
106 IEEE Network • January/February 20160890-8044/16/$25.00 © 2016 IEEE

In recent decades, the Internet has grown from being an
experimental research network to a broadband commer-

cial platform. At the same time, the Internet has been facing
many technical challenges such as complexity and inflexibility
to meet changing requirements. To solve these challenges,
numerous research activities such as the Clean Slate Internet
program [1] and the Future Internet [2] have been started to
develop appropriate solutions. A major outcome of the former
is the idea of decoupling the control plane from the data plane
in Internet devices (e.g. switches/routers) and embedding the
control plane into one or more servers, called controllers. This
enables independent evolution of the control and data plane.
In addition, an interface between the data and control plane
has been proposed. The most prominent protocol implement-
ing such an interface is the OpenFlow protocol [3].

The current research of OpenFlow focuses mainly on an
out-of-band network (Fig. 1a) in which control traffic (traffic
to or from the controller) is sent on a separate network [4]. Such
an out-of-band network has the following main advantages:
•	High security is provided for control/management informa-

tion because a separate network is used for communication.
•	Access to the switches is possible through the separate net-

work even if there are failures in the data traffic paths.
However, these networks are expensive to build due to the

requirement of a separate network. Also, building a separate
network may not be feasible in some scenarios (e.g. widely
distributed central offices in access networks).

To solve the above problems, OpenFlow is required to be
implemented for an in-band control network (Fig. 1b) in which
control traffic is sent on the same infrastructure as the data
plane [5]. However, for such a network OpenFlow does not
describe how a switch can establish a communication path
(e.g. control traffic path in Fig. 1b) with the controller. With-
out configuring these paths automatically, operators may face
many manual configuration problems such as going into the
field to configure the switches. In this article, we implement a

method (known as bootstrapping) that inserts this information
automatically in in-band networks. We refer to this as in-band
control functionality.

In in-band control networks, control traffic may compete
with data traffic for network resources (e.g. bandwidth) [6]
as both share the same infrastructure. Therefore, due to an
increase in data traffic, the control plane operations (such
as new service establishment, failure recovery, load sharing)
may suffer significant delay, and the controller and switch-
es may even disconnect. To solve these problems, we extend
the in-band functionality by implementing separate queues
for control and data traffic, and by serving the control traffic
queue before the data traffic queue. We refer to this mecha-
nism as queuing functionality.

In in-band control networks, failures in the data plane
(switch or link failures) can affect both data and control traf-
fic. As a loss in data traffic causes a disruption of service, and
a loss in control traffic prevents any new service establish-
ment from the switches affected by failures, failure recovery is
important for both data and control traffic. For failure recov-
ery, some networks offer carrier-grade quality (RFC 5654),
meaning that a network should recover from failures within
50 ms. Therefore, we explore two well known techniques, res-
toration and path protection, for fast failure recovery of both
control and data traffic. In restoration, an alternative path
is established after a failure. In path protection, a disjoint
alternative path is established before a failure, and when the
failure is detected, traffic is redirected to the alternative path.
For failure detection in restoration, loss-of-signal (LOS) can
be used because it can detect failures in any forwarding port.
However, as LOS cannot detect failures in any path in protec-
tion, bidirectional forwarding detection (BFD) (RFC 5880)
can be used.

We proposed in-band control and failure recovery function-
alities in [7] and [8] respectively. In this article, we extend these
functionalities with queuing functionality and integrate BFD in
OpenFlow switches for fast failure recovery. In addition, we
report practical challenges for implementing these in existing
OpenFlow packages, containing different OpenFlow versions.

Abstract
In OpenFlow, a network as a whole can be controlled from one or more external
entities (controllers) using in-band or out-of-band control networks. In this article, we
propose in-band control, queuing, and failure recovery functionalities for OpenFlow.
In addition, we report experimental studies and practical challenges for implement-
ing these functionalities in existing software packages containing different versions
of OpenFlow. The experimental results show that the in-band control functionality is
suitable for all types of topologies. The results with the queuing functionality show
that control traffic can be served with the highest priority in in-band networks and
hence, data traffic cannot affect the communication between the controller and net-
working devices. The results with the failure recovery functionality show that traffic
can be recovered from failures within 50 ms.

