmannians), is the minimumjaindn — j. Hence, for the
ones of infinite rank, we always obtain diamejerAccordingly, if bothj and
n— j increase, we obtain point-line spaces of any finite diam&tex same is true
for point-line spaces of type {, (called dual polar spaces) that have diameter
n and for those of type ) (called half-spin spaces) that have diametgr. A
generalisation of all these types that allows the poirg-Bpaces to have infinite
rank leads to point-line spaces that are disconnected. ptedsely, one obtains
point-line spaces with infinitely many connected composefithus, the known
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characterisations do not work anymore.

Using an idea of B. Muhlherr, we pick two of these connectedponents and
equip the so obtained pair of point-line spaces with an dgipasrelation that
relates points of the one component with points of the other dhis approach
is in the spirit of the theory of twin buildings allows us tovgia characterisation
that is still valid for the infinite rank case. Additionallyne can state axioms that
are less technical and thus, we are able to give a list of faite quice axioms
that characterises the point-line spaces in question. Bywy, the geometrical
objects we are now dealing with consist of two parts thateleged to each other;
just like Jordan pairs.

Setup In Chapter 1 we introduce point-line spaces. Moreover, vesgmt the
concept of an opposition relation to consider point-linacgs that are discon-
nected. At this point, the reader might familiarise himseith projective and
polar spaces which are introduced in Appendix A since in tileiiing chapters
both of them will appear as well as some of the results stéwet We also will
make some comments about point-line spaces arising frolditgs which are
considered in Appendix B. However, the results of AppendiarB needed in
Chapter 5 at the latest.

The main matter of the present work starts in Chapter 2. Heréntvoduce
SPO spaces, the class of point-line spaces that is the tbpieraesearch. We
state a list of axioms that characterises the SPO spaceseoverr we already
state several strong results which deliver some deep insighthe subsequent
classification.

Chapter 3 provides a first classification of connected sudespthat live in SPO
spaces. Thereby we demand the connected subspaces to leatasraregularity.
We call the subspaces with this regularity rigid subspa®¥s.will see that the
list of connected rigid subspaces we consider in this chajaimcides with the
types of finite rank that are listed above. The only excegtiane the point-line
spaces of the typesA, Cy 1 and Dy 1 since for these cases we also obtain their
generalisations to point-line spaces of arbitrary rank.

In Chapter 4 we show that each SPO space can be decomposedhsfaces
that are all rigid SPO spaces. Conversely, each composifiagid SPO spaces
is again an SPO space. This allows us to restrain our studgitb$PO spaces.
Thus, we may use the classification results of Chapter 3 fochhssification of
arbitrary SPO spaces.

Before we give the full classification, we discuss in Chagténe point-line
spaces of the types listed above. Moreover, we give gesatalns of the distinct
types that allows the point-line spaces to be of arbitrankralhus, the class of
subspaces we obtain is exactly class of the point-line sptee we wanted to
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characterise.

Chapter 6 provides the main result of this thesis. We givectassification of
rigid SPO spaces and prove that this classification matoteetlg the point-line
spaces presented in Chapter 5.



Preliminaries and
notations

1.1 Point-line spaces

A point-line space¥ = (£,.%¢) is a pair consisting of a se¥, whose elements
are calledpointsand a setZ C P(£?) of subsets of” with cardinality at least
2, which are calledines (By 3(M) we denote the power set of a 9). If all
points are subsets of a common set, we sometimes regardaslthe union of its
points.

Points on a common line are calledllinear. We writepp L p; to denote that
po andp; are collinear. The relation induces a graph on the point sgtthat we
call thecollinearity graph If pg L p1, then we callp; a neighbourof p;. By p*-
we denote the set of all neighbours of a pgintalled theperpof p. For a set of
pointsX we denote by := Npex p' the perp ofX, i. e. the set of all common
neighbours.

We give a list of some elementary rules that are valid in eabjtpoint-line
spaces:

Lemma 1.1.1.Let M and N be sets of points of a point-line space wita IM.
Then:

() N- DML

(i) M C ML

(i) ML =MLLL
Proof. NC MimpliesM* =Npem P = (Npen PT) N (Npem-n PH) SN+, Since

every point ofM is collinear to every point oM+, we obtainM C M+, This
impliesM+ C (M+)++ andM+ O (M++H)+4, ad

A subspaceof a point-line space” = (£2,.%¢) is a point-line space”’ =
(2, 2" with 2" C & and ¢’ C £ such that every line inZ \ ¢’ has at
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most one point with??’ in common and every line i?’ is contained in%”’.

We write .’ < ., if .#" is a subspace of” and .’ < .7 if .#’ is properly
contained. Since”’ is determined by its point set, we cai#’ itself a subspace.
Correspondingly, we trea? sometimes as its own point set. A proper subspace
is called ahyperplandif it intersects every line. For a set of poirits, we denote

by (M) the smallest subspace which contaMs called thespanof M. For a
family of pointspo, ... ps and a family of sets of pointlg, ..., M, we will write

(po,- .-, Ps;Mo, ..., M) rather than({po, ..., ps} UMoU---UM;).

A partially linear spaceis a point-line space such that no two different lines
have two different points in common. Clearly, subspacesdigly linear spaces
are again partially linear. For two distinct collinear pisipp andq of a partially
linear space, the unique line joiningand g is denoted bypg. A space that
contains exactly one point is callecgimgleton

A point-line space where every two points are collinear Iedssingular. Sin-
gular partially linear spaces are calligtear. Therank of a singular space” is
denoted by rk¥’) and equalsr — 2, wherea is the maximal possible cardinality
of a well-ordered chain of subspaces.#f Hence, the rank of the empty space
is —1 and the rank of a singleton is 0. Note that there might exat-erdered
chains that are maximal but not of maximal possible cardindror a point-line
space? let&(.) := {X <.7 | X C X} denote the set of all singular subspaces
of .. Thesingular rankof .7 is defined as sik?’) := sup{rk(X) | X € ()} .

We take for point-line spaces some terminology over from uhderlying
collinearity graph: Apath (of lengthk) between two pointgy and py is a fi-
nite sequencép;)o<i<k Of points such thap; L pi1 for everyi < k. We define
thedistancedist(p, q) between two pointg andq as the length of a shortest path
between them. If no such path exists, the distance betwesnrdq is set to be
o. We call two pointsp andqg connectedif their distance is finite andiscon-
nectedotherwise. A point-line space is called connected if evexiy of its points
is connected. A maximal connected subspace is callemhaected component
Let X be a set of points. Then tlttameterof X is the supremum of all distances
between two points oX and is denoted by diafX).

A shortest path between two points is calledendesic A set of points is
called convexif it contains for every pair of points all geodesics. For & e
pointsM, we denote byM)y the smallest convex subspace which contaihs
called theconvex spamf M.

A gamma spacés a point-line space with the property that for each pgint
and each ling, the setp’ N1 is either empty, a singleton or equéalsin other
words a point-line space is a gamma space if and only if foryepeint p, the set
p’ is a subspace. This property yields some useful applicatibhe first one is
that the perp of a subspace equals the perp of any set of ppaising it:
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Lemma 1.1.2.Let M be a set of points of a gamma space. THdn) = M+ =
M)+,

Proof. SinceM~ is a subspace, the first equation is trivial. Silte" is a sub-
space containinyl, we obtainM C (M) < M+, By Lemma 1.1.1 we conclude
MLZ<M>L2MLLL:ML. N

The second property concerns singular subspaces. Morseglsethe span of
a set of points with diameter 1 has again diameter 1.

Lemma 1.1.3. Let M be a set of mutually collinear points of a gamma space.
Then the subspagd/) is singular.

Proof. SinceM C M+, we obtainM+ > M++. SinceM*+ = M+ by Lemma
1.1.1, this implies tha¥ -+ has to be singular. Sindd C M+, we obtain(M) <
ML+, Thus,(M) is singular. 0

A morphismg : (£, %) — (£1,-21) of point-line spaces is a map frof#
to Z7; such that the image of every line i is contained in some line o#;. If
for every line in%, the image under the morphisgpnis an element of#;, then¢g
is called ahomomorphismAn isomorphisnis a bijective morphisng, such that
the inverse mag —1 is again a morphism.

Let| be an index set and 1€t#)ic| be a family of point-line spaces. Fo¥;,
we denote by the set of point and byZ; the set of lines of#;. We define the
grid productof the point-line spaces¥ )ic| as

S €.% if j=i
S= Z s| 2= I
(?5.) (uD g{gj Sj = {pj} with p; € Z; 'H#I})

Even if for everyi € |, the point-line space” is connected, it might happen
that @ -7 is a disconnected point-line space. This is the caseasdfinfinite
and every point-line space contains at least two points.réfbee we introduce
a concept that is similar to the grid product and preservesi@ttedness. For
this we require that?; is non-empty for every € I. We choose a poing; € &
for everyi € I. Now we define®i¢ (A4, pi) < Qe ¥ to be the subspace that
consists of all point$q )ici € [ic) 2% such that the sefi € | | pi # g} is finite.
We call®j¢ (A, pi) thegrid sumof (A )ie with origin (pi)iei. By definition of
the lines of®; A itis clear that®;, (A, pi) is indeed a subspace &, -7;.

If there is a pointp such that?’; N &7 = {p} for every two distinct indicesand

j of I, we write®j¢, -7 instead of®Oi¢ (A, p).
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1.2 Point-line spaces with a codistance

In a point-line space that is disconnected there is a priofink at all between
two distinct connected components. In this section we thtoe a method to relate
them to each other.

Recall that for a seM a relationR ¢ M x M is calledleft-total, if M = {x |
Jye M: (x,y) € R}. Right-totalis defined in the analogous way. A relation that is
left-total and right-total is calletbtal. For a symmetric relation these three terms
are obviously equivalent.

Definition 1.2.1. Let (£,.%) be a point-line space with a symmetric, total point-
relationR C & x &2. Then we call cod(x,y) := min{dist(z,y) | (x,2) € R} the
R-codistancérom x toy.

Note that this definition does not imply cody) = cod(y,x). Nevertheless, in
the following we will always consider a symmetric, total pbielationR such
that the derivedR-codistance is symmetric.

Since we introduce a codistance function to study poirg-Bpaces that are
disconnected, in most of the cases the underlying symmétiel point-relation
R will contain only pairs of disconnected points. Therebydbdistance function
is some kind of refined distance function for points at inéiniistance. More
precisely, the pairs containedifican be understood as pairs of points at maximal
distance. Therefore, the greater the codistance betwespdiats is, the closer
these points are in a certain sense. For a natural numiies helpful to visualise
“codistancen” as “distanceo —n", whereco should be seen as a symbol that stands
for the diameter of the point-line space. Note that finiteistachce does not always
imply infinite distance since the concept of the codistateeworks for point-line
spaces with a finite diameter. In the following, whenever wesider point-line
spaces of finite diameter with a codistance function, thetimeed symboko can
be substituted by the diameter of the point-line space andbtain the actual
distance.

This point of view motivates to define tiecodistance for two sets of points
X andY by cock(X,Y) := sup{codk(x,y) | xe XAy € Y}. Correspondingly, the
R-codiameteffor a set of pointsX is defined by codm(X) := min{codr(x,y) |
{xy} CX}.

Definition 1.2.2. Let U be a subspace and Iptbe a point of a point-line space
. If dist(p,U) < 0, we call the set py(p) := {ue U | dist(p,u) = dist(p,U)}
the projectionof pin U.

Let R be a symmetric, total point-relation. Then we call gop(p) := {uc U |
codr(p,u) = codk(p,U)} theR-coprojectiorof pin U if codr(p,U) < .
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Definition 1.2.3. LetU andV be two subspaces of a point-line spage Further
let distU,V) < ». Then we callU one-parallelto V if for every pointu € U,

dist(u,V) = dist(U,V) and py, (u) is a singleton.

Let R be a symmetric, total point-relation. Further let gd,V) < . Then we
callU R-one-coparalleto V if for every pointu € U, codu,V) = codU,V) and
coprry (u) is a singleton.

Note that our definitions of one-parallel aRebne-coparallel are not symmet-
ric. In most cases, the disconnected point-line spacesavitbdistance that we
consider consist of two connected components. Furtherntueg are of the fol-
lowing type:

Definition 1.2.4. Let ¥/ = (1, ¢*") and.¥™ = (£ ~,.¢") be two disjoint
partially linear spaces. Further IRC (Z1 x 27)U (L~ x 27T) be a sym-
metric, total relation onZ?* U &2~ such that for every paifp,|) € 2 x ¥~ U
P~ x L7, the following holds:

(OP) If ({p} xI)NRis non-empty, there is a poigte | such that{p} x1)N
R={p} > (I~{a}).
Then we call the paif.”",.~) atwin spaceandR the opposition relationof
(ST, 77).

Let (p,q) be a pair of points of a twin space that is contained in the sipipo
relation. Then we sap andq areoppositepoints orp is oppositeg and denote it
by p < g. With this way of speaking we can reformulate (OP) as follo®ach
point is non-opposite to either all or exactly one point ofvaeg line.

If we talk about a codistance in a twin space, it always ref@the opposition
relation of the twin space.

A morphism¢ : (", ) — (", ) of point-line spaces is a mapping
of the union of the underlying point sets that preserves spipo and foro €
{+,—1}, the restrictior¢|yoo is a morphism of point-line spaces framy to ei-
ther.#;" or .#/". The morphismp is called ahomomorphisnfresp. arisomor-
phisn) if for o € {+,-}, the restrictior¢|yoo is @ homomorphism into (resp. an
isomorphism onto) eithe#}" or ..






SPO spaces

In this chapter we introduce a class of point-line spacesplay the main role
in this work. These point-line spaces are equipped with ansgtric, total point-
relation, called “opposition relation”, that gives risea@odistance. Since in the
majority of the cases there is no doubt about the pointicelate refer to, we talk
about “codistance”, “coprojection” and “one-coparallelithout mentioning the
underlying point-relation in these terms.

We shall classify these point-line spaces in the presenk.wdherefore we
discuss some extra assumptions each one of which yieldsertca conditions
that facilitate the classification. We will justify why thesissumptions can be
made. However, some of them will be motivated in the subseioeleapters. Fur-
thermore, we prove some first properties concerning thetsirei of the lattice of
subspaces.

2.1 Main Definition and fundamental properties

We start by defining the point-line spaces that will be theeoty of interest in
all the present work. For the independence of the four axioftee following
definition, see Appendix C. Since at first sight these axiarok tather technical,
we give subsequent to the definition a brief discussion aheirtintention as well
as a motivation how they should be visualised.

Definition 2.1.1. Let . be a point-line space and IBbe a symmetric, total
point-relation that induces a codistance.gh Then we call” an SPO spack
andR anopposition relatiorof . if the following conditions hold for all pointg,
y andzwith dist(y, z) < « and codx,y) < «. We sen :=dist(y, z) andV := (y, 2)q.

1SPO stands forstrongly parapolar with aropposition relation”. This is because later on we
will see that each non-singular connected component of @& spRce is strongly parapolar.
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(Al) If (x,v) € Rfor somev eV, then codx,V) =n.
(A2) If (x,v) € Rfor somev €V, then copy (x) is a singleton.
(A3) If ze copk,(x) andw L x with cod(x,y) > cod(w,y), then
(@) codx,V) > codw,V) and copy (x) 2 copk, (w) or
(b) codx,V) > codw,V) and copy (X) 2 copk, (w).
(A4) Ify L zand(x,y) € R, then there is a point L x with (w,z) € R.

Mostly, we do not mention any opposition relation expligitin this case, the
opposition relation will be denoted by. As for twin spaces, we call two points
oppositeif they form a pair of the opposition relation.

We state some immediate consequences of the given axionessirait moti-
vation how they can be interpreted.

The axiom (A4) is equivalent to the assertion that the cadist of an SPO
space is symmetric as the first claim of the following proposiimplies. The
second claim relates the distance and the codistance dandilore precisely, it
can be seen as extension of the triangle inequality to treafdsfinite distances.

Proposition 2.1.2.Let x, y and z be points of an SPO space suchdbdx,y) < o
anddist(y,z) < . Then

(i) cod(x,y) = cody,x) and
(i) dist(y,z) > codx,y) — codx, 2).

Proof. (i) Let codx,y) = nand let(yi)o<i<n be a geodesic withy, = y andyp < x.
Setxp := X. By (A4) there is for every < na pointx;, 1 collinear tox; and opposite
yi+1. We conclude co@, x) < n. Equality follows by exchanging andy.

(i) Let w be a point withw < x and distz,w) = cod(x,z). Then disty,w) <
codx,z) + dist(y, z). O

Since this proposition is just what one would usually exp#c refinement
of the distance function, we will use these conditions in fibllowing without
referring to them.

Axiom (A1) controls the size of the convex span of two poirtfrate distance
as the following proposition shows. Note we do not make usengfaxiom other
than (Al).

Proposition 2.1.3.Let y and z be two points of an SPO space at distance n. Then
diam((y, 2jg) = n.

Proof. Letu andv be two points ofly, z)g at distance. Let p be a point opposite
u. Then codp, (u,v)g) = kand codp, (y,z)g) = nby (Al1). Thusk < n. O
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The consequences of (A2) and (A3) are less obvious. Axion) {#\2 kind of
generalisation of (OP) for twin spaces. Note that the axiB®) (for polar spaces
is also similar to (A2) if we understand non-collinear psiint a polar space as
opposite points. Furthermore, as we will see in the follpgobsection, (A1) and
(A2) imply that an SPO space can be treated as a partiallgrisigace.

The Axiom (A3) is the least intuitive of the four axioms. Lédlt aotation be
like in Definition 2.1.1. If we understand opposite pointb®points at maximal
distance, then the points in cx) are the points 0¥ at minimal distance ta.
We know already that the diameter\éfequalsn. Hence,y is a point ofV with
maximal possible distance to a point of cgpr). One would expect such a point
to have minimal possible codistancedavhat is actually true as we will see later.
Now we decrease this minimal possible codistancg by stepping fromx onto
w and the claim of (A3) is now that either the codistanc&/tdecreases or the
codistance t& stays the same and the coprojection decreases. One calisésua
this situation in the way that if we move away frogmwe move away fronv.

2.1.1 Simplifications

There are two extra assumptions we will make to simplify gigl SPO spaces.
We will motivate why these assumptions can be done and shaintttby do not
affect the theory of SPO spaces too much. The first one costienlines of an
SPO space. We consider the subspaces spanned by singladisb@w that they
can be regarded as new lines.

Lemma 2.1.4.Let g be a line of an SPO space. Thigh = (g)g.

Proof. Let p andq be distinct points om. Then(g)g = (p,q)g sinceg C (p,q)
and therefore diafi{g)g) = 1 by Proposition 2.1.3. Sinc@) < (g)g, this implies
diam((g)) = 1. Thus,(g) is convex and therefor@g)y = (g). O

Lemma 2.1.5.Let g and h be two lines of an SPO space. Thghn (h)| > 2
implies(g) = (h).

Proof. Let y be an arbitrary point ofg) and letx be a point oppositg. Since
(9) = (9)g, we obtain by (A1) and (A2) that there is a point (g) such that
codx,z) = 1 andx is opposite to all points ofg) \ {z}. Since codx,z) = 1, there
is a pointw L x with w < z. SetU := (w,X)g. Then dianfU) = 1 by Proposition
2.1.3. Moreover, (Al) and (A2) imply thatis the unique point o) that is non-
opposite ta. By (Al) and (A2) there is exactly one pointlihthat is not opposite
y. Since this point is distinct tg, we may assume thatis the unique point itJ
not oppositey. Again by (A1) and (A2) all points ofg) . {y} are oppositav.
Now let p andq be two distinct points ofg). We may assumg # y and hence
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w < g. By (Al) we obtain co@w, (p,q)g) = 1 and thereforey € (p,q) since
(p.9)g= (p,q) < (9). We conclud€g) < (p,q) by the arbitrary choice of. Thus,
(9) < (h) for every lineh with |(g) N (h)| > 2. The claim follows by symmetric
reasons. n

Proposition 2.1.6.Let. = (£2,.¢) be an SPO space. The#’ := (22,{(9) |
g€ £} is again an SPO space with the same opposition relation. blae the
distance and the codistance.if and.#’ are the same and a set of pointslU#?
is a subspace of” if and only if it is a subspace iv”’.

Proof. Set. = (#,.%) and.s’ = (Z,{(9) | g € £}). LetU be a subspace
of . and letp andq be two distinct points o) such that there is a linge ¥
with {p,q} C (g). By Proposition 2.1.3 and Lemma 2.1.4 we know tfgitis a
singular subspace of’. Thus, there is a link € £ that joinsp andg. Therefore
Lemma 2.1.5 impliesg) = (h) <U and hencel) <.7’. Now letU be a subspace
of " and letp andq be two distinct points o) such that there is a linge .
with {p,q} € g. Theng C (g) <U and hence|) <.¥.

Since(g) is singular for ever ling € £, two points are collinear i” if and
only if they are collinear in’. Therefore, in both spaces the distance between
two certain points is the same. Consequently, using the sgpesition relation
in " as in. implies that the codistance is maintained, too.

By the accordance of the distance, a subspace’dé convex if and only if it
is a convex subspace of’. Now it is easy to check that all four conditions of
Definition 2.1.1 hold in¢ if and only if they hold in". O

Remark2.1.7. For an arbitrary SPO spac# = (#,.¢) the SPO space”’ =
(2,{(9) | g€ .£}) is partially linear by Lemma 2.1.5. Therefore we c#ll the
associated partially linear SPO spacBy Proposition 2.1.6 the point-line spaces
< and.’ have the same lattice of subspaces. Singularity, convedigyance
and codistance coincide as well. The main difference betwéend.”” is that
we have to exchange the term “line” by “span of a line”. Obwgiguthis just
makes the notation more complicated and takes the advaofdge/ing unique
lines away.

These facts allow us to restrict our studies to SPO spacearhpartially linear.
All the results we obtain can be easily transformed intoltsgar arbitrary SPO
spaces. Thus, from now on we consider all SPO spaces to liallydimear. Note
that a partially linear SPO space is still a SPO space if wet#iuke an arbitrary
linel by a singular subspa&that contains the same pointsasd coincides with
the span of each of its lines. For examplé,ébntains more than 3 points, we may
substitutd by any set of lines of the kindlg C | | [g| = a}, where 3< a < |I|.

The second simplification we will make concerns the oppasitelation and
the connected components. L&tbe an SPO space. For a pop¥ . we denote
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by .} the connected component.of containingp. Now letx andy be opposite
points of.. Then each point af% has finite distance toand consequently, each
point of # has finite codistance tp. This implies that for each poir € .%
there is a point in%, that is oppositep. Conversely, to every point of4, we
find an opposite point it%. This motivates us to call two connected components
oppositeif one of them contains a point that is opposite to a point ef dther.
Now we define theonnectivity grapi ¢c(#) of . as the graph whose vertex set
consists of the set of connected components“oind whose edges are the pairs
of opposite connected components.

If F'c(.) is disconnected, then the union of the vertices of each atade
component of ¢(.¥) is an SPO space itself. These SPO spaces form a partition
of .. Moreover, each two of these SPO spaces do not interact iwapyvhat-
soever. Since on the other hand every disjoint union of al§eofiSPO spaces is
again an SPO space, we may constrain ourselves on SPO spacss eonnec-
tivity graphs are connected.

It might happen thaftc(.%) hasloops i. e. edges that join a vertex with itself.
Since < is total, every vertex of this graph is contained in at least edge.
We pick an edge of ¢(.#) and denote the vertices of this edge.#y and.s .
Then we delete all other edges and all vertices$ttand.#~. Now we consider
the subspace”’ := . U.~ <.¥. Further we restrict the induced opposition
relation | o to pairs of points that have a member in either of the condecte
components?* and.#~ and denote the so obtained point-relationsy. The
subspace””’ together with the relation-’ is exactly the substructure that matches
to the graph consisting a#* and.#~ and the edge joining them. For two points
of .7’ the distance in#’ between them is the same as their distanc&/inThe
codistance might differ as long a&* # .~ andl'c(.¥) has a loop at” ™" or
~. However, the codistance between a point6f and a point of~ in .’
is the same as their codistance.# since two pointgp € .7 andq € .7~ are
opposite in.”’ if and only if they are opposite i#”. It is now easy to check
that the four axioms of Definition 2.1.1 are still valid.if’. Since the restricted
opposition relation— is a total relation in”’, we conclude that”’ is again an
SPO space. Thus, every connected component of an SPO spheemnected
component of an SPO space whose connectivity graph possasssingle edge.

Assume is connected and consequenily,(.) consists of one vertex and a
loop onit. Let* and.”~ be disjoint copies of”. Foro € {+,—} let ¢, be the
canonical isomorphism fron¥’? ontoo. We set¥” := . U.# . Since we do
not add any additional lines t&”’ beside the ones of’* and.”~, we obtain for
two pointsp andq of .’ thatp andq are connected if and only if they both belong
to .9 for o € {+,—}. Moreover, the distance qf andq in .#” coincides with
the distance of their images i#f under¢,. Two points in.’ are opposite if and
only if one point belongs to”* and the other one t¢” ~ and their images under
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¢, and¢_ are opposite in”. We denote the so obtained relation4y and the
opposition relation of” by «. By constructions’ is a symmetric, total point-
relation that induces a codistance.gfi. Moreover, for a poinp € . all points
of ¥ are at infinite codistance and all points &f~ are at finite codistance since
&~ is connected. Leq andr be points of~. Thenp 't < p%+ < r%- and
dist(g,r) = dist(q?-,r?-). We conclude cogp,q) = cod p?+,ré-). Again it is
easy to check that the four axioms of Definition 2.1.1 aresfiatl in.#’. Hence,
<" is a SPO space and therefore, every connected componenSéf@ispace is
a connected component of an SPO space whose connectivity gogsesses one
single edge and two vertices. Therefore, it suffices to s®ED spaces of this
type if one is interested in what connected components of §R©es look like.
This motivates us to give them a special name:

Definition 2.1.8. Let . be a partially linear SPO space consisting of two con-
nected components”* and.#~ such that two points have finite codistance if
and only if they have infinite distance. Then we ¢alf™,.#~) atwin SPO space
where(7*,. ) carries the same opposition relation&s

This definition is motivated by the following property.
Proposition 2.1.9. Every twin SPO space is a twin space.

Proof. By the definition of the opposition relation in a twin SPO spdtremains
to check that (OP) is fulfilled. Since in a partially lineaasp every line coincides
with the convex span of any two of its points, (OP) followsedity from (A1) and
(A2). O

Although we restrain ourselves from now on to twin SPO spattese will
still appear SPO spaces that are not twin SPO spaces, namsby kinds whose
connectivity graphs consist of a single vertex and a loops Ehnecessary since
there are connected subspaces of a twin SPO space whicheameaadsPO space
using a different opposition relation (cf. Proposition.23).

Since in a twin SPO space two points have either finite digtandinite codis-
tance, we may understand the codistance as a completioa ofdinary distance
where distance 0 is the smallest possible distance andtandesO is the biggest
possible distance. In this sense in a twin SPO space theneeisaat value for the
distance of any two points.

2.1.2 Subspaces of finite diameter

Regarding the axioms (Al), (A2) and (A3), it is obvious thatof our main
interests concerns the convex subspaces that are spanh&d pgints at a finite
distance. Beside them we study the singular subspaces plateesome proper-
ties of the structure of SPO spaces that are based on thesgaseis.
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Definition 2.1.10. Let U be a connected subspace of a point-line spacd-ur-
ther letp be a point with distp,U) < . If there is a pointg € U such that for
every pointr € U there is a geodesic fromto p passingg, we callg agatefor p
in U. If every pointr with dist(r,U) < « has a gate itJ, we callU gated

Let. be a point-line space with a codistance. Agairlgbe a connected sub-
space of? and letp be a point with co@p,U) < . If there is a pointj € U such
that codp, q) = cod(p, r) + dist(q,r) for every pointr € U, we callq acogatefor
pinU. If every pointr with codr,U) < « has a cogate itJ, we callU cogated

In a point-line space with a codistance we can define a gate fevesome
disconnected subspaces as follows:

Definition 2.1.11. Let . be a point-line space with a codistance. Further let
U be a subspace such that every two point&Jofiave finite distance or finite
codistance. Then for a poimt with dist(p,U) < o, we callq € U agatefor p
inU if cod(p,r) = codq,r) — dist(p, q) for every pointr € U with cod(q,r) < o

and distp,r) = dist(p,q) +dist(q, r) for every pointr € U with dist(q,r) < c. As

for connected subspaces we dalfatedif every point at finite distance td has
agateinJ.

Proposition 2.1.12.Let y and z be two points of an SPO space at finite distance
n and set V.= (y,z)q. Further let x be a point at finite codistance to V. Then the
following conditions hold:

(i) Forevery point e V, there is a point & V withdist(u,v) = n.
(i) If copk,(x) contains a single point v, then v is cogate for x in V.

(i) For every two points u and v of V witlist(u, v) = n, the convex spafu,v)q
equals V.

(iv) If there is a point ve V withcod(x,V) = codx, V) + n, then x has a cogate
inV.

Proof. (i) Let p be a point opposite.. By (Al) there is a pointv € V with
cod(p,Vv) = n. Hence, digiu,v) > n. Equality follows from Proposition 2.1.3.
(i) Let u € V be an arbitrary point. Set:= dist(v,u), k := codx,u) andU :=
(v, u)g. We prove cogk,v) = k+ d by induction ovekk. Fork = 0 the claim fol-
lows by (Al). Now letk > 0. Then there is a point L x with codw,u) =k — 1.
Since copy (x) = {v}, we obtain copj(w) = {v} and codw, Vv) = cod(x,v) — 1 by
(A3). By the induction hypothesis we obtain ¢adv) = codw, u) + dist(v,u) =
k+d—1 and hence, cda,v) = k+d.

(i) Let p € (u,v)g and letr be a point oppositg. By (Al) and (A2) there is
exactly one poing € V with cod(r,q) = n and for all other points 0¥ the codis-
tance tor is < n. Hence,q € (u,v)g by (Al). By Proposition 2.1.3 we obtain



@ | 2. SPO spaces ‘

dist(p,g) = n. Now let p’ € V be a point collinear tqp. We want to show
P’ € (u,v)g and therefore we may assurpe# p. By (Al) there is a point/

on the linepp with codr,q’) = 1. Thus, distq’,q) = n— 1 by (ii) and hence,

q € (p,q)g < (u,v)g. Thus,| < (u,v)q and the claim follows by the connectedness
of V.

(iv) Let X € V be a point with cotk,V) = cod(x,X). Then distx,v) = n and
henceV = (X,v)g by (iii). Now letV < x be a point with digtv,V) = cod(x, v).
Then disfx’,V') = codx,V) and hence, copy  (X) = {X} by (A1) and (A2).
Since(xX,v)g < (X, V)q the claim follows by (ii). O

LetV be the convex span of two points of an SPO space at finite distan
Further letx be a point that is opposite to some pointvaf Then (A1) and (A2)
imply that there is a poirge V at codistanceto x such that copy(x) = {z}. Now
Proposition 2.1.12(ii) implies thatis a cogate fox in V. Hence, the following
condition holds for every SPO space:

(A12) If x«— vfor somev eV, thenx has a cogate at codistancén V.

The labelling (A12) is motivated since both (A1) and (A2) direct consequences
of this condition. Note that (A12) is not just the unificatioiAl) and (A2) since
in the proof of Proposition 2.1.12(ii) we made use of (A3).

Lemma 2.1.13.Let y and z be two points of an SPO space at distance n. Then
there is a point x with x» y andcodx, z) = n.

Proof. SetV = (y,z)y. Letw be a point opposite. By (A12) there is a point
y €V with codw,y) = n such that cogr(w) = {y'}. Take a pointX « Yy
with dist(w,x') = n. Then again by (A12) there is a poirte (X, w)g =: U
with cod(x,z) = n such that copy(z) = {x}. By Proposition 2.1.3 we obtain
dist(x,w) = n. Sincex « Y/, the pointw is a cogate foy/ in U by (A12) and
thereforex — y'. Hence again by (A12)is a cogate fox in V and we conclude
y <> X []

Lemma 2.1.14.Let y and z be two points of an SPO space at distance n. Set
V = (y,z)g and let x be a point witldlist(x,V) < c. Further let ve V be a point
with dist(x,V) = dist(x,v) +n. Then x has a gate in V.

Proof. Setk := dist(x,V) and letu € V be a point with digtx,u) = k. Then
dist(x,v) = k+n and hence, Lemma 2.1.13 implies that there is a pwipt v
with codw, x) = k+n. By (A12) the pointx is a cogate fow in (x,v)q. Since
dist(x,u) = k, we obtain co¢w,u) > n and consequently, (A12) implies thais
a cogate fow in V with cod(u,w) = n. SinceV < (x,V)q, we obtain distx, p) =
k+n—codw, p) = k+dist(u, p). O
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As a direct consequence of this lemma, we can state a firdt mscerning
the structure of an SPO space.

Corollary 2.1.15. Every SPO space is a gamma space.

Proof. Let pbe a point of an SPO space andIbe a line. Assume there are points
gandr onl such thag L pandr / p. Then disfp,q) = 1 and distp,r) = 2 and
therefore pr(p) = {q} by Lemma 2.1.14. 0

We know concentrate our attention to the coprojection ofvargpoint in the
convex span of two points at finite distance.

Proposition 2.1.16.Let y and z be two points of an SPO space at distance n
and set V:= (y,z)q. Further let x be a point at finite codistance to V and set
U :=copk,(X). Then

(i) U is a convex subspace ofV,
(i) dist(v,U)+codx,v) =codx,V) for every ve V and

Proof. (i) Let | <V be a line. Then by Proposition 2.1.12(iv) the set ¢opr
is a singleton or the whole line. Hendd, is a subspace. Now, letandv be

two distinct points ofJ. We have to show that an arbitrary powit L v with

dist(u,V') = dist(u,v) — 1 is contained itJ.

Suppose cog, V') = cod(x,v) — 1. Take a pointv < v at distance cak,V) to

x and sefW := (w,x)g. Suppose cad’,W) < dist(x,w). Thenx € copky (V).

Moreover, by (Al) there is no point iW oppositev' and hence, cday,V) =

1. This is a contradiction to (A3) since cadv) < codw,V') but codW,v) >

codW,V). Thus, codv',W) > dist(x,w). This impliesx ¢ copky (V). By (A12)

we know thatx is a cogate fow in W. Thus, codv,W \ {x}) = cod(x,v) — 1=

dist(w,x) — 1 and we conclude cgd,W) = cod(v,W). Hence, for any point’ €

copky(V), we obtainx' L x and codx, V) = codx,v) = codX,Vv) + 1. Thus, we
may apply (A3) to conclude c@g, (u,v)g) > codX, (u,Vv)g) and therefore/ e

COpNy),(X). This is a contradiction to copyy, (X') < copry,,, (X). Thereforev’

has to be contained id.

(i) Let u € U be a point with digiv,U) = dist(v,u). SetV’ := (u,v)q. By Lemma
2.1.13 there is a poin < u with codw,v) = dist(u, V). Sincev is a cogate fow

inV’" by (A12) and on every line there is a point that is not opposijtee conclude
that every line oV’ has at most distance distv) — 1 tov. HenceV'NU = {u}

by (i) and consequently, Proposition 2.1.12(ii) implieatth is a cogate fox in

\ Ol

Proposition 2.1.17.Let y and z be two points of an SPO space at distance n and
setV:= (y,2)g.
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(i) Letu and v be two points of V at distance k and setXu,v)g. Then
dist(p,U) < n—k for every point e V.

(i) Letx be a point witltodx,V) < e. Thencod(x,V) > n.

Proof. Suppose one of the claims does not hold. Then we may assumeitha
minimal under the condition that there exists a countergta.

If k=n, claim (i) follows from Proposition 2.1.12(iii). Hence, weay assume
k < n. By Proposition 2.1.12(i) there is a poigt V with dist(p,q) = n for every
pointp € V. By Lemma 2.1.13 there is a pointwith r — g and codp,r) = n.
Thus by Proposition 2.1.12(iv), the poiptis a cogate for in V. Sincek < n, we
conclude cofr,U) > k by (ii) and consequently, (i) holds fi.

Thus,V is a minimal counterexample for claim (ii). This implies ti{a) holds
for the convex span of any two points at distancel, and therefore cdd,V) =
n—1. We may assume thatis a point such that diafoopk, (x)) is minimal. Set
m := diam(copk, (X)). By Proposition 2.1.12(jii) we may assuraes copk, (X).
Let p andq be points of copf(x) at distancem. Then disty, (p,g)g) < n—m
by (i). Since copj(x) is a convex subspace by Proposition 2.1.16(i), this im-
plies disty,copk,(x) < n—m. Since distz,y) = n and z € copk,(x), we con-
clude disty, copk,(x)) = n—m and therefore cqe,y) = m— 1 by Proposition
2.1.16(ii). Since cotk,V) = n—1, we obtainm—1 > 0 by (Al). Thus, there
is a pointw L x with codw,y) = m— 2. By (A3) this implies cofw,V) <n-—1
and copy (w) < copk,(X). SinceV is a minimal counterexample, we conclude
codw,V) = n—1 as forx. Thus, disty, copk,(w)) > n—m+ 1. Since copf(w)

is a convex subspace, we conclude dieops,(w)) < m—1 by (i). This is a
contradiction to the choice ofand the claim follows. O

Corollary 2.1.18. The convex span of two points at dista2agf an SPO space is
a non-degenerate polar space of rark.

Proof. LetY be the convex span of two points at distance 2. IL€tY be a line
and letp € Y be a point. Then digp,l) < 1 by Proposition 2.1.17(i). Thus,
the Buekenhout-Shult Axiom (BS) follows from Lemma 2.1. By Proposition
2.1.12(i)V is non-degenerate. Sin¥econtains a line, we obtain (k) > 2. O

Remark2.1.19 If we do not restrain ourselves to consider SPO spaces that ar
partially linear, this corollary does not hold anymore. kEenwe cannot apply
Proposition A.2.7 at this point to prove that there are pytiinear subspaces in
an arbitrary SPO space. The reason for this is that in thevesxgiven in Definition
2.1.1 lines do not occur without their span. An additionabaxthat for every line

I, there is no point at codistance Oltavould avoid this fact. Moreover, such an
axiom would imply that every SPO space is partially linear.
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We are now ready to prove the property that motivates theeusithe term
SPO space. For the definition of parapolar and strongly pdaegpaces, see
Definition B.3.2.

Theorem 2.1.20.Let V be a connected convex subspace of an SPO space with
diamV) > 2. ThenV is a strongly parapolar space.

Proof. We know already tha is a convex partially linear gamma space. As sym-
plecta we take the subspaces/ofhat are convex spans of two points at distance
2. By Corollary 2.1.18 each symplecton is a non-degenei@te gpace of rank

> 2.

Now let p andq be two points oV at distance 2. Then every quadrangle that
containsp andq is contained inp, ). Moreover, Proposition 2.1.12(iii) implies
that every convex span of two points at distance 2 that cos@andq coincides
with (p, g)g.

It remains to check that every line<V is contained in a symplecton. Since
diam(V) > 2, there is a symplecton < V. We may assumles Y since otherwise
we are done. First we consider the chser = @. Let p andq be distinct points

of | such that digtp,Y) = dist(l,Y). Then there is a pointe Y with dist(p,y) > 2
since otherwisg would be contained itY. SinceV is convex, there is a point
ze V with dist(p,z) = 2. SinceY’ := (p,z)q is @ symplecton o¥/, it remains to
check the casenNY = {p}. By Lemma A.2.3(i) there are poinysandzinV N p*
withy / z. Sinceq ¢ Y, we concludey £ qorz / q. Thus,(g,2)g or (Q,Y)g is a
symplecton that contairls O

A symplecton is said to be of rankif it is a polar space of rank. Let.”
be a parapolar space such that every symplecton has rafken we call a
parapolar space alymplectic rank rdenoted by yrk’) =r. If every symplecton
of a parapolar spac’ has rank> r, we say that is of symplectic rank>r.

According to the term symplecton we call the convex span offiaints of an
SPO space that have finite distance to each othestaplectonBy this definition,
singletons, lines and symplecta are the three smalless kihchetaplecta.

The next subspaces we study are the singular subspacesoélus ¢ show
that SPO spaces are paraprojective; see Definition B.3i%.kliown that every
parapolar space is already paraprojective; see [Bue8B@aif]. For SPO spaces,
this is not sufficient since there are connected componéi8P0 spaces that are
singular and hence they are not parapolar.

Lemma2.1.21.Forne Nlet M:={y; | 0 <i < n} be a set of mutually collinear
points of an SPO space.

(i) Let x be a point with ¥~ y; for all 0 <i < n. Then x» p for every point
pe (M).
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(i) Letcodx,(M))=1andcodx,y;) =1for0<i<n. Then thereis a point
Vn <> Xsuchthaty Ly forO<i<n.

(i) Lety ¢ (yj|0<j<i)forye M. Then there is a sefx | 0 <i < n}
of mutually collinear points such that x> y; < i = jfor 0<i<nand
0<j<n.

Proof. (i) Let y and z be two distinct collinear points witly <+~ x <+ z. Then
yz= (Y,2)g and hence by (A2), there is no point gnoppositex. SetMg := M.
Fori € IN, we set recursivelii 1 := Uz em xm Y2 Sincex <= p for every point
p € M, we apply induction to conclude fore IN thatx <+~ p holds for every point
p e M.

Since the points o are mutually collinear, we know thai) is singular. Since
by the definition we obtaiiv; C (M) for everyi € IN, we obtain JicngMi C (M).
Moreover, the points of; are mutually collinear. Let< j and take two points
p € Mj andqg € Mj. Thenp € M;j and the linepq is contained inVj,;. Thus
(M) = UienatMi and the claim follows.

(i) We proceed by induction over. Since codx,yp) = 1, the claim holds for
n<1. Now letn> 1 and assume that there is a pojfjt— x such thaty;, L
yi for0O<i<n-—1. Ify, Ly, 1, we are done. Therefore we may assume
dist(yn,Yn-1) = 2. ThenY := (y,Yn-1)g iS @ symplecton that contaid. By
(A12) x has a cogat® in Y with codx,X') = 2. Therefore(' is collinear to every
point of M andS:= (X', M) is a singular subspace %t

Since rKS) < «, we conclude by Lemma A.2.17 and induction that there is a gen
eratorG of Y that is disjoint taS. Since codx, (M)) =1, we know(M) < S. Thus,
Proposition A.2.20 and Lemma A.2.22(ii) imply that:= (M) 9 G is a generator
of Y with crkg(GNG') =rk((M)) +1. SinceSNG = @ and rkS) > rk((M)),
we concludeS £ G' and consequently’ ¢ G'. By the maximality ofG’ there is
a pointy, € G’ that is not collinear to(. Thus,x < y,. The claim follows since
MCG.

(iii) We proceed by induction oven. Forn < 1 the claim follows from (A4).
Now assume there is a set of mutually collinear pofnts| 0 < i < n} such that
Wi < yj & i=]jfor0O<i<nandO0< j<n. Furtherlety, be a point withy, L y;
forO<i<nandyn¢ (yi | 0<i<n).

Setzy :=y, and for 0<i < n, let z1 be the unique point on the lingz not
oppositew;. Sincez1 € (yi | 0 <i < n) we obtainy; L 71 for j <n. Fur-
thermore we obtaig 1 ¢ (yj | 0 < j <n) sincez 1 # Vi by z;1 +» w; < y; and
z ¢ (yj | 0< j < n). Finally,z,1 ++ wj wheneveii < j since this is true by def-
inition for i = j and follows recursively by; <= z andw; « y; if i > j. Thus,
z, +» wj for 0 <i < nand hence cdd,,wj) = 1 sincez, L y;.

By (ii) there is a pointwy, < z, with wy, L w; for 0 <i < n. Now setup := wy
and fori < n define recursively; 1 to be the unique point on the limgu; non-



2.1. Main Definition and fundamental properties

opposite toy;. Sincew; < V; «» Ui+1 We obtainw; = Ui 1 and hence, < U1 by

zy < Uj. Furthermorey; < uj1 for 0 < j < i sincey; «+» uj andy; + w;. Hence,

Yi  Up for 0 <i < n. Withu, € (wj | 0 <i < n) we obtainwj Lu,for0<j<n.
Setxy = Up. With X < z, andx, <> y,_1 we obtainx, < z,_1 and hence analo-
gouslyxn < z with x, <= y; for all 0 < i < n. Hencex, has already the demanded
conditions sincey = y,. Now letx; for 0 <i < nbe the point on the line;x, that

is not opposite,. Sincex, is the unique point om; X, not oppositey; andx, # X
because ok, < yn «» X; we concludex; < y;. Furthermore «» y; if j <nand

j # i sincey; «» w; andy; «» X,. Finally, sincex; € (w; |0 < j <n) fori <nthe
set{x | 0 <i < n} consists of mutually collinear points. 0

Theorem 2.1.22.Every SPO space is paraprojective.

Proof. Let Sbe a singular subspace of an SPO spaceglagtdh be two lines of
Sintersecting in a poinp. Fori € {0,1} letl; be a line intersecting in a point
a # p andhin a pointb; # p. By Definition A.1.1 we have to show thitandl,
intersect. Therefore we may assume# a; andbg # b;. By Lemma 2.1.21(iii)
there is a poing oppositep with g <+ a3 andq <+ by. Sinceq < p we conclude
by (A2) thata; is the unigue point on the ling that is non-oppositg. Hence,
ap < g and analogouslyy < g. Thus by (A1), there has to be a third poaon
the linelg with c «» q.

Since{c,as,b1} C (ap, bp, p) < Sthe pointsc, p, ap andbg are pairwise collinear.
By Lemma 2.1.21(i) there is no point ift,a;,b;) oppositeq. Therefore,p ¢
(c,a1,b1). Suppose ¢ |1. Then by Lemma 2.1.21(iii) we find a pointopposite
cwithr <= p, r «» a andr « by. This is a contradiction to Lemma 2.1.21(i) since
c € (a1,by, p). Hencelp andly intersect irc. O

We conclude this section by studying the metaplecta of an §f@e. Our first
result is that metaplecta are again SPO spaces:

Proposition 2.1.23.Let y and z be two points of an SPO space at distance n and
setV:=(y,2)g. SetR={(u,v) €V xV | dist(u,v) =n}. ThenV is an SPO space
with opposition relation R. Furthermorepdr(u, v) + dist(u, v) = n for every pair

of points(u,v) € V x V.

Proof. The relationR is symmetric and by Proposition 2.1.12(i) total. Now et
andv be two points o¥/. Further letw < v be a point with cofw, u) = dist(u, v).
Thenw has a cogate/ in V at codistance. Hence, digtw’,u) = n— dist(u,v)
and therefore (A4) holds fdRin V. For an arbitrary point’ € V, we find a point
x with codx,x') = n and copy (x) = {X'} by Proposition 2.1.12(i) and Lemma
2.1.13. Since! is the cogate okin V, we obtain cogk, u) = codr(X, u) for every

u eV and hence, we may carry over the axioms (Al), (A2) and (A3). O
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Lemma 2.1.24.Let y and z be two points of an SPO space at distance n and
set V:= (y,z)g. Further let x be a point at finite codistance to V such that z
copk, (X). Thencod(x,y) = min{codx,v) | ve V}.

Proof. SetU := copk,(x). By Lemma 2.1.13 there is a point oppositez with
codw,y) = n. Since disfy,z) = n, we obtain disty,U) > n—diam(U). By Propo-
sition 2.1.17(i) and Proposition 2.1.16(i) we obtain @idt) ) < n— diam(U) for
everyv € V. Now the claim follows by Proposition 2.1.16(ii). O

Proposition 2.1.25.Let y and z be two points of an SPO space at distance n and
setV:= (y,z)g. Let x be a point at finite distance k to V and settpr, (X).

() LetU be asingleton. Then the point of U is a gate for x in V.
(i) U is a convex subspace of V.
(iii) dist(v,U) +dist(x,V) = dist(x,v) for every ve V.
(iv) Letze U. Thendist(x,y) = max{dist(x,v) | ve V}.

Proof. (i) Let u € V such thal = {u}. Further letv € V be an arbitrary point.
We prove the claim by induction oven := dist(u,v). Form < 1, there is noth-
ing to prove. We assume that the claim holdsrfor 1. LetV L v be a point
with dist(u,v') = m— 1. Then distx,V) = k+m—1. Letw < V' be a point with
codw,x) = k+m—1. Then codw,u) = m— 1. Sincev’ € (u,V)q, the pointw has

a cogatew in (u,v)g with codw,w') = mby (A12). This implies disw/,v) =m
andw L uand hence, digx,w') = k+ 1 sincew €V~ U. Thus,u € (x,w)q and
thereforex ¢ copry ), (W) by Lemma 2.1.24. Hence, there is a poihe (x,W)g
with codw, X') = k+m. By Proposition 2.1.12(iv) the point is a cogate fomw
in (x,W)g since codw, u) = codw,x’) —k— 1. This implies<' L x, distx,w) =k
and distx,u) = k+ 1. Thus, distX,V') = k+msincew < V.

SetW := (X,V)g. Now x, w andu are all contained iW since they all lie on
geodesics fronx' to V. Consequentlyy € W since(u,v)g = (W, V). By Propo-
sition 2.1.12(i) and Lemma 2.1.13 there is a paittiat is opposite to some point
in W such that cofk,x) = k+m. Thenx is the cogate fos in W and therefore
cod(s,u) = m. Since(u,v)g <V and distx,V \U) = k+ 1 there are no other
points in(u,v)q at codistance> mto s. Hence,u is a cogate fosin (u,v)g and
therefores < v. The claim follows.

(ii) By Lemma 2.1.14 the sdfl is a subspace. Now assurdeis not connected
and letu andv be two points of different connected component&Jasuch that
dist(u,Vv) is minimal. TherJ’ := Py, (X) does not contain any line, since oth-
erwiseU would have connected components at lower distance thafudisby
Proposition 2.1.17(i). Hendd’ is a union of singletons which are pairwise at
distance digu, V) to each other. Let’ be a point collinear ta with dist(u',v) =
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dist(u,v) — 1. Then pfy ), (x) = {v} and hence, digk, u) = k+dist(u,v) — 1
by (i). Sinceu L U/, this yields distu,v) = 2. Thus,{u,v} C (x,u’)g and hence,
dist(x, (u,v)g) < k— 1 by Proposition 2.1.17(i), a contradiction. Therefbras
connected.

To show that is convex it suffices to show that for two poinisandv of U at
distancem, every pointy/ | uwith dist(u/,v) = m—1is againinJ. If m= 1 then
U =v, hence lem > 1 and assume the claim holds for— 1. Since p(u7v>g(x)
is connected, there is a poiite U with V' L u and distv,v) = m— 1. Hence,
U’ :=(v,V)g <U. By Lemma 2.1.14 we conclude thdtis a gate foru in U’.
Hence,V is the only point ofJ’ collinear tou. Since foru’ = V' there is nothing
to prove, we may assumeé ¢ U’. Then distu’,U’) = 1 by Proposition 2.1.17(i)
sinceU’ < (u,v)g. If pry,(U) is a singletor{u”}, thenu” is a gate fors' in U’
by (i) and hence, dist”’,v) = m— 2. If pry, () contains a line, then there is by
Proposition 2.1.17(i) a point” on this line with distu”,v) = m—2. Hence, in
both cases we obtain | U | u” and therefore digt,u”) = 2. Supposer ¢ U.
Since bothu andu” are contained iy, we conclude{u,u”} C (x,u’)g and thus,
dist(x, (u,u”)g) = m— 1 by Proposition 2.1.17(i), a contradiction.

(iii) Let u e U be a point with distv,U) = dist(v,u). SetV’ := (u,v)g. By
Proposition 2.1.17(i) there is no line W NU, since otherwise we would ob-
tain dis{v,U) < dist(v,u). Thus,V'NU = {u} and the claim follows from (i).
(iv) Since disty,z) = n, we obtain disty,U) > n—diamU). By Proposition
2.1.17(i) and (ii) we obtain digt,U) < n—diamU) for everyv € V. Hence,
the claim follows with (iii). ]

Lemma 2.1.26.Lety and z be two points of an SPO space at distanee2rand
set V:= (y,z)g. Further let u and v be points of V that are collinear to y. Then
there is a symplecton X V containing y, u and v.

Proof. Assume thay, uandv are on a common lineofV. Then distz,1) =n—1
by Proposition 2.1.17(i). Hence, there is a pathwith dist(Z,z) = n—2 and
dist(Z,1) = 1. We obtain <V. Thus, we may assume that andvy are distinct
lines. Byu' we denote the point ony with dist(U’,z) = n— 1 and by the point
onvywith dist(V/,z) =n—1.

If dist(V,u’) = 2, thenY := (U,V)q has the demanded properties. Hence, let
U L V. Since pfy »,(y) = {u} by Lemma 2.1.14, we conclude ¢ (U, 2)q and
thereforel’ € pryy , (V). Since distv’, z) = n—1, we know that/ is not a gate for
V' in (U, z)g and therefore, Proposition 2.1.25(ii) implies th%p);g(\/) contains
alinel throughu'. By Proposition 2.1.17(i) there is a poition| with dist(Z,z) =
n—2. NowY := (y,Z)q has the demanded properties. O

Proposition 2.1.27.Let V be a metaplecton of an SPO space witm(V) > 2.
Further let x be a point at finite distance to V such thattJpr, (x) has diameter
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1. Then U is a maximal singular subspace of V. Furthermore, toigtained in
a singular subspace M wittlist(x, M) = dist(x,V) — 1.

Proof. Setd :=dist(x,V). LetS<V be a singular subspace with< S Assume
there is a poins € S\ U. Then by Lemma 2.1.13 there is a pojmt— s with
cod(p,x) =d+ 1. This implies codp,u) = 1 for every pointue U. Letg<U
be a line. Then by Lemma 2.1.26 there is a symple¥tehV containingg ands.
By (A12) p has a cogatgin Y at codistance 2. Hencag,s collinear to all points
of gand we concludg < (qg,x)g. Therefore cofi, (g, X)g) < d-+2 by Proposition
2.1.17(i). Thusx e copr<q7x>g(p). This is a contradiction to Lemma 2.1.24 and we
concludeS=U.

Now let u andv be distinct points ofJ and setW := (u,x)g. By Proposition
2.1.17(i) we obtairuv £ W and henceyp € pry(v). Furthermore, by Proposi-
tion 2.1.25(iii) there is a liné throughu in pry(v). Letw € | be the point with
dist(x,w) =d —1. Thenuv < pr,(w) and hence, pr(w) is a maximal singular
subspace d¥. Since py (w) < U, the claim follows. O

Lemma 2.1.28.Let V be a metaplecton of an SPO space and setdiam(V).
Further let x be a point at finite codistance to V. Set=amin{cod(x,p) | p €
V}. Then for every point & V, there is a point \e V with cod’x,v) = m and
dist(u,v) = cod(x,u) —d.

Proof. It suffices to show that for any pointe V with codx,u) > m, there is a
pointv € V with v L u and codx,v) = codx,u) — 1. Suppose there is a poiat
such that this claim does not hold. We may assumenhstminimal under the
condition that there exists a counterexample.

SetU := copk, (X) and letz € U such that digu, z) is maximal. Since by Propo-
sition 2.1.17(ii) for every point opposite to there is a point at codistance
diam(U) in U, we obtain distu,z) > diamU). By Proposition 2.1.23 the meta-
plectonV is a SPO space and hence by Lemma 2.1.13, there is aypeiMtwith
dist(y,z) = n such thau is on a geodesic fromto z. By Lemma 2.1.24 we con-
clude codx,y) = m. Thus,y # u.

Foru € U, we obtain distu,z) = diamU). Therefore, every point L u with
dist(v,y) = dist(u,y) — 1 has distance diafd) + 1 to z and hencey ¢ U. This
is a contradiction to the assumption that no neighbouwr ofV has codistance
codx,u) — 1 tox. Thus, we may assume¢ U and consequently, diat y) < n.
Since(u,y)g <V, this leads to a contradiction to the minimalityrof O

Proposition 2.1.29.Let y and z be two points wittlist(y,z) = n < ». SetV:=
(Y,2)g and let x be a point witfdist(x,V) < « and pr,(x) = {z}. Then there is

a point w withdist(w,x) = n and pr,(w) = {y}. For every such point w, the
metaplecta U:= (w,x); and V are one-coparallel to each other. Moreover, the
bijective mapp : U — V with {u?} = pr, (u) for all u € U is an isomorphism.
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Proof. Setd := dist(x,V). By Proposition 2.1.25(iz is a gate fox in V. Hence,
dist(x,y) = d +n and the metaplectofx,y)q containsz and therefor&/ < (x,y)q.
By Proposition 2.1.23x,Y)q is an SPO space. Hence, there is a paint (X,Y)q
with dist(w/,x) = n and disfw,z) = d +n. By (A1) and Proposition 2.1.12(iw)
has a gatev in (W, x)g with dist(y,w) = d. Hence, digw,x) = n and pg (w) =
{y}. Now letw be an arbitrary point with distv,x) = n and pg,(w) = {y}. Then
Proposition 2.1.25(i) implies thatis a gate fow in V and hence, ditv,z) =
dist(w,y) + n. Since distw,z) < dist(x,z) 4 dist(w,x) = d +n and distw,y) >
dist(x,y) — dist(w, x) = d, we conclude digtv,y) = d and hencew € (x,y)g. Thus,
we stay in the SPO spacg, y)g.

Letue U~ {x} with u L x. Then disfu,V) < d by Proposition 2.1.17(ii). Since
by Proposition 2.1.25(ix is a gate forzin U, we obtain distu,z) = d + 1. Since
zis a gate forx in V, we obtain distw,v) > dist(x,v) — 1 = d +dist(v,z) — 1 >

d for all ve V-~ {z}. Thus, distu,V)=d and pg(u) < z-. By Proposition
2.1.25(ii) we conclude diafpr, (u)) < 2 since otherwise € pr, (u). This implies
that(z pr, (u)) is a singular subspace. Thereforg, @) has to be a singleton by
Proposition 2.1.27. Hence by Proposition 2.1.25(i)as a gate in V. Since
v L z, we obtain by symmetric reasons thats the gate ofvin U. Thus, we
may repeat this argument to prove that all point§ldhat are collinear ttJ have
a gate inV that is at distance. SinceU is connectedl is one-parallel to/.
AnalogouslyV is one-parallel tdJ.

Since every poing| € V has a unique gatein U, we conclude thag is bijective.
Sincez=x?, v=u? andz L v, we already know thap preserves collinearity. It
remains to check whethgf < zvfor every pointp € xu. Suppose? ¢ zv. Then
Lemma 2.1.21(jii) implies that there is a pos& V with dist(s,z) = dist(s,v) =
n—1 and dists, p?) = n since by Proposition 2.1.28 is a SPO space. Thus,
dist(p,s) = d+nand disfx,s) = dist(u,s) = d + n— 1, a contradiction to Lemma
2.1.14. Ol

The corresponding assertion for a pakrdt finite codistance to a metaplecton
V with copk, (x) = {z} also holds; see Corollary 4.2.8. Anyhow, we do not prove
this claim at this point, since we will use for the proof thasdification of rigid
subspaces of finite diameter. These subspace will be intestin the following
section.

2.2 Rigid subspaces

To prove further conditions for the structure of SPO spacestudy rigid sub-
spaces, i.e. convex subspaces that fulfil an additionalgptpp We will see in
this section that there are some regularities that are wralidid subspaces. Even
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though for a classification of SPO spaces there is still a lwag to go, we get
already at this stage some insight into the list of diagratteched to the SPO
spaces. In the introduction we mentioned how one can reaof ¢t diagram the
symplectic rank of the associated point-line space. We giwvee more facts one
can read from a diagram without any proof. Observing therdiag should only
motivate the significance of some of the following propasis.

Given a diagram with one branching (where the leftmost weofeA,, ; with
1 < j < ncounts as a branching) one can obtain a diagram of typéoprepeat-
edly erasing the rightmost vertices. The symplecta of tls®aated point-line
space are all of type [3. By erasing either the upper or the lower branch that goes
to the right starting from the branching point one obtainggm of type A1 or
At 1, respectively. This means for the point-line space thanth&imal singular
subspaces are projective spaces of the typgsaid A 1. In this spirit, starting
at the leftmost vertex and ending at a vertex immediatelgtrig the branching
point one obtains a diagram of typg_A 1 that corresponds to a generator of a
symplecton.

Definition 2.2.1. We call a symplectolY rigid if Y contains a point that is con-
tained in at least three lines ¥t A subspace is calledgid if it is convex and all
its symplecta are rigid.

LetY be a symplecton of an SPO space angletY be a point. By Corollary
2.1.18 every symplecton is a non-degenerate polar spacankf> 2. Hence,
there is a generatdd <Y with pe G and rKG) > 1. Letqe G~ {p}. Since
by Proposition 2.1.2% is an SPO space, Lemma 2.1.21(iii) implies that there is
a pointr € Y with p L r /£ g. Hence,rp is a line not contained iG. Assume
rk(Y) > 3. ThenG > g and hence, there is a line @throughp that is distinct to
g. This implies that every symplecton of rark3 is rigid. Thus, every symplecton
that is not rigid is of rank 2.

Lemma2.2.2.LetY be arigid symplecton of raikand let <Y be aline. Then
there is a point p= | that is contained in three lines of Y. Furthermore, let p and
g be non-collinear points of Y. Then p is contained in threediof Y if and only

if q is contained in three lines of Y.

Proof. SinceY is rigid, there is a poing € Y that is contained in distinct lines
0o, 01 andgy. We may assumg ¢ | since otherwise we are done. Lgte | be

a point collinear tog. Since rKY) = 2, we know!l % g* since otherwisgq, )
would be a singular subspace of rank 2. pet | . {p’}. Thenp f qand hence
by (BS), on every line through there is a point collinear tp. Fori € {0,1,2},
letq € giNpt. Sinceq # p andY does not contain a singular subspace of rank
2, we obtaing; £ gj for 0 <i < j < 2. Thus,pt, por andpcp are three distinct
lines. O
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Every non-rigid symplecton is@rid; see [vM98, Theorem 1.6.2].

Lemma 2.2.3.Let Y be a symplecton of an SPO space whifY) > 3. Further
letV be a metaplecton such that=SY NV is a singular subspace.

(i) Letrk(S) > 2. Then Sis a generator of Y.
(i) LetSbealine. Then&V has agate zinV if and only jifrg(v) = {z}.

Proof. (i) SinceS<V, we know thatV is a metaplecton of diameter 2. By
Lemma 2.1.26 there is a symplect@rn< V that contains three points &that
are not collinear. Hence, (KNS) > 2. Thus, it suffices to show that already
S :=ZnNY is a generator of and consequentl=S.

Letsc S andp € Z be non-collinear points. Sinékis a polar space, the subspace
pt NS contains a ling. Hence, py(p) is a generator of by Proposition 2.1.27.
SinceY is a polar spaces" contains a hyperplarte of pry (p). NowH < (p,s)g=

Z and henceld < S Sinces¢ p*, we concludes ¢ H and thereforéd < S. This
implies by Lemma A.2.13 thas, H) is again a generator of. The claim follows
with (s;H) < 8 < S<Y and the maximality ofs,H).

(i) Setn:=dist(v,z). Letv eV be a point with pg(v) = {z} for a pointze S.
Then pr,(v) <Y and hence, gi(v) is singular by Proposition 2.1.25(ii). Lgte
S~ {z}. Then by Proposition 2.1.25(jii) there is a geodesic fipta v containing

a point of p(v). Since(y,v)g <V, we obtain py(v) NV # @ and therefore
z ¢ pry (V). Moreover, sincé is a polar space;- N pry (v) contains a hyperplane
of pry(v). Sincey- Npry (V) < (y,V)g <V, we obtainy- Npry(v) < Sand hence,
y+Npry(v) = {z}. Thus, rkpr,(v)) < 1 and with Proposition 2.1.27 this implies
pry (v) = {z}. Now the claim follows from Proposition 2.1.25(i). O

The following Proposition shows that whenever a symplectorankr has a
generator that is not a maximal singular subspace thenythiplecton is of type
D,, see Theorem B.2.3.

Proposition 2.2.4.LetY be a symplecton of an SPO spa€eFurther let M be a
generator of Y that is not a maximal singular subspace?ofThen the following
assertions hold:

(i) Every hyperplane of M is contained in at most two generatdhs.o

(i) Letrk(Y) > 3. Then every hyperplane of M is contained in at most two
maximal singular subspaces of.

Proof. (i) First let rk(Y) > 3. Suppose there are generathirandN’ of Y such
thatM, N andN’ are pairwise different and intersect in a common hyperpkine
Let pe N’ H. By Lemma 2.1.13 and (A12) there is a po#dt codistance 2 to
p such thatp is a cogate fosin Y. Letx€ M~ H andy € N~ H. Thenp, xand
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y are pairwise non-collinear and henge;» s« .

Let M’ <.¥ be a singular subspace containigproperly. LetH’ be the hyper-
plane ofM’ that contains all points that are non-oppositéfhenH’ containsH
properly sinceH <M <M’. Letze H'\ H. Thenz / y sincez ¢ (x,y)q. Hence
Z = (y,2)q is a symplecton. SincgandH are contained iz, the singular space
(y,H) =N s a generator o by Lemma 2.2.3(i). Thugz,H) is a generator of.
Since(z,H) < H’, all points of this generator have codistance &.t8incey € Z
there is a cogatd for sin Z with cods,s') = 2. Thus, all points ofz,H) are
collinear tos. We conclude thafs’,z H) is a singular subspace containifmgH )
properly, a contradiction.

Now let rk(Y) = 2. ThenM is a line. LetSbe a singular space that contais
properly. Suppose there is a poine M that is contained in three lines ¥t Let
x € M~ {y} and letsbe a point with co¢s,y) = 1 ands < x. Thenshas a cogate
s inY with cod(s,s) = 2. Hencegyis a line. Furthermore, since(®) > 2, there
is a lineg < Scontainingy such that all points og are at codistance 1 ® Let
h <Y be a line througly distinct toM ands'y. Take a poinz € h~ {y}. Then
we obtains— zandx / z. Letw € g~ {y}. Sincew ¢ Y = (x,2)g andx L w, we
obtainw / zand henceZ := (w, z)q is a symplecton. By (A12) we conclude that
shas a cogate at codistance ZinSince this cogate is collinear to all pointsgyf
we conclude rkZ) > 3. Since rKY) = 2 andY # Z, we obtainZNY = h. Thus,
we may apply Lemma 2.2.3(ii) to conclude tlyds a gate fox in Z. This implies
dist(x,w) = 2, a contradiction.

(i) Let H be a hyperplane dfl and letM’ be a maximal singular subspace #f
containingM. Let N’ be a maximal singular subspace.gf with N’ £ M’ and
H <N’ Letpe N ~ M. Then there is a poirg € M’ with g / p by the maxi-
mality of M. SupposéM < p*. ThenM is contained in the symplectdp, g)g.
Thus, Lemma 2.2.3(i) implies thid is a generator ofp,q)g, a contradiction to
M < (p,M) < (p,q)g. Therefore we may assunges M. Furthermore, we con-
clude thatM’ is the unique maximal singular subspaces6f containingM.
Assume it is not possible to choopesuch thatp ¢ Y. Then(p,H) is a generator
of Y by Lemma A.2.13. Hence by (iM and (p,H) are the only generators of
Y containingH. The claim follows. Now lefp ¢ Y. Then by Proposition 2.1.27
N :=pr/(p) is a generator of. Sinceq ¢ N, we knowN # M. By (i) M and
N are the only generators &f containingH. Thus, for every point € N’ < H,
we obtain py(r) = N. Since by Lemma A.2.181 is a hyperplane oN, there is
a points € N such thatN = (s,H). Sinces L r for every pointr € N' <\ H, we
concludes € N’ and henceN < N’ by the maximality ofN’. Analogously toM,
N’ is the only maximal singular subspace contairiihg

For a third maximal singular subspateof . with H < L, we conclude again
M £Y and that. NY contains a generator &f. SinceN « Y by analogous rea-
sons, this leads to a contradiction to (i). ]
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The following proposition implies that the diagrams atedho SPO spaces
have at most one branching. We know that the generators ohplegton appear
in the diagram as a subdiagram of type A starting at the leftwertex and ending
one vertex after the first branching. With a second branchbimg would find
generators that are contained in different maximal singaulspaces.

Proposition 2.2.5.Let Y be a rigid symplecton of an SPO spa€e Then every
generator of Y is contained in a uniqgue maximal singular pals of.”.

Proof. Let G be a generator of. Suppose there are two distinct maximal singular
subspaceM andN of . with G <M NN. Then there are non-collinear points
p € M andq € N. Hence,(p,q)q is a symplecton containinG. SinceY # (p, g)g,

we obtainY N (p,q)g = G. Since(p, G) < (p,q)q is a singular subspace containing
G properly, we conclude IG) < 2 by Lemma 2.2.3(i). Hence, (K) = 2 by
Corollary 2.1.18 and consequentlg, is a line. SinceY is rigid, G contains a
point y that is contained in three lines 8f by Lemma 2.2.2. By Proposition
2.2.4(i) this implies thaG is a maximal singular subspace.of, a contradiction

to (p,G) > G. W

Our next goal is to show that in connected rigid subspacesyaiblecta are
of the same rank and therefore, connected rigid subspacdisioieter> 2 are
strongly parapolar spaces with symplectic rarilr a cardinak.

Lemma 2.2.6.LetY and Z be two rigid symplecta having a line in common. Then
rk(Y) =rk(Z) or Y and Z are both of infinite rank.

Proof. Let g be a common line of andZ. If YNZ > g, the claim follows from
Lemma 2.2.3(i). Hence, we may assuwieZ = g. First let rk(Y) = 2. Theng s

a generator of and since is rigid, there is a poing € g that is contained in three
generators o¥. Thus,g is already a maximal singular subspace by Proposition
2.2.4(i). We conclude thatis a generator of and therefore r{Zz) = 2.

Now assume that andZ both have rank> 3. LetM <Y be a generator containing
g and choose a point € M\ g. Analogously, letlg € N \ g for a generatoN

of Z with g < N. By Proposition 2.1.23 and Lemma 2.1.21(iii) there is a poin
r € Y with dist(p,r) = 2 andg < rt. Sinceq ¢ Y, it cannot happen thaf is
collinear to bothp andr. Hence, we may assume digtq) = 2. Now (p,Q)g iS

a symplecton that intersects bothandZ in a generator by Lemma 2.2.3(i). The
claim follows. O

We will see later on that the case where bgtAndZ have infinite rank only
occurs for the trivial cas€ = Z and therefore rRY) = rk(Z) holds for all cases.

Corollary 2.2.7. Let Y and Z be two symplecta of a connected rigid subspace.
Thenrk(Y) =rk(Z) or Y and Z are both of infinite rank.
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Proof. SinceY andZ are contained in a connected rigid subspace, we find a finite
sequencéY;)o<i<n Of rigid symplecta such thd = Yo, Z =Yy andYiNYi 1 # @

for 0 <i < n. Hence, we may restrain ourselves to the cAS& # &

If YNZ contains a line, we obtain (K) = rk(Z) by Lemma 2.2.6. Hence, let

Y NZ contain a single poins. Let p € Y \ {s} be a point collinear ts. Since

p ¢ Z, there is a point] € Z with q L sand distp,q) = 2. Now (p,0)q is rigid
sincep andq are contained in a common rigid subspace. Sipgg (p,g)gNY
andgs < (p,g)gNZ, the claim follows from Lemma 2.2.6. O

Again, as we will see later, the case that bgtandZ are of infinite rank only
occurs ifY = Z. In other words, a rigid subspace that contains a sympletiai
infinite rank already equalé.

The following proposition considers polar spaces of typg,3ee Theorem
B.2.3. In terms of diagrams, the two different subdiagraftyme A;_1 1 corre-
sponds to the two different classes of generators.

Proposition 2.2.8.LetY be a polar space of finite rank r such that every singular
space of Y of rank ¥ 2 is contained in exactly two generators of Y. Further let
M, N and L be generators of Y. Therky(MNN) +crk (LNM) +crk (LNN)

is even. Equivalently, the dual polar graph of Y is bipattite

Proof. If M = N, there is nothing to prove. Hence, we may assume thall
andL are pairwise disjoint. Assumd andN intersect in a common hyperplane
H. Suppose there are poiriss M < H andq € N . H that are both contained in
L. Thenp L gand henceM = (p,H) < g*. SinceM is a generator, this implies
g € M, a contradiction. Therefore we may assuseL <H.

Let B be a basis off such thaBNL is a basis oH NL. Setr’ :=rk(HNL). Then
IB|=r—1and|BNL|=r'+1. Sinceb: NL is a hyperplane ok for everyb ¢
B~.L, we conclude rkk NHL) =rk(LN(B~L)*) > (r—1)—(r—r' —2) =r'+1.
Thus, there is a poirgte (LNH)~ H. We conclude thafs,H) is a generator of
and sinceM andN are the only generators containiHg this impliesM = (s H).
Thus, crig (LNN) = crk (LNM) + 1. The claim follows since cigk(MNN) = 1.
Let® be the set of generators¥f Further se®o:={G e & |crk (LNG) € 2-IN}
and®; := & \ Bo. We conclude that the dual polar graphYofs bipartite since
every edge has one vertex &y and one in®;. Now the claim follows since
crky (M NN) equals the distance & andN in the dual polar graph. O

Translating the following proposition into the languaged@aigrams provides
a list of strong restrictions to the possible diagrams witk branching. We will
call the branches of the diagram the left, the upper and thierlbranch, always
excluding the branching point. We may assume that the uppaerch is at least
as long as the lower one. Claim (iii) states that the givenggnoton is of type
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D 1. Note that this symplecton has a genenerator that is not &nmahsgingular
subspace and thus, the upper branch has length at least ifn @fpsays that
if the left branch possesses at least one vertex, then thex loanch has exactly
one vertex. Moreover, if the left branch possesses at leastértices, the upper
branch possesses exactly two vertices by claim (vii). Bintie left branch has
at most three vertices by claim (viii). This provides exadtte list of diagrams
with a branch given in the introduction.

Proposition 2.2.9.Let Y be a rigid symplecton of an SPO spa€eand let x be a
point withdist(x,Y) = 1 such that X= pry(X) is a generator of Y. Further lab;
be the set of all generators W Y withcrkx (X N"W) = 2n+i where ne IN and
i €{0,1}.

@) rk(y) >3.

(i) Let We &g. Then there is a point w (x,Y)g with distw,Y) = 1 and
pry(w) =W.

(i) LetWe &;and W € &;. Thencrkyw(WNW’) € 2N if and only if i= j.

(iv) Letrk(Y)>4and letWe &41. Then W is a maximal singular subspace.

(v) Letrk(Y) > 4 and let We &; such that W=Y NZ for some symplecton Z.
Theni= 1.

(vi) Letrk(Y) >4, W e &o~ {X} and w¢ Y such thatw,W) is singular. Then
X L w impliescrkyx (X NW) = 2.

(vii) Letrk(Y) > 5. Then(x, X) is a maximal singular subspace.
(viii) rk (Y) <®6.

Proof. (i) Suppose rkY) = 2. ThenX is a line. Since is rigid, there is a point
on X that is contained in two other lines ¥t Thus, Proposition 2.2.4(i) implies
thatX is a maximal singular subspace.gf, a contradiction to the existencexf
Hence, rkY) > 3.

(i) SetS:= XNW. First assume csS) = 2. ThenS+# & by (i). Take a point
pe W~ S Then(p,X)q is a symplecton that contains a hyperpl&he= pry (p) of
X. Thus,(p,H) is a common generator &fand(p,x)q. Now letq € W~ (p,H).
ThenM := pr, . (0) contains(p,S) =W (p,H) and henceM is a generator
of (p,X)g by Proposition 2.1.27. This implidd > (p,S). Thus, for any point
weMNY =M~ (p,S), we obtain py(w) > (q,p,S =W, disfw,Y) =1 and
W e (p,X)g < (X,Y)g.

For a generatdi, with crkx (X NWh) = 2nthere is a sequeng®)o<i<n Of gener-
ators ofy with W = X and crky (W NWi;1) =2 for 0< i < n. By induction there
are pointsw; with dist(w;,Y) = 1 such that pr(wj) =W andw; € (Wi—1,Y)g <
(X, Y)g for 1L <i<nandwp=x.
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(iii) Let M andN be generators of that intersect in a common hyperplade If
M € &g, thenM is not a maximal subspace.iff by (ii). Thus, Proposition 2.2.4(i)
implies thatM andN are the only generators ¥fcontainingH. If M € &4, then
there is a poinpp € X . M and we obtairW := po M € &g by Lemma A.2.19.
By Lemma A.2.16 the generatoké andW intersect in a common hyperplane by
H’. Hence as befor&y andM are the only generators containiktj. If N and
W have a hyperplane in common, thieh < N by Proposition A.2.14 and hence
W = N. If N andW have no hyperplane in commoH, andH’ are distinct and
we obtain crig(H’ NH) = 2. This implies crig(WNN) = 2. By (ii) there is a
pointw with dist(w,Y) = 1 such that pr(w) = W. Hence, again by (ii)N is not a
maximal singular subspace of and we conclude by Proposition 2.2.4(i) tihat
andN are the only generators 8§f containingH. Now Proposition 2.2.8 implies
that the dual polar graph of is bipartite and the claim follows.

(iv) Let W’ be a generator with cgkW NW') = 1. ThenW’ € B¢ by (iii) and
hence by (ii), there is a poin/ ¢ Y such that(w',W’) is a singular subspace.
Assume there is a poiw with dist(w,Y) = 1 and py(w) =W. Thenw [/ w
since otherwise the generaidrwould be contained properly in the singular sub-
space(w,W) of the symplecton(p,w')q, wherep € W~ W', a contradiction to
Lemma 2.2.3(i). Hence(w,w)q is a symplecton that contai¥¥ N"W'. Since
rk(WNW') > 2, there is a common generat”’ of Y and (w,w')g by Lemma
2.2.3(i). Since{w,W) is singularW cannot be a generator ¢fv,w)q and thus,
W £W”. AnalogousiywW’ = W" and we conclude th&y, W andw” are pairwise
distinct generators of containing the common hyperpladénW’, a contradic-
tion to Proposition 2.2.4(i).

(v) Let Z be a symplecton such th¥tnZ = W. Then there is a poiny € Z
such that pg (W) is a hyperplane ofV. Hence, pf, (W) intersectdV in a hyper-
plane. Since rRV) > 3, Proposition 2.1.27 implies thatygw/) is a generator of
Y. Thus, pt (W) € &g by (iv) and therefor&V € &1 by (iii).

(vi) SetS:=XNW and letp € X\ S. Assumew L x. Then the symplecto(p, w)q
contains a hyperplarté of W andS contains a hyperplane éf sincex € (p,w)g.
Thus, crig(S) = 2 by (iv).

(vii) Assume there is a singular subspaddecontaining(x, X) properly. Lety €
Y~ X and seH := X Ny'. Then(x,y)q is a symplecton containing. Hence by
Lemma 2.2.3(i)Y and(x,y)q have a generator in common sinc¢hly > 3. Since
H is a hyperplane of this generatx,H) is a generator ofx, y)g.

Now letv € (X,y)g~ (X,H) with v L x and letu € M ~ (x,X). Thenv [ u since
otherwiseu € (x,y)q and(x,H) would be no generator ¢k, y)g. Thus,Z := (u,V)q
is a symplecton containing a hyperpladef H. Since rKS) > 2, the symplecty
andZ have a generatds in common. Since cik(S) = 2, we obtain cri(S) =2
and hence(u, x,S) is a generator a2. This impliesMNZ = (u,x,S). Sincex¢Y,
there is a poins€ G\ M. Letze X with z /£ s. ThenY = (s,z)q and sincesis



‘ 2.3. Twin SPO spaces } @

collinear to a point oxxuthis impliesY Nxu## &, a contradiction Sincé NM = X.
(viii) Let W be a generator of with crkx (X "W) = 4. Further letw be a point
with distw,Y) = 1 and py(w) = W. Assume yrKY) > 5. Thenw L x by (vi).
Hence, (w,x)g is a symplecton containing/ N X. SetS:= (w,x)gNY. Then
crks(SNwt Nxt) = crks(WNX) < 2. HenceSis not a generator of and there-
fore rkWNX) < 1 by Lemma 2.2.3(i). We conclude(X) <5 and consequently
rk(Y) <6. O

We conclude this section by examining the case of sympleitteimfinite rank
and revisiting connected rigid subspaces.

Remark2.2.10 LetY be a symplecton with infinite rank of an SPO space. Further
let Z be a symplecton that has a lihevith Y in common. Then for every point

p € Z with | < pt, the subspac@' contains a generator &f by Proposition
2.1.27. By Proposition 2.2.9(viii) this impligs€ Y and hence, every generator
of Z containingl is already contained i. We conclude thaZ equalsY. In a
connected rigid subspace that contains more than one sgtoplenere are always
two symplecta that have a line in common. Hence by Corolla2y72 a connected
rigid subspace of diametér 2 has always a symplectic ramk Moreover, this
rank is either finite or the connected rigid subspace is a &etgn of infinite
rank.