In-Band Control, Queuing, and Failure
Recovery Functionalities for OpenFlow
Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet Demeester

The authors are with Ghent University.

IEEE Network • January/February 2016 107

Furthermore, we implement these functionalities
in one of the OpenFlow software packages and
perform extensive experiments. The experiments
with in-band control show that the implemented
method is suitable for all types of topologies. The
experiments with queuing show that data traffic
does not affect the communication between the
controller and switches, and the experiments with
failure recovery show that carrier-grade quality can
be achieved in OpenFlow.

The following section describes our proposed
functionalities, the third section describes practical
challenges, the fourth describes experimentation,
and the final section concludes the article.

Functionalities for OpenFlow
In-Band Control Functionality
For in-band control, each switch and the controller have to
establish an OpenFlow session over a transport layer protocol
such as TCP, SCTP, or UDP. As switches and the controller
need a reliable connection between each other, TCP or SCTP
are preferred over UDP. In addition, as not all the platforms
support SCTP, TCP is mostly used for establishing sessions.

The method for in-band control may differ with the types
of OpenFlow switches used in the network. Today, there are
two types of OpenFlow switches: pure and hybrid [9]. Pure
switches support only OpenFlow operations for forwarding
packets. Hybrid switches support both OpenFlow and tradi-
tional switching operations (e.g. layer 2 Ethernet switching,
layer 3 routing, and VLAN isolations) for forwarding packets,
and are common with many manufacturers such as Brocade,
Juniper, and Cisco. We implement a loop free in-band control
method using hybrid switches. In this method, at the time of
bootstrapping, a switch applies Ethernet switching operations
to forward its own traffic and applies OpenFlow operations to
forward control traffic of other switches.

We frame the following three challenges for implementing
in-band control:
•	Each switch needs to configure a unique IP address for itself.
•	Each switch needs to know the IP address and transport

layer port (e.g. TCP port) of the controller.
•	Communication paths need to be established for the switch-

es (B, C, and D in Fig. 1b) that are not directly connected
with the controller.

To solve the first and the second challenge, the following steps
are performed:
•	Each switch runs a DHCP (Dynamic Host Configuration

Protocol) client.
•	Each switch runs a hybrid stack to forward its own traffic

(e.g. DHCP traffic).
•	The DHCP server is configured with a vendor-specific

option containing the IP address and transport layer port of
the controller.

•	Either the DHCP server is located on the controller or the
DHCP server and the controller share IP (sub) networks
(direct communication) with the same switch (switch A in
Fig. 1b).

To solve the third challenge, the controller establishes commu-
nication paths through the switches that have already estab-
lished OpenFlow sessions.

Our in-band control method using DHCP solves the prob-
lems of configuring each switch with a unique IP address and
other transport layer parameters (e.g. TCP port) of an Open-
Flow session.

The four steps to perform in-band control are:
1.	Notification of the required network parameters.

2.	Establishment of a TCP session.
3.	Establishment of an OpenFlow session.
4.	Discovering the topology.

For the first step, each switch periodically sends DHCP
messages to its neighbors until it receives a reply from the
DHCP server. If a neighbor is the DHCP server, it replies to
the switch (A in Fig. 1b). Otherwise, the neighboring switch
may forward or drop the messages, depending on whether
it has an OpenFlow session with the controller. In case the
neighboring switch has the session, the controller allows the
neighboring switch to forward the DHCP messages to the
DHCP server. When a switch knows its IP address and the IP
address of the controller (using DHCP), it runs ARP to know
the MAC address of the controller. After knowing the MAC
address, the switch performs the second step.

In the second step, the switch establishes a TCP session with
the controller. Either it establishes the session directly (in case
of switch A) or the controller specifies a session path (shortest
path) through the switches having an OpenFlow session.

In the third step, the switch instantiates an OpenFlow ses-
sion with the controller [9].

In the fourth step, the controller discovers links of a switch
after establishing the session with it. For this, the controller
allows the switch to flood probe messages (Link Layer Dis-
covery Protocol messages). From the received messages, the
controller discovers links of the switch [10]. In addition, the
controller discovers links of DHCP clients (for switches B, C,
and D) and the DHCP server on reception of DHCP messages
from them, and the same flooding mechanism (as probe mes-
sages) is exploited to infer the location of the DHCP server.
In this case, instead of probe messages, DHCP messages are
flooded.

Queuing Functionality
A part of queuing functionality, i.e. the creation of queues, is
out-of-scope for OpenFlow. However, with the OpenFlow pro-
tocol, a packet can be redirected through an already created
queue. For the creation of queues, switches can rely on a sep-
arate protocol such as OF-Config (OpenFlow Configuration
and Management Protocol) or OVS-DB (Open vSwitch Data-
base Management Protocol) [11]. For the case when switches
do not support these protocols, vendor specific options of the
OpenFlow protocol can be used for the creation of queues.
Many switches such as HP, Reference, Indigo, Trafficlab1.1,
and Trafficlab1.3 (Table 1) allow queue creation through ven-
dor-specific options. However, with these options, only a few
types of queues (such as rate limiting queues) can be created.
In this article, we propose to extend the vendor-specific option
of switches to create queues with different priorities. In our
proposal, the queue creation message of the vendor-specific
option is extended to add a priority number, and therefore

Figure 1. OpenFlow network: a) out-of-band; b) in-band control.

OpenFlow
switch/router

Control traffic path
Data traffic path

ControllerController

Same network for
both control and

data traffic

(b)(a)

FF

D

C

B

A

D

C

B

A

OpenFlow protocolOpenFlow protocol

Separate network
for control traffic

and for data traffic

IEEE Network • January/February 2016108

on reception of this message, a switch can create queues hav-
ing different priorities using switch traffic control commands
(e.g. Linux traffic control commands in the Reference, Traffi-
clab1.1, and Trafficlab1.3 switches).

In queuing functionality, the aforementioned extension is
used for creating different queues for control and data traffic.
The control traffic queue is given the highest priority, and
hence is served before any other queue. When all switch port
information is received, the controller creates the control traf-
fic queue on each port of the switch. For data traffic, the con-
troller can create queues either in advance or on reception of
data traffic. In addition, when the controller receives traffic to
define its forwarding, the controller adds a forwarding entry
to redirect control traffic to the control traffic queue and data
traffic to the data traffic queue. For separating control and
data traffic, the controller uses the source IP address, destina-
tion IP address, and transport layer parameters of an Open-
Flow session in a forwarding entry of control traffic.

Failure Recovery Functionality
In OpenFlow, a switch sends an echo-request to the control-
ler after an idle timeout. If it does not receive an echo-reply
before an echo timeout, it declares failures. The switch then
tries to establish a new session. If it fails, it waits for a backoff
timeout to re-establish the session. As the minimum value of
idle, echo, and backoff timeouts are 1 second, failure recovery
cannot be achieved in milliseconds. Therefore, we implement
two fast recovery techniques, restoration and path protection,
for single failure scenarios in in-band networks.

For implementing restoration, the controller depends on
a failure notification (PORT_STATUS [9]) instead of the
echo timeout to declare failures. The controller receives the
notification when a switch detects LOS and still has a con-
nection with the controller. The challenge behind restoration

is that the controller has lost communication with the affect-
ed switches and therefore it cannot establish paths from (or
along) these switches.

To overcome the challenge, during bootstrapping the con-
troller establishes a one-hop restoration path together with the
working path for control traffic. In this path, the source switch
floods its own traffic, only one neighbor (which is along the
working path) forwards the traffic, and other neighbors just
drop it. On the failure notification, the controller first makes
a list of affected switches that can be restored first and then
restores the affected switches according to the list. This is
done because the restoration path of affected switches may be
along the switches that are affected by the failure, and hence
before establishing the path these switches are needed to be
restored.

In addition to restoration, failure recovery can be achieved
by protection. Protection removes the need of establishing an
alternative path after a failure by installing it in advance. We
implement 1:1 path protection in which the ingress switch redi-
rects traffic to a pre-established disjoint alternative path when
a failure is detected in the working path. For pre-establishing
the path, the controller uses the group-table concept (fast-
failover) [9] at the ingress switch and uses the flow-table con-
cept in all other switches along the paths. With the group-table
concept, two rules are kept for traffic forwarding. Before a
failure, the ingress switch applies the first rule (which corre-
sponds to the working path), and after the failure it applies the
second rule, which corresponds to the alternative path.