2.3 Twin SPO spaces

As already mentioned, in a twin SPO space every two pointg leéther finite
distance or finite codistance. Therefore, every two poifhtstain SPO space are
somehow related to each other. This fact has some consezgietich we state
in this section.

Definition 2.3.1. LetV be a convex subspace of an SPO space such that for any
two pointsx andy of V with codx,y) < o, every pointz | y with codx,z) =
codx,y) + 1 is contained ifY. Then we calV coconvex

For a set of point#1, we denote byM)g thecoconvex spanf M, which is the
smallest coconvex subspace contairlihg

Lemma 2.3.2. Let.¥ be a twin SPO space and let x and y be points/fvith
X< y. Then(x,y)g = ..

Proof. For every poink 1y, we obtain co@x,yz) = 1 by (A1). Thusy*: < (X,Y)G.
Moreover, there is a point | x with w — zby (A4). Since by symmetric reasons
w € (X, Y)s, We may repeat this argument to show, that every point eglitoz is
contained in(x,y)g and consequently, every point connected wiil contained
in (x,y)c. Analogously, every point connected witlis contained inx,y)g. [
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Letx, y andz be points of an SPO space that are pairwise at infinite distanc
and finite codistance 0. Note that in this case y andz are contained in pairwise
distinct connected components that we denotey.#y and.#; and the union
of every two of them is a twin SPO space. Then it might hapgeat, there is a
pointZ < y with codx,Z) = cod(x,z) +dist(z,Z). Since ther € (x,y,2)g, we
conclude by the previous lemma th&t and.”; are contained ifx,y, z)s. Con-
sequently, there is a point oppositexti (X, Y, Z)g and we obtainx < (X,¥, 2)c.

In contrast, for twin SPO spaces, studying coconvex sulespaakes much more
sense.

Lemma 2.3.3.Let. be a twin SPO space that contains two points at distance n.
Further let z be a point of”.

(i) Lety be a point of” with cod(y,z) = k < n. Then there is a point x with
cod(y,x) = n anddist(x,z) = n—Kk.

(i) Lety be a point of with dist(y,z) = k < n. Then there is a point x with
dist(x,y) + k = dist(x,z) = n.

Proof. Let.* and.~ be the two connected components of the twin SPO space
. We may assume thatis contained in*. Let p andq be two points at
distancen. Then by Lemma 2.1.13 there is a pointith r — p and codr,q) = n.
Hence, there is a poist— g with dist(r,s) = n. Sincer andsare contained in the
other connected component@andg, we may assume thatandg are contained
in.7t.

(i) Sinceze ./, we knowy € ./~. Since codly, (p,g)g) > n by Proposition
2.1.17(ii), there is a poini € .t with cod(y,w) = n. By Proposition 2.1.16(ii)
we conclude that there is a poid (w, z)g with cod(y, Xx) = nand distx,z) =n—k.
(i) Sinceze .7, we knowy € .7*. By Lemma 2.1.13 there is a poiwte .7~
that is opposite t@ with codw,y) = k. By (i) there is a pointx € ./* with
codw,x) = nand distx,y) = n—k. This implies distx,z) = n. O

As a consequence of this lemma the two connected componfeatsiim SPO
space have the same diameter. Therefore whenever we spéak fiollowing
of the diameter of a twin SPO spacee mean the diameter of each of the two
connected components.

Definition 2.3.4. LetU andV be two convex subspaces of an SPO space. Then
we callU andV oppositeif for every point ofU there is an opposite point
and for every point of/ there is an opposite point .

Proposition 2.3.5. Let S be a singular subspace of finite rank of an SPO space.
Then there is a singular subspace T that is opposite S. Furttve, every convex
subspace T that is opposite S is singular and has the sameasga8k
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Proof. Let T be a convex subspace that is oppoSit&uppose there are points
andqin T that are not collinear. Then for a poist S there is by Proposition
2.1.17(ii) a point € (p,q)g < T with cod(s,t) > 2. SinceSis singular, there is no
point in Sopposite, a contradiction. Thusl is singular.

There is a basiB of Swith |B| = rk(S) + 1. SinceSis oppositeT, we conclude
that copr (p) is a hyperplane oT for every pointp € B. Furthermore, Lemma
2.1.21(i) impliesycg p-NT = @. Therefore we conclude (k) < rk(S). By
symmetric reasons we obtain(& = rk(T).

We prove the existence df by induction. For rkS) = 0, there is nothing to
prove since— is total. Now let rKS) = n and assume that the claim holds for
every singular space of rank— 1. LetS be a hyperplane o8 and letT’ be a
singular subspace that is oppos#te Then rkS) = rk(T’) = n— 1. Moreover,T’
is not oppositeS since rKT’) < rk(S) and hence, there is a poigte Ssuch that
cod(p,q) = 1 for every pointp € T'. Since every point of’ is opposite to a point
in S andqis collinear to all points oS, we obtain co¢g, T’) = 1. Therefore we
may apply Lemma 2.1.21(ii) to conclude that there is a poinatqwith T/ < rt.
SetT = (r,T').

Take a poins e S If s€ S, then there is a point ifi’ that is opposite. If s=q,
thenr «— s. Finally, if s¢ SuU{q}, then the linesgintersectsS in a points’ since
S is a hyperplane o8. Lett € T’ witht < §. Sinceq « t, we conclude by (A2)
thatq is the only point orsqthat is non-oppositeand thereforé < s.

Now take a point € T. If t € T’, then there is a point i§ that is opposité. If
t=r, thenq«— t. Finally, ift ¢ T"U{r}, then the liner intersectsT’ in a point
t’ sinceT’ is a hyperplane of . Sincet’ +» g, we conclude by (A2) that is the
only point ontr that is non-opposite and thereforey — t. Thus,SandT are
opposite. O

A consequence of this proposition is that if a twin SPO spé#ce (. *,.7 )
has finite singular rank, we obtain 1K) = srk( ") = srk( ). Furthermore,
if srk(.#) is infinite then both srk’*) and srK.”~) are infinite.






Connected rigid
subspaces

In this chapter we consider connected rigid subspaces aedagiough classifi-
cation of them. By Remark 2.2.10 every connected rigid sabsas a finite
symplectic rank or it is a polar space of infinite rank. It siout to be convenient
to distinguish the connected rigid subspaces by their syatiglrank. By defini-

tion, a symplectic rank only occurs for subspace of diamet@r Furthermore,

the symplectic rank is at least 2.

3.1 Maximal singular subspaces

The union of a chain of singular subspaces is again a singulaspace. Thus,
Zorn’s Lemma implies that each SPO space and each of its acbspontain
maximal singular subspaces. MoreoverMdbe a subspace of an SPO spate
Then every maximal singular subspace\bfs contained in a maximal singular
subspace of. Conversely, there are maximal singular subspaces’ahat
intersectV in a maximal singular subspace. These subspaces play amténpo
role by the classification of connected rigid subspaces.

Lemma 3.1.1.LetV be a connected rigid subspace of an SPO spéarich that
diam(V) > 2. Further let?t be the set of maximal singular subspaces/that
contain a maximal singular subspace of V anddebe the set of subspaces that
are a generator of a symplecton of V.

(i) Every singular subspace S witk(S) < yrk(V) is contained in an element
of &.

(i) For every subspace M 91, there is a subspace & ® with M > G.

(iii) Every maximal singular subspace. withrk(MNV) >yrk(V)—2>1
is an element ain.
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(iv) Let M and N be distinct elements®t. Then MNN is properly contained
in an element 0&.

(v) Letyrk(V) < o and let M and N be elements 8R. Then there is a se-
quence(M;)o<i<n € om"+1 with Mg = M and M, = N such that MN M1
is a hyperplane of an elementdif for i < n.

(vi) LetM and N be elements 8k. ThendistM,N) = distMNV,NNV).

Proof. (i) Let p € S Since dianiV) = 2, there is a symplectori <V and hence,
there is a poing € Y with dist(p,q) = 2. SetYy:= (p,0)g. If S< Yo, there is noth-
ing to prove. Thus, we assume that faf IN, we already defined and there is a
pointpi € Swith p; ¢ Yi. If pry.(pi) is a singleton, then there is a pogpte Y; with
dist(pi,qi) = 2 and we obtairip;,YiNS) <Y 1, whereY 1 := (pi,qi)g. If pry, (pi)
contains a line, then (¥;) < 6 by Proposition 2.2.9(viii) and therefore(® < 5.
This implies rKSNY;) < 4 and hence, there is a poigt<Y; with g; £ pi and
SNY; < gi* since every singular subspace in a polar space of finite suttei
intersection of two generators. Thug;,YiNS) < Yi; 1, whereYi 1 = (pi,Gi)g.
By Proposition 2.2.9(viii) we obtain after finitely many ptea symplecton con-
tainingS.

(i) First assume yrRV) is finite. Then rkM NV) > yrk(V) — 1 by (i) and the
maximality ofM NV. By (i) we obtainG € & for every subspac& < MNV with
rk(G) = yrk(V) — 1. Now assume that y(K) is infinite. Letx € V be a point
with dist(x, M) = 1. Then pg;(x) "V < MNV sinceM NV is a maximal singular
subspace o¥. Thus, there is a pointe MNV with x £y andY = (X,y)q is a
symplecton olV. Suppose there is a poine M\ Y. Then(y,pry (X)) < pr(2)
and hence, g(z) is a generator o¥. This contradicts Proposition 2.2.9(viii).
Thus,M <Y and we conclud® € & by the maximality oM.

(i) We assumeM £ V since otherwise there is nothing to prove. et MNV
be a subspace with {(8) = yrk(V) — 2 and letx € M be a point not contained
in V. By (i) there is a symplectol <V with S<Y. Sincex ¢ Y, we obtain
S< pry(x). Hence by Proposition 2.1.27 yiK) is a generator of . By Proposi-
tion 2.2.5 there is a unique maximal singular subspédée .~ with pr, (x) < N.
This impliesx € N andN € 9.

We may assumé&l # M since otherwise we are done. Let M~ N. Sup-
pose py(x) < pry(y). Then (y,pry(x)) is singular and therefore contained in
N, a contradiction. Thus, there is a pomnE pr,(x) with dist(y,z) = 2. Since
(2,9 < YN (Y,2)g Lemma 2.2.3(i) implies that and(y, z)g have a common gen-
erator. Since rkz, S)) = yrk(V) — 1, we obtain(z, S) = pry(X). Hence, py(x) is
a common generator @f,z)g andY. This is a contradiction sincee (y,z)y and
therefore(x, pry (x)) < (y,2)g. We concludeN = M.

(iv) We may assumd NN # & since otherwise there is nothing to prove. By
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(i) there are subspac€s < M andH < N with {G,H} C &. There is no singu-
lar subspace containirg andH since otherwise there would be an elemenrivin
containingG andH, a contradiction to Proposition 2.2.5 alld£ N. Hence, there
are pointsx € G andy € H with x / y. Thus,M NN is properly contained in the
singular subspace, M N N) of the symplector{x, y)q of V.

(v) By (ii) there are symplectd andZ in VV such thalY "M is a generator of and
ZNN is a generator of. SinceV is connected and convex, we find a sequence
(Yi)o<i<n Of symplecta irV such that; NYi11 # @, whereYg =Y andY, = Z. If

for i < n, the intersectiorY; NY;.1 is not a generator, then there are powtsY;
andz € Yi;1 such thatt, Y1 <yt Nzt andy £ z Hence, we may insety, z)g
betweeny; andY; 1 to obtain a sequence of symplecta with greater intersextion
Since yrkV) < o, we may assume thatNY,, 1 is a generator.

Since yrKY;) < o for 0 <i < n, we conclude by Proposition A.2.20 that there is a
finite sequence of generatdiG; j)o<j<n in Yj such thaiG; j andG; j, 1 intersect

in a hyperplane foj < nj, wheren; € IN and furthermor&si 1 0= G n, = YiNYiy1
fori<n, Gog=MnNY andG;n, = NNZ. Now the claim follows from Proposi-
tion 2.2.5.

(vi) Setd :=dist(M, N). Ford = 0 this follows by (iv). Therefore we may assume
d>0. Letpe MNV and letr € N with dist(r,M) =d. Assume digMNV,N) > d.
Thenr ¢V since otherwise gy(r) < (p,r)g <V. Letqe NNV. Then distp,q) =
d+ 1, since otherwise € (p,g)g < V. SinceU := (p,q)g <V, we obtainr ¢ U
and thereforey € pry (r). By Proposition 2.1.25(i) we obtaingpfr) > {q} since
dist(r,p) = d + 1 and hence is no gate for in U. Thus by Proposition 2.1.27
pry(r) is a maximal singular subspacedf Since distp,q) > 2, we conclude
by (ii) that pi, (r) contains a subspade € &. By Proposition 2.2.5 there is a
unique maximal subspad¥ of . that containss. This implies(r, pry (r)) < N'.
SinceNN N’ £V, we obtainN = N’ by (iv). This is a contradiction, since
dist(p,pry(r)) = d by Proposition 2.1.17(i). Thus, there is a pog¢ M NV
with dist(s,N) = d. Since for everyt € NNV with dist(s,t) = d + 1 we obtain
pra(s) < (s,t)g <V, we conclude digs,NNV) = d. |

3.2 Connected subspaces of symplectic rank 2

We start our case distinction with the lowest possible syt rank 2. Before
we start we prove a condition for arbitrary SPO spaces whiekvll need in this
section.

Lemma3.2.1.Let x be a point of an SPO space and let| be a line wi#i(x, 1) =:
d < 0 andpr;(x) = 1. Then there is a point y wittist(x,y) =d —1and I < y*.

Proof. Let p andq be distinct points of. Thenl N (x, p)g = {p} by Proposition
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2.1.17(i). Thus, digty, (X, p)g) = 1. Since distq, x) = dist(p,x) = d, we conclude
that p is not a gate forg in (x,p)g. Hence, Proposition 2.1.25(i) implies that
pr<x7p>g(q) contains a lingy through p. By Proposition 2.1.17(i) there is a point
y € gwith dist(y,x) = d — 1. The claim follows sincg ¢ | andp Ly L q. O

Proposition 3.2.2.LetV be a connected rigid subspace of an SPO spdagith
yrk(V) = 2. ThenV is gated.

Proof. SinceV has a symplectic rank, we know dig) > 2. Letx € .” be a
point with dis{x,V) < «. Suppose there is a life< pr,(x). Then by Lemma
3.2.1 there is a poing with dist(y,V) = 1 andl < pr,(y). Since dianiV) > 2,
Lemma 3.1.1(i) implies thakt is a generator of a symplecton ¥f This is a
contradiction to Proposition 2.2.9(i). Thus,,0x) contains a single point Now
let pe V. Since distp,y) < o, the pointy is a gate fox in (p,y)g by Proposition
2.1.25(i). O

This proposition enables us to give a first classificationigifirsubspaces of
symplectic rank 2 and finite diameter.

Theorem 3.2.3.Let V be a rigid subspace of an SPO space wit(V) = 2 and
diamV) < «. ThenV is a metaplecton.

Proof. Setn:=diamV). Lety andz be two point ofV with dist(y,z) = n. Set
U = (y,2)g and letx be a point ofV. By Proposition 3.2.X has a gatevin U.
Since there is a point i at distancen to w, we obtainx = w by the diameter of
V. HencelU =V. O

In the rest of this section we study connected subspacesdohngin a rigid
subspace of symplectic rank 2.

Lemma 3.2.4.Let U be a metaplecton of an SPO space witm(U ) = 3. Fur-
ther let Y < U be a rigid symplecton of rank
(i) Let X< U be a symplecton with XY = &. Then X and Y are isomorphic.

(i) Let Z<U be a symplecton with ¥ ZNY # &. Then YNZ is a line and
rk(zZ) = 2.
(iii) For everyline g<Y, there is a symplectonZU withYNZ =g.

(iv) Let X and Z be symplecta of U that are distinct but not disjtnt . Then
X=Z.

(v) Let Z< U be arigid symplecton with ¥ ZNY # &. Then U is rigid and
all symplecta of U are isomorphic.
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Proof. (i) Let uandv be points ofX with (u,v)g = X. By Proposition 3.2.2 both
u andv have a gate iiY. Thus by Proposition 2.1.2X andY are isomorphic.

(i) Let we YNZ and letz € Z with dist(zw) = 2. Thenz¢ Y sinceY # Z.

By Proposition 2.1.17(i) there is a poigte Y with y | z. Thus, Proposition
3.2.2 implies thay is a gate forzin Y. With Proposition 2.1.25(iii) this implies
y € (W, 2)g=Z. SinceY # Z and rY) = 2, we conclud& NZ = wy. Since every
symplecton that is not rigid has rank 2, the claim follows Bmma 2.2.6.

(iii) Let y be a point ong and letz€ Y be a point with digty,z) = 2. SinceU

is an SPO space by Proposition 2.1.23, there is a point) with x L y and
dist(x,z) = 3. This impliesx ¢ Y andy is a gate forx in Y by Lemma 2.1.14.
Thus,(x,9)g is @ symplecton. By (ii) we obtaitx,g)gNY = g.

(iv) By (ii) we know that bothX andZ intersecty in a line. Setg:=XnNY and
h:=ZnNY. Moreover, rKX) =rk(Z) = 2.

Firstassumgnh = @. Letx € g. SinceY contains no triangle, there is a unique
pointy € hthat is collinear tox. Letz € Z with dist(y,z) = 2. Then by Proposition
3.2.2zhas a gate ilY and consequently, this gate is lband distinct toy. Hence,
dist(z x) = 3. By Lemma 2.1.14 this implies thatis a gate forx in Z. By
analogous reasonsjs a gate fory in X. Suppose there is a poipte XNZ. Then

y € (X, p)g < X, a contradiction. Hencé& andZ are disjoint. Since di$x,z) = 3
and distz, X) < 1 by Proposition 2.1.17(i), we conclude by Lemma 2.1.14 that
has a gate iiX. Hence, Proposition 2.1.29 implies thaandZ are isomorphic.
Now assume tha andh intersect. Lety <Y be a line that is disjoint tg. By
(iii) there is a symplectoX’ < U with X’NY = ¢. As above we obtaix = X’.

If ¢ Nh= @, we obtain furtheX’ = Z and hence, we are done. Thus, we may
assumeay Nh# @. Letx be the intersection point af andh and letx’ be the
intersection point off andh. Assumeg andh are the only lines o¥ throughx.
Then there is a point € g such that there are three linesYvofneeting iny. Since

Y contains no triangles, we obtain digx') = 2 and hence by Lemma 2.2.2, there
are three lines througK in Y. Since we want to showl = Z or X’ & Z, we
may assume by symmetric reasons that there are three linethimughx. Let

y € d ~{X}. Thendistx,y) = 2 as above. By Lemma 2.2.2 there are three lines
throughy’ in Y. SinceY contains no triangley’ is the unique line througl that
intersect$. Analogously, there is a unigue line througtthat intersectg. Thus,
there is a linel’ throughy’ that is disjoint to botth andg. By (iii) there is a
symplectorZ’ < U with Z’NY = K. Now we concludé&X = 7' = Z as above.

(V) By (ii) | :=YNZis a line. Letx be a point orl. Further lety € Y .| and
ze Z~. | be points withy L x L z. Then disty, z) = 2 since by Proposition 3.2

is a gate foty in Z. Thus,X := (y,2)q is a symplecton o). Sinceze X \Y, we
obtainX # Y. Hence, (iv) impliesX = Z. AnalogouslyX =Y and henceY = Z.
Now letW be an arbitrary symplecton &f that is distinct toY. If YNW = &,
thenW =Y by (i). OtherwiséV = Z by (ii). The claim follows. O
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Proposition 3.2.5. Let V be a rigid subspace of an SPO spagésuch that
yrk(V) = 2 anddiam(V) < co. Further let x be a point withlist(x,V) = 1. Then
diam((x,V)q) = diam(V) + 1. Let | <V be a line withpr, (x) < I. Then(x,V)q is
rigid if and only if (x,1)q is rigid. Moreover, if(x,V)q is rigid, then all symplecta
of (x,V)g are isomorphic.

Proof. Setd :=diam(V) andX := (x,l)g. By Proposition 3.2.2 has a gatginV.
Thus,X is a symplecton. By Theorem 3.2.3 there is a paietv with (y,z)g =V
and hence(x,V)g = (X,y,2)g. Sincey is a gate forx in V, this implies(x,V)g =
(x,2)g and diani(x,z)g) = d+ 1. If (x,V)q is rigid, X is a rigid symplecton. Thus,
it remains to prove that iX is rigid, every symplecton ofx,V)q is isomorphic to
X.

LetY be a symplecton ofx,V)g such thaly NV # @. Letpe YNV and letg e Y
such thal = (p,q)g. Since distg,V) < 1 by Proposition 2.1.17(i) amglhas a gate
inV by Proposition 3.2.2, we conclude thanV contains a ling. Now assume
there is a metaplectofu,v)g < (x,V)g with dist(u,v) = 3 such thaty < (u,v)g.
We may assume = u. Again by Proposition 2.1.17(i) we obtain digl/) < 1.
Sincev has a gate iiv by Proposition 3.2.2, we conclude that there is symplecton
Z that is contained ifp,g)gNV.

SinceV has finite diameter, there is a finite sequence of lines stawith | and
ending withg such that two consecutive lines intersect. Thus, it sufficeshow
X 22Y for the casggnl # @. We may assum¥ # X since otherwise there is
nothing to prove. First assunte=g. Letu €Y . g. Then by Proposition 3.2.2
u has a gate iX that lies ong. Thus, there is a point € X with dist(u,v) = 3.
We obtainX UY C (u,V)g sinceX = (pry (u), Vv)g. Now (u,v)gNV contains a rigid
symplectorZ. Sincel < Z, we may apply Lemma 3.2.4 to concludex Y.

Now assume thag andl intersect in a single point. Letv € g~ {u}. Thenu is
the gate of/in X. Hence v, X)q is a metaplecton of diameter 3. Sine< (v, X)g,
we conclude thatv, X)gNV contains a symplectan. SinceX £ V, we conclude
(v, X)gNV = Z. Now Lemma 3.2.4 implies that there is a symplecXdr< (v, X)q
with X’NZ = gandX = X'. Since this implies’ NV = g, we obtainX’ =Y as
above.

Finally, letY < (x,V)g be a symplecton that is disjoint¥a Letu andv be points
of Y with (u,v)g =Y. By Proposition 2.1.17(i) and Proposition 3.21has a gate
U inV andv has a gate’ in V. Since disfu,v') < 3, we obtain dig/,V') < 2.
Sinceu’ ¢Y, we knowu' # V. Supposel L V.. Then(u,V)q is a symplecton that
intersectd/ and hence(u, V')q is rigid and of rank 2. Sincéu,V')q # Y, we obtain
v ¢ (u,V)g. Nowv LV and disfv,u) = 2 implies by Proposition 2.1.25(i) that
pr<u7\,>g(v) contains a line. This is a contradiction to Proposition &i?. Thus,
dist(u’,v)) = 2 and consequentlyu/,V)q is a rigid symplecton. Now the claim
follows since(u’,V')g =Y by Proposition 2.1.29. O
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3.3 Connected subspaces of symplectic rank 3

There are some properties for connected rigid subspacegngdlectic rank 3
that are also valid for connected rigid subspaces of higaek.r Therefore we
first study these common properties before we continue veitimected rigid sub-
spaces of symplectic rank 3.

Lemma 3.3.1.Let V be a connected rigid subspace of an SPO space.

(i) Letyrk(V) > 3 and letY be a convex subspace wdiam(Y) > 2 that is
properly contained in V. Then there is a poinEx/ with dist(x,Y) =1
such thatpr, (x) is a singular subspace of rank yrk(V) — 1.

(i) Letyrk(V) > 5 and let x be a point withdist(x,V) = 1 such thatpr, (x)
contains a line. ThenV is a symplecton.

Proof. (i) Let x € V \. Y with dist(x,Y) = 1. Then dianipry (X)) < 2 sincex ¢ Y.
Assume py(x) = {z} for a pointze Y. Letye Y with dist(y,z) = 1. Then
dist(x,y) = 2 andZ := (x,y)q is a symplecton. Since" contains a hyperplane of
Y NZ, we concludey NZ =yz Since rkZ) > 3, there is a poink’ € Z\. Y such
thaty L X' L z Thus, we may assume that/x) contains a lind. By Lemma
3.1.1(i) there is a symplectoX <Y with | < X. Hence by Proposition 2.1.27,
pr (X) is a generator oK. The claim follows since g(x) < pry(X).

(i) Set X :=pry(x). By Lemma 3.1.1(i) there is a symplect¥n< V such that
XNY contains a line. By Proposition 2.1.X7contains a generator §f Suppose
Y < V. Then by (i) there is a pointv € V \\'Y such that py(w) is a generator
of Y. By Proposition 2.2.9(iv) we conclude gk (pry (W) N X) € 2-N. Thus,
Proposition 2.2.9(ii) implies that there is a poiret (W, Y)g <V with pry(z) = XN
Y. By Proposition 2.2.5 and Proposition 2.2.9(\ig) X NY) is the only singular
subspace that contaiXsNY properly, a contradiction ¥ < x*. O]

The map we introduce in the following definition turns out ®duseful tool
for some proofs. Therefore we give this map an own name.

Definition 3.3.2. LetV be a connected rigid subspace of an SPO spéosith

yrk(V) > 3. Further letM andN be two maximal singular subspaces.#f that
contain a maximal singular subspacé&/auch that rkM NN) = yrk(V) —3. Then
we setriy N P(M) — PB(N): Ri—= UperPin(p), where (M) and3(N) denote
the power sets of the point sets of the subspatendN.

Lemma 3.3.3. Let V be a connected rigid subspace of an SPO sp#cwith
yrk(V) > 3. Further let9 be the set of maximal singular subspaces/that
contain a maximal singular subspace of V. Let M and N be elé&sy@t with
rk(MNN) = yrk(V) — 3,
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(i) rk(pry(p)) = yrk(V) — 2 for every pe N~ M andpry, (p) <V if and only
ifpeV.

(i) Let M <M and N < N be subspaces such thathM’' = MNN' = g,
(MNN,M’) =M and(MNN,N’) = N. Then every point in Ms collinear
to a unique point in N Moreover, the mag : M’ — N’ that maps every
point of M to its unique neighbour in Ns an isomorphism.

(i) Set&m :={R<M|S<R}and&y:={R<N|S<R}. Thenmyn maps
the latticeG)y isomorphically onto the lattic&(N).

(iv) rk(M)=rk(N), rk(MNV) =rk(NNV) andcrku(MNV) =crkn(NNV).

Proof. SetS:= MNN. By Lemma 3.1.1(i) we know the®is not maximal and
henceM # N. Moreover, rkMNV) > yrk(V) —1 and rkNNV) > yrk(V) — 1.
SinceV has a symplectic rank, we know digvh) > 2.

(i) SinceNNV is a maximal singular subspace\bfwe obtain that for every point
pe (MNV)\ S there is a pointj € NNV with dist(p,q) = 2. SetY := (p, g)q.
ThenY <V and hence, ) = yrk(V). Since rk(p,S)) = yrk(V) — 2, the sub-
space/p,S) is a hyperplane of a generatonaf Assume there is a pointe M \Y.
Then by Proposition 2.1.27 fr) is a generator of. Since(p,S) < pry(r) and
rk(({r,p,S)) = yrk(V) — 1, Lemma 3.1.1(iv) implies that there is at most one el-
ement indt that contains rir, p,S)). Thus,(r,pry(r)) <M. If M <Y, thenM
is a generator of since rkMNV) > yrk(V) — 1. Thus in any caséyl contains
a generator o¥. Since pf;(g) <Y andp ¢ pry(q), we conclude ripny,(q)) =
yrk(V) —2 and pf, (q) < V. Analogously, the claim holds fqp.

Now letse N\ V. Thens [ p since pg(p) <V. SetZ:= (p,s)y. Since
(p,pry(P)) <YNZand riK(p,pry(P))) > 2, we obtain rkZ) = rk(Y) by Lemma
2.2.3(i). Letg<MnNV be aline withgNnS= @. Thens ¢ pry(r) for every
reg, sinceg<V ands¢ V. Thus,gnpry(s) = @ and henceg £ Z. Let
r € g~ Z. By Proposition 2.1.27 p(r) is a generator of since(p,S) < pry(r).
Since rk(r, p,S)) = yrk(V) — 1, Lemma 3.1.1(iv) implies tha{! is the unique el-
ement off)t that contains rir, p,S)). Thus,(r,prz(r)) < M. Since pf(s) <Z
andp ¢ pry(s), we conclude ripry (s)) = yrk(V) — 2. Lett € pry(s) S Then
pry(t) £V sincet L r. Thus,t ¢ V and the claim follows.

(i) By (i) we conclude thaSis a hyperplane of pf(p) and hence, pf(p) inter-
sectsN’ in a single poing. By symmetric reasons every point Kf has exactly
one neighbour itM’ and therefore is bijective.

Now let p andp’ be two distinct points oM’ and letq andd be the points ofN’
with g L pandq L p'. Then(p,q)q is a symplecton that contains the lineg
andqq. Hence, every point opp is collinear to a point omg and vice versa.

Thus,(pp)? = qd.
(iii) Let M’, N" and ¢ like in (ii). Further letp € M’ andr € (p,S \ S Set
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q:=p?. Thenqg L r since we obtain gf(q) = (p,S) by (). Analogously,
pra(r) = (9,S) = pry(p). This implies
mun(R = |J pry(r)=(S{r?[reRAM'})
rerRNM’

for everyR € Gy. The claim follows since by (ii) we know th& — {r‘f’ |re
R’} yields an isomorphism from the lattice of subspacesbbnto the lattice of
subspaces dfl’.

(iv) Since by (i) we obtairmyy N\R <V < R<V for everyR € Gy, the claim
follows with (iii). ]

Lemma 3.3.4.Let V be a connected rigid subspace of an SPO sp#cwith
yrk(V) € {3,4}. Further let9 be the set of maximal singular subspaces/f
that contain a maximal singular subspace of V. Let M and N kenehts of)t
with rk(M N N) = yrk(V) — 3 and rk(M) > yrk(V). Thenmn((S pru(X))) =
(S pry(x)) for every point x V, where S= MNN.

Proof. By Lemma 3.1.1(i) we know tha$ is not maximal and hencé # N.
Moreover, kM NV) > yrk(V) — 1 and rKNNV) > yrk(V) — 1. SinceV has a
symplectic rank, we know diafW) > 2.

By the maximality ofM there are pointg € M andq € N with dist(p, q) = 2. Set
Y :=(p,g)g. Then pg(p) < Y. On the other hang™ contains a hyperplane of
YNN. ThisimpliesY "N = (qg,pry(p)). Thus, rKY NN) =yrk(V) —1 by Lemma
3.3.3(i). Since yrkv) —1 > 1, M intersect¥ in a generator by Lemma 3.1.1(iii)
and therefore rRY) = yrk(V).

Set distx,M) = d. Assume digtx, N) =d+ 1. Then every point o8 is at dis-
tanced + 1 to x. Moreover, for every poinp € pry,(X) the projection pg(p)
is contained in p§(x). Thus, T n((S pPry(X))) < (Spry(X)) = pry(X). Sup-
pose there is a poinp € pry(x) ~ Tun((Spry(X))). Let g e pry(x). Then
Y := (p,0)g is a symplecton o¥’ since by Lemma 3.3.3(i) both (x) and pg(x)
are contained iV. Moreover, rkpry(q)) = yrk(V) — 2 and thus,p, pry(0)) is

a generator o¥. Since(p,pry(q)) < pry(X), we conclude digk,Y) > d. With
dist(x,q) = d and distp,q) = 2 this implies distx,Y) = 2 and hence by Propo-
sition 2.1.25(i) and Proposition 2.1.27 that, px) is a generator of. Sincep ¢
v N ((S pry (X)), we obtain pg (p) Npry (X) = @ and hence, g(x) N(MNY) =
{q}. With pr,(X)N(NNY) = @ andMNNNY = Sthis leads to a contradiction to
Proposition 2.2.9(iii) since V) > yrk(V). Thus, iy n((S pry(X))) = pry(X).
By Lemma 3.3.3(iii) this impliestym(pry (X)) = (S pry(X)). Hence, it remains
the case digk,N) = d.

Let pe M~ Sandq e N~ pry(p); this is possible since (M NV) > rk(pry(p))
by Lemma 3.3.3()). SeY := (p,q);. We have to showp € (S pry(x)) <
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pry(p) < (Spry(x)). Since by Lemma 3.1.1(iiiM NY is a generator of, we
obtain distx,Y) > d—1. Let disf{x,Y) =d—1. Assume pf(X) is a generator
of Y. Thenp € pry(X) and pg(p) < pry(X). Now assume has a gate/ in Y.
Then p§,(x) intersectsY "M in a hyperplaned and (y,H) is a generator of.
Analogously, pg(x) intersectsY NN in a hyperplandd’. For the cas& < H we
obtain by Proposition 2.2.9(iii) tha,H) andNNY have a hyperplane in com-
mon and thereforel’ < (y,H). Thus,p€ pry(x) & peH < pry(p) =H' <
pry(p) < pry(x). For the cas&S £ H we obtainMNY = (SH) < (S pry(x)).
Hence,p € (S pry (X)) and analogously, Ri(p) < (S,pry(X)).

Now let dis{x,Y) = d+ 1. Then we obtainp,S Npry(x) = & and hence,
P ¢ (Spry(x)). Analogously, pg(p) Npry(x) = @ and hence, i(p) £ Pry(x).
Finally let dis(x,Y) = d. If pry(x) =Y, thenp € pry(x) and pg(p) < pry(X).
Hence, it remains the case distY) = d and pr(x) < Y. First assumex has a
gatey in Y. Theny € Y NM, since otherwise there would be a pojhe Y "M
with dist(y,y') = 2 and hence, digt,y’) = d+ 2. Analogouslyy € N and con-
sequently,y € S. Since py intersects bottS and pg,(x) only in y, we obtain
p ¢ (Spry(x)). Analogously,p’ ¢ (S pry(x)) for every p’ € pry(p) ~ S and
hence, pg(p) £ (S pry(x)). By Proposition 2.1.27 it now remains the case that
pry(X) is a generator o¥. SetG := pr/(x)NM andH := pr,(x) " N. Since
S<YNM, we obtain(S pry (X)) NY = (SG). Analogously,(Spry(x))NY =
(S H). Since rKkS) = yrk(Y) — 3, we know crig(GN'S) € {0,1,2}. Analogously,
crkq(HNS) € {0,1,2}. Proposition 2.2.9(iii) implies that (k) = rk(H) is even.
Thus, crig(GN'S) —crky(HN'S) is also even. Hence Bintersectss in a hy-
perplane, the@intersectd in a hyperplane. Sincés, H) < pr,(x), this implies
MuN((SG)) = (SH) and therefore, Ri(p) = (SH) < pe (Spry(x)). If S
contains bothG andH, there is nothing to prove. Also fiSG) =YNM and
(SH) =YnNN, there is nothing to prove.

By symmetric reasons and Lemma 3.3.3(iii) it remains the edsereH < Sand
(S, G) =YNM. Then for every poins € Sthe linepscontains a point o6 \ {s}.
Thus, we may assume € pry(x). SupposeSnpry,(x) = &. ThenH = & and
hence, pg(p) Npry(X) = @. Letr € pry(x). Then(p,r)g contains pg(p). Since
rk(pry(p)) > 1 and distx, pry(p)) = d+ 1, we obtain digi, (p,r)g) = d. This
is a contradiction to Proposition 2.1.25(ii) since thsp) = dist(x,r) =d. Now
sSupposes < pry (X). Then we obtaiMM NY = pr,(x), a contradiction to Proposi-
tion 2.1.27 and Proposition 2.2.5 since (hsM) = d. Thus,o < SNG < Sand
therefore yrkV) = 4 andSN G is a singleton. This implies (k) = 2. Since the
generators gi{x) and (M NY) intersect in the hyperplan® and (M NY) < M,
we conclude by Proposition 2.2.9(iv) that,x) is a maximal singular subspace.
This is a contradiction to Proposition 2.1.27. O
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3.4 Connected subspaces of symplectic rank 3

Throughout this section we are dealing with a connected sgbspac¥ of sym-
plectic rank 3 that lives in an SPO spa¢é Thereby, the selt that contains
all maximal singular subspaces &f that contain a maximal singular subspace
of V plays an important role. For this, we introduce a distancetion for the
elements oD that differs from dist. For two elemenkd andN of 9t we write

M ~ N if and only if they have a line in common. By Lemma 3.1.1(ivstimplies

for M ~ N that eithetM = N or MNN is a line. By dis§(M,N) we denote the
distance oM andN in the graph ot that is induced by the relation.

Proposition 3.4.1. For V, exactly one of the following assertions hold:
(a) The subspace V is a symplecton and each elem@ritisfa generator of V.

(b) There is a subspace K9t with rk(M) > 3 and each line of V is contained
in exactly two elements 6.

Proof. We assume (a) does not hold. lgebe a line ofV. By Lemma 3.1.1(i)
there is symplectol <V with g <Y. Since rKY) < o, there are two generators
of Y that intersect irg and hence, there are two elemeNtsaind N’ of 91 that
containg. If Y is properly contained iW, Lemma 3.3.1(i) implies that there is a
generatofG of Y that is properly contained in a singular subspacé .of Y =V,
then there is a generat@of Y that is properly contained in an element)f by
the assumption. By Propositions 2.2.9(iii) and 2.2.9(i§ may assumg < G.
Hence by Proposition 2.2.4(iiN andN’ are the only elements 91 containing
g. U

Lemma 3.4.2.Let X € 9t and seth; ;= {M € M| distyy (M, X) € 2N+ i} fori €
{0,1}. LetMe M~ {X} and letie {0,1} such that Me 90;. Set d:= dist(M, X)
and Si= {p e M | dist(p,X) = d}. Then the following holds.

(i) The subspace S is contained inV ak@S) =d+i.

(i) Letxe X. Therrk(pry(x)) = dist(x,M) andpry,(x) £V if and only if x¢ V
andi=0.

(ii) If d is even, themisty(M,X) =d+2—1i. If d is odd, therdisty (M, X) =
d+1+i.

Proof. Assume thaV¥/ is a symplecton and every element®f is contained in
V. Then (i) follows from Proposition A.2.20 and (ii) followsrdctly from (BS).
Hence by Proposition 3.4.1, we may restrain ourselves tc#éise where every
line of V is contained in exactly two elements®t.

ForM ~ X, we obtainS= MNX and hence, 5 = 1. By Lemma 3.1.1(iv) we
obtainS<V. Letpe MNV ~\ S SinceXNV is a maximal singular subspace
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of V, there is a point € X NV with dist(p,q) = 2. Now (p,q)q is a symplecton
of V and hence rkp,q)g) = 3. Therefore p¢(p) = Ssince px(p) < (p,q)g and
g ¢ prx(p). Analogously, py(X) = Sif xe VS If x ¢V, then distp,x) = 2.
By Lemma 2.2.3(i) the symplectg, g)q and(p,x)q have the generatdip, S) in
common. Again we conclude pfx) = S. Thus, the claim holds sindd € 91,
and disip(M, X) = 1.

Now letd = 0 andM « X. ThenM N X is a singleton. Lepp e MNV \ X.
Then rprg(p)) =1 and pk(p) <V by Lemma 3.3.3(i). By Lemma 3.1.1(i)
and Proposition 2.2.5 there is an elembh& 2t with (p,pry(p)) < N. Since
MNX < pry(p), this impliesM ~ N ~ X. Thus,M € 9y and the claim follows
from Lemma 3.3.3(i).

Letd > 0 and assume the claim holds for all subspa¢esMt with dist(X,N) <
d. By Lemma 3.1.1(vi) there is a geodesipi)o<i<d in V such thatpg € X
and pg € M. SetMg := X. Recursively, letM;1 be a maximal singular sub-
space of.”” containingpi+1 and pM(piH) fori <d. Sincepipirts < Mit1,
we obtainM; 1 € 9t by Lemma 3.1.1(iii). Hence, digl,M;;1) = 0 implies
rk(pry,(pi+1)) = 1. Thus by Proposition 2.2./li 1 is uniquely defined and
Mi ~ Miq1. If MgNM = {pg}, we setN := Mg. If Mg ~ M, letN be the unique
element oft with NNMg = pq_1pg. Sincepy_1 € N and p§,(pg—1) = MgNM,
we obtainNNM < MgNM. Since every line o¥/ is contained in only two ele-
ments ofit, we concludeNNM = {pq}.

Sincepy_1 € N, we obtain distX,N) = d — 1 and therefore the claim holds for
N. By Lemma 3.3.4 we knowity n((Pd, Py (X)) = (Pd,Prn(X)). This implies
rk({pg, pPry(X))) = rk({pg, pry(x))) by Lemma 3.3.3(iii). In the case digtM) =
dist(x,N) we have eithepy € pry(X) Npry(X) or pg ¢ pry(X) Upnu(X) and thus,
rk(pry (X)) = rk(pry (X)) = dist(x,M). In the case digk, M) > dist(x,N) we have
Pd € Pry(X) \ pry(X). Thisimplies rkpr, (x)) = rk(pry (X)) +1=dist(x,M). The
case digix,M) < dist(x,N) is not possible, since dist M) > d and distx,N) <
dist(X,M)+1=d.

SetT :={pe N |dist(p,X) =d—1} andR:= {p € X | dist(p,N) = d — 1}.
Assume digx,N) = dist(x,M) = d. ThenT < pry(x). ForN € 91;, we obtain
rk(T) =d. Thus, T = pry(x) and we obtain gg(x) < iy m({pg,T)) by Lemma
3.3.4. FoN € 9o, we obtain rkT) =d —1.

Suppose digk, pg) = d+ 1. Since rkpry (X)) = d, there is a poiny € pry(X) T
such that pg(x) = (y, T). SetU := (X, pa)g- Then pg (x) and pg, (x) are both con-
tained inU and hence by Lemma 3.1.1(iii), bolh andN intersecy in maximal
singular subspace &f. Sincepy € N, Proposition 2.1.17(i) implies that p¢x)
is a hyperplane o) "N and hence i NN) =d+1. Sincepy ¢ pry(X), we
obtainypyN'T = @. Hence, an arbitrary poimte R has distance to every point
of ypg. By Proposition 2.1.23 we know thik is an SPO space. Hence, Lemma
2.1.21(ii) implies that there is a poistc U with dist(r,s) = d + 1 andypy < s*.
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Clearly,s ¢ N since distr,N) = d — 1. LetN’ be a maximal singular subspace of
< that contaings, Y, pq). ThenN’ € 9t by Lemma 3.1.1(iii) andN’ andN are the
only maximal singular subspaces that contain theyige We know pk (pg) <U
since distpy, X) = d and distpg,x) = d+ 1. Hence, Lemma 3.1.1(iii) implies that
X intersectJ in maximal singular subspace 0Of. Since every point ogpy has
distanced tor and dists,r) = d + 1, we obtain that has distance + 1 to every
point of (sy, pq) \ Ypg. Hence by Proposition 2.1.17(i), every point(sfy, py)
has distancel to X. By Proposition 2.2.5 and Lemma 2.1.21(ii) we conclude
that for every point inKNU, there is a point i\’ NU at distanced + 1. Since
y # pg, we knowy ¢ M and hence, pj(y) is a line. Since pj(y) £ N, we ob-
tain (y, pry (y)) < N’ sinceypy < (y,pry(y)). ThusM andN’ intersect in the line
pry(y). Lety € pry(y) ~{pq}. Since both pg(y') and pxg(pg) are hyperplanes
of XNU and rKXNU) > 2, there is a poink’ € pry(Y) Npryx(pg). By Lemma
3.1.1(i) there is a symplectan with (y,pry(y)) < Z. Now X' has distance to
every point of py; (y). Thus, distx',Z) = d — 1 by Proposition 2.1.17(i). Further-
more, by Propositions 2.1.27 and 2.1.2X(ihas either a gate ii or pry(X) is a
generator. In both cases, there is a gener@ter Z with dist(x',G) =d — 1 and
pry(y) < G. Hence,G < M or G < N’. With distN’,X) = dist(M, X) = d, this
leads to a contradiction. Hence, the case(Rjgt) = d + 1 is not possible for
dist(x,N) = dist(x, M) = d and we obtain digk, pq) = d.

Sincepy ¢ T and rkT) = rk(pry(X)) — 1, we obtain pg(x) = (pg, T) and there-
fore phy (x) = mum({pd,T)) by Lemma 3.3.4. Thus, prx) < mym({Pa,T)),
whenever digix,M) = d. We concludeS = riym((pg,T)) and hence, &) =
rk(T)+1.

Since distX,L) > d —1 for everyL € 9t with L ~ M, we obtain disf(X,M) >
d+ 1. Thus, disfz(X,Mg) = d and distp(M,My) < 2 yield disty(X,M) € {d+
1,d+2}. If distyg(X,M) = d + 1, we may assumi ~ My and henceMy # N.
Thus, NN My_1 is a singleton sincggg € N and by Proposition 2.2.814 is
the unique element dit that containg(py, pry, ,(Pa)). This implies rKT) =
rk(S)+1, whereS := {p € Mq_1 | dist(p, X) = d — 2}. Since the claim holds for
Mg_1 and forN, we conclude disk (X,N) =d -+ 1. If disty;(X,M) =d+ 2, we ob-
tain disty (M, My) = 2 and hencell = Mq. Thus, disfz(X,N) =d. We conclude
N € 9. With rk(T) =d — 1+i we obtain rKS) = d +i. By Lemma 3.3.3(i) we
obtain pf,(x) £ V if and only if piy(x) £V, since pry(x) < 7w (P, Pry (X))
and pg(X) < mv.n({pPd, Py (X))) by Lemma 3.3.4. Since the claim holds fdy
this implies that py (x) £ V if and only ifx ¢ V andi = 0. O

Lemma 3.4.3.LetV contain a singular subspace of raPkhat is not maximal in
<. Furtherlet Xe 9. Fori € {0,1}, set; :={M € M | distyy(M, X) € 2N +i}.

(i) Everyline of V is contained in unique element8iaf and9t;.
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(i) Forie {0,1} let M and N be elements &ft;. Then there is a sequence
(Mj)o<j<n € 2" with Mg = M and My = N such that MNMj;1 # @
for j <n.

(ii) Forie {0,1} letM and N be elements aft;. Thenrk(M) = rk(N), rk(MnN
V) =rk(NNnV) andcrky(MNV) = crky(NNV).

(iv) Let M and N be elements #Ro. Further let xe X \V and ye (pry(x),MnN
V) \ V. Then(pry(y),NNV) = (pry(X),NNV).

Proof. (i) By Proposition 3.4.1 we know that every line is containedxactly
two elements ofJ1.

Setd :=dist(g, X). Forg < X, we may choos& = N and the claim follows. Now
assume thag intersect in a singleton. Lep € g~ X. Thenh:=pry(p) isaline
by Lemma 3.4.2. Thu$ € L for everyL € M with L ~ X andg < L. By Lemma
3.1.1(i) and Proposition 2.2.6h,0) is contained in a unique elemeNtof 1.
Hence, for the other subspaltec 9t that containg we obtain dis; (X, M) = 2.
Now letd > 0 and assume the claim holds for every lingith dist(l, X) < d. Let
p andq be two distinct points oy such that distp, X) = d. Further letM and
N be the two elements &t containingg. By the convexity ol there is a point
x € XNV with dist(x, p) = d.

Assume digtx,q) = d+ 1. We suppose that the claim does not holdNbandN
since otherwise we are done. Then there is a poinhtp with dist(x,r) =d —1
and hence, digt,q) = 2. Therefore(r,q)q is a symplecton. Le” andN’ be the
elements oflt that contairpr. Since distx,r) = d — 1, the claim holds fopr and
we may assumil’ € My andN’ € 9M1;. By Proposition 2.2.8 we know that the
dual polar graph ofr,q)q is bipartite. Hence by Proposition A.2.20, intersect
eitherM’ or N" in a line, we may assumd ~ N’. This impliesN -« N’ and hence,
N ~ M’ by analogous reasons. Since both liksiN’ andN M’ are contained
in {r,g}*, we conclude that each point of these lines has distdrteex. Since
the claim does not hold for eithét "N’ or NN M’, we may restrain ourselves to
the case digk, q) = d.

By Lemma 3.2.1 there is a pointwith g < r+ and disfx,r) =d — 1. This im-
pliesr € V and hence the singular subspdca) is either contained it or in
N. We may assume € N. Since pf,(r) = g, we obtain disfr,s) = 2 for ev-
ery pointse M~ g. Hence,(r,s)y is a symplecton containing and therefore
I € pryg,(X). By Proposition 2.1.25(iv) this implies digts) > d and conse-
quently, distx, M) = d. Suppose there is a poigte X with distly,M) =d — 1.
Then pg,(X) > (9,pry(Y)). By Lemma 3.4.2 this implies pr(s) Ng # &, a con-
tradiction to distg, X) = d. Thus, distX,M) =d.

For {L,K} C 9t setLk := {se L | dist(s,K) = dist(L,K)}. By Lemma 3.4.2 we
know rk(pry (p)) = rk(prx(q)) = d. AssumeN € M. Then rkNx) = rk(Xn) =
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d—1 by Lemma 3.4.2. Hence, there is a pojite pry(p) ~ Xn. This im-
plies distp’,N) = d and therefore, gi(p’) = (p,Nx) by Lemma 3.4.2. Thus,
dist(p’,q) = d + 1 and we conclude pfp) # pry(q). Therefore(pry (p), pry(qQ))
has at least rané+ 1. SinceXy is a subspace, we obtafpry (p),prx(d)) < Xw
and therefore we concludd € 9t; by Lemma 3.4.2. Assuml € 91;. Then
rk(Nx) = rk(Xn) = d and therefore gr(q') = Xn for every pointq € g. Let
y € Xm. Then pf,(y) is at least a hyperplane ®fly by Lemma 3.4.2. Since
g < Mx, there is a pointf € g with dist(y,q) = d and thereforey € Xy. We con-
cludeXy = Xy and consequently € 91p.

(i) Setd :=distM,N). By Lemma 3.1.1(vi) and sincé is convex there is a
geodesiqpi)o<j<d in V such thatpg € M andpy € N. By (i) there is a subspace
Mj € 9 with pj_1pj < M for 1 < j < d. The claim follows withMg., 1 := N.

(iii) Let i = 0. By (ii) and Lemma 3.3.3(iv) the claim follows by inductiawer
disttM,N). By (i) the graph ortt induced by~ is bipartite with the partition
{Mp, M1 }. Hence, choosink € M1 interchange$ty andMi.

(iv) Setd :=dist(x,M). By Lemma 3.4.2 digX,M) =d — 1 and there is a sub-
spaceS< MNV with rk(S) = d — 1 such that digp,X) =d — 1 for everyp e S.
Since rkpry (x)) = d andS< pry,(x) NV, this implies by Lemma 3.4.2 thatin-
tersects py (X) in a hyperplane. Thudd NV is a hyperplane ofpry (x),MNV).
We proceed by induction over.= dist(M,N). Since pf,(y) = {y}, the claim fol-
lows forM = N. ForL € Mo, we setlLy := LNV andLP := (pr (p),Lv), where
p € {xYy}. NowletN # M. Forn= 0, letL =M and forn > 0, letL € 9 with
LNN # @ and distM,L) =n—1. ThenLNN is a singleton.

By Lemma 3.3.4 we obtairg n((L NN, pr_(X))) = (LNN, pry(x)). Furthermore,
Lemma 3.3.3(i) impliesi n(Lv) = Ny and thereforerg n(L*) = N*. Analo-
gously, i n(LY) = NY. SincelL* = LY by the induction hypothesis, we conclude
N* = NY. O

Theorem 3.4.4.Let V be a rigid subspace that contains a symplecton properly
Further letdiamV) < 0 andyrk(V) = 3. Then every line g V is contained in
exactly two maximal singular subspaces M and N of V, wheilé) = diam(V)
andrk(N) = srk(V). The subspace V is a metaplecton if and onlgidm(V) =
srk(V).

Proof. By Proposition 3.4.1 every ling in contained in exactly two elements
andN of 9. By Lemma 3.1.1(iv) we obtaikl "N = gand henceM NV £ NNV

by Lemma 3.1.1(i).

Let pandq be two points oV with dist(p,q) =diamV) =: d. SetU := (p,q)y and
letg <U be aline withg € g. LetM andN be the maximal singular subspaces of
V that contairg. Then distp,M) = dist(p,N) = d — 1 since distp,g) =d —1 by
Proposition 2.1.17(i). By Lemma 3.4.2 we obtaifypp) = d — 1. Since pg;(p)

is a hyperplane oM NU by Proposition 2.1.17(i), we obtain{ NU) = d and
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analogously, rlNNU) = d. For srkV) = d the claim follows. Thus, we may
assume si) > d. By Lemmas 3.4.3(i) and 3.4.3(iii) we may assum@\k=
srk(V).
By Proposition 2.1.23 we know thik is an SPO space. Thus, Proposition 2.3.5
implies that there is singular subspace< U with rk(L') = d and distL’,NN
U)=d-1. LetL <V be the maximal singular subspace\bfwith L > L’.
Since srkU) = d, Lemma 3.1.1(vi) implies di¢t,N) =d — 1. By Proposition
2.1.17(i) we obtain digk,N) = d — 1 for everyx € L’. Since rKL') = d, this
implies disty(L,N) € 2-N+1 by Lemma 3.4.2. Late N~ U. Thendisfr,L) =
d by Lemma 3.4.2. Since diaivl) = d, we obtainL = rk(pr,(r)) and therefore
rk(L) = d by Lemma 3.4.2. The claim follows by Lemmas 3.4.3(i) and3Xi#).

O

Proposition 3.4.5. Letdiam(V) < « and let x be a point witldlist(x,V) = 1 such
thatpr, (x) contains a line. ThenV= (x,V)q is a rigid subspace andist(p,V) <
1 for every pe V'.
(i) Letrk(pr,/(x))=srk(V). Thendiam(V') =diamV) andsrk(V’') = srk(V) +
1

(i) Letrk(pr/(x)) < srk(V). ThendiamV’) = diam(V) + 1 and srk(V’) =
srk(V).

Proof. By Proposition 2.1.27 pi(x) is a maximal singular subspace\bf Hence,
there exists a subspace € 9 with (x,pr,(x)) < X. Set9Mp = {M € M |
disty(X,M) € 2-IN} andMty := M~ M. For everyM € M, we setMy =M NV
andM* := (pry (x),My). We claimV’ =U := Uy M*. For everyM € My
with XN M # &, we obtainM* <V’ since rKM) > 2 by Theorem 3.4.4 and
rk(pry(x)) = 1 by Lemma 3.4.2. Let € M*\ My. By Lemma 3.4.3(iv) we know
N* = NY for everyN € 91p. Hence by Lemma 3.4.3(ii), we may apply induction
to concludeN* <V’ for everyN € 91g. ForN € 911, we obtainN* <V by Lemma
3.4.2 and thusN* <V’. Converselyx € X* and for everyp € V, there is a sub-
spaceM € M with p € My < M* by Lemma 3.4.3(i). Thus, to provwg =V’, it
remains to show thdl is a convex subspace.

Let p andq be two distinct points o). We have to showV := (p,q)g C U. Set
d :=dist(p,q). If pandqare both contained M, there is nothing to prove. Thus,
we may assume ¢ V. LetM € 9t with p € M and letN € 9t with g € N. Since
LX = Ly for everyL € My, this impliesM € M. ForM = N there is nothing to
prove, so we may assuni £ N. Since by Lemma 3.4.3(i) every point Ufis
contained in an element 8ftg, we may assumi C 9.

By Lemma 3.4.3(iv) we knowM* = (p,My) since py,(p) = {p}. Moreover,
My is a hyperplane oM*. Analogously,Ny is a hyperplane oN*. Assume
dist(p,N) =d —1. Then rKpry(p)) =d —1 and distM,N) = d — 2 by Lemma
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3.4.2. Consequentlyd > 2. By Proposition 2.1.17(i) p(p) intersectsN NW

in a hyperplane. Sincé&,pry(p)) <W, this implies(q, pry(p)) = WNN and
rk(NNW) = d. Analogously,(p,pry(q)) =WnNM and rkMNW) =d. Since
pry(p) < N* by Lemma 3.4.3(iv) and pi(p) £ Ny by Lemma 3.4.2, this implies
rk(Ny N"W) = d — 1. Hence, sinc&ly "W # pry(p) there is a pointf € Ny N"W
with dist(p,q) = d. Thus, we may assuntge Ny. By Lemma 3.4.2 we obtain
Pry () = My NW.

We knowNy "W = NN (VNW). Since rKkNy "W) > 1 and rkNN (V NW)) =
d— 1, we conclude diafwvNV) < d— 1 by Lemma 3.4.3(i) and Theorem 3.4.4.
Since pf(g) = My NW and distq,M) = d — 1, we conclude by Proposition
2.1.17(i) thalv NW is no metaplecton. Hence, $t NV) > d by Theorem 3.4.4
for d > 3. Ford = 2, we obtain srlV "W) = 2 since rK(q,pry(q))) = 2. By
Lemmas 3.4.3(i) and 3.4.3(iii) this implies forc {0,1} that every element of
2, that contains a line oV NV intersectd¥ NV in a singular subspace of rank
d—1+i.

Letr e W\ V. By Proposition 2.1.17(i) there is a poirfte WNV withr 1L r’.
Let p e WNV with dist(p/,r") =d — 1. By Lemma 3.4.3(i) there is a subspace
L € M such that’ € L and rkLNWNV) > d. By Lemma 3.4.2 there is a
lineg <LNWNV with r’ € g and distp’,g) =d—1. Letd € g~ {r'}. Then

r' ¢ (p',q)g. With Proposition 2.1.17(i) this implies thatgry (r) contains a line.
LetK be a maximal singular subspacegfwith (r,pry~y (1)) < K. ThenK € 9
by Lemma 3.1.1(iii). Hence by Lemma 3.1.1(i®),is uniquely determined.
Letse W be a point with diss,r) = d. As forr, there is a subspad€ € 9t with
se K’ and rkK{, N"W) > 1. Since rkK NW) > 2, Proposition 2.1.17(i) implies
dist(s,K) = d—1 and hence riprg (s)) =d — 1 by Lemma 3.4.2. Sinaec KNW,
Proposition 2.1.17(i) implies that p¢s) is a hyperplane oK "W and therefore
rk(KNW) =d. Sincer ¢V, KN (WnNV) is properly contained itk "W and
thereforeK € Mg. Supposep ¢ (pry (r), (My NW)). Then pg,(r) < (r,p)g <W.
SinceMy NW is a hyperplane dfiNW, this implies pf, (r) < My, a contradiction
to Lemma 3.4.2. Thug € {pry(r), (My NW)). Hence, Lemma 3.4.3(iv) implies
(r,Kv) = (prg (p),Kv) = K* and therefore € U.

It remains to prove that every symplectonlfis rigid. Hence, we may assume
dist(p,q) = 2 and thatW is a symplecton. Since foN <V there is nothing
to prove, we may again restrain to the cas¢ V andqg € V. Thus as above,
srk(WNV) = 2. Moreover, sincg € W\ V, we conclude thatv NV is a singular
subspace of rank 2. Since by Lemma 3.1.X(i)V is a generator of a symplecton
of V, we conclude by Lemma 2.2.3(i) thatNV is a generator ofV. The claim
follows. O
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3.5 Connected subspaces of symplectic rank 4

Throughout this section |&t be a connected rigid subspaces of symplectic rank
4 that lives in an SPO spac#. By 2t we denote the set of maximal singular
subspaces of” that contain a maximal singular subspac&/of~urthermore, we
setMp := {Se M| rk(S) = 3} andMiy := W~ M.

Lemma 3.5.1. Let x be a point witldist(x,V) < . Thenpn, (X) is a singleton or
there is a subspace M 911 with pr, (X) = MNV.

Proof. Suppose there are poingsandz in pr, (x) with dist(y,z) = 2. SetY :=
(Y,2)g and d := dist(x,V). Then distx,y) = dist(x,z) = dist(x,Y) = d. Since
X ¢ Y, this impliesd > 2. SetX := (X,y);. ThenXNY = {y} since otherwise
XNY would contain a line and hence, disty) < d — 1 by Proposition 2.1.17(i).
Thus, disfz,X) = 2 since otherwis& NY would contain a line by Proposition
2.1.25(jii). Thereforey € pry(z) and since dige,x) = d, there is a poink’ €
pry (z) with dist(x',x) = dist(z,x) — dist(z, X) = d — 2. Hence, digl,x) > 2. By
Proposition 2.1.17(j) and Proposition 2.1.25(ii) we obtdiam(pry (z)) < 2 since
otherwise distx, pry(z)) < d — 2. Hence, diix,y) = dist(x,z) = 2. Moreover,
dist(x,Y) = 2 since distx,x') = d — 2. Thus, we may restrain ourselves to the case
d=2.

Letw e X with x L w L y. Then distw,z) = 2 by Proposition 2.1.25(ii). Set
Y':= (w,z)3. Sincew ¢ Y, we obtainy € pry(w). Since distw,z) = 2, we con-
clude by Proposition 2.1.25(i) and Proposition 2.1.27 fisafw) is a generator of
Y. Sincez" intersects pr(w) in a hyperplane and ptw) Nz <Y’ the symplecta
Y andY’ intersect in a common genera®by Lemma 2.2.3(i). Thus, (¥’) = 4.
Analogously, we conclude (kx,z)g) = 4 and that(x, z)g andY" intersect in com-
mon generatoG’. Now ze GNG' implies rKGNG') € {1,3} by Propositions
2.2.9(iii) and 2.2.9(v). By Proposition 2.1.17(i) we obtadist{x,GNG') < 1,
a contradiction to digk,Y) = 2. Therefore we conclude digpr,(x)) < 1 by
Proposition 2.1.25(ii).

It remains to check the case difon,(x)) = 1. Lety andz be distinct points
of pr, (x) and setX := (x,y)g. Thenz ¢ X by Proposition 2.1.17(i) and thus by
Proposition 2.1.25(i), gr(z) contains a line since dig x) = dist(y,x). Hence,
there is a pointv € pry(z) with distiw,V) = 1 andyz < pr,(w). We may as-
sume thatv is the point on the lingwwith dist(w, x) = dist(x,y) — 1. By Lemma
3.1.1(i) there is symplectori <V containingyz Hence, py(w) is a generator by
Proposition 2.1.27. By Proposition 2.2.5, there is a unisulespacé/ € 9t con-
taining px (w). Since (w,pr (w)) is singular, we concludev € M and hence,
M e 91 since rKpry(w)) = 3. Moreover,M NV = pr,(X) sincew € M and

diam(pry (x)) = 1. O
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Proposition 3.5.2. For V, exactly one of the following assertions hold:

(a) The subspace V is a symplecton, each elemeftofs a generator of V
anddt, = @.

(b) Each subspace 8§V withrk(S) = 2 is contained in exactly one element of
Mo and one element 6ft1.

Proof. We assume (a) does not hold. L®K V with rk(S) = 2. By Lemma
3.1.1(i) there is symplectovi <V with S<Y. Since rKY) < =, there are two
generators oY that intersect irSand hence, there are two elemeNtandN’ of

M that containS. If Y is properly contained iv, Lemma 3.3.1(i) implies that
there is a generat@ of Y that is properly contained in a singular subspac¥ .of
If Y =V, then there is a generatGrof Y that is properly contained in an element
of 90t1 sinceMy # & by the assumption. By Propositions 2.2.9(iii) and 2.2)9(ii
we may assum& < G and henceN € 9t;. By Proposition 2.2.4(ii)N and N’
are the only elements @ containingS. Moreover,N’' € My by Propositions
2.2.9(iii) and 2.2.9(iv). O

Lemma 3.5.3.LetV <. such thati; # @. Let M e 9.

(i) Let Ne 9My. Thenrk(M) =rk(N), rk(MNV) =rk(NNV) andcrky(M N
V) =crkn(NNV).

(i) Let Ne My~ {M} and let xe N. Set d:=distM,N), S:={pe M |
dist(p,N) =d} and X:= pry(x). Then <V, rk(S) = 2d + 1 andrk(X) =
2.dist(x,M). Furthermore, X<V ifxeV andrk(XNV) = 2-dist(x, M) —
ifxe¢V.

(iii) LetX and N be elements®t;. Further let xe X \V and ye (pry,(x),MnN
V) \ V. Then(pry(x),NNV) = (pry(y),NNV).

Proof. (i) By Lemma 3.1.1(v) we may confine ourselves to the case evtiere
exists an subspad@ € Mgy with rk(MN G) = rk(NNG) = 2. Then Proposition
3.5.2 implies and M NN) = 1. The claim follows by Lemma 3.3.3(iv).

(ii) First letM NN # @. ThenS= M NN. By the maximality ofM NV there are
pointsue MNV andve NNV withu £ v. SinceS< (u,v)g, Lemma 3.1.1(iii) im-

plies that botiM andN contain a generator dfi,v)g. With Propositions 2.2.9(iv)
and 2.2.9(iii) we obtain rlS) = 1. SinceS< V, the claim follows with Lemma
3.3.3(iv).

Now letd > 0. By Lemma 3.1.1(vi) and the convexity df there are points
pe€ SNV andg eV with p L q and disg,N) =d — 1. By Lemma 3.1.1(i)
and Proposition 3.5.2, there is an elembtite 911 with pg < M’. We obtain

MNM’ # @ and disfN,M’) =d — 1. SetX’ := pryy (X).

We assume that the claim holds fdf andN. We know thaig := M N M’ is line.
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Let S < M’ be the set of points at distande- 1 to N. Further letT’ < M’ with
gNT’ = @ such that{g, T’) = M’ and(gN X', T'NX’) = X" and letT < M with
gNT =@ suchthatg,T) =M and(gnX, T NX) = X. Thus, every line iM that
intersectsX, g andT intersectsX Ngor XNT. The analogous holds fot', g and
T’. From Lemma 3.3.3(ii) we know that the megpwhich maps every point of’
to its unique collinear point iff is an isomorphism froni’ ontoT.

First let disfx,M’) = dist(x, M) = d. ThenS < X’. Since rKS) =2d -1 and
rk(X") = 2d there is a point/ € g with dist(x,v) = d + 1. Suppose digx,g) =
d+1. Then there is a poinp € T’ with p? € X. Sincegn X’ = @, we ob-
tain X’ < T’. Since rkX’) = 2d, rk(pry,(p?)) = 2 andg < pry(p?), there is
a pointq € X'NT" with g £ p. Since distx, p) = dist(x,q) = d, we conclude
dist(x, (p,0)g) < d—1 by Lemma 3.5.1 and Proposition 2.1.25(ii), this is a con-
tradiction to Proposition 2.1.17(i) since distg) = d + 1. Thus, there is a point
uecgnX. Againletpe X'NT'. Further letg € T'~ {p} and set := (p,q?)q.

If dist(x,Y) = d, then by Lemma 3.5.1 p(x) is a generator that is properly con-
tained in a singular subspace &f sinceup < pry(x). Now we conclude by
Propositions 2.2.9(iv) and 2.2.9(iii) thap, p?, g) and(q,g?, g) are both elements
of My since both intersedyl in a singular subspace of rank 2. Consequently, they
both intersect pr(x) in a singleton or in a hyperplane. This implies (hsp) =
dist(x, p?) = d sinceX’ = (u, T’NX’). Analogously, disx,q) = dist(x,q?) for
dist(x,q) = d. For distx,q) = d — 1, we obtain rk(g,q%,g) Npr,(x)) = 0 and
hence, again digt, q) = dist(x,g?). If dist(x,Y) = d — 1, then distx,vq) = d and
hence, digix,q) = d. Analogously, digix, p?) = dist(x,q?) = d. Hence, we ob-
tain in all casep? € X andge X’ < g? € X. Thus, we concludX = (u, (S)?)
sinceX’ = (u,S). This implies rkX) = 2d. MoreoverX <V by Lemma 3.3.3(i)
since(u,S) < V. Since the claim holds faX andM’, we concludex € V in this
case.

Now letd’ := dist(x,M) = dist(x,M’) + 1. ThenX’ < T’ andg < X. Letp € X’ and
qe T~ {p}. SetY :=(p,q?)q. Since distx, p) = d’ — 1 and distx,g) = d’, we
obtainp € pry(X). If pry(x) = {p}, then by Proposition 2.1.25() is a gate foix
inY and hence, digt, p?) = dist(x,q) = d’ and disfx,q?) = d’ + 1. If pry(x) is a
generator o¥, then p (x) is properly contained in a singular subspace by Lemma
3.5.1. Thus by Propositions 2.2.9(iv) and 2.2.9(iii), (9 intersectsqg,g?,g) in

a singleton or in a hyperplane. AnalogoudW, NY intersects pf(x) in a line
sincegn pry(x) = @ andp € pry(x). This implies distx,q) = dist(x,q?) — 1 =

d’ —1 and hence, digt, p?) = d’. Thus, we obtain in both cases distp) =
dist(x, p?) — 1 and distx,q) = dist(x,q?) — 1. We concludeX = (g, (X')?) and
therefore rkX) = 2d’ since rkX’) = 2d’ — 2. Furthermore, sincgeV < g €V
by Lemma 3.3.3(i), we conclude (KNV) = rk(X'NV)+2. Hence, as regards
X, the claim holds by the hypothesis that the claim holdsvéandN.

It remains to determine (#6) and to proveS< V. For dis{x,M) = dist(x,M’) =d,
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we obtainedX <V andX < (g,(S)?). Note that(g,(S)?) is independent of
the choice ofT’ andT. For dis{x,M) = d and distx,M’) = d — 1, we obtained
X = (g,(X")?). SinceX’ < S in this case an@® <V, this implies agairX <V
andX < (g, (S)?). Sinceg < S~ S and(S)? < S, we obtainS= (g, (S)?) and
hence, rkS) = rk(S) + 2.

(iii) Setd :=dist(x,M). By (ii) dist(X,M) = d — 1 and there is a subspae<
M NV with rk(S) = 2d — 1 such that distp,X) = d — 1 for everyp € S Since
rk(pry (X)) = 2d andS < pry (x) NV, this implies by (ii) thal/ intersects g (x)
in a hyperplane. Thudd NV is a hyperplane ofpry (x),MNV).

We proceed by induction over.= dist(M, N). Since pg,(y) = {y}, the claim fol-
lows forM = N. ForL € 91, we setLy := LNV andLP := (pr, (p),Lv), where
p € {xy}. NowletN # M. Forn= 0, letL =M and forn > 0, letL € 9t; with
LNN # @ and distM,L) =n—1. ThenLNN is a line by (ii).

By Lemma 3.3.4 we obtairm n((L NN, pr_(x))) = (LNN,pry(x)). By Lemma
3.3.3(i) we obtainrg n(Lv) = Ny and thereforerg n(L*) = N*.  Analogously,
M n(LY) = NY. Sincel* = LY by the induction hypothesis, we conclubié =
NY. Ol

Theorem 3.5.4.LetV be arigid subspace with:s diam(V) < c andyrk(V) = 4.
Further let x and y be points of V witlist(x,y) = n. Then

(@) srkV)=2n—1and V= (x,y)q Or

(b) srkV) = 2n and for every point E V there is a subspace M 91, that
contains p and intersects, y)q in @ maximal singular subspace.

Proof. If V is a symplecton, there is nothing to prove and we are in $itnat
(a). Hence by Proposition 3.5.2, we may assie# @. By Lemma 3.5.3(i)
we know that every element o1, intersects/ in a singular subspace of rank
r:=srk(V).

SetU := (x,y)g- By Lemma 3.1.1(i) and Proposition 3.5.2 there is an element
M € My withy € M such thaM NU is a maximal singular subspaceldf Hence,
rk(MNU) = srk((x,y)q) as above. By Proposition 2.1.17(i) we obtain gl ) =
n—1 and pf,(X) is a hyperplane ofiNU. Thus, rkMNU) = 2n— 1 by Lemma
3.5.3(ii) and the claim holds ¥ is a metaplecton.

Suppose B < r. Then there is a line< M NV disjoint toU. Letz € pry,(X). By
Lemma 3.1.1(i) there is a symplect¥r< V with (y,z 1) <Y. Since disfx, 1) =n
and distx,z) = n— 1, we obtainz € pr,(x). With diam(V) = n and Proposition
2.1.25(i) we obtain gr(x) > {z}. Thus, Lemma 3.5.1 implies that\iKx) is a
generator ofY that is contained in an element 9t;. This is a contradiction to
Proposition 2.2.9(iv) since p(x) N (MNY) = {z}. Thus, 2ai—1<r < 2n.

Assume there is a poite V ~ U. Since dianiV) = n, we obtain by Proposition
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2.1.25(i) diantpry (p)) > 1. Thus, py(p) is a singular subspace of rank 2 1
by Lemma 3.5.1. By Proposition 2.1.17(i) and Propositidn25(iii) this implies
dist(p,U) = 1 and hence{p,pr,(p)) is a singular subspace of rank.2Thus,
srk(V) = 2n. The claim follows since by Lemma 3.1.1(i) and Propositicb.3
every point ofU is contained in an element aft; that intersectd) in a maximal
singular subspace. O]

Proposition 3.5.5. Let diam(V) < . Further let x be a point at distanceé
to V such thatpr, (x) contains a line. Therx,V)q is a rigid subspace with
srk((x,V)g) = srk(V) + 1 anddiam((x,V)q) < oo.

Proof. Setn:=diam(V). By Lemma 3.5.1 p(X) is a maximal singular subspace
of V. Hence, by Proposition 3.5.2 and Theorem 3.5.4 there is spsigkeX € 91
with X > (x,pr,(x)) and rkpn,(x)) = srk(V). For element$/1 andN of 90t; we
setMy :=MNV andMP = (pry(p),Mv), wherep € N\ V.

SetU = Umem, M*. We claim(x,V)g =U. LetM € M. If there is a point
p € My~ pry(x), then pg(x) < (X, p)g < (X,V)g and thereforeM* < (x,V)g.
Hence, we may assunv, < pry(x). Since rKMy) > 3, this implies distx, M) =
dist(X,M) +1 > 2 by Lemma 3.5.3(ii). Thus, there is a subspate 2t; with
XNN # @ and disfN,M) < dist(X,M). Lety € N*\\V. Then by Lemma 3.5.3(ii)
pry(Y) NV < pry (X)NV and hence, there is a poipte My . pry (y). By Lemma
3.5.3(iii) we obtainM* = MY < (x,V)g. Thus,U C (x,V)q.

By Lemmas 3.1.1(i) and Proposition 3.5.2 there exists ferep € V a subspace
M € 9t1 with p € M and thereforgp € M*. Sincex € X*, it remains to show, that
U is convex. Lety andz be points ofU. If both points are contained M then
(Y,2g <V CU. Hence, we assume¢ V. Then by Lemma 3.5.3(iiiM* = M*
for everyM € 913 and py(2) = Ny, whereN € 9t with ze N*. Thus, we may
assume = x. Setd := dist(x,y) andW := (X,y)g.

Firstletye V. Then pk(y) <V by Lemma 3.5.3(ii) and hence, digtX) =d— 1.
Thus, dianfw NV) = d — 1 and therefore disp,V) < 1 for every pointp € W by
Proposition 2.1.17(i). Furthermore,(fty(y)) = 2d — 2 and hence, X NW) =
2d — 1 since(x, prx(y)) <W and pk(y) is a hyperplane ok "W by Proposition
2.1.17(i). Ifd =1, thenW = xy < X and thus, there is nothing to prove. There-
fore we may assume > 2. Ford = 2, the subspac®/ is a symplecton. Since
prg(Y) <WnNV, there is by Lemma 3.1.1(i) a symplectér< V with pry (y) <.
Hence, Lemma 2.2.3(i) implies thét andY have a generatds in common and
therefore rkwW) = 4. Now for every pointp € W\ V, the subspackl := Gn p*
is contained in pf(p) and hence by Lemma 3.5.1 there is a subspdce M1y
with (p,H) <M. If M =X, then(p,H) = XNW = (x, XNG) < X*C U. If
M # X, then by Lemma 3.5.3(i)X "M is a line sinceXNH # @ and pg,(X) is a
hyperplane oM NW with pry (x) £ H. Thus,M "W = (pry;(x),H) < M*C U.
Now we may assuma > 2. Since p(y) <WnNV, we obtain srkWNV) =2d -2



‘ 3.5. Connected subspaces of symplectic rank 4

by Theorem 3.5.4. Lep € W~ V. Then there are pointg andr in WNV
with p L q and distq,r) = d — 1. By Proposition 3.5.2 and 3.5.3(i) there is
a subspactM € My with r e M and rkM N (VNW)) =2d —2. By Lemma
3.5.3(ii) there is a lineh < My NW with dist(g,h) = d — 1. Since by Propo-
sition 2.1.17(i) there is no line iV at distanced to p, we may assume that
r is a point onh with dist(p,r) < d. Now Proposition 2.1.25(i) implies that
ptN(qg,r)g contains a line and hence by Lemma 3.5.1, there is a subspacel;
with p € Nand tkNNWNV) = 2d — 2. By Lemma 3.5.3(ii) pg(x) £ V. By
Proposition 2.1.17(i) we know dist N) < d and hence, ripry (X)) < 2d — 2.
Hence,(Ny NW) \ pry(x)) # @ and therefore gr(x) <W. If x ¢ pry(p), then
prg(p) <W. Thus, Lemma 3.5.3(ii) implies thaty "W is a hyperplane of
(prg(p),Xv NW). Since rkXy N"W) = 2d —2 and rKkXNW) = 2d — 1, this implies
XNW < XP.If x ¢ prg(p), then agairX "W < XP sinceX "W = (x,Xy "W).
Applying Lemma 3.5.3(iii) leads td* = NP and hencep € U.

Now lety ¢ V and letM € 91 with y € MX. Assumey ¢ pry,(x). LetX €
pry (x) \V. Thenxy intersectdvly in a pointy’ ¢ pry (x). HenceW = (x,y')g and
we obtainW C U as above. Thus, we may assuyne pry (X). If there is a point
y € M* ¢ pry(x), thenW < (x,y)g CU. Thus, we may assumepfx) = M*,
With Theorem 3.5.4 and Lemma 3.5.3(ii) this implies @isy) = n, dist X,M) =
n—1and rkMy) =2n—1. Letu € Xy. Then by Lemma 3.5.3(ii) there is a point
v € My with dist(u,v) = n. We obtainV = (u,v)qg by Theorem 3.5.4. By Proposi-
tion 2.1.12(iii) and sinc&V has finite diameter, it suffices to show that every line
g < (x,y)g With x € g is contained irJ. Let p € g with dist(p,y) =n—1. Then
dist(p,u) < 2 and distp,v) < n. With Lemma 3.5.1 and Proposition 2.1.25(jii)
this implies distp,V) < 1. Suppose € V. Thenp € X, and henceg € X*. This
implies disty, X) < dist(x, pry (X)) and hencey € V by Lemma 3.5.3(ii), a con-
tradiction. Thus, digp,V) =1. Letqge V with p L q. If g¢ X, then(x,q)q is

a symplecton that contairsand pg(q). Since(x,q)g € U as above, we obtain
gCU. If ge X, then by Lemma 3.5.3(ii) there is a pomt My with dist(g,r) =n.
Since distp,r) < n Proposition 2.1.25(i) implies that" N (q,r)q contains a line.
Thus, py (p) is a singular subspace of rank 2 1 by Lemma 3.5.1. Moreover,
there is subspadé € 911 with (p, pr,(p)) < N. Since distp,y) =n—1, Lemma
3.5.3(ii) implies disfN,M) < n—2 and henceX # N. Sinceq € XNN, we obtain
rk(pry(X)) = 2. Thus, there is a poiif € Ny ~ pry(x). We obtaing < (x,q)g CU
as above. We concludg,V)y = U and therefore diafix,V)q) < o.

To prove thatJ is rigid, it suffices to check thaW is rigid if W is a symplecton.
Fory eV, this is already done. Hence, by Proposition 2.1.12(jifeihains the
caseN NV = @. LetM be the elements &bt withy € M. SinceWwnV = &, we
obtainXNM = @ by Lemma 3.1.1(iv) and therefore dixtM) = 1 by Lemma
3.5.3(ii). Letw e W with x 1 w 1 yand letN € 9t; with w € N. Then bothX
andM interseciN in a line by Lemma 3.5.3(ii). Lej € MNN. ThenY := (X,0)q
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is a symplecton since p(x) < M. We obtain rkY) = 4 as above sincg € V.
With w € Y we obtainwq < pr,(y) and hence by Lemma 3.5.1,,ffy) is a gen-
erator ofY. Sincex" contains a hyperplane of yy), this implies rkwW) = 4 by
Lemma 2.2.3(i). Thud) is rigid. Since by Lemma 3.1.1(iWINX <V for every
M € My~ {X}, we obtainXNU = X*and hence, sfkJ) = rk(X*) = srk(V) + 1
by Lemma 3.5.3(i). O

3.6 Connected subspaces of symplectic rank 5

Compared to connected rigid subspaces of symplectic ramkl 3 athe maximal
singular subspaces are less important for studying coedewid subspaces of
symplectic rank at least 5. This is because there is a ratlrerupper bound
for the singular rank of subspaces of symplectic rank at l[easoreover, rigid
subspace of symplectic rank at least 5 are very limited iiv thaximal diameter,
as we will see. Therefore, the following quite technical teas concern all the
intersection of symplecta of rank 5. More precisely, theedgsns are mostly of
the form that two given symplecta have non-empty interseadr even that they
have at least one generator in common.