In addition to control traffic, we apply the above restoration
and protection techniques for data traffic. However, in the
case of restoration of data traffic, the one-hop restoration
paths are not established in advance, and after recovering con-
trol traffic, data traffic is restored.

In the case of protection of both control and data traf-

Table 1. Feature required/present in different implementations of OpenFlow switches. VS is the vendor-specific extension;
OVS-DB is the Open vSwitch database management protocol; VER is the Open vSwitch version.

Software
component

Reference
switch
(license BSD)
www.open-
flow.org

Indigo
(license
Eclipse)
www.open-
flowhub.org

Open vSwitch (up
to VER 1.11.0)
(license Apache 2.0)
www.openvswitch.
org

Trafficlab1.1
(license BSD)
https://github.
com/TrafficLab

Trafficlab1.3
(license BSD)
https://github.
com/CPqD

In-band

DHCP client Yes Yes Not functional for
in-band control Not functional Not functional

NORMAL stack Yes Yes Yes Yes Not functional

TCP stack Yes Yes Yes Yes Yes

OpenFlow
stack Yes Yes Yes Yes Yes

Queuing

Queue
forwarding Yes Yes Yes Yes Yes

Queue
creation Yes (with VS) Yes (with VS) Yes (with OVS-DB) Yes (with VS) Yes (with VS)

Queues with
priorities No No Yes (with OVS-DB) No No

Failure
recovery

LOS failure
detection Yes Yes Yes Yes Yes

BFD failure
detection No No No No No

Group-table
(fast-failover) No No No Yes Yes

IEEE Network • January/February 2016 109

fic, BFD can be used. In BFD, a pair of switches transmits
BFD packets periodically between each other, and if a switch
stops receiving the packets, the path between the switches is
assumed to be failed.

OpenFlow does not define how to run BFD in the switches.
Therefore, we propose to integrate BFD in the local network-
ing stack of switches and add a vendor-specific extension in
the OpenFlow protocol to run it through the switches. With
this vendor-specific extension, the controller sends a message
containing information about a BFD session (RFC 5880).
Upon reception of this message, the switch runs the BFD ses-
sion on the local networking stack, which allows the switch to
send BFD packets through its local port (reserved port of the
switch).

In protection, when the controller establishes the working
and alternative path between two edge switches, the control-
ler sends vendor-specific messages to edge switches to start a
BFD session between them. In addition, the controller estab-
lishes a path for the BFD session, which follows the same path
as the working path. Hence, when BFD detects the failure, the
ingress switch declares the working path as a faulty path and
therefore, the ingress switch can now apply the second rule.

Practical Challenges
Evolution of OpenFlow Specifications
Stanford University released specifications for OpenFlow
known as version 1.0 and 1.1 in 2009 and 2011, respectively,
and industrial players such as Deutsche Telekom, Google,
Microsoft, and Yahoo! have shown substantial interest in this
technology. These companies then formed ONF (Open Net-
working Foundation) to standardize and release the versions
of OpenFlow according to their demands. Since then, six more
versions (1.2, 1.3.0, 1.3.1, 1.3.2, 1.3.3, and 1.4.0 [9]) have been
released publicly. Hence, the challenge is to choose which
version to use for implementation of our functionalities. In
addition, as OpenFlow is evolving quickly, not all versions or
all enhancements of the released versions are implemented for
OpenFlow.

Availability of Required Switch Components
Table 1 shows the availability of the required components in
existing implementations. The functions of these components
are described below:

With a DHCP client [12], a switch can generate/receive
DHCP messages from the local port. With the NORMAL
stack [9], a source switch can forward its messages using L2
learning when it does not have an OpenFlow session with the
controller. Using the TCP stack, a switch can establish a TCP
session. Using the OpenFlow stack [9], a switch can estab-
lish an OpenFlow session. Using queue forwarding [9], traffic
can be forwarded through queues. With the queue creation
component, queues can be created in switches. Using queues
having different priorities, queues can be served on a priority
basis. Using LOS, a switch can detect failures in restoration.
Using BFD, switches can detect failures in protection, and
with the group-table fast-failover type, switches can change
the actions of forwarding packets without contacting the con-
troller.