Lemma 3.6.1.Let Y and Z be symplecta of raBk Further let p and q be two
distinct points of Z.

() Let pand g be containedinY. ThenY and Z have a generator imocom

(i) Letdist(p,Y) =dist(q,Y) = 1 and letpr,(p) and pr,(q) be generators of
Y. ThenY and Z intersect.

Proof. (i) We assumé/ # Z since otherwise there is nothing to prove. Hence
p L g Letr andsin be points ofZ such thatpg < r+ ns* and disfs,r) = 2.
We may assume that neithenor sis contained irY since otherwise we are done
by Lemma 2.2.3(i). Then p(r) and pr(s) are both generators by Proposition
2.1.27 since they both contag. Hence, py(r) Npry(s) < pgimplies rk(pr,(r)N
pry(s)) > 2 by Proposition 2.2.9(iv). Since fr) Npry(s) <Y NZ the claim
follows by Lemma 2.2.3(i).

(i) SetP := pr,/(p) andQ := pry(q). By Proposition 2.2.9(iv) we obtaiRnQ #

@. Thus, the claim follows if digip,q) = 2 and so we may assungel g. If

pq intersectsy there is nothing to prove. Hence, we may assypgeY = &
and thereforé® # Q by Proposition 2.2.9(vii). Let € P~ Q. ThenX := (r,q)q

is a symplecton that contains a hyperplaneQof Hence, X NY is a generator
by Lemma 2.2.3(i). On the other haidcontainspg and and hencXNZ is a
generator by (i). The generatot$Y andXNZ intersect by Propositions 2.2.9(v)
and 2.2.9(iii). We conclud¥NZ # &. O
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Lemma 3.6.2.Lety and z be two points of an SPO space such that ¥/, z)q is a
symplecton of rank. Further let x be a point witllist(x, X) = 2 andpry (x) = X.
Letue (x,y)g and ve (X, z)g.

() Tk((xy)g) = rk((x.2}g) = 5.

(i) If dist(u,X) = 1, thenpry(u) is a generator of X.

(iii) dist(u,v) <2.

(iv) If dist(u,v) = 2, thenrk({u,v)g) = 5and(u,v)gNX # @.

Proof. We setY .= (X,z)g andZ := (X, y)q. Since distx,X) = 2 we obtainX NY =
{z} andXNZ = {y} by Proposition 2.1.17(i). This implies distY) = 2 and
dist(z,Z) = 2 by Proposition 2.1.25(iii). Since digtx) = dist(y,z), we obtain
pry(y) =Y by Proposition 2.1.25(ii) and analogouslyy fir) = Z. Thus, it remains
to prove (i) to show that we are in a completely symmetricagittn concerning,
yandz

(i) Let Z be a point withz L Z 1 y. SinceZ ¢ Z there is a poin’ € Z with

y L X 1 xsuchthatdigix',Z) =2. By Lemma 2.2.3(ii) we obtaifZ, X' )4N X > Zy
since distz,X') = 2 andZynz*- = {z}. Analogously,(Z,X')gNZ > Xy. Thus by
Lemma 2.2.3(i), the symplectofx’,y’)q intersects botiX andZ in a common
generator. We conclude (K) =rk(Z) =5 and analogously, (k) = 5.

(ii) By Proposition 2.1.25(iii) we obtaiy € pry (u) since(u,y)gN X = {y}. With
dist(z, u) = 2 the claim follows by Proposition 2.1.25(i) and Propositih1.27.

(iii) For ue Y, there is nothing to prove. If diai,x) = 1, then py (u) is a generator
of Y by (ii) and hence the claim follows. Now let distx) = 2. Thenx € pr, (u)
by Proposition 2.1.25(iii) sinceu,x)gNY = {x}. Since distz,u) = 2, we obtain
pry(u) =Y and therefore digti, v) = 2 by Proposition 2.1.25(ii).

(iv) SetX’ := (u,v)g. We may assume ¢ Z since otherwiseX’ = Z and there
is nothing to prove. For dit,Z) = 1, we obtain rkpr,(v)) = 4 by (ii). Thus,
rk(X") =5 by Lemma 2.2.3(i). For diét,Z) = 2, we obtain pg(v) = Z by (iii)
and hence ") =5 by (i).

Since rkZ) = 5, the subspace- Ny* contains a line. Hence, there is a paiht
Z~.{u} collinear tou, xandy. SetY’ := (U, z)y. Since distu’, X) =dist(u,Y), we
obtain rpry (1)) =rk(pr (U')) =4 by (ii). Hence, we may apply Lemma 2.2.3(i)
to conclude thaY’ intersects botX andY in a generator. Since digZ) = 2,
we obtainZNY’ = {u'} by Proposition 2.1.17(i). Hence by Proposition 2.1.27,
pry/(u) is a generator sinca L U and disfu,z) = 2. ForveY’, letu* be a
point of pk.(u) Nv+. Forv ¢ Y’, the subspace pi(Vv) is a generator of’ since
v contains a hyperplane &f NY. Hence by Proposition 2.2.9(iv), there is a
pointu* € pry/(u) N PR (V). We may assume* ¢ X since otherwise we are done.
Since(u*)* contains a hyperplane &fNY’, we conclude digti*, X) = 1 and that
prg (U*) is a generator oX.
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Since pg (u*) cannot contain botli andz we may for symmetric reasons assume
z¢ pry(U*). LetG < X be a generator wit N pry (U*) = @ andz € G. Further let

p andq be distinct points 06 Ny~+. By (i) both pr, (p) and px,(q) are generators.
Moreover, rKpry (p) Npry(d)) > 2 by Proposition 2.2.9(vi). Thus, there is a line
g < pr(p) Npry(g)Nxt. LetV € g such thatv L vV andv # V. We obtain
rk(prz(V)) =rk(prg (V))) =4 by (ii). Thus, the symplectaff := (V,y)q intersects
both X andZ in a generator by Lemma 2.2.3(i). Since @§sY) = 2, we obtain
YNZ = {V} by Proposition 2.1.17(i). Hence by Proposition 2.1.2%,(®) is

a generator since | vV and distv,y) = 2. Foru e Z, let v* be any point of
pry(V)Nut. Foru¢ Z/, the subspace pr(u) is a generator o’ sinceu’ contains

a hyperplane ofZ’ NZ. Hence by Proposition 2.2.9(iv), there is a poifitc
pry (u) Npr, (V). We may assumé ¢ X since otherwise we are done. Sirfge)*
contains a hyperplane &fnZ’, we conclude digt*, X) = 1 and that pg(v*) is a
generator oK. Sincepq< Z/, we obtain pg (v*) NG # @. This impliesu* # v*
and therefore the claim follows by Lemma 3.6.1(ii). O

The following lemma is in a certain way similar to (VY) if we @xange the
terms “projective space” and “line” by “rigid subspace ofrgylectic rank 5" and
“symplecton”.

Lemma 3.6.3.Let Y, Y1 and % be symplecta of rankthat intersect pairwise. Set
S :=YjnYcfor {i,j,k} ={0,1,2}. Let SUS; contain two points for # j. Then
every symplectofKo, X1)g With Xy € Yo and x € Y; is of rank5 and intersects X

Proof. SetY := (xg,X1)g. We may assumgg ¢ Y1 andx; ¢ Yo since otherwise
there is nothing to prove. This impli&g # Y. ForYp =Ys, we obtaingg =S
and hence$; contains a line. Thus, Lemma 3.6.1(i) implies tBats a generator
of bothYp andY;. Since rKSNxot Nxt) > 2, the claim follows by Lemma
2.2.3(i). By symmetric reasons it remains the case whigr¥; andY, are pair-
wise distinct. Hence by Lemma 3.6.1(i), fér, j,k} = {0, 1,2}, the subspac§

is a singleton or a common generatoivpfandY,.

Let S, be a generator. Thenpfx;) contains a hyperplane & and therefore
pry,(X1) is a generator by Proposition 2.1.27. Analogously () is a generator
and hence by Lemma 2.2.3(¥,intersects botl andY; in a common generator.
This implies rKY) = 5. SinceS U S contains more than one point, there are
pointssy € § ands; € § with sp # s1. We may assumsy ¢ Y ands; ¢ Y since
otherwise we are done. Then %) is a generator since it contains a hyperplane
of YNY;. Analogously, py(s1) is a generator and the claim follows by Lemma
3.6.1(ii).

From now on we may assume tf&tcontains a single poirgh. LetS; be a genera-
tor. SinceS; # S, there is a poingy € . S. NowH = s5- NS, is a hyperplane
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of S;. SinceH <Yy and$; = {s;}, we obtainH £ Y; and thereforep L sp. Sup-
pose there is a poite H . s;*. Thensy € (s, p) = Yo, a contradiction tag ¢ Sp.
Thus,H < s;*. Now letq € Yo be a point with disfg, s;) = 2. Then by Proposi-
tion 2.1.25(iii) distq, Y1) = 2 since; = {s;}. Let pandp’ be two distinct points
of HNg'. Thenpp' NYy = @. Sincesps; < pry, () NPry, (P'), we conclude by
Proposition 2.2.9(vii) that p(p) and pr, (p') are distinct generators. Since both
generators are contained injiq), we conclude pg (q) = Y1. If dist(xq, Yo) = 1,
we obtain by Proposition 2.1.25(ii¥y L s, sinceS; = {sp}. Hence, ppo(xl) isa
generator by Proposition 2.1.25(i) and Proposition 2.1tnce, Lemma 2.2.3(i)
implies thaty andYp intersect in a common generator. Thug)Ytfk=5 and the
claim follows sinceY NYy intersectsS; by Propositions 2.2.9(v) and 2.2.9(iii). If
dist(x1, Yo) = 2, then py, (x1) = Yo since distxs,s2) = dist(x1,q) = 2. Hence,
rk(Y) =5 by Lemma 3.6.2(i) an&Y N Yo = {xo} by Proposition 2.1.17(i). If
dist(Xp,s2) = 2, the claim follows by Lemma 3.6.2(iv) sinsg ¢ Yo and hence
there is a poing € § with (s,s0)g = Y2. If dist(xo,s2) = 1, then py, (xo) is a gen-
erator. This implies by Lemma 2.2.3(i) thah Y3 is generator and consequently,
pry (So) is a generator. On the other hand there is a poi&; with s L Xo. Then
pry(s) is a generator since dist,x;) = 2. Sincesy # s the claim follows by
Lemma 3.6.1(ii).

Since the case whei®) is a generator is analogous, it remains the case where
S contains a single poing for 0 <i < 2. Thens ¢ Y; for 0 <i < 2 since
otherwisesy = s; = S. Let dis{(sp,s1) = 2. ThenY, = (s,51)g and hence,
dist(sp,s2) = 2 or dis{(s1,s2) = 2 sinces; ¢ Yo. We may assume dish, sp) = 2.
ThenYy = (so,S2)g. Assume digts;,s) = 1. Then p{(l(sl) is a generator since
s1 L s and dists;,s) = 2. Thus, (so,81)g contains a hyperplane of pfs;),

a contradiction t065 = {s}. Hence, difts;,s) =2. Now § = {s;} implies
dist(sp, Y2) = 2 and sincéY> = (S, S1)g, this leads to p,g(sQ) =Y,. Hence, Lemma
3.6.2(iv) proves the claim.

By symmetric reasons it remains the case where the pgjnss ands, are pair-
wise collinear. Then pg(sz) is a generator sincgs; < erz(sz). Hence, there are
pointspo € pry,(s2) andpy € Yz such thaty; L s; for {i, j} <{0,1} andpo [ pa.
ThenYoN pot is a generator since it contaisgs,. Since WZ(SQ) is a generator of
Y2, we conclude by Lemma 2.2.3(i) thgty, S2)g andY» have a generator in com-
mon. Thus, Lemma 3.6.1(i) implies thgt, ;)g andYp have a generator in com-
mon and therefor¥ N p;* is a generator. Thus, forc Yo, we obtain distp;,r) <

2 wherei € {0,1}. FurthermoreYoNY2 = {s1} implies distr,Y2) = dist(r,s;) by
Proposition 2.1.25(iii). Hence, @(r) =Y if dist(r,s1) = 2. Thus, we ma apply
Lemma 3.6.2(ii) to conclude thaty(r) is a generator if digt,s;) = 1. The anal-
ogous holds fos, Y; andr € Y, where{i, j,k} ={0,1,2}.

Letxo L sp. Then pt, (xo) is a generator. Hence by Lemma 2.2.3(i)intersects
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Y; in a common generator and thereforé¥k= 5. Now there are two points in
YNYinsot ~ {s}. Since for both points the projection ¥a is a generator, the
claimfollows by Lemma 3.6.1(ii). By symmetric reasons thagro follows if x; 1
s. Hence, we may assume digf, ;) = dist(xq,s2) = 2. Then distxp, Y1) =2 and
pry, (Xo) = Y1. Thus, rKY) = 5 by Lemma 3.6.2(i). This implieéNY; = {x;} for

i € {0,1} and hence, di$;,Y) = 2 by Proposition 2.1.25(jii) and consequently,
pr(s2) =Y. If dist(s,Y) = dist(s;,Y) = 1, then Lemma 3.6.2(ii) implies that
pry(So) and px(s1) are both generators of and hence, the claim follows by
Lemma 3.6.1(ii). Thus, we may assume ¢igtY) = 2.

Fori € {0,1}, let gi € Y; be a point withs;_j L ¢ £ 5. Thens Y g since
dist(s,Yi) = 1 ands; € pry, (s). Thenz; := (s,0)g is a symplecton of rank 5 with
s0s1 < Z;. By Lemma 3.6.2(iv); intersectsY. Sinces € Z; and distso,Y) = 2,
the symplect&; andY intersect in a single point. Since disfqp, s) = 2, we
obtain distqo, Y1) = 2 and henceZpNY: = {s}. With q1s0 < Z3NY; this implies
ro # r1 sincez; = (ri,S)g. By Lemma 3.6.1(i)%; andY, have a generator in com-
mon since they both contasas;. Henceri NY, contains a generator ¥ and
the claim follows by Lemma 3.6.1(ii). O

Proposition 3.6.4.Let Y be a symplecton of an SPO space wkilY) = 5. Fur-
ther let x be a point withdist(x,Y) = 1 such thatpr,(x) contains a line. Then
V = (x,Y)q is a connected rigid subspace wishhk(V) =5 and diam(V) = 2.
Moreover, there is a point g V withdist(y,Y) = 2 such that V= ey (Y; V)g-

Proof. SetX := pry(X). By Proposition 2.1.2% is a generator of . LetW <Y
be a generator with cgKW N X) = 4 and letz be the unique point oV N X. By
Proposition 2.2.9(ii) there is a poimt at distance 1 t& such that py(w) =W
andw € V. By Proposition 2.2.9(vi) we obtaiw / x and henceZ := (w,X)q
is a symplecton o¥/. Since bothw’ andx* contain a hyperplane &nY, we
conclude rkZNY) < rk(WNX)+2=2. With Lemma 2.2.3(i) this implies (€N
Y) < 1. SinceX is a generator of, there is no point ify at distance 3 ta. Thus,
Lemma 2.2.3(ii) implieZ NY < x*. AnalogouslyZnY < z* and thereforey N
Z ={z}. Lety € Z with dist(y,z) = 2 andx L y. We may assume thgis the point
onxywithy | w. SinceZNY = {z}, Proposition 2.1.25(iii) implies diy,Y) = 2.
Thus,W andX are both contains in pfy). By Proposition 2.1.25(ii) this implies
pry(y) =Y sinceY = (W, X)q. Sincew € V we obtainy € V. On the other hand
X € (Y,2)g < (¥,Y)g and therefordy,Y)g = V.

SetU = Uyey (Y, V)g. Letu andv be points ofY and letp € (y,u)g andq € (y, V)q.
By Lemma 3.6.2(i) we obtain Ky, u)g) = rk({y,V)g) = 5. If dist(u,v) =2, we
obtain distp,q) < 2 by Lemma 3.6.2(jii). For digt,,v) < 2, Proposition 2.1.25(i)
implies thatvt contains a generator df,u)y. Thus by Lemma 2.2.3(i)y, u)g
and(y, v)g have a generatd® in common. With rkGn p- ng*) > 2 we conclude
dist(p,q) < 2. We showZ := (p,qg)g C U and if dis{p,q) = 2, thenrKZ) = 5.
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Foru = v there is nothing to prove. If digpb,q) < 2, there is a point/ € (y,V)q
with dist(p,q) = 2 andZ < (p,q')g. Thus, we may straiten to the case* v and
dist(p,q) = 2. Sinceu, v andy are pairwise disjoint, we may apply Lemma 3.6.3
to conclude thaZ is a symplecton of rank 5 ardnNY # &. If p=uandg=v,

we obtainZ =Y and there is nothing to prove. Hence, by symmetric reasons we
may assume # v. If ZNY = {v}, thenu ¢ Z sinceu # v. Thus, we obtaip # u
and{u} # ZnNY. Therefore, we may assumget vandZNY # {v} by symmetric
reasons.

Let se Z. If dist(y,p) = 1, then by Proposition 2.1.25(i) pty) # {p} since
dist(y,q) < 2. Thus, disty,s) < 2 for disty,p) < 1. Analogously, digly,s) <

2 for distly,q) < 1. Now let disty, p) = dist(y,q) = 2. Assume digty,Z) = 1.
Then pg(y) N (y, p)g # @ by Proposition 2.1.25(iii). Sinc@ € Zn (y, p)y and

p ¢ prz(y), Lemma 3.6.1(i) implies that and(y, p)q have a generator in common.
Thus, pg(y) is a generator by Proposition 2.1.27 and we obtairf{yist< 2. For
dist(y,Z) = 2, we obtain digly,s) = 2 by Proposition 2.1.25(ii). Thus, there is a
pointt € Z such that digty,t) = 2 and(y, S)g < (y,t)g. SinceZNY # {v}, thereis a
pointZ € ZNY ~ {v}. Since disty,Y) = 2 andv + g, we obtaing ¢ Y and therefore

Z #q. Thus,Z, vandg, are pairwise disjoint and we may apply Lemma 3.6.3 to
the symplectdy, v)g, Z andY to conclude thaty,t)q andY intersect. Hence, we
may assume e Y since disty,Y) = 2. We conclud& C U. This impliesV =U
and yrkU) = 5. Since disty, p) < 2 for everyp € U, we obtain dianV) = 2.
Since (x,X) <V, we obtain srkV) > 5. By Lemma 3.1.1(i) and Proposition
2.2.9(vii) every singular subspage< (u, v)q with rk(S) = 5 is maximal. O]

Theorem 3.6.5.Let V be a connected rigid subspace of an SPO space with sym-
plectic rank5 and let Y< V be a symplecton. Thetiam(V) = 2, yrk(V) =
srk(V) =5and there is a point x V withdist(x,Y) = 2 such that V= Uycy (X, Y)g-

Proof. By Lemma 3.3.1(i) there is a poite V such that pg(z) is a generator
of Y. Thus by Proposition 3.6.4z,Y)q is a rigid subspace with diafvf) = 2 and
yrk(V) = srk(V) = 5. Moreover, there is a pointe (z,Y)q with dist(x,Y) = 2
such that(z,Y)g = Uyey (X,Y)g- Suppose/ > (z,Y)q. Then by Lemma 3.3.1(i)
there is a poiny € V \ (z,Y)g such that p&7Y>g(y) contains a line, a contradiction
to Lemma 3.3.1(ii). O

3.7 Connected subspaces of symplectic rank 6

We conclude this chapter by considering the case of conteicfiel subspace of
symplectic rank> 6. As for the case of symplectic rank 5, there exists only one
type of such a subspace beside being a symplecton. Thisuype dut to be of
symplectic rank 6. Therefore, we first consider subspacegraplectic rank 6.
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Proposition 3.7.1. Let Y be a connected rigid subspace of an SPO space with
symplectic ranké. Further let x be a point wittdist(x,Y) = 1 such thatpr, (x)
contains a line. ThenY is a symplecton of réhkMoreover, V= (x,Y)q is a
connected rigid metaplecton witlam(V) = 3 andsrk(V) = 6.

Proof. SetX := pr,(x). By Lemma 3.3.1(ii)Y is a symplecton and by Proposition
2.1.27X is a generator of. LetW <Y be a generator with cgW N X) = 4.
Thenl :=WnX is a line. By Proposition 2.2.9(ii) there is a pointc V at dis-
tance 1 toY such that pf(w) =W. By Proposition 2.2.9(vi) we obtaiw / x
and henceZ := (w,x)q is a symplecton. Since¢ Y, we obtain dianiy NZ) < 1.
Since bottw' andx* contain a hyperplane of NZ, we conclude rky NZ) <
rk(WnX)+2=3. With Lemma 2.2.3(i) this implies (K NZ) < 1 and thus,
I=YNZ.

Let p andq be distinct point of. Further letu € Z with u L p and distu,q) = 2
andv € Y with v L q and distv, p) = 2. Then disfu,v) = 3 by Lemma 2.2.3(ii).
Sincep andq are both contained ifu, v)q, we conclude that € Z = (u,qg)g and
Y = (v, p)g are contained ifu,v)q and thereforey < (u,v)g. On the other hand
w eV impliesu € Z <V and hencequ,v)g =V.

Now let Z be an arbitrary symplecton &f with Z #£Y. Letye Z\Y. Then
dist(y,Y) = 1 by Proposition 2.1.17(i). Thus, there is a porg Y ~ Z with
dist(y,z) = 2. Again by Proposition 2.1.17(i) we obtain disZ) = 1. By Propo-
sition 2.1.25(iii) this implies that botl andZ have a common line witkly, z)g.
With Lemma 2.2.6 we conclude (fy,2)g) = rk(Z) = 6. Thus,(u,Vv)q is rigid.
Since (x,X) <V, we obtain srkV) > 6. By Lemma 3.1.1(i) and Proposition
2.2.9(vii) every singular subspage< (u, v)g with rk(S) = 6 is maximal. O

Theorem 3.7.2.LetV be a connected rigid subspace of an SPO space with sym-
plectic rank> 6. Then V is either a symplecton or V is a metaplecton with
diamV) = 3andyrk(V) = srk(V) = 6.

Proof. LetY <V be a symplecton. Assune< V. Then by Lemma 3.3.1(i) there
is a pointx € V such that pg(x) is a generator of. By Proposition 2.2.9(viii)
this implies rKY) = 6. Thus by Proposition 3.7.Xx,Y)q is a rigid metaplec-
ton with dian{V) = 3 and yrkV) = srk(V) = 6. Suppos&/ > (x,Y)g. Then by
Lemma 3.3.1(i) there is a poigte V . (X, Y)g such that pg vy, (y) contains aline,
a contradiction to Proposition 3.7.1. O



Maximal rigid
subspaces

In this chapter we study the maximal rigid subspaces of an §R©e. As we will
see, SPO spaces are composed in a very nice way by maxinthktigspaces.
More precisely, the maximal connected rigid subspaces gelecomposition of
the set of lines. Moreover, each connected component of énspBce is the grid
sum of its maximal rigid subspaces through any given pointcoAesponding
property can also be found for twin SPO spaces. This fadfipssto restrain our
studies to rigid SPO spaces.

4.1 Maximal connected rigid subspaces

Firstly, we consider maximal rigid subspaces of a given ected component.
The aim of this chapter is to show that each line is containgulécisely one max-
imal connected rigid subspace. Furthermore, there exisamanical equivalence
relation on the set of maximal rigid subspace of a given cotatecomponent
such that every two equivalent spaces are isomorphic ajardis

Let C be a chain of connected rigid subspaces of an SPO space. Aden t
union of the members df is a again a connected rigid subspace. Hence, every
chain of connected rigid subspaces has an upper bound andiyepply Zorn’s
Lemma to conclude that every connected rigid subspace taioed in a maximal
connected rigid subspace. Of course all subspaces oagumrihis section live in
an SPO space.

Lemma4.1.1.LetV be a connected rigid subspace. Further lgt¥% be a point
and let <V be aline withdist(x,|) = 1 such that(x,l)q is rigid. Then(x,V)q is
connected and rigid.

Proof. Let§ be the set of finite sets of points'éf We first show diar{M)g) < o
for everyM € § by induction over the cardinality &fl. SinceV is connected, we
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obtain diant(M)g) < o for [M| < 3 by Proposition 2.1.3. Now leM| > 3. If M
consists of mutually collinear pointé)g is singular. Thus, we may assume that
there are two non-collinear points M. Since|M| > 3, there is a poinp € M
such that diar{M ~ {p})g) > 2. SetU := (M~ {p})g. By the induction hypoth-
esis we may assume didth) < . Since disfp,U) < o, it suffices to consider
the case digp,U) = 1. Since dianU) > 2, we know by Remark 2.2.10 that
V has a symplectic rank. If yf¢) = 2, thenU is a metaplecton by Theorem
3.2.3. Moreoverp has a gate in U by Proposition 3.2.2. Hence, for any point
p’ € U with dist(p'q) = diam(U), we obtain distp, p’) = diam(U) + 1 and there-
fore (M)g = (p,U)g = (p, P')g is again a metaplecton.

Now let yrk(V) > 3. Assume pj(p) contains a single poird. Letr € U \ {q}
with g L r. Since rK(p,r)g) > 3, there is a poins € (p,r)g \ gr that is collinear
to all points ofgr. We may assume thais the point on the lingr that is collinear
to p. This impliess ¢ U. Hence, py(s) contains a line. Since is collinear to
two points of(s,U)g, we may constrain ourselves to the case wheyg prcon-
tains a lineg. Since by 3.1.1(i) there is a symplectonUfthat containg, we
conclude yrkU) < 6 by Proposition 2.2.9(viii). Thus, diaftM)g) < c follows
from Propositions 3.4.5, 3.5.5, 3.6.4 and 3.7.1.

SetW = Uyez(X,1,M)g.  Since (x,1,M)g < (x,V)q for everyM € § andv ¢
(X,1,v)g CW for everyv e V, we obtain(\W)g = (x,V)g. Letu andv be two points
of W. Further letM andN be the finite sets of points & such thau € (x,|,M)q
andv € (x,I,N)g. Then(u,v)g < (x,I,MUN)y C W yieldsW = (W)q and hence,
W = (x,V)g. Thus, it remains to show dist,v) < « and that{u,v)q is rigid. Since
(u,v)g < (x,I, MUN)g and(MUN) € §, it suffices to show thatx,|,M)g is rigid
and connected favl € 3.

SetU := (I,M)gq. Since for two distinct pointp andq of | we obtain(p, g, M)y =U
and(MU{p,q}) € §, we know dianfU) < co. First assumex, |)q is a symplecton
of rank 2. Then Proposition 2.2.4(i) implies thas a maximal singular subspace
sincel is a generator of the rigid symplectdr,|); and hence, there are three
lines of (x, 1)y meeting in a point of. Thus, we may assume digh) > 2 since
otherwiseU = | and there is nothing left to prove. By Lemma 3.1.1(i) we con-
clude yrkU) = 2. Hencel is a metaplecton by Theorem 3.2.3. This implies
diam((x,U)q) < 0 and(x,U)q is rigid and connected by Proposition 3.2.5.

Now assumex, | )q is a singular subspace or a symplecton of rar&. In the lat-
ter case there is a poigte (x,l)g | with y L x such that(y,|)q is singular. Then
U Ny contains a line andy,U )N x* contains a line. Sincé,U)g = (X,y,U)q,
we may restrain ourselves to the chsex’.

For diamU) > 2, there is a symplectovi < U such that < pr,(x) by Lemma
3.1.1(i). Thus, 3 yrk(V) < 6 by Propositions 2.2.9(i) and 2.2.9(viii). Now the
claim follows from Propositions 3.4.5, 3.5.5, 3.6.4 and.B.Hence, it remains
the case that) is singular. IfU < pr,(x), then(x,U)q is singular and we are
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done. Thus, we may assume that there is a poinM with dist(x,y) = 2. Since
(X, 1) < (x,y)g, the symplectolY := (x,y)q is rigid. Now pk (p) contains the line
| for every pointp € M. Since dianfY) = 2 andM is finite, the claim follows by
induction. 0

Proposition 4.1.2. Every line is contained in a uniqgue maximal connected rigid
subspace.

Proof. Let| be a line. Since is a rigid subspace, there is a maximal connected
rigid subspac®/ that containd. Now letU be an arbitrary connected rigid sub-
space with < U. Suppose there is a poirte U \. V. SinceU is connected and
UNV # @, we may assume digtV) = 1. Since diarlu nV) > 1, there is a
line g € UNV with dist(x,g) = 1. Now (X,g)g is rigid since(x,g)g < U. Thus,
Lemma 4.1.1 implies thatx,V)q is rigid, a contradiction the maximality of.
Thus,U <V andV is uniquely defined. ]

Corollary 4.1.3. Let U and V be two connected rigid subspaces with a common
line. Then(U,V)q is a connected rigid subspace.

Proof. Let| <U NV be aline. By Proposition 4.1.2 there is a uniqgue maximal
connected rigid subspad¥ that containd. This impliesU <W andV <W.
Thus, the intersection of all subspaced®that containJ andV is defined and
equals(U,V)q. O

Proposition 4.1.4. Every maximal connected rigid subspace of an SPO space is
gated.

Proof. LetV be a maximal connected rigid subspace andlbé a point with
dist(x,V) < . Suppose there is a life< pr,(x). Then by Lemma 3.2.1 there
is a pointy with dist(y,V) = 1 andl < pr,(y). By Lemma 4.1.1 this implies that
(y,V)g is rigid and connected, a contradiction to the maximality ofhus, py; (x)
contains a single poirg For any pointv € V, Proposition 2.1.25(i) implies that
is a gate fo in (v, z)g. The claim follows. O

Our next goal is to show that the maximal rigid subspaces al@ngcon-
nected component can be partitioned into equivalenceedaasch that any two
subspaces of a given equivalence class are isomorphic angaoallel to each
other.

Lemma 4.1.5.Let g and h be one-parallel lines of an SPO space. Further letU
and V be maximal connected rigid subspaces withth and g<V. Then U and
V are one-parallel to each other.
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Proof. Sinceg and h are one-parallel, we obtaid := dist(g,h) < . Letw
and x be two distinct points oh and lety and z be the points org such that
dist(w,y) = dist(x,z) = d. Setn:=distw,V). By Proposition 4.1.4v has a
gatew in V. This implies distw’,y) = d —n and distfw,z) = d —n+ 1. Since
(W, 2)g containsx andw’, we obtain disix, (W,z)g) < n by Proposition 2.1.17(j).
Sincey € (W,2)g and distx,y) = d + 1, Lemma 2.1.14 implies thathas a gate
X' in (W,2z)g with dist(x,x') = n. Thus, distx,z) =d —n and hencew # x.
Since distx,w) < dist(w,w') + 1, we obtainw/ L X. Therefore, digv,x) =
dist(x,w') = n+1 and Proposition 2.1.29 implies tHaandw'x’ are one-parallel to
each other. Since/x' <V, we may assume ptw) = {y}. Now if pry (y) # {w},
we repeat this argument to obtain a lihe< U that is one-parallel tg with
dist(l,g) < n. Thus and since difl),V) < o, we may assume thatis the gate
of yin U and consequently, dist,V) = dist(y,U) = d.

Suppose digk,V) < d. Then we may apply the same argument as above to ob-
tain a lineg’ <V that is one-parallel tt with dist(h,g') < d, a contradiction to
dist(w,V) = d. Since disfx, z) = d, we obtain distx,V) = d and hence by Propo-
sition 4.1.4zis the gate fox in V. Analogouslyxis the gate fozin U. Moreover,
for every pointp € U ~ {w} with p L w, we obtain distp,V) if there is line inV
throughy that is one-parallel t@w.

Now let p € U ~ hwith p L w. Then distp,y) = d+1, sincew is a gate fory in
wp. First assume digt, p) = 2. Then disfp,z) = d+ 2 sincex is a gate forzin

U. Thus,(p, 2y containsx andw and consequently; € (p,z)g. By Proposition
2.1.23(p,z)g is an SPO space. Since disty) = d+ 1, there is a poin| € (p,2)q
with dist(x,q) = d+ 2 andy L g. This implies disfg,z) = 2. NowX is a gate for
zin (p,X)g since(p,x)g < U. By (A12) we know thatg has a gate ifp,Xx)g at
distanced sinceq andx are opposite ifp,z)g. Thus, Proposition 2.1.29 implies
that(x, p)g and(z, g)g are one-parallel to each other and isomorphic. The gape of
in (z,0)g has distance 2 trand hence distanak+ 2 tox. Moreover, the gate gf

in (z,0)g is collinear toy since distp,y) = d + 1. Therefore we may assume that
q is the gate fop in (z,g)g. Now (X, p)g is rigid since it is contained iN. This
implies that(z,q)q is rigid. Sinceg < (z,q)g andV is maximal, Proposition 4.1.2
implies (z,q)g < V. Sincewp andyq are one-parallel to each other, we obtain
dist(p,V) =d and hence, pi(p) = {q}.

Now assumep L x. Then distp,y) = dist(p,z) = d+ 1. Thus, Proposition
4.1.4 implies digtp,V) < d. Hence,y ¢ pr,(p). Now d < dist(w,pr,(p)) <
dist(p,pr, (p)) + 1 yields distp,V) = d. By Proposition 4.1.4 has a gate in

V. Since distp,y) = d+ 1, we obtainy # g andy L . Thus again, the lines'p
andyq are one-parallel to each other. Singas connected this implies thak is
one-parallel to/. AnalogouslyyV is one-parallel tdJ. O

Proposition 4.1.6.LetV be a maximal connected rigid subspace of an SPO space.
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Further let x be a point withdist(x,V) < «. Then there is exactly one maximal
rigid subspace U with x U such thatV and U are one-parallel to each other.

Proof. Setd :=dist(x,V). We may assume > 0 since otherwise there is nothing
to prove. By Proposition 4.1.4 has a gatein V. Sinced > 0, there is a line
throughz and henceV > {z} by Proposition 4.1.2. Ley € V \ {z} be a point
withy L z. Then distx,y) =d+ 1. Thus,ze (x,y)g. Since(x,y)qis an SPO space
by Proposition 2.1.23, there is a poimte (x,y)g with w L X, distw,y) = d and
distw,z) =d+ 1. LetU be a maximal connected rigid subspace with< U.
Since by Proposition 2.1.29 the lines andyz are one-parallel to each other,
Lemma 4.1.5 implies thal andV are one-parallel to each other.

Now letW be a maximal connected rigid subspace with W such that/ and
W are one-parallel to each other. Then @idV) = d since distx,V) = d. By
Proposition 4.1.4 the point € W with dist(y,u) = d is a gate fory in W and
therefore digtu,x) = 1. Supposeas # w. Thenu ¢ U since pg(y) = {w}. By
Lemma 4.1.1 and the maximality &f this implies that(u, xw)q is not rigid and
thereforeu £ w. Thus,(u,w)q is a symplecton and the only lines{n, w)q through

x areux andwx. Since py;(2) = pry(2) = {x}, this implies that all points in
(u,w)gNx-\ {x} have distance + 1 toz Thus,x is a gate forzin (u,w)y by
Propositions 2.1.25(ii) and 2.1.25(i). Singew)g < (Y, X)g, this is a contradiction
to Proposition 2.1.17(i). We conclude= w and hencelJ =W by Proposition
4.1.2. Ol

Proposition 4.1.7.Let U and V be two maximal connected rigid subspaces that
are one-parallel to each other. Then the mapU — V with pr, (u) = {u?} for
every point u= U yields an isomorphism from U onto V.

Proof. SinceU andV are one-parallel to each othdr,is a bijection. Set :=
dist(U,V). By Proposition 4.1.4 maps every point d onto its gate ir/. Now
let w andx be distinct collinear points df. Further lety be the gate ofv and
let z be the gate ok in V. Since conversely is the gate fory in U, we obtain
dist(y,x) = d+ 1 and hencey L z. Since distw,z) = d + 1 by analogous reasons,
Proposition 2.1.29 implies thaix andyz are one-parallel lines. Thus, for every
point u on wx the gate ofu in V is contained inyz By symmetric reasons, the
preimage of every point ofzis contained iwx. Hence g is an isomorphism. [

4.2 Rigid subspaces at finite codistance

Now that we know something about maximal rigid subspaces gizen con-
nected component of an SPO space, we proceed with rigid soéspf distinct
connected components that are adjacent in the connedraph. Therefore we
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first we study the coprojection of a point in convex subspddinie diameter.
Throughout this sectior’ is always an SPO space.

Lemma 4.2.1. Let x€ . be a point and let | be a line withodx,1) < o and
copi(x) = 1. Then there is a point y» x withdist(y,|) = codx,|) andpr, (y) = 1.

Proof. Setd :=codx,1). Letzbe a point withz — x and distz 1) = d. We may
assume that there is a poigtc | with dist(z,q) = d + 1 since otherwise we are
done. By (A12) we conclude thahas a cogate in (g, z)g with cod(x,x') = d+1.
Hence,(X,l) is a singular space of rank 2. By Proposition 2.1.23 we knat th
(9,2)g is an SPO space. Thus by Lemma 2.1.21(iii), there is a po#{q, 2)g
with dist(y, p) = d for every pointp € | and disty,x') = d + 1. We obtairnx <y
sincex' is a cogate fox. O

Lemma4.2.2.LetV <.¥ be a metaplecton and let x be a point at finite codistance
to V such thatopg, (x) contains a line. Then there is a point z widlst(z,V) = 1
andcod(x, z) < cod(x,V) for every ve V such thapr, (z) contains a line.

Proof. Setd := codx,V) andn := diam(V). By Proposition 2.1.17(ii) we obtain
d > n. Letg < copk/(x) be a line. By Proposition 2.1.28 is an SPO space
and hence, there is a life< V such thath andg are one-parallel to each other
with dist(g,h) = n— 1. Hence by Lemma 2.1.24, we obtain ¢agp) = m for
every pointp € h, wherem:= min{codx,v) | ve V}. By Lemma 4.2.1, there is
a pointy < x with dist(y,h) = mand p(y) = h. Hence by Lemma 3.2.1, there is
a pointz with dist(z,y) = m— 1 andh < z*. We conclude cog,z) = m— 1 and
consequentlyz ¢ V. O

Proposition 4.2.3. Let V < .# be a connected rigid subspace wittk(V) = 2
anddiam(V) < . ThenV is cogated.

Proof. By Theorem 3.2.% is a metaplecton. Letbe a point with cofk,V) < .
Suppose copi(X) contains a lineg. Then by Lemma 4.2.2 there is a point
with dist(z,V) = 1 such that gf(z) contains a line. This is a contradiction to
Proposition 3.2.2. Hence, cqx) is a singleton and the claim follows from
Proposition 2.1.12(ii). O

Proposition 4.2.4.Let V < . be a connected rigid subspace wittk(V) > 5.
Further let x be a point witltod(x,V) < . Then one of the following holds.

(a) V is a symplecton and x has a cogate in V.
(b) V is a symplecton of rankor 6 and copk, (X) is a generator of V.

(c) V is a symplecton of rankandcopk, (X) = V.
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(d) V is a maximal connected rigid subspaces with(V) = srk(V) = 5 and
copk, (X) is a symplecton.

(e) V is a metaplecton witHiam(V) = 3 andyrk(V) = 6 and x has a cogate in
V.

Proof. First assume yif¢/) > 6. Then by Theorem 3.7\ is either a symplec-
ton or metaplecton with diaf) = 3 and yrkV) = 6. Hence, if copj(x) is

a singleton, Proposition 2.1.12(ii) implies that we aréneitin case (a) or (e).
Therefore we may assume cQgx) contains a line. Thus by Lemma 4.2.2, there
is a pointz with dist(z,V) = 1 such that gf(z) contains a line. Hence by Lemma
3.3.1(ii),V is a symplecton. Moreover, Proposition 2.2.9(viii) imglig(V) = 6
and by Proposition 3.7W := (z,V)q is a rigid metaplecton with diafw') = 3 and
yrk(V) = 6. Now copyy(x) does not contain a line, since we already know that
this would imply thatW is a symplecton of rank 6. Thus, Proposition 2.1.12(ii)
implies thatx has a cogate’ in W. Since copy(x) contains a line, we obtain
X ¢V and hence, di¢x,V) = 1 by Proposition 2.1.17(i). Thus,piX) is singu-
lar and hence by Proposition 2.1.27,,x) is either a singleton or a generator of
V. Sincex is a cogate fox in W andV < W, we conclude cogy(x) = pry (X)
and therefore we are in case (b).

Now let yrk(V) = 5. First assume that contains a symplecton properly. Then
yrk(V) = srk(V) =5 and dianfV) = 2 by Theorem 3.6.5. Selt:= cod(x,V). Let

v e V with codx,v) = min{cod(x, p) | p €V} and letu € copk,(x). If v_L v, then
by 3.1.1(i) there is a symplecton W that containai andv. Hence by Lemma
2.1.24, we may assume distv) = 2. SetY := (u,V)q. Suppose cod,v) >d—1.
Then by Proposition 2.1.12(ii) copfx) contains a ling. Thus by Lemma 4.2.2,
there is a poink with cod(x,z) = codx,v) — 1 such that' contains a line o¥.
This impliesz ¢ V, a contradiction to Lemma 3.3.1(ii). Hence, ¢od/) =d —2
since dianfV) = 2.

By Theorem 3.6.5 there is a poimte V with dist(w,Y) = 2. SetZ := (v,w)q.
ThenZ is a symplecton. Since dist,Y) = 2, Proposition 2.1.17(i) implies that
Y NZ contains no line and henc¥,NZ = {v}. Suppose caa,Z) < d. Then

x has no cogate iZ sinceZ <V and codx, p) > d — 2 for every pointp € V.
Thus, Proposition 2.1.12(ii) implies that cggx) contains a ling. Now Lemma
4.2.2 implies that there is a pointvith codx, z) = cod(x,v) — 1 such thaz* con-
tains a line ofZ. This impliesz ¢ V, a contradiction to Lemma 3.3.1(ii). Hence,
codx,Z) = d and Proposition 2.1.12(iv) implies thathas a gatev in Z. Since
ZNY = {v}, Proposition 2.1.25(iii) implies dig, Z) = 2. HenceX := (u,W)g

is a symplecton that is contained in cpx). By Theorem 3.6.5 there is a point
y € V such that digly, X) = 2 andV = Upex (Y, P)g- There is a poinp € X such
thatu € (p,y)g. By Proposition 2.1.12(ivp is a cogate fok in (p,y)q and hence,
codx,y) = d—2. This implies that for every poirg € X, q is a cogate fox in
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(9,y)g- Thus, copy (x) = X and we have case (d).

Finally letV be a symplecton of rank 5. If capfx) is a singleton, (a) holds by
Proposition 2.1.12(ii). Therefore we assume that ggprcontains a ling. Then
Lemma 4.2.2 implies that there is a pomwith cod(x,z) = cod(x,v) — 1 such
thatz* contains a line oZ. By Proposition 3.6.%V := (x,V)q is a rigid subspace
with diam(W) = 2 and yrKkW) = srk(\W) = 5. Setd := codx,W). As before
X := copky(X) is a symplecton and there is a poyine W with codx,y) =d — 2
such thaW = {J,ex (Y, P)g- Letu € gand letp € X such thati € (p,y)q. LetveV
such that{u,v)g =V andq € X such thatv € (q,y)q. Sincep is a cogate fox in
(p.Y)g, We know(p,y)g # V and hencey ¢ (p,y)q. This impliesq # p. Thus, we
may apply Lemma 3.6.3 to conclude thaandX intersect. Hence, cdg,V) =d
andg < X. Now Lemma 3.6.1(i) implies that andX are either equal or intersect
in a generator. In other words, either (c) or (b) holds. O

The following two assertions are the counterpart to PrajursR.1.27. Note
that we make use of the classification of rigid subspacesfimite diameter given
in Chapter 3.

Proposition 4.2.5. Let V < . be a rigid metaplecton and let x be a point with
cod(x,V) < o such thatdiam(copk, (x)) = 1. Thenrk(copk, (x)) = srk(V).

Proof. Setd := codx,V) andn := diam(V). We may assuma > 2, since oth-
erwise there is nothing to prove. By Proposition 4.2.3 wectagte yrkV) > 3.
For yrk(V) > 5, the claim follows from Proposition 4.2.4. Thus, we mayuase
yrk(V) € {3,4}.

Let z be a point of copf(x) and letg < copk,(X) be a line througle. For ev-
ery pointp € V with dist(p,z) = n, we obtain co¢x,p) <d—n+1 by Propo-
sition 2.1.16(ii) since diaiftopk, (x)) = 1. By Proposition 2.1.17(i) this implies
codx,p) =d—n+1=min{codx,q) | g€ V}. Now we may apply Lemma 4.2.2
to conclude that there is a poywith cod(x,y) = d —nsuch thay* contains aline
of V. SetW := (y,V)g. Then Propositions 3.4.5 and 3.5.5 imply dig#) = n.
Thus, codx,W) = d sinceW containsz andy. Moreover, if yrkV) = 3, then
Theorem 3.4.4 and Proposition 3.4.5 imply @& = n+ 1. If yrk(V) = 4, then
Theorem 3.5.4 and Proposition 3.5.5 imply 3% = 2n. SetU := (z)y)g. Then
we conclude by Proposition 3.4.5 and Theorem 3.5.4(plist) = 1 for every
pointpe W~ U.

Let w € copky(X) \ {z}. Suppose distv,z) > 2. Then by Proposition 2.1.25(jii)
there is a pointV € U with w L wandw € (w,z)g. Since(w,z)g < copky(X) by
Proposition 2.1.16(i), this is a contradiction to ggpr) = {z}. Thus, copf,(x) <
z- and therefore diaficopxy (x)) = 1 by Propositions 2.1.16(i) and 2.1.12(i).
Assume yrkV) = 3. Lety be a point collinear ta with dist(y,y') = n— 1. Then
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there is a symplectolf < W containingg andy’; if (y',g)g is singular, this fol-
lows from Lemma 3.1.1(i). We obtain d{stY) = n—1. Hence, diarfW) = n
implies thaty has no gate ify. By Proposition 2.1.27 we conclude that, fy)

is a generator o and moreover, gi(y) is properly contained in singular sub-
space of. Hence by Lemma 3.4.3(i) and Proposition 2.2.4(ii), thee ex-
actly two maximal singular subspacilsandN of . that contairg. By Lemma
3.1.1(iii) bothM andN contain a generator of. Since bothMNY andNNY
containg, Proposition 2.2.9(iii) implies that p(y) is disjoint to eitheM NY or
NNY. We may assumBlNY Npr, (y) = @. Now dist{y,M) =n—1 and hence,
rk(pru(y)) = n—1 and pf(y) <W by Lemma 3.4.2. Since sfW) = n+1,
this impliesM NW = (g, pry(y)) and rkM NW) = n+1. By Theorem 3.4.4
we conclude rkNNW) = n. Analogously toM, dist(y,N) = n— 1 would imply
rk(NNW) > n+1 and therefore disy,N) = n. SinceM NW = (g,pry(y)) and
codx,pry(y)) <d—1, we obtain copy(x) "M = g and consequently, captx)

is contained irN.

Now assume yrf/) = 4. If rk(copky(x)) > 3, letG < copky(X) be a subspace
with g < G and rKG) = 3. Otherwise, Lemma 3.1.1(i) implies that there is a
singular subspac® < W with copky(x) < G and rKG) = 3. By Lemma 3.1.1(i)
there is a symplectof <W such thatG is a generator of. Sinceg <Y, we
obtain disty,Y) > n— 1. Since dianWW) = n, Proposition 2.1.25(i) implies that
pry(y) contains a line. Hence by Lemma 3.5.1, () is a generator of and
dist(y,Y) = n—1. Since cofx, pr,(y)) < d—1, we obtain cogg(x) Npry(y) = 2.
Hence Gnpry (y) = @ if G < copky(X). If G > copky(x), then there is a genera-
tor of Y containing copj,(x) and being disjoint to gi{y). Hence, we may assume
GnNnpr(y) = @. By Proposition 2.2.5 there is a unique maximal singular sub
spaceN < . containingG. By Proposition 2.1.27 we know thaty{l) is not a
maximal singular subspace . Thus,G < N by Proposition 2.2.9(ii). This im-
plies rkNNW) = 2n by Lemma 3.5.3(i) and Theorem 3.5.4. Supposgyilst) =
n—1. Then rKpry(y)) = 2n— 2 by Lemma 3.5.3(ii). Sinc&npry(y) = 9, this
implies rkNNW) > 2n+ 2, a contradiction. Thus, digtN) = n.

Thus, for both possibilities of y(k), there is a maximal singular subspade
with copgy (X) < N and disty, N) = nthat intersect®/ in a maximal singular sub-
space ofV. Suppose there is a poiwte N ~ copky (X). Then disty,w) = n since
dist(y,N) = n and dianfW) = n. Hence,(w,y)g NN contains no line since other-
wise Proposition 2.1.17(i) would imply digtN) < n—1. Hence,(w,y)gN =
{w} and therefore cogy(x) N (w,y)g = @. This implies codx, (w,y)q) =d—1 and
we copr<wy>g(x). Since codx,y) = d—n, the pointw s not a cogate foxin (w,y)q
and thus, CORWWQ(X) contains a line by Proposition 2.1.12(ii). Now Lemma
4.2.2 implies that there is a poigt with codx,y') < codx,y) = d — n such that
()N {(w,y)q contains a line. Since diaiw/) = nand codx, W) = d, we conclude
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y ¢ W. Since codx,W) —codx,y’) > n+ 1, we obtain diarfy’,W)q) > n+ 1.
For yrk(V) = 3, we obtain by Proposition 3.4.5 thgt,W)y has the same singu-
lar rankW and hence(y’,W)q is a metaplecton with diametar- 1 by Theorem
3.4.4. For yrkV) = 4, we obtain srk(y’,W)g) = srkW) + 1= 2n+1 and hence,
(Y ,W)q is a metaplecton with diametar+ 1 by Theorem 3.5.4. Now Proposition
2.1.12(jv) implies thak has a cogate ify’, W)y which is at codistancd to x, a
contradiction tag < W. Thus we conclude cogt(x) = NNW.

Sinceg < NNV andV < W, we obtain copf(x) = NNV. For yrkV) = 3,
Lemma 3.1.1(iii) implies thal contains a maximal singular subspacé&/adince
g<NNV. Thus, tKNNV) = srk(V) = n by Theorem 3.4.4. For yfkK') = 4, we
know rk(NNW) = 2n. SupposeN NV = g. Then there is a poirp € NNW \ V.

By Lemma 3.1.1(i) there is symplectah< V that containgy. Now Lemma
3.5.1 implies that pr(p) is a generator oZ that containg. Since by Proposi-
tion 3.5.2 the singular subspage, g) is contained in a unique maximal singular
subspace of rank 4, we concludép,prz(p)) <N, a contradiction tiNNV = g.
Hence, rkNNV) > 2 and consequentliy contains a maximal singular subspace
of V by Lemma 3.1.1(iii). By Proposition 3.5.2 and Lemma 3.5.8( conclude
rk(NNV) = srk(V). O

Corollary 4.2.6. LetV be a metaplecton and let x be a point with(x,V) < o
such thatdiam(copk, (x)) = 1. Thencopk, (X)) is a maximal singular subspace of
V.

Proof. Letg < copk, (x) be aline. We may assume thigis not a maximal singular
subspace oV, since otherwise copfx) = g and we are done. Then there is
a pointp € V ~. g with g < pt. By Lemma 2.1.26 there is a symplect¥n<

V that contains(p,g). This implies rKY) > 3 and thereforé is rigid. Since
copk, (X) is singular andy < copk, (x) NY, Proposition 4.2.5 implies that cqgix)

is a generator of .

Now let g € V ~. g be another point witlg < g*. As before, there is a rigid
symplectonZ that containgqg,g) and copg(x) is a generator of. Hence,q €
coprz(x) or copi(x) £ g-. Thus, copy(x) is @ maximal singular subspace of
V. O

Now we are ready to study how convex subspaces at finite emdistare re-
lated to each other. The following two assertions are thatspart to Proposition
2.1.29.

Lemma 4.2.7.Let x and z be two points of an SPO space wii(X,z) = n < .
Further let w and y be points with w z, y— x anddist(w, x) = dist(y,z) = n. Set
U = (W, X)gand V:= (y,z)g. Then

(i) U andV are one-coparallel to each other witbdU,V) = n and
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(i) the bijective mapp: U — V with copk,(u) = {u®} for all u € U is an
isomorphism.

Proof. By (A12) w andx have a cogate at codistaneén V. Hence, the cogate
for xinV isz. Lety be the cogate fow in U. Then disty’,z) = n sincew « z
Thus,x « Yy and we may assume= Y. Again by (A12)x is a cogate fow in U
andzis a cogate foy in U.

Letu e U~ {x} with u L x. Then codu,V) > n by Proposition 2.1.17(ii). Since
X is a cogate forz in U, we obtain cofu,z) = n—1. Sinceu L xandzis a
cogate forx in V, we obtain co@u,v) < n—dist(v,z) + 1 for all ve V. Hence,
codu,V) = n and copy (u) < z-. Thus, diangpr, (u)) < 2 since otherwise ¢
copk, (u) by Proposition 2.1.16(i). This implies that, copk,(u)) is a singular
subspace. Hence, cgu) is no maximal singular subspace\éfand therefore,
copk, (u) is a singleton by Corollary 4.2.6. Thus, Proposition 2.{iilZnplies
thatu has a cogate in V with z L v. By symmetric reasons, is the cogate fov
inU.

Now (i) follows by induction. Since every poimt€ U has a cogatginV andp
is then the cogate farin U, we conclude thap is bijective. Since = x?, v=u?
andz | v, we know already thap preserves collinearity. It remains to check that
p? e zvfor everyp € xu. Supposep? ¢ zv. Since by Proposition 2.1.28 is
an SPO space, we may apply Lemma 2.1.21(iii) to concludetiiea¢ is a point
s V with dist(s,z) = dist(s,v) = n— 1 and dists, p?) = n. This impliess < p
andx < s« U, a contradiction to (A2). ]

Corollary 4.2.8. Let X, y and z be points of an SPO space suchdisify,z) = n
andcod(x,z) = n+cod(x,y) < c. Then there is a point w at distance n to x such
that codw,y) = n+ codw, z). For every such point, the metapleca, x); and

(Y, 2)g are one-coparallel to each other. Moreover, the ngap(w, X)g — (Y, 2)g that
maps every point g (W, X)q to the unique point ochpr<y7z>g(p) is an isomorphism.

Proof. Lety « x be a point with disty,y’) = codx,y) and letw < zbe a point
with dist(x,w') = cod(x, z). Sincex <y and distz,y) + dist(y,y’) = cod(x, z), we
obtain distz,y) = cod(x,z) and hence dit/,x) = disty’,z). Thus by Lemma
4.2.7, the metaplectav,x)y and (y',z)y are one-coparallel to each other with
cod(W,X)g, (Y,2)g) = codx,z). Letw e (W,x)q be the point with cotk,z) =
codw,y). Since co@w,y) = n+ codx,y) and by Proposition 2.1.12(ii) is the
cogate fory in (x,w')g, we obtain distx,w) = n. Sincex is the cogate foz in
(W, X)g, we conclude co@v,y) = codx,z) = n+codw, z).

Now letw be an arbitrary point with cqav,y) = n+ codw, z) and distx,w) =

n. Then codx,z) < codw,z) + n since disfw,x) = n and hence, cqd,z) <
codw,y). Analogously, cof@lv,y) < cod(x,z) and therefore equality holds. Let
y < x be as above and lef — z be a point with digw,w') = codw,z). Then
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dist(y’,z) = dist(w',x) = cod(x,z) and againJ := (W,Xx)q andV := (Y, z)q are
one-coparallel to each other with g@V) = cod(x,z). Now lety: U — V be
the unique isomorphism mapping every pointiofo its cogate itV. Theny = w?
since codw,y) = codx, z). Thus, sincep is an isomorphism, we obtaine (w, X)q
if and only if W € (y,z)q. Hence,¢ := |y yields an isomorphism frord onto
V. O

Remark4.2.9 (Opposite metaplectallet U andV be metaplecta that are one-
coparallel to each other with cfd,V) = diam(U) = diam(V). Then every point
p € U has a cogate iX by Proposition 2.1.12(ii) and hence, there is a pgiatV
with q < p by Proposition 2.1.12(i). Analogously, for every poin€ V, there is

a pointp € U with p — g. Thus,U andV are subspaces that are opposite to each
other.

Let V be an arbitrary metaplecton of an SPO space ang batd z be points
with (y,z)g = V. Since by Lemma 2.1.13 there is a pobppositey with
codx,z) = dist(y,z), Corollary 4.2.8 implies that there is a metaplectbrihat

is oppositeV. Hence, to every metaplecton there is an opposite metaplect
Finally, letU andV be metaplecta that are opposite to each other. nSet
diamU) and letv € V. Since there is a point ib) that is oppositev, (A12)
implies thatv has a gate in U with cod(u,v) = n. This implies codU,V) = n.
Now u is opposite to a point of and hence, diafv) > nsincev € V. With (A1)
and codU,V) = n we conclude diarfy) = n. As above, this implies that every
point of U has a cogate i¥ at codistance. HenceU andV are metaplecta that
are one-coparallel to each other with ¢€ddV) = diamU ) = diam(V).

Lemma 4.2.10.Let V be a maximal connected rigid subspace. Further let X be
a point such thatod(x,y) = d < o for a point ye V andcod(x,v) > d for every
pointve V. Thencodx, ) > d+ 1 for every line I< V.

Proof. Suppose there is a line< V with codx,l) = d. Then by Lemma 4.2.2
there is a poinz with dist(z,1) = 1 and codx,z) < d such that p(z) = 1. Since
codx,z) < d, we obtainz ¢ V. Sincel < pr,(2), this is a contradiction to Propo-
sition 4.1.4 O

By (A1) the codistance between two maximal connected riglispaces that
have infinite diameter is always infinite. Hence by definitittvo such subspaces
can never be one-coparallel to each other. For this, wednt® the following
terminology.

Definition 4.2.11. Letd € N and letU andV be subspaces of an SPO space with
codmU UV) = d. Furthermore, for every pointe U, there is a point € V with
cod(u,v) =d and no lind <V with cod(u,l) =d. Then we call d-oppositeto

V.
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LetU andV be two metaplecta. Note thatlif is one-coparallel t&/ with
codU,V) =d, then Proposition 2.1.12(ii) and Proposition 2.1.17(ipiythatU
is (d —diam(V))-opposite tov. By this definition 0-opposite is just the same as
opposite.

Lemma 4.2.12.Let g and h be one-coparallel lines of an SPO space. Further le
U and V be maximal connected rigid subspaces withth and g<V. Then U is
d-opposite V for a natural number d.

Proof. Sincegandh are one-coparallel, we obtailii= cod(g,h) —1 < «. Hence,
we may assume thgt< U andh <V are one-coparallel lines with minimal pos-
sible codistance. Laet andx be two distinct points oh and lety andz be points
ongsuch that cofv,y) = codx,z) = d + 1.

Suppose there is a poigte V with codw, g) < d. Since disfz,q) < o, we may
assumeg L z and codw,q) =d —1 by Lemma 2.1.28. Hence, digty) = 2
and by Proposition 2.1.12(iw) is a cogate fow in (q,y)g. Sincez € (q,y)g and
codx,z) > codx,y), we knowy ¢ copr<q7y>g(x). Thus by (A3), there is a point
p € (9,y)g With cod(x, p) < codx,q) = d. By Proposition 2.1.12(iv) this implies
thatz is a cogate fox in (g,y)q. Since by Proposition 2.1.2Q),y)q is an SPO
space, there is a ling in (g,y)q that is one-parallel tg with dist(g,g’) = 1. Then

w andx have both a cogate i at codistance in g’ and these cogates are distinct.
By Corollary 4.2.8 this implies thdt andg’ are one-coparallel to each other and
codh,d’). This is a contradiction to the minimality af sinceh’ < (q,y)g <V.
Thus, for every poinp € hand every point € V, we obtain co¢p,q) > d. More-
over, codp,l) > d for every linel <V by Lemma 4.2.10. By symmetric reasons
cod(p,q) > d for every pair of point¢p,q) € U x gand codl,q) > d+1 for every
linel <U and every poing € V. SinceU is connected, it remains to show that
for every pointp € U ~ hwith p L wthere is a lind <V such thatpw andl| are
one-coparallel to each other with qguiv | ) = d+ 1.

Firstassume digp, x) = 2 and seY := (p, X)g. SUPPOS& € COpk,(z). Sincew Y
and codp, z) > d for every pointp € Y, this implies dianicopk,(z)) = 1 by Propo-
sitions 2.1.12(ii). Thus, there is a like< Y that is disjoint to copf(z), a contra-
diction to codz k) > d+ 1. Hencex ¢ copk (z) and therefore cdd,Y) = d+ 2.
Analogously, cody,Y) = d-+ 2. By Proposition 2.1.12(ivy has a cogatgin Y.
This impliesq L x. Hence, cofy,y) = d + 1 since co@x,y) =d andz | y. Now
letr be a point withr < z and distr,w) = d. Further lets be a point withq < s
and dists,y) = d+ 1. By Lemma 4.2.7 the metaplects z)g and(q,r)q are iso-
morphic via mapping every point @§, z)q to the unique point at codistandet- 2

in (g,r)g. Thus, there is a symplect@h< (s, z)g with Z=Y such thal andZ are
one-coparallel with cof,Z) = d + 2. Since botty andz have distancd +2 toY
andy € (s,z)g, we concludeg < Z. SinceY < U, we know that botly andZ are
rigid and henceZ <V by Proposition 4.1.2. Ldt := (copr(p),copry(w)) and
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let] < Z be aline that is one-parallel towith dist(I,1") = 1. Then by Corollary
4.2.81 andpw are one-coparallel to each other with ¢oghw) = d + 1.

Now assume digp,x) = 1. ThenS:= (p,h) is a singular subspace of rank 2.
Assume coflp,q) = d for a pointg € g. Let p’ € h be the unique point df with
codp’,q) =d+1. Thenp' is a cogate fog in pp. Since every point of ~ {q}
has codistancd + 1 to pp’ and codistance to p/, Corollary 4.2.8 implies that
pp andg are one-coparallel to each other with ¢pd,g) = d+ 1. Thus, we
assume co@,g) =d+ 1 and cop(p) =1. Then Lemma 4.2.2 implies that there
is a pointq with dist(q,g) = 1 andg < g* such that cofp,q) = d. Since(q,g)

is rigid, Proposition 4.1.2 implieg € V. Now y is a cogate fop in yq Since
codx,y) = d and codx,qy) = d+ 1, Corollary 4.2.8 implies thapx andqy are
one-coparallel to each other with qgp’,g) = d + 1. O

Corollary 4.2.13. Let V and U be maximal connected rigid subspaces such that
U is d-opposite V for ¢t IN. Then V is d-opposite U.

Proof. Assume thaV is a singleton. Then there is no line containvidy the
maximality of V. Hence, cofu,V) = 0 for every pointu € U. This implies that
U is a singleton that is opposité

Now let diam(V) > 1. Letx € U and lety € V such that cotk,y) = d. Letze V
be a point withz L y. By Lemma 4.2.10 we may assume ¢ad) =d+ 1. Hence
by Corollary 4.2.8, there is a linegthroughx such that andyzare one-coparallel
to each other. Sindeis rigid, we obtain diarflJ) > 1.

Letw < U ~ {x} be a point withw L x. SinceU is d-opposite tdv/, we conclude
cody,wx) =d+1 by Lemma4.2.10. Therefore we may assume&ygad =d-+1.
SinceV is connected there is a poinE V withy | zand codw, z) = d by Lemma
2.1.28. Since cog,yz) = d+1 and codx,y) = d, Corollary 4.2.8 implies that
wx andyz are one-coparallel to each. With Lemma 4.2.12 this implegV is
c-oppositeU for somec € N. Since codx,y) = d and codu,y) > d for every
ue U, we conclude =d. O

Proposition 4.2.14.Let V be a maximal connected rigid subspace. Further let
x be a point such thatod(x,y) < o for a point ye V. Then there is exactly one
maximal rigid subspace U with& U that is d-opposite V for someaN.

Proof. Setd := cod(x,y). Sinced < «, we may assume that we chose V such
that codx,v) > d for every pointv € V. If V is a singleton, then there is no line
containingy by the maximality ofv. Hence, co¢k,y) = 0 and codw,y) = O for
every pointw L x. By (A1) this implies that there is no line throughHence {x}

is already a maximal connected rigid subspace.

Now let diam(V) > 1. By Proposition 4.2.10, there is a por# V with z L y such
that codx,z) = d+ 1. Hence by Corollary 4.2.8, there is a pomtL x such that
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wx andyzare one-coparallel to each other with ¢att yz) =d+ 1. LetU be a
maximal connected rigid subspace witk < U. Then Lemma 4.2.12 implies that
U is d-opposite tov since codx,y) = d and codx, V) > d for every pointve V.
Now letW be a maximal connected rigid subspace thatippositeV and con-
tainsx. Since codx,y) = d and codx,v) > d for every pointv € V, we obtain
c=d. Suppos&V # U. ThenU NW = {x} by Proposition 4.1.2. Since by Corol-
lary 4.2.13V is d-oppositeW, there is a point L x with cod(u,z) = d. Since
(u,xw)g andV have the linexwin common andi ¢ V, Proposition 4.1.2 implies
that(u, xw)g is not rigid. Thus, digu,w) = 2 and the only lines ifu, w)g through

x areux anduw. Hence, all points inu,w)g N x* \ {x} have codistance to

z Thus by Propositions 2.1.16(i) and 2.1.16(ii), we obta@pr@wg(z) = {x}.
Proposition 2.1.12(ji) implies thatis a cogate foz in (u,w)g. On the other hand
cody,ux) = codly,wx) = d+ 1 and cody, x) = d implies cody, (u,w)g) =d+2
by Proposition 2.1.16(i). Lete (u,w)g with cod(v,y) = d+2. Then distx,v) =2
and hence, cdd,v) = d— 1, a contradiction ty | z O

4.3 Rigid twin SPO spaces

The aim of this section is to show that the equivalence @dtr maximal rigid
subspaces of one connected component we introduced in shedition of this
chapter, can be extended to another connected componerd.pvézisely, we are
dealing with the two connected components of a twin SPO spadeshow that
there is a canonical one-to-one correspondence betweeytliealence classes
of these two components.

Throughout this section le¥” = (.#*,.#~) be a twin SPO space. Further
let M be the set of maximal connected rigid subspaces’oi. e. of one of the
components of”. LetU andV be two elements dbt. Then we writdJ ||V if U
andV are one-parallel to each other or if there is a natural nurdtserch thatJ
andV ared-opposite to each other. Otherwise we wiitef V.

Proposition 4.3.1. The relation|| is an equivalence relation oft.

Proof. Since every subspace is one-parallel to itgei§ reflexive. Thus, we may
assume that botl¥™ and.”~ are non-empty and hence, that every element of
2 is non-empty. Assume tha8k contains a singleton. Then this singleton is not
contained in a line and hence, both connected componensingletons that are
opposite. Thus, we may assume that every elemeéit abntains a line. By defi-
nition, the relatior]| is symmetric. Hence, it remains to show tkjas transitive.
LetU, V andW be distinct elements abt such thatJ ||V || W. First assume

U andV are one-parallel to each other with di$t{V) = 1. Letue U and let

v €V be the point withu L v. Further letp € U \ {u} be a point withp L uand
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let g € V be the point withp L g. By Proposition 4.1.7 mapping every point of
U onto its unique collinear point iW yields an isomorphism and henpe and
qv are one-parallel to each other at distance 1. This impligsvth= (p,v)q is a
symplecton that contairggandu. SinceY andV have the lineggvin common and
ueY\V, Proposition 4.1.2 implies thatis not rigid.

AssumeV is d-oppositeWV for somed € IN. Letr € W be a point with distv,r) =
d. By Lemma 4.2.10 there is a poigt on qv at codistanced +1 tor. By
Lemma 2.1.28 there is a poimt € W collinear tor with cod(q’,w) = d. Since
codw,qv) =d+1 by Lemma 4.2.10 and andw have distinct cogates iqgv,
Corollary 4.2.8 implies thajvandrw are one-coparallel to each other. Hence, we
may assume cdg,w) = cod(g,r) =d+1.

First let codu,w) = d+ 2. Then Proposition 2.1.12(iv) implies thatis co-
gate forw in Y. Furthermore, co@i,r) =d+ 1 sincer L wandu L v. Since
cod(q,r) =d+1, codu,r) = d and (r,u)g =Y, Proposition 2.1.16(i) implies
codr,Y) > d+2. Thus again by Proposition 2.1.12(iv),has a cogate ifY.
This cogate is collinear to botlhandg. SinceY is not rigid, the only lines o¥
throughu areuv and pu and the only lines oY throughq areqvandpg. Hence,
codp,r) = d+ 2 and Corollary 4.2.8 implies thatv and pu are one-coparallel
to each other. Thud) | W by Lemma 4.2.12. Now let cgd,w) = d. Since
uv and gv are the only lines ol throughv, we conclude cog(w) = {v} by
Proposition 2.1.16(ii). Hence, by Proposition 2.1.12(i}s a cogate fow in
Y. This implies codp,w) =d —1. Since cofq,r) =d+1,qL pandr Lw,
we obtain codp,r) = d. Hence by analogous reasomgsis a cogate for in Y
and codu,r) =d—1. Againrw and pu are one-coparallel to each other and
thereforeU || W. Finally let codu,w) = d+ 1. If there is a poinu/ € uv with
codUu,w) = d + 2, then we obtain as for the case ¢odv) = d + 2 that the
unique linel <Y throughu that is disjoint touv is one-coparallel taw with
codl,rw) = d+2. Moreover, both points andw have a cogate iy that is
contained inl. Sinceuv is the only line throught that intersectpu, the linesl
andpu are one-parallel and henaeandw have distinct cogates ipu that are at
codistancead + 1. Thus,rw and pu are one-coparallel at codistande- 1. Now
consider the case caad w) = d+ 1 and copy, (W) = uv. Since codw,q) =d, there
is no point inY collinear tov at codistancel + 2 tow. Hence, co@nY) =d+1
by Proposition 2.1.16(ii) and therefore copw) = uv by Corollary 4.2.6. Since
cod(r,v) = d, we obtain co¢r,uv) < d+ 1. Since codw,Y ~uv) =d andw L,
this impliesq € copk,(r). By Proposition 2.1.16(i), we conclude qodi) < d+1
sinceu ¢ copk,(r). Hence, cotu,w) = d+ 1 implies codu,r) = d. Thus,qis
no cogate for in Y and Corollary 4.2.6 implies that cagr) is a line. Since
pg and qv are the only lines ofY throughq and codr,v) = d, we conclude
codr,q) = d+ 1. Againrw andpu are one-coparallel at codistande- 1. Thus,
U ||W by Lemma 4.2.12.
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Now letU andV be one-parallel at distanee> 1 and letW be d-oppositeV.
Let p andu be distinct collinear points df). By Proposition 4.1.7 the points
g andv of V with cod(u,v) = cod(p,q) = n are collinear and the linegu and
qv are one-parallel. Thus, the metaplectn= (u,g)y containsp andv. Let
(Vi)o<i<n be a geodesic from to u. Setqgp :=r. Fori < nletg;1 be a point of
(P, Vi+1)g that is collinear tay. Sincep L u and distp,v) = n+1, we conclude
dist(p,vi) = n+1—i. Sinceq € (p,Vi)g and (p,Vi)g < (P,Vi+1)g, Proposition
2.1.17(i) implies that we always find such a paipt;. Now for everyi < nthe
sequencef, ..., q,Vi,...Vn) and(Vvo, ..., Vi,q,...qn) are geodesics. As a direct
consequence the lingpy; are mutually one-parallel to each other. Mebe the
maximal connected rigid subspace that contgjms Then Lemma 4.1.5 implies
that the subspacé&é are mutually one-parallel to each other. Applying induatio
yieldsU || W.

LetU andV ared-opposite andy andW arec-opposite for natural numbecsand
d. Further letw € W. By Proposition 4.1.6 there is a unique subspates M
with w € W’ that is one-parallel tt). Now W’ || U yieldsW’ || V sinceU andV
ared-opposite. By Proposition 4.2.0 is the only element ofJt containingw
that isb-opposite td/ for someb € IN. Hence, we conclude&/ =W’ and therefore
U andW are one-parallel.

Since|| is symmetric, it remains the case thats one-parallel to botk) andW.
By Proposition 4.2.14 there is subspatec 9t that is opposit&/. By the above
we obtain that there are natural numbeendd such that) is c-oppositev’ and
W is d-oppositeV’. HencelJ andW are one-parallel. O]

The next proposition shows that every twin SPO space caitajinl subspaces
that are again twin SPO spaces.

Proposition 4.3.2.Let U and V be maximal connected rigid subspaces such that
U is d-opposite V for some d IN. Then UUV is a rigid twin SPO space with
opposition relation—4 := {(u,v) € (UUV) x (UUV) | codu,v) = d}.

Proof. SetW :=U UV. By definition«—g is symmetric and by Corollary 4.2.13
itis total. Now Lemma 2.1.28 implies that for every two pairiandy of W with
codx,y) = n> d, there is a poingz € W with y L zand codx,z) = n— 1. This
implies codx,y) = cody(x,y) + d, where cod is the codistance with respect to
—g. Thus, (A3) and (A4) are satisfied.

Let x, y and z be points ofW with x <4 y and disty,z) = n. SetY := (y,2)q.
Let Z < copk/(X) be a metaplecton such that diéf) = diam(copk,(x)). Since
Y is an SPO space by Proposition 2.1.23, there is a metapl&ttgry that is
oppositeZ in Y. By Lemma 2.1.24 we conclude cg{et,Z’) = O sincey € Y. By
Lemma 4.2.10 this implies diaff’) = 0 and consequently, dig@) = 0. Thus,
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copk,(x) is a singleton and (A2) holds. By Proposition 2.1.12ihas a cogate in
Y. Hence, (A1) follows from Proposition 2.1.3. O

Let! be an index set and €%/ be a family of twin SPO spaces. Foe |,
we denote by " and.#~ the two connected components.gf. Let pj € .7 "
andqg € 4 be points withp; < g in 4. Then we define thgrid sumof the
twin SPO space&¥; )ic| with the pair of origins ((pi)ici, (G )iel ) @s

@(%»(plqu = (@(%+7 pi)v @(%7%)) :

i€l i€l i€l

The opposition relation fo@;¢, (A, (pi,d)) is induced in the natural way, i. e.
two points(X;)ic; and (yi)ic) are opposite if and only i < y; in . for every

i €1. For a pointx:= (X)iel of Oig (H, (pi,di)), we define by supx) := {i €
I'| pi # % # g} the supportof x. Let p andq be points of(¢, % such that
SN ={p,q} for every two distinct indicesandj of | andp < qin .. Then
we write ©i¢ 7 instead of®j¢, (A, (p,q)).

Proposition 4.3.3. Let | be an index set and lgt¥)ic; be a family of twin
SPO spaces. For4 I, let p and q be points of.; that are opposite. Then
Oia (A, (pi,qi)) is a twin SPO space.

Proof. Fori €1, let %" be the connected component that contginand let
/" be the connected component that contajnsSet.” := Oj¢ (4, (pi,Gi))-
Furthermore, foo € {+, -}, set? .= O (#,ri), wherer; := p; for 0 = +
andr; := q otherwise. Lek = (X;)ic| andy = (y;)ic| be two points of”*. Then
by definitionx L yif and only if there is an indeke | such thak; L y; andx; = y;

for j € I \ {i}. Furthermore, since the sfitc | | x; # y;} < supf(x) Usupgy) is
finite, we obtain digix,y) = Y dist(x,yi), where the distance function always
refers to the corresponding point-line space. As a diressequence, for every
pointv = (vj)ic| On a geodesic fromtoy, we obtain supfv) C supgx) Usupfy).
Analogously to the distance, we obtain ¢€d) = ¥ codxi,y;) if X € . and

y € &~. Consequently, (A4) holds ity

In all four axioms of Definition 2.1.1 we are dealing with figlig many points
and the convex spans of two of them. LJdbe the union of the supports of these
points. Then we do not leave the subspate:= {v € . | supgv) < J}. Since
<" is isomorphic to®;c;(-#, (pi,qi)) it suffices to prove the claim for a finite
index set. Moreover, by induction we may restrain to the ¢asg0,1}.

Lety = (Yo,y1) andz = (zp,21) be points of~ and letx = (xp,X1) € .. Set

Yi := (yi,z)g for i € {0,1}. By the observation above, concerning the distance of
two points of ., we conclude thaf(vo,v1) | Vo € Yo A V1 € Y1} is a convex
subspace. Henc¥,:= (y,2)g = {(Vo,V1) | Vo € Yo A V1 € Y1}. Assume there is a
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point(vg,v1) € Y with X« (vg,v1). Then there is a point= (up,us1) € Y such that
fori € {0,1}, the pointy; is a cogate fok; in Y. This implies codx,Y) = cod(x, u)
and copy (x) = {u}. With

cod(x,u) = cod(Xp, Up) + cod(X, Uz )
= dist(yo,20) + dist(y1,z1) = dist(y, z)

we conclude, that (A1) and (A2) hold.

Now assume € copk, (x) andY does not necessarily contain a point that is op-
positex. Since copy(X) = {(Vo,V1) | Vo € COPK,(Xo) A V1 € COpk,(X1)}, we
conclude thatz € copk,(x) for i € {0,1}. Now letw = (wp,w;) be a point
with w L x and codw,y) < codx,y). We may assum&p L xo andw; = Xg

and hence, cdao,Yo) = cod(Xo, Yo) — 1. Thus by (A3), copf (wp) < coerO(xo)

and codwp, Yp) > cod(xo, Yo), whereat equality does not hold in both cases. Since
COpK, (W1) = COpK, (X1) and codws, Y1) = cod(xy, Y1), we conclude that (A3) is
fulfilled in .. O

The corresponding assertion for grid products of twin SP@cep does not
hold since for an infinite index séthe point-line space®;, .7, is disconnected
if for everyi € I, there at least two points i].

Lemma4.3.4.LetU and V be two maximal connected rigid subspaces of an SPO
space such thalist(U,V) <« and U} V. Then there is a point @ U such that
pry (v) = {u} for every point e V.

Proof. Let v e V be a point. Then by Proposition 4.1.4 there is a poirt

U such that p5(v) = {u}. Now letq eV ~ {v} with g L vand letpe U
with pry (g) = {p}. For distv,U) < dist(q,U), we obtainu € pry (g) and hence,
u= p. Analogously,u = p for dist(v,U) > dist(q,U). Hence, we may assume
dist(v,U) = dist(q,U) =: d.

Suppose # u. Then distq,u) = d+ 1 sinceg L v. This impliesp L usincepis

a gate fogin U by Proposition 4.1.4. Now Corollary 4.2.8 implies thatandqgv
are one-parallel to each other, a contradiction to Lemm&A4Tlhe claim follows
sinceV is connected. l

Remark4.3.5 For a pointp € .7 we denote by, :={V € M | pe V} the set
of maximal connected rigid subspaces that conpaiBy Proposition 4.1.2 every
two distinct elements ot intersects in the poinp. Let g be another point of
. By Propositions 4.1.6 and 4.2.14 there is a bijectpardt, — 9y such that
V || V¢ for everyV € M, andV jfU for everyU € Mg~ {V?}.

Proposition 4.3.6. Let. be a twin SPO space and let x and y be opposite points
of . Further let¢ : My — My be the bijection with | V? for every Ve Miy.
Then? = Qyegn, (VUV?).
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Proof. Set.?” := Qyegn, (VUV?). ForV € My let m(V): .# —V UV? be the
map withp™v) € pr, s (p) for every pointp € .#. Since either digp,V) < o

or dist(p,V?) < o, this map exists. Moreover, by Proposition 4.1.4 this map is
uniquely defined. Now defing: .7 — .7": p— (p”(V))VemX.

Let p andqg be points of. with p¥ = g¥. Since for distp,x) < « we obtain
p¥ e Oveom, V and for distp,y) < «we obtaing¥ € Ovem, V. the pointsp andq
are in the same connected componentfThus, we may assume diptx) < o
and disfq,x) < . Supposep # q. Then there is a liné < (p,q)q through p.
LetY < (p,q)y be a maximal rigid subspace ¢p,q)g with | <Y. Further let
U e MpwithY <U and letv € My with V || U. Since by Proposition 2.1.23 the
metaplector{p,q)g is an SPO space, we may apply Lemma 4.1.4 to conclude that
qhas agatel inY. Now setZ := (q,q)g. Since distq,Y) = dist(q,q ), we obtain
ZnY ={d} by Proposition 2.1.17(i). L&(ji)o<i<n be a geodesic fromto .