The existing implementations for required components
are Reference switch, Indigo, Open vSwitch, Trafficlab1.1,
and Trafficlab1.3 (Table 1). Reference switch [3] is the first
software release of OpenFlow version 1.0. Indigo is a hard-
ware-switching release based on Reference switch. Open
vSwitch is a production quality release of OpenFlow. Traffi-
clab1.1 is the extension of Reference switch to incorporate
version 1.1, and Trafficlab1.3 contains version 1.3.0.

Table 1 shows that not all the required components are
present in a single implementation. Therefore, the chal-
lenge is to integrate all the required components in one
implementation. In addition, vendor-specific extensions of
switches are required to configure queues with different
priorities. Furthermore, BFD is not present in any imple-
mentations. Hence, it is needed to be either implemented
fully or imported from any open-source implementations of
BFD. Some modifications related to BFD are also required.
The modifications are: running BFD sessions on the local
networking stack; listening or sending BFD packets on the
local port; and modifying a group-table entry on detection
of a failure.

Availability of Required Controller Components
The required controller components are:
•	In-band control, which can run in-band functionality on the

controller.
•	Queuing, which can establish queues (with different priori-

ties) in the switches.
•	Failure recovery, which can implement restoration or pro-

tection for control and data traffic.
Currently, none of the available controllers (e.g. NOX, POX,
Floodlight) implement these components.

For the implementation of these components, the available
controllers can generate several events. The events, which are
important for the required components, are:
•	Switch-join, which is generated when a switch establishes an

OpenFlow session with the controller.
•	Switch-leave, which is generated when a switch disconnects

from the controller.
•	Port-config, which is generated when the controller receives

all port information.
•	Packet-in, which is generated when a packet is received to

decide its forwarding action.
•	Port-status, which is generated when an LOS is detected or

repaired in one of the ports in a switch.
Using these events, all the proposed functionalities can be
implemented in all the available controllers.

Experimental Studies
We implemented our proposed functionalities in Traffliclab1.3
and in its compatible controller (NOX1.3). We used this
switch because at the time of our implementation this was the
only available soft switch containing the latest version and the
group table concept. We implemented all the unavailable and
non-functional software components (Table 1) in this switch
using the mechanisms provided above.

The experiments are carried out using the emulat-
ed topologies described in Table 2. The pan-European
topologies in Table 2 are basic reference topology (BT),
core topology (CT), large topology (LT), ring topology
(RT), and triangular topology (TT). The topologies that
vary with the degree of meshedness are RT and TT, and
the topologies in accordance with the number of switch-
es are CT and LT. The other used topologies are ring,
star, random regular graph, and balance binary tree. For
experiments, one of the switches is physically connected
with the controller, and the DHCP server is located on
the controller.

For the in-band experiments, we use a single node of the
iMinds island of the OFELIA testbed [13], and mininet [14]
is used for emulating topologies. For all other experiments, a
node of the island is dedicated to a single switch or the con-
troller, and the topologies are generated using the emulab
interface of the island.

IEEE Network • January/February 2016110

In-Band Control Experiments
In the case of in-band control experiments, the DHCP retrans-
mit timeout is kept as 1 second (minimum value) and the boot-
strapping time (the total time to establish OpenFlow sessions)
of switches is calculated with respect to the distance from the
controller. As the bootstrapping time for all pan-European
topologies is approximately the same, we show the bootstrap-
ping time of all these topologies by a single bar (Fig. 2). In addi-
tion, at the distance where there is no switch in the topologies,
no bar is shown in Fig. 2.

For one-hop, the bootstrapping time is approximately zero
because the switch at one-hop does not wait for the DHCP
timeout to retransmit a DHCP request. As the distance from
the controller increases, Fig. 2 shows an increase in the boot-
strapping time, because the switches, which are n-hop (n>1)
away from the controller, are able to establish the session, if
at least one of its neighbors has an OpenFlow session with it.
When more switches are located at a certain distance from
the controller (at distance 2 for star, at distance 6 for bal-
ance-binary tree, and at distance 6 and 7 for random-regular
graph), we found a significant increase in the bootstrapping
time, because in this case the in-band component of the con-
troller receives lots of messages at about the same time. Until

the controller replies, the messages
stay in the packet-in buffer, increasing
the bootstrapping time. In addition,
as the buffer can overflow at some
point, some of the messages have to
be dropped. If a dropped message is a
DHCP request, a switch waits for the
next DHCP timeout to retransmit the
DHCP request, and hence delays the
bootstrapping time for an additional
1 second.