Letr € Z be an arbitrary point. Then by Proposition 4.1.4as a gate’ in U.
We conclude’ € (r,q)g < Z. SinceU N(p,q)y =Y, this impliesr’ = ¢. Hence,
every lineggi11 for i < nis contained in a maximal connected rigid subspace that
is not one-parallel and consequently, not one-paraNel By Lemma 4.3.4 this
implies px, (gi) = pry (gi+1) for everyi < nand therefore gr(q) = pry ().

Let px be the gate op in V and letay be the gate o) in V. Since distq,l) =
dist(p,q) — 1 by Proposition 2.1.17(i), we know distY) < dist(p,q) and hence,
g # p. Sinceqgy is the gate fory in V andU andV are one-parallel to each
other, this impliegy # qx by Proposition 4.1.7. This is equivalentd8") # py,

a contradiction tq¥ = q¥. Thus,y is injective.

Letl <. be aline. We may assume distl) < «. By Proposition 4.1.2 there is
a unique subspad¥’ € 9t with | <W. LetV € My withV || W. By Proposition
4.1.7 there is a lin¢/ <V that is one-parallel td with dist(l,l") = distW,V).
Then!™) = I, By Lemma 4.3.4 we obtain thaf(!) is a singleton for every
U € My~ {V}. Thus,|¥ is a line of.#’ and thereforay is an injective morphism
of point-line spaces.

Let (pv)vem, be a point of.”’. We may assumepy )vem, € Ovegn, V. Let

M be the support ofpy)vesn,. By definitionM is finite. Setn := |[M| and let
V; for 0 <i < nsuch thaM = {V; | 0 <i < n}. Now setpg := py,. Further we
recursively define pointg; € .7 for 0<i < nand subspacés € M for0<i<n

as follows: LetW € 9t with pi_1 € W andW || Vi. By Proposition 4.1.68M is
uniquely defined. Lep; be the gate opy; in W,. In other wordsp; = p\’,Ti(W'> and
sinceW || V4, this impliesp;™) = py, by Proposition 4.1.7. By Lemma 4.3.4
we obtainp ™) = pi_;™) for everyV € My~ {Vi}. Now p”™) = py, and
po™V) = py = x for V € My~ M by Lemma 4.3.4. Thus, induction provides
pn_1V) = py for everyV e My and hencepy_1¥ = (Pv)vem,. We conclude
thaty is surjective.
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Now let (qv)vem, be a point of.” that is collinear and distinct topy )y con, -
Then there is a subspablec My such thatpy L qu andpy = gy for V € Mix
{U}. Hence,pn_1™) = qy for everyV € My~ {U}. LetW, € 9 with W, || U
and letp, be the gate ofyy in Wh. Thenpp? = (av )veomn, as above. Sincpy L
Qu, Proposition 4.1.7 implies tha},_1 and p, are collinear points. We conclude
that(pn—1pn)¥ equals the line of”” through(py )y con, and(ay )veam,. Thus,
is an isomorphism. O

We conclude this chapter with a fundamental property of 8RO spaces. As
a consequence of this property, for the classification af 870 spaces, we may
restrain ourselves to the rigid ones.

Theorem 4.3.7.A point-line space? is a twin SPO space if and only if there is a
family of rigid twin SPO spacegs#)ici for an index set | such tha¥’ = ©;¢, A.

Proof. By Proposition 4.3.6 there are opposite poirtandy in . such that
7 = Quem,(VUV?), whered: My — My is the bijection withV || V¢ for
everyV € M. By Proposition 4.3.% UV? is a rigid twin SPO space. The claim
follows since every grid sum of rigid twin SPO spaces is a t&#0 space by
Proposition 4.3.3. O






Twin spaces

In this chapter we study some twin spaces that arise fromemad point-line
spaces with finite diameter. First we introduce a method tepaonstruct for a
point-line space”* with finite diameter a second point-line spage such that
(*,.77) is a twin space. In this case~ has always the same diameter as
7. In a second method, we construct out of a point-line spzceith finite
diameter two point-line spaceg™ and.#~ such tha{.*,.%~) is a twin space.

In this second approach the two obtained point-line spaaesthe same diameter
which can be infinite. As we will show, all these twin spacestarin SPO spaces.

5.1 Twin spaces with finite diameter

In this section we consider a point-line spagé" of finite diametem. From

this point-line space we construct a new point-line spate whose points are
subspaces of”~. More precisely, we take maximal convex subspaces”of
such that there exists a point.if* that has distance to this subspace. We ask
the point-line space”* to have a sufficient regularity, namely, for two poimts
andg of ., those maximal convex subspaces that have distatep and those
having distancen to g should be of the same type. Moreover, every poittiat

has distance to p should be contained in such a maximal convex subspace of
distancen to p.

5.1.1 Twin polar spaces

The most intuitive case is the situation where the distaeteden a point and a

line is always smaller than the diameter.#f". In this case the maximal convex
subspaces that have distance diafi1) to a given point are just singletons. Thus,
.~ will be canonically isomorphic to”*.
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Definition 5.1.1. Let . be a non-degenerate polar space. FurtheAébe a
copy of . and let¢ be an isomorphism fron%” onto.#”. Then we call the
pair of point-line space$,.7’) with the opposition relatiorf (x,y?), (x?,y) |
{x,y} €. A x [y} atwin polar space

Proposition 5.1.2. Every twin polar space is a twin space.

Proof. By Proposition A.2.7 each non-degenerate polar space i@ipafinear.
Furthermore, (OP) follows directly from (BS). O

Theorem 5.1.3.Every twin polar space is a twin SPO space.

Proof. Let. = (./+,.# ) be a twin polar space. Further gt . — .~ be
the isomorphism such that-y < x? / yfor a pair of pointgx,y) € ./ x.7~.
Lety andz be two points of”~. Then(y,z)q equals the lingzif y andz are dis-
tinct collinear points. Ify andzare not collinear, thety, g = .~ by Proposition
A.2.6.

Letx € .*. By Lemma A.2.3(i) there is for every poipte .7~ {x‘f’} a point
qe .7~ with p L gandx? / g. This impliesx — g and we conclude that® is
the unigue point of”~ at codistance 2 tr. Moreover, the points at distance 1 to
x? have all codistance 1 to Therefore, cofp,q?) = 2— dist(p, q) for two points
p andq of .. Since¢ is an isomorphism, the codistance is symmetric.
Now lety andz be points of”~. For disty,z) = 1, (A1) and (A2) follow directly
from (BS). Fory = z, there is nothing to prove and for digtz) = 2, (A1) and
(A2) are fulfilled sincex? € (y,z)q. Now assume cdd, (y, 2)g) = cod(X,z). Fur-
ther letw € .+ with dist(w,x) = 1 and codw,y) = cod(x,y) — 1. This implies
X <y and hencex «+» z. Fory = z, (A3) is always true. The case digtz) = 2
is not possible, since in this case we obtaia x? and hencex — y. Therefore
we may assume thay, z)q is a line. Since? is the only point at codistance 2 to
X, we obtain co¢x,y) = 1 and hencew < y. Thus, (A3) holds for cogk,z) = 1.
Forz=x?, we conclude cog,z) = 1 since¢ is an isomorphism and therefore
distw? x?) = 1. Hence, (A3) is always satisfied. Finally, (A4) followsindhe
symmetry of the codistance. O]

5.1.2 Twin projective spaces

The next class of point-line spaces we consider is the mostda one, the class
of projective spaces. Here, the maximal convex subspaeg¢sath at maximal
distance to a given point are hyperplanes.

Definition 5.1.4. Let . be a projective space. Further Bt be a non-empty
set of hyperplanes o such thai\9t = @ and every hyperpland of . that
contains the intersection of two element98fis contained iMt. Let & be the set
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of subspaces of” that arise from intersecting two distinct element§®fand set
L ={{MeM|S<M}|Se &}. Then we call the paif., (In,.%¥)) with the
opposition relatioq (p,M), (M, p) | (p,M) € ¥ x M A p ¢ M} atwin projective
spaceof .7.

By the definition of.Z it is clear that(9t,.%) is a point-line space. Further-
more, since for every point of a projective space there isgetplane not con-
taining this point, it follows that for every projective smathere exists a twin
projective space.

Later on, we will see that a twin projective spac#, 2) of a projective space
& is a twin space. Therefore, as usual, we will call every twiace that is
isomorphic to.*,.# ) a twin projective space.

Lemma5.1.5. Let (., 2) be a twin projective space of the projective spate
Let§ C 2 be a non-empty finite subset of hyperplanes/ofThen every hyper-
plane of.¥ that containg\§ is a point of2.

Proof. By 9t we denote the set of hyperplanes.#f that are points of7. We
proceed by induction over the size®f For |§| = 1, there is nothing to prove and
for |§| = 2, the claim follows from the definition of the lines 6f. Now let|F| > 2
and assume that the claim holds for every subs@tidhat has less elements than
5.

LetM € § and setS:=N(F ~ {M}). By the induction hypothesis every hyper-
plane that contain§ is an element of)t. If S< M, there is nothing to prove.
Therefore we assun®@ ¢ M. LetN be a hyperplane of” that containsSn M.
We have to showN € 9t and therefore may assunvk # N. ThenMNN is a
common hyperplane dl andN and thus, crkM NN = 2. SinceM intersects
Sin a hyperplane an&nM < M NN, we conclude thalN’ := (SMNN) is a
hyperplane of”. SinceS< N’, we knowN € 9t andN’ £ M. SinceM NN is a
hyperplane of bottv andN’, we concludeM "N’ = MNN. Thus,N € 91 follows
from {M,N'} C 9. O

Proposition 5.1.6. Let (., 2) be a twin projective space of the projective space
. ThenZ is a projective space.

Proof. Let 9t be the set of hyperplanes of that are points o7 and let%;, be
the line set o7. By definition of %, we know that? is linear. Hence, it remains
to show that (VY) holds.

Let P € 90t and lethy andh; be two distinct lines of7 with P ¢ hoUh;. Further
letgo andg; be two distinct lines o7 that contairP and intersect bothy andh;.
We have to show thdty andh; intersect. For € {0,1}, let S be the subspace of
corank 2 in? thatis contained in every elementgf ThenS andS; are distinct
hyperplanes oP and henceS:= $NS; is a subspace of corank 3 i#f. Since
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2 is linear, we obtairgo N g1 = {P}. Moreover, since® ¢ hg, we conclude for
i € {0,1} that there is a hyperplari@ € M\ {P} of . such thathgngi = {R}.
SincegoN g1 = {P} and P # Py, we obtainPy # P, and hencelp ;=R NP,
is the subspace of corank 2 i#f contained in all elements df,. This implies
that every hyperplane of” that is an element dfiy containsS. Let T; be the
subspace of corank 2 i that is contained in every elementlof. ThenS< T
by analogous reasons. Singas a hyperplane of botfip and T;, we conclude
thatQ := (To, T1) is a hyperplane of”. By Lemma 5.1.5 we obtai@ € 9t since
PNRyNPL=5NS =S< Q. Thus,Q is a common point ofig andh;. O

Let.” be a projective space and [e¥’, 2) be the twin projective space of
such that every hyperplane of is a point ofZ. Then we callZ thedual of the
projective space”.

Proposition 5.1.7. Every twin projective space is a twin space.

Proof. Let.” be a projective space and [e¥’, 2) be a twin projective space of
. Further lett be the set of hyperplanes of that are points of7. Since
both . and & are projective spaces, both point-line spaces are partia#ar.
SinceNM is empty, there is for every poimi € . a hyperplaned € 9t with
p ¢ H. Conversely, for every hyperplahtof .7, there is a point in that is not
contained inp. Thus, the opposition relation ¢, 2) is total.

Every line of ¥ is contained in a given hyperplane or intersects this hypaep
in a single point. Conversely, Iétbe a line ofZ. Then the elements dfhave a
subspac&with crk - (S) = 2 in common. For an arbitrary poipte . we obtain
eitherp € Sand hencep is contained in every element bbr p ¢ Sand hence,
(p,S) is the unique element dfthat containg. The claim follows. O

Proposition 5.1.8.Let (./*,.#~) be a twin projective space. Thé’'~,.7")
is a twin projective space.

Proof. Set9t := {copr,(p) | p€.#"}. Since.” is singular and.*,.& ")
is a twin space, we know that copr (p) is a hyperplane of”~ for every point
p € *. Moreover, for every poing € .~ there is a poinp € . with q ¢
copry,—(p). Thus, it remains to prove thgt: " — 9M: p — copry,-(p) is
a bijection that maps a line of”* onto the set of all hyperplanes of ~ that
contain a given subspace of corank 256f .

Let p andq be two distinct points of ™ and letx € .~ with p «+ x. Since
(7 T,77), there is a point on the linepg such that «+» x. Hence, there is a point
y €.~ withy — r and therefore # y. By definition of twin projective spaces
both copr,+ (x) and copt,+ (y) are hyperplanes of”*. Sincer ¢ copr, (y)
andpgncopry. (X) = {r}, the subspaces copr (x) and copt, - (y) intersect in
a subspac& which is disjoint topg and has corank 2 i *. Hence,(p,S) is a
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hyperplane of* and by the definition of a twin projective space, there is apoi
zin .~ such that copy+ (z) = (p,S). We obtainz < qandz « p and therefore
¢ is bijective.

SetH := copr.- (p) Ncopr,—(q). Sinced is bijective, we obtain crie- (H) = 2.
For every pointx € H, we know p «» X «+ ¢ and thereforepq < copr+(x) by
(OP). ThusH < copr,-(r) for every pointr € pg. Conversely, every hyperplane
of .~ that containgH, is of the kind(y,H) for a pointy € .~ \H. Since
copry+(y) is a hyperplane of”*, we find a pointr € pg with r <+ y. Since
copry—(r) contains botty andH, we obtain copy.— (r) = (y,H). This concludes
the proof. O

Example 5.1.9.Consider the vector spad@™ of all infinite sequences of ra-
tional numbers that contain a finite number of non-zero efgme Denote by
PG(Q™M)) the projective space whose points are the 1-dimensionapsaies and
whose lines are the 2-dimensional subspace®®f. Then the set of points
of PG(Q(]N)) is of smaller cardinality as the set of the hyperplanes armuh ®f
lower rank. Moreover, the dual of the dual of RE™) is not isomorphic to
PGQM). This fact justifies to ask in the definition of twin projeispaces that
the constructed point-line space does not necessarilyaoatl hyperplanes of
the underlying projective space. Otherwise Propositidn85would not be true
anymore.

Remarkbs.1.10 As a matter of fact, the rank of the dual of any projective spac

is > rk(.#). Furthermore, PGQ(N)) is a projective space of lowest possible infi-
nite rank and there is no projective space whose dual is igammto PGQMN)).
Nevertheless, since for a twin projective spdcé”,.” ) the projective space
.~ is isomorphic to a subspace of " there are twin projective spaces such that
the two components are both isomorphic to(REY).

Theorem 5.1.11.Every twin projective space is a twin SPO space of diameter
<1

Proof. Let (¥ *,.#~) be a twin projective space. Since bo#i" and.”~ are
projective spaces, all convex spans of two points at fingtadice are either single-
tons or lines. Moreover, the maximal possible finite codiséais 1. By Proposi-
tion 5.1.7 we know that*,.# ") is a twin space. Thus, all axioms of Definition
2.1.1 follow immediately from (OP). O]

5.1.3 Exceptional strongly parapolar spaces

The last class of point-line spaces we consider in this@edsi a class of point-
line spaces arising from weak buildings; see Appendix B. hg point, we are
interested in only two types, namely Eand & 1.
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Let.” be a point-line space of typegke. Further let%y, be the set of sym-
plecta of.” and let%, C B(Hm) contain all sets of symplecta that intersect in a
common generator. We cdli?,, %) thedual of .7

Definition 5.1.12. Let . = (27, be a point-line space of typesk. Further
let Sm = (Pm,-Zm) be the dual of”. Then we call the pai(.”,.m) with
the opposition relatiofi(x,Y), (Y,X) | {X,Y} € & x Pm A dist(x,Y) = 2} atwin
Es-space

As usual, isomorphic images of a twig-Space are also called twigEpaces.

Remark5.1.13 Let.¥ = (£,.¥) be the point-line space of a weak building of
type B 1 and let%y = (Pm, Zm) be the dual of”. From Theorem B.3.5 and by
the symmetry of the diagramgBve conclude that %, %m) is again the point-
line space of a weak building of typg = Moreover, every poinp € & represents
a symplecton of#,, which is the set of symplecta of containingp. Therefore,
the dual of.%, denoted by, is canonically isomorphic to”.

By Propositions B.3.6(iv) and B.3.6(ii) we conclude thabtdistinct symplecta
of . intersect either in a point or in a common generator. HencBrbposition
B.3.6(iii), two symplecta of¥ are collinear in%, if they have a generator in
common and they have distance 24y, if they intersect in a single point.

Let pe & andY € &y such that digtp,Y) = 2 in .. Further letZ be a sym-
plecton of.# that containgp. Since every line oZ has distance< 1 to p, the
symplectaZ andY have no line in common. Thus, every symplectons6fcon-
taining p is non-collinear toy in .;,. This implies that the symplecton ofy,
which is represented by has distance 2 t§ in .“,. Therefore we conclude that
the twin Bs-space.m, 2) is canonically isomorphic t6 %, ) using as oppo-
sition relation for(.#nn, %) the opposition relation of the twingsspace.¥, %m).
Thus, a pair of point-line spacds”*,.”~) with an opposition relation- is

a twin Es-space if and only if.¥~,.#*) with opposition relation— is a twin
Es-space.

Proposition 5.1.14.Every twinEg-space is a twin space.

Proof. Let ¥ = (#,.Z) be a point-line space of typesk and denote the dual
of & by Im = (Pm,Zm). Since.” is a parapolar space by Theorem B.3.5, it
is partially linear. By Proposition B.3.6(vi), the oppasit relation of (.7, %)

is total. Hence by Remark 5.1.13 it suffices to show that fooiatpp € &2 and

a symplectorY € £, with dist(p,Y) = 2 in ., there is on every liné € .¥
throughp exactly one point at distance 1Yo

Since.¥ is a parapolar space, there is a sympledon &y, containingl. By
Proposition B.3.6(iv) the symplectaandY intersect. Since digp,Y) = 2, we
conclude thal andZ have no line in common and therefofeand Z intersect
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in a single pointgy. Since distq, p) = 2 there is exactly one poirt’ on| that is
collinear tog. Hence by Proposition B.3.6(vj is the only point ol at distance
ltoY. O

Theorem 5.1.15.Every twinEg-space is a twin SPO space.

Proof. Let ¥ = (£,.Z) be a point-line space of typesk and denote the dual
of .7 by Sm = (P, ZLm). We show that the twin space(., ) fulfils the
axioms of Definition 2.1.1.

Letx € &7 and letY € &, such that dig,Y) = 1 in .. Then by Proposition
B.3.6(vi) there is a poiny € & such that digly,Y) = 2. Since.” is a strongly
parapolar space, we conclude by Proposition B.3.6(iii) there is a symplecton
Z € P that contains botkandy. Sincey € Z and disty,Y) = 2 there is no line of
& contained inY NZ. Thus, Proposition B.3.6(iv) implies th&tandZ intersect
in a single pointp. By Proposition B.3.6(v) we may assume thias a point with
y L x and distp,y) = 2. Hencey < Y and consequently, c¢d,x) = 1. Since
x¢Y,thereisapointe Y with z_L pand distx, p) = 2. Then(x, )4 is a symplec-
ton that contains the linpz Sincepz<'Y, Proposition B.3.6(ii) implies thak, z)g
andY are collinear points of#,. Thus, the symplecton o4, consisting of all
elements of#, that contairx has distance 1 tg. By Remark 5.1.13 this implies
codx,Y) = 1. Therefore (A4) holds and we conclude ¢ad) = 2— cod(x,Y)
for any pair(x,Y) € & x Pn.

Lety andz be points of and seV := (y,z)q. Further letX € #n,. By Remark
5.1.13 it suffices to show that (A1), (A2) and (A3) hold %ry andz. Fory =z
we obtainV = {y} and hence there is nothing to prove. By Proposition B.3)6(ii
this leaves the cases digtz) = 1 and disty,z) = 2. Since.” is a strongly para-
polar space, we know that is a line if dis{y,z) = 1 andV is a symplecton if
dist(y,z) = 2. First assume th&X contains a poink € & with x < X. Then
there is a lind throughx and a symplectoly € 2, with | <V <Y. Since
dist(x, X) = 2 and every line ofY has at most distance 1 t9 we conclude by
Proposition B.3.6(iv) that andX intersect in a single poirg. Moreover, there is
a unigue point or that is collinear tgp and hence by Proposition B.3.6(v) there
is a unique point ohat distance 1 t&. SinceV equals either orY, we conclude
that (A1) and (A2) are fulfilled.

Now V does not necessarily contain a point opposit¥ téA\ssumez € copk, (X)
and hence, digt,X) = dist(V,X) in .. Further letWW € £, be a symplecton of
& such that digty, W) = dist(y,X) 4+ 1. If dist(y,X) = 0, then disfz, X) = 0 and
henceV < X sinceX is convex. Thusy = copk,(X) and (A3) holds. Therefore
we may assume digt X) > 1. By Proposition B.3.6(iii) this implies digt, X) = 1
and disty,W) = 2. First assume di&t, X) = 1. ThenXNV = & and henceV is
a line by Proposition B.3.6(iv). Since (A2) holds, we knowattkhere is no point
onV that is oppositeX. Thus,V = copk, (X) and (A3) is fulfilled sincey < W.
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It remains the casee X and disty, X) = 1. If V is a line, then there is a unique
point onV that is not opposit&V since (A2) holds. Sinc&/ andX are collinear
points of %, we conclude that is the unique point ol not opposite t&WW and
hence, (A3) is fulfilled. IV is a symplecton, theX intersects bottX andW by
Proposition B.3.6(iv). Thug € X. Moreover, since digy,W) = 2 and every line
of V has at most distance 1 ypthere is a poinp € & such thalV NW = {p}.
By Proposition B.3.6(v) we know NV > {z} since disty, X) < dist(y,z). Thus,
X andV intersect in a common generat®tby Proposition B.3.6(ii). Since/ and
X are collinear points of/,, we obtain colq, W) > 1 and hence, di&g,W) < 1
for every pointg € G. By Proposition B.3.6(V) this implie§ < p* and therefore
p € G sinceG is a maximal singular subspace \6f We conclude that (A3) is
satisfied. O

We conclude this section by considering point-line spadége & 1.

Definition 5.1.16. Let.# be the point-line space of type/ E Further lets” be a
copy of . and let$ be an isomorphism fron¥ onto.”’. Then we call the pair
(.,.7") with the opposition relatiof(x?,y), (x,y?) | {x,y} C.7 A dist(x,y) =
3} atwin Ez-space

Proposition 5.1.17.Every twinEz-space is a twin space.

Proof. Let (1,.#7) be a twin E-space and le$ be the isomorphism from
7+ onto.~ such thatp « q if and only if distp?,q) = 3 for a pair of points
(p,q) € S x.7". Let(p,q) € & x . be a pair of opposite points and let
| <.7~ be a line throughy. By Proposition B.3.7(iv) we know digb?,1) = 2.
Moreover, Proposition B.3.7(iii) implies that the oppamitrelation is total.

It remains to show that on a line< .~ that contains two points at distance 2 to
p? there is no point opposite {@ We may assume digi?, 1) = 2 since otherwise
we are done. Leq andq be distinct points o at distance 2 t@?. Then Propo-
sition B.3.7(j) implies thal := (p?,q)y andZ := (p?, ) are both symplecta.
Hence by Proposition B.3.7(ii), there is a lige< Y N Z throughp?. SinceY is a
polar space, there is a unique pasrin g that is collinear tay. Analogously, there
is a points’ ong collinear tog’. Supposes+ s. Then distq,s') = 2 and(q,s)q is

a symplecton that contaissindq’. Henceg andl are both contained ifg, s')g, a
contradiction since digp?,|) = 2. Thus,s= s and since” ~ is a gamma space,
we obtainl < st. Therefore, every point ohhas distance 2 tp?. O

Theorem 5.1.18.Every twinEz-space is a twin SPO space.

Proof. Let (.*,.#~) be atwin E-space and lep be the isomorphism fron¥’*
onto.¥~ such thatp — qif and only if dist p?, q) = 3 for a pair of pointgp,q) €
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S+ x .~ By Proposition B.3.7(iii) we conclude cop, q) = 3—dist(p?, q) for

a pair of pointgp,q) € . x .. This implies that (A4) is fulfilled.

Lety andzbe points of~ and seV := (y, z)g. Further lei be a point of*. We
have to check (A1), (A2) and (A3) for, y andz. Fory = z, we obtairV = {y} and
there is nothing to prove. Now assume ¢ist) = 3. By Proposition B.3.7(iv) we
know that all lines througly and all lines througlz are contained iv. Moreover,
by Proposition B.3.7(iii) we know that for every point coldiar toy there is a point
at distance 3 that is collinear o Therefore we conclude that all points that are
connected ty are contained iv and hencey =.7. Sincex? is the only point
of .~ at codistance 3 tg, we conclude that (Al), (A2) and (A3) hold. Hence,
we may restrain ourselves to the case(gigf = 1 and disty, z) = 2.

Since.”~ is a strongly parapolar space, we know tifas a line if dist(y,z) = 1
andV is a symplecton if digt,z) = 2. If V is a line, then (A1) and (A2) are
fulfilled since (*,.# ) is a twin space. IV is a symplecton and contains a
point that is opposite, then by Proposition B.3.7(iv) there is a pome V with
dist(x?, p) = 2. By Proposition B.3.7(ii) the symplectaand(x?, p)q intersect in

a line and hence, there is a poitite V with x? | X'. Suppose there is a second
pointx” in V that is collinear ta<?. Thenx” L X' sincex? ¢ V. Since.”~ is a
gamma space all points ofx” are collinear to®. SinceV is a polar space every
point of V has at most distance 2 #d, a contradiction. Thus{ is the unique
point ofV collinear tox? and we conclude cop(x) = {x'}. Thus, (A1) and (A2)
are fulfilled.

Now assume € copk, (x) and letw L x be a point with co@w,y) = cod(x,y) — 1.

If xX? €V, thenz=x?. If V is a line then cotk,y) = 2 and hence, cdi,y) = 1.
Sincew L x, we obtain cofw,z) = 2. Since.”~ is a gamma space,is the only
point onV that is collinear tov? and therefore (A3) holds. ¥ is a symplecton,
then codx,y) = 1 and hencey < y. Thus,V contains a unique point at codistance
2 tow. Sincew L x, we obtain copy(w) = {z} and (A3) is satisfied. Therefore
we may assumg?® ¢ V. If cod(x,y) = 2. Then bothy andz are collinear to«?
and we conclude that is a line and all points of/ are collinear tax?. Since
codw,y) = 1 andw L x, we know that all points 0¥ have codistance 1 or 2 t®
and hence, (A3) holds.

It remains the case cédy) = 1 andx? ¢ V. This impliesw < y. First assume that
V is aline. Then there is a unique point at codistancew itoV. If cod(x,z) = 2,
this implies thatz is the unigque point oV not opposite tow sincew L x. If
codx,z) = 1, then there is no point opposite tox since(.*,.%7) is a twin
space. Thus, (A3) holds in both cases. Now asswnig a symplecton. Since
dist(x?,y) = 2, we know tha(x*”,y>g is a symplecton. By Proposition B.3.7(ii) the
symplectav and(x‘j’,y>g intersect in a lingy throughy and hence digx?,V) < 1.
Thus, there is a poirt € g with codx,Z) = 2 and consequently, c(xz) = 2.
Since disty, z) = 2, we obtairz # Z. Sincex? ¢V, we obtainz L Z.
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Sincew < y we know that there is a unique pointwhin V with codw,w/) = 2. If
cod(x,w) = 2, (A3) holds and we are done. Thus, we supposéced) = 1. This
implies codw, z) = codw, Z) = 1 sincew L x. Hence,(w?,z)q is a symplecton
and by Proposition B.3.7(ii) there is a line througin V N (w¢,z>g. Since thisline
contains a point that is collinear @, we conclude that this line goes through
Thus,w L z and analogouslyw' L Z. Since distx?,w/) = 2, this implies that
bothz andZ are contained in the symplect@n= <x¢,V\/>g. Moreover, sincep
is an isomorphism, we obtain® 1 x?. Since codw,w) = 2, we knoww? | w
and thereforev® € Z. Sincew? ¢ V, the intersection oZ andV is singular.
Both y* and (W?)* contain a hyperplane &NV. Sincew « y, we conclude
y-Nn(W?)+ = @. Thus, rKZNV) < 1. Since bottz andZ are contained iZ NV,
we conclud&z NV = zZ. Noww € ZNV impliesw € zZ. Since botlz andZ are
collinear tox? and dis{x?,w') = 2, this is a contradiction to the fact that~ is a
gamma space. Thus, (A3) holds in all cases. O

5.2 Dual polar spaces

As a consequence of Proposition A.2.24 a dual polar spadgsdsrthected when-
ever the underlying polar spacg has infinite rank. Moreover, two generatdis
andM’ of .# are connected in the dual polar space if and only if they ame-co
mensurate. Thus, viewing just the dual polar space, we lose $nformation:
For instance we cannot tell the rankMfn M’ if M andM’ are contained in dis-
tinct connected components of the dual polar space. In ta@pter we introduce
a method how to construct out of polar space a twin space vhistewed as the
union of its components and without taking the oppositidatien into account)
a substructure of the dual polar space. Thereby we gaimeton compared to
the dual polar space for the generators that are involved.

Throughout this section le# be a polar space and letr, be the dual polar
space of. By dist; we denote the distance function.if,.

The goal of this section is to show that the twin spaces thatamstruct out of
. are twin SPO spaces. Since this twin spaces consist of staspa, it is
useful to know what the convex span of two pointsJf, at finite distance looks
like.

Proposition 5.2.1.Let M and N be generators of with crky(MNN) < o, Let
G be the convex span of M and N.iy.
(i) A generator L< . belongs to G if and only if > MNN.

(i) For every generator I< .7 with MNN < L, there is a generatorLsuch
thatLNL'=MnNN.
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Proof. (i) Let H be the set of all generators of containingS:= MNN. LetK
andL be distinct adjacent generators contained irfThenK NL > Sand therefore
all generators containing NL belong toH. Thus,H is a subspace o#,. Now
let K andL be two arbitrary generators &f with disty(K,L) =k > 1 and let
L' € Sm with dist;(K,L") = k—1 andL ~ L’. By Proposition A.2.20 there is a
pointp € KNL'~ L. We obtainL’ = pg L by Lemma A.2.16. SincKkNL < p*,
we concludeSs< KNL < L'. HenceH is convex and therefor® < H.

To proveH < G we apply induction oven. Forn = 0 there is nothing to prove.
Forn =1 we obtainH = G by the definition of the lines in”y,. Now letn > 1
and letL be a generator of” with S< L. Assume there is a poite LNM ~ S,
SetN’ := poN. Then dis;(M,N’) = n— 1 and thereforé® "N’ = (p,S). Since
(p,S) <L, we may apply the induction hypothesis to conclude (M,N’)q (here
M and N’ are treated as points oy, and hence the convex span of them is a
subspace of#). SinceN’ € G, this impliesL € G. Therefore we may assume
MNL = Sand analogousiNNL =S

Letpe L\ S SetM’':= paM andN’ := paN. Assume there is a poigtc N\ S
with g € M’. ThenM’ = g9 M and hence dist(M’,N) =n—1. Thus,M’' € G
sinceM ~ M’. The line pq meetsM in a pointr sinceM intersectsM’ in a
hyperplane. This implies € MNN’. With pgn N = {g} we obtainr e M\ S.
Therefore we conclud®!’ NN > Sif and only ifMNN’ > S,

First letM’'NN =S Then dist;(M’,N) = n and hence digt(M’,N') =n—1
since(p,S < M'NN’. Since(p,S <L, the induction hypothesis providése
(M’,N")g. SinceS< M’NM and crl (S) = n, there is a singular subspade<
MNM’ with rk(U) =n—2 andSNnU = @. This impliesNNU = & and therefore
crkny(ULNN) =n—1 by Lemma A.2.22(i). SincEB< M < U+, we conclude that
Sis a hyperplane af) - N"N. Hence, there is a poitc N~ Swith U < g*-. Set
M”:=qoM. ThenMNM’ = (U,S) <M” sincel <Mng*. ThusM, M’ andM”
lie on a common line iy, SinceM ~ M” and dist;(M”,N) = n— 1, we obtain
M” € G. Hence, the line in#, that containgv andM” is entirely contained in
G and thusM’ € G. Analogously,N’ € G and we concludéM’,N')y < G. This
impliesL € G.

It remains the cas®’ NN > S. Hence, we may assumeo M)NN > Sand
(reaN)NM > Sfor every pointr e L\ S. Letge M'NN~ S ThenM’ =q9 M
and therefore dist(M’,N) = n— 1. This impliesM’ € G. Sinceq e N\ 'S, we
obtaing ¢ L and since. is a generator, there is a point L~ g*. SetN” :=r9N.
ThenM’'NN” < M'NN by LemmaA.2.17. SincB< M'NN” andM’'NN = (q,S),
we concludeM’NN” = Sand hence, dist(M’,N”) = n. Sincepe LNM’ and
p¢ S we obtainL € (M’,N")g as above. Now € L\ Simplies(raN)NM > S
Hence, disy;(M,N”) =n—1 and therefor&” € G. Thus,L € G and we conclude
H=0G.

(ii) By Proposition A.2.20 every two elements Hf have finite distance io/,.
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SinceG is a convex subspace ofy, we may restrain ourselves to the case M.
Furthermore, we may assurhélN > Ssince otherwise there is nothing to prove.
SinceL andM have a hyperplane in commo8,is a hyperplane oE N N. Let
pe (LNN)~S Thenp ¢ M and by the maximality oM there is a poingj € M
that is not collineap. By Lemma A.2.17 we concludga N)NL < LNN. Since
S< g, thisimplies(g@N)NL =S O

5.2.1 Spanning pairs

An opposition relation in a twin space denotes the pairs aftpdhat should be
seen as points at maximal distance. By Proposition A.2.2@nveev that for two
generatordd andN of . with disty (M, N) < o the corank oM NN in M equals
disty(M,N). In other words, the smaller the intersection of two gemesathe
greater is their distance in the dual polar graph. The swstailtéersection two
generators can possibly have is if they intersect in theceddi

In polar spaces of arbitrary rank it might happen that theeeline in the dual
polar space such that all generators of the polar space fthatl@ments of this
line intersect a given generator in the radical. By Defimitlo2.4 this implies that
the pairs of generators that intersect in the radical do lvedys give rise to an
opposition relation for a twin space. The aim of this sulbiseds to introduce an
extra condition to resolve this problem:

Definition 5.2.2. Let M, andM_ be two generators of” such that for every
point p € .7 there are pointp, € M, andp_ ¢ M_ withpe (M U{p_}*+n
(M_U{p;})*+. Then we cal(M,,M_) aspanning pair

Proposition 5.2.3.Let (M,M_) be a spanning pair of”. Then M.NM_ =
Rad.7).

Proof. SinceM,;. and M_ are both maximal, we obtain Ra&’) < M. NM_.
Now letpe . andq € M. NM_. Then there is a poinp. € M, such that
pe (M_uU{p}H)*tt. Thus,q L psinceqe (M_uU{p;})* and thereforeg €
Rad.¥). O

A direct consequence of this proposition is that in a noredegate polar space
the two generators of a spanning pair are always disjoirg.dital polar space of a
polar space is isomorphic to the dual polar space of the Egedmon-degenerate
polar space, see Theorem A.2.15. Moreover, as a conseqoéreposition
A.2.10 and Lemma A.2.9(v) we know the intersection of two eyators when-
ever we know the intersection of the corresponding geneyamnothe associated
non-degenerate polar space. In the following we considesgaces of the dual
polar space and generators as well as intersections ofggererHence, we may
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restrain ourselves to non-degenerate polar spaces. Thile remainder of this
section. is always a non-degenerate polar space. Generalisingatenstnts
to the case of arbitrary polar spaces is straightforwardvétitbut any additional
interest.

The following proposition gives two alternative conditothat characterise a
spanning pair. Particularly condition (b) will be used quifiten in the following
to prove that a pair of generators is a spanning pair.

Proposition 5.2.4. Let M; and M; be two generators of”. Then the following
statements are equivalent:

(@) (M4,M_) is a spanning pair.

(b) For o € {+,—} and pe .¥ ~ (ML UM_), there is a point p € Mg with
pJ_meo' = pglmM,g.

(c) For o € {+,—} and pe . ~. (ML UM._), there is a non-empty subspace
Ug < Mg of finite rank with - N1M_g > Ug NM_g.

Proof. Note that for (b) and (c) the cases= + ando = — are analogous.

(@)= (b): Letpe.~ (M:UM._). Thenthereis a poimi;. € M, withpe (M_U
{p:H)** and hencgM_ U {p, })* < pt. SinceM_ is a generator, we obtain
M_+ =M_ and therefordM_U{p, })* = p. - NM_. This impliesp, - NM_ <
pt NM_. The claim follows sincgg- "M_ andp. * NM_ are both hyperplanes
of M_.

(b) = (a): Firstletp e . ~ (M UM_). Then there is a point;. € M. such that
p-NM_ = p,-NM_. SinceM_ is a generator, we concludd_ U {p, })*+ =
M_npsHt=M_np )t > (pt)t > p. Nowletpe M_. Thenpe (M_U
{p.})*+ for every choice ofp, € M, since(M_uU{p;})* < M_. Finally, for

p € M,, we obtainp € (M_U p)*-+. Hence, we sep, = p.

(b) = (c): This follows withUg := {ps}.

(c)= (b): Letpe .~ (ML UM_) and letU, < M, be a subspace of finite rank
such thapt "M_ > U+ NM_. Lemma A.2.22(i) implies cily_(U, - NM_) <
«. Hence, the corank of U, - NM_ in p- NM_ is finite. If k > 0, then there is
a pointq € (p*NM_)~U,*t. SetV, :=qg-NU,. ThenV, is a hyperplane of
U, and hence, for a point€ U, \V,, we obtainv, - Nnut =U,+. Thus,U,+*

is a hyperplane o+ and therefor&/, - NM_ = (q,U, - NM_). Sinceq € p*,
the corank/,. - NM_ in p- NM_ is k— 1. After finitely many steps we end up
with a non-empty subspasg with p-N"M_ =V, -NM_. Sincep:NM_is a
hyperplane oM_, we obtainV,; £ M_ since otherwis®, - NM_ = M_. Hence,
there is a poinp, €V, ~ M_. Sincep, - NM_ is a hyperplane dfl_ containing
V. +NM_, we concludgp, - NM_ = p-NM_. ad

Remark5.2.5 Let . be a non-degenerate polar space of finite rank. Then for
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an arbitrary generatdvl of . there is a generatdf < . that is disjoint toM.
Let p be a point of ~ (MUN). ThenH := NN p* is a hyperplane oN. By
Lemma A.2.22(i) we conclude that' intersectdV in exactly one point.. We
obtaing™N = p™N. Therefore, in# every generator is part of a spanning pair.
Furthermore, every pair of disjoint generators is a spappar.

A non-degenerate polar space with a spanning pair has,timf@any spanning
pairs. More precisely, we will show that for a given spanrmadr (Mo, M1) and a
generatoNp that is commensurate ¥, there is a generatd¥; such thatvi; and
N; are commensurate aritlp, N;) is a spanning pair. Hence, the set of spanning
pairs induces a symmetric, total relation on the set of genes that are com-
mensurate tdlg or M. Since the symmetry of this relation is clear by Definition
5.2.2, we just show that it is total.

Lemma 5.2.6. Let (Mg, M1) be a spanning pair of”. Further let My be a gen-
erator with My "My = @ and dist; (Mo, M2) = 1. Then(My,My) is a spanning
pair.

Proof. Let p € . . (M1UM3). We show that there are poinps € M1 andp;, €
M, with p1-NM, = p-NM, andp,™ NM1 = p- N M.

Letg € Mz~ Mg. Sincep andg are not contained i3, there are pointpp and
o in Mg with po™ "Mz = p- N My =: Hp andgo™ N My = gt N My =: Hg. If
Hp = Hq we setp; := g. Otherwisepg # go and the lingppgo meetsM; in a point
s sinceM; intersectdVlg in a hyperplane. We sét := H,NHg. SinceH < pot
andH < got, we concludeH < s*. SinceH < g*, every point orsqis collinear
to all points inH. SinceHg is a hyperplane iMg, H is a hyperplane ofi,. Let

r € Hp~ H and letp, € sgnrt. Thenp, contains(r,H) = Hp. Sincepz-NM;
is a hyperplane dfl;, we concludep,™ NM; = Hp.

Sinceq ¢ MoU My, there is a point, € My with g1~ NMg = g~ NMg = MgNMo.
Sinceq; ¢ Mj, the subspace;* N M, is a hyperplane oM, and we conclude
g1t MMz = Mg M,. We may assump™ N M, # Mo M since otherwise we are
done by setting := ;. Hencep ¢ Mg and there is point € My with r- N"Mg =
ptNMo. Now g+ NM;, < Mo yields{r,q1 }* NM < p*. Thus, Proposition 5.2.4
implies that there is a poimi; € M1 with p;= N M, = p-NMa. O

Lemma 5.2.7.Let (Mp,M;) be a spanning pair of”. Let pm € Mpand p € M3
be two points that are not collinear. Thép; & Mo, pp @ M1) is a spanning pair.

Proof. SetMg := p1 @ Mo andM; := po 9 M. Sincepy £ po, we obtainp; ¢ Mj.
SinceM; < p1+, the hyperplaneg; - N M; andM; N M; of M; are equal. With
p1 € M§ we concludeMynM] < p1t NM; < M. Hence M{N My = {p1} yields
M{NM; =@. Letp e .~ (MjUM]). Because of symmetric reasons, we only
have to show that there is a poipe M; with p- N Mg = gt N M. It suffices to
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showp* NM§ < g+ NM{ sinceq ¢ M{ and henceg- NM{ andp* N M are both
hyperplanes i,

Assumep € Mp. Thenpt NM{ = MgNMj = pot N"M{. Henceq := po has the
asked property. Fogp € M1, we obtainp # p; sincep; € Mg. Hence, the lingp;
intersects the hyperplard; N M; of My in a pointqg. Sincep; € M}, we obtain
ptNM{ < prt. With pt nMg < pt this impliespt NM§ < g

It remains the casp ¢ MoNMjy. Letr € My be the point withp N Mg = r- N M.
If r-NMo = p1- N Mo, thenp NMo = Mo M{ and thereforgp™ NM§ = Mg N
M{ = pot NM§ and the claim follows withg := pp. Hence, we may assume
r+NMo = p1- N Mo and therefore # p;. The linepir meetsM; in a pointg;
sinceM] intersectdM; in a hyperplane. Sincp; € M{ andag; ¢ M|, we obtain
r-NM§ = qut NM}. Sincepot NM§ = Mo N MY, we conclude{po, g1} NM{ =
it NMoN M) =rtNMoNM§ = ptNMoNM§ < ptNMo. Thus, Proposition
5.2.4 implies that there is a poigte M{ with g- N M{ = p- N M{,. ad

Proposition 5.2.8. Let (Mg,M1) be a spanning pair of” and let(Mg, M1) be a
pair of disjoint generators withist; (Mg, Mj) = n < « anddist;(M,M}) = m<
0. Then(Mg, M1) is a spanning pair.

Proof. We proceed by induction ovén, m) using the strict total ordging, mp) <
(n,my) if and only if np+my < ng+mgor (np+mp=n1+m A np < ny).
If n4+m < 1 the claim follows by Lemma 5.2.6. So from now on, we assume
n+m> 2.

Assume there is a poimte M/~ M; for i = 0 ori = 1 such thatpo M) NM1_; =
@. Then(pa M;,M;_1) is a spanning pair by Lemma 5.2.6. Since digio
M;,M/) = n—1, the claim follows from the induction hypothesis. Hence,may
from now on assume that there is no such point.

First assuma # 0. Letp € Mg~ Mo. Then there is a poinp; € (p& M) N My.
We obtainpg Mg = p1 9 Mg. SinceMpnNM; = @, there is a poinpg € Mg which
is not collinear top;. By Lemma 5.2.7 the paip; @ Mo, po @ M3) is a spanning
pair. Since disg (p19 Mo, M§) = n—1 and dist;(po 9 M1, M;) < m+1, the claim
follows from the induction hypothesis.

Finally, assume& = 0 andm > 2. Then by Lemma A.2.19 there are generatgrs
for 0 <i < mand pointss € M} for 0 <i < msuch thalNi;1 =59 N;, No = My
andNy = M]. As assumed, there is a poip§ € N N Mo. SinceMg = Mg and
My Mj = @, there is a poins;j for 1 < j < mthat is not collinear tqgo. Again
there is a pointjp € (sj @ Mj1) NMo. Sinceqo € Mg, sj € M] andMgNM; = &,
we obtainsj # go. SinceM; intersectss; @ Mz in a hyperplane, the lingjqo
meetsM; in a pointg;. Sincepo £ Sj, Po L go anddo # g1, we obtainpg £ ;.
Now (g1 & Mo, N;) is a spanning pair by Lemma 5.2.7 sifde= pp @ M. With
Sj € god1 < 01 9 Mg we use again Lemma 5.2.7 to conclude thps 9 (g1 ©
Mo),sj @ N1) is a spanning pair. Sinag € Mg~ g1 9 Mo, we obtainpy & (01 @
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Mo) = Mg by Lemma A.2.19. Witts; € M1~ Ni we obtain dist(s; @ Ny, Mj) =
dist(N1,M7) —1=m—2 by Lemma A.2.19. Hence, the claim follows by the
induction hypothesis. O

Corollary 5.2.9. Let (M ,M_) be a spanning pair of”. For o € {+,—}, let
2° be the connected component.gf, that contains M. Then for every gen-
erator N, € 2T, there is a disjoint generator Ne 2. Moreover, every pair
(Nt,N_) € 21 x 2~ with N, "N_ = & is a spanning pair.

Proof. Let dist;(M,N;) = 1. If Ny NM_ = &, we setN_ := M_. Otherwise
N, andM_ intersect in a poinfp. Letq < M, ~ p- and setN_ := qo M._.
ThenN_ NN, = @ since(N;,N_) is a spanning pair by Lemma 5.2.7. Thus, the
first claim follows by induction. Applying Proposition 5&proves the second
claim. O

5.2.2 Twin dual polar spaces

In this subsection we show how to construct a twin space frpolar space using
spanning pairs.

Definition 5.2.10. Let . be a polar space with spanning pé¥.,M_). Foro €
{+,—1}, let2° be the connected component of the dual polar spacé tfat con-
tainsMg. Then the paif 2™, 2~) with the opposition relatiod(M,N), (N,M) |
(M,N) e 2t x 2= A MNN = g} is called awin dual polar spacef ..

Note that by Proposition 5.2.8 we know that the oppositidatien consists of
all spanning pairs that have one generato#ih and one inZ . An isomorphic
image of a twin dual polar space of is simply called a twin dual polar space.

Note that if the polar space’ has finite rank, the®* and 2~ are both iden-
tical to.#;, and hence(2+, 2) consists of two isomorphic point-line spaces. If
# has infinite rank, thetw™ U 2~ is a proper subspace of the dual polar space
of . by Proposition A.2.25.

By . we still denote a non-degenerate polar space. Furthernmotiee fol-
lowing (M;,M_) is always a spanning pair o and2 = (2*",27) is a twin
dual polar space witM, € 2+ andM_ € 2. We denote the distance i by
dist,. Since bothzt andZ~ are connected components.@f, and the distance
of two elements of one of those halfs of the twin dual polarcspa the same as
their distance in#,, we might still use disp as well for the distance it¥;,. Note
that forM € 2 andN € 2~ we always have dist(M,N) = « in &, whereas
disty (M, N) is finite if the rank of.¥ is finite.

By Corollary 5.2.9 we know already that the spanning pairsifa symmetric,
total relation on the points a#. We now show tha# is a twin space using this
relation as an opposition relation.
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Proposition 5.2.11. Every twin dual polar space is a twin space.

Proof. By the definition of the lines in the dual polar space it foltodirectly that
27 and2~ are patrtially linear spaces.

We know already that the spanning pairs.&fform a symmetric, total relation
on the points o&7. Now letM € 2 andN € 2~ such tha{M, N) is a spanning
pair. Note that by Proposition 5.2.3 the generators of arspgrpair of ¥ are
always disjoint. LeG be a line of2~ that containdN. Further letN’ € G~ {N}.
ThenH := NN N’ is a hyperplane of botN andN’. Hence, there is a poiqtin
N’ such that'p,H) = N’. By the maximality ofN’ we concludeN N p*- = H.
Since(M,N) is a spanning pair, we know by Proposition 5.2.4 that theagisint
g€ M such thaN Ng- = H. Now Ny := g9 N is a generator of” that contains
H and thusNy € G. By the maximality ofNy; we obtainH- M = {q}. Hence,
every element ofs that intersectM, containg). ThereforeNy is the only element
of G that intersect®!. Hence,Z is a twin space by Proposition 5.2.8. O

In the following we denote the codistance function of thentwpace? by

cody.

Proposition 5.2.12.LetM e 21 and Ne 2. Thencody(M,N) =rk(MNN) +
1

Proof. By Proposition 5.2.3 we obtain cggM,N) =0 if and only ifMNN = &
for a pair of generatorM,N) € 2% x 2~. Moreover, we have M,N) < o
since dist;(M,M_) < o and dist;(N,M_) < «. Hence, Lemma A.2.17 together
with induction implies cog (M,N) =rk(M N N) + 1. O

Before checking whether a twin dual polar space satisfiesl¢fiaition of a
twin SPO space, we consider two special situations. Firsshesv for a span-
ning pair(M_,M_) that the convex span &1, and a commensurate generaXor
contains a unique generator which has maximal possibleset&on withM _.

Lemma 5.2.13. Let (M;,M_) be a spanning pair of”. Further let X be a
generator withdist;(M;,X) = k < . Then there is a generator Y withrY
My =XNM; andrk(YNM_) = k—1. This generator is unique and satisfies
Y=(XNMp)oM_=(YNM_)aM,.

Proof. SetH :=M_ NX. Since crik(H) =r, there is an independent set of points
{bi | 0<i<k}suchthatb; |0<i<k)nH =2 andX = (bg,...,bk_1,H). Then
for every j < k, Lemma A.2.22(j) implies cn, (M N (b | i < j)*) = j. Since
H < b for everyi < k, this impliesM. N {b; | i <k}* =M, N (b |i <k)* =H.
Since(M,,M_) is a spanning pair ant ¢ M., there is a poiny; € M_ with
bt NM, = pt "M, for everyi < k. We obtain{p; | i < k}*NM, =H and
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therefore rk(p;i | i < k)) =k—1 by Lemma A.2.22(i). By Lemma A.2.22(ii) the
subspaceY := {p; | i € K} 9 M is a generator with dist(M.,Y) = k. Since
H={pi|i <k}*nM; <Y, we concludey "M, =H.

SinceY = (H,pi |i <k), H<Mj and(p; |i <k) <M_, we obtainy "\M_ = (p; |

i < k) and thereforer = (YNM_)9M.,. Now let p be any point oH-NM_.
Thenpis collinear top; for i < k. Hence,p* > (H,p; | i < k) =Y and therefore
(p,Y) is singular. Thusp €Y sinceY is a generator. Therefor¥, is uniquely
determined an¥ =H9 M_. O

In the following lemma we show for a more general situatict thhenever we
have a convex spaB < .#, of two commensurate generators, we can choose two
generators whose convex sparGsuch that one of them has maximal possible
intersection and the other one has minimal possible int&mseto a certain given
generator.

Lemma 5.2.14.Let (M,M_) be a spanning pair of”. Further let X, Y and
Z be generators such that X and,Mare commensurate and Y, Z and_Mre
commensurate. SetM Y NZ. Then there are generators and Z withY'NZ' =
V such that YN X =V N X andcrkzx (V N X) = dist, (Y, Z).

Proof. By Corollary 5.2.9 there is a generatdwith dist;,(M_, M) < o such that
(X,M) is a spanning pair. Then digtM,Y) and dist;(M, Z) are finite. Hence,
we may assumg = M, andM_ =M.

SetYx := (MNY)aX, Zx .= (MNZ)gX andU := (XNYx,XNZx). ThenYy
andZy are generators with digtM,Yx) < o and dist;(M,Zx) < « by Lemma
5.2.13. HenceX NYx andX NZx have both finite rank and therefore(tk) < co.
By Lemma 5.2.13 we obtaivik "M =YNM and(XNYyx)-NM = (Yx M) and
the corresponding fax. We conclude

ULnM = ((XNYx)U(XNZx))*NM
(XNYx)EN(XNZx)H)NM
(XNY)ENM)N((XNZx)H) NM)

Y« NM)N (Zx M) = (YNM)N(ZNM) =V NM.

=
=

Thus,Vx :=U a9 M = (U,VNM) is a generator by Lemma A.2.22(ii). Now let
B be a basis o¥/ containing a basiBg of V"M and a basi®; of VNVx. This

is possible sinc® NM < Vx and hencdBy C B;. SinceVx = (U,VNM), every
subspace of/x has a basis contained MU X. Hence, we may assume that we
choseB such thaB; ~ By C X. SinceVy is a generator, we obtaiiy "M)+NX =

U. WithV < (VN M)* this impliesV N X < U and consequently,B; ~ Bo) =
VNXsinceXNM = g.

SetBy := B\ B; and setZ’ := By 9Vx. Then(By) is disjoint fromVx since
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B1 is a basis oV NVx. Since cri, (V NVx) < crky (VNM) < o, we obtain
crky (V NVx) < o by Proposition A.2.20 and hence, ¢ NVx) < . Thus,Z’ is

a generator with digt(Vx, Z') = |By| by Lemma A.2.22(ii). Sinc@&; C By NV,

we obtainB C Z’ and hencey < Z'. This impliesZ’ N X < (VNM)+NX =U.

SinceU = XN (VNM)* andV NM < Z/, we conclud&’ NV = (VNM,Z'NU).

Hence,

crkzrx (VN X) = crky (VN X) —crky (Z' N X)
= crky, ((VNM,V N X)) —crky ((VNM,Z'NU))
= Crkvx(<Bo>, <Bl N Bo>) — crkVX(Z’ ﬁVx)

= crky,({B1)) —disty(Vx, Z') = crky ((B1)) — |Bv/|

= crky({B1,By)) = crky (V) = disty(Y,Z).

SetYp:=Y. Leti < dist;(Y,Z) be a natural number such th@exists andi N X £

Z. Then we choose a poigit € Y; N X\ Z. SinceZ is a generator, there is a point
7z € Z that is not collinear toj;. SetYi, 1 :=27z9Y,. SinceY, ;NX <y’ and
Yit NYir1 =YiNY,1, we concludey; . 1N X <Y;NX. Together withy; € (YN X) ~
Yi1 this impliesY; N X > Y, 1N X. Hence, after finitely many steps we obtain a
generatolyj for somej < dist,(Y,Z) with Y;nX < Z. SetY’:=Y;. ThenY'NX <

VN X sinceY' NX <Y; for everyi < j and henc&’NX <Y. On the other hand
we obtainv <Y’ sinceV < YgandV <z for everyi < j. Thus,Y' NnX =V nX.
Now crkz~x (Y NX) = disty(Y,Z) yields dist,(Y’,Z) > dist, (Y, Z). Since both,

Y’ andZ’ containV, this implies dis;(Y’,Z') = dist(Y,Z) andY'NZ' =V. O

Theorem 5.2.15.Every twin dual polar space is a twin SPO space with singular
rank < 1.

Proof. Let.” be a non-degenerate polar space. FurthefMet,M_) be a span-
ning pair of . and denote by %", %) the twin dual polar space of’ with
(M,M_) € 2" x 2~. Since bothz* and 2~ are subspaces of the dual polar
spacen, of ., we conclude by the definition of the lines.gf;, that the singular
rank of (21,27) is at most 1.

To prove tha{ 21, 27) is a twin SPO space it suffices to show that the conditions
given in Definition 2.1.1 are fulfilled for a generatére 2+ and generatorg and

Z that are contained iw~. Setn := dist,(Y,Z) and letG be the convex span of
Y andZin .

Assume there is a generatdf ¢ G that is oppositeX. ThenY NZN Xz since

by Proposition 5.2.1 every element @fcontainsY NZ andX N X' = @. Since
crky (Y NZ) = n, Proposition A.2.20 implies cf(Y NZ) = n for every generator

N € G and hence, cog(X,N) < n. Since by Lemma 5.2.14 there is a generator
Z' € Gsuch that the corank ¢ NZ) N X in Z’NX is n, we obtain cog (X,Z') =n
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and hence (A1) holds. Sin¢eén X’ = @, we obtain dis;(Z’,X’) > n and there-
foreZ’ N X' =YNZ. Since(X,X’) is a spanning pair, Lemma 5.2.13 implies that
Z' is the unigue generator with (K,Z’) = n— 1 that containy NZ. Thus, (A2)
is satisfied.

Axiom (A4) is a direct consequence of Lemma A.2.17. Henagnitains to check
(A3). Therefore we assume co@X,Z) = cody (X, G). Since crlg(YNZ) =nfor
everyN € G, we know thaty NZN X has coranki nin NN X. Hence, Lemma
5.2.14 implies tha¥ NZN X has corankn in ZN X. Since crig(YNZ) =n, we
concludeZ = (XNZ,YNZ). LetpeYNX. SinceXUY C p*, we obtainZ = (XN
Z,YNZ) < p* and therefordp, Z) is singular. By the maximality oZ we con-
cludep € Z and henceXnNY = XN (YNZ). Now letW be a generator that is ad-
jacent toX with cod,; (W,Y) < cod,(X,Y). SinceW andX intersectin a common
hyperplane, we conclude thatNY is a hyperplane cKNY. SinceXNY = XN
(YNZ), thisimpliesWN(YNZ) =WnNZ. Since crignn(WNYNZ) < nforevery

N € G and crik~z(XNY NZ) = n, this implies cod,(W, G) < cody(X,Z). Since
W andX are adjacent, we obtain codW, G) = cod, (W, Z) = cody(X,Z) — 1.
Since cod;(X,Y) < o, there is a generatot’ € ¥~ such that X, X’) is a span-
ning pair and dist (Y, X") = cody(X,Y). Since cod,(X,Z) = cod,(X,Y)+n, we
obtain dis;(Z,X’) = dist;(Z,Y) + dist, (Y, X’). Since

crkz(ZNY) +crky (Y NX") > crkz(ZNY) + crkzay (ZNY N X)
=crkz(ZNnYNX') >crkz(ZNX'),

this impliesZzNY N X' =ZnNX’" and henceZN X’ <YNZ. Now we may apply
Lemma 5.2.13 to show that is the unique generator at codistance £04,Z)
to X that containsZ N X’. Hence, it is also the unique generator containe@ in
at this codistance t&X. Analogously,Z is the only element o6 at codistance
cody (W, G) toW. Thus, (A3) is satisfied. O

5.3 Partial twin Grassmannians

A Grassmanniarof a projective space” is a point-line space whose point s&t
consists of all subspaces of of rankk € IN and whose lines are the maximal
subsets of”” whose elements intersect in a common subspace ofkark and
are contained in a common subspace of rkAkl. To be more specific, this
point-line space is also called a Grassmanniakrgfaces. The Grassmannian of
0-spaces is canonically isomorphic.f6.

For a projective space of infinite rankK, there is an analogous way to define
a point-lines space whose points are the subspaces of ckrartie so obtained
point-line space can be seen as the Grassmannian of ckispéees. Thus, the
Grassmannian of corank-1-spaces is just the duat of
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In the following we introduce a point-line space that is dongted out of a
projective space and can be seen as a generalisation of an@nmasian. This
construction allows us for a projective spagéof infinite rank to take as points
of the new point-line space subspacessfthat have infinite rank and infinite
corank.

LetU be a subspace of a projective spa€e Then we call a subspate< .
acomplemenbf U if and only if U andV are disjoint andU,V) = .#. Since by
this definitionU is a complement t¥, we callu andvV complementargubspaces.

Definition 5.3.1. Let . be a projective space and ldt andU_ be non-trivial
subspaces of” that are complementary. Far € {+,—}, let 49 be the set of
subspaces o that are commensuratelty. Further set:

LR ={{Zeu | XNY <Z<(X,Y)} | {X,Y} CU A crkx(XNY) =1}
R:={(M,N),(N,M) | (M,N) e 4" x4~ A MNN = &}

Then we call the paif(U*, %), (U,-%y)) with the opposition relatiolR the
twin Grassmanniaif . with respect tqU_,U_).

Foro e {+,—}, let. 25 C 1 be a subset that contaibdg such that the following
conditions are satisfied:

(TG1) For every subspacé € 29, there is a subspadtl € £,9 such that
VNW=g.

(TG2) (V|Ve P9 =5.

(TG3) LetV andW be two elements of7. Then{X € 4° |[VNW < X <
(V,W)} C 8.

Foroe {+,-},set4? ={Le LI |LC 25} andR := RN (£, U Py) %
(P x Z5)). Then((Zi, L), (P, L)) with the opposition relatioR is
called apartial twin Grassmanniaif . with respect tqU.,U_).

We will see later on that every (partial) twin Grassmann&i itwin space.
Therefore we call a twin space a (partial) twin Grassmanifi&is isomorphic to
a (partial) twin Grassmannian of a projective space. Thnougthis section” is
always a projective space abd andU_ are non-trivial subspaces of that are
complementary. Foo € {+, —}, we denote byl? the set of subspaces 6f that
are commensurate tdy.

Note that ifU, is a singleton antl_ is a hyperplane, then every partial twin
Grassmannian is a twin projective space. This follows diydicom (TG1) and
(TG2). On the other hand, every twin projective space fu(fii&1) and (TG2).
Moreover, (TG3) follows in this case by the definition of timel. Hence, every
twin projective space is a partial twin Grassmannian.



108 } 5. Twin spaces

The following remark concerns some immediate consequeheg$ollow by
the Axioms (TG1) and (TG3).

Remark5.3.2 Every subspace of” has a basis that is containedlih UU_.
Hence, for a subspadé € 4™, there is a basi8 of . such thaB C U, uU_
andBNV is a basis oV/. We conclude thatB \. V) is a complement t¥ that is
commensurate td_. Moreover, for two pointd € BNU, andc e BN\ U, we
obtain(c,BNU, \ {b}) € U~. Therefore, every twin Grassmannian is a partial
twin Grassmannian.

SinceU, andV are commensurate, we obtaingrkU, NV) =[BNVNU_|. By
symmetric reasons this implies that a subspélce 41~ is disjoint toV if and only

if (V,W) =.7. Therefore, the subspac¢sandW of (TG1) are always comple-
ments.

From (TG3) and the definition of the lines of the twin Grassman it follows
directly that every partial twin Grassmannian with resgediU, ,U_) is a sub-
space of the twin Grassmannian with respedttp,U_). A second consequence
of (TG3) is that for a partial twin Grassmanni&?,, 4t ), (Pm, %)), both
subspaceéZ,, 4t ) and( 2, %y ) are connected.

The Axiom (TGZ2) plays a special role. As we will see omittingloes not
change anything about the definition of partial twin Gragsnmins, but it would
change the definition of a partial twin Grassmannian of armgwjective space.
Nevertheless, we cling to this axiom since it turns out to &eful.

Remark5.3.3 For o € {+,—}, let 27 C 49 be a subset withl; € &7 such
that (TG1) and (TG3) are fulfilled, but (TG2) is not. Set := (U |U € &2]").
Further setZ; :={VN.v" |V € 2, }. LetU € 2] andV € 2] such that)
andV are complements. Théh andV N.&’ are complements it¥’’. Thus, there
is a twin Grassmannia@’ of .’ with respect tqU. ,U_N.%"’). We denote by
43 andsly the point sets of this twin Grassmannian®tf, whereU, € 4J and
U-ns"ey.

For two element¥ andW of ;" there are complemeri andW’ in &7{". Since
VvV’ andW’ are complements &f N.#” andW nN.~’ in .’ and furthermor&’ and
W’ are commensurate, we conclude tiat .’ andW N .¥’ are commensurate.
Therefore we obtait”; C ;.

Assume thaV andW are distinct. Then J N (V,W)) = crkyw, (V) — 1 since
U is complementary t&. This implies criywyns(V N") = crkyw) (V) and
consequently, cki,»(VNWN ") =crky(VNW). Hence, ] — Z5: X —
XN.~"is a bijection that maps lines ¢f7,,.%,, ) onto lines of7’.

LetX’ <.’ be a subspace thatis commensuratéto?’ such thaV "Wn.7" <
X' <(V,W)N.#". ThenX := (X', VNW) is commensurate % with V N\W < X <
(V,W) and (TG3) impliesX € #2;". SinceX’ = XN.#’, we concludeX’ € &5
and hence, (TG3) holds fo?, . Therefore, restricting the elements.gf; and
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2, to the subspace””’ leads to an isomorphic structure that still fulfils (TG1)
and (TG3).

Suppose?” := (U |U € Z;) <. Thenwe set?; :={VN.s" |V € 2}

By repeating the arguments we obtain that restricting teenehts ofZ;" and
2, to the subspace”” leads to an isomorphic structure. Since now (TG1),
(TG2) and (TG3) are all fulfilled, we conclude that the sulegsacontained in
2T and 22~ are the points of a partial twin Grassmannian. Therefore2jTl€an

be seen as a condition that makes sure.tfias “entirely utilised”.

In the following %m = (24, %), (Pm»%m ) is a partial twin Grassman-
nian of . with respect tqU,,U_). Foro € {+,—}, we set¥9 := (23, 49).
Moreover, we denote by = (2", 2 ) the twin Grassmannian of’ with respect
to (Uy,U_).

Proposition 5.3.4. Every partial twin Grassmannian is a twin space.

Proof. Let R be the opposition relation of the partial twin Grassmanuign By
(TG1)Ris a symmetric, total relation o, U #2;,. LetU € £ andV € &,
such thatU andV are complements. Further [ € &7, be a subspace such
thatV andW are distinct collinear points i0.%,,-%y, ) and letL € ., with
{V,W} C L. ThenV andW intersect in a common hyperplane. Hendeand
(V,W) intersect in a single poinp sinceU is a complement t&. We conclude
that(p,V NW) is the only element df that is not disjoint tdJ. By the definition
of the lines of a twin Grassmannian we conclude thgtis partially linear. [

Let § be the set of finite subsets o7, and set”’ := Ur3(F), where(F) is
understood as the span.fi. Then.””’ is a subspace of” since the union of two
finite sets is again finite. This implidd) |U € 2) <.’ and hence.y”’ = ./
by (TG2). We will make use of this fact for proving the follavg lemma.

Lemma 5.3.5. Let p be a point of”. Then there are elements & &7, and
Ve 2, suchthat peUNV.

Proof. Since(U |U € 22) = ., there is a finite s := {U; |0<i<n} C 2
wheren € IN such thatp € (F). For 0< j < n, set.”j .= (Uj | i < j). We prove
by induction that every point of/j is contained in a subspatec 2.

For j = 0 there is nothing to prove sincgp = Ug. Now assume the claim holds
for j <n—1. We may assumé; £ .#; since otherwise?j 1 = .#;. Letqe
Zj+1\ 7. Then there are pointsc Uj ands € ./} such thag is on the liners.
By the induction hypothesis we know that there is a subspaeeZ,; such that
se W. Sincer € (Uj,W), (TG3) implies that there is a subspadde= 27 with
(q,UjNW) < U. The claim follows by analogy. O
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Lemma 5.3.6.Let ne IN and let(U;)o<i<n be a family of elements a?;;. Then
every subspace ¥ 4T with No<i<nUi <V < (Ui | 0 <i < n) is an element of
e

Proof. For n = 0 there is nothing to prove and for= 1 this is just (TG3). We
prove the claim by induction over. Hence we may assume that every subspace
V € U with MNo<icnUi <V < (Ui | 0<i < n) is an element ofZ,. SetS:=
No<i<nUi andW := (U; | 0 < i < n). In the proof we distinguish three different
situations:

(I) First consider the cas8 < U,. SinceUg andU,, are commensurate, there
is a natural numbem € IN and a family of points(p;)o<i<m such that{p;, W |
0<i<m = (UnyW). We proceed by another induction. Lpk m such that
every subspac¥ € Ut with S<V <W':= (p,W|0<i < j)is contained in
Z5andp; ¢ W, LetV e Ut with S<V < (p;,W'). We may assume £ W'
since otherwise we know alreatfyc Z7;. SinceW’ is a hyperplane ofp;,W’),
the subspac¥ NW' is a hyperplane of/. Moreover,S<V NW’'. Hence, for
an arbitrary subspadd’ < W’ that containd/ "W’ as a hyperplane, we obtain
U’ € 22;,. LetH be a hyperplane df’ that contain&J’ NUy,. Then (TG3) implies
(pj,H) € Z4. If H=VNW/, we obtain(p;,H) = U’ and consequently, € Z,.
Therefore we may assunte=£V NW’'. ThenU’ = (H,V NW'). SinceUp # U1,
we concluddJ’ < W’ and hence, there is a poipte W'\ U’. We knowV’ :=
(p,VNW') € Z4. NowV'n(pj,H) <W and thusV'n(pj,H) <U’. Since
V'NU’ =V NW’, we conclud&/' N (pj,H) <V = (p;j,VNW') <(V,(pj,H)) and
thereforeV € 2 by (TG3). Thus, induction providés € &7 for everyV € 4+
with S<V < (Up,W).

(I) Now consider the casd, <W. Let crks(SNU,) > 2. ThenUp contains a
hyperplaned with UpnUp < H andS«£ H. SinceS< Ug, we obtain(S H) = U
andSNU, < H. Hence, for a poinp € Up . Up, we concludeS £ (p,H) =: U},
and thereforé&JoNU/, = H. By (TG3) we conclud&)) € 2. SinceH intersects
Sin a hyperplane, we obtaBNUp < SNU}, < S. By the finiteness of ci(SNUy,)
we may constrain ourselves to the casestB1U,) = 1. Now letV € * with
SNUp <V <W. We may assum8< V since otherwise we know alreatlye
2. SinceSNUy, is a hyperplane o8 and SNU, < SNV < S, we conclude
SNUp = SNV. SetW' := (U,,V). AssumeS<W'. Then there is a subspace
V' e 4t with S< V' andU,NV’ =UpNV and(Up, V') =W'. SinceS<V’' <W,
we obtainV’ € £, and consequently by (TG3) € &, sinceUpNV’' <V <
(Un,V'). Hence, we may assungeZ W’ and therefor&nW’ = SNV. LetH be a
hyperplane o¥/ that containSNV. ThenU’:= (S H) € U*. MoreoverU’ € 2,
sinceS< U’ <W. SinceS« W/, we obtainU’N"W' = H and consequently,
U'NU, <H. LetpeU,~V. Then(p,H) € U and therefor&)’ NU, < (p,H) <
(Up,U’) yields (p,H) € 2 by (TG3). SincdJg # Uy, we knowS < Ug and thus,
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crky (SNV) > 2. Hence, there is a hyperplahki of V that is distinct toH and
containsSNV. As forU’, we obtain(S H') € #,. SinceS« W', we conclude
(SH)YN(p,H) < (SH’)NW' =H’. Thus,(p,H)N(SH’) <V = (H,H’) and
(TG3) impliesV € Z1.

(1) Finally, considerS £ U, « W. Let p € U~ W. SinceUp # Up, there is a
hyperplaneH of Ug that containdJo NUy. By (TG3) we conclud®), := (p,H) €
2. LetV e Ut with SNU;, <V < (p,W). If S< U/, thenV € &2 follows from
(). If (Uo,U}) = (p,W), thenV € &2 follows from (TG3). Therefore we may
assumeS £ U}, and(Uop,U/) < (p,W). SinceH is a hyperplane dflp andH < Uy,
we conclude thaBNU}, = SNH is a hyperplane 08. SinceS < U, we obtain
SNH < H. Hence there is a hyperplah of H such thaBNH < H’. Then(S H’)
is a hyperplane dfly. Now letq e W~ Up. ThenU’ := (g, S H’) € {*. Moreover,
U’ e 2, sinceS< U’ <W. SinceU,NW < Up, we concludeJ’NU;, < (SH')
and therefor&)’ NU/, = H’. Thus,Vp := (p,S H’) € £, by (TG3). SinceJp and
U, are commensurate, we obtain gV NU,) < «. Hence, there is a family
(Mi)o<i<m for a natural numbem such thatS = (Np<j<nUi) N (No<icmVi) and
(W,Up) = (Uj,Vj |i <n A j<m). Thus, the claim follows from the two cases (1)
and (II). O]

The following proposition is Axiom (TG3) in a much strongersion.

Proposition 5.3.7. Let ne IN and let(U;)o<i<n be a family of elements o#;,.
Then every subspace&/U" with No<j< Ui <V is an element of7.

Proof. SetS:=Np<i<nUi. Sincelp is commensurate to every element#f;, the
intersection oty andU; has finite corank itJg for everyi < n. Sincenis finite,
this implies crly, (S) < . Now letV € 4™ with S<V. Then crk/ (S) = crky,(S).
Hence by Lemma 5.3.5, there is a family;)n-i<m of elements of#?;; such that
V <(SUi|n<i<m),whereme IN withn<m. Now No<i<mUi <V < (U |
0 <i <m) and the claim follows from Lemma 5.3.6. o O

Corollary 5.3.8. Letrk(U,) < o. Then = 2.

Proof. LetV € (' and take an arbitrary elemewg of 2. SetS :=Wp. By
Lemma 5.3.5 there is for every poiptc S\ V a subspac®/ € &7, with pc W.
Hence by (TG1), there is a subspabec £, with p ¢ W; and we obtair§, :=
SNW < §. Since rkV) < o, we may repeat this argument to obtain a finite
family (W)o<i<n of elements ofZ; such that p-i-,Ui <V. Now the claim
follows from Proposition 5.3.7. o ad

The analogous of this corollary for finite corank does notdha$ we know
from the observations of twin projective spaces we made.
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Remark5.3.9 Partial twin Grassmannians can be seen as a generalisdtion o
Grassmannians. This is because every subspace of a prejsptice has a com-
plement and hence, every Grassmanniak-spaces is together with the Grass-
mannian of corankk+ 1)-spaces a twin Grassmannian.

Conversely, Corollary 5.3.8 implies that whene\derhas finite rank the " is a
Grassmannian in the usual sense. Hence, the two parts dfa pain Grassman-
nian can be seen as Grassmannians-epaces, where is an arbitrary cardinal.
However, the reader should keep in mind that ifs infinite and equals the rank

of ., then the corani of the considered subspaces can be of any possible car-
dinal between 1 and. Hence, in this case, it does not suffice to mention the rank
of the considered subspace. As longfas smaller thara one can talk about

a Grassmannian of corarfkspaces. I3 equalsa one should mention both the
rank and the corank.

Remark5.3.10 The only case wherdt andi~ are not disjoint is rks”) < o
and rkU..) = rk(U_). Moreover, by Corollary 5.3.8 this implies thgit ands(~
are disjoint or equal.

The following proposition characterises the singular palbes of 7.

Proposition 5.3.11.Let U and V be two elements &, that intersect in a com-
mon hyperplane H and let W be the span of U and WinSet My := {X € &} |
H <X} and My :={X € Z; | X <W}. FurtherletL:={X € 2] |H <X <W}
be the element o}, that contains U and V.

(i) If U is a hyperplane of?, then My = L. Otherwise N} is a maximal
singular subspace o, with rk(My) = crk o (U ).

(i) If U is a singleton, then M = L. Otherwise Ny is a maximal singular
subspace of/;}.

(iii) Every subspace Z &7 that intersects both U and V in a hyperplane is an
element of M or of My.

Proof. Let H' be a complement tbl in .. Further letX andY be two distinct
elements oMy. ThenH = XNY is a common hyperplane of andY since both
are commensurate 1d. SinceH’ is a complement téd andX # Y, there are
distinct pointsx andy in H’ such thalX NH’ = {x} andY NH’ = {y}. We con-
clude thatG := {Z e 4" |H < Z < (xy,H)} is the element of%;; that contains
both X andY. SinceG C My, we obtain thaMy is a singular subspace of;;}.
Furthermore, a subspaZec My is contained irG if and only if Z intersecty.
Since by Proposition 5.3.7 we kno{p,H) € . for everyp € H’, we conclude
thatH’ — My : p— (p,H) is an isomorphism frorh’ onto the singular subspace
My of .. Therefore rkMy) = rk(H') = crko (H) +1 = crk(U).



5.3. Partial twin Grassmannians ’— 113

Now let X andY be two distinct elements dfly. Then bothX andY are hyper-
planes oW and hence, we conclude thétandY intersect in a common hyper-
plane. Thus, there is an eleméie %, that contains botfX andY and every
element ofG is contained in(X,Y) =W. Thus,My is a singular subspace of
Sy If U is a singleton, thehl = @ and henceMy, = L. OtherwiseH contains

a pointp. By Lemma 5.3.5 there is a subspate &, with p € Z. Thus, (TG1)
implies that there is a subspates Zf with p¢ Y. LetX be a hyperplane &
that containdd NY and does not contaip. Then by Proposition 5.3.7 we obtain
X € Z; and consequently§ € My. Sincep ¢ X, we obtairH £ X and therefore
Mw > L.

To show that bottMy and My, are maximal singular subspaces if they are not
equal toL, it remains to prove (iii). LeZ € £, be a subspace that intersects both
U andV in a hyperplane. Assunt¢ £ Z. ThenU NZ andV NZ are distinct hy-
perplanes oZ. This impliesZ = (UNZ,VNZ)and henceZ < (U,V)=W. O

Our goal is to prove that/, is a twin SPO space. Therefore, we first show
how the distance of two elements &%, and their convex span it¥},, can be
expressed in terms o¥.

Proposition 5.3.12.Let{U,V} C 2. Then the following claims hold:
(i) The distance of U and V it¥};} is finite and equalsrky (U NV).

(i) The subspac@J,V)qof .t consists of all subspaces ®al™ withUNV <
W < (U, V).

Proof. (i) By definition of % the distance betweds andV is at least cris (U N
V). SinceU andV are commensurate, ¢k NV) is finite. ForU =V, there
is nothing to prove. Hence we may assume that there is a pairl¥ ~ U. Let
H be a hyperplane df containingu NV. SetU’ := (p,H). ThenU andU’ are
commensurate and hendd, € &2, by (TG3). SinceU andU’ are collinear in
Sy and(p,UNV) <U’'NV, the claim follows by induction.

(ii) By G we denote the convex spdd,V )q viewed as a subspace.6f;;. Further
we setH :={W e U™ |[UNV <W < (U,V)}.

LetW € H. ThenW € £, by (TG3). IfU andV have a hyperplane in common,
we obtainW € G by definition of %;;. Now let crly (U NV) =d > 1. We prove
W € G by induction and hence we assume that the claim holds folyever
elementd)’ andV’ of & with crky(U'NV’) < d. For 0<i < d, there are
points pi € W such that{pi,U NV |[0<i<d)=W. IfWNnUUV)>UnV,
we may assumeq_; € U UV. SinceW < (U,V), for everyi < d there is a line
through p; that intersects botkd andV. Hence for 0<i < d, there are points
g €U andr; eV such thatq,UNV |0<i<d)=U, {r,unV|0<i<d)=V
andp; € (gj,rj,UNnV[0<j<i). Since crigy vy (UNV) = 2d, the set{q;,ri |



114 } 5. Twin spaces ‘

0<i < d} is independent.

Firstassumey_; € U. SetV' := (pg_1,r,UNV | 0<i<d—1). ThenV andV’
are collinear in#, and the distance df andV’isd —1. HenceV’ € G. Then
UnNV’ = (pg_1,UNV) and thereforé& NV' <W. Sincepy_; € U and(p; | 0 <
i<d—1) <(g,r,UunV|0<i<d—1) <(U,V’), we conclud&V e (U’",V); <G
by the induction hypothesis.

The caseyy_1 €V is analogous, therefore we may now assikhieU =WnNV =
UnV. SetV’:=(qo,r,UnV | 1<i<d). ThenV andV’ are collinear in%pm,.
LetL € %, such that{V,V’} C L. Since the distance & andV’isd—1 we
obtainV’ € G. NowV NV’ = (r,unV | 1<i <d) and(V,V’) = (qo,ro,V NV’)
and thereforaV’ := (po,r;,UNV |1 <i < d) € L. SinceV is a hyperplane of
(V,V’), we conclud&J N(V,V’) = (qo,UNV). Thus,V’ is the only element df at
distanced — 1 toU. This implies crig (U NW') = d. SinceWnW’' = (po,U NV),
we obtainW € (U,W')q as above. Sinc¥’ € G, we obtainL < G and hence
W e (U,W) <G.

Now as we knowH C G it remains to show thatl is a convex subspace of;,}.
Let U’ andV’ be two elements oH. AssumeU’ andV’ are collinear ins;
and letL € % such tha{U’,V'} C L. Then by definition every element bfis
contained ifU’,V’) < (U,V) and contain&)’ NV’ > U NV. Now assumé&)’ and
V' are atdistancd > 1in.%; . LetW € 22 such thaWV is collinear tov’ in .
and has distanag— 1 toU’. Then there is a poih € U'NW \V’. SinceV’ and
W have a hyperplankl in common, we obtaitV = (p,H) < (U’,V’) < (U,V).
This implies cri/ (U’ NV’) = crky(U'NH) and hence’ NV =U’'NH. Thus,
w>u'nv' >uUnv. O

We now study the codistance of the twin spagg. If we talk in the following
of a codistance, we mean always the codistancgjinsince the distance or the
codistance in¥ it at most 2 and therefore can be expressed by collineariy an
intersection.

Proposition 5.3.13.Let U € &2 and V € #,. Then the codistance of U and V
is finite and equalsk(U NV) + 1.

Proof. We obtainr :=rk(U NV) < « sinceU has a complemetd’ in #,, and
every two elements of?,,, are commensurate i&f. Since rkU NV) =r andV is
commensurate td’, we obtain crk-((U,V)) =r + 1. Hence, there is a subspace
S< U’ with rk(S) = r such thaSn (U,V) = @. Moreover,Sis a complement of
(U,V). SinceU NU’ = g, there is a subspade< V withVNU’ < T such thafl

is a complement tt) in (U,V). Since rkU NV) =r, we obtain crig(T) =r + 1.
HenceV':= (S T) andV are commensurate and therefofes 4.

Since(U,V’) = (U,T,S = (U,V,S) = ., we conclude tha¥’ is a complement
toU. SinceVNU’' <T <V’'andV’'=(ST) < (U’,V), we conclud&/’' € &, by
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(TG3). NowV andV’ have distance+ 1 in.#;, . Furthermore, every complement
of U that is an element o7, is disjoint toU NV and hence has distanger + 1
toV. Thus, codu,V)=r+1. O

As preparation to show tha#, satisfies the conditions given in Definition
2.1.1 we study the codistance of a given pointf to the elements of the convex
span of two points in, .

Lemma 5.3.14.Let X € & and {Y,Z} < £,,. Set m=rk(XNYN2Z)+1,
d:=rk(Xn(Y,Z))+1Landcrky(YNZ) =n. Thenmax{m,d —n} —1 <rk(X N
V) < min{m-+n,d} — 1 for every Ve (Y,Z)q. Moreover, both bounds are sharp
andrk(XNZz) = min{m+n,d} — 1 impliesrk(XNY) = max{m,d —n} — 1.

Proof. We know thatd, n andm are all finite. Since cfk(Y NZ) = n for every
V € (Y,Z)g, we obtainm—1 < rk(XNV) < m+n—1. Since crky z, (V) = n for
everyV € (Y,Z)g, we obtaind —n—1 <rk(XNV) <d—1.

Let {pi | 0 <i < d—m} be a set of points such thap;, XNYNZ|0<i <
d—m) =XnN(Y,Z). If d<m+n, then the corank ofY NZ) in (pi,YNZ|
0<i<d—m)isat mostn. Thus there is a subspaWec U~ with V € (Y,Z)q
such thaV > (p;,YNZ | 0<i<d—m) and hence, X NV) =d — 1. Assume
rk(XNZ)=d—1. ThenXNZ =XnN(Y,Z) and thereforX NY = XNYNZ. Thus,
rk(XNY)=m-1. If d > m+n, thenV := (p,YNZ|0<i<n)e(Y,Z)yand
rk(XNV) =m+n—1. Assume rkXNZ) = m+n—1. Since rkXN(Y,Z)) >
rk(XNY) +rk(XNZzZ) —rk(XNYNZ), we conclude rkXNY)=d—-n—-1. O

Theorem 5.3.15.Every partial twin Grassmannian is a rigid twin SPO space
whose symplecta are all of rarkkand whose lines are contained in at most two
maximal singular subspaces.

Proof. Let.%m = (.7, -7 ) be a partial twin Grassmannian of a projective space
<, where#9 = (23, 4%) for o € {+,—}. Forelementd € 2, andVv € &,
we writeU < V if and only ifU andV are complements i’

Let X € &7, and letY andZ be elements of?;,. Thenn:=crky(YNZ) < w0 is
the distance o¥ andZ in .. In the following (Y, Z)q denotes the subspace of
“m that is the convex span of the two poiMtsindZ of &7;,. By (Y, Z) we always
mean the subspace of that is spanned by the two subspa¥esndZ of .~

First assume that the subspadez), contains an elemett — X. By Lemma
5.3.12(ii) we obtainy N Z <U < (Y,Z). Since crkyz (Y) =nandU andY
are commensurate, we conclude gk (U) = n. SinceU and X are comple-
ments, this implies XN (Y,Z)) =n—1. Let{p;i | 0<i < n} be a set of points
of . such that(p; | 0 <i < n) =XnN(Y,Z). SetX':=(p,YNZ|0<i<n).
SinceXNU =@, we knowXNYNZ=@. Thus,(pi |0<i<nmnNYNZ=g
and therefore crk(Y NZ) = n. Hence, Lemma 5.3.12(ii) implie¥’ € (Y, Z)g.
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Since every eleme € (Y,Z)q containsY NZ and is contained irY,Z), we
conclude rkXNV) > n—1if and only if (p | 0 <i < n) <V. We conclude
cod X, (Y,Z)g) = nandX’ is the only element in the coprojectionXfin (Y, Z)g.
Thus, (A1) and (A2) are fulfilled.

From now on(Y,Z)q does not necessarily contain an element that is opp#site
Setm:=rk(XNYNZ)+1andd :=rk(XN(Y,Z))+1. Then we obtain mgxn,d—
n} —1<rk(XNV) <min{m+n,d} — 1 for everyV € (Y,Z)q by Lemma 5.3.14.
AssumeZ is in the coprojection oKX in (Y,Z)g. Then Lemma 5.3.14 implies
rk(XNZ) =min{m+n,d} —1 and rKXNY) =max{m,d—n} —1. LetW € 2,
such thatX andW intersect in a common hyperplane andwkNY) = rk(X N
Y)—1. First assum&V/ N (Y,Z) < XN(Y,Z). Since rkWNY) =rk(XNY) -1,
we obtainW N (Y, Z) # XN (Y,Z) and henceW N (Y,Z) < XN (Y,Z). Further-
more,VNW <V NX for everyV € (Y,Z)g. f WNYNZ < XNYNZ, then
VNW <V nX for everyV € (Y,Z)g and hence (A3) is fulfilled. Therefore we
may assum&vNYNZ=XNYNZ. Supposal < m+n. ThenrKXNzZ)=d-1
and henceZ > XN (Y,Z). This impliesXNY =XNYNZ=WNYNZ a
contradiction toV NY < XNY. ThusWNYNZ=XNYNZyieldsd > m+

n. SinceWnN(Y,Z) contains a hyperplane &N (Y,Z), Lemma 5.3.14 implies
codW, (Y, Z)g) = cod X, (Y,Z)g) = m+n. SinceW N (Y,Z) < XN (Y,Z), there is
a subspac8< (Y,Z) N X with rk(S) =n— 1 such thaBNYNZ = g andS¢ W.
SetZ' :=(SYNZ). We conclud&Z’ € &, by (TG3) and thereforg’ € (Y,Z)q by
Lemma 5.3.12(ii). Since (K NZ') = (S XNYNZ), we obtain co@X,Z’) =n+m
and consequentl’ is in the coprojection oK in (Y, Z)y. SinceS«£ W, we obtain
XNZ' >WnZ and hence, cqllV,Z’) = n+m— 1. Thus, the coprojection &/
in (Y,Z)g is properly contained in the coprojectionXfin (Y,Z)q. Therefore (A3)
is fulfilled.

Now assuma&V N (Y,Z) £ XN (Y,Z). SinceWnY < XNY, we concluden N
(Y,Z) # XN (Y,Z) and consequently, &/ N (Y,Z)) = d — 1 sinceW and X
have a hyperplane in common. FurthermdfényY < XNY yieldsWnNyYnN
Z<XNYNZ Setm :=rk(WNYNZ)+1. By Lemma 5.3.14 we conclude
rk(XNY) =maxm,d —n} and rkWNY) = max{m’,d — n}. SinceWnY is a
hyperplane oX NY, this impliesm =m—1>d—n. ThusWNYNZis a hy-
perplane ofX NY NZ. ConsequentlyV NV # XNV for everyV € (Y,Z)q and
therefore rkWNV) < rk(XNV). Sincem +n=m-+n—1> d, we conclude
codW, (Y, Z)g) = cod X, (Y,Z)g) = d by Lemma 5.3.14. This implies that the co-
projection ofW in (Y,Z)q is contained in the coprojection &f in (Y,Z)g. Set
S:=(XN(Y,Z),YNZ). Then crig(Y NZ) =d —msinceXNY NZ has corank
d—min XN (Y,Z). Since crigyny,z)(WNYNZ)=d-m+1, we conclude
WnN(Y,Z) £ Sand more precisely5 intersectdV N (Y,Z) in a hyperplane. Let
pe (WnN(Y,Z))~ Sand letT <(Y,Z) be a subspace of rami<- m—d— 1 that is
disjoint to (p,S). Then(T,S) € Z, by (TG3) and hencgT,S) € (Y,Z)q. Since
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(T, S > Xn(Y,Z), we obtain co@X,(T,S)) =d. Sincep ¢ (T,S), we obtain
codW, (T,S)) < d and therefore the coprojection\df in (Y,Z)g is properly con-
tained in the coprojection of in (Y,Z)q. Thus, (A3) holds.

We already know that/,, consists of two connected components. Maoreover, by
Proposition 5.3.11 we know that every line 6f,, is contained in at most two
maximal singular subspaces. Therefore it remains to proaedll symplecta of
“m have rank 3 if there are any. L&Y,Z} C 22, with crky(YNZ) = 2. Further
letU andV be elements ofY, Z)q such that) andV intersect in a common hy-
perplaned. SinceV is a hyperplane ofU,V) and crky zy (V) = 2, there is a point
pe(Y,Z)~ (U,V). SetW := (p,H). We obtainV € (Y, Z)q. SinceH <W, both
U andV are collinear taV in .%1,. SinceW £ (U,V), there is no line of#}, that
containdJ, V andW. Hence, rk(Y,Z)q) > 3.

Now let X € (Y,Z)q such thaiX has a common hyperplane with &ll V andW.
ThenH < X by Proposition 5.3.11. Lete U andr €V such thatq,H) =U and
(r,H)=V. Since(p,q,r,H) = (Y,Z) and crky z,(X) = 2, we obtairX N (p,q,r) #
@. Thus, there is a poirg € gr such thatX N ps# @. SetW’ := (s,H). Then
W' € L, whereL € %, such that{U,V} C L. ConsequentlyX € K, where
K € %, such that{W,W'} C K. This implies that{(x,H) | x € (p,q.,r)} is a
generator ofY,Z)q and hence, the symplectd¥, Z)q has rank 3. O

Proposition 5.3.16.Let U and V be two elements g, that intersect in a com-
mon hyperplane. Let W be the span of U and Wirand set My := {X € £}, |
X <W}. Thenrk(W) = rk(Mw) or bothrk(W) andrk(Myw) are infinite.

Proof. LetL € % be the line that contairld andV. By Proposition 5.3.11 we
know thatMyy is a singular subspace of;;;. Moreover, it follows that the claim
holds for the case (kJ) = 0. Thus, we may assume(tk) > 1 and consequently,
thatMy contains a subspa&of rank 2 withL < S

By Theorem 5.3.15 we know that”*,.~) is a twin SPO space. Proposition
2.3.5 implies that there is a singular subsp8ce .7, of rank 2 such thag and

S are opposite. Since every elementlofs opposite to an element ® and no
element ofS is opposite to all elements &f we conclude by Corollary 4.2.8 that
there is a linel’ < S that is opposite.. LetU’ € L’ with codU,U’) = 1 and
V' e L’ with codV,V’) = 1.

SetH :=U’'NV’ andW’ := (U’ V). SinceU andV'’ are complementary subspaces
of ., we knowH NU = @. For an arbitrary poinp € W~ U, the subspace
(p,UNV) is contained irL and hence, there is an elementothat is disjoint to
(p,UNV). Thus,p ¢ H and we conclude th&i is a complement t8V. SinceH
has corank 2 iW’, the subspacé& andW’ intersect in a liné of ..

By Proposition 5.3.11 we know th& is either a subspace My = {X € 2, |

H < X} or of My :={X € &, | X <W'}. LetT be an arbitrary subspace of
rank 2 of My that containd’ and letX € T\ L. ThenH £ X and sinceX
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is a hyperplane ofV’, we conclude thaX NH has corank 3 iW'. Sincel is
disjoint to X NH, we know thaty := (I, XN H) is a hyperplane oV’ and since
XNH =XnNU’'NV’ we conclude¥ € My by Proposition 5.3.7. Every element of
Mw is a hyperplane oV and hence, intersedtsThus,Y intersects all elements of
Mw. If X #Y, thenXNY has corank 2 i’ and(X,Y) =W'. Since(l,H) =W/,

we obtainH £ XNY. Furthermore, sinc&NH is a hyperplane dfi, we conclude
thatX’:= (H,XNH) is an element of the line of;, that contain andY. Since

X" e L’ andX € T L, this implies thatY is an element off. Thus, T is not
opposite tcSand we conclud& # T. ThereforeS < My.

Now letR < My be a subspace of finite rank that conten#f Myy has finite rank,

we may assumB = My. Again by Proposition 2.3.5 there is a singular subspace
R < .7, of rank rkR) that is oppositeR. Since this implies thaR contains a
subspace that is opposiewe may assum8 < R and henceR < My. Thus, if
rk(My) is finite we conclude riMiy) < rk(My) and if rk(My) is infinite, rk(My)

is infinite, too. Assum& < My. ThenMy is not oppositdR by Proposition 2.3.5.
Hence, there is an elemexte My that intersects every elementiRf By Lemma
2.1.21(ii) this implies thaR is not a maximal singular subspace and consequently
R < My by Proposition 5.3.11. We conclude that eithgy andMy have the same
finite rank or both are of infinite rank. Now the claim follow®fm Proposition
5.3.11 since cri (V) =rk(U) + 1. O

5.4 Half-spin spaces

In [Shu94, p. 441] half-spin spaces are introduced as gea@aetrising from a
certain polar space: Letbe a quadratic form on a vector space of finite dimension
2r with r > 1 such that there exist totally singular subspaces of diroems Let
74 be the point-line space whose points are the 1-dimensiargllar subspaces
and whose lines are the totally singular 2-dimensional gabss. Then/; is a
polar space of rankwith bipartite dual polar graph. L&D, 91} be a partition
of the generators of/; such that every edge of the dual polar graph has exactly
one vertex inMlp. Since.”y has finite rankr, every singular subspace of rank
r — 2 is the intersection of two generators.gf. Since the dual polar graph of
is bipartite, this implies that every singular subspaceaokir — 2 is contained in
unigue elements abitp andM;.

Let ;3 be the set of singular subspacesf of rankr — 3. The elements
of $4,_3 correspond canonically to the totally singular subspadediroension
r — 2 with respect tqy of the underlying vector space. Two distinct elements of
Mo that are adjacent to a common elemerdf intersect in an element of; _3.
Conversely, every elementdf_3is contained in a singular subspace of rark2
and hence, in an element®to. Since.#; has finite rank, this implies that every
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element ofi,_3 is the intersection of two generators where one is an element
of Mp. By Proposition 2.2.8 we conclude that in this case, botregsnrs are
elements oftg. Hence, there is a point-line space whose points are theegiism

of My and whose lines are determined by the elementis 0 in the canonical
way. Such a point-line space is calletiaf-spin space

5.4.1 Local half-spin spaces

Similar to the definition of half-spin spaces there is a wayléfine point-line
spaces out of polar spaces of arbitrary rank:

Definition 5.4.1. Let.¥ be a polar space and st < .# be a generator such that
the connected component of the dual polar graph contaiding bipartite. Let
Mo be the set of generators of that are commensurate with and have even
distance tM in the dual polar graph. Sef := {NNL | {N,L} C 9 A crky(NN

L) = 2}. Then we call the point-line spa¢®iy, {{N € Mo | S<N} | Sc U?}) a
local half-spin space of”.

Compared to half-spin spaces we consider for defining tles lim a local half-
spin space only those subspaces of a generator with corariich wan be ob-
tained as intersection of two generators. This is becausgolar spaces of arbi-
trary rank it can happen that there are subspaces of corard @énerator that are
contained in no other generator. Hence, by the definitidt?ofie make sure that
a local half-spin space is a point-line space. A point-lipace that is isomorphic
to a local half-spin space of a polar space is called a lod&sp@ space.

Note that a local half-spin space of a polar space is a steithat can be
recovered out of the dual polar space. Hence, as for duat ppkces, we may
restrain ourselves to local half-spin spaces of non-dagémeolar spaces.

Remark5.4.2 Since by Proposition A.2.20 the dual polar space of a polacsp
of finite rank is connected, we know that a half-spin spacepmiar space of finite
rank is a local half-spin space. Conversely, a local half-space of a polar space
of finite rank is already a half-spin space.

Throughout this section le¥” be a non-degenerate polar space. Furtheplet
be a local half-spin space of. The point set of7 is denoted bty and the line
set by.Z. Further let#, be the dual polar space of.

To avoid confusion, we denote the distanceZinby dist; although the dis-
tance function of will be not used since it always can be expressed in terms of
collinearity or intersection. First we show how the distffienction dist; of
can be expressed in terms.gf.

Proposition 5.4.3.Let M and N be two generators of that are both elements
of 2. Then3 - crky (M NN) = disty (M, N).
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Proof. A geodesic fromM to N in %, can be transformed into a path fravh
to N in 2 by erasing every second element. Conversely, two disti@cerators
that are collinear iz have distance 2 i}, by Proposition A.2.20. Hence, a
geodesic fromM to N in & can be transformed into a path.iff,, from M to N
that has double length. Therefore, the distandgl @ndN in & is just the half of
their distance in#y,. Thus, the claim follows from Proposition A.2.20. O

In the following two propositions we study subspacesxf First we show
what kinds of maximal singular subspaces exist and give eespondence to
subspaces of”.

Proposition 5.4.4. Let My, M1 and My be elements ofilp that are pairwise
collinear in Z but are not contained in a common elementdf Set U:=
MoNMiNMz and N:= (MinM;j |0 <i < j<2). Then the following claims
hold for every ic {0,1,2}.

(i) crkm(U)=3.
(i) N is a generator of” that intersects Min a hyperplane.

(i) S :=(MeMp|U < M) is amaximal singular subspace &f and has
rank 3.

(iv) Sv:=(MeMp|crku(NNM) = 1) is a maximal singular subspace of
orequals R NSy.

(V) Sy NSy isasingular subspace of rarikof 2.

(vi) Every element Mt 901 that is in 2 collinear to all of My, M1 and M is an
element of $ or of .

Proof. For {i, j,k} = {0,1,2}, setU; = Mj N My and letL; € .Z be the line of7
that containgvl; andMy. SinceM; ¢ L, we obtainU; £ M; for i € {0,1,2} and
consequently) ZUjfor0<i< j <2.

Let p € Mg~ Up. Then by Lemma A.2.1 39 My is a generator of” that is
adjacent tdlg. Hence,pg Mg is a point of., that is not contained ifit. Since
p € M1, we obtairlJ, < p' and thereforé&), < pgdMo. AnalogouslylJ; < pa M.
SinceU; # Uy this implies thatHp := (U1,Us) is the common hyperplane Mg
andpa Mp. Moreover,U; andU; are both hyperplanes éfy and thereford) =
Uy NU> has corank 3 itMg. Now (i) follows by symmetric reasons. Thug,is a
hyperplane ofJy and we conclud&g = (p,U). SinceHg = (U1,Uz) = MgN pt,
this impliesN = p& Mg and hence, (i) follows.

LetM € Sy NSy. AssumeM ¢ Lo andM # Mp. SinceU < M N Mg, we obtain
by Proposition 5.4.3 that cg(M NMp) = 2. Since bothM andMg intersectN in
a hyperplane, we concludd N"Mg < N. Take a poing e (MNMp) ~U. Since
g € Mo~ U, we obtaing ¢ Up. By Proposition 5.2.1 we know that there is a
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generatoN’ of .7 with NNN’ = Up. Hence,g ¢ N’ and we obtain by Lemma
A.2.16 thatM’ := g9 N’ andN’ are adjacent generators. Sirge N, we know
Uo < g* and thereforég,Ug) < M’. SinceN andN’ are not adjacent, this implies
thatN andM’ intersect in the common hyperplafg Up). Hence M’ € M and
more preciselyM’ € L. Since(q,U) is contained in alM, Mg andM’, there is
an element inZ that containg M, Mo, M’} and (v) follows.

Letr e Up~U. Then by Lemma A.2.16 we know thiat) Mg is the only generator
adjacent tdMg that contains. Sincer € N, this impliesr 9 Mg = N and hence,
N is the only generator adjacent kdy that containdJy. SinceN and N’ have
distance 2 in%y, andUg < N’, we conclude thalN’ and Mg have distance 3 in
“m. Thus,N'NMo =U andN’ ¢ 9. Now Proposition 5.2.1 implies that there
is a generatoMs € . with NN M3 = U and henceMs € 9.

By Proposition 5.4.3 we know that every two elementsSgfare collinear in
2. By definition of £ this implies thatS, is a singular subspace ¢f. Since
M3 € § ~\ S\, (V) implies thatS, has at least rank 3. Now I8 € §; ~ Sy with

M # Ms. Since crig(MNMgz) = 2, there is a point € (MNMgz)~U. Since
M3NN = U, we conclude tham’ :=r @& N is a generator that intersedtsin a
hyperplane. Hencé) < r 't yieldsM’ € §; NSy. Now all M, M’ andM3 contain
(r,U) and thus, they are contained in a common eleme®ofThis concludes
claim (iii).

Let M andM’ be two distinct elements &. Since botHV andM’ interseciN in

a hyperplane, we obtain ggkM "M’ NN) < 2. Thus, Proposition 5.4.3 implies
thatM andM’ are collinear inZ and furthermoreM NM’ < N. Hence, every
element ofy that containg "M’ has a hyperplane witN in common since
N ¢ 9. Thus, the line ofZ that containdV and M’ is fully contained inSy.
ThereforeSy is a singular subspace &f. Hence, it remains to show (vi) to prove
(iv).

Let M € 991 such thatM is collinear to allMg, M1 andM> in 2. We may assume
M ¢ S, since otherwise there is nothing left to show. Then by (i) weaude that
M N M1 N My has corank 3 itM. In other wordsM intersectdJg in a hyperplane.
AnalogouslyM intersectd); in a hyperplane. Sindel ¢ S, we knowM NUg #

U andMNU1 #U. Sinced =UpNU4, this impliesM NUg £ M NU; and therefore
MNN > (MNUp,MNU1) >MNUg. Since crig(MNN) has to be odd, we
conclude thaM andN intersect in a hyperplane. This finishes the proof. [

We now show what the convex span of two pointsfooks like and how
such a convex span can be expressed in terms concerningléhepace? .

Proposition 5.4.5.Let M and N be generators of that are contained ir%7 and
let G be the convex span of M and N4h Then a generator K .¢ is contained
in G ifand only if L> MNN.
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Proof. SetS:=MNN and letH be the set of all generators of that are elements
of 2 and containS. Let K andL be distinct generators contained kh with
crkq (KNL) =2. ThenKNL > Sand therefore all generators containiig L
belong toH. Thus,H is a subspace o%. Now letK andL be two arbitrary
generators oH with crkx (KNL) =2m> 2 and letl’ € 2 with crkx (KNL'") =
2m—2and crk(LNL') = 2. Then

2m=crkq (KNL) < crke (KNLNL') < crkg (KNL) +2=2m

and therefor&k NL = KNLNL'. This impliesS<L’. HenceH is convex and
consequentlys < H.

To proveH < G we apply induction oven := dist;(M,N). Forn =0, there is
nothing to prove. Fon = 1, we obtairH = G by the definition of the lines iw.
Now letn > 1 and assume that the claim holds for two generators at distanin
2. LetK be a generator of” with S< K. Assume there is a poipte KNM . S.
Then crigy(KNM) < 2n—2 since criy((p,S)) = 2n—1. Thus M NK contains a
line | that is disjoint toS. This implies that is disjoint toN. SetN’ := 19 N. By
Lemma A.2.22(ii) we conclude that andN’ have distance 2 ir¥y,, and therefore
N andN’ are collinear inZ. This implies dis;(M,N’) = n—1 and moreover,
MNN = (I,S sinceS<YnI+. Since(l,S <K, we may apply the induction
hypothesis to concludé € (M,N’)q. SinceN’ € G, this impliesK € G.

Now assumeM NK = S Since crik(S) = 2n, there is a poinp < K~'S Set
M = pa M. ThenM is a generator of” that has distance 1 fd in .. Since
S< pt, we concludeéS < M and hence, ci(MNN) < 2n. SinceM andM are
adjacent and hendd ¢ 9y, we conclude crig(M NN) = 2n— 1 by Proposition
A.2.20. Thus, there is a poigte MNN . S Since cri(S) > 4, there is a point
p e K~ (p,S with p’ L g. SetM’ := p 9 M. Sincep’ ¢ M, we concludeM’ € 2
sinceM’ and M are adjacent andi is not contained inZ. Moreover,M and
M’ are collinear inZ. Since(q,S) < KNM, we obtain(g,S) < M’ and hence,
crkn(NNM’) < 2n—1. This implies disy;(M,M’) = 1 and dist;(N,M’) =n—1
and henceM’ € G. Sinceq ¢ M, there is a point € M with r ¥ . Now Lemma
A.2.17 implies that 9 NN M’ is a hyperplane ol N M’. Hence, there is a point
geraNnNM' \S Letr' e Mwithr’ Y o and selN' :=1" 9 (r & N). Applying
Lemma A.2.17 again yieldsl' "M’ = SssinceS < {r,r'}*. Thus,M’ and N’
have distancer2in .#,, and we conclud&’ € 2. Sincer e N'NM andr ¢ S,
we obtain disy;(M,N’) < n—1. Sincer &N is adjacent to bottN andN’, we
conclude dist;(M,N’) = n—1 and dis;(N,N’) = 1 and henceN’ € G. Since
M'NK > M’ NN’ = S we obtain as above thitis contained in the convex span
of M andN’ in 2. Since this convex span is containednthe claim follows. O
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5.4.2 Twin half-spin spaces

The goal of this section is to give a generalisation of hplfispaces which yields
a class of twin SPO spaces. Therefore we now introduce a ohéthw to con-
struct a twin space out of a polar space such that both hatfeedfvin space are
local half-spin spaces.

Definition 5.4.6. Let. be a polar space with a spanning p@it,,M_). Further
letl" be the dual polar graph of and foro € {+,—}, denote by ¢ the connected
component of” that containdVl,. Let ™" be bipartite and le®i° be the set of
vertices ofl ¢ that have even distance iy. Further define the following sets:

2% ={{LeM? IMNAN<L}|{M,N} €M7 A crky(MNN) =2}
R:={(M,N),(N,M) | (M,N) e M+ x M~ A MNN =g}

Then we call((9*, £T), (M ,.£7)) with the opposition relatiorR the twin
half-spin space aof” with respect tqM_,M_).

Later on we will see that a twin half-spin space is a twin spadeerefore, a
twin space that is isomorphic to a twin half-spin space oflampspace is called a
twin half-spin space.

Remarks.4.7. We know that in a polar space of finite rank every generatoait p
of a spanning pair and the dual polar graph is connected. , Thds" is a half-
spin space of a polar spacé of finite rank, then there is a half-spin spage

of % such that( 2", 2™) is a twin half-spin space. Conversely, a twin half-spin
space of a polar space of finite rank consists of two half-spaces.

Let (21,27) be a twin half-spin space of a polar spageof finite rank. Since
two generators of” form a spanning pair if and only if they are disjoint, we
conclude by Proposition A.2.20 that the two half-spin spage and 2~ are
identical if the rank of¥ is even. If the rank of” is odd, then every generator of
& is either a point o2 or of 2.

Remark5.4.8 Let ., M. and M_ be as in the definition above. Further let
(S, Fm ) be the twin dual polar space of with (M;,M_) € ./t x .. By
Theorem 5.2.15 we know that”,, ., ) is a twin SPO space of singular ragk

1. Since the collinearity graph of; is bipartite, all lines of#;;{ have cardinality

2. Since for every line i}, there is an opposite line i}, we conclude that
every line of.#;, has cardinality 2. Lep be a point of#;,. By Lemma 3.2.1p
has a gate in every line of;;; and we conclude that the collinearity graph<f;

is bipartite, too, where the set of points at even distanqednd the set of points
at odd distance tp form a partition. We conclude that both components of a twin
half-spin space are local half-spin spaces.
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From now on le{M,,M_) be a spanning pair of a non-degenerate polar space
<. Further letZ = (21,27) be a twin half-spin space of’ with respect to
(M4,M_). Foro € {+,—} we denote the point set 6#° by 9t° and the line set
by #°. To avoid confusion, we denote the distanceZrby dist, although the
distance function of” will be not used since it always can be expressed in terms
of collinearity or intersection. Since bothi™ and 2~ are local half-spin spaces,
we may restrain ourselves to the case tifais a non-degenerate polar space.

The dual polar graph of” will be denoted by and foro € {+,—} we denote
the connected component bfthat containdg by M. Further let.#;, be the
dual polar space of” and let(.;;},-% ) be the twin dual polar space of with
respect tdM,M_).

Lemma5.4.9.Let M e M be a generator of”. Then there is a generator N
9~ such thatM,N) is a spanning pair. Moreover, every generatocK. that
is commensurate to N and forms together with M a spanningipain element of
m-.

Proof. By Corollary 5.2.9 we know already that there is a generdtarl — such
that(M, N) is a spanning pair of”. Thus, it remains to shoh € 91~

By the definition of a twin half-spin space there is a spanmag (M, ,M_) €
M x M~ of . Let (Mi)o<i<m be a geodesic frovy to M in I'*. Thenmis
even sincd " is bipartite andM andM,. are both contained ift*. We know
that all lines of the component of the dual polar space“ahat containd/!, have
cardinality 2. Thus, for < m, the se{ M;, M;;1} is a line of the dual polar space of
. By Lemma 5.2.14 we conclude thai{ ¥ "M_) and rkKM; 1N M_) differ by

1. This implies that riV; "M_) is odd if and only ifi is even and consequently,
rk(MNM_) is odd. Now let(N;)o<i<n be a geodesic frorM_to N in [ ~. By
analogous reasons we concludeifet n that rkM N N;) is odd if and only ifi is
even. Thusnis even and the claim follows. ]

Corollary 5.4.10. The opposition relation o consists of all spanning pairs that
are contained i x M) U (M~ x MH).

Proof. By Proposition 5.2.8 we know that each pair of the oppositedation of
2 is a spanning pair. The converse follows since generat@spanning pair are
disjoint. [
Proposition 5.4.11.Every twin half-spin space is a twin space.

Proof. By the definition of.#* and.#~ it follows directly thatz+ and 2~ are
partially linear spaces.

By Corollary 5.2.9 and Lemma 5.4.9 we conclude that the afipasrelation of
9 is total since it consists of the spanning pairg®t™ x M) U (M~ x MT).
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LetM € M+ andN € 91~ such tha{M, N) is a spanning pair. L& € ¢~ such
thatG containsN. Further letN’ € G~ {N}. ThenS:= NNN’ has corank 2 in
bothN andN’. Hence, there are poinfsandq in N’ such thatp,q,S) = N'. By
the maximality ofN’ we concludeNNptngt =S

Since(M, N) is a spanning pair, we know by Proposition 5.2.4 that thexgaints
p’ andq’ in M such thaN N {p’,q'}*+ = S Since the points dfl that are collinear
to p’ form a hyperplane dfl, we obtaing’ # ' and henc&has corank 2 ifNy, :=
(p,q,S. By Proposition A.2.20 we conclude thidlfy is a generator of” and
thus,Ny € G. By the maximality ofNyy we obtainS- N"M = p'q’. Hence, every
element ofG that intersect#, contains a point of the ling'q’ and consequently,
has a common hyperplane willy;. By Proposition 5.4.3 this implies thhk, is
the only element o6 that intersect$!. Hence,Z is a twin space by Proposition
5.2.8. O

In the following we denote by caglthe codistance function of the twin space
2.

Proposition 5.4.12.Let M€ 2+ and Ne 2. Thencod,(M,N) = 2(rk(M N
N) +1).

Proof. By Proposition 5.4.3 we conclude co(M,N) > %(rk(M NN)+1). By
Proposition 5.2.12 there is a generare I~ with crky(NNM’) =rk(MNN) +
1 such tha{M,M’) is a spanning pair. Lemma 5.4.9 implig € 91~. Hence,
dist;(N,M’) = 3(rk(MNN) + 1) by Proposition 5.4.3. O

Theorem 5.4.13.Every twin half-spin space is a rigid twin SPO space whose
symplecta are all of rank and whose singular subspaces of rére contained
in at most two maximal singular subspaces one of which has3an

Proof. Let. be a polar space. Further (@i, M_) be a spanning pair o’ and
let 2 = (21,27 be the twin half-spin space of with (M,M_) € 2+ x 9.

By m = (S ,-%m) We denote the twin dual polar space withl,,M_) €
I x Sy . Foro € {+,—}, we denote the point set 677 by 9t° and the point
set of /9 by £72. The distance function iw is denoted by dist. By Lemma
5.4.9 the set of spanning pairs .6f induces a symmetric, total point-relation on
the twin point-line spac&. The thereby induced codistance function is denoted
by cod,. We prove thatZ is a twin SPO space by showing that the four axioms
of Definition 2.1.1 hold if we use the codistance godlhe axiom (A4) follows
directly from Proposition 5.4.12.

LetX € M and letY andZ be elements dift~. By G we denote the convex span
of Y andZ in 2. By G we denote the convex spanvfandZ in .%,. Comparing
Proposition 5.2.1 with Proposition 5.4.5 yiel@s= G901~ Letn be the distance
of Y andZ in 2. Comparing Proposition A.2.20 with Proposition 5.4.3 irepl
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thatY andZ have distancer2in “m.

First consider tha® contains a generatdf of . such thatX,Y’) is a spanning
pair. Since by Theorem 5.2.1%, is a twin SPO space, we conclude by (A12)
thatX has codistancerto G in .%, and there is exactly one elemefitc G that
has codistancer2to X. Since by Proposition 2.1.3 this implies thatandY’
have distancerin .%,, we concludeZ’ € M~. By Proposition 5.2.12 we obtain
rk(XNZ') = 2n—1. Hence, Proposition 5.4.12 implies ¢aX,Z’) = n. Analo-
gously, we conclude that all other elements®have codistance nto X in 2.
Hence, (Al) and (A2) are fulfilled.

In the following G does not necessarily contain an element that forms a span-
ning pair with X. Assume cog(X,Z) = cody(X,G) and letW € I with
disty(X,W) = 1 such that cogd(W,Y) = cody(X,Y) — 1. Setd := cody(X,2Z).
ThenX andZ have codistance®in .%y. By Lemma 5.2.14 we conclude that
there are element¥ € G andZ’ € G such that the codistance &f to X exceeds
the codistance of’ to X by 2n. Hence, Proposition 2.1.12(iv) implies tt#tis a
cogate ofX in G. AnalogouslyW has in.%, a cogate irG.

Firstassum&’ € 91~. ThenZ' is in 2 a cogate foiX in G since the distance and
the codistance it#, of two points ofZ is just the double as iy. HenceZ' =Z
and since dist(Z,Y) = n, we obtain cog (X,Y) = d —n. With dist;(X,W) =1
and cod;(W,Y) =d —n— 1 we conclude cog(W,Z) =d — 1. Thus, Proposition
2.1.12(iv) implies for.#y, thatZ is a cogate foiX in G. Again this implies tha”

is in 2 a cogate folX in G and (A3) is fulfilled inZ for this case.

Now assumeZ’ ¢ 9. Then all elements o6 that intersec’ in a hyper-
plane are contained i® and are precisely the elements @fthat have codis-
tance cog/(X,G) to X in 2. Hence,Z andZ’ are collinear iny,. We obtain
rk(XNZ') = 2d. Furthermore, sinc¢Z,Z’} is a line of G, Proposition 2.1.17(j)
implies thatz’ andY have distancer?— 1 in . Thus, rKXNY) =2d —2n+1
and consequently, (W NY) = 2d — 2n— 1. Assume there is an elemantc G
with rk(WNV) = 2d — 2n— 2. Then the codistance of to G in .%, is at most
2d—1. SinceW andX have distance 2 it¥py, this implies that rkXNz') =2d — 2
andZ’ is the cogate ofV in G. We conclude that an element 6fhas codis-
tance cod(W,G) toW if and only if it has codistance cedX,G) to X. Hence,
(A3) is fulfilled in 2 for this case. Now assume( NV) > 2d —2n—1 for
every elemenV € G. Then we obtain W NW’) = 2d — 1 for the cogaté/\V’
of W in G. This implies thatw’ andY have distance 12in .%, and there-
fore W € 9. Thus,W’ is a cogate folV in G regarding the point-line space
2. SinceW and X have distance 2 in/,, we obtain rkwNnz') > 2d — 2.
SinceW’ # Z' this implies thatw’ andZ’ are collinear in#, and we conclude
cody (W,W') = cody (X,W’) = 2d. This concludes tha¥ is a twin SPO space.
By Proposition 5.4.4 every singular subspacezof that has rank 2 is contained
in a maximal singular subspace of rank 3 and in at most one athgimal sin-
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gular subspace. By symmetric reasons it remains to shovetieay symplecton
of 2~ hasrank 4. LeY andZ be elements dit~ with dist,(Y,Z) = 2. Then by
Proposition 5.4.5 the symplect@ of 2~ which is the convex span &f andZ
consists of all elements 6t~ that contairS:=Y NZ. Moreover, crk(S) = 4 by
Proposition 5.4.3. LeYp € 9t~ such that botly andZ are collinear top in 2.
ThenS <Y sinceYp € G and furthermoreYgNY andYyNZ have both corank 2
inYo. Letpe (YonZ)~ Sand seN :=pagY. Sincep ¢ Y, we conclude thal
andY are distinct adjacent generators and hehtg, 9t ~. Sincep € Yy, we ob-
tainYoNY < p* and hence(p,Y NYy) is a common hyperplane & andN. Let

P € (YonY)\ S Sincep ¢ Z, there is a poingg € Zwithq / p'. SetY; :=gqaN.
SinceY; andN are adjacent generators, we know thgis collinear to botty and
Yo in 2. Sinceq € Y;, we obtainp’ ¢ Y; and thereforé’ NYy £ Y1. Hence)Y,

Yo andY; are not on a common line i ~. Thus, we may apply Proposition 5.4.4
to conclude thafV € M~ | YNYpoNYy <V} is a maximal singular subspace of
2~ that has rank 3. Sinc@<Y NYyNYy, we conclude that this maximal singular
subspace is a generator@fand consequently, (k) = 4. ]






Twin SPO spaces

This chapter states the main result of the present work. \6e shiat every twin
SPO space is a grid sum of the twin spaces we studied in Chapteat are twin
polar spaces, twin gspaces, twin E=spaces, twin dual polar spaces, partial twin
Grassmannians and twin half-spin spaces (note that twiegtree spaces are a
subclass of partial twin Grassmannians). By Theorem 4t3siffices to show
that every rigid twin SPO space is a grid sum of the mention&d $paces. Nev-
ertheless, we include in two cases the non-rigid twin SPQespahis is because
twin polar spaces and twin dual polar spaces are not alwgig ri

As in Chapter 3 we proceed by a case differentiation witheesf the sym-
plectic rank of the twin SPO space. Before we do so, we dideussases of twin
SPO spaces with small diameter, which are the ones that e ¢tvin projective
and the twin polar spaces. The twin SPO spaces of symplesticx 5 will be
considered in the end of this chapter and are the ones thahrtieg twin spaces
that come from exceptional parapolar spaces. The twin SRGespf symplectic
rank 2, 3 and 4 match the twin dual polar spaces, the partinl®@assmannians
and the twin half-spin spaces, respectively. Each of these $paces is con-
structed out of a point-line spac#,, of finite diameter that is either a polar space
or a projective space. Our strategy is to construct thistdoie space ¥, out
of the twin SPO space” and in the next step, to show that is isomorphic to
a twin dual polar space, a partial twin Grassmannian or a haifrspin space
of “m. Thereby, the points af/;, are always coconvex spans of a point and a
maximal singular subspace of that are at almost minimal codistance.

From Section 2.3 we know already that for a twin SPO sga¢e,. ), the
diameter of* and.”~ are equal and furthermore, $1K'*) and srk.~) are
equal or both are infinite. Moreover, by Corollary 4.2.8 wadade that if.#*
has an finite symplectic rank, then yrk'*) = yrk(7 7).
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6.1 General properties

Before we start with the classification of rigid twin SPO sp@by giving a case
differentiation, we prove some facts that are true for agidriwin SPO space.

Lemma 6.1.1.Let.& be arigid twin SPO space. Further let x be a point and let
| be a line withcod(x,|) < o andcopy(x) = |. Then there is a point y with< y*
andcodx,y) = codx, 1) — 1.

(a) For diam(.#*) > cod(x,1), there is a point z with K z- and cod(x,z) =
cod(x, 1)+ 1.

(b) For diam(.7*) = cod(x,l) > 2, there is a maximal singular subspace¥
< with | <M andcophy (x) = M.

Proof. Setd:=cod(x,|). By Lemma 4.2.1 there is a poikt< x with dist(X,|) =
dand pr(xX) =1. Hence by Lemma 3.2.1, there is a pojntith dist(x,y) =d —1
andl <y*. This implies codx,y) = d — 1. Let p be point ofl .

Assume diari”t) > d. Since there is a point at finite distancetand at codis-
tanced + 1 to x, there is a poing with dist(Z, p) = 1 and codx,Z) =d + 1 by
Proposition 2.1.16(ii). We may assume that there is a gpint with dist(Z,q) =

2 since otherwise we are done. Hente= (Z,q)q is a symplecton. Since<Y,
we obtain codx,Y) < d+ 1. SinceZ is not a cogate for in Y, we conclude by
Propositions 2.1.12(ii) and 4.2.5 that cofx) is a generator of. This implies
y ¢ Y. Sincel < pry(y) andY is rigid, we conclude rRY) > 2 by Proposition
2.2.9(i). Thus, there is a poiatc copk, (x) with | < z*.

Now assume diaf” ) = d > 2. Then there is a poin L y with dist(y’,x) =
d—2. Then codx,y’) = d — 2 and hence by Proposition 2.1.12(iy,is a co-
gate forx in the symplecton(p,y’)y. Thus for a pointg € | . {p}, we obtain
q ¢ (p,y)y Sinceq_L p and distg,y) = 2, Proposition 2.1.12(ii) implies that
(p,Y)gNa* contains a line. Sincép,y')q is rigid, Proposition 2.2.9(i) implies
yrk(.#1) > 3. Hence by Lemma 3.1.1(i), there is a symplecYothat contains
(y,1). Sincel < copk (x), Proposition 4.2.5 implies that cqg) is a generator
of Y. We may assume that cqfx) is properly contained in a maximal singular
subspacé/ since otherwise we are done. Then Proposition 2.2.4(ii)iesghat
y+Ncopk (x) = y-NM =: H is contained in exactly two maximal singular sub-
spaces of”. SupposeM contains a point with codx,z) =d— 1. Thenz¢ H
and hence(y, z)q is a symplecton that contails Thus, Proposition 4.2.5 implies
that copyy , (X) is a generator ofy, z)g. This is a contradiction, sincg, H) and
(y,H) are the only generators @y, z)q that containH. Thus, codx,z) = d for
every pointze M. ]
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Lemma6.1.2.Let. be a rigid twin SPO space wiyrk(.”*) € {3,4}. Further
let M and N be two maximal singular subspaces wikfM NN) = yrk(.) — 2.
LetG<Mand H<N. Then(MNN,G,H)gNM = (MNN,G).

Proof. SetS:=MnNN andV := (S G,H)q. ForG < MNN, we obtairv <N and
henceV NM =S ForH <MNN, we obtainV = (S G)g = (S, G). Therefore we
assume that there are poirts G~ N andy € H \ M.

SetF :={PCGUH | |P| <o A {x,y} <P} andU := Upcz(P)g. ThenU C V.
Letu andv be points olJ. Further letP andQ be elements of such thati € (P)q
andv e (Q)g. Then(u,v)g < (P,Q)g. SincePUQ € §, this implies thatJ is
a convex subspace. Singe< (x,y)g and for every pointp € GUH, we obtain
{p,x,y} € F, this impliesvV <U and hencey =U.

The subspacéP)q contains the symplectofx,y)g. Since rKS) = rk((x,y)g) — 2,
we obtain(x,y)g "M = (x,S). SinceP s finite, we concludgP)sNM = (PNM,S)
by Propositions 3.4.5 and 3.5.5 together with inductionusThh "M < (G, S).
Since(G,S) <V, the claim follows. O

6.2 Twin SPO spaces with small diameter

In this section we consider the twin SPO spaces of diameteost 2. Throughout
this section let” = (/*,.#7) be a twin SPO space. In this section we do not
have to demand” to be rigid since there is only one case whegfecan be non-
rigid. However in this case, the non-rigid case is just agals to the rigid one.
More restrictively, we consider twin SPO spaces where eanfponent contains
at most one symplecton. We start with the case without anypiacta.

Lemma 6.2.1. Let .#" and.”~ both be singular. Further let K . be a
subspace of rank k. Then,.y copr,-(p) has corank ki-1in #~. Moreover,
g€ U ifand only if N,y copry-(p) < copry,-(q) for every point gz .#*.

Proof. By Theorem 2.1.22 botl¥’* and.”~ are projective spaces. Lép; | 0 <

i <k} be abasis df) and seV := N,y copry- (p). ThenV = ), copry - (pi).
For every pointp € £, the subspace copr (p) is a hyperplane of”~. This
implies crk,- (V) < k+ 1. By Proposition 2.3.5 there is a subspate< .~
with rk(U’) = k that is opposité&). This impliesV NU’ = @ and consequently/
has corank+1in.7~.

By Lemma 2.1.21(i) we obtaid < copr.+(q) for every pointq € V and hence,
MNpeu COPry—(p) = V. Now letq € . \U. Then(q,U) has rankk+- 1. This
implies thai pe (quy COPT - (P) = Ni<k COPry— (i) Ncopry,- () has corank+2
in.~ and hencey « copr,-(q). O
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This lemma already enables us to classify the twin SPO spaitlesut sym-
plecta. Note that in this case there are no non-rigid exasnple

Theorem 6.2.2.Every twin SPO space of diamet€rl is a twin projective space.

Proof. Let (., %) be a twin SPO space such that is singular. By Theorem
2.1.22 we know that” and 2— are both projective spaces. L9t be the set
of hyperplanes of”. We know copt,(p) € 2t for every pointp € 2. Set
M’ := {copry,(p) | p€ 2} and letS be the set of subspaces .6f that arise
from intersecting two distinct elements®t’. We now prove that

(7, (M, {{MeM |S<M}|Se&}))

is a twin projective space o that is isomorphic tq.7, 2).

By Lemma 2.1.13 we conclude that for two distinct poiptend g of &, the
hyperplanes cops(p) and copt,(q) are distinct. This implies that the m&p—
M’: p— copry(p) is bijective. Now take two distinct poirg andq of 2. Then
Lemma 6.2.1 implie$:= copr(p) Ncopr,(q) € S and every point € Z is on
the linepqif and only if S< copr(r). Hence,

2 — (S,( M {{MeM |S<M}|Se&}):  p— copry(p)

is an isomorphism. Lel € 9t with S< H and letse H S Then there is a
pointr € pgthat is non-opposite. We obtain cop,(r) = H and consequently,
H e O

Before we go on with the other cases, we give a method how tetaart a
Grassmannian out of a singular twin SPO space.

Proposition 6.2.3. Let.#* be singular. For a natural number & IN, let " be
the set of subspaces of rank k&f" and let{{~ be the set of subspaces of corank
k+1of ¥~. Set

g: U= U () copry(p)
peU

Pmi={UUUY|Ucyu’}
Zn={{Re Pn|PNQ<R} | {P.Q} C P A Tk(PNQ) =k—1} .

Then(Pm, %n) is isomorphic to the Grassmannian of k-spaces#f via the
map¢: Ut — Py U —UuUY,

Proof. By Lemma 2.3.3%~ is singular. Hence, we may apply Lemma 6.2.1 to
concludeU ¥ e 4~ for everyU € 4+ and moreoveny is injective.
The mapy is a bijection by the definition af?,. By the definition of%, the pair
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(Pm,Zm) is a point-lines space and moreovg@rpreserves collinearity. Now let
U andV be two distinct elements éf such that) andV have a hyperplani in
common. Sew := (U,V). ThenW has rank+ 1. By Lemma 6.2.1 we conclude
thatS:=Npew copry- (p) has corank+2in.7~. SinceU¥ andVV are distinct
subspaces of corark+ 1 in ., this implies thaU¥ andV¥ intersect in the
common hyperplang. Hence, for a subspagec 4™, we obtain by Lemma 6.2.1
S< XY if and only if X <W. This impliesXUXY¥ € {Re £, |HUS<R} if
and only ifS< X <W. SinceH US= (UuUY¥)n(VUVY¥), we conclude thap
maps lines of the Grassmannianke$paces of#* bijectively onto elements of
Zm. O

The second case of this section is the case wi¥reand.”~ are opposite
symplecta. We will see that we just have to ask that one of ¢heponents con-
tains exactly one symplecton. Note that in this case we daeaigton the rigid
case.

Theorem 6.2.4.Let (,.~) be a twin SPO space such that™ contains
exactly one symplecton. Théxr'™,.%~) is twin polar space.

Proof. By Lemma 2.3.3 we know that every point 6f* is contained in a sym-
plecton and hencey " is a symplecton. LeY <.~ be a symplecton that is
opposite*. Further letg be a point of” ~. Since there is a point it oppo-
site toq, (A12) implies tha) has a gat@ in .+ with cod(p, q) = 2. Letp’ be the
cogate ofpinY. Then codp, p') = 2. By Lemma 2.3.3 we obtain digf,q) < 2
and moreover there is a symplec®r: .7~ containing bothp’ andg. Since.”™

has to be opposite @, we concludey = p’ and therefor&f =Z =.7".
Therefore”™ and.#~ are isomorphic via mapping every point onto its cogate
by Corollary 4.2.8. This concludes th&t is a twin polar space. O

6.3 Twin SPO spaces of symplectic rank 2

Throughout this section le¥’ = (.*,.# ) be a twin SPO space such that all
symplecta have rank 2. We do not ask the twin SPO space to ide Fgrther-
more,.” does not necessarily contain a symplecton. But we demand estia
condition that¥ contains no triangle or equivalently, $:K') < 1. The following
proposition shows that every rigid twin SPO space of syntfdeank 2 satisfies
this condition. Hence, the class of twin SPO spaces that wsider in this section
includes the class of rigid twin SPO spaces of symplectik fan

Proposition 6.3.1. A rigid subspace of an SPO space with symplectic aoén-
tains no triangles.
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Proof. LetV be a connected rigid subspace of an SPO space with sympimckic
2 and lett <V be aline. It suffices to show that there is no triangle coimnagih
By Lemma 3.1.1(i) there is a symplect¥n< V containingl. SinceY is a rigid
symplecton of rank 2, there is a point bthat is contained in three lines ¥t By
Proposition 2.2.4(i) this implies thhis maximal singular subspace \éf O]

We consider twin SPO spaces of singular rahk because they behave some-
how similar to rigid twin SPO spaces of symplectic rank 2. Té&son for this is
that rigid twin SPO spaces of symplectic rank 2 are, as wese#lin this section,
twin dual polar spaces. The grid sum of at least two nonatitiwin dual polar
spaces is again a twin dual polar space that is not rigid argmat has singular
rank 1, as one can see by the definition of a grid sum.

By Proposition 4.1.2 both connected components‘cdire either singletons or
every maximal rigid subspace of is either a single line or has symplectic rank
2 and diametep 2.

Proposition 6.3.2. Let U < . be a non-empty coconvex subspace and ety
be a point.

(i) If dist(p,U) < o, then p has a gate in U.
(i) If dist(p,U) = o, then p has a cogate inU.

Proof. If dist(p,U) < o, setV :=pry(p). Otherwise, se¥ := copy,(p). Since
& is a twin SPO space atdl # @, we obtainV # @. Moreover,V is contained
in one of the two connected components. By Propositiond@(l).and 2.1.25(ii)
V is convex since the convex span of every two pointg g contained irV.
Supposé/ contains a liné. If dist(p,l) = o, then by Lemma 4.2.1 there is a point
p € . with dist(p/,l) < e and pr(p’) =1. Now Lemma 3.2.1 implies tha¥’
contains a triangle, a contradiction. This¢contains a single point

Now letq € U be an arbitrary point. First assume dgU) = . ThenU is
connected and hence digtv) < «. Applying Proposition 2.1.12(ii) tq and
the metaplector{g,v)qg implies codp,v) = cod(p,q) + dist(q,v). Thus,v is a
cogate forp in U. Now assume digp,U) < o. If dist(g,v) < o, we apply
Proposition 2.1.25(i) tp and(q, v)q to conclude distp, v) +dist(v,q) = dist(p, q).

If dist(qg,v) = o, then (p,V)q is a metaplecton with diameter distU). Since
dist(q, (p,V)g) = %, we know thatq has a cogate in (p,v)g. SinceU is co-
convex andv and q are contained irJ, we obtaing € U and consequently,
(d,v)g < U. This implies distp, (d/,V)q) = dist(p,v) and therefores = g by
Proposition 2.1.17(i). Thus, dig,v) = codqg,v) — cod(q, p). O

Every line of & is already a maximal singular subspaces6f Moreover, each
point has a cogate in every line at finite codistance. Hemeecdconvex span of
a point and a maximal singular subspace at finite codista@emays a coconvex
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span of two points at finite codistance. Therefore we comsidthis section the
coconvex spans of two points.

We show that the nice property for rigid subspaces of syntigleank 2 with
finite diameter that we stated in Theorem 3.2.3 also holdsamptesent situation.

Proposition 6.3.3.Let U < . be a metaplecton and letg . be a point with
dist(p,U) < . Then(p,U )qis a metaplecton with diametdist(p,U) +diamU).

Proof. By Proposition 6.3.2 has a gate in U. By Proposition 2.1.12(iii) there is
apointr € U with (g,r)g =U. This implies(p,U)q = (p,r)g. Sinceq is a gate for
pin U, we obtain distp,r) = dist(p, q) + dist(g,r) = dist(p,U) + diamU). [

Corollary 6.3.4. LetU < .7 be a convex subspace of finite diameter. Then U is a
metaplecton.

Proof. Let u andv be points ofU with dist(u,v) = diamU). Then(u,v)g <U.
For every pointp € U, we obtain(p, u,v)g < U. Hence, Proposition 6.3.3 implies
pE (U,V)g. O

For the classification of the twin SPO spaces of singular rark we use
coconvex subspaces that have non-empty intersection wiithdarts of. More
precisely, we consider coconvex spans of two points at fiidistance. The
following two rather technical lemmas are useful tools tecdver the shape of
such coconvex subspaces.

Lemma 6.3.5. Let U < .~ be a metaplecton witdiamU) = n. Further let
ueU,ve . and xe . be points such thatod x,v) = codx, u) + dist(u, v).
Thencod(x, (v,U)g) = cod(x,U) +dist(v,U).

Proof. By Proposition 6.3.2 has a gate’ in U andx has a cogat& in U. Since
cod(x,Vv) = cod(x, u) +dist(u, v) = cod(x, u) +dist(v, u’) +dist(u’, u), we conclude
cod(x,v) = codx,U') +dist(U/,v). Thus, we may assume=u'. Setk:= dist(v,u)
and let(vi)o<i<k be a geodesic from to v. Further sem := dist(u,x’) and let
(U)o<iem be a geodesic fromato x'.

We recursively define pointg; for 0 <i < mwithw; L uj, w; ¢ U and codw;, x) =
codui,xX) + 1. Setwp :=vi. Now leti < m such thatw; is defined. Then
(Wi, Uir1)g < (Wi,U)g. Sincew; ¢ U andw; L u;, we obtain py(wi) = {ui}
and thus digwi, ui11) = 2 by Proposition 6.3.2. Le#;, 1 be the cogate of in
(Wi, Ui+1)g. Then codui;1,x) = cod(w;,x) = cod(u;,x) + 1 yields codwi1,X) =
codUi+1,X) + 1 and disfwi;1,U;) = 2. Noww; ¢ U yieldswi1 ¢ U sinceu; € U
and(wi1, Uj)g = (Wi, Ui+1)g. Sincew; 1 is the cogate okin (wi, Ui11)g, the points
W1 andu;, 1 are collinear.

Since (Ui, Wit1)g = (Wi, Ui+1)g, we conclude(w;,U )y = (Wi41,U)g and therefore
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(v1,U)g = (Wm,U)g =: V. Proposition 6.3.3 implies diafd) = diamU) + 1.
Together with copy(x) = {um} and codwm,x) = cod(um,x) + 1 this leads to
copk, (X) = {wm} by Proposition 6.3.2 and therefore ¢gd/) = codx,U) + 1.
Sinceu € V, the claim follows by repeating this proceddrémes. ]

Lemma 6.3.6.Let U < .~ and V < . be two metaplecta such that U is
one-coparallel to V. Further let ¥ V, ue U and we . be points such
that cod(w,u) = cod(v,u) +dist(w,v). Then U is one-coparallel tow,V)q and
cod(w,V)g,U) =codV,U) +dist(w,V).

Proof. Setd := dist(w,V) andW := (w,V)y. We may assumd > 0 since oth-
erwise we are done. By Lemma 6.3.5 we obtain(eod/) = codu,V) +d =
codU,V)+d. By Proposition 6.3.8V is a metaplecton and hence by Proposition
6.3.2,uhas a cogate/ in W. LetV be the cogate afiin V. Then distw,v) =d
since codu, V') = cod(u,w') —d.

Now let p € U be an arbitrary point and lgf be the cogate op in V. Further
let g € W be a point with distp’,q) < d. Sinceu is the cogate of/ in U, we
obtain codV, p) = codV,u) —dist(u, p). Since codp, p’) = codu,V), this im-
plies distV, p’) = dist(u, p). Since codu, p’) = cod(u,V) — dist(V, p’) we obtain
dist\w', p') = dist(V, p’) +d and consequently,

codw, p) > codw,u) —dist(u, p) = (codV,u) +d) — dist(V/, p')
= (cod(p', p) +d) — (dist(w', p') —d)
> cod(q, p) — disw', ).

Thus,q is not a cogate fop in W and hence, cde, W) > cod(p, p’) + d sincep
has a cogate i by Proposition 6.3.2. Since by Proposition 2.1.17(i) @ist) <
d for every pointr € W, we conclude co, W) = cod(p,V) +d. O

In the following lemma provides a method how to decide whethpoint be-
longs to the coconvex span of two points or not.

Lemma 6.3.7. Let xe .t and ye .¥~ be two points. Therx,y)c N/t =
Ulx2)g] z€ .7+ A codx,y) +distz x) = codzy)}.

Proof. First we define the following two sets:
Ut:={(x2q]ze 7" A codxy)+dist(zx) = codzy)}
U™ = J{(y.2g]z€.#~ A codxy) +dist(zy) = codzx)}

Now letz € . be a point with co¢k, y) + dist(z,x) = cod(z,y). Thenze (x,y)g
and henceXx,z)g < (x,y)g. Thus,U* C (x,y)¢ and analogously)~ C (X,y).
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Hence, it suffices to show theit" UU ~ is a coconvex subspace.

Fori € {0,1}, letz € ./ be a point with cogx, y) + dist(z,x) = codz,y). Then
we obtain by Proposition 6.3.3 th&x,zp,z)g is a metaplecton with diameter
dist(x, z9) + dist(z1, (X, Z0)g). Let 2> be the cogate of in (X,2p,z1)g. By Lemma
6.3.5 we conclude cdg, zo) = dist(zy, (X, 20)g) + cody, (X, Zo)g). Thus,

cody, z2) — cody, x) = dist(z, (X, Z0)g) + cod(y, (X, 0)g) — cod(y, X)
= dist(z1, (X, Zo)g) + dist(zy, X)
= diam((x, 2o, 1)g)-

Therefore we obtain cdd,y) + dist(x,z2) = codzz,y) and hence(x,z,z1)g =
(X,22)g <UT. Thus,UT is a convex subspace. Analogoudly; is a convex
subspace and we conclude thiat UU ~ is a convex subspace.

For symmetric reasons it remains to show that for arbitrayptgu € U™ and
v e U™, every pointw with w | u and codw,v) = cod(u,v) + 1 is contained in
U™T. Letz, e U™ andz, € U~ be points with co¢k,y) = cod(z,,y) — dist(z,,x) =
cod(z,,x) — dist(z,,y) such thatu € (x,z,)g andv € (y,z,q. By Corollary 4.2.8
there is a pointw, at distance digy, z,) to x such that cofw,y) = codx,y) +
dist(z,,y) and hencéx,w,)y < U ™. Moreover, the metaplecta’ := (x,w,)g and
V™ = (y,z,)q are one-coparallel to each other with ¢¢d,V—) = cod(x,z,). By
Proposition 6.3.3z,,V')q is a metaplecton with diaffz,,V*)g) = diamV*) +
dist(z,,V ™). Moreover, Lemma 6.3.6 implie thét™ is one-coparallel t¢z,,V*)q
with cod(V ~, (z,VT)g) = codV~,V*) +dist(z,,V"). Analogously,(w,z,,V*)q
is a metaplecton with diameter didu") + dist(z,, V™) + dist(w, (z,,V*)g) and
V™ is one-coparallel tdw, z,,V )g with

codV™, (W2, V" )g) = codV™,VT) + dist(z,, V") + dist(w, (z,,V " )g)
=codV~,V") +diam((w,z,V*)g) — diam(V ")
= cod(y, X) + diam({w, z,,V *)g).

Thus, diani(w,z,V*)q) = dist(x,z), wherez is the cogate of/ in (w,z,,V ™).
This implies(x,2)g = (w,z,,V ")y and moreover{x,z)g < U™ since codx,y) +
dist(z,x) = cod(zy). O

For coconvex spans of two points at finite codistance in tWh®Spaces of
singular rank< 1, we obtain a regularity that corresponds to the propertyeta-
plecta stated in Propositions 2.1.3, 2.1.12(i) and 2.1ii).2(

Proposition 6.3.8. Let x and y be two points of” with codx,y) =n. Then
codm((x,¥)g) = n and for every point & (x,y)g there is a point \e (x,y)c at
codistance n. Moreove(x,Yy)c = (u,V)g for every two points u and v itx,y)g
with cod(u,v) = n.
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Proof. We may assumee . * andy € .. SetU := (x,y)s. Further set? =
Z?nU for o € {+,—}. Letue U". By Lemma 6.3.7 there is a poiatc U™
such thau € (x,2)g =: V' and cody, z) — dist(z,x) = n. By Corollary 4.2.8 there
is a pointv’ with dist(V',y) = dist(x, z) such that cotk,V') = cod(x,y) + dist(y, V')
andV~ := (V,y)y andV" are one-coparallel to each other with ¢gd,V~) =
n+dist(x,z). By Lemma 6.3.7 we obtaM~ <U . SinceV* is one-coparallel to
V™~ with codV*,V~) = n+diam(V ) andu has a cogate ik~ by Proposition
6.3.2, there is a pointe V~ with cod(u,v) = n.

Now letv € U~ be an arbitrary point with cdd,v) = n. Then there exists a
point Z € U~ such thatv € (y,Z)q and codx,Z) —dist(Z,y) = n. By Lemma
6.3.6V ™ is one-coparallel tqZ,V ~)q with cod V", (Z,V~)g) = codV™,V~) +
dist(Z,V~). Moreover, diani(Z,V ~)g) = diam(V ) +dist(Z,V ) by Proposition
6.3.3. Thus, for every poinp € V* and every poing € (Z,V ™)y, we obtain
COCprq) > COC{V+, <Z,7V7>9) - dlan‘(<zl7vi>g) = COCKV+,V7) - dlan’(vi) =
n. Since codu,Vv) = n, Proposition 6.3.2 implies c¢d*,v) = n+diamV ") and
analogously, cods, (Z,V~)g) = n+diam((Z,V~)g). Thus,V* = (u,copk, (V))g
and codv, copk,: (v)) = codu,v) +diamV*"). Therefore, copr: (V) € (u,v)g
and hencey " < (u,v)g. Analogously,(Z,V~)g < (u,v)g and we conclude that
andy are contained ifu, V). Thus,(X,y)c = (U,V)G.

By Lemma 6.3.7 we obtain c¢d, p) > n and codp,v) > n for all pe U and
hence, codrifU) = n. O

Proposition 6.3.9. Let U < . be the coconvex span of two points at finite codis-
tance. Further let .~ be a point. Therodm({x,U)g) = codmU) —dist(p,U).

Proof. Since codniU) < o, we obtainU N.* # @ andU N.~ # @. Hence,
n:=dist(p,U) < . By Proposition 6.3.% has a gateg in U. By Proposition
6.3.8 there is a pointe U such thatq,r)c = U and codq,r) = codmU). Then
codp,r) = cod(q,r) — dist(p,q) and henceq € (p,r)s. Thus,{q,r)c < (p,rc
and thereforép,U)s = (p,r)s. The claim follows from Proposition 6.3.8. [

Proposition 6.3.10. Every coconvex subspaced. with codmU) < = is the
coconvex span of two points at finite codistance.

Proof. Let u andv be points ofU with cod(u,v) = codmU). Then(u,v)c < U.
For every poinp € U, we obtain(p, u,v)c <U. Hence, Proposition 6.3.9 implies
pe (uVje. O

Our goal in this section is to prove that is a twin dual polar space. For this
we construct a polar space from the twin SPO sp#&tand show that this polar
space has a twin dual polar space that is isomorphi€ t&Ve define the following
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sets:

Pmi={(p,ds | (p,q) € 7" x.~ A codp,q) = 1}
Zm={{P€ Pm|P>(p,dsc}|(p.g) € 7" x." A codp,q) =2}

The setZ, will be the point set and4;, will be the line set of the polar space we
construct.

Lemma 6.3.11.Let Pe &y, and let V be the coconvex span of two points at
codistance n. Then ¥ P orVNP =@ or codmV NP) =n+1.

Proof. AssumeV NP # @ andV £ P. Letu €V NP. Then by Proposition 6.3.8
there is a pointv € V such thatV = (u,v)s. SinceV £ P, we obtainv ¢ P.
By Proposition 6.3.2/ has a gatev in P. Since there is a point/ € P with
codw,w) = 1, we obtainv L w. Sinceu € P, we obtain co¢u,w) = codu,v) +
dist(v,w) = n+1 and thereforev € V. This implies codrfiV NP) > n+ 1. Since
V NP is coconvex an®¥ NP <V, the claim follows from Lemma 6.3.8. O

Lemma6.3.12.Let P€ &y, Then for every point g . \ P there is a subspace
Qe Pnpwithpe Qand PNQ=o.

Proof. By Proposition 6.3.2 has a gatg’ in P. Let g < . be a point that is
oppositep’ and letq’ be the gate o) in P. Since codniP) = 1, we obtaing ¢ P.
SinceP contains a point at codistance 1t we obtainp L p’ and analogously
gL d. Hence, Proposition 6.3.2 implies dgd ¢ ) = 1 and consequently < .
Thus, the lineqq contains exactly one poimtat codistance 1 tp. Sincer #
andg ¢ P, we conclude ¢ P. Henced is the gate of in P. SetQ:= (p,r)g.

Let se P. Assume thas is in the same connected componentpasThenp’ €
(p,s)g sincep’ is the gate fop in P. Sincep’ < p, we obtainp’ ¢ Q and hence,
s¢ Q. Analogouslys ¢ Q if dist(s,q) < «. Thus,PNQ=o. O

In the following there are two cases that play a special rdlee first is that
< and.#~ are both singletons. In this case there are no two point¥’iat
codistance 1 to each other. Henc®y, is the empty set and so i%n. In the
second case”" and.”~ are both lines. Then for every point it * there is
precisely one point i” ~ that is not opposite. Hence?,, contains the unordered
pairs of points that are at codistance 1. Furtherméfg is empty.

Proposition 6.3.13.The pair(Zm,-%m) is a non-degenerate polar space.

Proof. For dian{.*) < 1, then.%, is empty and hence, (BS) is vacuously true.
Moreover, if dianf.” ") = 0, thenZ,, is empty and consequently, the radical of
(Pm, L) is empty. If dian{”T) = 1, then 2, contains more than one point
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and the radical is again empty.

Now let diam{. ") > 2. SetZ := (Pm,-%m). To avoid ambiguity, we use in this
proof the charactet only to denote collinear points iw. For.#, we do not use
any character to denote collinearity. Furthermore, disd, &nd<— always refer to
.

Let G < .¥ be a coconvex subspace with co@) = 2. Then there is a point
p € . with dist(p,G) = 1. By Proposition 6.3.9 we obtaP:= (p,G)g € Pnm.
Now letq € . ~ P. Then by Lemma 6.3.12 there is a subsp&ce &y, with
ge QandQNP=g. Letr’ € Gand letr be the gate of’ in Q. Then Proposition
6.3.9 implies digfr,r’) = 1 sincer’ ¢ Q. Again by Proposition 6.3.9 we obtain
R:= (1,G)g € Zm. Thus,|{S€ Pn|S> G}| > 2 and we conclude tha? is a
point-line space.

Now letG as before and € be an arbitrary element a?y,,. We prove that’ is a
polar space by showing that either all or exactly one elemefR e &, | R> G}

is contained irP+. First assum& NP # @. Then every subspac@c Zy, with

G < Qintersectd and hencg§R€ Z, | R> G} C P+ by Lemma 6.3.11. Now
assumeGNP = @ and letv andu be points ofG with codu,v) = 2. Letu be
the gate ofu in P. Then distu,u’) = 1 by Proposition 6.3.9 since¢ P. Since
U ¢ G, we conclude by Proposition 6.3.2 thais the gate of/ in G and therefore
codv,U') = 1. HenceQ := (v,U)g € Zm. Moreover, by Lemma 6.3.1f € QNP
yieldsQ € P+ andu € (v,U') impliesG < Q. Conversely, leR€ P+ withG < R,
Then there is a point € PNR. Sinceuis the gate off in G andu’ ¢ G, we obtain
U € (u,w)g < R. By Proposition 6.3.9 we obtaift/, G)g € Zn. Withu € QNR
andG < QN R we concludeQ = R by Proposition 6.3.8. Thu®) is the unique
element ofP* that containgG. ThereforeZ is a polar space. Since for every
P € P, we find a pointp € . \ P, the polar spacé?, %m) is non-degenerate
by Lemma 6.3.12. O

We determine some objects of the polar spaé,, .%m) by using terms of the
twin SPO space”. This provides some correspondences between objects of
and those of Zn, Zm).

Lemma 6.3.14.Let xe . and let y be a point opposite to x. Set:M {Se
Pm|xe Shand N:={Se &, |ye S}.
(i) M is a generator of the polar spage?n, -%n).

(i) LetPe Zn~ M and let z be the gate of x in P. Thea & for every & M
with SNP #£ @.

(iii) (M,N) is a spanning pair of the polar spa¢e?m, %n).

Proof. Set2 := (P, Zm). If T is a singleton, thelt Py, Zn) is the empty
space. This implies thd#l is empty and henceéM is a generator of7. For (ii)
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there is nothing to prove. Sinc&’, = @, the condition in Definition 5.2.2 is
vacuously fulfilled. If.# is a line, therM = {{x,X'}}, wherex  is the unique
point in &~ that is not opposit&. SinceZ contains no lines, the singletdn is
a generator of7. Since every two distinct elements &, are disjoint, (ii) holds.
By the same reason and sinkkandN are disjoint,(M,N) is a spanning pair.
Hence, from now on let diaf”*) > 2.

(i) By the definition of £y, the setM is a subspace o#. Moreover, Lemma
6.3.11 implies that every two elementsMfare collinear inZ and henceM is
singular. Finally, Lemma 6.3.12 implies that for evéhye &, \ M, there is a
Q € M with QNP = @. ThereforeM is a generator of.

(i) Sincex ¢ P, Proposition 6.3.9 provides digtP) = 1. The gatez of xin P
exists by Proposition 6.3.2. Further Bt M with PNS+# @ and letpe PNS
Sincezis the gate fox in P, we obtainz € (p,x)c < S

(i) Now let P € Z,~ MUN. By symmetric reasons and Proposition 5.2.4 we
have to show that there is@ e N such thatQ | S & P 1 Sfor everySe M.
Let z be the gate ok in P. Againx andz are collinear. Since& < vy, there is a
unique pointZ on the linexzwith Z < y. SetQ := (y,Z)g. ThenQ € N andZ
is the gate fox in Q sincex ¢ Q. By (ii) everySe M with SNP # & containsz
and henceZ € SN Q. Analogously,z€ SNQ for everySe M with SNQ # .
Thus,SNP # @ if and only if SNQ # @. Now the claim follows from Lemma
6.3.11. O

Lemma 6.3.15.Let & be the set of generators ¢fZy, %m). Set¢: ¥ —
&: p— {Se Pn| pe S} Further let xe . be a point.

(i) Letye. be apoint distinct to x. TherPx=y? if and only ifdiam(.#*) <
o and y is the cogate for x it~

(i) Let M be a generator ofZm, %) that is commensurate t@x Then there
is a point ye . * such that M= y?.

(i) Letye .. Then # and y have a common hyperplane if and only if x
and y are collinear.

Proof. (i) Assumey € .#*. Then there is a poirte . with z«+ x and codz,y) =
dist(x,y). Letx € .7 with dist(x,x') = 1 and distx,y) = dist(x,y) —1. Then
(X,2)6 € y? ~ x? and hencey? +# x?.

Now assumeg € .. Setd := codx,y). Assume there is a point € .7 with
dist(x,X') = 1 and codx,y) = d+ 1. Then for a poinz < x with dist(z,y) = d, we
obtain(x,2)s € y? ~ x? and hencey? # x?. Now assume that there is no point in
< at codistancel + 1 toy that is collinear tox. Then by Proposition 2.1.16(ii)
there is no point in”" at codistancel + 1 toy. By (A1) this implies that*
has diameted. Thus by Corollary 6.3.4,7 7 is a metaplecton of diametel
Consequentlys™ and.”~ are opposite metaplecta apis a cogate fokin .7+
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by Proposition 6.3.2.

Conversely, let”" and.~ be opposite metaplecta and ydie the cogate ofin
7. Further letSe 42, with x € S. Since there is a poirte SN.¥~, we obtain
y € (x,2)g < S Analogouslyx € Sfor everySe y? and hencex? =y?.

(ii)&(iii) Since for two commensurate generators there fsxde sequence of gen-
erators such that two consecutive generators are adjagentjay restrain our-
selves to the case thet andM intersect in a common hyperplaie Then there
isaP e Zn with P M andx ¢ P. Lety be the gate okin P. For everySe H,
we obtainy € Sby Lemma 6.3.14(ii). Since for evefy € M there isSe H and a
L € %m such thafP,Q, S} C L, this leads ty € Q by the definition of%y. Thus,
M = y? since both are generators. Proposition 6.3.9 provide&dj$t= 1. This
proves the forward direction of (iii).

Conversely, ley be a point collinear ta. LetL € %y, with L < x?. LetV <.¥
be the coconvex subspace of codiameter 2 that is containgtiéetements oL.

If yeV, thenL <y?. If y¢V, then(y,V)s € %, by Proposition 6.3.9. Hence,
LNy? # @ and the claim follows. O

Theorem 6.3.16.Every twin SPO space with singular rark1 is a twin dual
polar space.

Proof. By Proposition 6.3.137 := (%, %n) is a non-degenerate polar space.
Let & be the set of generators 6fand setp: .¥ — &: p— {Se P, | pe S}.
Letx € T andy € .~ be opposite points of”. By Lemma 6.3.14(iii) we
know that(x?,y?) is a spanning pair. Le® be the dual polar space &f. Further
let Z* be the connected component &f that contains<® and let%~ be the
connected component that contaifs We claim that¥ is isomorphic to the
twin dual polar spacéz*, %™ ).

We conclude by Lemma 6.3.15 thfatmaps.#™ bijectively onto™. Moreover,
¢ | ~+ preserves collinearity. Since every set of mutually celfinpoints of in
contained in a line of” and every set of mutually adjacent generator&ois
contained in a line of8, we conclude thap induces an isomorphism from’*
onto #". Analogously,¢ maps.¥~ isomorphically ontoZ . O

6.4 Twin SPO spaces of symplectic rank 3

In this section we consider the rigid twin SPO spaces of sgotju rank 3. There-
fore, throughout this section let’ be a twin SPO space of symplectic rank 3. This
implies that is rigid and has diameter 2. By.”* and.¥~ we denote the con-
nected components of. Further we denote bt the set of maximal singular
subspaces of”.
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Since we have have already covered the case whétds a symplecton, we
may constrain ourselves to the case whefé contains a symplecton properly.
By Proposition 3.4.1 this implies that every line is congrin exactly two ele-
ments of. For reasons of convenience, we include in this sectionabe where
<+, and therefore alsg”~, is a symplecton whose lines are contained in exactly
two elements ofl1.

The subspaces we are interested in are the coconvex spamglefaent ot
and a point at finite codistance. Therefore we examine theoggion of a point
at finite codistance in an element®t.

Lemma 6.4.1.Let M € 90t and let x be a point witltod(x,M) < . Then the
corank ofcopn, (x) in M equalscodx, M) or M equalscopn, (x) andrk(M) =
codx,M) = diam(. ).

Proof. We may assumg e . andM < .#~. Setd := min{codx,p) | pe M}
and lety be a point withy < x and disty, M) = d. By Lemma 3.4.2 we obtain
rk(pry (y)) =d and therefore riM) > d. If rk (M) =d, then copyy (X) = pry(y) =
M and codx,M) = d. By Theorem 3.4.4 this implies dign¥’~) = d.

Now assume riM) > d and letze M \ pry (y). Then by (A12)x has a cogate
Z € (y,2)g with codx,Z) = d + 1. ThusZ is collinear to all points oM N (y, 2)g.
Since(z,pry (y)) is a maximal singular subspace (§fz)q by Theorem 3.4.4, this
impliesZ € (z,pry(y)) <M. We conclude cok, M) = d+ 1 and(z, pry(y)) N
cophy (X) # @. Thus, crlg(copiy (X)) = d+ 1 since pfy (y) Ncopiy(x) = . [

For sr(.¥~) > 3, Lemma 3.4.3(i) implies that there is a suli¥&t C 9t such
that every line of~ is contained in exactly one element®t~ and every ele-
ment of~ is contained in”~. Assume¥’~ is a symplecton. Then Proposition
2.2.8 implies that there is a sub$8t~ of the set of generators o~ such that
every line of.¥~ is contained in exactly one elementdf—. Note that there is no
given distinction betweer’ and. . Furthermore, there is no given distinction
betweer?)t~ and the maximal singular subspacesf that are not contained in
M. Hence, we may carry over all the results for the three otbssiple choices
of M~.

There is a correspondence between the bipartition of thaezies of)t con-
tained in.”~ and the bipartition of those contained i as the following shows.

Lemma 6.4.2.Let M € 9t and let | be a line wittcod(I,M) = 1. Then there is
exactly one subspace &9t with | <N andcodM,N) = 1.

Proof. Lety andzbe distinct points oh. Since riM) > 2, Lemma 6.4.1 implies
that there is a point € M with cod(x,y) = codx,z) = 1. With codl,M) = 1 this
implies copf(x) = 1. By Lemma 4.2.1 there is a poimt < x with | € w*. By
Lemma 3.1.1(i) there is a symplect¥nthat containgw,|). Now (A12) implies
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thatx has a cogate at codistance 2Yin Hence, there is an element %1 that
containd and the cogate ofin Y. Hence, there is at most one subspac#iithat
containd < N and has codistance 1 ké.