With Queuing and Without
Queuing Experiments
In these experiments, the rate of data
traffic (Poisson distributed on an aver-
age interval) is varied on each link of
the CT topology, and the impact of
data rate on control plane operations
such as new switch connection (boot-
strapping), new service installation,

and failure recovery is calculated using queuing (Q) and with-
out using queuing functionality (WQ). Each link of the topol-
ogy is assigned a capacity of 10 Mb/s, and the size of data
packets is 1000 bytes. All the results are calculated 50 times,
and the average is shown in Fig. 3.

Figure 3 shows that under a low load (load < 0.9), boot-
strapping, new service installation, restoration, and protection
time is comparable for Q and WQ. However, at a high load
(load > 0.9), due to congestion WQ takes a significantly lon-
ger time than Q for bootstrapping, new service installation,
and restoration. In this case, as the load increases, switches
drop more control and data packets. After dropping control
packets, switches and the controller have to retransmit these
packets after their timeouts, increasing the delay in completing
bootstrapping, new service installation, and restoration. More-
over, at a load >1.04, WQ has a lower protection time (less
than 40 ms) than Q. This is because due to congestion, switch-
es have dropped some BFD packets (sent interval = 20 ms
and timeout = 40 ms) just before a failure, allowing BFD to
detect failures faster than in a normal condition. Furthermore,
after a load ≥ 1.08, a large number of BFD packets drops in
WQ due to congestion, and therefore BFD declares its tim-
eout without the presence of the actual failure (link failure).
This is the reason for zero protection time in WQ at a load ≥
1.08 as traffic is already on the protection path at the time of
failure. The results also show that all control plane operations
take significantly shorter time in in-band control with queuing
(Q) in all load conditions. Indeed, queuing functionality cir-
cumvents the competition between control and data traffic by
implementing separate queues.

Failure Recovery Experiments
We performed the following three types of failure recovery
experiments for in-band OpenFlow using queuing functionality:
•	Control and data traffic.
•	Multiple topologies.
•	Switches disconnection experiments.
In control and data traffic experiments, the failure recovery
time is calculated for one of the combinations of restoration
and protection for control and data traffic. In multiple topol-
ogy experiments, the recovery time is calculated for different
types of topologies, and in switch disconnection experiments,
the recovery time is calculated to show the impact of the
increased number of disconnected switches along the recovery
path. In the experiments, a failure is given by disabling Ether-

Table 2. Emulated topoligies.

 Topologies
#switches #links Switch degree

Min Mean Max

1

Pan
European
topologies

Core topology 16 23 2 2.88 4

Basicreference 28 41 2 2.93 5

Large topology 37 57 2 3.08 5

Ring topology 28 34 2 2.43 4

Triangular topology 28 61 2 4.36 7

2 Ring 100 99 2 2 2

3 Random regular graph 100 150 3 3 3

4 Balanced binary tree (height=5) 63 62 1 1.97 3

5 Star 100 99 1 1.98 99

Figure 2. Bootstrapping time for all emulated topologies. The
error bars show the minimum, average, and maximum values
of the bootstrapping time.

Minimum distance from the controller
(number of hops)

1

1
0

Bo
ot

st
ra

pp
in

g
ti

m
e

(s
ec

on
ds

)

2
3
4
5
6
7
8
9

49
50

Pan European topologies
Random regular graph
Star

Ring
Balanced binary tree

2 3 4 5 6 7 51

48

IEEE Network • January/February 2016 111

net interfaces, and for restoration, LOS is used to detect fail-
ures and the failure detection time is between 50 to 60 ms. For
protection, BFD is used and the failure detection time is about
40 ms. All the results are calculated 50 times and the average
is shown in Fig. 4.