Since(w,l) is a generator o¥, Proposition 2.2.5 implies that there is a unique
subspaceN € 9 with (w,I) < N. Let p be an arbitrary point ofw,I). Then

p «» xif and only if p € |. Furthermore, ifp € |, then there is a poirg € M with

p < gby Lemma6.4.1 since cgdM) = 1. Thus, every point ofw,|) is opposite

to a point of M and we obtain co@, (w,1)) = 1 for every pointqg € M. With
Lemma 6.4.1 this implies cd@,N) = 1 since rk(w,l)) = 2 and consequently,
codM,N) =1. O

Proposition 6.4.3.Let | <. be a line. Then there is exactly one subspace
M € M with | <M such thattod M, K) = 1 for a subspace k 91~.

Proof. Letw andx be distinct points of. Further letg be a line that is opposite
I. LetK € 91~ with g < K. By Lemma 6.4.2 there is a unique subsphlte 9t
with | <M and codM,K) = 1. LetN € M~ {M} with | <N.

Now letL € 9t~ \. {K} be a subspace with cddL) = 1. We show coM,L) =1
and codN, L) =2. By Lemma 6.4.1 there is a point € L with w < w. Letwg be
the cogate okin g. Thenw — wp. Assume digtK, L) > 3. SetW := (wp, W) and
letx' € W with dist(x',w') = dist(wp,w) — 1 andw’ | X'. By (A2) w has a cogate
in (X',W)g at codistance dist’,w'). Since codw,x’) < 1 and(x’,w)q is an SPO
space by Proposition 2.1.23, there is a paint (X,w)q that is collinear tod and
at distance digk’,w') to the cogate ofvin (X',w)q. This yieldsw < w;. Since
dist(wp, w;) < 2 and distw;,w') < dist(wp, W), repeating this argument leads to
a finite sequence of poin{sv )o<i<n that are all opposite such thatv, =w and
dist(wi,wi1) < 2 fori < n. By Corollary 4.2.8 there is a ling throughw; that
is oppositd. LetK; € M~ with g; < K;. Then codl,K;) = 1. Thus, it suffices to
consider the case di#t,L) < 2. Moreover, we may assume disp,L) < 2.
Assumed :=dist(K,L) > 1. By Lemma 6.4.1 there is a poirt € L with x <
X. Since distwp, L) < 2, we obtain digtn,X') < 3. As before, we find a point
X0 € (Wp, X')g With X <= Xp andwyg _L xo. Since co@x,wp) = 1, we obtainng # xo.
Let Lo € 9t~ with woxg < Lg. By Corollary 4.2.8wpXg is oppositd and hence,
cod(l,Lo) = 1. If dist(wp,X) = d+ 1, we obtain pr(wp) < (wp,X')g and hence
L intersects(wo,X)g in a singular subspace of ramk+ 1 by Lemma 3.1.1(jii)
and Theorem 3.4.4. Sina&Xo < (Wo, X')g, we conclude by the same reason that
Lo intersectswo, X')g in a singular subspace of ragkt- 1. Since by Proposition
2.1.17(i) distr,L N (wo,X')g) < d for every pointr € LoN (wp,X)g, we conclude
dist(L,Lo) < d by Lemma 3.4.2. If disivg, X') = d, then distwoxo,X') =d — 1 by
Proposition 2.1.17(i). In both casks Ly # @ and disfL,Lg) < d and therefore
we may restrain ourselves to the cése L # .

SinceK # L, Lemma 3.4.2 implies th&t andL intersect in a single poirg Since
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cod(s,M) = 1thereis a poing' € M with s<» s by Lemma 6.4.1. Since c¢sll) =
1, we may assume c¢glx) = 1. Again by Lemma 6.4.1 there is a poiiE L with
x < X since cogx, L) = 1. LetK’ € M ~ {L} with sXx < K'. ThenK’ ¢ 9~ and
therefore, K NK’ is a line by Lemma 3.4.2. Hence, d¢d,M) = 2 by Lemma
6.4.2. Since copy(x) = {s} and cods,M) = 1, we conclude ca@xX,M) = 1.
Again by Lemma 6.4.2 this implies cdd M) = 1 and consequently, cfid N) =
2. O

Motivated by this proposition, we set
M ={MeIM|VKeM :2<codM,L) < w}.

With this definition it follows from the proposition abovét every line of¥ is
contained in exactly one element®ft UM ™.

Remark6.4.4 LetM andN be two elements dit with codM,N) = 1. Then by
the definition ofi* it follows thatM € 99t~ impliesN ¢ 9. By symmetric rea-
sonsM €.~ andM ¢ 9~ impliesN € MM *. Thus, exactly one of the subspaces
M andN is an element o7t UM .

LetV < .~ be a metaplecton with diameter> 2. By Proposition 2.1.2¥ is

an SPO space. L&andT be maximal singular subspace\oiwith dis{ST) =

n— 1, or in other words at codistance 1 with respect to the opipasielation in

V. Since by Proposition 2.1.17(i) every point®has distanca— 1 to T, Lemma
3.4.2 implies that exactly one of the subspaSesdT is contained in an element
of M. This confirms that we made the “right” choice when defirtiig .

Lemma 6.4.5.LetMe M~ and N< . with N € 9~ 9M*+. Thenrk(M) < o
impliesrk(M) = rk(N).

Proof. Assumer :=rk(M) < c0. By Proposition 2.3.5 there is a singular subspace
S<. " withrk(S) =r such thaM andSare opposite. Lef € 91 be the subspace
with S< K. Supposes < K. Then by Proposition 2.3.81 andK are not opposite
and hence, there is a poipte K with cod(q, p) = 1 for every pointg € M. Thus,
Lemma 2.1.21(ii) implies tha¥l is not maximal, a contradiction. This leads to
S=K and codM,K) = 1. ThereforeK ¢ 91" and we conclude i) = rk(K) =

r with Lemmas 3.4.3(i) and 3.4.3(iii). O]

To study coconvex spans of a point and a maximal singulampsadesat finite
codistance, we need some more properties concerning esfimjs in a maximal
singular subspace.

Lemma 6.4.6.Let M and N be elements 8ft that intersect in a single point
S. Further let x be a point witltod(x,M) < e such thatcopi,(x) < M and
copty(x) < N. Thenry n((s, coply (X)) = (s,copiy(X)).
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Proof. Setd := cod(x,M). Further seS:= copn,(X) and T := copry(X). First
let codx,N) # d. By Lemma 3.3.3(iii) we may assume dadN) =d — 1. That
implies codx,s) =d — 1. Thus, criy(S) = d by Lemma 6.4.1 and consequently,
rk(M) > d sincese M~ S Hence by Lemma 3.3.3(iv), () > d and conse-
quently, crlg(T) =d—1 by Lemma 6.4.1. For every poift € S, we obtain
pra(p) < T. Thusmiun((s,S)) < T. Since criy((s,S)) =d—1, Lemma 3.3.3(iii)
implies criy(an((S,S))) = d — 1 and thereforefy n((S,S)) =T.

Now let codx,N) =d. Firstassume cde,s) =d—1. Then crlg(S) = crkn(T) =

d by Lemma 6.4.1. Fod = 1, this impliesM = (s,S) and hencerin((s,S)) =

N = (s, T). Therefore we may assunte> 1 and hence by Lemma 6.4.1, that
there is a poingg € N ~ {s} such that cotk,sg) =d — 1. Letp € M such that
pry(p) NT # @. Thenqg ¢ pry(p) since by Lemma 3.4.2 pfp) is a line. Thus,
Y := (p,0)g is @ symplecton. By Lemma 3.1.1(iii), bolh andN contain a gener-
ator ofY. Sincesq<Y, we obtain co¢,Y) < d and since cog, pry(p)) =d, we
conclude cotk,Y) = d. Suppose& has a cogate i¥. Then this cogate would be
contained in pg(p) \ {s} and hence there is a pointhNY at codistance — 2 to

X, a contradiction. Thus by Proposition 4.2.5, cgp is a generator of. Since
codx,pry(p)) = d and codx,sg) = d — 1, the generators copix) andY NN in-
tersect in a single poir. Applying Proposition 2.2.8 yields that the corank of
copk (X) MM in MNY is even. Withse Y NM this implies, that cogr(x) and

Y N M intersect in a single poing’. Sinces € pry(p) and codx, pry(p)) = d,
we conclude pg(p) = sq. Sinceq L p/, we obtainmiym(sd) = sp and hence,
p € sg by Lemma 3.3.3(iii). Thus, g(p) < (s, T) impliesp € (s,S) and there-
fore mun((s,S) > (s, T). Since copy(S) = copry(T) = d, the claim follows
from Lemma 3.3.3(iii).

Finally assume € S. SinceM > S, there is a point € M with codx,r) =d — 1.
Letq e N such that pg(r) = sg Let p € S\ {s}. Sincesp< Sand p§,(q) = sr,
this implies thaty := (p,g)q is a symplecton. By Lemma 3.1.1(iii), bot and

N contain a generator of. Assume co(k,Y) = d+ 1. Then by Proposition
2.1.12(iv)x has a cogatgin Y. Thus(y,sp is a generator of. Since(y,sp and
MNY are the only generators that contain we concludep, pry(p)) = (Y,Sp)
and therefore pr(p) < T. Now assume cda,Y) = d. Then by Proposition 4.2.5
copk (X) is a generator o sincer € Y ~\ copk (X) andsp < copk(x). Since
MNY and copy(X) intersect in a common line, we conclude by Proposition
2.2.8 that the corank of copfx) "N in NNY is odd. Thuss e copk (x)NN
yields that copf(x) NN is a linel. This implies copy(x) = (p,l) and hence,
pry(p) =1 < T. Again we concludesy n((s,S)) < (s, T) and the claim follows
by Lemma 3.3.3(iii). O

Corollary 6.4.7. Let V be a connected convex subspace @di#mV) > 2 and
let M € M~ be a subspace that contains a line of V. Further let ¥+ be a
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point with copty, (X) <V. Thencopr(x) <V for every subspace N 9t~ with
rk(NNV) > 1 andcopr(x) < N.

Proof. By Lemma 3.1.1(iiilM NV andN NV are maximal singular subspaces of
V. Firstassume there is a subsp&oe M~ with rk(KNV) > 1 and copg (x) = K.
ThenK < copr-(x) by Lemma 6.4.1 and henck,NV < copk,(X). Moreover,
rk(K) = diam(.~) =: d. By Proposition 2.1.16(ii) there is a poipte copk, (x)
such that digtp,N) = d — codx, NNV). Letl < copk,(x) be a line throughp and
let K’ € 9~ with | < K’. By Lemma 3.4.3(iii) we know riK’) = d and hence,
crkg/(1) =d—1. Thus, Lemma 6.4.1 implid§’ < copr,,- (). Therefore we may
assumep € K and hence digK,N) =d — codx,NNV).

For every poing € N~\.V, we obtain pg(p) < (p,q)g by Lemma 3.4.3(iii). Since
p is in the projection ofx in (p,q)g, we conclude cogk,q) < codx,pry(p))
by Lemma 2.1.24. Thus, capfx) N pry(p) # @ and we obtain cog,N) =
codx,NNV). By Lemma 3.4.3(iii) we know rilN) = d. Moreover,NNV con-
tains a subspac®of rankd — cod(x,N) whose points are all at distance di$tN)
to K. Hence,S corank codx,N) in N. Since crlg(copr(x)) = codx,N) by
Lemma 6.4.1, we conclude@= copry(X).

Now assume copi(x) < K for every subspac& € 9t~ with rk(KnV) > 1.
Then by Lemma 3.4.3(ii) and sindis connected, we may assume thiinter-
sectsM in a single poins. Applying Lemma 6.4.6 yieldsi n((S,copty (X)) =
(s,copry(x)). By Lemma 3.4.2 this implieés, copiy (X)) < V. O

Lemma 6.4.8.Let M € 9" and Ne 91~ be maximal singular subspaces. Set
S:={peM|codp,N)=codM,N)}. Then one of the following holds:

(@) The diameter of" is equal tocodM,N). Furthermore, S= M and
crkn (Mpen copiy (P)) = cod M, N) + 1.

(b) The corank of S in M equatnd(M,N) and copr,(p) = S for every point
p € N withcod p,M) = codM,N).

Proof. Setd := codM,N). Since.* is connected, we knod < «. Moreover,
d > 2 sinceM € M* andN € M. Letx € N be a point with cotk,M) = d. If
copiy (x) = M, then rkM) = d and dianf. ") = d by Lemma 6.4.1. By (A12),
we conclude that”* is not a metaplecton of diametdr With Theorem 3.4.4
this implies srk.#’) > d and hence, ifN) > d by Lemma 6.4.5. Sinc€= M,
we obtain codp,q) > d — 1 for every pair(q, p) € M x N. By Lemma 6.4.1 this
implies codp,M) = d for every pointp € N since rKM) = d. Another conse-
quence of Lemma 6.4.1 is cqgiq) < N for everyg € M since rKN) > d. Thus,
for every pointg € M there is a pointp € N with q ¢ copr(g) and we obtain
Npen COPIy (P) = @. Hence, (a) holds.

Now let copg, (X) < M for every pointx € N with codx,M) = d. Assume there
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are points<andy in N with cod(x, M) = cod'y,M) = d and copg; (X) # copty ().
Since crlgy (cophy (X)) = crku(cophy,(y)) = d by Lemma 6.4.1, there are points
X' € copny (X) . cophy, (y) andy’ € cophy, (y) ~ copiy(X). Letz«— x andZ < x be
points such that di§y, z) = dist(y’,Z) = d — 1. ThenV := (x,z)gandU := (X, Z)q
are opposite by Lemma 4.2.7. By Theorem 3.4.4 and Lemma(Bijlwle obtain
rk(MNU) = d and analogously, (INNV) =d. By Lemma 4.2.7 there is a singu-
lar subspac®l’ € M with rk(N'NU) = d such that copy(p) < N’ for every point
p € NNV. Since by Proposition 2.1.23 is an SPO space, we may apply Propo-
sition 2.3.5 to conclude that there is a subspd¢e 9t with rk(M’'NU) =d and
dist(N’,M’) = d —1. By Lemma 3.4.2 every point 8’ "U has distance to a
point inM’NU. Since every poinp € NNV has a cogate ibJ that is contained
in N’, this impliesp < g for a pointq € M’NU. Thus, codr,NNV) = 1 for ev-
ery pointr € M’. Since rkNNV) =d > 2, this implies co¢r,N) = 1 by Lemma
6.4.1 and therefore, coMl’,N) = 1. SinceN € 1, this impliesM’ ¢ M. Since
codM’,N’) =d—1 and codp,N’) = d — 1 for every pointp € N'NnU, we con-
cludeN’ € ™ by Lemma 3.4.2. Sincgc V andy € U, we know thaty’ is the
cogate ofyin V. Hencey € N impliesy € N’. Analogouslyx’ € N’ and therefore
N = M.

Now for M < U, Theorem 3.4.4 implies diapn’*) = d. Hence, (a) holds since
Npennv COPIv (p) = . Therefore we may assume(M) > d. Since rkM) > d
and crly (cophy(x)) = d there is a lind < copiy,(x) throughx'. Letv eV with
dist(x,v) = d. Thenx < v sincex is the cogate fox' in V. Letw be the cogate
of vinl. Thenx is not a cogate fow in V. Let p €V ~ N. Then there is a
pointg € NNV with dist(p,q) > 2. Hence, coth,q) < d—2, whereq is the
cogate forq in U. Sinced € M, this implies codw, p) < d and consequently,
x € copk,/(w) < N. Sincex is no cogate fow in V, Proposition 2.1.12(ii) implies
copk, (w) > {x} and hence, Proposition 4.2.5 implies gpfw) = NNV. There-
fore we conclude thatl := Mpenny COPI(P) intersects every line of cogi(x)
throughx'. Sincey e NNV andx’ ¢ copg,(y), we obtainX' ¢ H and therefored

is a hyperplane of cogy(x). By Lemma 6.4.1 this implies cg(H)d + 1. Since
HN(MNU) =@ and IkMNU) = d, we concludeM = (H,MNU). Thus, for
every pointq € M, there is a poinp € MNU such thag € (p,H). Let p’ be the
cogate ofpin V. Then copy (p’) = (p,H) and henceg € S. Since codw,N) =d
andNNV < copry(w), we obtain by Lemma 6.4NNV =N since tKNNV) =d
and consequently, diain’ ™) = d. Again (a) holds.

Finally let copg, (X) = copiy(y) < M for every two distinct pointx andy of N
with cod(x,M) = codx,M) = d. ThenS= copn,(x) and the claim follows with
Lemma 6.4.1 0

Corollary 6.4.9. Let M € 9. Further let h be a line that is one-coparallel to a
line g< M. Then there is a subspace<IM with gnH = & such thatoph, (p) =
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(copiy(p),H) for every point pe h.

Proof. We may assum®l € 9~ Letx andy be distinct points of. Sincehis
one-coparallel to a ling < M, we obtainh < .7 . LetN € 9™ such thah < N.
Setd := codh,g) andS:= {p € M | codp,N) = codM,N)}. Since copy(x) #
copty (y), Lemma 6.4.8 implies ci(S) = codM,N) = d+1 or S= M. In the
second case we obtain qodi, N) = d sinceg < Sandg andh are one-coparallel at
codistancel. Hence by Lemma 6.4.8, there is a subspgdce M with crky (H) =

d -+ 1 thatis contained in copy( p) for every pointp € h and thereforgNH = .
Since copy; (x) # copiy(Y), Lemma 6.4.1 implies cgk(copr,(p)) = d and the
claim follows. In the case cgk(S) = codM,N) = d + 1, we conclude by Lemma
6.4.1 thatSis a hyperplane of cogy(p) for everyp € h. O

A coconvex subspace of of finite codiameter consists of two parts of infinite
diameter as long a”™ and.”~ have infinite diameter. The following lemma
gives another possibility to make assertions about theafizenvex subspaces of
infinite diameter by taking the intersection with the maximiagular subspaces
into account.

Lemma6.4.10.LetU and V be two convex subspaces witdkW <.¥~. Further
let M € M~ and Ne 9~ M~ be two subspaces that contain a line of V. Let
MNV <U and NNV <U. ThenU=V.

Proof. LetM’ € 99t~ such thatvI’ andN intersectin a line of. SinceNNV < U,
we knowM’'NN < U. By Lemma 3.4.3(ii) and sincH is connected, there is
a finite sequencéM;)o<i<m € (M)™ with Mp = M andMp, = M’ such that
M; N Mj.1 # @ andM; contains a line of) for i < m. ThenM,; intersects both
U andV in maximal singular subspace by Lemma 3.1.1(iii) fea£ m. Assume
MinNV <U. ThenMiNV = M;NU. By Lemma 3.4.2 we obtairiy, v, (MiNV) <

V andriy,_, v (Miz1NV) <V. Thus, Lemma 3.3.3(iii) impliegi, v, (MiNV) =
Mi;1NV. Analogously,7i m,,(MiNU) = Mi;1NU and thereforeVi, 1NV =
Mi_1NU. Induction leads td1’ NV < U and henceM’' NV = M'NU.

Now let p € V be a point. By Lemmas 3.4.3(ii) and 3.1.1(v) there is a finite
sequencéN; )o<i<n € MM with No = N, Ny = M’ andp € N, such thati 1N 1
is line of V for i < nandNiNNy2 # @ fori <n—1. AssumeN; NV < U and
Nipr1NV <U fori <n—1. ThenNit1NNiy2 <U. Thus,Ni2 contains a line
of U and we obtaiN; ;2 "V < U as before. Induction leads d, NV < U and
hencep e U. O

The following proposition shows that the coconvex span ofbatpand of
a maximal singular subspace at finite codistance has prepé¢hat correspond
to the properties of metaplecta stated in the Propositiohs3,22.1.12(i) and
2.1.12(iii).
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Proposition 6.4.11.LetM < 91~ and let xe .#* be a point with d¢= codmM U
{x}) < diam(.*).

(i) Letl < (x,M)gbe aline. Furtherletle M UM~ and Ke M~ {L} such
that KNL =1. Then L< (x,M)g andcrky (KN (x,M)g) = d.

(i) Let Ke Mt suchthat MK is aline. Then K1 (x,M)c = (MNK,copl (X))
or copik (X) = K.

(iii) codm((x,M)g) =d.

(iv) For every point u= (x,M)g, there is a subspace K 9" UMt~ with K <
(x,M)g and codm K U {u}) = d. Moreover,(u,K)g = (x,M)g for every
such subspace K.

Proof. SetV := (x,M)g. Since we demandedi< diam.’*), Lemma 6.4.1 im-
plies crka(copiy (X)) =d+1. Letx' € M be a point with cogk,x') = d and let
g < M be a line through’ that intersects copy(x) in a pointy. Then by Corol-
lary 4.2.8 there is a ling’ throughx that is one-coparallel tg with cod(g,g') =
d+1. LetM’ € 9" be the subspace that contayis By Lemma 6.4.8 we ob-
tain codM,M’) = d + 2 or codp,M’) = codp’,M) = d + 1 for every pair of
points(p, ') € M x M’. SinceV is coconvex, we conclude cqpfx') <V and
hence,(x,cophy (X)) <V. Letp e M’ ~ (x,copiy (X)). Thenp ¢ copiy (y) by
Corollary 6.4.9 and hence, cgu M) = d+ 1. Thus, copy(p) # copty(x) and
hence by Lemma 6.4.1, there is a poing cophy (p) ~ cophy (x). This implies
p € (g,X)c <V. We concludeV’ <V.

LetN € M~ 91~ such thaig < N. SetU™ := (M,copi(X))g. Let analogously
N € M~ 9™ such thay <N and seU™ := (M’,copry (X))g. We will show
V =U"TUU". Since codx,N) =d+1 andx € N, we obtain copj(x) <V
by the coconvexity o/ and therefore~ < V. AnalogouslyU™ <V. Since
Ut uU~ is a convex subspace adiu {x} CU"UU ", it remains to show that
U+ uUU~ is coconvex to conclude = U+ UU ~. By symmetric reasons it suffices
to show that for a pair of point&au,v) € Ut x U~ and a pointv with w L v and
cod(u,w) = cod(u,v) + 1, we obtairne U~

Sinceg < N, we obtain cri(copty(x)) = d+1 by Lemma 6.4.1 and hence,
crky(NNU~) =d by Lemma 6.1.2. Let <M be an arbitrary line and let
K e M~ M~ be the subspace that containif U~ is singular and hend¢~ = M,
we obtainK NU~ = 1. FurthermoreNNU~ = g and hence, fiN) = d + 1.
This implies rKK) = d + 1 by Lemma 3.4.3(iii) and thus, atkK NU~) = d.

If I ncophy(x) = @, then Lemma 6.1.1 implies c@d K) = d and hence| =
coplk (X) by Lemma 6.4.1. I intersects copj(x) in a singleton, then this sin-
gleton equals copi(x) by Lemma 6.4.1. If < copn,(X), thenK = copr (x) by
Lemma 6.1.1. Hence, (i) holds faf— if it is singular.

Now let diam(U~) > 2. Then crik(KNU~) = d by Lemma 3.4.3(iii). Assume
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I Nncopiy(X) = @. Then Lemma 6.1.1 implies thKtcontains a point at codistance
d — 1 tox and therefore cik(copik (X)) = d by Lemma 6.4.1. By Corollary 6.4.7
we obtain copg (x) <U ™~ since copy(X) <U~. Thus, copg (x) = (I, copi (X)) =
KNU~. Assumel intersects cogj(X) in a single point. Then again cqgix) <
U~ by Corollary 6.4.7. Since cop((l,copi (X))) = d by Lemma 6.4.1, this im-
plies (I, copi (x)) = KNU~. Finally assumé < copn,(x). For dian{.¥ ") =
d+ 1, we obtainK = copi (x) by Lemma 6.1.1. For diat”~) >d+2, we
obtain codx,K) = d+2 by Lemma 6.1.1. Hence, qkcopik (X)) = d+2 by
Lemma 6.4.1 and agaih, copi (x)) = KNU~ since copg(x) < U~ by Corol-
lary 6.4.7. Therefore we conclude that (ii) holds fbr.

Now letv e U~. Further letw L v with codx,w) = cod(x,v) + 1. Suppose
w ¢ U~. First assume that gr (w) contains a lind throughv and letK <
9 be the subspace that contaifvgl). Thenw € copk (X) < K sincev € K.

If U~ is singular and hence equdis, this is a contradiction since (ii) holds
for U~. If diam(U~) > 2, we obtain a contradiction by Corollary 6.4.7 since
cophy(X) <M <U~ and copg(x) < NNU~. Thus, pg- (w) = {v}. Letl <U~
be a line througtv. ThenY = (w,1)g is a symplecton. Since+- contains a hy-
perplane ofU~ NY, we concludedJ~NY =1. LetG <Y be a generator with

| <G. Thenl’:=w-NGisaline. Letw €I’ {v} and letv € | <~ {v}. Then
cod(x,w) > cod(x,w) — 1. Sincel < pry- (W), we obtain cox,w') < cod(x,V)
and codx,w') < codx,V'), otherwise we would obtain a contradiction as before.
Hence, cofx,w') = cod(x,v) < codx,V'). This implies copy(x) = |’ and there-
fore, codx,Y) = cod(x,w). Since codx,V') > cod(x,w) — 1, wis not a cogate of

in Y and hence by Proposition 4.2.5, cppx) is a generator of. Thus, copy(x)
contains a poimv’ with | < pry-(w”’), a contradiction. We concludee U .

To prove that for every poini € U' and every poinw | v with cod(u,w) =
codu,v) + 1, we obtainv € U, it suffices now to show that there are subspaces
My € 9~ andN, € 97 such thay, := MyNN, is a line that intersects cogr(u)

in a single point andl ~ = (My, copy, (u))g =: Uy. By Lemmas 6.4.1 and 6.1.2
we know crlg, ((gu, copty, (u))) = cod(u,gy) — 1. Hence by Lemmas 6.4.10 and
3.4.3(iii), it suffices to show cqal, g,) = d + 1 and(gy, copiy (u)) <U~. Since
U™ is connected, we may restrict ourselves to the case.

Assumeu¢ M’. LetK € 9™ be the subspace that contains ThenK "M’ = {x}

by Lemma 3.4.2 and hendé,< U by Lemma 3.4.3(iii). Since ci(NNU ") =

d, we conclude by symmetric reasons @R’ "U") = d. Hence, the sub-
space copy (X) is a hyperplane oN'NU~ by Lemma 6.4.1. Sinc&’ and

K intersect in a line oU™ by Lemma 3.4.2, we obtaii N copry (X) # @.
This implies codx',K) = d+ 1 and hence again by Lemma 6.4.1, we obtain
crkg (copik (X)) = d+ 1 since cogx,X') = d. Suppose cag,q) > d+1 for every
pair (p,q) € copik (X') x M. Then codK,M) = d + 2 since otherwise every point
of M would have codistanceé + 1 to K, which is case (a) of Lemma 6.4.8, but
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coplk (X') < Ugem COPK () contradicts this case. Since ¢adM) = d + 1, case
(b) of Lemma 6.4.8 holds and consequently, there is a goitcopr (X') with
cod p,M) =d~+1. Hence, coy(p) = M by the supposition. Since cgd,M) =
d+2, we know dianh. ~) > d + 2 and hence, M) > d + 2 by Theorem 3.4.4.
This is a contradiction to Lemma 6.4.1. Thus, there is a pointopi (X') with
codmM U {z}) = d. Sincex € copn,(z) . cophy,(x), Lemma 6.4.1 implies that
there is a poin € copfly (X) \ copty(z). By Corollary 4.2.8 the lineszandx'Z
are one-coparallel to each other with ¢erix'Z) = d + 1. Thus, we could have
chosenx'Z instead ofg andK instead ofVI’. Therefore may restrain ourselves to
the caseie M'.

First assume cqd,y) = d. Then codu,M) = d+ 1 and copy,(u) # copry, (X).
By Lemma 6.4.1 there is a poite copn,(u) ~ copr,(x) and hencepx and
yz are one-coparallel to each other by Corollary 4.2.8. Ngt 9t~ 9t~ with
yz< Ny. Then copy, (x) and copg, (u) intersect in a common hyperplahkeby
Corollary 6.4.9. Since cogf(x) < U™, we obtain copg,(u) = (zH) <U~.
Thus, U, = U~ follows with M, := M andg, := yz We consider a special
case for cofu,y) = d: Lety be the cogate ok in ¢g. Then cody',y) = d.
Foru =Yy, we can choose = x' and henceN, = N. Thus, the above implies
U~ = (M,copiy(y))g. Therefore we may exchange the rolexoandy. As a
consequence, the case ¢o’) = d is also done. Therefore we may assume
u € copny (y) Ncophy (X) =: H.

By Corollary 6.4.9, we know thatl is a hyperplane of cogy(X'). By Lemma
6.4.1 this implies crig/(H) = d + 2. In the case cqdl,M’) =d+ 1 we obtain
cod(p,M’) = cod p’,M) = d+ 1 for every pair of pointgp, p’) € M x M. Hence,
Lemma 6.4.8 impliesd = Upenm cophy () and therefore copy(u) = M. For
codM,M’) = d+2, Lemma 6.4.8 implies that consists exactly of the points
that have codistancé +2 to M and hence, cqd,M) = d+2. We conclude
codmM U {u}) = d + 1 for both cases. Sinag < u andg’ is one-coparallel to
gwith codd’,g) = d+ 1, we obtain co¢u,g) = d+ 1. Thus, codtNU{u}) =d
by Lemma 6.1.1. Sincg £ copty(X), we obtain copg(x) # copty(u). Hence by
Lemma 6.4.1, there is a poiate copry(X) ~ copiy(u). By Corollary 4.2.8 the
lines zX andux are one-coparallel to each other. By Corollary 6.4.9 theddg
that copg(u) < (X, copry(x)). HenceU~ = Uy, for N, := N andg, := zX. This
concludes/ =U+tuUuU .

We obtain crig(NNV) =d sinceNNV =NNU~. Thus, crik(N'NV) =d by
symmetric reasons. Hence, (i) follows from Lemma 3.4.8(i€Claim (ii) holds
since we know that it holds fdd —. Now suppose there are pointsandv in
V with codu,v) = d—1. Since diafi¥”~) > d, there is a pointv L v with
cod(u,w) = d. By the coconvexity oY/ this impliesw € V and hence, the subspace
K emtum withwv< K is contained in/. Hence(u,K)s <V and we obtain
crkn(NNV) =d —1 by (i), a contradiction. Thus, codw) = d and (iii) follows
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from codx,x') = d. Finally, we already showed that for every paint U+ there
is a subspacell, € M~ such thatM, <V and codniM, U {u}) = d. Now let
K € 9t~ be an arbitrary subspace with <V and codnfK U {u}) = d. Then
(u,K)g <V and therefore we conclude,K)cN.~ =U~ and({u,K)cN./" =
U™ by (i) and Lemma 6.4.10. Thusy,K)g =V and (iv) follows by symmetric
reasons. |

Among the coconvex spans of a point and a maximal singulapade at finite
codistance the ones of codiameter 1 play a special role.

Lemma 6.4.12.Let M€ M~ and let xe . such thatcodm((x,M)g) = 1. Set
V= <X,M>G.

(i) Let pe 7 \V. Then(p,prym(Pp)) is an element ot ~ (M UM™).

(i) Let Ne 9t such that NNV contains no line. Then NV # & if and only if
Nemtum .

Proof. (i) By Proposition 6.4.11(iv) we may assurpes .~. By Lemma 6.4.1
there is lineg < M with cod(x,g) = 1 and setl :=dist(p,g). Further lez € g with
dist(p,z) =d. Then codx, (p,z)g) > d by Proposition 2.1.17(ii). Since c(dz) =
1, there is by Proposition 2.1.16(ii) a poidte (p,z)q with cod(x,Z) = d and
dist(z,Z) =d — 1. SinceV is coconvex, we obtaid € V and hence(z,Z)q < V.
By Proposition 2.1.17(i) this implies digt,V) = 1.

Now letl <V be aline with distp,|) = 1. LetL € 9~ with| <L. ThenL <V by
Proposition 6.4.11(i). Thus, digs,L) = 1 and Lemma 3.4.2 implies that, gp)
is a line. We may assumegp) = 1. LetL’ € M with (p,I) <L’. By Lemma
3.4.3(i) and Proposition 6.4.11§) intersects’ in a hyperplane. Since¢ V and
dist(p,V) = 1 this implies py (p) = L' NV and therefore(p, pr, (p)) = L'.

(ii) By Proposition 6.4.11(iv) we assuni¢ < .~. Letpe N~ V. Then by (i)
there is a subspadé € M ~ M~ such thakk = (p,pr, (p)). AssumeN ¢ M.
ThenNNK = {p} by Lemma 3.4.3(i). Since- NV <K this impliesNNV = @.
Now assum& € M~. Thenl = NNKisaline by Lemma 3.4.2. Thukintersects
KNV in a single point sinc&K NV = pr,(p) is a hyperplane oK. O

The following two claims show that the elements the cocorspans of a point
of " and an element dit~ induce a lattice structure.

Proposition 6.4.13.Let Ne 9~ and ze . with codm(z,N)g) = 1. Set W:=
(z,N)g. Further let Me 9~ and ye . such that V:= (y,M)g « W and d:=
codmV) < diam(.# ).
(@) If diam(. ") = d+ 1, then there is a point x .9 such that VW =
{x} Ucoprys(X), whereo € {+,—}, such thatrk(K) = d + 1 for every
K e mo.
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(b) If diam(.”*) > d+1, then there is a subspaced 9t~ and a point xc . *
with codm((x,L)g) = d+ 1 such that VWW = (x,L)g.

Proof. Note that cofy,M) = d+ 1 by Lemma 6.4.1 since (k) > d+ 1 by
Theorem 3.4.4. Lep € M and assume ¢ W. By Lemma 6.4.12(i) we obtain
K:=(p,pry(p)) € M~ MM~. With Lemma 3.4.2 this implies thal NK is a
line. ThereforeM NW contains a poins since crik (K NW) = 1. By Proposition
6.4.11(iv) there is a subspabt € 9" such thats,M’)g = V. Then analogously,
M’NW # &. Thus by Proposition 6.4.11(iv), we may assuyn@V. SinceV < W,
this impliesM £ W and henceM NW = {s} by Proposition 6.4.11(i). Hence,
there is indeed a poiri € M W as assumed. By the coconvexityWwf we con-
cludes € copny, (y). SetU :=V NW. With ps<V we conclude crk(KNV)=d
by Proposition 6.4.11(i). Hence, kK NU) = d+ 1 sincep € KNV ~ W and
crkx (KNW) =1.

Suppos&J N.~ contains a singular subspa8such that cri (S) = d for a sub-
spaceK’ € M~ M ~. ThenScontains a lind since rKK’) > d+ 1 by Theorem
3.4.4. Letl’ e M~ with | <L'. Then by Proposition 6.4.11(l) is contained
in bothV andW and thusL’ < U. Since crli/(K'NU) < d andU is convex we
concluddJ N.~ =VN.¥~ by Lemma 6.4.10. This is a contradictionNbg W.
SupposeU N~ contains a poing with cody,q) = d. SinceU is convex
(9,8)g < U and therefore Proposition 2.1.16(ii) implies that thera pintq’ € U
with d L g and cody,q) =d+1. LetK' € M~ 9 with q < K’. Then
crkg: ({(q,copi.(y))) = d by Lemma 6.4.1. Sincéqg, copi.(y)) < U by the co-
convexity ofU, this is contradiction. Thus, cégdq) > d+ 1 for everyg € U.
Assume diari”~) =d + 1. Then by Theorem 3.4.4 we concludékl =d+1
orrk(M) =d+1. Assume rkK) = d+1. Then for every subspa&e € 9t~ 9~
with K" < .~, we obtain rkK’'nU) < 1. Thus by Lemma 3.1.1(iii}) N.~
does not contain any line. Sintkn .7~ is convex, this implied) N.~ = {s}.
By Lemma 6.4.5 we know i) = d + 1 if and only if every element dt* has
rankd + 1. Thus, rkM) =d+ 1 impliesU N.* = {y} by symmetric reasons.
Consequently, for riK) = rk(M) = d+ 1, we obtainU = {s,y}. Furthermore,
&~ is a metaplecton by Theorem 3.4.4. Hence, cofy) = {s} by (A12).

Now let rk(M) =d+1 and rKK) > d+ 1. ThenK NU contains a liné throughs,
since crig (KNU) =d+ 1. LetL € M~ with | <L. ThenL < U since by Propo-
sition 6.4.11(i)L is contained in botly andW. Since diani.” ) =d+ 1 and
cod(y,q) > d+ 1 for everyg € U we obtainU N.~ < copr,-(y), this implies
L <copry-(y). Thus,K £ copr,-(y) by Lemma6.1.1. Hence, atkcopi (y)) =
d+1 by Lemma 6.4.1 and therefol€ "U = copik (y). Applying Lemma 6.4.10
we concludé&J N.~ = copr,- (y) since both copy- (y) andU are convex. Anal-
ogously, we obtaity = {s} Ucopry+ (s) for rk(M) >d+1and rkK) =d+1.
Finally let dian{.”) > d+ 1. Then agairK NU contains a liné throughs and
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hencel < U for the subspack € 97t~ wit | <L. By symmetric reasons there is
are subspacds € M* andK’ € M~ M+ that intersect in a line df such that
L’ <U and crk/(K'NU) =d+1. Sinces< L, we obtain codry,L)g) < d+ 1.
SinceU is coconvex, we obtaidy,L)c < U. Thus, we conclud& n.#° =
(y,L)cgN.9 for o € {+,—} by Proposition 6.4.11(i) and Lemma 6.4.10. [J

Lemma 6.4.14.Let xe . and let Me 9~ such thatcodmM U {x}) > O.
Set V:= {x} Ucopr,-(x) if copp,(x) =M and V:= (x,M)g otherwise. Fur-
ther let ye .~ with dist(y,V) = 1 such thatpr, (y) contains a line. Then there
is a subspace Me M~ with codmM’ U {x}) = codmM U {x}) — 1 such that
(X M')e = (y.V)e.

Proof. Let| < pr,(y) be a line and leK € 9t such thaty,|) < K. Sincel <V
andM <V, we obtainK ¢ 9~ by Lemmas 3.1.1(iii) and 3.4.3(iii). Set:=
codmM U {x}). If copry(x) = M, then Lemma 6.4.1 implies (M) = d and
diam(.~) = d. Thus,M < copr,-(x) and we obtain cod@ U {x}) =d—1
by Lemma 6.1.1. Sinc¥ N.~ = copr,-(x), we obtain crk(KNV) = d by
Lemma 6.4.1. If copg(x) < M, then crig (KNV) = d follows from Proposition
6.4.11(i).

By Lemma 6.4.1 there is a lirge< M with cod(x,g) = d. LetN € Dt~ 91~ with
g <N. Then codniNU {x}) =d—1 by Lemma 6.1.1. S&f =V N.7/".
By Lemma 6.1.2 we obtaiiK N (y,V~)g = (y,KNV) and therefore cig(N N
(\,V7)g) =d—1 by Lemma 3.4.3(iii). Since cgri(copry(x)) =d by Lemma
6.4.1, there is a lina < NN (y,V )4 that intersects cop(x) in a single point.
Let M' € M~ with he M. ThenM’ < (y,V~)q by Lemma 3.4.3(iii). Since
codmV) = d by Proposition 6.4.11(iii) and cgcopr(x)) = d, we conclude
NNV = copry(x) by the coconvexity o¥/. Thus,NN (y,V~)g = (h,copiy(X)).
By Proposition 6.4.11(ii) this equald N (x,M")g. Applying Lemma 6.1.2 leads
to (y,V~)g = (h,copi(x),M’)g = (x,M")}s N.#~. Sincey andM are both con-
tained in(x, M’)g, we obtainv U{y} C (x,M’)g. HenceM'U{x} C (y,V)g yields
(X M) = (y,V)c. 0

As already mentioned, the coconvex spans of a poinst’dfand an element of
91~ induce a lattice structure. 1" has infinite diameter, this follows already
from the last two claims. The same is true for the case whezeyguoint of .+
has a cogate i¥~. For the remaining cases we do not prove this fact since it is
an immediate consequence of the following.

Our goal is to prove that” is a partial twin Grassmannian. Therefore we
show that there is projective space arising frofn Moreover,.# is isomorphic
to a partial twin Grassmannian of this projective space. thizr we define the
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following two sets:

Pmi={(xM)g| (x,M) € & xM™ A codmMU{x}) =1}
Imi={{P€ Pn|UNV <P} UEPyAVE Py {U}}

Proposition 6.4.15. The pair(Pm,-%n) is a projective space.

Proof. From the definition we know that every elementdf, has at least two ele-
ments. Thus(%n, %m) is a point-line space. Moreover, by definitiofm, Zm)

is singular. By Lemma 6.4.5 and symmetric reasons we mayrassk(M_) <
rk(M,.) for diam(.” ) < e, whereMg € MM for o € {+,—}. By Lemma 6.4.5
and Theorem 3.4.4 this implies(M_) = diam(.#*) in this case.

LetU andV be two distinct elements of?,,. Further letX andY be two distinct
elements of#, such thaU NV < XNY. First assume diaf”*) = 2. Then
every element of)t~ has rank 2 and hence, Proposition 6.4.13 implies that there
is a pointx € ./t such that) NV = {x} Ucopr,,- (x). Sincex e XNY, Proposi-
tion 6.4.13 impliesX NY = {x} Ucopr,-(x) and thereforelJ NV = XNY. Now
assume diaia”’*) > 2. Then by Proposition 6.4.13 there is a poirt . and
a subspac® € M~ with codmM U {x}) = 2 such thatl NV = (x, M)s. Anal-
ogously, there is a pointand a subspadé € 2t~ with codm(N U {y}) = 2 such
thatX NY = (y,N)g. Since(x,M)c =UNV < (y,N)g, we conclude(x,M)g =
(y,N)g by Proposition 6.4.11(iv). Thu$%nm, Zm) is linear.

We show that Z,, %) satisfies (VY). LetG andH be two distinct elements of
Zmand letP € 2~ (GUH) such that foi € {0,1} there exist; € %n, A € G
andB; € H with {P A;,Bj} < Lj andLg # L3. SincelLg # L1 andP £ G, we obtain
Ag # Aq since( P, ZLm) is linear. AnalogouslyBg # B;. Since we want to show
GNH # @, we may assumB; ¢ G andA ¢ H fori € {0,1}.

First assume diate” ) > 3. Then by Proposition 6.4.13 there is a poirt . *
and a subspadel € 9t~ with codmM U {x}) = 2 such thatho N A1 = (X,M)G.
SetS:= (x,M)cNP. SinceP # Ag andS< AgN P, we obtain that every element
of Lo containsS. Thus,S < By and analogouslys < B;. SinceP ¢ G, we ob-
tain (x,M)g £ P. AssumeS contains a subspadéc M~ and letk € M~ M~
such thatK NN is a line. For diam.” ") > 4 this is the case by Proposition
6.4.13 and moreove§= (y,N)g for a pointy € . with codm NN {y}) = 3 by
Proposition 6.4.11(iv). Hence by Proposition 6.4.11(ikkdK N'S) = 3 in this
case. For diaiy’~) = 3, we have rkN) = 3. Moreover,S= {y} Ucopry,-(y)
for a pointy € .* by Proposition 6.4.13. Sinds < copr.(y), we know by
(A2) that.~ is no metaplecton and hence (K > 3 by Theorem 3.4.4. By
Lemma 6.1.1 we conclude codkU {y}) = 2 and hence, ck(KNS) = 3 by
Lemma 6.4.1. Sinc& < (x,M)g, we obtain crk (KN (x,M)g) = 2 by Propo-
sition 6.4.11(i). Letp € KN ({x,M)s S Then(p,S¢ < (x,M)s and hence
(p,Sc = (x,M)c by Lemma 6.4.14. Analogously, there is a pajrd KNByNB;



‘ 6.4. Twin SPO spaces of symplectic rank 3 }7 167

such that{q,Sc = BoNB1. SinceG # H this impliesq ¢ (p,Si¢ and hence,
(p,0,Sc € Pm by Lemma 6.4.14. Moreove(p,d,Sc € GNH.

For dian{.#~) > 3 it remains the case where diai~) = 3 and S contains
no element ofM~. By Proposition 6.4.13 there is a poiptc . such that
S= {y} Ucopry,-(y). If SN.~ contains a line, then the unique element of
I~ that contains this line is contained in @, A; andP and hence ir§, a
contradiction. Thus, cops-(y) contains a single poirg andS= {y,z}. Since
for every subspace dbt ~\ 91~ that containsz, the coprojection ofy is {z},
we conclude by Lemma 6.4.1 that all maximal subspaces’of have rank 3.
Hence by Theorem 3.4.47~ is a metaplecton of diameter 3. This implies
(x,M)cN.#~ = M because of Proposition 6.4.11(i). Thus, Proposition @@}
implies (x,M)g = (y,M)g. Analogously,BoNB1 = (y,N)g, whereN € 91~. We
know z€ M NN sincezis the cogate of in .~ and bothM andN are cocon-
vex. SinceM £ S, we obtainM £ P. With P > AgN By this impliesM £ Bp and
thereforeM NN = {z} by Lemma 3.4.2. LeK € D~ 9~ with ze K. Then
KNM andK NN are distinct lines by Lemma 3.4.2. Lpte KNM~ {z} and
ge KNN~{z} and letM’ € 9~ with pg < M’. Thenz ¢ M’ by Proposi-
tion 2.2.5 since(z, pg) has rank 2. Sincé!’ € 9, there is pointp’ € M’ with

Z )/ z Sincezis the cogate foy in ., this implies codriM’ U {y}) = 1 and
hence,(y,M’)c € Zn. We obtainz € (y,M’)g by the coconvexity ofy,M’)c.
Thus by Proposition 6.4.11(igp < (y,M’)g yields M € (y,M’)s. Analogously,
N € (y,M’)g and therefore(g,M')c € GNH.

Now assume dia”~) = 2. Then every element abi~ has rank 2. Thus,
Lemma 6.4.5 implies ) = 2 for everyK € M~ 9" with K < .*. Hence,
QN7 e M for everyQ € P, by Proposition 6.4.11(i). Furthermore by Propo-
sition 6.4.13,QNQ N.* contains a single point for evel® € Zn \ {Q}.
Now letx € QN.#*. By Proposition 6.4.11(iv) there is a subspadec Mt~
such that(x,M)s = Q and codniM U {x}) = 1. By Lemma 6.4.1 there is a line
| € M with codx,1) = 2 such thatx has a cogate ih. LetK € 9t~ 9t~ with

| < K. By Proposition 6.4.11(i)Q intersectsK in a hyperplane. Hence there
is a linel” < K such thatl’ N Q is a singleton that is contained in cgK).
Since copg (X) < Q by Proposition 6.4.11(ii), we obtain codhhu {x}) = 1. Let
M e M~ with I’ <M. ThenQ = (x,M)g € Zn. Sincel’ < Q, we know
Q # Q and thereforeQN Q' N.* = {x} Ucopr,-(x) by Proposition 6.4.13.
This implies copt, - (x) < Q for every pointg € QN.~*. By the coconvexity of
Q together with Proposition 2.1.16(ii) there is for everymig € QN.¥~ a point
g€ QN+ with cod(p,q) = 2. Thus,QN.#~ = Ugeqn.s+ COPry-(0)-

Fori € {0,1} let x; the unique point iy NP N .. Sincexg andx; are both
contained inP andPN . is an element of™, we obtainxg L x;. Further-
more,Lo # L1 yieldsxg # x;. Lety be the unique point ofgN A3 N.#*. Then

y L x; for i € {0,1} sinceA N.* contains both andy. SinceP ¢ G, we ob-
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tainy ¢ P and therefore/ ¢ xox1. Thus, there is a unique subspdce 9t with
{X0,X1,¥} C K. SincePn .~ is the unique element @aht™ that contains«x;
andy ¢ P, we obtainK ¢ 9. Analogously, the unique poimtof BonB; N.#*
lies in a subspace @bt \. 9™ that contains¢gx;. Hence,z € K by the unique-
ness of such a space. This impled z. Moreover,y # z sinceG # H. Thus,
there is a subspadé € M* with yz< N. Letp € ./~ with codmNU {p}) = 1.
Then(p,N)g € Pn. Furthermore(p,N)s contains{y} Ucopry-(y) = AoUA;
and{z} Ucopr,-(z) = BoUBs. Thus,(t,N)g € GNH and the claim follows.

Our next aim is to study correspondences between the sulrspag” and the
ones of( Pm, Zm).

For a pointp € .7, we definel (p) := {P € %y | p € P}. Furthermore, for a
set of pointsM C .7, we definel' (M) 1= {P € Zn |M C P} =N, M(p). For
two pointsp andq, we writel (p,q) rather tharf ({p,q}).

Lemma 6.4.16. For every set of points M .7, the setl (M) is a subspace of
(Pm, ZLm)-

Proof. Let P andQ be two distinct elements ¢f(M). Then for evenfM C PN Q
and hence{R e Zn | R>PNQ} CI(M). The claim follows by the definition
of %m. O

Proposition 6.4.17.Let p and g be two points a#’~. Thencrkr ) (T (p,q)) =
dist(p,q).

Proof. Setd := dist(p,q). We proceed by induction ovet. For p = g, there
is nothing to prove. Now letl > 0 and assume that there is a paint. q with
dist(p,r) = d — 1 such that crk ) (F(p,r)) =d — 1. LetG € Zn with G < T'(r)
and seS:=pP.

First assume diaf”~) > 3 or rk(K) > 3 for everyK € " If diam(.¥ ") > 3,
then Proposition 6.4.13 implies thats the coconvex span of a poit . and
an element oN € 9t~ with codmN U {x}) = 2. Hence, Proposition 6.4.11(i)
implies that there is a line< Sthroughr. If diam(.¥~) = 2 and rKK) > 3 for
everyK € M+, then Proposition 6.4.13 implied= {x} Ucopr, (x) for a point
x € .*. By Lemma 6.4.5 we know () > 3 for everyN € 9t ~ 9~ with

r € N. Hence, Lemma 6.4.1 implies that there is a lire Sthroughr. Now let
M € 9t~ with | <M. Sincel < P for everyP € G, we obtainM < Shy Proposi-
tion 6.4.11(i). Assum& £ I'(q). Thenq ¢ Sand therefore di$g, M) = 1. Thus,
pry () is a line by Lemma 3.4.2. By Lemma 6.4.14 we conclydSc € Pnm
and therefordg, S\ € GNTI(q). We conclude tha (g) contains a hyperplane of
r(r).

Now assume i) = 2 for everyK € M*. ThenSuU copr, (r) by Proposition
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6.4.13. By the definition of#, this implies thaiG is uniquely defined and con-
sequently,G =I'(r). By Lemma 3.1.1(i) there is a symplectoh< ./~ that
containsrq. Letse .1 be the cogate of in a symplecton that is opposite
Y. Then codr,s) = 2 and codq,s) = 1. LetM € 9~ with rq < M. Then
(s;M)g € F'(r)nT(qg). SinceG =T(r), we conclude thaf (q) contains a hy-
perplane of (r).

By Lemma 2.1.13 there is a poiste . with s < g and cods, p) = d. This
implies cods,r) = 1. We conclude by Proposition 2.1.16(ii) that there is a line
| throughs with codr,s) = 2. LetM € .+ with | <M. Then(r,M)g € Pn.
Sinces € (r,M)g ands < pg, we conclud€r,M)g € I'(r) ~. I (q) by Proposition
6.4.11(iii). Thus,I'(q) intersectd (r) in a proper hyperplane. Since digtr) =
cod(s, p) — cod(s,r), we obtainp € (r,M)g by the coconvexity ofir, M) and
thereforel (p,r) £ I'(q). This leads to crkp,) (T (p,q) NI (r)) = d. Sincer €
(p,g)g and (p,qg)g < P for everyP € I'(p,q), we concludel (p,q) < I'(r) and
consequently, criky,) (I (p,g)) = d. O

Proposition 6.4.18.Let pc .~ and g€ .. Then the following holds:

(i) Let p— g. Thenl(p) andl (q) are complementary subspaces of the pro-
jective spacé Znm, Zm).

(i) rk(T'(p,g)) = cod(p,q) — 1.

Proof. (i) From Proposition 6.4.11(iii) we dedu¢ép) Nl (q) = @. LetP € &y,
with P ¢ I'(p) Ul (g). Then Lemma 6.4.12(i) implieky := (x,prp(X)) € M~
(M UM), wherex € {p,q}. By the definition of " and M~ we know
codKp,Kq) = 2 sincep < q. For {x,y} = {p,q}, Lemma 6.4.8 implies that
the setS, := {r € Ky | codr,Ky) = 2} is a subspace dfy with corank 2. Fur-
thermore, by Lemma 6.4.1 we know that cyy) is a hyperplane oKy. Thus,
there is a linely < copr (y). Let My € MT UM~ with Iy < My. By Lemma
6.1.1 we obtain codiMy U {y}) = 1 and thereford?, := (y,Mx)c € I'(y). Set
G:={Q&c Im|P,NP; < Q}.

By Proposition 6.4.11(ii) and sindg < copr (d), we obtain copg,(q) = KpN Py
and thereforeS, < By. Now letp’ € Sp. Then Lemma 6.4.1 implies cqpi(p') =
S ThusS; < (g, p')e < Py and analogously, US; < Py. Since(p, copri (4)) =
Kp, we conclude coRrp(q) % Py by Proposition 6.4.11(i). Sinc8, is a hyper-
plane of cog(p(q), this impliesk, NP, NPy = Sp. Since crik, (prp(g)) = 1, there
is a pointq’ € prp(q) N ;. Sinceq ¢ &, we know codd,Kp) = 1 and hence,
KpNP < coerp(q’) by Proposition 6.4.11(iii). By Lemma 6.4.1 and Proposition
6.4.11(i) this implieK,NP = coerp(q’). Thus,S; < coerp(q’) < P and analo-
gously,§; < P.

AssumeS; contains a lind. LetM € M~ with | <M. ThenM <P,NPyNP
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by Proposition 6.4.11(i). With Lemma 6.4.10 we concly&g, M)q = P, NPy N
S~ < PsinceKpNPy, NPy = S,. Now assume tha$, is a singleton. Then
rk(Kp) = 2 and hence, 1iVlg) = 2 by Lemma 6.4.5. This implieB,NPyN.Y~ =
S, by Proposition 6.4.13 and therefore ag&ym Pyn .~ < P. We conclude
analogoushyP, NPyN.# " < P and thereford® € G.

(i) Setd :=cod(p,q). We proceed by induction ovet. Ford = 0, the claim
follows by (i). Now we assumel > 0 and that there is a point | p with
codr,q) =d—1=rk(I'(r,q)) — 1. Sincep € (r,q)c and hencep € P for every
P el (r,q), we obtain (r,q) < (p,q). Letq « gwith dist(r,g) =d — 1. Since
by Proposition 2.1.23p, d')q is an SPO space, Lemma 2.1.21(ii) implies that there
is a pointr’ € (p,q)g with r’ L o such that digt,r’) = d and distp,r’) =d — 1.
We obtain codqg,r’) = 1. Letl be a line through’ with codg,l) = 2 and let
M € M~ with | <M. Then(q,M)g € I'(q). Withr’ € M andp € (r’,g)c we con-
clude(g,M) € ['(p,q). Suppose € (g,M)c. Then(r,r')g = (p.q)g < (4. M)c
and hencey € (g,M)g, a contradiction to Proposition 6.4.11(iii). Thugp,q) >
I(r,q). By Proposition 6.4.17 we know th&{r) contains a hyperplane of(p)
and hence, cikp, ) (' (r,g)) = 1. The claim follows. O

Lemma 6.4.19.Let x and y be two distinct collinear points of ~. Further let
P e Znwith P¢ T(X)UT(y). Then there is a unique pointe.#~ such that
I(x,y) U{P} C T (2). Moreover, z= xy if and only ifl (z) < (I'(x),l (y)).

Proof. Let M € 91~ with xy < M. By Lemma 6.4.12(i) there is a subspace
Kp € M~ M~ such thatp € Kp andKpy NP = prp(p) for p € {x,y}. If Ky =Ky,
thenxyintersect$ in a single poinzsinceKyNP is a hyperplane dkx by Lemma
6.4.12(i). We obtaiz € M in this case. IKx # Ky, theny ¢ Ky and hence, gy (y)

is a line by Lemma 3.4.2. Since this line contaiqst intersectsP in a single
point z. By Proposition 2.2.5 there is a unique subspltec 9t that contains
(¥, prg, (y)). SinceKy is the only element of)t \ Mt~ that contains g (y) and

y ¢ Ky, we concludev’ € M. Now xy < M’ impliesM = M’ and thusz € M.
LetQ e I (x,y). Thenxy < Q and henceM < Q by Proposition 6.4.11(i). With
ze M andz e P this impliesl” (x,y) U{P} C I' (). The uniqueness affollows by
Proposition 6.4.17 sinde(x,y) is a hyperplane of (z) that does not contai.

Let K € M~ 9~ such thatxy < K. AssumeP € (I'(x),'(y)). Then there are
element$ € I'(x) andR, € I' (y) such thaP > B,NR, =: S. By Lemma 6.4.12(j)
we obtain{x, prg, (x)) € M~ M~ and hence(x, pry (X)) = K since both contain
xy. Analogously, pg, (y) is a hyperplane oK. Sincex € prg (Y) ~ prpy(x) we
conclude crk(KN'S) = 2. Since rkK) > 2 this impliesk NS+# @ and hence,
KNP # @. ThereforeP intersectK in a hyperplane by Lemma 6.4.12(ii) and
Proposition 6.4.11(i). This implig§ = Ky = Ky and hence < xy as above.
Conversely, lez € xy. Sincex ¢ P andy ¢ P we knowx # z = y. By Proposition
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6.4.17 there is an elemeRt € ' (x) \ ' (2). With x € B, andz € P we conclude
by Lemma 6.4.12(ii) and Proposition 6.4.11(i) that b&hand P contain a hy-
perplane oK. Thus, crik(KNPNR) =2 sinceze P\ R. SetS:=PnNR. If
diam(.# ") > 3, then(y,S)c € I'(y) by Proposition 6.4.13 and Lemma 6.4.14. If
diam(.~) = 2 and rKK) > 2, thenS= {w} Ucopr (w) for a pointw € .# by
Proposition 6.4.13. Furthermoken Scontains a line and hencgy, Sig € ' (y) by
Lemma 6.4.14. It remains the case d{grft ) = rk(K) = 2. By Lemma 6.4.5 and
Proposition 6.4.13 we obtai®= {w} Ucopr,(w) for a pointw € .. Since
KNS+# @, we knoww € K and hencey | w. Moreover,w # Yy sincey ¢ P.
By Lemma 3.1.1(i) there is a symplectdhcontainingK. Since there exists a
symplecton that is opposité, there is a poinp € copry+ (W) ~\ copry-(y). Let

M € M~ with wy < M. Then codniM U {p}) = 1 and therefor®, := (p,M)g €
r(y). Sincez ¢ P, we knowy ¢ P and henceP # R, Hence,w e BNR,
implies PcN R, = {w} U copry+ (w) by Proposition 6.4.13. Thus in the point-
line (Pm,Zm), the pointP lies on the line through’ and R, and therefore
P e (F'(x),l(y)). Thus,I'(z) = (PT(x,y)) < (F(x),I(y)), since by Proposition
6.4.17T (x,y) is a hyperplane of (z). O

Lemma 6.4.20.Let x and y be two distinct points of ~. Further let© be a sub-
space off Zm, Zm) with ' (x,y) < © andcrke(I' (x,y)) = crkr(x (F(x,y)). Then
there is a unique point ¢ .~ such that (z) = ©. Moreover, z= (X,Yy)q if and
only if© < (I'(x),(y)).

Proof. By Proposition 6.4.17 there exists at most one such poinSetd :=
dist(x,y). We may assumd > 0 since otherwise there is nothing to prove. By
Proposition 6.4.17 we know crk (I (x,y)) = d and hence, c(I (x,y)) = d.
Thus thereisa sdtR | 0 <i < d} C &y, and a natural numbée < d such that
©=(R,F(xy)|0<i<d) andon(r(x),r(y)) = (R,I(xy)[0<i<k),

Assume there are pointg andy; in .~ such that™ (x;,yj) = (R,I'(x,y) |0 <

i < j) for somej < d. We show that there are poirf;; andyj1 such that
M(Xj+1,Yj+1) = (R,F(x,y) | 0<i < j+1). By the definition ofP; we know

Pj & T(xj,yj) and cri ) (T (xj,yj)) = d — j. This implies distx;,yj) = d — j by
Proposition 6.4.17.

Firstassum®; € I'(x;). Sinced > j, there is a pointv € .~ such thatv | yj and
dist(w,xj) =d— j — 1. By Lemma 6.4.19 there is a powit, 1 such thaf (yj1) >

M (w,y;j)U{Pj}. Sincel (y;) andrl (w) intersect in common hyperplane we know
Yj+1 L yj. Moreover, since di$t, xj) = dist(x;j,y;) — 1, we conclude by Propo-
sition 6.4.17 thaf (xj,y;) is a hyperplane of (xj,w) and therefor&R, I (x,y) |
0<i<j+1) =T (xj,w) <T(yj+1). Since distxj,yj+1) > dist(xj,yj) — 1, this
leads to digixj,yj+1) =d—j—1 andl(xj,yj+1) = (R,F(x,y) |0<i < j+1).
Hence, the claim follows witlxj, 1 := xj. Moreover, we obtaixj 1 € (X;,Yj)q
andyj1 € (Xj,Yj)q for this case.
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Now assumeP; € (F(xj),I(yj)). We may assum®; ¢ I'(x;) and analogously,
P, ¢ ['(y;) since this case is already done. Then there are subspaeceB(x;)
andR, € I'(y;j) such thaPNR, < Pj. Assumed > j + 1. Then by Lemma 6.4.10
we know that(xj,y;)q iS the convex span of the singular subspacegof/;)q that
containx;. Thus,(xj,yj)q is the convex span of all points_L x; with dist(w,y;) =
d—j—1. Supposé € I'(w) for every pointw L x; with distw,y;) =d—j—1
and hencew € P.. ThenP > (Xj,yj)g and we concludg; € B N R, a contradic-
tion toP; ¢ I'(yj). Thus, there is a poiw L x; with dist(w,yj) =d — j — 1 such
thatP ¢ I'(w). Ford = j + 1, this is still true sincg; ¢ P; and hencey; ¢ Fx. By
Lemma 6.4.19 there is a poirf,1 such that” (xj;1) 2 I'(w,x;) U{P;}. Analo-
gously, there is a point/ such that" (W) D ' (w,x;) U{R,}. Sincel (w,x;) is a hy-
perplane of all"(x;), ' (xj+1) andl" (W) and thereford (xj11) < (F(x;),T (W)),
we conclude by Lemma 6.4.19 thgt x; 1 andw are on a common line iry’.
Sincew € (xj,Yj)g, we knowl (w) > I'(xj,yj) and thereford (w,x;) > I (xj,y;j).
Thus, [ (W,yj) > (R, (xj,yj)) > T (Xj,yj). By Proposition 6.4.17 this implies
thatw' is the unique point on the lingx; 1 with dist(w’,y;) =d— j — 1. Suppose
W =Xj+1. Then{R,Pj} CI(W). Thus,B € I'(W) sinceR, R, andP; are distinct
points on a common line i Ym, Zm). SinceR ¢ I'(w), Lemma 6.4.19 implies
thatx; is the unique point withr (xj) 2 I'(w,x;) U{R} and hencex; = w, a con-
tradiction to distx;,yj) = d — j. Therefore we conclude disf1,y;) =d — j.
SinceP; € I'(xj;+1) we are in the situation above and hence, we find a point
Yi+1 € (Xj+1,Yj)g such thatl (Xj+1,yj+1) = (R, (xy) | 0<i < j+1). Since
W € (Xj,Yj)g, We obtainxj;1 € (Xj,yj)g and consequently;;1 € (Xj,yj)g- Thus
we conclude by induction that f@® < (I'(x), I (y)), there are pointg = x4 = yq
in (x,y)g such thaf (z) = (R,I'(x,y) |0<i<d)=0.

Finally assumeP; ¢ (I'(xj),l(yj)). Letw e .~ be a point withw L x; and
distw,y;) = d— j—1. Thenl(xj,w) is a hyperplane of (x;) by Proposition
6.4.17. Since®; ¢ '(Xj), Lemma 6.4.19 implies that there is a poit, € .7~
such thatPj, I (xj,w)) =T (Xj11). Sincew € (Xj,Yj)g, We obtain (xj,yj) < T'(w)
and hencel (xj,Yj) < F(Xj+1). Suppose (Xj+1,Yj) > '(Xj,yj). Then there
is an elemenP € Py, with P € T'(Xj11,Yj) ~ T (Xj) and we obtair (Xj,+1) =
(P.T(xj,w)) <(F(xj),T(yj)). SinceP; € I'(xj11), this is a contradiction t®; ¢
(F(xj),T(yj)). Thus,I(xj,yj) = (Xj+1,Yj) and consequently, disj1,yj) =
d—j. SincePj € I'(xj;1), there is as above a poit;1 € (Xj11,Yj)g such that
F(Xj+1,Yj+1) = (P, T (X}, Y))-

It remains to show that € (x,y)q impliesT (z) < (I'(x),I'(y)). Letu andv be
distinct points of(x, y)g such that(I (u), I (v)) < (I'(x),F(y)). It suffices to show
M (w) < ([ (u),F(v)) for every pointw € uvif u L vand for every pointv € (u,v)q
with w L uand distw, v) = dist(u, v) — 1 otherwise. The first follows from Lemma
6.4.19. Hence, letv be a point withw | u and disfw,v) = dist(u,v) — 1. Then
Proposition 6.4.17 implies thatu) andl" (w) have a hyperplane in common and
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crkr ) (F(w,v)) = crkr(y) (M (u,v)) + 1. Thus,I'(u,v) is a hyperplane of (w,v).
Let P € &y, such thatP € T'(w,v) \T'(u). We obtainl"(w) = (P, (u,w)) <
(F(u),r(v). O

We are no ready the prove the main result of this section.

Proposition 6.4.21.Let x and y be opposite points of. Further letZ be the
Grassmannian of Zn, . %m) with respect tdl (x),I (y)). Thenu: % — Z: p—
I'(p) is an injective homomorphism that maps every line/obijectively onto a
line of 7.

Proof. By Proposition 6.4.18 the subspadgx) andl" (y) are complementary in
(Pm,-%4m). Hence, the twin Grassmannian exists. By Proposition 6.4.17 we
obtain crk o) (F(p) NT(q)) = crkr(g)(F(p) NT(q)) < e for two pointsp andq
of *. Analogously, (p) andl(q) are commensurate i§ andq are points of
& ~. Thus, the image of” is contained inZ. Moreover, the map is injective
by Proposition 6.4.17.

Let | be a line of.# and letp andq be two distinct points orh. ThenT (p)
andrl (q) have a hyperplanél in common by Proposition 6.4.17. Thus,=
{S<(Pm,Zm) |H<S<(I'(p),l(q))}isalinein2. By Lemma 6.4.20 every
element ofL has a preimage. Moreovéiis mapped bijectively ontb. O

Theorem 6.4.22.Arigid twin SPO space whose symplecta have i&akd whose
lines are contained in at most two maximal singular subspase partial twin
Grassmannian of a projective space.

Proof. We denote the rigid twin SPO space I8¢ and its two connected compo-
nents by and.” . Letx € . andy € ./~ be opposite points of”.

First assume diaf” ") < 2 and hence, dia(”~) < 2. Then.”" is a projec-
tive space by Theorem 2.1.22. %7 is a singleton, the”~ is a singleton, too.
Moreover,.7 is isomorphic to the unique twin Grassmannian of the project
spaces ™.

Now assume tha#’* contains a line. Then the subspace cppty) is a comple-
ment of {x} in /. LetZ = (2", 2") be the twin Grassmannian of * with
respect tq{x},copry-(y)). Define a map

i +
u: S —9: {p»—>{p} !fpey7.
p—copry.(p) if pe.s
By Corollary 5.3.8 we conclude thatmaps.# ™ bijectively ontoZ+. Moreover,
by the definition of the lines i¥* we see directly that induces an isomorphism
from 7" onto 2*. Now let p andq be distinct points of”~. Then by Lemma
2.1.13 there is a pointe . with r < pwith r < q. Sincep* andg* are both
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hyperplanes of* and therefore commensurate,maps.#~ injectively into
2. Letr € pg. Then(pH,gH) = .. By (A2) every points € ./ with p <
S« ( is non-opposite and hencep” Ng* < copry+ (r) < (p4,g#). Conversely,
for a hyperplanéd of .+ with H > p* N g there is a poins € H . (p* N gH).
We obtains < p or s« q and hence, there is a unique poirg pq with r <» s
and hence* = H. Thus,u maps lines of” ~ bijectively onto lines of7 .
Forpe .t andqe ., we obtainp* Ngtg if and only if p ¢ copr, (q) and
hencep < g. Since« is total, (TG1) holds. Sincg maps.#* bijectively onto
the singletons of”*, the image of¥* underu fulfills the conditions (TG2) and
(TG3). For everyp € ., we obtainp € g# for everyq e copr,-(p), hence
(TG2) holds for the image of”~ underu. Let p andq be two distinct points of
<~ and letH be a hyperplane of”* that containg” Ng#. ThenH, p* andg*
are on a common line i~. Sinceu maps lines of¥ ~ bijectively onto lines of
2~ , we conclude that there is a poing pqsuch that =H. Thus, (TG3) holds
and the claim follows.

Now assume dia”*) > 2. Since every line of” is contained in at most two
maximal singular subspaces 6f, we may use the notations of this section. Let
2 be the twin Grassmannian 6y, %n) with respect toI' (x),[ (y)) and set
u: ¥ — 2: p—r(p). By Proposition 6.4.21 we know that: .¥% — 2: p—
I(p) is an injective homomorphism. Henc&* is isomorphic to¥. Since« is
total in ., Proposition 6.4.18 implies (TG1). L& & &y. Then by 6.4.11(iii)
there are pointp € PN.#" andqc PN.#*. SinceP ¢ p*NgH, we conclude
that (TG2) holds. Finally, (TG3) follows from Lemma 6.4.20. O

By Proposition 3.4.1 the restriction that every line &f is contained in at
most two maximal singular spaces does not affect the caseewfe contains
a symplecton properly. If the two connected componentsiagukar subspaces,
this condition is obviously true. Hence, the only case thatffected is the case
where.* and.~ are opposite symplecta.

Remark6.4.23 Let P € £,. By Proposition 6.4.11(i) the elements 9t+ U
M~ that contain a line oP are entirely contained iR whereas no element of
M~ (M UM™) is a subspace d®. Interchanging the roles ™ UM~ and
M~ (IMT UM ™) leads to exactly the same results. This is because eveiglpart
twin Grassmannian of a projective spages also a partial twin Grassmannian of
a subspace of the dual of the projective spéace

6.5 Twin SPO spaces of symplectic rank 4

In this section we consider the rigid twin SPO spaces of sgotja rank 4. There-
fore, throughout this section |e¥’ be a twin SPO space of symplectic rank 4.
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This implies that is rigid and has diameter 2. By & = (£*, ¢7) and
ST =(27,.%7) we denote the connected components#f Further we de-
note by9t the set of maximal singular subspacess6f Further we denote byt
the set of maximal singular subspacess6f

Since we have have already covered the case whétds a symplecton, we
may constrain ourselves to the case whefé contains a symplecton properly.
By Proposition 3.5.2 this implies that every singular spafceank 2 is contained
in exactly two elements @ft. For reasons of convenience, we include in this sec-
tion the case wherg” ", and therefore als¢”~, is a symplecton whose singular
subspaces of rank 2 are contained in exactly two elemefi.of

By Theorem 3.5.4 we know sfl¢’) = 3 if . is a symplecton and stk”) > 4
otherwise. In the latter case we & := {M € 9t | rk(M) > 4}. Moreover, for
o e {+,—}, weseth{ :={Mec My |M <9}, For the case where’" is a
symplecton, we demanded that every singular subspace loRrancontained in
exactly two elements dbt. Hence, Proposition 2.2.8 implies that the dual polar
graph of " is bipartite. Thus, there is a subS&t™ C 9t such that every singular
subspace of rank 2 of’* is contained in exactly one element®f; . We choose
a subspac#! € 9 and a singular subspade< .7~ that is oppositéM which
exists by Proposition 2.3.5. Then we defiig to be the subset abit such that
N € M, and every singular subspace of rank 256f is contained in exactly one
element of0t; . We sethty := 9 UM, .

The sett \ 91, is denoted bylg. Foro € {+,—}, we sethy := {M ¢
Mo | M < .79}, The following lemma affirms that we made the right choice
determining the sebt; for the case srks’) = 3.

Lemma 6.5.1.Let M and N be two elements 9k with cod M,N) = 1. Then
M € 9y if and only if Ne 90y.

Proof. By symmetric reasons it suffices to show thaie 9t; impliesN € 9t1.
Since rKN) > 3 there is an independent set of poififs | 0 < i < 3} such that
S:=(p;|0<i<3) <Nisasubspace of rank 3.

Letsrk(.”) > 3. ThenrKM) > 3, sinceM € 9t;. Since codM,N) = 1, we obtain
codpi,M) =1 fori < 3. Moreover, copy(pi) contains a hyperplane & and
therefore;<3coph, (pi) # @. Thus, there is a poing € M with cod(q, pi) =

1 fori < 3 and codg,S) = 1. Hence, Lemma 2.1.21(ii) implies that there is a
point ps <> g with S< ps*. Thus,(ps,S) is singular. We concludd > Sand
consequentlyN € <M, by Lemma 3.1.1(i) and Proposition 2.2.5.

Now let srk.) = 3. Then”" and.”~ are opposite symplecta and there is
an isomorphisng : . — .~ that maps every point of” onto its cogate in
&/~ . By definition of 90, there are subspac&t € M, andN’ € M, such that
M’ andN’ are opposite. Since cd’,N’) =1, we conclude(M’)‘lglm N =g
and hence(M’)? € M, by Proposition 2.2.8. Sincg is an isomorphism, this
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impliesM? € M1. Now codM,N) = 1 yieldsM? NN = & and hence again by
Proposition 2.2.8 € M. O

Lemma 6.5.2.Let M € My and Ne 91 such that M and N have a line in com-
mon. Thenk(MNN) = 2.

Proof. For sr.%) = 3, this is a consequence of Proposition 2.2.8. Therefore we
may assume stk”) > 4. By Proposition 3.5.2 we know (kI NN) < 2. Hence,
there is a pointp € M~ N. SinceN is maximal, there is a poing € N with
dist(p,q) = 2. The symplectorip,q)y contains(p, M NN) and thusM < (p,0)q

by Lemma 3.1.1(iii). Hence, g(q) is a hyperplane oM. By Proposition 3.5.2

we conclude thatq, pry,(q)) is contained in an element &ft; and consequently,

N > (g,pry(9)) sinceN is the unique element @bty that containgg, M N N).
ThereforeM NN = pry, (). O

In this section the subspaces we are interested in are tlwamc spans of
an element ofJip and a point at finite codistance. Therefore we examine in the
following the coprojection of a point at finite codistanceaim element of)t and
furthermore, how elements aft at finite codistance are related to each other.

Lemma 6.5.3.Let M € 9t and let x be a point witlcod(x,M) < co.
(@) If M € My, thencopy, (X) is a singleton or a hyperplane of M.

(b) If M € My andcopry (x) = M, thencod(x,M) = diam(.”*) andrk(M) =
2-diam.7 ).

(c) If M € 91 andcophy, (X) < M, thencrky (coph, (X)) = 2-codx,M) — 1.

Proof. By symmetric reasons we may assure . *. First let.”~ be a sym-
plecton. Therxhas a cogat® in .~ andM is a generator of” . If X € M, then
copiy (x) ={X'} and criga ({X'}) =3=2-codx,X) — 1. If X ¢ M, thenM contains
a point that is not collinear t& and equivalently is opposite This implies that
copny (x) is a hyperplane df1 and hence, cil¢(copn, (X)) =1=2-codx,M) —1.
Now let.~ be not a symplecton and hence, (s¥k~) > 3 by Theorem 3.5.4.
First assumeM € 9t1. Lety € M such that cogk, p) > codx,y) for everyp €
M. Further letz — x with cod(x,y) = dist(y,z). If y =z then copy(x) is a
hyperplane oM and the claim follows. Thus we may assume (coy) > 1.
Since codx, p) > codx,y) for every p € M, we obtain disz,M) = codx,y)
and hence, ripry,(z)) = 2-cod(x,y) by Lemma 3.5.3(ii). Suppose pfz) = M.
Then codx,M) = cod(x,y) and the claim follows since cag(y) = M and hence,
diam(.#~) = cod(x,y) by Theorem 3.5.4. Therefore we may assumgpr < M.
Let S< M be a subspace such thaj,e) is a proper hyperplane & Then there
is a pointx’ € Swith dist(x', z) = cod(x,y) + 1. Since p;(2) < (X, zgand rkS) =
2-codx,y) + 1, Theorem 3.5.4 implies th&is a maximal singular subspace of
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(X,2)g. By (A12)x has a cogate itX', z)y and codx, (X', 2)g) = codx,y) + 1. Since
codx, p) > cod(x,y) for everyp € S, all points ofSare collinear to the cogate of
xin (X',z)g. By the maximality ofSin (X', 2)q this implies cop{x,’%(x) < Sand
hence, copy(x) NS# @. We conclude that copi(x) is a complement to py(z)

in M and therefore ciig(cophy (X)) = rk(pry(2)) +1=2-codx,M) — 1.

Now assumeM € M. Assume copy(X) is not a hyperplane dfl. Then there
is a line g such that cotk, p) > cod(x,g) for every pointp € M. Lety € g.
Since copg(x) = g, Lemma 6.1.1 implies that there is a poiwith codx,z) =
codx,y) —1 andg < z'. If z€ M, then by Lemma 3.1.1(i) there is a symplec-
tonY that containgz g). If z¢ M, then there is a poird € M with Z / zwe
setY := (z,Z)q. For both cases Lemma 3.1.1(iii) implié < Y. Suppose that
x has no cogate il. Since codx,g) > codx,z), Proposition 2.1.12(iv) implies
g < copk (x). Furthermore, by Propositions 4.2.5 we conclude thatgepiis a
generator of. Hence, copf(x) = M since codx, p) > cod(x, g) for everyp € M.
Let M’ be a generator of with M NM’ = &. Then copyy, (x) = M” and Proposi-
tion 2.2.9(iii) impliesM’ € M1p. Since codx,M’) = cod(x,M) — 1 we may repeat
this construction to obtain after finitely many steps a sabsp” € My with
codx,M”) = 0, a contradiction. Thuss has a cogat® in Y. Then copy(X) is

a hyperplane oM if X' ¢ M, a contradiction. Hence¢ € M and copy; (x) is a
singleton. O

Lemma 6.5.4.Let M € 9t and let x and y be distinct collinear points such that
codx,M) = cody,M) < co.

(i) Let M e M. Further letcopr, (x) be a hyperplane of M and lebpn, (y)
be a singleton. Theoopty, (y) < cophy(X).

(i) Let M e 9. Further letcopn, (x) andcopr, (y) be both proper subspaces
of M. Thencopn, (X) andcopn, (y) have a hyperplane in common.

Proof. Setd := cod(x,M).

(i) Since ricopny(x)) = 2, there is a lineg < copp,(x) with g copry,(y) =
@. Thus by Lemma 6.1.1, there is a pommtith codz,y) =d — 2 andg <
z-. Hence,Y := (z,copry(y))g is @ symplecton that contairisopty (y),d). By
Lemma 3.1.1(iii) this implied <Y. By Proposition 2.1.12(iv) we conclude that
the point in copyy(y) is a cogate fory in Y. Since codx,copry(y)) < d and
x Ly, we obtain coéx,Y) = d. Hence, copy(x) < copk (x) and consequently,
codx,z) =d — 1. We conclude by Proposition 4.2.5 that cg{X) is a generator
of Y. Since every point of cop(x) has at least codistande- 1 toy, we conclude
copk, (Y) < copk (x) and hence, copy(y) < cophy(X).

(i) Suppose there is a line< coph, (x) that is disjoint to copg(y). Then by
Lemma 6.5.3 there is a poipte cophy, () ~ copi, (X). By Proposition 3.5.2 there
is a subspachl € Mt such thatp,1) < N. Thenl < copr(x) and Lemma 6.5.3
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implies that copg(x) is a hyperplane iN. On the other hantn copry(y) = @
and hence, copl(y) = {p} by Lemma 6.5.3. Sincp € copiy(y) . copiy(X), this
is a contradiction to (i). O

Lemma 6.5.5.Let M € M. Further let N be a singular subspace of raBkhat
is one-coparallel to M. Then & 90.

Proof. Setd := codM,N). Letxe M andy € N be points with co¢k,y) = d.
Let g < M be a line withx ¢ g and leth < N be a line withy ¢ h. By Lemma
4.2.1 there are points < y with dist(w,g) = d — 1 and pg(w) = g andz < x
with dist(z.h) =d — 1 and pf(z) = h. Since distw,x) = dist(y,z) =d, w <y
andx < z, we conclude by (A12) and Corollary 4.2.8 that the metapléetx)q
and(y, z)q are opposite and there is an isomorphigm(w, x)g — (Y, z)g that maps
every point onto its cogate. By Lemma 3.1.1(i{B,g) < (w,X)g impliesM <
(w,X)g. AnalogouslyN < (y,z);. Now M? is a maximal singular subspace of
(y, 2)g With rk(M?) = 3. If d > 2, then srk(y, 2)g) > 3 by Theorem 3.5.4 and hence
we concludeM? e Mty by Proposition 3.5.2. Il = 2, then there is a generator
M’ < (y, 2)q disjoint toM?®. Since for a point ip € M, the cogate fopin (y, Z)gis
contained ifM?, there is a point ifM’ that is oppositep. Thus, codM,M’) = 1
and we obtaiM’ € Mty. By Proposition 2.2.9(iii) this implieM? e M.

Sincey and every point o have codistance to a point inM, we obtain(y, h) <
M?. Let pe M? < (y,h) and letp’ be the preimage gb with respect tap. Then
cop,(p') =hand codp’,h) =d—1. Thus by Lemma 6.1.1, there is a paiwith
cod p',q) =d—2andh < g*. Then(p,q)q is a symplecton and Lemma 3.1.1(iii)
impliesM? < (p,q)g since(p,h) < (p,q)g. Let N’ € M such that(y,h) < N'.
ThenN < N’ or N = M? by Proposition 3.5.2. Sincp ¢ (y,h) andN'"M? =
(y,h), we obtainp ¢ N’. By Proposition 2.1.12(ivp is the cogate fop' in (p, g)g.
By Proposition 3.5.N’ intersects p, q)q in a generator and hence there is a point
q € N'n(p,q)y with cod p’,q') = d — 2. Therefore coth’,N) =d—1 and we
concludeN = M?. O

A coconvex subspace of of finite codiameter consists of two parts of infinite
diameter as long ag’" and.#~ have infinite diameter. Similarly to the last sec-
tion, the following lemma gives a possibility to make asset about the size of
convex subspaces of infinite diameter by taking the int¢ieewith the maximal
singular subspaces into account.

Lemma 6.5.6.LetU and V be two convex subspaces witkY <.#~. Further
let M € Mp and Ne M1 with M <U andrk(NNU) > 2. Then NMU = NNV
impliesU=V.

Proof. If U is singular, thetd = M and hence by Proposition 3.518,nU is a
proper hyperplane df1. Thus, rKNNV) = 2 and Lemma 3.1.1(iii) implies that
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V is singular, too. The claim follows. Therefore we may fronwnon assume
diamU) > 2 and hence, fNNU) > 2 by Lemma 3.1.1(jii).

Let p € V be a point. Since is contained in an element 8t that intersects
V in a maximal singular subspace, Lemma 3.1.1(v) implies tierte is a finite
sequencéN;)o<i<n € ML with Ng = N and p € N such thatNi N1 Ni;1 <V
and rkNi N Ni+1) = 2 for i < n. By Proposition 3.5.2 we concludg € 9, if
and only ifi is even. Assum&i NV =N; < U fori <n-—1 andi even. Then
Ni;1 < U by Lemma 3.1.1(iii). Ifi < n—2, this implies rkNi;2NU) > 2 and
hence, rkNi;2NU) > 3 by Lemma 3.1.1(iii). For a poirg € N;;2, we conclude
by Lemma 3.3.3(i)

qeV & pny(@) <V & pry(9) <U < qeU.

SinceNNV = NNU, induction providedN; NV = N;nU for everyi < n and
thereforep € U. O

Lemma6.5.7.Let M and N be elements 9%, such thattl=MNN is aline. Fur-
ther let x be a point witltod(x, M) < o such thatcoph, (X) < M and copry(X) <
N. Thenrg n((l,copiy(X))) = (I,copry(X)).

Proof. We may assumg € .#*. Setd := cod(x,M). Further se:= copiy(X)
and T := copry(X). Then Lemma 6.5.3 implies qiKS) = 2d — 1. First let
codx,N) # d. By Lemma 3.3.3(iii) we may assume dad\) =d — 1. This
implies codx,l) =d —1 and copf(x) =|. Furthermore, Lemma 6.5.3 implies
crkn(T) = 2d — 3. For everyp € Swe obtain pg(p) < T. Thus,miun({1,9) <T.
Since crlg ({1, S)) = 2d — 3, Lemma 3.3.3(ijii) implies cig(ru n ({1, S))) =2d -3
and thereforemn((l,S) =T.

Now let codx,N) = d. Then Lemma 6.5.3 implies qtkT) = 2d — 1. First sup-
pose co@x,l) =d—1. Thend > 1 and hence, there is a poigtc N . | such
that(qg,l) is disjoint toT. By Lemma 3.3.3(iii) there is a poirg € M such that
pry(P)NT # @. Theng ¢ pry(p) since rkpry(p)) = 2 by Lemma 3.5.3(ii) and
I < pry(p). Thus,Y = (p,0)q is a symplecton. By Lemma 3.1.1(iii), bottA
andN contain a generator of. Sincel <Y, we obtain co¢x,Y) < d and since
codx, pry(p)) = d, we conclude cogk,Y) =d. Suppose has a cogate M. Then
this cogate would be contained ingdp) . | and hence there is a pointMNY
at codistancel — 2 to x, a contradiction. Thus by Proposition 4.2.5, cgp) is
a generator of. As a consequence this implies 66K~ ) > 3, since otherwise
<~ =Y by Theorem 3.5.4 and thereforehas a cogate ilY by (A12). Since
codx,pry(p)) =d and codx, (g,l)) = d — 1, the generators copfx) andY NN
intersect in a single poirf. Hence, Proposition 2.2.9(iv) implies cqx) € Mo,
a contradiction to Lemma 6.5.3. Thus, ¢rd) =d.

Assume that andSintersect in a single poirg Ford = 1, we obtairM = (I,S)
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andN = (I, T) and hence the claim follows from Lemma 3.3.3(iii). Therefare
may assume > 1. Then there is a poif € N \. | such thafq,1)NT = {s}. Let
p € M be a point such that g{p) N T > {s}. Since rkpry(p)) = 2 by Lemma
3.5.3(ii), we obtairg ¢ pry(p) and conclude that:= pry(p) N T is a line. Thus,
Y := (p,0Q)g is a symplecton. By Lemma 3.1.1(iii), boM andN contain a gen-
erator ofY. Since(q,|) <Y, we conclude cogk,Y) = d. We obtainh < copk,(x)
and therefore Proposition 4.2.5 implies that ¢dpy is a generator o¥. Since
(g,1)NT = {s}, the generators copfx) andY NN intersect in the lind.. Apply-
ing Proposition 2.2.8 provides that the corank 611 M) N copk, (X) in copk, (X)
is even. Withl <Y NM we conclude that cop(x) andY NM intersect in a line
g. Since(p,pry(p)) is a generator of that intersectdNY in a hyperplane and
h < pry(p) Ncopk (x), Proposition 2.2.8 implies thap, pry (p)) and copy (X) in-
tersectin a common hyperplane. Henge pry(p)) "M = (p, 1) contains a line of
S Thereforeg < (p,|) and we obtairp € (I, S). We concludagy n((1,S) > (I, T).
Since crlg (S) = crkn(T) = 2d — 1 the claim follows from Lemma 3.3.3(iii).
Now assumé < S SinceS< M, there is a point € M with codx,r) = d— 1.
Let g € N such that pg(r) = (q,1). Further letp € S\ 1. Since(p,l) < Sand
prv(Q) = (r,1) by the collinearity ofr andq, this implies thaty := (p,qg)g is a
symplecton. By Lemma 3.1.1(iii), botkl andN contain a generator of. As-
sume co@x,Y) =d+1. Then by Proposition 2.1.12(i® has a cogatg in Y.
Thus,y is collinear to all points of p,I) and hence(y, p,1) is a generator oY .
Since(y, p,1) andM NY are the only generators that contdjm!), we conclude
(p,pry(P)) = (Y, p, 1) and therefore pr(p) < T. Now assume cqat,Y) =d. Then
by Proposition 4.2.5 copfX) is a generator of sincer € Y andl < copk (X).
Sincer € M \ copk (X), we obtain copf(x) "M = (p,l). Hence by Proposition
2.2.8 and sincé < copk (X) "N we conclude thaN NY and copy(x) intersect
in a common hyperplane. Singes copk, (x) this implies pg (p) = copk (X) NN
and hence again g(p) < T. We concluderiy n(S) < T and the claim follows
from Lemma 3.3.3(iii). OJ

Corollary 6.5.8. Let V be connected convex subspace wligm(V) > 2 and
let M € M, be a subspace wittk(MNV) > 2. Further let x be a point with
cod(x,M) < e andcopn, (x) <V. Thencopty(x) <V for every subspace N9t
with rk(NNV) > 2 andcopry(x) < N.

Proof. Let N € 9t1 with rk(NNV) > 2. By Lemma 3.1.1(iilM NV andN NV
are maximal singular subspaces\af First assume there is a subsp#ce 91
with rk(KNV) > 2 and copg (x) = K. ThenK < copr,-(x) by Lemma 6.5.3.
Moreover, codx,K) = diam(.~) =:d and rKK) = 2d. Since by Lemma 6.5.3
there is no element dlip contained in copy-(x), we conclude by Proposi-
tion 2.1.16(i) that copy-(X) is singular and hence equais By Proposition
2.1.16(ii) every pointp € copry(x) has distance — cod(x, p) to K. This implies
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dist(K,N) = d —codx, p) and hence cogf(x) <V by Lemma 3.5.3(ii).

Now assume copf(x) < K for every subspack € 911 with rk(KNV) > 2. Then

by Lemma 3.1.1(v) and sind¢is connected, we may assume that there is a sub-
spacel € 9Mip such that bottN andM intersectL in a hyperplane. FoM = N
there is nothing to prove. Hence by Proposition 3.5.2 we nesume thaiv
andN intersect in a lind. Applying Lemma 6.5.7 yieldsi n((I,copiy(X))) =

(I, copiy(x)). With Lemma 3.5.3(ii) this impliegl, copr (X)) < V. O

Lemma 6.5.9. Let xe .. Further let H< .7~ be a singular subspace with
rk(H) =2 andcopt, (x) =H. Set d:= cod(x,H). Let M € 9ty and Ne& 911 such
that H=MNN and set d= codx,H). Then either

(@) codx,M)=d+1andcodx,N)=d or
(b) copy,(x) =H andcodx,q) > d for every point ¢g N.

Proof. Let p€ M~ H. Then for every poingj € N\ H, the subspacep,g)g
is a symplecton and the only generators pfqg)q that contairH are (p,H) and
(g,H). By Lemma 6.5.3 we conclude that either ¢adM) = d and copg (x) = H
or codx,M) = d+ 1 and copy, (X) is a singleton.

First consider the case codM) = d+ 1. Then we may assume thptis the
unique point oM at codistance + 1 tox. Suppose that is a poigte N ~\. H with
codx,q) =d+ 1. SetY := (p,q)g. Then codx,Y) =d+ 1 sinceH <Y. Hence,
p andq are both contained in copfx), a contradiction to Proposition 2.1.16(i).
Thus, codx,N) = d and (a) holds.

Now consider the case codM) = d and copy;(x) = H. Letqe N~ H andY :=
(p,0)g- Ifcod(x,Y) =d+1, then Proposition 2.1.12(iv) implies thalhas a cogate
X' in'Y. Since this cogate is collinear to all pointldf we conclude thax',H) is
a generator of . Since codx,M) =d, we concludex’,H) = (g,H) and therefore
codx,q) > d. If cod(x,Y) = d, then Proposition 4.2.5 implies that cogx) is
a generator o¥. Since codx, p) = d — 1, we conclude copix) = (g,H) and
therefore cotk, q) = d. Thus, (b) holds. O

Lemma 6.5.10.Let xe .7+ and M€ 9;. Then there is a subspace &N}
with xe N such thatod p, M) = cod(q, N) andrk(copnr, (p)) = rk(copiy(q)) for
every pair of pointgp,q) € N x M.

Proof. Setd := cod(x,M) andk := rk(copr,(x)). Thenk € {0,2} by Lemma
6.5.3. Hence, there is a poirt € M with codx,x) = d. Lety be a point of
copty (X).

Firstletk=0. Then by Lemma 4.2.1 there is a pamt> X with dist(z M) =d -1
and rkpry (z)) > 1. Thus, rkM N (y,z)g) > 2 and thereford/ < (y,z)g by Lemma
3.1.1(iii). By Corollary 4.2.8 there is a metaplecton camitzg X that is opposite
(Y, 2)g. Moreover, this metaplecton contains a singular subspaafrank 3 such
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thatM andN are one-coparallel to each other with ¢ddN) = d andx € N. By
Lemma 6.5.5 we obtaiN € 90t,.

Now letk = 2. Further assume digm¥’*) > d+ 1, then Lemma 6.1.1 implies that
there is a point L y with cod(x,z) = d+ 1 and pf,(z) > {y}. Thus by Lemma
3.1.1(iii), (z,X')g is a symplecton that contaimg. By Corollary 4.2.8 there is a
symplectorl with x € Y such that(z,x')q andY are one-coparallel to each other
at codistancel + 1. LetM’ be the generator of that is one-coparallel tbl with
codM,M’) =d+1. ThenM’ € My by Lemma 6.5.5. Since¢ M’ there is a gen-
eratorN € Y with x € N that is disjoint toM’. By Proposition 2.2.8 we conclude
N € 9. Since every poingl € M has a cogate at codistandte- 1 in'Y that is con-
tained inM’, we obtain cod, N) = d and copg(q) is a hyperplane ofl. On the
other hand, every poiri € N has a cogate ifz, X')g at codistancel + 1 that is not
contained irM sincep ¢ M’. This implies codp,M) = d and rk'copty, (p)) = 2.
Finally, letk = 2 and dianf.*) = d, then copy; (x) < copr,-(x) and hence by
(A2), .~ is not a metaplecton. By Theorem 3.5.4 this implieg sfk = 2d. By
Proposition 2.1.16(ii) there is a poigt € . with x Ly and cody’,x) = d.
By Proposition 3.5.3/ is contained in a singular subspace of rank Hence,
Lemma 6.5.3 implies that this singular subspace contaiirgea bf copr,+ (X).
We may assumg < |. If | < x*, Lemma 3.1.1(i) implies that there is a symplec-
tonY that containx andl. Otherwise, we set := (x,l)q. By Proposition 4.2.5
copk (X) is a generator and hence there is a genefdterY such thak € N and

N intersects cogi(xX) in a hyperplane. By Lemma 6.5.3 the generator ¢opy

is contained in an element 8ft;. Thus,N € 99t by Proposition 3.5.2. Since
copiy(X) is a hyperplane oN that does not contair, we conclude by Lemma
6.5.4(i) that copg(p) is a hyperplane ol for every pointg € copiy(x). More-
over, codg,N) = d. Analogously for every poinp € copry(x'), we conclude
cod p,M) = d and rkcopry,(p)) = 2. For every poing € M ~ coph,(X), there
is a pointg’ € copty(x) such thag € g'X'. Since copyg(q) Ncopry(X) contains
a line, Proposition 2.1.12(iv) implies that every point distline has codistance
d to p. Hence, cog,N) = d. Moreover, Lemma 6.5.3 implies that cip) is

a hyperplane ofN. Analogously for every poinp € N ~ copr(X), we obtain
codp,M) =d and rkcopiy(p)) = 2. O

The following proposition shows that the coconvex span dfiatof .~ and
an element of)t; has properties that correspond to the properties of metizple
stated in the Propositions 2.1.3, 2.1.12(i) and 2.1.22(iii

Proposition 6.5.11.Let xe . and Me M. Set V:= (x,M)g and n:=2-
cod(x,M) + 3 - rk(copiy (x)) — 3.

(i) Let S<V be a singular subspace witk(S) = 2. Further let Le 97ty and
K e Mj suchthat KNL = S. Then LV andcrkg (KNV) =n.
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(i) Let Ke 9y such thatrk(M NK) =2. Then KNV = (MNK,copi (x)) or
coplk (x) =K.

(iii) codm(V) =codx,M) — 1.

(iv) For every point ue V there is a subspace K 9t with K<V and2-
codu,K) + % -rk(coply (u)) — 3= n. Moreover{u,K)c =V for every such
subspace K.

Proof. Setd := cod(x,M) — 1 andk := rk(copnpy,(x)). Thenn=2d + ; —1. Lety
be a point of copy(x). Sincek € {0,2} by Lemma 6.5.3, there is a poikte M
with cod(x,X') = d.

By Lemma 6.5.10 there is a subspadec M3 with x e M’ such that coth, M) =
cod(g,M’) and rkicopry,(p)) = rk(copry (q)) for every pair of points(p,q) €
M’ x M. This implies 2 codx’,M’) + 3 - rk(coply (X)) — 3= n. If k=0, then
for every pointp € M’, there is a poing € M with codp,q) =d+ 1. Since
copty (q) = {p}, we obtainp € (x,q)c <V and henceM’ <V. If k=2, then
cophy (X) is a hyperplane oM’ that does not contaim and thereforeM’ =
(x,cophy (X)) < (x,X)g < V.

Let H < M be a hyperplane ofl such thaty < H. Then rkcopiy(x)) = g
By Proposition 3.5.2 there is a subspades 9t; such thatH < N. Let analo-
gouslyN’ € 9, such thatH’ := M’ N’ is a hyperplane oM’ with x € H' and
codX,H’) = d+1. Then rkcopry (X)) = &. Lemma 6.1.2 implieNNU~ =
(H,copry(x)). Sincexy < N, we obtain cri(copiy(x)) = 2d + 1 by Lemma
6.5.3. Since crg(H Ncopiy(x)) =2— 5 we conclude crig(NNU ") =2d+1—
(2— %) =n. By symmetric reasons gk N'NUF) =n.

SetU ™ := (M, copiy(x))g andU " := (M’, copty (X))g. We will showV =U*U
U~. Since co@x,N) =d+ 1 andx’ € N, we obtain copg(x) <V by the cocon-
vexity of V and thereforelJ = < V. Analogously,U™ <V. Thus,UTuUU" is
a convex subspace d. Sincex € UT andM < U™, it remains to show that
Ut UU™ is coconvex. By symmetric reasons it suffices to show thaa fioair of
points(u,v) € U™ x U~ and a poinw with w L v and codu,w) = cod(u,Vv) + 1,
we obtainw e U~

First assume thai ~ is singular. Thedd = =M andNNU~ =H. Thus, rKN) =
n+ 2 and therefore N) =2d+1 if k=0 and rKN) =2d + 2 if k=2. We
conclude diami ") = d+ 1 by Theorem 3.5.4. Moreover, k= 0, then.”*
and.”~ are opposite metaplecta and therefbteand M’ are one-coparallel to
each other at codistanae+ 1. Hence,M UM’ is coconvex and we conclude
V =MUM'’. Since srk”) = 2d + 1, claim (i) follows by Lemma 3.5.3(i). By
Lemma 6.5.3 we obtain (ii). For (iii) and (iv), there is notbito prove. Now let
k = 2. Assume there are pointiss M’, ve M andw L v such that cotl,v) =d
and coqu,w) =d+ 1. Thenw L p for every pointp € copn,(u) since other-
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wise the symplectorip,w)y would be contained in copr-(u) by Proposition
2.1.16(i), a contradiction to cdd,v) = d. Thus,w is collinear to all points of
(v,copny (u)). Since copy;(u) is a hyperplane oM andv ¢ copiy, (u), we obtain
(v,copp,(u)) = M and thereforav € M by the maximality ofM. By symmet-
ric reasons this implies thal UM’ is coconvex and henc®¥,= MUM’. Since
srk(.#) = 2d + 2, claim (i) follows by Lemma 3.5.3(i). Let € 911 such thak
intersectdV in a hyperplane. Then cgp(x) NK contains aline. Since by Lemma
6.5.3 we obtain that cop(x) is a line ifK contains a point at codistandeto x,
this implies (ii). For (iii) and (iv), there is nothing to pre. Thus, from now on
we may assume diaftd ) > 2.

Let S be an arbitrary hyperplane ™ with S# H and letK € 9t; be the sub-
space that contair@ Then crig (KNU~) =n by Lemma 3.5.3(i). Sinc&and
H have a line in common, we obtain cgk) < U~ or copk (X) = K by Lemma
6.5.7. Assumesncopty(x) = @. Then necessarillk= 0. By Lemma 6.5.9 we
obtain codx,K) = d and consequently, Lemma 6.5.3 impliesiofboprk (X)) =
2d — 1 =n. Hence, copf(x) = (S copi (x)) = KNU~. AssumeSn coph,(X)
is a point or a line. Then c)((S,copk(x))) = n by the same reason as fir
This implies againS copi (x)) = KNU~. Finally assum& < copny, (x). Then
necessarihlk = 1. By Lemma 6.5.9 implies cdd, p) > d + 1 for every point
p € K and we conclude that either cefk) = K or codx,K) = d+ 2 holds.
In the latter case we obtain grkcopik (X)) = 2d +3 by Lemma 6.5.3. Thus,
crkx ((S copi (x))) = 2d = n and againS copi (x)) = KNU~. Therefore (ii)
holds forU—.

Now letw L v for a pointv € U~ such that cotk,w) = codx,v) + 1. Suppose
w ¢ U~. First assume that gr (w) contains a liné throughv. Since by Lemma
3.1.1(i) | is contained in a symplecton &f ~, we obtain rkpr,-(w)) > 3 by
Proposition 2.1.27. Thus there is a subspiéce 9t; with we K andKNU™ =
pry- (w). This impliesw € copik (X) < K sincev € K, a contradiction to Corol-
lary 6.5.8 since copf(x) < NNU~. Thus, pg-(w) = {v}. Letl <U~ be a
line throughv. ThenY := (w,1)g is a symplecton. Since/* contains a hyper-
plane ofU~NY, we concludé&J " NY =1. LetG <Y be a generator with< G.
Then there is a lin¢ < w- NG that is disjoint tol. For every poinw/ € I/, we
conclude cok,w') < cod(x,Vv) since py;- (W) containd and hence, cda,w') =
codx,w) — 1 sincew L w. This impliesw € copk (x). LetV €|~ {v}. Then
cod(x,V') > codx,w') for every pointw’ € |’ sinceV € | < pry-(w). Thus,w
is not a cogate ok in Y and we conclude by Proposition 4.2.5 that gdgy is a
generator. This generator contains a peifitwith | < pr,- (w”), a contradiction.
Thereforewe U~.

To prove that for every poini € U' and every poinw | v with cod(u,w) =
codu,v) + 1, we obtainv € U, it suffices now to show that there are subspaces
My € M, and N, € My such thatH, := My N Ny is a hyperplane oMy with
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copty, (u) < Hy andU ™ = (My,copty, (u))g =: Uy. By Lemma 6.5.3 we know
crkn, ((Hu, copry, (u))) = 2- codu,Hy) — 1 —crky,(copt, ). By Lemma 6.1.2 we
obtain (Hy, copry, (u)) = NuNUy. Since by Lemma 6.5.3 cogr(u) is either a
singleton or a hyperplane ®f,, this implies crk, (N, NUy) = 2- cod(u,My) +

3 -rk(copry, (u)) — 3. Hence with Lemmas 6.5.6 and 3.5.3(i), it suffices to show
codu,H,) = d+1, rk(copry, ) = k and(Hy, copry, (u)) <U~ to proveU ~ = Uy
SinceU T is connected, we may restrict ourselves to the zasel.

Assumeu € M. Then ri{copn, (u)) = rk(copi, (x)) and codu,M) =d + 1. As-
sume copy (u) = cophy,(X). In the case&k = 0 this impliesu = x sinceM and
M’ are one-coparallel. In the cake- 2 we obtain copy(q) = copry (x) for ev-
ery pointq € {(u,x). Hence,(u,x) Ncopn, (p) = & for a pointp € M ~ copry, (X)
since codp,M’) = d+ 1. Since copy (p) is a hyperplane oM’, we conclude
againu = x. Thus we may assume c@qiu) # copi,(X). Then there is a hy-
perplaneH, of M such that copy, (x) and copy (u) are both properly contained
in Hy and copyy (X) # copry, (u). LetNy € My such thatH, < Ny. By Lemma
6.5.4(ii) copgy, (x) and copg, (u) intersect in a common hyperplakkeand there-
fore copgy, (U) < (copry,(X),Hu). Since copg, (x) <U ™, thisimplies copy, (u) <
U~. Thus forM, := M, we concluddJ, = U~. As a consequenc& NU~ =
(MNK,copik(p)) for everyp € M andK € 93 with rk(M NK) = 2. By sym-
metric reason& NU* = (M'NK,copik(q)) for everyg e M andK € 93 with
rk(M'NK) = 2.

Now let dis{u,M’) = 1. Assume py(u) = {x}. Lety € coph,(X). Since
cod(x,X') # cod(x,y) we obtain copy (X)) # copiy (y). Hence, we may assume
y € copry (X') ~ copry (y). By Corollary 4.2.8 we know thaty andx'y are one-
coparallel. Now(u,y')q is a symplecton that contains the lirg. By Proposition
3.5.2 there is a generatGf of (u,y')g with xy < G’ andG’ € M. Sinceuc U™,
we obtainG' <U™. We show that there is a subspage 9y contained irlJ ~
with codp,G) = cod(q,G’) = d+ 1 and rKcopig(p)) = rk(copry(q)) = k for
every pair of pointgp,q) € G’ x G such thatG, copr_ (x))g = U~ for a subspace
L € 91 with rk(GNL) =2 and copg (X) < GNL. Since pg (u) is a hyperplane
of G/, this allows us to constrain ourselves to the cage(py > {x}.

First consider the cade= 0. Thenx is the cogate of/ in M. If G’ is one-
coparallel toM, we are done. Hence we may assume tBaand M are not
one-coparallel. Lep € G~ M’. Then there is a subspa&ec M1; such that
(p,xy) < K. By Lemma 6.5.2K intersectsM in a hyperplane and therefore
p e (M'NK,copi(q)) for everyq € M. This implies codp,q) > d for every
g e M and hence, cdg,M) > d+ 1 by Lemma 6.5.3. Sinceandy’ have distinct
cogates irM, we obtain codp,M) = d + 1. Hence, if every point o’ has a co-
gate inM, we conclude by Lemma 6.5.3 th@t andM are one-coparallel to each
other. Thus, we may assume(ckpn,(p)) = 2. By Lemma 6.5.4(i) we obtain
Xy < copry (p). By Lemma 6.5.3 this implies that both cepix') and copg (y)
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are hyperplanes @'. Hence’ := copig (X') Ncopry(y) is a line throughp since
cod(x,y) = d+1 and codx, X' ) = d. Letl <M be a line disjoint tocy. Now letp
be an arbitrary point of . Since codp,M) = d+ 1 andx'y < copi,(p), Lemma
6.5.3 implies that there is a unique pome | at codistancel + 1. Conversely,
since codq,xy) = d, Lemma 6.5.3 implies thap is the unique point of5’ at
codistancel + 1 tog. Thusl andl’ are one-coparallel at codistande- 1.

LetL € 9011 be the subspace that contaifysl) and letp and p’ be distinct point
of I’. Then codp,L) = codp/’,L) = d+ 1 sincel <L. Moreover, Lemma 6.5.3
implies crig (copr (p)) = crk (copr (p')) = 2d + 1. Since co@x,y) =d+ 1 and
codx,l) = d, we obtain codx,L) = d+ 1 and hence ciKcopr (x)) = 2d + 1.
Moreover, crk({l,copr (x))) = 2d — 1= nand therefor& NU~ = (I, copr (X)).
By Lemma 6.5.4(ii) we conclude cqip) < (I,cop (x)) since codp,l) =d+1
and codx,l) = d. Analogously, copr(p’) < (I,copi (x)). Sincel intersects
copy (p) in a single point, we conclude that the subspdceopy (p)) is a hy-
perplane oLNU . Sincey € copt (p), we obtain(y,|) = MNL < (I,copr (p)).
Thus, there is a poirj € LNU~ ~ M such thatp has a cogate irqg,l). Since
copr (p') < (I, copr (x)) by Lemma 6.5.4(ii) andq,|) N (I, copr_ (x)) =, we con-
clude that alsq’ and hence every point dhhas a cogate iKg,|). LetG € Mo
such that(q,l) < G. Then Lemma 6.5.3 implies that every pointlbhas a co-
gate at codistanceé+ 1 in G. Since(qg,l) <U~, we obtainG < U~ by Lemma
3.1.1(iii). For every point € xy, we have coft,|) = d and copy(r) =1. Lets
be an arbitrary point o5 \.|. Then by Lemma 6.5.2 the subspacdéhat contains
(s,I) intersectsM in a hyperplane and hend€,nU~ = (L' M, copi.(r)). This
implies codr,s) > d and hencey, has a cogate at codistante- 1 in G by Lemma
6.5.3. Now letr € G' . (xy Ul’). Then there are pointg € xy andp; € I’ such
thatp € pop1. Letq; be the cogate of in G for i € {0,1}. Since codl,xy)=d
andaq; € |, we obtaingp # ¢1. Thus by Corollary 4.2.8, the lingsp; anddoq;
are one-coparallel to each other. Since(edd = d, this implies codr,G) =d+1
and ri{coprg(p)) = 0 by Lemma 6.5.3. Hence, every point@®f has a cogate at
codistanced + 1 in G. By Lemma 6.5.4(i) we conclude th& andG’ are one-
coparallel to each other. Since grl- (copr (X)) = 2, the cogate ok in G has
to be contained if.. Hence(L NG, copf (X)) = (I,copr (X)) =LNU~ and we
obtain(G, copr_(x))g =U~ by Lemma 6.5.6.

Now consider the cade= 2. Letp € G’ M'. Then there is a poirg € M’ with
dist(p,q) = 2. SetY := (p,q)g. ThenY <U* and by Lemma 3.1.1(iiiM’ andG’
are generators of. LetK € 913 be the subspace that contains gppx'). Then
K contains a generator &f by Lemma 3.1.1(iii). Suppose cod,K) =d+1
and copg(X) < K. ThenKNU™ = (KN M’ copi (X)) = copik (x). Since
crkg (copik (X)) = 2d + 1 by Lemma 6.5.3, this is a contradiction to gtk N
U*t) =n=2d. Now suppose cdd/,K) =d+ 1 and copg(X') = K. Then
rk(K) = 2d + 2 by Lemma 6.5.3, a contradiction to gtk NU™) = 2d and



‘ 6.5. Twin SPO spaces of symplectic rank 4 }7 177

rk(KNU™) > 3. Thus, co@X',K) = d+ 2 and therefore ci(copik (X)) =2d+3
by Lemma 6.5.3. Since copfx) < U™ and crix(KNU™) = 2d, we obtain
crkkry (copi (X)NY) < 3. Thus there is a poite KNY with codx’,z) =d+ 2.
By Proposition 2.1.12(iv) we conclude thais a cogate fox' in Y.

Now letr € M~ {X'}. Suppose copy(r) = copiy(X). Then copgy(r') =
copty (X') for every point point’ € rx’ and hencex’ Ncopr, (x) = &, a contradic-
tion to rk(copry (X)) = 2. Thus there is a poirge copiy (X') with cod(s,r) = d.
Since copyy (X') = KNM’ = pry(2), we conclude co,r) = d+ 1 and therefore
cophy (z) = {X'}. LetL € My such that intersectdvl in the hyperplane cogy(x).
Then codz L) = d+1 by Lemma 6.5.9. Hence by Lemma 6.5.3, this implies
crky(copr (z)) = 2d + 1. Since crk(LNU ™) = 2d, there is a poinZ € LNU~
with cod(z,Z) = d. We concludeZ X' and henceY’ := (X, Z)q is a symplecton
ofU™.

By Lemma 6.5.9 we know that cd L) = d+ 2 or copg (x) = L holds. Since
diam(.#~) > d+1, Lemma 6.5.3 implies cdd,L) =d +2 and hencd,NU~ =
(LNM,copr (x)). Consequently, cogr(x) and copf(x) are complements in
LNU~. Since(Z,copi,(x)) is a generator o¥’ that is contained ir.NU~,
Proposition 2.1.12(iv) implies thathas a cogate at codistande-2 in Y’ that is
contained inL. SinceY = (x,2)g, we conclude by Corollary 4.2.8 that the sym-
plectaY andY’ are one-coparallel to each other at codistathge2. Let G be
the generator of’ that is one-coparallel t&' at codistance + 2. Sincexy and
X'y are one-coparallel at codistande- 1, we obtairXynG = @. Thus there is
generatoG < (X,Z)q with Xy < G andGN G = . We conclude that every point
of G’ has codistancd + 1 to G and the its coprojection ifs has rank 2. Since
G’ andG are one-coparallel, we obtatd e Mg by Lemma 6.5.5. Thus; € Mg
by Proposition 2.2.8. Since atkN NU ~) = 2d and crlg(copry (X)) = 2d+ 1, we
obtainNNU ™~ = (X, copiy(x)) and therefor&N U~ = (GNN, copiy(X)). Thus,
(G, coply(x))g=U~ by Lemma 6.5.6. This conclud&s=U*UU".

We know alreadM <U~, M’ <U™ and crig(NNU ™) = crky (N'NUT) =n.
Thus, (i) follows by Lemma 3.5.3(i). Claim (i) holds sindehiolds forU —. Now
suppose there are poinisandv in V with cod(u,v) =d — 1. Since diam.¥"~) >
d+1, there is a pointv L v with cod(u,w) = d. This impliesw € V by the cocon-
vexity of V. By Lemma 3.1.1(i) and Proposition 3.5.2 there is a subsfae &1y
with wv < K such thatk <V. This implies crix(NNV) € {2d — 3,2d — 2}
by (i), a contradiction. Thus, codivi) = d. Finally, we showed that for every
pointu € U™ there is a subspacd4, € 9 with M, <V such that cotl, M) =
d+1 and rkcopny, (u)) = k. Now letK € 91y be an arbitrary subspace with
K <V, codu,K) =d+1 and rKcopt (u)) = k. Then(u,K)s <V and hence
(u,K)gN.¥~ =U" by (i) and Lemma 6.5.6. Analogousliy,K)cN." =U".
Thus,(u,K)s =V and (iv) follows by symmetric reasons. O
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Lemma 6.5.12.Let M € Mg and let xe .« such thatcod(x,M) < . Then
dist(p, (x,M)g) < codx, M) for every point pc ..

Proof. SetV := (x,M)g andd := cod(x,M) — 1. By symmetric reasons we may
assumep € .¥~. Moreover, by Proposition 6.5.11(iv) we may assuvhel ..

By Lemma 6.5.3 there is a poiate M with cod(x,z) = d. Setn := dist(p,z).

We may assume > d since otherwise we are done. By Proposition 2.1.17(ii) we
obtain codx, (p, z)g) > n. Thus by Proposition 2.1.16(ii) there is a pah (p, 2)g
with cod(x,Z) = n and distz,Z) = n—d. SinceV is coconvex, we obtaid € V

and hence(z,Z)qy <V. Now Proposition 2.1.17(i) yields dig,V) < d. O

For a pointp € £ and a subspadd € My the minimal codistance is 1. In
this case, the coconvex span of them equiélas follows from Lemma 2.3.2. The
next greater possible codistance godV) = 2 and among the two possibilities
the casdcopn,(p)| = 1 can be seen as the lower codistanc@@ndM. The
coconvex subspaces of such two objects play a special rotee precisely, the
will be the points of a point-line space we construct outtf

Lemma 6.5.13.Let M € Mg and let xe .~ such thatcod(x, M) = 2 andcopry (X)
is a singleton. Set V= (x,M)g.

(i) For every point p= . \V the subspacép,pr,(p)) is an element dit;.
(i) LetNe M. Then NNV is either a singleton or a hyperplane of N.

Proof. (i) By Lemma 6.5.12 we know digp,V) = 1. Assumeé/ N.~~ is singular
and hence equald. We conclude stk ~) = 3 by Proposition 6.5.11(i). Thus,
7 is a symplecton by Theorem 3.5.4. The claim follows by Pramws2.2.8
since(p, pry(p)) is a generator af”~ that intersectd in a hyperplane.

Now assume diav N.~) > 2. Then by Lemma 3.1.1(i) there is a singular
subspac& <V with dist(p,S) = 1 and rKS) = 2. By Proposition 3.5.2 there is a
subspacé € My with S< L. By Proposition 6.5.11(i) we obtain gri. V) = 1.

If peL we are done. Thus, we may assume¢ L and hence ripr, (p)) = 2

by Lemma 3.5.3(ii). This implies that there is a lih& pr, (p) V. By Lemma
3.1.1(i) there is a symplecton <V with | <Y. Hence, Proposition 2.1.27 pro-
vides that py(p) is a generator o¥. LetK € 9t be the subspace that contains
(p,pry(P)). ThenK € M1 since rK(p,pry(p))) = 4. By Proposition 6.5.11(i) we
obtain cri (KNV) = 1 since py(p) < KNV. Since distp,V) = 1, we conclude
that px (p) is singular. ThusK NV = pr,(p).

(ii) By Proposition 6.5.11(i) we know that there is a pointe N \V. Then

L := (p,pry(p)) is an element ofit1 by (i). If L =N we are done, hence we
assumé. = N. Then by Lemma 3.5.3(il. NN is a line. Sinc& NV = pr,(p) isa
hyperplane ot, there is a poing € V such thaL "N = pg. SinceL is maximal,
there is for every point € N~ L a pointy € L with dist(x,y) = 2. Sincey # p and
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py meetsL NV, we may assumge V. Sincep € (X,Y)g\V, we concludex ¢ V
and therefor&l NV = {q}. O

Together with Proposition 6.5.11(i) and Lemmas 6.4.10 aB®2ve conclude
that the coconvex subspace of a pgirt 2+ and a subspadd < 9, such that
p has a cogate at codistance 2Mnare maximal coconvex proper subspace/f
In the following proposition we consider the next smallecaavex subspaces.
These subspaces will induce the lines of the point-line spae are going to
construct.

Proposition 6.5.14.For i € {0,1}, let M € M be a subspace and let & .7

be a point such thatod(x;, M;) = 2 andrk(copiy, (%)) = 0. Set¥:= (x,Mj)s.

Let WwNVy # @ and \p # Vy. If stk(.) = 3, then \§ NV consists of two one-
coparallel lines at codistanc2. Otherwise, there is a point x and a subspace
M € Mo with cod(x,M) = 2 andrk(copny, (X)) = 2 such that ¥NVi = (x,M)G.

Proof. Letx € VoNV; # @. By Proposition 6.5.11(iv) we may assume Xg = X1.
SinceVp # Vi, Proposition 6.5.11(iv) implieSlp £ V1. SinceV; is coconvex, there
is a pointp € Mo~ V1 with cod(p,x) = 1. By Lemma 6.5.13(i) there is a subspace
N € 9y such that(p, pry, (p)) = N. By Proposition 6.5.11(iii) there is no point
in NNV1 oppositex. Sincep < X, there is no point ilN oppositex. By Lemma
6.5.3 this implies cogk,N) = 2 and crlg(copry (X)) = 3. By the coconvexity of
Vo andV; we obtain copg(x) < VoNVi. Thus,. NVoNVy and . NVoNVy
are both non-empty and we may assume. .

Consider the case gtk’) = 3. Then.”" and.”~ are both symplecta anx
has a cogate’ in .#~. Moreover,Mg andM; are both generators o~ and
copiy(x) = {X'}. SinceVoN .~ is convex, we knowpN .~ = Mp. Analo-
gously,ViN.¥~ = M. Thus, we conclude by Proposition 2.2.8 tMgN My is

a line sinceMg £ V; andx’ € Mg M;. By symmetric reasons”t NVpNVy is a
line, too. For every point ot ™ NV NVy, we conclude analogously tothat its
cogate in~ is contained ingNVy. Hence,+ NVoNVy and.”~ NVoNV, are
one-coparallel lines at codistance 2.

Now consider the case §ti’) > 4. ThenrKN) > 4 by Lemma 3.5.3(i) and hence,
copiy (x) contains a liné. Since(p, copry (X)) < Vo, we obtain copj(NNVp) =1
by Proposition 6.5.11(i). Sincp € Vo~ Vi, this implies crig(NNVoNVy) = 2.
Because of crig(copry(x)) = 3 there is a poiny € NNVpNV; with cod(x,y) = 1.
By Proposition 3.5.2 there is a subspdde= 91y with (y,1) < M. Since(y,l) <
VoNVi, Lemma 3.1.1(jii) impliesVM <VonVi and hence(x,M)g < VpNVi.

Since codx,y) = 1 andl < copry(x), we obtain co¢x, M) = 2 and consequently,
rk(copp, (X)) = 2 by Lemma 6.5.3. Hence by Proposition 6.5.11(i), we obtain
crkn (NN (x,M)g) = 2. This impliesN N (x,M)e = NNVpN V1. Together with
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M < (x,M)g we concludex,M)cN.¥~ =VoNViN.¥~ by Lemma 6.5.6. For ev-
ery pointx' € M, there are subspad# € Mt andM{ € M, such thatx',M')g =
(x,M)g and (xX',Mg)c = Vo by Proposition 6.5.11(iv). Sinc¥y # V1, we con-
cludeM £ V4 by Proposition 6.5.11(iv) and henééNViN.+ <VoNn.7 . Let
N’ € M such thatN’ contains a hyperplane ®’. SinceM’ <VonViN.",
Proposition 6.5.11(i) implies cgk(N’NVp) = 1. Hence, we conclude ggk N’ N
VoNVi) > 2 by Lemma 6.5.6. Since gt N’ N (x,M)g) = 2 by Proposition
6.5.11(i) andx,M)g < VoNV1, Lemma 6.5.6x, M)gN.* =VonViN.*. O

Motivated by this proposition we define the following twoset

Pm={(xM)g | (x,M) e.* xMy A codx,M)=2 A |coply(x)| =1}
Zm={{P€Pm|UNV <P} |{UVIC Py AB£UNV<U}

By the definition of %4, the pair(%m, %n) is a point-line space which in the
following will be denoted by“.

Lemma 6.5.15.Let U and V be elements aPy,, with UNV # &. Further let
N € 1. Thenrk(NNU) # rk(NNV) implies NNU <V or NNV < U.

Proof. By Lemma 6.5.13(ii) and symmetric reasons if suffices to harghe case
crkn(UNN) =1and rkV NN) =0. Letpe N~ U. ThenN = (p,pry(p)) by
Lemma 6.5.13(i). By Proposition 6.5.14 and Lemma 6.5.12 ktaia distp,U N
V) =1. Thus, ps(p)NV # @. Letge pry(p)NV. Thenq e N and hence,
VNN ={q}. O

Proposition 6.5.16.Let U € &, and let x be a point with ¥ U. Then there is a
subspace \E &, such that x V and UnV = &.

Proof. By Proposition 6.5.13(i) there exists a subspace Mt; such thatN =
(x,pry (x)). Let G < N be a subspace with (&) = 3 andx € G. By Lemma
3.1.1(i) there is a symplecton < . such thatG is a generator of. LetM be a
generator ol such thatGNM = {x}. Then Proposition 2.2.8 implidd € 9.
Let Z be a symplecton that is oppositeand letz € Z such that cofz, M) = 2.
ThenV := (z, M)g € Pn. SinceY contains a point opposite we obtainY £ V.
Thus,Y NV =M and henceY NN = {x} by Lemma 6.5.13(ii). Therefore we
concludeJ NV = & by Lemma 6.5.15. O

Lemma 6.5.17.LetV and W be distinct elements &4, with S:=V NW #£ 2.
Let p be a point such thairg(p) contains a line. Then there is a unique element
U € &y that contains S and p. Moreoversfk(.#) > 3, then(p,Sg =U.
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Proof. Let | < prg(p) be a line. By Proposition 6.5.14 and Lemma 6.5.12 we
obtain distp,S) = 1 and hencép,l) is a singular space of rank 2. By symmet-
ric reasons we may assurhe& .~ First consider the case §1K’) = 3. Then
S+ and.~ are opposite symplecta and every element&j consists of two
elements 0fl1y that are one-coparallel to each other at codistance 2. Mergo
by Proposition 6.5.14 consists of two one-coparallel lines at codistance 2. By
Proposition 3.5.2 there is a unique subsplte 9ty with (p,I) < M. For an
arbitrary pointx € .+ with codx,M) = 2, the subspacé,M)g consists ofV
and the unique generator of * that is one-coparallel th at codistance 2. Thus,
S< (x,M)g and(x,M)g is unique.

Now consider the case St) > 3. Lety € |. Then by Propositions 6.5.14 and
6.5.11(iv) there is a subspabke My with cod(y,N) = 2 and rKcopr(y)) = 2
such thaty,N)c = S. Letx € N~ copiy(y) and letL € 91 such that{p,l) < L.
By Lemma 6.5.13(ii) and Proposition 6.5.11(i) bdthandW contain a hyper-
plane ofL. Thus, crk(LNS) < 2 and since ri) > 3 this implies r(LN'S) > 2.
By Proposition 6.5.11(i) we conclude ¢t N'S) = 2. LetH be a subspace
of LN Swith rk(H) =2 andl < H. Further letM € 9t with H < M. Then
M < Sby Lemma 3.1.1(jii). Sincéd < (x,M)g, Proposition 6.5.11(i) implies
crk (LN (x,M)g) = 2-codx,M) + %rk(coprM (x)) —3. Since(x,M)ec < Sand
crk (LN'S) = 2, this implies cofx,M) > 1. Moreover, since cad,y) = 1, we
conclude cok,M) = 2 and rKcopn,(x)) = 2. Hence,S= (x,M)g by Proposi-
tion 6.5.11(iv).

Since rcopnpy (X)) = 2, we obtain cotk,H) = 2 and hence cdd,L) > 2. With
codx,y) = 1, we conclude ctik'copy (X)) = 3 by Lemma 6.5.3. Since ark-nN
S)=2andp ¢ S we know that{p,LN'S) is a hyperplane of. Thus(p,LNS)
contains a subspade¢’ with rk(H") = 2 that intersects cop(x) is a singleton.
Let M" € My with H < M’. Then codx,M’) = 2 and copyy (x) is a singleton
by Lemma 6.5.3. Thereford) := (x, M’} € #n. By Proposition 6.5.11(ii)
we obtain copr(x) < Sand (H’,copi (x)) = LNU. SinceH’ < (p,LNS) and
crk (LNU) = 1 by Proposition 6.5.11(i), this impligsi’, copr (x)) = (p,LNS).
Thus,H <U and Lemma 3.1.1(iii) implieM <U. We conclud&S= (x,M)g <U
and consequentlyp, S <U. SinceH’ < (p,LNS) < (p,S)g, Lemma 3.1.1(iii)
impliesM’ < (p,S)c and thereforgp,S)c = U. This proves the uniqueness of
u. O

Theorem 6.5.18.The point-line space’y, is a non-degenerate polar space.

Proof. We show that#y, fulfils the Buekenhout-Shult Axiom (BS). Lét € 27,
and let\ € %4y. Further lety andW be distinct but not disjoint elements 6y,
such thathA = {P € &, | P>V NW}. SetS:=VNW. By Proposition 6.5.14
thereis alingg < S. Sincegis not a maximal singular subspace@f, Proposition
3.5.2 implies that there is subspadec 9t; with g < N. By Lemma 6.5.13(iiN
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contains a poinp of U. We may assump ¢ Ssince otherwis&) has non-empty
with every element of\ and we are done. Thug,< prg(p) and Lemma 6.5.17
implies that there is a unique element\rthat has an non-empty intersection with
u.

By Lemma 6.5.13(ii) botlV andW contain a hyperplane dfi. By Proposition
6.5.14 this implies cig(NN'S) = 2. Moreover, for every two distinct elements
V" andW’ of A, we obtainNNV’'NW' = NNS. AssumeV’ andW’ have both
non-empty intersection with. By Lemma 6.5.13(ii)J NN is a hyperplane o

or a singleton. In the first case we obtalmg # @. HenceU NS# @ andU
intersects every element 6f In the second case we conclude by Lemma 6.5.15
thatU NN is contained in botlv’ andW’. Hence,U NN < Sand again every
element ofA has non-empty intersection with.

By Proposition 6.5.11(iii) we obtait) < .. Hence, there is a poirf € .%

U. Thus by Proposition 6.5.16, there is a subsgate &2, withUNU’ = &.
Therefore %, is non-degenerate. O

Our goal is to prove that” is a twin half-spin space of/,. Therefore we
show some correspondences between subspac&sanfd subspaces ofy,. For
apointp € ., we setl (p) :={U € &y | peU}. For a subspachl € M1, we
setlF (N) :={U € Zn | rk(NNU) > 2}.

Proposition 6.5.19.Let p be a point of” and let N be a subspace withd\N9)t;.
(i) If cod(p,N) = 1, thenl"(p) N (N) contains a single element.

(i) Bothl'(p) andl"(N) are generators ofp,.

(iii) If p € N, then the generatorS(N) andl" (p) of ./, intersect in a common
hyperplane. MoreovefF; (p) andl"(N) are the only generators af/,, that
containl (p) N (N).

Proof. (i) By Lemma 6.5.3 we know that coptp) is a hyperplane oN. Let
H < copiy(p) and letM € M such thatH < M. Then Lemma 6.5.9 implies
cod p,M) = 2. We conclude that cogi(p) is a singleton and thugp, M) € P
Sincep andH are contained ifp,M)g, we obtain(p,M)g € I'(p) N (N).

Now letP € I'(p) NI"(N). Proposition 6.5.11(i) implies th& contains a hyper-
plane ofN. By Proposition 6.5.11(iii) this hyperplane has to be ¢gp). Thus,
H < P and we obtairM < P by Proposition 6.5.11(i). TherefoRR= (p,M)c by
Proposition 6.5.11(iv).

(i) Let P andQ be two distinct elements df(p). ThenPNQ # @ since both
containp. Moreover, every element a#, that containg® N Q is an element of
I(p). Thus,I(p) is a singular subspace ofy,. Now letRe Z,n~T(p). Then
by Proposition 6.5.16 there is elementldfp) that is disjoint toR. Hence'(p)
is a maximal singular subspace.



‘ 6.5. Twin SPO spaces of symplectic rank 4 }7 183

Let N € 9. Further letP and Q be two distinct elements of (N). Then
crky(NNPNQ) < 2. Since rkN) > 3, this impliesPNQ # &. Now letR € Py,
such thalR > PN Q. SinceNNPNQ contains a line, we conclude by Lemma
6.5.13(ii) thatN contains a hyperplane & Thus,R € I'(N) and consequently
I'(N) is a singular subspace ofy,.

Now letR € &y~ T (N). Then by Lemma 6.5.13(ii) there is a point N such
that RN N = {y}. Let x be a point that is oppositg By (i) there is an ele-
mentR € I'(x) N (N). By Proposition 6.5.11(iii) we obtaig ¢ R and hence,
R NR= @ by Lemma 6.5.15. We conclude tHatN) is a maximal singular sub-
space.

(iii) Let U andV be two distinct elements @f(N). SetS:=U NV. Since bothJ
andV contain a hyperplane ®f, we obtain cri(SNN) = 2 by Proposition 6.5.14.
By Lemma 6.5.17 this implies that there is an elemen#%f that containsSand
p. Thus,I"(p) contains a hyperplane 6f(N).

Now letq be a point opposit@. By Proposition 6.5.11(iii) we conclude thiatp)
andr (q) are disjoint. On the other hand, degN) = 1 and henced; (q) andl" (N)
are not disjoint. Hencel; (p) " (N) is a hyperplane of (N) and by Lemma
A.2.13 it is also a hyperplane &fp)

Let W € &, such thatW has non-empty intersection with every element of
I(p)NI(N). Suppos&V ¢ I'(p) UI(N). ThenW intersectsN in a single point,
g say, that is distinct tgp. By Lemma 2.1.13 there is a poirtwith x — g and
codx,p) = 1. By (i) there is an elemer® € I'(x) UI'(N). Since by Proposi-
tion 6.5.11(i)P contains a hyperplane &f, Proposition 6.5.11(iii) impliep € P.
Thus,P e IT'(p) NI(N). Again by Proposition 6.5.11(iii) we obtaiq ¢ P and
hence, Lemma 6.5.15 impli&¥ NP = &, a contradiction. Thereford/ € I'(p)
orW e (N). O

Lemma 6.5.20.Let p be a point of” and let Ne 99t;. Every generator oy,
that intersectd (N) in a hyperplane is of the kinB(q) for a point ge N. Every
generator of. %, that intersectd (p) in a hyperplane is of the kinfi(L) for a
subspace le 913 with pe L.

Proof. Let © be generator of, that intersect§ (N) in a hyperplane. Then there
is an element € Z, with U € © ¢ T'(N). By Lemma 6.5.13(ii) this implies
thatU intersectaN in a single pointg. By Lemma 6.5.15 we know that every
element ofl (N) that has non-empty intersection with containsgq and hence
ONT(N) <T(q). Since® # T (N), Proposition 6.5.19(iii) implie® =T (q).

Now let © be generator of, that intersect§ (p) in a hyperplane. Then there
is an elemenV € Zy withV € © ¢ I'(p). Then by Lemma 6.5.13(i) there is a
subspacé € 9ty such that = (p,pr, (p)). By Lemma 6.5.15 we know that every
element ofl (p) that intersect4 in the single pointp is disjoint toV. Thus by
Lemma 6.5.13(ii) every element 6f(p) that has non-empty intersection with
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is an element of (L). Therefore@NT (p) <T(L). Since® # I'(p), Proposition
6.5.19(iii) implies© =T (L). O

Corollary 6.5.21. Let p be a point of”". LetA be the connected component of
the dual polar graph of#, that contains (p). ThenA is bipartite. Moreover,
every edge o is of the form{I'(q), (N)}, where q is a point of”* and Ne
mt.

Proof. This is a direct consequence of Lemma 6.5.20. O]

Proposition 6.5.22.Let (p,q) € .1 x .~ be a pair of opposite points. Then
(F(p),r(0)) is a spanning pair ofn.

Proof. LetRe &y~ (I'(p)UT(q)). By Proposition 5.2.4 we have to show that
there are elemen®ec I'(p) andQ € ' (q) with the following properties:

RNX#2 & PNX#o for everyX € I'(q)
ROIX#90 & QNX# o for everyX e I'(p)

By symmetric reasons it suffices to show that suéteists. Sincej ¢ R, Lemma
6.5.13(i) implies that there is a subspades 91; such thatN = (g, prg(q)). By
Proposition 6.5.19(i) there is an elemé&t P, in T (p) NI (N).

LetX € I'(g) with XNR # @. We know thaRNN = prg(q) is a hyperplane ol
that does not contaiq Sinceq € X, we conclude by Lemma 6.5.15(0kNN) =
rk(RN'N) and henceX € I'(N). Sincel (N) is a singular subspace of, that
containsP, we conclude thaX NP # &.

Now letX € I'(q) with XNR=&. ThenXNN = {qg} sinceRNN is hyperplane
of N. Sincep < g, we obtaing ¢ P by Proposition 6.5.11(iii). SincE € I'(N),
Lemma 6.5.15 implieX NP = . O

We now prove the main result of this section.
Theorem 6.5.23.Let.¥ be a twin SPO space satisfying the following two prop-
erties:
(T4a) Every symplecton of” is of rank4.

(T4b) Every singular subspace of rarikis contained in a maximal singular
subspace of ranB and in at most one other maximal singular subspace.

Then is a twin half-spin space.

Proof. We denote the two connected componentsdby . = (#*, #*) and
ST =(P, L)

First assume diaf”*) < 2 and hence, dia(”~) < 2. Thens " is a projective
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space by Theorem 2.1.22. ¥t is a singleton, then”~ is a singleton, too.
Moreover,.# is isomorphic to the twin half-spin space of the polar spanz t
consists of two points and no lines. " is a line, then¥~ is a line that is
one-coparallel tg7 . In this case¥ is isomorphic to every twin half-spin space
of the polar space’™ @ .7+,

Now let.* be a projective space of rank2. Then (T4b) yields rk*) = 3.
Hence,.”~ is a singular space of rank 3, too. We set:

y: L2 1 ()copry (p)
péel
Pmi={lUIY [l e.2"}
L ={{P€ Pn|UNV <P}[{UV}C PnAro£UNV<U}

By Proposition 6.2.3 the pait%n, - %n) is isomorphic to the Grassmannian of
lines of .7 that we denote by#y. Letl be a line of.#;, and letg andh be two
lines of * with {g,h} C |. By Propositions 5.3.11 and 5.3.16 we conclude that
| is contained in exactly two maximal singular subspaces‘gfthat are both of
rank 2. Moreover, one of these maximal singular subspacesiste of all lines

of . through the intersection point @f andh. The other maximal singular
subspaces consists of all lines.oft contained in(g,h). By Theorem 5.3.15
and Lemma 3.3.1(i) we conclude that, is a symplecton. More precisely, by
Corollary 2.1.18 we know that*, is a non-degenerate polar space of rank 3
whose lines are contained in exactly two generators. HdycBroposition 2.2.8
the dual polar graph o/, is bipartite. More precisely, for two distinct adjacent
generators of,, one of them consists of all the lines through a given point of
T and the other one consists of all the lines in a given hypeeplaf ..
Since.1, have finite rank,#, contains a spanning pair and hence, there exists a
twin half-spin spacé2 ™, 2~) of .#,. Since by Proposition A.2.20 two disjoint
generators of7, have distance 3 in the dual polar graph, we may assuméthat
contains all the generators of, that contains all lines of”* through a given
point andZ— contains all the generators of;, that contains all lines of a given
hyperplane of#*.

We define the following map:

b: (7.7 = (25,97): pH{{'e"W‘pe'} o
{le £t |l <copry:(p)} ifpeZ

By Lemma 6.2.1 every hyperplane.of is the coprojection of a point of ~ and

for two distinct points of”~ the coprojections in”* are distinct, we conclude

that ¢ is a bijection. Letl € #*. Then for two distinct pointp andq on |,

we obtainp? Ng? = {I}. Since for a point € &, we obtainl < r? if and
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only if r € I, we conclude by the definition of the lines 6f" that¢$ maps.#*
isomorphically ontaz*. Now letl € £~ and letp andq be two distinct points
onl. Then copt,+ (p) and copt, - (q) are distinct hyperplanes of * and hence,
they intersect in a lin¢ € #*. By Lemma 6.2.1 we know that every point
2~ withI” < coprg (r) lies onl and therefore¢ maps~ isomorphically onto
2~ . Finally, for pointsp € £+ andq e 22—, we have

p—q e pégcopry(q) < pPne’=02.

Thereforeg is an isomorphism of twin spaces.

Now assume diafs” ) > 2. Since this is precisely the situation we considered in
the beginning of this section, we may use the notations amdetbults of this sec-
tion. Letx € £ andy € &~ be opposite points of”. Then Proposition 6.5.22
is a spanning pair. By Corollary 6.5.21 the connected corapbaf the dual polar
graph of.#, that containg () is bipartite. Thus, there is a twin half-spin space
(2%, 27) of Sm with respect tql" (x), [ (y)). Moreover,2° = {I'(p) | p€ £}
foroe {+,—}.

Letw e 2T be a point collinear and distinct ta Then there is a subspace
N € M such thatkw < N. By Proposition 6.5.19(iii) both generatdr$x) and

I (w) are adjacent t& (N) and hence[ (x) andl"(w) are collinear inZ*. By
Lemma 2.1.13 we may assume ¢ary) = 1. By Proposition 6.5.19(i) we know
that the subspacddly) andl"(N) of ., intersect in a single elemebt € Zy,.
By Proposition 6.5.11(i) we conclude tHatintersectdN in a hyperplane. Hence,
Proposition 6.5.11(iii) yieldx ¢ U andw € U and thereford (x) # ' (w). Con-
versely, letw € 22 such that” (x) andl" (w) are collinear inZ*. Then there is
a generato® of .7, that is adjacent to bothi(x) andl"(w). By Lemma 6.5.20
this implies that there is a subspades 9] such that™(N) = ©. Moreover,x
andw are both points o and thereforex andw are collinear in*. Thus,
ST — 9T p—T(p) is a bijection that preserves collinearity.

Letl be the line joiningc andw and letzbe a point collinear to bothandw. Since
every element of (x) NI (w) is a subspace of”, it containsl and hencez € |
impliesT(z) > [ (x)NT(w). Now assume ¢ |. Then by Lemma 2.1.21(iii) we
may assumg < z and cody, x) = cod(y,w) = 1. By Proposition 3.5.2 there is a
subspacé € smf of . that containgw, x, z). By Proposition 6.5.19(i) we know
thatl" (y) andl"(N) intersect in a single elemedte &7,. SinceNNU is a hyper-
plane ofN by Proposition 6.5.11(i), we conclude cqx) = NNU by Proposition
6.5.11(jiii). ThusU € I'(x)NT(w) andU ¢ I'(z). Therefore{l'(p) |pel}isa
line of 2. This concludes that”"* — 2*: p+ [(p) is an isomorphism of
point-line spaces.

Analogously,~ — 2~ : p— I'(p) is anisomorphism of point-line spaces and it
remains to prove that for a pair of poifw,z) € 22+ x &, the pair(l'(w),(2))

is a spanning pair if and only i < z. By Corollary 5.2.9 we just have to show
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thatl"(w) andT (z) are disjoint if and only ifw < z By Proposition 6.5.11(iii)
we conclude know thatv < z impliesI'(w) NT(z) = @. Now assumew < z
Then there is are point8 andw in &~ with w | Z such thatw < w' and
dist(z,Z) = codw,z) — 1. Hence, cofv,Z) = 1. LetN € 93 with wZ < N.
Then there is an elemedtin ' (w) NI (N) by Proposition 6.5.19(i) and we obtain
Z € U. SinceU is convex andv andZ are contained i), we conclude € U and
hence (w)NT(z) # 2. O

6.6 Twin SPO spaces of symplectic rank 5

Throughout this section le#’ be a twin SPO space of symplectic rapks. By
<+ and.~ we denote the connected components/f Further we denote by
M the set of maximal singular subspaces6f

By Theorem 6.2.4 we know that whenevgi" is a symplecton, is a twin
polar space. Thus, we may restrain ourselves in this seictithe case where’ ™
contains a symplecton properly and analogougly, contains a symplecton prop-
erly. By Theorem 3.7.2 this leaves the two case$.yfk ) =5 and yrk. ) = 6.

In the followingk always denotes the symplectic rank.gf. We set)ip :=
{MeM|rk(M)=k—1} and9iy := 9~ Myp. Furthermore, we séN° :={M €
M| M <. andM? =M N for o € {+,—} andi € {0,1}.

Proposition 6.6.1.The set$)t§ and9; are non-empty. Moreover, every element
of M7 has rank k.

Proof. Let Y < T be a symplecton. By Lemma 3.3.1(i) there is a poirat
ST\ Y such that pf(x) contains a line. Then pfx) is a generator o¥ by
Proposition 2.1.27. Thus, tkx, pry(X))) = k and we concludex, pry (X)) € M.
Moreover, Proposition 2.2.9(iv) implies that every gemeraf Y that intersects
pry(x) in a hyperplane is a maximal singular subspace#0f and hence an ele-
ment of g .

Now let M € M and letS< M be a singular subspace of rakk- 1. By
Lemma 3.1.1(i) there is a symplect@n< . that containsSas a generator. Let
ze M\ S Then pg(z) = Sand we concludéz,S) = M by Proposition 2.2.9(vii)
and hence, M) = k. O

Theorem 6.6.2.Let. = (/*,.#~) a twin SPO space of symplectic rapk5
such that¥* contains a symplecton properly. Then one of the followingesa
holds:

(@) .7 is a twinEg-space angrrk(#*) = 5.
(b) .7 is a twinEz-space angrk(#*) = 6.
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Proof. We first show that”* is a strongly parapolar space. Sing€" is strongly
parapolar by Theorem 2.1.20 arxi™ has an symplectic ranke IN by Corollary
2.2.7, it remains to check whethef ™ is of spherical type.

The axiom (Bu4) is vacuously fulfilled sincg’™ is strongly parapolar. Let
S<.7* be a singular subspace of rank 1. ThenSis contained in a symplecton
of 1 by Lemma 3.1.1(i) and therefore it is a generator of this dgatpn. Now
Proposition 2.2.5 implies that (Sph1) is satisfied.

Now letV andW be singular subspaces of rank 1 such that re/ "\W) =r —2
andV £ W-. Further letX be a subspace of ramkcontainingV. SinceV £ W+,
there are points € V andw € W that are not collinear. We conclude thgtw)g is

a symplecton containing NW. Moreover,V = (v,V NW) andW = (w,V NW).
Since rK(v,w)g) =, this implies tha/ andW are adjacent generators @f w)g.
Now Proposition 2.2.9(vii) implies thaX is a maximal singular subspace and
Proposition 2.2.9(iv) implies th&V is a maximal singular subspace. Thus, (Sph2)
holds.

Now letU, V andW be singular subspaces of rank- 1 with that rkU NV) =
rk(V NW) =r — 2 such thaV £ W+ andU is maximal singular subspace. Let
veV\U. ThenU £ v sinceU is maximal. Hence, there is a point U such
thatY := (u,v)q is a symplecton. The subspadésindV are adjacent generators
of Y. Since.”" contains a symplecton properly, we obtainZ .. Hence,
Lemma 3.3.1(i) implies that there is a point .7+ \ Y such thatX := x- NY is

a generator of. By Proposition 2.2.9(ii) we conclude that g NU) is odd.
Hence, crik(XNV) is even by Proposition 2.2.9(iii). Using again Proposition
2.2.9(ii) implies that there is a singular subsp&¢ef rankr such thatv <V’.
Now (Sph2) implies thatV is maximal and therefore (Sph3) holds.

The axioms (Sph4) follows from Lemma 2.2.3(i) since> 5. By symmetric
reasons this concludes that™ and.”~ are both exceptional strongly parapo-
lar spaces. By Theorem 3.7.2 we know (k") € {5,6}. Moreover, Theorem
B.3.10 implies that bott”’* and.#~ are point-line spaces of typg & 1.

First assume = 5. We denote byZ* the dual of the point-line spac&’™ of
type B1. Letx €.#~. Then Proposition 4.2.4 implies th&t:= copr,. (X) is

a symplecton. Moreover, céd X) = 2 by Theorem 3.6.5. Hence, there exists a
map¢: .7~ — 2" such thap? = copr,- (p).

Now lety € .~ be a point distinct tox and setY := y?. By Proposition 2.1.13
there is a poinz € . with z«< xandz«» y. LetZ < .#* be a symplecton that
containsz. Then (A12) implies thax is a cogate irZ. By Proposition 2.1.17(ii)
we obtain cogz Y) = 2. Moreover, copi(y) # copr(X) since otherwise — y
by Proposition 2.1.12(ii). Thu¥, andX are distinct symplecta. This implies that
¢ is injective.

Let Z be an arbitrary symplecton gf* and letx' andy’ be non-collinear points
of Z. By symmetric reason¥’ := copr,— (x') andY’ := copr,—(y') are distinct
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symplecta of~. Since cody’,X’) = 2 by Proposition 2.1.17(ii), we conclude
that there is a poinz € X' NY’. This impliesz? = Z by Proposition 2.1.16(i).
Hence,¢ is bijective.

Assumex [ y. Then by Proposition 2.1.13 there is a pointdrthat is opposite

y and hence by (A12)Y and X intersect in the cogate gfin X. Now assume

x L y. Then there is no point iX that is opposite ty. Hence, Proposition 4.2.4
implies that copg(y) is a generator oK and we conclude thaf andX intersect

in a common generator. Thug,preserves collinearity.

Again assume& |y and letG be the common generator #f andY. By sym-
metric reasons we obtain for two distinct points@&fthe points of¥~ that are

at codistance 2 to both of them form a singular subspace. éjenery point
ze .7~ with G < 2 is contained in{x,y} . Letzbe a point on the lingy. Then

by Proposition 2.1.12(iv) every point @& has codistance 2 tp and therefore

G <. Now letze {x,y}* ~ xy. Then by Lemma 2.1.21(iii) there is a point
w e .+ with w + zand codw, X) = codw,y) = 1. By Propositions 2.2.9(iv) and
2.2.9(v) we know thaG is a maximal singular subspace. Hence, there is a point
w e Gwith dist(w,w') = 2 andW := (w,W )4 is a symplecton. Since codw) =1
and codx,w') = 2, Proposition 2.1.12(ii) yields cogfx) > {w'}. Thus,W and

X intersect in common generator by Proposition 4.2.4. Amalsty, WNY is a
generator ofY. AssumeéW does not contain a hyperplane®f Then there is are
linesg <WnNX andh <WnNY withgnG=hNG = @. Let p be a point ofg.
Thenp™ intersectss in a hyperplane o6. Thus, py(p) is a generator of by
Proposition 2.1.27. Sinceafp) andG have a common hyperplane, we conclude
that there is a poing € h with dist(p,q) = 2. This implies(p, g); = W and since
both p* andg’ contain a hyperplane db, we obtain rkGNW) > 2. Hence,
GNw? is not empty and therefoi® £ z?. This concludes that lines o ~ are
mapped bijectively onto lines a? and thusg is an isomorphism.

To prove that¥ is twin Eg-space, it remains to show that for a pair a points
(X,y) €. x.7~ we obtainx < y if and only if dist(x,y?) = 2. LetZ <.#* be

a symplecton that contains SinceZ andy? intersect by Proposition 2.1.17(ii),
we conclude digk,y?) = 2— cod(x,y) by Proposition 2.1.16(ii). This proves the
claim.

Now assume = 6. Then.”" is a metaplecton of diameter 3 by Theorem 3.7.2.
This implies that~ is metaplecton that is opposit&*. Moreover, Corollary
4.2.8 implies that™ and .~ are isomorphic and the map that sends every
point of .T onto its cogate in¥~ is an isomorphism. Hencey is a twin
E7,1-space. Il
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6.7 Final result

We summarize the results of this chapter and, in fact, the nesiult of the whole
work in the following table. This table yields a completesdiication of SPO
spaces.

We discussed in Chapter 2 why we may restrain ourselves t@lbatinear
twin SPO spaces. Moreover, in Theorem 4.3.7 we showed tleét tean SPO
space is exactly the same as a grid sum of rigid twin SPO spHesse, a classi-
fication of rigid twin SPO spaces yields a classification bfwain SPO spaces.

Since every rigid twin SPO space consists either of two darxgtomponents
or possesses a symplectic rank that is at least 2, we have foltbwing table a
complete list of possible cases at the left hand side. Natieitithe first case it is
also possible that both components consist of a single .painhis case one may
consider the twin SPO space as an empty grid sum or as the tejacfive space
of a projective space of rank 0. In the latter case, one maglatp this situation
the empty diagram and call this diagrarg A The collection of the theorems in
this chapter provides a proof for the correctness of thietab

Even though we mention diagrams at the right hand side, weotl@laim
that all rigid twin SPO spaces belong to a point-line of a (ydauilding of this
type since the twin spaces named in the middle column aregiétions of the
Xn,j-Spaces. There are good reasons to avoid diagrams of infamke Consider
the projective space” := PG(Q™)) of Example 5.1.9 and IeB be a basis of
. ThenB has cardinalityw := |IN|. Since3(B) has cardinality 2, there is a
setS of subspaces of” all of which are spanned by elementsBfFor a given
subspac&the set{T € S | crks(T NS} has cardinalityw. Thus, a diagram that
possesses a vertex for each elemen®afould consist of 2 vertices. Now let
(S)iew be a chain of subspaces that are all elemen& sfich that rkS) =i for
i € N. Then each element @ . {S |i € IN} is not incident with all elements
of {S |i € N}. Hence,(S)icv is @ maximal flag that contains onty elements.
Let ¢ be a bijection fromB onto Q. Then{(b|b? < x) | x € R} is a chain of
elements of5 which has cardinality 2. Therefore one sees immediately that we
do not obtain a chamber complex if we consider all subspateg.oA second
approach is to consider only the subspaces of finite rank &fidite corank in
. (note that if we would take only the ones of finite rank the daags of types
An1, Ch1 and Dy 1 would lead to the same infinite diagram). Again regarding the
flag {S | i € N} shows that there are maximal flags that do not have elements of
each type. One can find maximal flags that contain only sulespafdinite corank
as well as flags that contain subspaces of any given finiteandKinite corank.
However, the more suitable approach is the second one astong forget about
chambers and flag complexes. For further comments see [K89le diagrams
below one may regard any occurrence of dots as a chain otesrtif possibly
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infinite length.

| twin space | diagram
diam: 1 | twin projective space An1(>1) o e .
yrk: 2 twin dual polar space Chn(>2) e e e
yrk: 3 twin polar space Cs1

partial twin GrassmannianAn j (n>j > 1) C'—'—'

yrk: 4 twin polar space Can — e
twin half-spin space Dnn(n>9 ,_,<:—"_'
yrk: 5 twin polar space Cs1 — o e
Ds1 ._._<
twin Eg-space Ee1 —
yrk: 6 twin polar space Cs1 — e
De.1 ._¢_._.<:
twin E7-space Ez1 ._._._<:_'
yrk: > 7 | twin polar space Ch1(>7) e e e

Dn1(>7) ._._.._.<:

Some of the theorems in this chapter are stated more gentrafi they occur
in the table above. The reason for this is that the classésimtddle column are
not always entirely used. Therefore we enlarged the sutes$asf the considered
twin SPO spaces in the sections of this chapter slightly taioka perfect match
with one of the classes introduced in Chapter 5. The pautial Grassmannians
and twin half-spin spaces can be singular. For partial tmiasGmannians, one
obtains an arbitrary twin projective space. For twin hgifasspaces, one obtains
a twin projective space of rank 1 or 3. These cases are alaagyed by the first
row. Twin dual polar spaces do not have to be rigid, but if taeynot, they are
still of symplectic rank 2 and a grid sum of rigid twin SPO spacFurthermore,
they can be singular. In this case the connected componentsoth singletons
or both lines and we are again in the first row. Hence, the casgerboth com-
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ponents of the twin SPO space are lines is a twin dual polaresapartial twin
Grassmannian and a twin half-spin space at the same time.

Conversely, as one can see, a case in the left column leadsrtothan one
class in the middle column. The reason for this is that theszepalar spaces of
any given rank. In any case, if the point-line spaces arelargpugh (where large
should be interpreted as “many vertices in the diagram'®, dases in the left
column coincide with one class of the middle column.

The class of rigid twin SPO spaces is properly contained énuthion of the
classes of the middle column since twin dual polar space®tinaed to be rigid.
The union of the classes of the middle column is properlyaioed in the class of
twin SPO spaces. Finally, the class of twin SPO spaces ctdaavith the union
of the classes of the middle column closed under taking gnidss The classes in
the middle column are precisely the generalisations of thietgine spaces that
are related to those diagrams whose types match the listadd@airs. Therefore
we achieved the aim of this work.



Famous point-line
spaces

We introduce two well-known classes of point-line spaces, projective and po-
lar spaces. Both of them are strongly related to algebraictsires and thus, it
is not surprising that they appear as subspaces of the jpoénspaces we con-
sider in the present work. Both classes of point-line spacesvell studied. The
aim of this chapter is to give a short introduction of projeetand polar spaces.
Furthermore, we give a list of results that we use in the mamgf this work.

A.1 Projective spaces

Projective spaces are, besides the affine spaces, ceitaéntyost famous point-
line spaces and are studied in several fields of mathemakigsojective space
can easily be obtained by taking the 1- and 2-dimensionapades of & -vector
space, wher& is a division ring. Moreover, every projective space is a posi-
tion of projective spaces of this kind, projective planed hnes; see [VY65].

Definition A.1.1. A possibly degenerate projective spdsa linear space satis-
fying the following property:

(VY) For every pai(l, k) of disjoint lines and every poirg € & ~ (I UK) there
is at most one line througp meeting botH andk.

The characterisation (VY) of O. Veblen and J. Young givenhiis tliefinition
is based on Pasch’s Axiom. A projective space is called dagémif it contains
at most one line or at least one short line, i.e. a line of caldty 2. Usually,
projective spaces are required to be non-degenerate. Howiewe talk about
projective spaces, we always allow them to be degenerais.olivious by the
definition that every subspace of a projective space is agpinjective space.

We first show how degenerate projective spaces are compbaed-olegener-
ate ones.
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Lemma A.1.2. Let.¥ = (£2,.%) be a projective space. For two points p and q
we write p~ q if and only if they are joined by a thick line orgq. Thers is an
equivalence relation.

Proof. We only have to check the transitivity ef. Let {p,q,r} C & with g~
p~ r. If these three points are on a common line, we obtpiar. Hence we
assume they are not collinear. Uetlenote the line joiningp andqg and letk
denote the line joining andr. Since both lines are thick, we fid € | < {p,q}
andr’ € k~ {p,r}. Leth be the line joiningy andr and leth’ be the line joining
g andr’. Sincer € hnk butr ¢ | Nk = {p}, we concludén # |. Sinceq € hnl,
this leads tg ¢ h. Analogously we obtaip ¢ I. Sincel andk are lines through
p meeting bothh and i/, the two linesh andh’ intersect in some poinp’ by
Definition A.1.1. Sincep ¢ I, we obtainh’ = | and sincegy € W N1, we conclude
g ¢ h'. Analogously,r ¢ h' and thereforey # p’ # r. Thus,h is a thick line and
qrr. ]

Corollary A.1.3. Let.¥ be a projective space and U an equivalence class of
in .. Then U< . and U is either a singleton, a thick line or a non-degenerate
projective space.

Proof. Let p andq be two points ofU. Then the line joiningp andq is thick.
Hence, for every point on this line, we obtaim =~ p. So the whole line is con-
tained inU andU has to be a subspace.

If U contains at least one ling, is a singleton or a thick line. I} contains more
than one line, it is a non-degenerate projective space sivery line is thick. [

Letl be an index set and 1ét )i/ be a family of projective spaces. Then we
define thedirect sumof the projective spacds”;)ic| as

P A= (U@i,UiﬂiU{{pﬂ} | (p,q) € i x 2| Ai#i}).

iel iel iel

Proposition A.1.4. Every projective space is a uniquely determined direct sbim o
projective spaces, thick lines and singletons.

Proof. By definition of the direct sum, every projective space isfus direct sum
of the equivalence classes ®f Thus, Corollary A.1.3 proves the claim except
for the unigueness.

Let | be an index set and lét#);c; be a family of disjoint projective spaces.
Further let. be a point, a thick line or a non-degenerate projective sfarce
everyi € |. Thenin the point-line spaqg;c, -7 every thick lind is contained in a
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non-degenerate projective spaggefor somei € | orl € {4 |i € 1}. Furthermore,

every short line of]i¢, -#; joins two points of two distinct members 6/ |i € 1}

since no element of. | i € |} contains short lines. This proves the uniqueness.
0

As already mentioned, there is a strong connection betweageaqtive spaces
and vector spaces. As consequence of this fact is that pk@gepaces are gener-
ated by subsets of their elements that are similar to thestiEseector spaces and
therefore are also called bases. We will see that each of theeses is obtained by
adding bases of the non-degenerate components.

Lemma A.1.5. Let.¥ be a projective space and X a set of points/6f Further
let U be an equivalence classsf Then(XNU) = (X) NU.

Proof. We denote by¥/~ the set of equivalence classes.if with respect to
~. The direct sum?” = [yc(»/~)qu}V is @ subspace of” since all thick
lines of . are completely contained i&¥” or disjoint to.#’. By the definition of
the direct sum we see that is the disjoint union of”” andU. HenceX is the
disjoint union ofXp := X N.¥" andX; := XNU. For every two distinct pointp
andq of (Xp) U (X1) the line joining them is contained iX) if {p,q} C (X) for

i € {0,1} and equalq p,q} otherwise. Thus, the séXp) U (X1) is a subspace. It
follows that(Xo) U (X1) = (X) and sincgXp) N"U = & andX; C U, we conclude
(X1) = (X)NU. 0

Let.” be a projective space and KitC .7 be a set of points. Ip ¢ (X~ {p})
for every pointp € X, we callX independentAn independent set of poinBC .77
with (B) = . is called abasisof .. A set of points which is not independent
will be calleddependent

Lemma A.1.6. Let. be a projective space and let U be a non-empty subspace
of .. Then for every point g . with U # {p} the subspacép,U) is the union
of lines through p that intersect U.

Proof. Let Up be the union of lines through meetingU. Since.” is singular,
we only have to show that, is a subspace. Léte a line containing two distinct
pointsg andr of Up. If pe | or pc U the claim becomes trivial, hence we may
assumep ¢ U Ul.

Letd be the intersection point &f andpg and letr’ be the intersection point of
U andpr. If o = r’ we obtainpg= pr = gr C Up. Thus, we may assuntg # r'.
Setl’:=qr'. If q=q andr =/, thenl € U C Up. Hence, we may assumet r’.
This impliesl # 1’ sincel <U andr ¢ U. Since the two linepg andpr intersect
bothl andl’ andp ¢ | Ul’, there is a poins € | NI’ by (VY). For an arbitrary point

t € | the two distinct linespr and| contain the point and intersect botl' and
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pt. Sincel’ # ptandr ¢ U, (VY) implies|’ N pt # @ and thereforept C Up. We
concludet € Up and hencé C Uy, O

Lemma A.1.7. Let.” be projective space. Further letX . be an independent
set of points and let p be a point of ~ (X). Then XU {p} is independent.

Proof. SupposeX U {p} is dependent. Then there is a finite XgtC X such that
p € (Xg) or x € (Xo, p) for some pointx € X \. Xo. The first leads tg € (X),
a contradiction. Hence, we may assume that the second chise I8inceX is
independent, we obtait¢ (Xo). Thus Lemma A.1.6 implies that the poirihas to
be on aline joiningp and a poiny € (Xp). We concludep € (x,y) < (x,Xo) < (X),
a contradiction. O

Proposition A.1.8. In a projective space every independent set of points is con-
tained in a basis.

Proof. Let.” be a projective space. Further ldie an index set and 1€X;)ic| be

a chain of independent subsets#t SetX := i Xi. SupposeX is dependent.
Then there is a point € X with x € (Y) for some finite subset C X \ {x}. For
every pointy € Y U {x} there is an elemeny € | with y € X;,. SinceY U {x} is
finite, the unionUycy gy X, is contained in{X, |y € Y U{x}} and therefore a
member of the family X )ic;. LetX; denote this member. Then the dependent set
of pointsY U {x} is contained inX;, a contradiction to the independenceXgf
We apply Zorn’s Lemma to conclude that there are maximalpeddent sets of
points.

Let X be a maximal independent set of points. Furtheplet.” \ X be a point.
By the maximality ofX we know thatX U {p} is dependent. Hence, there is a
finite subseXy C X such thatp € (Xp) or x € (Xo, p) for some poink € X \ Xo.

In the first case we obtaip € (X). In the second case we obtai¢ (Xp) since

X is independent. Thus, Lemma A.1.6 implies that the pwiston a line joining

p an a pointy € (Xp). This leads top € (X,y) < (X, Xg) < (X). We conclude
(X)=.~. O

Corollary A.1.9. Every projective space has a basis.

Proof. Since the independent set is contained in every projective space the
claim follows from Proposition A.1.8. O

Corollary A.1.10. Let.# be a projective space. Further 18;)o<i<n be a chain
of subspaces of”, where ne IN. Then there is a basis B o such that B1\U; is
a basis of Yforall 0<i < n.

Proof. SetU, := .. AssumebB; is a basisB; of U; for 0 <i < n. Then by
Proposition A.1.8 there is a ba$ig, 1 of U1 which containd;. SinceB;j.1NU;
has to be independent aBgdis maximal under this condition, we concluBg 1 N
Ui = B;. SinceUg has a basis, the claim follows by induction. O



‘ A.1. Projective spaces } 197

Let.¥ be a projective space with a baBisThen for every poinp € ., there
is a finite subseBy C B with p € (Bp). Now letBp andB; be two finite subsets &
with p € (B;) fori € {0,1}. Since they both are finite, we may assume that they are
minimal under this condition. SuppoBg Z B;. Then there is a poiri € By . B;.
By the minimality of By we knowp ¢ (Bg ~ {b}). Thus, Lemma A.1.6 implies
that there is a line joinind, p and some point € (Bp \ {b}). We conclude
(p,Bo~ {b}) = (Bo). By Lemma A.1.7 the sefp} UBp~ {b} is independent
and therefore a basis ¢Bg). Sincep € (By), this impliesb € (Bo~\ {b},B1), a
contradiction to the independence®f We concludeBy C B; and analogously,
B1 C Bo. Hence, there is a unique minimal subBgtC B with p € (Bp). We call
By thesupportof p with respect to the bask

LemmaA.1.11. Let.” be a projective space. Fok {0, 1}, letU; <.# be a non-
empty subspace such thagUU; contains more than one point. Thédg,U;) is
the union of lines meeting bothpyldnd U;.

Proof. Since.” is singular, it suffices to show that the union of all lines tree
ing bothUp andU; is a subspace. We may assubge£ U1 andU; £ Ug since
otherwise there is nothing to prove. Lgtandg be points ofU; for i € {0,1}.
Further letp be a point ongp := pop1 and letq be a point ongg := gy With

p # q. Finally letr be an arbitrary point of := pg. We have to show that there
are distinct pointsg € Ug andry € U1 such that € rory.

We may assume # r # g andr ¢ UpnNU; since otherwise we are done. Further
we assumey # go andp;y # o1 since otherwise the claim is a direct consequence
of Lemma A.1.6. First lep € Up. Thenp andq are both contained ifd:, Uo)
and the claim follows from Lemma A.1.6. Hence, we may asspieJy and
analogouslyp ¢ U; andq ¢ UgUUj.

If g = gp, the claim follows withrg := pg andry := p;. Thus, we may assume
g # gp and analogouslyg # gq. Now g andgp both containp and intersect the
lines p1g andpor. Sinceg # gp, we obtainp ¢ p1quU por andp1q # por. Thus,
there is a point’ € p1gN por by (VY). We may assume ¢ U; since otherwise
we are done. SinagyNU1 = {0:} andp; # 01, we obtaingg # p10. Furthermore,

r ¢ Up implies por N"Up = {po} and thereforeyy # r’. Now g4 and p1q both con-
tain g and intersect the linegpr’ andg; := piga. Sinceq ¢ Uz, we knowq ¢ g1
anddo ¢ g1 and hencejr’ # g;. If g € qor’, we obtaingor’ = gq and sety := .
Otherwise, we apply (VY) to conclude thggr’ andg; intersect in a point;.

It remains to show that ; andgg intersect. Ifr’ € rrq, thenrr, =r'ry = gory and
hence, we are done. Thus, we may asstigerr;. If r’ € go, thenr’ = pg since
por NUp = {po}. Againrri andgo intersect. Thus, we may assumiet go. Now
the linesgor’ and por both contairr’ and intersectr; andgg. Sincepg # g and

r ¢ Up, we knowdor’ # por. Hence, applying (VY) proves the claim. O]
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Lemma A.1.12. Let.¥ be projective space. FurtherletX . and YC . be
independent sets of points with X = @. Then XUY is independent if and only
if (X)N({Y)=g.

Proof. Assume(X) N (Y) = @. Let Xy C X be a finite subset and I€t; | 0 <

i <n} CY for somen € IN. Set recursively1 := X U{y;} for0<i < n. By
Lemma A.1.11 the subspac¢¥;) consists of the lines joining a point ¢Kp) with

a point of (y; | 0 < j <i). We showyy ¢ (X;) for all i <k < n. Suppose this is
not the case. Then there is a lig¢ghroughyy that meetgXp) in some point and
(yj |0< j <i)in some pointy. Since{y; | 0 <i < n} is independent, we obtain
y # Yk and thereforex € yy < (Yp), a contradiction ta(X) N (Y) = @. Since
Xp is independent, the independenceXgffollows by induction using Lemma
A.1.7. Hence X UY contains no dependent finite subset and thereXargy is
independent.

Now letX UY be independent. ThexiUY is a basis ofX,Y). Let p be a point in
(X). Then the support ab in (X,Y) with respect to the basiUY is contained
in X. Since the support is unique we obtgigt (Y). O

Lemma A.1.13. Let B and C be two bases of the same projective space. Further
let ce C~ B. Then there exists an element 1B \. C, such thatf{c} UB~ {b} is
again a basis.

Proof. SetA:=BNC, B :=B~ AandC' :=C~ A. ThenceC'. LetBg be the
support ofc with respect toB. SinceC is a basisc ¢ (A) and henceBy £ A.
Let b € Bop . A. By the minimality ofBy we knowc ¢ (B~ {b}). Hence by
Lemma A.1.6,c is on a line joiningb and a pointp € (By~ {b}). Sincec ¢
(Bo ~ {b}), we obtainc # p. This impliesb € cp< (c,Bp . {b}) and therefore
(c,Bo~ {b}) = (Bo). Sinceb is contained in the support afwith respect taB,
we concludes ¢ (B~ {b}). Hence by Lemma A.1.7, the st} UB\ {b} has to
be independent. On the other hamd (c, B\ {b}) and thus{c,B~ {b}) > (B).
Hence {c} UB {b} is a basis. O

Proposition A.1.14. Every two bases of a projective space have the same cardi-
nality.

Proof. Let B andC be two bases of a projective spagé First letB be finite. As
long as there is an elemeic B~ C, we find by Lemma A.1.13 a basi& and

an element € C~ B with B= (BNB')u{b} andB' = (BNB') U {c}. Hence,

|B| = |B'| and |B'NC| = |BNC|+ 1. Induction leads to a basis with the same
cardinality asB that is contained irfC. Since there cannot be a basis properly
contained in another one, this basis eq@l3hus,|B| = |C|.

Now let B andC both be infinite sets. For all € C let B. be the support o€
with respect tB and seB’ := [J..c Bc. Thenc € (B') for all ¢ € C and therefore
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(B) = (C) < (B'). This impliesB’ = B sinceB is a basis. ThugB| < ¥ c B¢/
Since|B¢| < |IN| for everyc € C, this leads tdB| < |C| - IN|. Since|C] is infinite,
we obtain|IN| < |C| (by [Bou68, §6.3, Lemma 1]) and therefofg| < |C| - |C|.
Finally |B| < |C| (by [Bou68, 86.3, Theorem 2]). ExchangiB@ndC finishes the
proof. O]

Corollary A.1.15. Let.¥ be a projective space and let § . be a subspace.
Further let By and G, be bases of U and let B and C be bases/fvith By C B
and Gy CC. ThenB~By|=|C~Cy|and(B~By)UCy is again a basis of”.

Proof. Since(By) = (Cy), we obtain(lB~By,Cy) = (B~ By,By) = (B). Lemma
A.1.12 implies(By) N (B~ By) = @ sinceB is independent. Moreove(By) =
(Cy) implies that(B~ By) UCy is independent and therefore a basis.

If |BJ is finite, B~ By| = |C~ Cy| is a direct consequence of Proposition A.1.14.
In the infinite case we define for everyg C\ Cy the seB. to be the intersection
of B~ By and the support of with respect tdB. The rest is just the same as in
the proof of Proposition A.1.14. O

Let.¥ be a projective space and l8t< . be a subspace. Further Bj be a
basis ofU and letB be a basis of” containingBy. We call|B~ By| the corank
of U in . and denote it by crlk(U). As a consequence of the previous corollary,
the corank is well-defined and does not depend of the choitleediasis.

Proposition A.1.16. Let . be a projective space with basis B. Th@j =
rk(7) + 1.

Proof. Let < be awell-order oB. For evenyb € B, setR,:= (ceB|c<b). Then
{Ry| beB}u{.#} is a chain of subspaces such tRgt< R. for every unordered
pair {b,c} C B with b < ¢ sinceb € R; \ R,. Hence,(B,<) — ({Ry | be B}, <

): b+— Ry is an isomorphism of well-ordered chains. We concludesfk >
B|+1—-2=|B|—1.

Now letC be some maximal chain of subspacessthat is well-ordered under
<. For everyRe C~ {7}, letn(R) be the successor & in C and letbg be

a point ofn(R) \R. Let {R 'S} C C be an unordered pair witR < S. Then
br € Sand thereforébg | Qe CA Q< S) < S Supposdbg | Qe C~ {F}}is
dependent. Then there is a finite subct@jrof C \ {.} such thafbr | R€ Cp}

is dependent. Sinc&p is finite, Lemma A.1.7 implies that there is an element
T € Cp suchthaby € (g | RECo AR< T). Sincebre T forallR< T, thisisa
contradiction tdor ¢ T. Thus,{br | Re C\ {-¥}} is independent. We conclude
Bl > |C|-1=rk(¥)+1. 0

Note that the proof of this proposition works for any maximadll-ordered
chain of subspaces and not only for those of maximal posséiginality. Hence,
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for projective spaces all maximal well-ordered chains dfspace have the same
cardinality. This is not true for arbitrary linear spaces.

Corollary A.1.17. Let.¥ be a projective space and let d . be a subspace.
Thenrk(.”’) = crk»(U) +rk(U).

Proof. This is an immediate consequence of Proposition A.1.16. O

A.2 Polar spaces

Polar spaces are point-line spaces with a surprisingly cliegacterisation that
yields rather strong properties. Polar spaces are alstestodtside the field of
incidence geometry. For instance, they appear in disgsiselations of quadratic
forms on a vector space.

The following definition goes back to F. Buekenhout and E ISkae [BS74].

Definition A.2.1. A polar spaces a point-line space” = (#,.%) satisfying the
following property:

(BS) Let(p,l) e & x.Z. Thenpis collinear to either all or exactly one point
of I.

An equivalent condition to (BS) is that for every pomthe setp™ is a hyper-
plane of.” or equals#?, see [Coh95]. We mention both conditions since each of
them has its advantages in certain situations.

Let.” = (£, .%) be a polar space. Thadical Rad.””) := {pc Z | pt =
P} = 2+ consists of all points which are collinear to all others. Bfinition
a polar space is a gamma space and theréfbrds a subspace for every set of
pointsM C 2. Since Ra(l¥’) = &, the radical is a singular subspace%t A
maximal singular subspace of a polar space is calligererator

Therank of a non-degenerate polar spagéis defined as rk?) := srk(.%) +
1. A more general definition, which includes degeneraterpgpaces is given
in [Joh90]: The rank of is the largest integem, such that there is a chain of
lengthn+ 1 of singular subspaces all containing Rad). If there is no such
integer, the rank is set to be. In the finite rank case, the rank equals(stk —
rk(Rad.¥)). To include the cases which have infinite rank, we take trgektr
cardinala such that there is a well-ordered chain of length- 1 of singular
subspaces all containing Ra# ), instead. Note that a singular polar space has
always rank 0. Hence, this rank might differ from the rank veéai if the space
is treated as a singular space.
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Using Zorn’s Lemma one sees that every polar space has gerseaad that
every singular subspace of a polar space is contained in generator. Further-
more, by Lemma 1.1.3 above, every set of mutually collineants is contained
in a generator.

In a non-degenerate polar space of finite rank&ll lines of which have cardi-
nality at least 3, every singular subspace is containednmessingular subspace
of rankn— 1; see [Tit74, 7.2.1]. In other words, every generator hak na— 1.
The equivalence between the axioms used there ([Tit74) & the ones used
here is shown in [BS74, Theorem 4].

We will see later on that even if we have short lines, all gategs of a non-
degenerate polar space of finite rank have the same rankldng@aces of arbi-
trary rank it may occur that there are generators of differank!; see [Joh90] for
an example. But there are some weaker conditions that stdl h

A.2.1 The associated non-degenerate polar space

Among the class of polar spaces the class of non-degenesiatiespaces plays a
prominent role. One reason is that non-degenerate polaespgeave a structure
that is much nicer. We will see later that they are partiatigér and their gener-

ators are even projective spaces. Both facts do not holdlbirary polar spaces.

A second reason is that there is a functor from the categopplaifr spaces onto

the category of non-degenerate polar spaces, which meainsrié can associate
each polar space with a uniquely determined non-degengoédespace.

Definition A.2.2. Let. = (#,.%) be a polar space. For every pome &7, we
setp? := (p,Rad.¥)) and for every lind € £, we set” := {p° | pe|}. Define
the following two sets:

PP ={p°|pe £ Rad.¥)}
LP={IP|le Z ANlNRad¥) =2}

Then.sP := (PP, £P) is called theassociated non-degenerate polar spate
.

By construction,”? is again a point-line space provided thi} > 2 holds
for every linel C . <\ Rad.¥). The notation used here corresponds with the
one in [Coh95, 2.4]. In [Joh90] a different notation is us&te first part of the
following lemma will show that the both notations lead tonsarphic point-line

1in this case, of course, both ranks asebut there is no bijection between maximal well-
ordered chains of pairwise properly contained singulasgabes.
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spaces since using’ \ Rad.¥) instead ofp® provides the notation of [Joh90].
Therefore we may use some of the results given in [Joh90].

Lemma A.2.3. Let.¥ = (£,.Z) be a polar space.

(i) Letle Z be disjoint fromRad.). Then for every point g |, there is a
point g€ £ with Ing* = {p}.

(i) p°={ge Z|g- = pt}uURad.7) for every point pc &~ Rad.¥).

(iii) Letle Z be disjoint fromRad.#). Then for every point g |, the line |
intersects B in exactly one point.

(iv) Letle & intersectRad.s) in a single point p. Thed ,Rad.”)) = ¢f for
all points ge | ~ {p}.

(v) Let p? and ¢f be points of.¥? on a common lineA € .ZP. Further let
(P, d) € p? x g° be a pair of points in. Then there is a line it” joining
p’ and d.

Proof. (i) See [Joh90, Proposition 3.1(i)].

(i) See [Joh90, Proposition 3.1(ii)].

(iii) Let p andq be two points on. Then (i) impliesp™ = g* if and only if p = q.
Thus by (i), p? = ¢P if and only if p=g. Hence] — I p— pP is a bijection.
Since by (ii) we obtairp? = of if g € p®, the claim follows.

(iv) Let g€ |~ {p}. Since{q,p} C g° andg’ <.¥ we getl C g” and hence
(I,Rad.¥)) < gP. The other inclusion is trivial.

(v) If P e Rad.¥) or d € Rad.), this is clear, hence we assurfi,q'} C
Z < Rad.¥). By (iii) we may assumé p,q} C | without loss of generality. We
getq € ¢ ~ Rad.¥) and therefore by (ii) we ged- = g'*. Hencep' € p° =
(p,Rad.#)) < g+ = g and thus there is a line joining andq. O

By Lemma A.2.3(iii) we obtainl| = ||| for every line disjoint to the radical.
Hence,.#P is indeed a point-line space. Moreover, the following psition
justifies the name associated non-degenerate polar space.

Proposition A.2.4. Let ¥ = (£,.%) be a polar space. Ther’? is a non-
degenerate polar space.

Proof. First we show that (BS) holds i¥’P. Therefore we choose an arbitrary
pair (p°,1P) e 2P x £P. Since (BS) holds in, we find a pointq € | with
gL p. SincelNRad.¥) = &, we obtainq ¢ Rad.&) and thereforgP € I°. Let

k be the line joiningp andq. If knRad.%”) = @, thenk containsp® andg.
Otherwisep = g° by Lemma A.2.3(iv). Thusp® andgP are collinear.

Assume there is a second poifite I1° being collinear top®. Letr’ € rP be the
point of . belonging td. By Lemma A.2.3(v) we obtaip L r’ # g and hence
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| C pt by (BS). Analogously to the first part of this prog# is collinear tos”
for everys e |. This implies that all points oif are collinear top®. Thus.#?
satisfies (BS).

Now assume that there is a popft € Rad.~?). Then Lemma A.2.3(v) implies
that every poinp’ € pf is collinear to every poing/ € g° for every pointg® ¢ 2P,
This impliesUgpe 20 0P € p. By Lemma A.2.3(ii) the sefgP < Rad.?) | of €
PP} is a partition of 2 \ Rad.¥). Thus,p’ € Rad.¥”) andp® < Rad.¥). We
concludep? ¢ 2P and therefore”? has to be non-degenerate. O

Note that if a polar space is singular, then the associateedlegenerate polar
space is just the empty space, which is of course also a ngendeate polar space.
As mentioned above, non-degenerate polar spaces haveroperies that do not
hold in general for degenerate ones. These propertiegdsiatthe following
two propositions, makes studying non-degenerate polarespauch easier than
studying arbitrary ones:

Proposition A.2.5. Let p and g be non-collinear points of a non-degenerate polar
space. Then{p,q}+ is a non-degenerate polar space. Moreove#/ihas finite
rank, thenrk(.) = rk({p,q}+) + 1.

Proof. The first property is [Coh95, Theorem 3.1(iii)]. Now IBtbe a generator
of .7 that containsp. ThenGNg* is a hyperplane ofs that is contained in
{p,q}+. Conversely, ifH is a generator of p,q}~, then(p,H) is a singular
subspace of”. O

Proposition A.2.6. Let p and g be non-collinear points of a non-degenerate polar
spaces’. Then(p,g)g =~

Proof. By (BS) we obtain thatp,g)q contains all lines througlp and all lines
throughg. Let p’ # p be a point collinear tgp. Then by Lemma A.2.3(i) there
is a pointq such thatp is the only point onpp that is collinear tay. Sincep’
andq’ are not collinear and both are containedng)y, we conclude thatp, q)q
contains all points collinear tp’ and consequently, all points at distance 2to
This proves the claim. O

Proposition A.2.7. Every non-degenerate polar space is partially linear.
Proof. See [Joh90, Proposition 3.1(vii)] . O

Proposition A.2.8. Every singular subspace of a non-degenerate polar space is
a possibly degenerate projective space.

Proof. See [Joh90, Theorem 3.2]. ]
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This knowledge helps us to investigate the lattice of subaspaf the associated
non-degenerate polar space.

Lemma A.2.9. Let.¥ be a polar space and ..
(i) Theset® :={p° | peU~Rad.”)} is a subspace ofP.
(i) LetV<.”. ThenV<U implies\W <UP.
(iii) LetU" <.#P. ThenU :=Upytp? <. and UP =UT.

(iv) Set U := (Upeyr PP)URad.”). Then U< U’, where U= U’ holds, if
Rad.#) < U.

(V) U is singular if and only if I is singular.

Proof. (i) Let IP be a line of.P on which there are two distinct pointg? and
gP say, which are contained W. Then there are pointg € p° andq € g° with
{p’,d} CU\Rad.”). By Lemma A.2.3(v) there is a liné of . joining p’ and
g. SinceU is a subspacd! is contained irlJ. Sincel’? andlIf intersect in two
different points, we obtaiff® = I° by Proposition A.2.7. Hencé? is contained
in UP and therefor&J? < . 7P,

(ii) We obtainVP C UP by definition. The rest follows with (i).

(iii) Let p’ andd be two collinear distinct points ib’. Further letl be the line
joining p’ andg/. We choose two points® andg? in U with p/ € p? andd’ € oP.
If p € Rad.¥), thenl is contained irg-. Hence we may assume that neitiper
nor ¢ is contained in Rad”’). Thenp® = p? andg® = g° andlI” is just the
line joining p? andgP. SinceU is a subspace, it contai® and thereford is
contained inJgooyt P°. For every pointp’ € U’, there is a poinp® € UT with
p € pP. Sincep® < pP, we obtainU’® < UT and sincep € p? < U’, equality
holds.

(iv) If U <Rad.”), thenUP = & and there is nothing to prove. Hence we assume
U £ Rad.¥). Letpe U andqinU \ Rad.¥). Thenpe p? <U’, if p¢ Rad.¥)
andpe g? <U’,if pe Rad.#). HencelU <U’. On the other hand, if R4d”’) <
U, we obtainp® < U for everyp € U and thereforé)’ <U.

(v) If U is singular, then two pointg? andgP in UP are joined by the ling®,
wherel is a line joiningp andq in U. Hence,U® is singular. Now leU® be
singular and séd)’ := (Upocye P°) URad.). ThenU < U’ by (iv). SinceU’ is
singular by Lemma A.2.3(v), the subspage< U’ is singular, as well. O

Proposition A.2.10. Let . be a polar space. Further lefly be the set of all
subspaces K . containingRad.¥) and letil; be the set of all subspaces of
P, Then the lattice$ily, <) and (41, <) are isomorphic viap : $lg — 4p: U —
ur.
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Proof. LetUT € 4; andU := (Upeeut P°)URad 7). By Lemma A.2.9(ii)U <

. and henc&J € $ly. Again by Lemma A.2.9(iii) we obtaiy® = U™ and thus,
¢ is surjective. For every subspa¥ec $lg with VP = UT, we obtainV = U by

Lemma A.2.9(iv). Hencep is bijective.

LetU andV be intp. ThenU <V impliesUP <VP by Lemma A.2.9(ii). If
UP < VP, thenU = (Upocye PP) URAA.Y) C (Upoeve PP) URad.) =V and
thereforad <V by Lemma A.2.9(iii). Hencep is an isomorphism of lattices.[]

Corollary A.2.11. Every polar space has the same rank as its associated non-
degenerate polar space.

Proof. Let . be a polar space. By Proposition A.2.10 and Lemma A.2.9(v) a
chain of singular subspaces i#f all containing Raf”) can be mapped iso-
morphically on a chain of singular subspacess6f and vice versa. The claim
follows. O

In a non-degenerate polar space the maximal well-orderaid€lof subspaces
of a given generator are all of the same cardinality sincegbnerator is a projec-
tive space. Like in the corollary above, this implies for eeyi generatoM of an
arbitrary polar spaces that all maximal well-ordered chaifisubspaces dfl all
containing Ra@l¥’) are of the same cardinality. Note that this is no longer tfue i
the singular subspaces are not demanded to contain thaladic

A.2.2 Dual polar spaces

In a polar space”, two generator andN are calledadjacentwhen they inter-
sect in a common hyperplane, denotedby- N. Let & be the set of generators.
The graph or® induced by~ is called thedual polar graphof .. Let ¢* be
the set of maximal cliques, i. e. sets of vertices of maxinoahglete subgraphs,
of the dual polar graph. S&t .= {xc ¢ | |x| > 2}. Then(®&,%) is a point-line
space, called théual polar spacePoint-line spaces which are isomorphic to such
a space, are also called dual polar spaces.

There are non-isomorphic polar spaces whose dual polaespe isomor-
phic. To study dual polar spaces it suffices to check only epeesentative of
each class of polar spaces with isomorphic duals. In theviatllg we will show
that we can always pick a non-degenerate representative.

Lemma A.2.12. Let U be a singular space with a hyperplaneJ. Further let
p be a point of U\ H. Then U= (p,H). More precisely, U is the union of the
lines joining a point of H with p.

Proof. Let g be an arbitrary point o) . {p}. SinceU is singular, there is a line
joining p andq. SinceH is a hyperplane ofl, this line intersect$l. The claim
follows. O
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Lemma A.2.13. Let.¥ be a polar space and let M and N be two generators of
. Then MNN is a hyperplane of M if and only if M N is a hyperplane of N.

Proof. Assume thatH := M NN is a hyperplane oM. If N does not contain a
line, there is nothing to prove. Thus, llebe a line inN. Now we take a point
p € M~ H. Then by (BS) there is a poimton | which is collinear top. Since
g NM containsH andp, we obtainM < g* by Lemma A.2.12. Hence, Lemma
1.1.3 implies that there is a singular subspace which coslMiandg. SinceM

is a generator, we obtame M. Thus,H intersects. SinceN # H by maximality
of N, we conclude thail is a hyperplane di. O

Proposition A.2.14. Let X, Y and Z be generators of a polar space which are
pairwise adjacent. Then X, Y and Z have a hyperplane in common

Proof. We may assume that, Y andZ are pairwise distinct since otherwise the
claim becomes trivial. Sinc¥ andY are adjacent, they have a hyperplahén
common. Assuméd < Z. SinceZ intersectsX in a hyperplaneZNX =H by
Lemma A.2.12 and therefolé is hyperplane oZ by Lemma A.2.13.

Now assumeH £ Z. ThenZ intersectsX in a hyperplane which is by Lemma
A.2.12 not contained iil. Hence, there is a pointe X ~. H, which is contained
in Z. Analogously, there is a poigte (Y . H) NZ. Sincex andy are contained in
Z, they are collinear. Thus,andH are contained iy and therefor&X <y by
Lemma A.2.12. By Lemma A.2.13 there is a singular subspantagongX and

y. This is a contradiction tg ¢ X and the maximality oX. O

From this proposition it follows that every line of a dual aokpace corre-
sponds to a hyperplane of a generator of the underlying pplace. Conversely,
hyperplanes of generators which are contained in two diffegenerators corre-
spond to lines of the dual polar space. Note that there mightyperplanes of
generators, which are contained in only one generator andfttre do not corre-
spond to any line of the dual.

Theorem A.2.15. Every dual polar space is isomorphic to the dual of a non-
degenerate polar space. More precisely, for a polar spa€ethe dual polar
space of¥ and the dual polar space o¥’? are isomorphic.

Proof. Let.% be a singular. Then the dual polar space/fs clearly a singleton.
This is still true for the empty space which is of course slaguoo. Since the
empty space is also the associated non-degenerate pota spany singular
polar space, this case is done. Hence, we assumeAlighon-singular.

Let o be the set of singular subspaces%fcontaining Raf’) and letil; be
the set of singular subspaces@P. By Proposition A.2.10 and Lemma A.2.9(v)
there is an isomorphisr between the posetsly, <) and(Ll;,<). By Lemma
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1.1.3 all generators of” contain Ral¥’). Henceg induces a bijection between
the generators of” and the generators of®.

Now letM < .# be a generator. Sinc# is hon-singular, we obtain R&¢’) <M

by Lemma1.1.3. Leltl be a hyperplane dfl containing Ra@’). ThenH?P < MP

by Proposition A.2.10. Ldf be aline ofMP. Thenl is contained irM by Lemma
A.2.9(iv). We choose a poinp € HNI. Sincel is disjoint from Rad.¥), we
obtainp® € HP NIP. Hence HP is a hyperplane oM. Conversely, leH? be a
hyperplane oM? and setd := (Upoene P°) URad.”). By Proposition A.2.10
we obtainH < M. Letl be a line ofM. If | intersects Rad?’), then it also
intersectH. If | is disjoint from Rad.%”), thenl? intersectsH” in some point
p°. By Lemma A.2.3(iii) and Lemma A.2.3(ii) we may assume tha the point
contained irl. Thus,p € | NH andH is a hyperplane d¥.

Since¢ is an isomorphism of the poseio, <) and(ily, <), it follows that a set
of maximal singular subspaces.i intersect in a common hyperplane if and only
if their images undeg do. Hence, lines of the dual of are mapped bijectively
onto lines of the dual of”P. We conclude that the two dual polar spaces are
isomorphic. O]

In the rest of this section we study generators of polar space their dis-
tances in the dual polar space. All subspaces that occulisrcéimtext contain
the radical, since they are intersections of generatorgngaroposition A.2.10
and the theorem above in account, we may always considesgoeiated non-
degenerate polar space. Generalising the following seésrand proofs to the
case of arbitrary polar spaces is straightforward and withoy additionally in-
terest.

Let . be a polar space. Further ldtC .7 be a set of points and It < .77
be a subspace. Then we &V = (U,U+NV). For a single poinp, we will
write paV rather than{p} V.

Lemma A.2.16. Let M be a generator of a non-degenerate polar spa€eand

let p be a point. Then N= p9 M is again a generator. Moreover, if @ M, then

M =N and if p¢ M, then N is the unique generator being adjacent to M and
containing p.

Proof. If p€ M, thenM < p* and hencgpad M = (p,M) = M. Now letp ¢ M.
SinceM is a generator, Lemma 1.1.3 implies thwis not collinear to all points
of M. HenceH := MnNp’ < M. Sincep™ is a hyperplane of”, H has to be
a hyperplane oM. By Lemma 1.1.3 the subspabk= (p,H) is again singular.
Sincep ¢ M we obtainH < N. Let N’ be a generator containifg. With p €
N’ <M, we obtailH < MNN’ < M and thereford "N’ = H by Lemma A.2.12.
Thus, Lemma A.2.13 implies th&d is a hyperplane oN’. Applying Lemma
A.2.12 again leads th’ = (p,H) = N and thereforéN ~ M.
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Now let L be a generator containingand being adjacent tbl. Sincel < p*,
we obtainLNM < p-NM < N. SinceLNM is a hyperplane ok, this implies
L= (p,LNM) < (p,p-NM) = N. SinceL is a generator, the claim follows.]

Lemma A.2.17.Let M and N be two generators of a non-degenerate polar space
with MN N # @. Further let p be a point not collinear to all points of MN. Set
N’ := paN. Then MIN’ is a hyperplane of MN.

Proof. Let g be a point oM NN not collinear top. By Lemma A.2.12N’ is the
union of the lines througp that meeN. Sincep ¢ g*, each of these lines contains
exactly one point being collinear tpby (BS). SinceN < g*, this point has to be
the intersection point withl. Henceg NN’ = NNN’ =: H and sincéM < g*, we
concludeM NN’ < H. WithH < N/, we obtainMNN =MNH < MNN. Since
g€ MNN andg ¢ N/, we obtainM NN < MNN. Finally, the claim follows since
H is a hyperplane of. O

RemarkA.2.18 Let M be a generator of a non-degenerate polar space of finite
rank. As a consequence of Lemma A.2.17, there is for evergrgéorN with
NNM # @ a generatoN’ with N'NM < NN M. Since the rank o is finite, this
implies that there exists a generator that is disjoirilto

Lemma A.2.19. Let M and N be two distinct generators of a non-generate polar
space. Further let p be a point of MN and set N:= pgN. Then N\M is a
hyperplane of NN M.

Proof. Take a poingg € N~ N’. Sincep- NN < N/, the pointq is not collinear to
p. Sincep € MNN’, we may apply Lemma A.2.17 to conclude tiigth N') "M
is a hyperplane oR’ M. Finally, Lemma A.2.16 impliega N’ = N. O

We call two singular subspacét andN of a point-line spaceommensurate
if crkm(MNN) = crky(MNN) € IN.

Proposition A.2.20. Let M and N be two generators of a non-degenerate polar
space. Further let d be the distance of M and N in the dual pstace. Then M
and N are commensurate and=dcrky (M NN) or d, crky(MNN) andcrky (M N

N) are all infinite.

Proof. SetH := MNN. Firstlet crigy(H) =:r < 0. We proved < r by induction.
If r =0, thenM = N and thereforel = 0. Forr >0 let{bj | 0<i < r} be a set
of points such thatH,b; | 0 <i <r) =M. SetNy:= N andNi;1 := b 9 N; for
0<i<r. ThenN andN;; are adjacent by Lemma A.2.19. Moreov@i, b; |
0<j<i)<NggsinceH <Npand(H,bj |0<j<i) <N Nb;*. We conclude
Ny = M and thusd <r.

Now letd < . Then there are generataxs for 0 < i < d with Ng = N and
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Ng = M such that\; andN;;1 are adjacent for < d. Since crig,(NNNNi_1) =1
fori > 0, we obtain crk (Ni N Np) <i and hence cif(H) <d. O

RemarkA.2.21 A direct consequence of Proposition A.2.20 is that all gettes
that are contained in a common connected component of thepdier space
are commensurate. Together with Corollary A.1.17 this iegplthat all these
generators have the same rank provided that the polar spawmidegenerate.
Moreover, it suffices that one generator has finite rattkprove that all generators
are of rankn.

In non-degenerate polar spaces of arbitrary rank it migppéa that there are
generator$/ andN such that rkM) > rk(N). Since rkMNN) < rk(N) < rk(M)
and both generators are of infinite rank, we obtainygM NN) = rk(M); see
[Bou68, §6.3, Corollary 4].

Lemma A.2.22. Let U be a singular subspace of a non-degenerate polar space
7 withrk(U) < o and let M< .¥ be a generator. Then

(i) rk(U) =crky(MNUL) +rk(MNU) and

(i) Ua M is a generator with distancerky (U NM) to M in the dual polar
space.

Proof. Setk:=rk(MNU) andn:=rk(U). Let(pi)o<i<n be a basis df) such that
(Pi)o<i<kisabasisoMNU. Then(pi |[k<i<n)NM =2 by LemmaA.1.12. Set
Mo :=M andM; 1 = Piyi+1 @M fori <n—k. Then Lemma A.2.16Mi)o<i<n—k
is a sequence of pairwise adjacent generators. Hehgen — k, whered is the
distance oM andM,,_ in the dual polar space.

We know(p;j | j < k) <Mo. Hence we obtaikip; | j <k+i+1) <M1 since(p; |

j <k+i) < pryirat fori < n—k. AnalogouslyM NU+ < M,_i sinceM NU+ <
Mo andMNU* < p* for everyp € U. Since(pi |k<i<n)C My~ M, we
obtain criy,  (Mh_xNM) > n—k. Sinced < n—q, we conclude crig, , (Mp_xN
M) = d = n—k by Proposition A.2.20. This implies qgKkM NU~+) > n—k since
MNU* < My_k. On the other han¥ N p* is a hyperplane oM for everyp ¢
U~ MandU+ =Ny i<, pit. Therefore crig(MNUL) = n—k. This implies (i)
andMNU+ = MNM,_y. Since crl,  (MNMq_) = n—k, we obtainMp_ =
(U,MNM,_g) and the claim follows. O

RemarkA.2.23 Let Sbe a non-maximal singular subspace of a non-degenerate
polar space¥ of finite rank. Then there is a generatdrcontainingS. Since

- has finite rank, there is a generatdrthat is disjoint toM. Now S9N is

a generator that intersed# in S. We conclude that in? every non-maximal
singular subspace is the intersection of two generators.

We conclude this section by considering generators of a gpkaces that have
infinite distance in the dual polar graph.
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Proposition A.2.24. In a non-degenerate polar space of infinite rank there are
two generators M and N that are not connected in the dual psperce.

Proof. LetM be a generator and I€t be the set of all singular subspaces that are
disjoint toM. We have to show thad contains an element with infinite rank. By
Zorn's Lemma it suffices to show that € & with rk(H) < o is not a maximal
element of&. SetMy := MNH*. Then criy(My) = rk(H) +1 by Lemma
A.2.22(i). Letp be a point that is not collinear to all points bfy. If H < p*,
then rk(p,H)) = rk(H) + 1 andM N (p,H)* < My. Thus,(p,H) "M = & by
Lemma A.2.22(j) and we are done. Hence, we may asstirdep”.

SetG:= p9gH andMg := MNG*. Sincep' NH is hyperplane oH, we know
thatGNH is common hyperplane & andH. Hence, Lemma A.2.22(i) implies
thatMy is a hyperplane d1 N (GNH)*. SinceMy % p* andG = (p,GNH), we
conclude thaMg is a hyperplane df1N (GNH)*. Thus crig(My) = crky (Mg)
and Lemma A.2.22(i) implie& € & since rKG) = rk(H).

SinceMy # Mg, there is a poing] € Mg ~ My. Lets be an arbitrary point of
H < G. Sincep’ andg" contain the hyperplan&NH of H, there is a point
r € pqwith H = (s, GNH) < r+. Sincer L g, we obtainr ¢ H and hence(r,H)

is a singular subspace containidgproperly. This implies # gand henceM =

p L M. Thus,My £ r+ and consequentlyr,H)-NM is a hyperplane ofly. By
Lemma A.2.22(i) this impliegr,H) "M = &. O

Proposition A.2.25. A dual polar space never consists of exactly two connected
components.

Proof. We consider the underlying non-degenerate polar spécé a dual polar
space. If.¥ has finite rank, then cgk(M NN) < o for every two generatori!
andN of .. Hence, the dual o#” is connected by Proposition A.2.20.

Now let.# be of infinite rank. Then by Proposition A.2.24 there are twoeya-
torsM andN that have infinite distance in the dual polar space../ebe the set
of pairs(X,Y, ¢) such thaX C M andY C N are independent sets of points with
(XyNN = @ and(Y)NM = @ such thaiX C Y+ and¢ is a bijection fromX toY.
Further let< be a strict partial order o7 with (X,Y,¢) < (X',Y',¢’) & (X<
X'AY <Y A @'|x =¢). Now let(X,Y;, ¢i)ici be a chain in# with respect to
< for an index set. ThenX := {J X is again an independent set of points with
(X) NN = @. Analogously) := ;g Yi is independent witllY) "M = &. Since
for everyx € X and everyy € Y there is an index € | with x € X; andy €Y}, we
obtainx Ly and henceX C Y.

Setd: X — Y, such tha® = x? for everyx € X; wherei € |. By the construc-
tion of < this map is well-defined. Since for two pointsindx’ of X and a point

y €Y there is a seX; with i € | such that{x,xX'} < X; andy € Y;, the mapg has
to be bijective. HencéX,Y, ¢) is an upper bound for the chaji;, Y;, ¢;)ic|. We
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may apply Zorn’s Lemma to conclude that there are maximahefds in.# with
respect to<.

Let (X,Y,¢) € .# be such a maximal element. SupposandY are finite. Set
S:=MnN. Then crlg ((X,S)) is infinite since crlg (S) is infinite. SinceS< N <
Y+, we obtain(X,S) <Y-NM. Thus,MNY+ > (X,S) since crig(MNY1) <
by Lemma A.2.22(i). Le&x € (MNYL)~ (X,S and setX’ = XU {x}. Then
(X'YN'S= & and therefordX’) NN = @. SinceX’ C Y1, we obtainN N X'* >
(Y,S) by repeating the same arguments as above.yleN N X" < (Y,S) and
setY’ := Y U{y}. Further letp’: X’ — Y’ be the map withp’|x = ¢ andx? =Y.
Then(X",Y',¢') € . and(X,Y,¢) < (X',Y',¢’), a contradiction. Henceé and
Y have to be infinite sets. Létbe a generator containinguY. Then cric(LNM)
is infinite since(Y) < L~ M and analogously ctKL NN) is infinite. Thus,L, M
andN are contained in three different connected componentseofitial polar
space of?. O






Point-line spaces
arising from buildings

In this appendix we consider point-line spaces that areael (Tits) buildings.
Therefore we first introduce buildings in the way of [Tit74)Ve know already
some of the point-line space that arise from the buildingsely the projective,
the polar and the dual polar spaces. Besides these spacdsairelots of other
point-line spaces. Some of them occur in the present workhemte, will be
studied here.

B.1 Buildings

An abstractsimplicial complexA is a collection of sets such thBte A for any
subsetB with B C A € A. A partial ordered set of sets that is isomorphic to a
simplicial complex is also called a simplicial complex. Angilicial complex
possesses a smallest element that we denote by 0. An eletimataly contains
0 properly is called aertex An arbitrary elemenA of a simplicial complexA
is called asimplexor, more specifically, an-simplexwheren+ 1 is the number
of vertices that are contained /& Hence, the vertices are that O-simplices. A
subcomplext’ of a simplicial complexA is a subset of such that’ is again a
simplicial complex. Le®A be a simplex of a simplicial complex Then the set of
all simplices ofA containingA is again a simplicial complex called thesidueof
Ain A and denoted by r@$A) or simply by re$A) if there is no confusion about
the underlying simplicial complex.

A simplicial complexA is called achamber complei every element ofA is
contained in a maximal element&fand if for two maximal elements andC’ of
A, there exists a finite sequen@@ )o<i<m such thalC \Ci1| = [Ci11~\Ci| =1
for everyi < m. The maximal elements of a chamber complex are caliednbers
. Two chamber€ andC’ are calledhdjacentif [C~. C'| = 1. A chamber complex
is call thick (respectivelythin) if for any two adjacent chambef@ andC’ the
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subsetCNC' is contained in at least three (respectively exactly tw@nehers.

It follows immediately that in a chamber complex every twatber have the
same cardinality. In other words, there is a natural numisrch that the set of
chambers oA\ is the set ofh-simplices. We calh therank of A.

A morphism of simplicial complexés a map¢: A — A’ from a simplicial
complex into another such that the restrictionpobn the subsets of any simplex
A € Ais an isomorphism ontg3(A?). Note that¢ induces a map from the set
of vertices ofA into the set of vertices o’ which determinesp uniquely. A
morphism of chamber complexss morphism of simplicial complexes such that
chambers are mapped onto chambers.

Proposition B.1.1. An endomorphism of a thin chamber complex that is injective
on the set of chambers and leaves all simplices containedgiven chamber
invariant is the identity.

Proof. [Tit74, Corollary 1.7]. O]

Definition B.1.2. LetA be a simplicial complex and I8t be a set of subcomplexes
of A. The pair(A,2() is called abuilding of which the elements dll are called
apartmentsf the following conditions hold:

(B1) Ais thick.
(B2) The elements dil are thin chamber complexes.
(B3) Any two elements of\ belong to an apartment.

(B4) If two apartment& andZ’ contain two common simplicesandA, there
exists an isomorphism & onto X’ which leavesA, A’ and all simplices
contained in one of them invariant.

A pair (A,20) is called aweak buildingif it satisfies the axioms (B2), (B3) and
(B4).

Let (A,2) be a weak building. From the axioms it follows directly tiats
a chamber complex and that the apartments are isomorphioisydbexes. Any
representative of the isomorphism class of the thin charoteplexes to which
belong the apartments will be called té&eyl complexf (A, 21).

An idempotent endomorphisgh: A — A of a thin chamber complex is called
aretraction A retraction is called #&olding if every chamber that is contained in
the image ofp has exactly two preimages. The image of a folding is callexba

Proposition B.1.3. Let ¢ be a folding of a chamber compléx Then there is a
pair (C,C') of adjacent chambers such thateGp and C ¢ ¢. Moreover, for every
such a pair,¢ is the unigue folding oA mapping Conto C.
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Proof. [Tit74, Proposition 1.10]. O

A Coxeter compleis a thin chamber complexsuch that for every paiiC,C’)
of adjacent chambers, there exists a root contai@iregnd notC'. Let ¢ be the
unique folding ofZ mappingC’ ontoC and let¢’ be the folding mappin@ onto
C'. Then every element & is either contained in the image ¢for in the image
of ¢’. Moreover, for two distinct elemensandB of =, we obtainB = A? if and
only if A= B?’; see [Tit74, Corollary 1.11]. The map

. . AP if Ag Y
y: -2 A»—){A¢, it Ac 59
is an involutoric automorphism & which is called theeflection associated with
¢. SetB:=CnNC'. SinceZ is thin,C andC’ are the unique chambers containing
B. Thus,B determinegy uniquely and thereforg is also called theeflection
with respect to BThe group that is generated by all reflectionga$ called the
Weyl groupof .

Proposition B.1.4. Let = be a Coxeter complex and let C be a chambek of
There exists a unique retractigi of ~ whose image equafg(C).

Proof. [Tit74, Proposition 2.4]. O

Motivated by this proposition we introduce a type functionthe elements of
a Coxeter compleX. LetC be a chamber af. Then two elements df are said
to be of thesame typéf their images undepc coincide. Note that this definition
is independent of the choice 6f We denote by () the partition of the vertices
of 2 that consists of the preimages of the vertices umg@erNow we define the
map typ:Z — PB(I(X)) such that typB) := {i € I(Z) | FAC B: A€ i} for every
B € X. ForAc %, the image typA) is called thetype of A In other words, for a
vertexA € Z, the type tyfA) of Ais a singleton containing the unique element of
I(X) that containg\. For an arbitrary simpleB of X the type ofB is the union of
the types of the vertices &. Every chambe€ contains a unique simplex of any
given type. The type of equals (). Hence, typ induces the simplex structure
of C on the set(X). Therefore we call(X) thefundamental simplex

Theorem B.1.5. The Weyl complex of a building is a Coxeter complex.
Proof. [Tit74, Theorem 3.7]. O]

In the following we will also consider weak buildings but giihe ones whose
Weyl complex is a Coxeter complex.

Let X be an apartment of a weak buildifg, 2() such that is a Coxeter com-
plex. Further lelC € Z be a chamber. For every simpléxe A, consider an
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apartmeng’ containingC andA. By Proposition B.1.1 there is a unique isomor-
phism fromZ’ onto = which leaves all simplices contained @invariant. Let
A € % be the image oA under this isomorphism. By (B4) it follows that does
not depend on the choice &. Hence, from Proposition B.1.4 it follows that
there exists a retractiok: from A ontoB3(C). SinceAc induces on every apart-
ment that contain€ the unique retraction ontg8(C), it follows from (B3) that
Ac is unique. Furthermore, for any chamli@i A, there is an automorphism
from (D) onto PB(C) which is induced byAc. The compositiora 2o Ac is a
retraction ofA onto®3(C) and hence, it equals,. This implies that the preimages
of Ac form a partition ofA that does not depend on the choice&ofTherefore we
denote as for Coxeter complexes the partition of the vestidé that consists of
the preimages of the vertices underby I(A). The type function ol\ is the map
typ: A — PB(I(A)) such that typB) := {i € I(A) | JACB: Aci} foreveryBe X.
There is a canonical isomorphism from the fundamental @migh) of A and the
one ofZ such that each image is a subset of its preimage. Hence,ritarhiental
simplices [A) and (%) can be identified in a natural way.

A Coxeter matribor adiagramover a set or over a the simplex of all subsets
of I is defined as a symmetric mathk= (my; ) j)ei | Whose entries are elements
of NU {e} such thatnj = 1 for alli € | andmyj > 2 for j € I . {i}. The elements
of | are represented by dots and caNedticesof the diagram. The cardinality of
| is called therank of the diagraniM.

We use the following pictorial representation M Every two vertices are
joined by a stroke which is labelled with the numibgy. For reasons of clearness,
we omit the stroke if it is labelled with a 2. Furthermore téel of a stroke with
a 3, we draw a single stoke without any number and a strokeanwtls replaced
by a double stroke. We give an example of a matrix and a diaginatbelong to

each other:
H 5

Let X be a Coxeter complex of rank 2. Then there is an index se¥. such
there exists an bijection fromonto the set of vertices &. Fori € |, we denote
the image ofi under this bijection byd. Moreover,l can be chosen in the way
that for two elementsand j of | with i < j, the sef{A;,A;} is a chamber if and
onlyif j=i+1ori=0andj=sugl). If | isinfinite, thenl equalsZ and ifl is
finite, thenl = {i € IN | i < m}, wherem € IN is odd withm > 2; see [Tit74, 2.2].
Two verticesA; andA; are of the same type if and onlyiif- j is even. Calling the
vertices with odd index “points” and those with even indexék”, we obtain in
a natural way the structure of a (possibly infinite) polygon.
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Proposition B.1.6. The residue of a simplex of a Coxeter complex is itself a Cox-
eter complex.

Proof. [Tit74, Proposition 2.9]. O

Let C be a chamber of a Coxeter complEx For everyi € I(%), let B; be
the simplex of typd ~ {i} with B; C C and letr; denote the reflection & with
respect toBj. For {i,j} C I(X), let mj be the order of the productr; in the
Weyl group. Then for any simpleA €  of type I(Z) \ {i, j}, the residue of
A possessesndj chambers; see [Tit74, 2.11]. Moreover,ii# j, then regA)
carries the structure of amj-gon. The matrix(mj) j)eci(z)xi(z) IS @ diagram
over I(Z), called thediagram ofZ. This diagram does not depend on the chamber
C. For any simplexA € %, the diagram of the Coxeter complex (As is the
submatrix(mj) i, jyex3, Whered = 1(Z) \ typ(A). Hence, the diagram of res)
is deduced from the diagram &fby removing the vertices belonging to {9
and all affected strokes.

Let (A,2) be a building and leE € 2 be an apartment. By the canonical
identification of (A) with 1(X), the diagram o becomes a diagram oved).
This diagram does not depend on the choic& @nd hence will be called the
diagram of(A,21).

Proposition B.1.7. Let (A,21) be a building and let A A be a simplex. Further
setA(A) ;= {ZnreqA) | Ac Z € A}. Then(regA),A(A)) is a building whose
diagram is obtained by removing from the diagram(af2() all vertices which
belong totyp(A).

Proof. [Tit74, Proposition 3.12]. O]

We give a list of diagrams that are well-known and will playcderin the
following. Each of these diagrams is a diagram over a{4¢®,...,n} where
n € IN is the rank of the diagram. The vertices are labelled by thebars they
represents. All these diagrams have names that are listed kft hand side.

An,n=>1 1 2 3 n-2 n-1 n
Ch,n=2 1 2 3 n-2 n-1 n
D, n>3 "
mi= 1 2 3 n-3 n-
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En,n>4 1 2 3 nfs ne1

For X e {A,C,D,E}, we speak of weak buildinfA, ) of type X, or simply
of type X, if there is a bijectiog : 1(A) — {1,...,n} such that labelling the ver-
tices of the diagram oA by its image undeg provides the diagram X We call
a simplexB of A to be of typel C {1,...,n} if (typ(B))? = J. A vertexA € A of
type{i} with 1 <i <n, is also said to be of type

B.2 Shadow spaces

LetV be a set endowed with a reflexive, symmetric relation catedricidence
relation. Two elements that form a pair of the incidence relation altedinci-
dent The subsets 0f whose elements are pairwise incident form a simplicial
complex FlagV) whose vertices are the singletons\af A simplicial complex
that is isomorphic to Flay) is called aflag complex The simplices of a flag
complex are also callethgs

Motivated by this concept we call two vertices of a chambengi@x incident
if they are contained in a common chamber. Moreover, we galldimplicesA
andB of a chamber complex incident if they are contained in a comgtam-
ber or, equivalently, if every vertex containedAnis incident with every vertex
contained irB.

Let. = (£,.%) be a projective space of finite rankFor 0<i < r, let(; be
the set of the subspaces.of that have rank. Then we call4;);<, aprojective
geometnof rankr. There is a natural identification betweéhandily. Moreover,
i3 coincides with.Z. Thus, (4;)i<; can be understood as an enrichment of the
pair (Z,.%).

According to this, we define polar geometryof rankr as a tuple(}; )i,
whered; is the set of the singular subspaces of a non-degeneratespalee
that have rankandr € IN is the rank of¥. Note thatl; _ is the set of generators
of .7.

Letr € IN and let.” = ()i« be a projective or polar geometry. Sgt=
Ui<r Ui. We define an incidence relation @éhsuch that two elements &f are
incident if and only if one is a subspace of the other. Theg(Ef4) contains all
chains ofil and is a chamber complex of rank

Theorem B.2.1.Let (A,2() be a weak building of typ&,. Then there exists a
projective geometry” of rank n and an isomorphisg: Flag.) — A sending
the vertices that correspond with the subspaces of rankA @into the vertices of
type i+ 1 of A.



‘ B.2. Shadow spaces } 219

Proof. [Tit74, Theorem 6.3]. O

Theorem B.2.2. Let (A,21) be a weak building of typ€, with n> 2. Then there
exists a polar geometry” of rank n and an isomorphisigh: Flag.”) — A send-
ing the vertices that correspond with the singular subspaafaank i of % onto

the vertices of type# 1 of A.

Proof. [Tit74, Theorem 7.4]. ]

Let.” = (Li)i<r be a polar geometry of rank Setil := [J;, t andil’ := A~
2. We call two elements df’ incident if and only if either one is a subspace of
the other or they intersect in an elementipf ;. This gives raise to a flag complex
which we call theoriflamme complerf ., denoted by OrifL.Y).

Theorem B.2.3. Let (A,2() be a weak building of typB,, with n> 3. Then there
exists a polar geometry” of rank n and an isomorphisih: Orifl(.#) — A such
that for i < n— 2 the vertices that correspond with the singular subspaceardf

i of . are sent onto the vertices of type iL of A and furthermore, the vertices
that correspond with generators of are sent onto the vertices of the types h
and n in such a way that two generators gfhave even distance in the dual polar
graph if and only if their images unddr are of the same type.

Proof. [Tit74, Theorem 7.12]. O]

Let (A,2() be a weak building of type pand let.# be a polar geometry such
that the flag complex Orifl#) is isomorphic taA in the way as in the theorem
above. Then it follows directly that the dual polar graphsfis bipartite.

Let A be a chamber complex and Mt C A be a set of simplices df. For a
simplexA of A, we call the set of all elements M that are incident wittA the
shadow of Aon M

Now let (A,2() be a building of type X, where Xe {A,C,D,E} andn € IN.
Let 1 <i < nand defineZ as the set of all vertices of typeof A and9)t as the
set of all simplices of typg1,...,n} ~{i}. Further set? := {{A€ & | AUB ¢
A} | B e M}, Note that? is the set of shadows of the element9Gfon the set
. Then by (B2) and (B3) the pa{t#?,.%) is a point-line space which we call
thei-space of A,2). A point-line space that is isomorphic (07,.%) is called a
point-line space of typX; or simply X, j-space.

From Theorem B.2.1 it follows that spaces of typg:for An, are projective
spaces of rank. The spaces of types,g for n > 2 and 0, for n > 3 are
non-degenerate polar spaces of rankhich follows from Theorems B.2.2 and
B.2.3. Furthermore, a space of typg {s a dual polar space; see [Tit74, 12.1].
By definition, the lines of these point-line spaces are tradetvs of a simplex
of type J on the set of vertices of type wherei is either 1 orn andJ equals
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{1,...,n}~{i}. Note that in all these cases the shadow of a simplektypeJ
depends on only one vertex &f namely the simplex of type 2 if= 1 and the
simplex of typen—1if i = n.

B.3 Exceptional types

Before we consider some types of point-line spaces of weidibgs, we intro-
duce some classes of point line spaces who are named afterssdrapaces they
possess.

Definition B.3.1. A point-line space¥ is calledparaprojectivef every singular
subspace of” is a projective space.

Definition B.3.2. Let.¥ be a connected partial linear gamma-space possessing a
collection of convex subspaces calBdanplectaach of which is a non-degenerate
polar space of rank 2 such that the following two properties are satisfied:

(PP1) Every line of.7 is contained in a symplecton.

(PP2) Every pair of non-collinear points having at least two comnmeigh-
bours is contained in a unique symplecton.

Then we call¥ aparapolar space

A pair of points at distance 2 is calleépecial pairif they have exactly one com-
mon neighbour and symplectic paiotherwise. A parapolar space that possesses
no special pair is calledstrongly parapolar space

Since by Proposition A.2.6 a non-degenerate polar spacalethe convex
span of any pair of its points that are non-collinear, itdals directly from (PP2)
that the convex span of a symplectic pair is always the ungyueplecton con-
taining it.

In [Bue82] F. Buekenhout defines two classes of point-lirezep that are quite
similar to parapolar spaces. To adopt the results of [BuaB&Jintroduce these
point-line spaces and compare them with parapolar spaces.

A polarised spacés a point-line space” satisfying the following conditions:

(Bul) . is a gamma space.

(Bu2) Let pandq be points at distance 2. Thép,q}~ is either a singleton or
a non-degenerate polar spacé finite rank> 2.

(Bu3) .¢ is connected and non-singular.

INote that in [Bue82] a polar space is non-degenerate by tefini
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(Bud) Let p andq be points at distance 2 such tHai,q}* contains a single
points. Then there are poingg andq in s* ~ {s} such tha{p, p’,q,q)
is a path of length 3.

As for parapolar space, we call a pair of points at distance@eaial pair if they
have exactly one common neighbour and symplectic pair wiker
A polarised space” has the following properties; see [Bue82]:

(BuA) & is patrtial linear.
(BuB) .¢ is paraprojective.

(BuC) Let p andq be points at distance 2. Thep,q)q is a non-degenerate
polar space of finite rank. Moreovep, g)g = (X,Yy)q for every two non-
collinear pointsx andy of (p, q)g.

We determine the following correspondence between pasapold polarised
spaces.

Proposition B.3.3. Let.% be a point line space. Then the following two properties
are equivalent:

(a) & is a parapolar space of symplectic rapk3 that fulfils (Bu4).
(b) .7 is a polarised space.

Proof. (a)= (b): A parapolar space satisfies by definition (Bul) and (BM&)wv

let (p,q) be a symplectic pair of”. Thenp andq are contained in a unique
symplectonY which is a non-degenerate polar space. Since a symplectan is
convex subspace, we obtaip,q}+ < Y. Now it follows from Proposition A.2.5
that{p,q}~ is a non-degenerate polar space. This implies that a paegohce
fulfils (Bu2).

(b) = (a): Let(p,q) be a symplectic pair a”. Then(p,q)q is a non-degenerate
polar space of finite rank by (BuC). Moreovep,q)g = (X,Y)g for every two
non-collinear pointsc andy of (p,q)q. Since{p,q}* has rank> 2, we obtain
rk((p,a)g) > 3.

Now letl be a line of.¥ and letp andq be distinct point ol. Assume there is a
pointr € p-~ g*. Then distr,q) = 2 andl < (r,q)q. Now assumep* = g and

p* is non-singular. Then there are poirandsin p' at distance 2 and we obtain

| <(r,s)g. Finally assumep’ = g* andp* is singular. Then by (Bu3) there is a
pointr such that digfp, r) = 2. Since(p, r)q is a non-degenerate polar space there
are non-collinear points ip*, a contradiction. Thusy is a parapolar space ]

Beside polarised spaces there is another kind of pointdjpaees that occurs
in [Bue82]: Letr € IN withr > 2. A uniform polarised spaces of ranks a point-
line spaces that satisfies (Bul), (Bu4), (BuA), (BuB) andftilewing variations
of (Bu2) and (Bu3):
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(Bu2’) Let pandq be points at distance 2. Thep,q)q is either a polar space
of rankr or consists of 2 lines.

(Bu3’) .7 is connected.

RemarkB.3.4 The axiom (Bu3’) is weaker then (Bu3). With (BuA), (BuB) and
(BuC) we conclude that a polarised spa€éas a uniform polarised spaces of rank
r ifand only if rk((p,g)g) = r for every two pointp andq of . with dist(p,q) = 2
and|{p,q}*| > 2. Conversely, a uniform polarised spaces of rankth r > 3
fulfils (Bu2) by Proposition A.2.5. Hence, a uniform pol@&isspace of rank s

a polarised space if and only if it is not singular and 3.

A uniform polarised space” of rankr is said to be ofspherical typeif it
satisfies the following properties:

(Sphl) Every singular subspace of ramk- 1 of .# is contained in a unique
maximal singular subspace.

(Sph2) LetV andW be singular subspace of rank 1 with rk(V "\W) =r —2
andV £ W+ such thaV is contained in a singular subspaXef rank
r. ThenX andW are maximal singular subspace.

(Sph3) LetU,V andW be singular subspaces of rank 1 with rk(U NV) =
rk(V NW) = r — 2 such thatv £ W+ andU is a maximal singular
subspace. TheW is a maximal singular subspace.

(Sph4) LetY andZ be distinct symplecta that intersect in at least one simgula
subspace of rank— 2. ThenY NZ is a singular subspace of rank- 1.

We merge two of the main results of [Bue82] and transfer thiis the termi-
nology of parapolar spaces.

Theorem B.3.5. Let.¥ be a point-line space. Then the following two condition
are equivalent:

(a) .7 is a parapolar space with symplectic rank r, where 5, that contains
more than one symplecton and satisfies (Bu4), (Sph1l), (S{$)3) and
(Sph4).

(b) There is a weak buildingA, ) of typeE,, where re {6,7,8}, such that?
is isomorphic to thd-space of A, ). Moreover, letp be an isomorphism
from .# onto thel-space of(A,2(), denoted by #2,.#). Theng maps the
singular subspaces of rank i o¥, where i< r — 3, bijectively onto the
shadows or?” of a vertex of type+ 1 and the symplecta a# are mapped
bijectively onto the shadows o of a vertex of type n.

Proof. By Proposition B.3.3 and Remark B.3.4 the classes of polaceg po-
larised spaces and uniform polarised spaces ofraokncide if we demand (Bu4)
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to be fulfilled and that every symplecton has to be of rankherer > 3. Hence,
the claim follows from [Bue82, Theorems 2 and 3]. O

Motivated by this theorem we call a parapolar space to kspbérical typdf
it fulfils (Bu4), (Sphl), (Sph2), (Sph3) and (Sph4).

Proposition B.3.6. Let.” be a point-line space of typgs ;. Then.” has the
following properties:

(i) There is no special pair it

(i) LetY and Z be symplecta of that contain a common line. ThenY and Z
contain a common generator.

(iii) The diameter of” equals2. Moreover, for every point g .~ there is a
point g withdist(p,q) = 2.

(iv) Every two symplecta o intersect.

(v) Let Y and Z be two symplecta that intersect in a single pointThen
dist(q, p) = dist(q, Z) for every point g Y.

(vi) Forevery point pe . there is a symplecton at distan2¢o p and for every
symplecton YK . there is a point at distanc2to Y .

Proof. By Theorem B.3.5 we know tha¥’ is a parapolar space of symplectic
rank 5 that contains two symplecta.

() Let p andqg be two points at distance 2 and kbe a point that is collinear
to both p andg. Then the residue ofs} is the geometry of a building of type
Ds. By Theorem B.2.3, the symplecta of that contains are the points of a
non-degenerate polar spageof rank 5. Moreover, the dual polar graph &f

is bipartite such that for any two adjacent generatorgpexactly one of them
consists of all symplecta g¥ that contain a given line< .# throughs. Hence by
Proposition A.2.20, two generators &f that consist of the symplecta containing
a given line througts cannot be disjoint. In other words, there is a symplecton
containing the linepsandgsand the claim follows.

(i) For any pointp € | the residue of the flagp,|} is the geometry of a building
of type As. By Theorem B.2.1, the symplecta of containingl are the points
of a projective spac& of rank 4 and every line o consists of the symplecta
containing a given subspa&< .7 with rk(S) = 4 andl < S Since projective
spaces are linear, we conclude that every two symplectd tfat contain have

a singular subspace of rank 4 in common. Sincd.yfk= 5, this subspace is a
common generator.

(iii) Since .7 contains a symplecton, we know diasf) > 2. Now suppose there
are pointsp andq in . with dist(p,q) = 3. Then there is a liné < . such
that distp,|) = dist(q,1) = 1. By (i) we know that botip,l)q and(q,l)q are
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symplecta. Sincg andg’- are disjoint and botp andg’ contain a hyperplane
of (p,I)gN(q,l)g, we concludep,l)gN(q,l)g =1. This is a contradiction to (ii)
and therefore dia@”) = 2. Since.” is a parapolar space, every line through a
given pointp is contained in a symplecton. Thus, there is a point at digt@rto

p.

(iv) By the symmetry of the diagramgBhis is equivalent to the claim that every
two distinct points of¥ are contained in a symplecton. For collinear points this
follows from the fact that is a parapolar space. For non-collinear points, the
claim follows from (iii) together with (i).

(v) For dis(p,q) = 0 there is nothing to prove. For digt q) = 1 the claim follows
sinceY NZ = {p} and hencel ¢ Z. It remains the case digt, q) = 2. Suppose
there is a point/ € Z with g L . Every pointp’ € Z~. {p} thatis collinear tq s
non-collinear tag since otherwisgy’ € (p,qg)g =Y and consequentlyy € YNZ.
Thus, distq, p) = 2 and for any poinp’ with p L p’ L ¢/, we obtain disfq, p') =

2. By (i) Z' := (q, p)g is a symplecton. Sincg € (q, p')g, the symplectd’ andZ
have the lingg'q’ in common. Thus, (ii) implies tha’ andZ have a generatd@s in
common. Sincg € Z/, p € Z and rkG) = 4, we conclude tha:= GNp-Ng*

is a singular subspace of rank2. SinceS < (p,g)g, we obtainS<YNZ, a
contradiction. Thus, di§t], Z) = 2.

(vi) By (i) and (iii) there is a symplectoZ such thatp € Z for a given pointp.
SinceZ is a non-degenerate polar space, we know that there is agai@twith
dist(p,q) = 2. In other words, for every point &f, there exists a point such that
Z is the only symplecton containing these two points. By themsetry of the
diagram E, we conclude equivalently that there is a sympledtauch that is

the only point contained in boti andZ. Thus, disfp,Y) = 2 by (v).

Conversely, for a given symplectdhwe choose a poirg € Y. As above there is

a symplectorZ such thaty NnZ = {qg} and a pointp € Z with dist(p,q) = 2. This

is the same situation as above. Hence, it remains to protggiy = 2. Again
dist(p,Y) = 2 by (v). O

Proposition B.3.7. Let.” be the point-lines space of tyge 1. Then.” has the
following properties:
(i) There is no special pair itt”.

(i) LetY and Z be symplecta of that have a point p in common. ThenY and
Z have a line through p in common.

(i) The diameter of” equals3. Moreover, for every two point p and im .
there is a point q witidist(p, q) = dist(p, p’) + dist(p/,q) = 3.

(iv) Let p be apointand let| be aline of. Thendist(p,l) < 2.

Proof. By Theorem B.3.5 we know tha¥ is a parapolar space of symplectic
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rank 6 that contains two symplecta. For any pgir¢ ., the residue of p} is
the geometry of a building of typegE More precisely, the lines of” throughp
are the points of a point-line space of typg;Ehat we denote by/,. The lines
of 2 consist of all lines througlp that are contained in a given singular subspace
S< . with p € Sand rk'S) = 2. The symplecta o/, consist of all lines through
p that are contained in a given symplectongfcontainingp.

(i) Let p andg be points at distance 2 and ket p- Ng*. Sincep [ g, there is no
singular subspace ity that containg andg. Thus, the linespandsqare non-
collinear points in%s. By Proposition B.3.6(iii) this implies thatp andsqghave
distance 2 inZs. By Proposition B.3.6(i) we conclude that there is a symiolec
in 95 containingspandsgand thus, there is a symplectonii containingp and

g.
(i) Let pc YNZ. Since every two symplecta &, intersect by Proposition
B.3.6(iv), we conclude that andz have a line througlp in common.

(iii) Suppose there are poinfsandq in . with dist(p,q) = 4. Then there is a
pointssuch that distp, s) = dist(q, s) = 2. By (i) bothY := (p,s)g andZ := (q,s)q
are symplecta of”. By (ii) there is a lind that is contained in botl andZ. We
obtain disfp,!) = 1 and distq,|) = 1 and consequently, digt, ) < 3, a contra-
diction.

For the second claim we may assume (disp’) < 3 since otherwise there is
nothing to show. Furthermore, we may restrain ourselvehi¢ocasep # p
since the cas® = p’ follows from any other case. Létbe a line throughp
with dist(p/,1) = dist(p, p’) — 1. Further lety < . be a symplecton contain-
ing l. SinceY is a non-degenerate polar space, there is a oinY such that
dist(s, p) = dist(s, p’) + dist(p/, p) = 2. Hence, we have to find a poigtL swith
dist(q, p) = 3 to finish the proof.

By Proposition B.3.6(vi) there is for each symplectorga point in Zs at dis-
tance 2. Hence, there is a ligeghroughs such that every line <Y throughsis a
point of Zs that is non-collinear tg. In other words, there is no singular subspace
in .7 that containg) andh. Thus,sis the only point ofY Ns* that is collinear tp.
Suppose there is a poipt € (Y \.st)Npt. Thenp e (s, p')g =Y, a contradiction
tog £ Y. Thus,Y Nnpt = {s}.

Let h <Y be an arbitrary line through. Sinces is the only point orh that is
collinear top, we conclude by (i) thaZ := (p,h)q is a symplecton of”. Since
Y # Z and every symplecton is the convex span of any non-collipaarof its
points, we conclude that N Z is singular. Sincep™ contains a hyperplane of
YNZ, we obtainy NZ =h. Letg €Y be a point that is not collinear &b Suppose
dist(p,q) = 2. Then(p,q)q is a symplecton of” by (i). Hence by (ii),(p, q)g and
Y have a lind throughq in common. We obtais ¢ | since dists,q) = 2. Since
pt NI # @, this is a contradiction t&Y N pt = {s}. Thus, distp,q) = 3 since
pLls
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(iv) Let g € 1. By (iii) we may assume diép, q) = 3 since otherwise there is noth-
ing to prove. Lets be a point withs L g and distp,s) = 2. ThenY := (p,s)g is

a symplecton of# by (i). Assumel £ st. Then(s,l)g is a symplecton. By (ii)
there is a lingy of . throughsthat is contained in bot¥ and(s,I)g. Hence, there
is a pointp’ € gwith p’' L p. Sincep’ € (s,1)g, there is a point ohthat is collinear
to p’ and we obtain digp,|) = 2.

Now assumé < s*. We may assume¢ | since otherwise we are done. Thian)

is a singular subspace of rank 2. & every line is contained in a symplecton.
This implies that there is a symplectdrn< . containing(s,l). Again there is a
line g <.¥ throughs that is contained ity NZ since in%s every two symplecta
intersect. As before there is a poipite g with p’ L p and distp’,l) = 1. O

Proposition B.3.8. Let.” be the point-lines space of a weak building of tifgg.
Then has a special pair.

Proof. Let p be a point of”. The residue of p} is the geometry of a building
of type E;. More precisely, the lines of” throughp are the points of the point-
lines space of a weak building of type Ethat we denote by. Moreover, for a
symplectorlY <. with p €Y, the set of lines of throughp is a symplecton of
2. For a singular subspa&< .¥ with p € S the set of lines oSthroughpis a
line of 2.

By Proposition B.3.7(iii) there are lingsandh of . throughp such thagg andh
are points of7 at distance 3. Leg € g~ {p} andq € h~ {p}. Supposey L ¢.
Thenh < g* and hencég, h) is a singular subspace of of rank 2. Henceg
andh are collinear inZ, a contradiction. Thus, dig, q) = 2. Suppos€q, ') is
a symplectic pair. Thexq,q')q containsp. Thus, the lineg andh are points of
the symplecton o7 that consists of all lines aft, ' )q throughs. This leads to a
contradiction sincg andh have distance 3 i&. O

Definition B.3.9. A strongly parapolar space of spherical type with symptecti
rankr, wherer > 5, that possesses at least two symplecta is callexegptional
strongly parapolar space

Theorem B.3.10.Let. be a point-line space and leta IN. Then the following
two properties are equivalent:

(a) .7 is an exceptional strongly parapolar space with sympleetik r — 1.
(b) . is a point-line space of type, 1 with r € {6,7}

Proof. Since a strongly parapolar space possesses no speciglBugd), is vac-
uously fulfilled. By Propositions B.3.6(i) and B.3.7(i) wadw that point-line
spaces of typesdz and E 1 are strongly parapolar. In contrast, point-line spaces
of type Eg 1 are not strongly parapolar by Proposition B.3.8. Thus, thercfol-
lows immediately from Theorem B.3.5. O



The independence of
the axioms

In this chapter we prove that the axioms given in Definitidh 2 are independent
by giving counterexamples that fulfil precisely three of ¢fiven axioms.

Example C.1. Set? :=Z/6Z and.Z = {{v,v+1,v+2} |ve &}. Call two
points of the point-line space’ := (£,.¥) opposite if and only if they are dis-
tinct. The convex span of any two distinct points equ&issince whenever a
subspace contains the lige v+ 1,v+ 2} for a pointv € 2, it also contains the
line {v+1,v+2 v+ 3}. Hence, the convex span of two points.&f is either a
singleton or.¥.

Since for any point € &2 the only point non-oppositeis v itself, (A2) is always
fulfilled. Furthermore, for (A3) there is only case to chedkieh is the case where
X, Yy andz coincide since otherwise there is no way to decrease thetemdie to
y. Since in this casgy,z)g = {y} holds, (A3) is also fulfilled. Finally, (A4) is
fulfilled since for any choice of the pointsandz there is a point collinear tw
and opposite.

For any pointv € &, we obtain distv,v+ 3) = 2 and(v,v+ 3)g = .. Sincevis
the unique non-opposite pointtpwe obtain codv,.”) = 1. Thus, (A1) does not
hold in.~.

Example C.2. Set# :=Z and.¥ := {Z}. Call two pointsu andv of the point-
line space¥ = (£,.¢) opposite if and only iu+v < 0. SinceZ is the only
line of ., we conclude that the convex span of any pair of distincttsosguals
7.

Since for every point we obtainx < —x— 1, the opposition relation of” is total.
Moreover, since «» —x, we conclude cogk,.#) = 1 for every poin and there-
fore (A1) is fulfilled. Now letw, X, y andz be points such that cda, y) < cod(x, y)
andze copr<y7z>g(x). Since codx,.”) = 1, this impliesw < y and codx,y) = 1.
Thereforew+y < 0 < x+y and we concludev < x. Now w+ Vv < X+ vimplies
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that every point that is oppositeis oppositew and thus, copy (w) < copry(X).
Since(y,z)q is either{y} or .7, (A3) holds. Since” is singular (A4) holds, too.
For every poink, the points—x and 1- x are contained i’ = (x,x+ 1)g. Since
X —Xx—1€ 7 andx L x+ 1, (A2) is not fulfilled.

Example C.3.Set< :=7/97 and ¥ := {{v,v+1},{v,v+3} | ve &}. Call
two pointsu andv of the point-line space” := (#,.%) opposite ifu=v+2 or
v=u+2. Letve &, then{v+1,v+3 v+6,v+8} is the set of points at distance
1 tov and every point of” \. v* has distance 2 te. Sincev+ 2 andv+ 7 are the
points that are opposite we conclude that for a point, we obtainu = v if and
only if cod(v,u) =2 andue &~ {v,v+2,v+7}ifand only if codv,u) = 1. Since
all lines of 7 are short, we obtaifu,v)g = {u, v} for any two collinear pointsi
andv. Now let distu,v) = 2. If u= v+ 2, thenv+ 1 andv+ 3 are both contained
in {u,v}* and hence inu,v)g. This implies(v+1,v+3)g < (v,v+2)g and by
repeating this argumeritl, vig = .. Analogously,(u,v)q = . for v=u+2 and
henceu=v+7. If u=v+4, thenv+1 andv+ 3 are both contained ifu, v}+ and
we obtain(u,v)g > (v+ 1,v+ 3)g = .. Analogously,(u,v)g = .7 for u=v+5.
For a pointx, the two opposite points+ 2 andx+ 7 are not collinear and hence,
on every line there is at least one point non-oppositgince copt, (x) = {x} and
codx,.”) = 2, we conclude that (A1) and (A2) are both fulfilled. Sincergve
point has codistance 2 to only itself, we conclude (eod) = cod(v,u) for any
two pointsu andv of . and therefore (A4) is fulfilled.

Letxe &7 and set:= xandy := x+4. Then(y, 2y = .. Moreoverz e copr(X)
and codx,y) = 1. Now setw:=x+6. Thenx L wandw < y. Hence, copy, (w) =
{w} ¢ copr.(x) and (A3) does not hold.

Example C.4. Set# :=7/6Z and.¥ := {{v,v+ 1} |[ve # A vC 2Z}. Then
the point-line space” := (£, .¥) has three connected components each of which
consists of a single line that contains two points. LetZ. If vC 27, thenv+5
is the only point opposite, otherwisev+ 1 is the only point opposite. Note that
this opposition relation is symmetric.

Lety andz be two points at finite distance and $et= (y,z)g. Then eithely =z
and henceY = {y} ory L zandV = {y,z}. Letx € & such that cotk,V) is
finite. Thenx < y or x < z sinceV is a connected component of. We may
assume < X. Sincey is the only point opposite t®, (A1) and (A2) are satisfied.
Moreover, (A3) is vacuously fulfilled.

Now letx € &7 with x C 2Z. Then co@x, X+ 2) = c and codx+ 2,X) = 1. Thus,
(A4) does not hold.
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adjacent generators, 205 dual
apartment, 214 Eg 1-space, 92

] o projective space, 90
basis of a projective space, 195 dual polar graph, 205

building, 214 dual polar space, 205
weak, 214 twin, 102

chamber, 213

Eg-space, twin, 92
chamber complex, 213

Es,1-space, dual, 92

coconvex E7-space, twin, 94
span, 31 En1-space, 220
subspace, 31 '

codiameter, 4 gamma space, 2

codistance, 4 gate, 13

cogate, 13 gated subspace, 13

cogated subspace, 13 generator of a polar space, 200

collinear, 1 geodesic, 2

collinearity graph, 1 Grassmannian, 106

commensurate subspaces, 208 partial twin, 107

complementary subspaces, 107 twin, 107

connected grid sum, 3
component, 2 grid product, 3
point-line space, 2 grid sum
points, 2 twin SPO spaces, 82

connectivity graph, 11 )

convex half-spin space, 118
span, 2 Iogal, 119
subspace, 2 twin, 123

coprojection, 4 hyperplane, 2

corank, 199

independent set of points, 195
Coxeter complex, 215 P P

linear space, 2

dependent set of points, 195 local half-spin space, 119

diagram, 216

diameter, 2 metaplecton, 17
twin SPO space, 32 morphism

direct sum point-line spaces, 3
projective spaces, 194 twin spaces, 5

distance, 2
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opposite
connected components, 11
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points, 8

opposition relation, 5, 7

pair
spanning, 98
special, 220
symplectic, 220
parapolar space, 220
spherical type, 223
strongly, 220
paraprojective space, 220
partial twin Grassmannian, 107
partially linear space, 2
path, 2
perp, 1
point-line space, 1
of type X, 220
polar geometry, 218
polar space, 200
associated non-degenerate, 201
twin, 88
projection, 4
projective geometry, 218
projective space, 193
dual, 90
twin, 89

radical, 200

rank
polar space, 200
singular, 2
singular space, 2
symplectic, 17
symplecton, 17

relation
opposition, 5
total, 4
residue, 213
rigid
subspace, 24
symplecton, 24
root, 214

shadow, 219
singleton, 2
singular rank
twin SPO space, 33
singular space, 2
space
linear, 2
singular, 2
twin, 5
span, 2
coconvex, 31
convex, 2
spanning pair, 98
special pair, 220
spherical type, 222
SPO space, 7
partially linear, 10
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exceptional, 226
subspace, 1

coconvex, 31

cogated, 13

gated, 13

rigid, 24
symplectic pair, 220
symplecton, 220

rigid, 24

total relation, 4

twin
dual polar space, 102
Eg-space, 92
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Grassmannian, 107
Grassmannian, partial, 107
half-spin space, 123
polar space, 88
projective space, 88

twin space, 5

twin SPO space, 12
diameter, 32
singular rank, 33

Weyl complex, 214
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