In the control and data traffic experiments, the number
of data flows (240 to 8400) is increased in the CT topology,
and one of the combinations of restoration and protection is
applied for control and data traffic. These combinations are:
•	Restoration of both control and data traffic (Rest-Rest).
•	Restoration of control traffic and protection of data traffic

(Rest-Prot).
•	Protection of control traffic and restoration of data traffic

(Prot-Rest).
•	Protection of both control and data traffic (Prot-Prot).
In all the combinations, Fig. 4 shows that restoration does not
meet the carrier-grade requirement of 50 ms, while protec-
tion meets the requirement. In addition, the restoration time
of data traffic (Rest-Rest and Prot-Rest) increases with the
increase in the number of affected data flows, because as the
number of affected data flows increases, a higher number of
data traffic paths need to be configured after the failure.

In the multiple topology experiments, different types of
pan-European topologies (CT, BT, and RT) are used, and
we found that the restoration time increases with the number
of switches in a topology, because in our implementation the
path calculation time grows as O(n2), where n is the number of
switches. In addition, as the degree of meshedness increases,
the restoration time decreases, because in this case fewer hops
are required for the restoration path, and therefore the con-
troller needs to configure fewer switches in the network. Fur-
thermore, protection does not require controller intervention,
and therefore it is far less dependent on the network topology.

In the switch disconnection experiments, ring topologies
are used, and the restoration time follows a linear relationship
with the number of affected switches along the restoration
path. For protection, the recovery time is always within 50 ms
and meets the requirement.

Conclusion and Future Work
In this article, we have explored OpenFlow for in-band control,
queuing, and failure recovery functionalities, and have per-
formed extensive experiments. The in-band control experiments
conclude that the proposed method allows bootstrapping in all
types of topologies. With this method, switches of emulated
pan-European topologies have taken a maximum of 5 seconds
to perform bootstrapping. The queuing experiments demon-
strate that in-band control traffic can be served first before any
other traffic, and hence it can avoid competition with data traf-
fic for network resources. The failure recovery experiments
conclude that restoration in OpenFlow does not allow achieving
50 ms recovery, and protection for both control and data traffic
allows achieving recovery within 50 ms. In our results, we did
not take into account the propagation delay. Among all the
presented results, the restoration time may significantly increase
with the increase in the propagation delay, further strengthen-
ing the conclusion of the article that restoration cannot meet
the requirement of 50 ms. As future work, the effects of prop-
agation delay can be studied to quantify the degradation of the
restoration time with an increase in propagation delay.

Based on the presented emulation results, we believe that our
functionalities can be applied in production networks. However,
to improve the accuracy of results, our experiments can also be
performed on real environment testbeds such as GENI (Glob-
al Environment for Network Innovations) or FIBRE (Future
Internet testbeds/experimentation between Brazil and Europe).

Using these testbeds, OpenFlow hardware switches can be used
for experimentation and the topologies can be generated in real
environment settings. In the experiments, the impact of real
environment factors (e.g. hardware dependent parameters such
as packet forwarding, processing, and queuing) on the results
can be studied. For the bootstrapping time, we believe that this
impact will be negligible, as the DHCP retransmit timeout (i.e.
1 second) dominates the bootstrapping time. For the restoration
time, the impact can be significant as the restoration time is
measured in ms and a small variation due to real factors will
influence the results. For the protection time, the impact will be
negligible because only the ingress switch along the protection
path is involved for the protection activity.

In this article, we have not explored security and controller
failure issues for in-band OpenFlow. For security, there can
be many concerns related to DHCP [12], transport layer [15],
and OpenFlow messages. These concerns are security issues
related to:
•	TCP or DHCP requests from bad actors.
•	DHCP messages from an unauthorized DHCP server.
•	Denial of service from the DHCP server or the controller.
•	Switch datapath ID conflicts.
Nevertheless, transport layer security (TLS) described in
OpenFlow [9] can be applied in the bootstrapping phase.

Figure 3. Impact of data traffic on control plane operations.
WQ means in-band control without queuing functionality
and Q means in-band control with queuing functionality.

Normalized load on each link
(data rate/link capacity)

0.40.2

0

Ti
m

e
(m

s)

20
40
60
80

100
120
140
500

5375
10250
15125

>20000

0.6 0.8 1 1.2 1.4

Bootstrapping time (WQ)
New service installation time (WQ)
Restoration time (WQ)
Protection time (WQ)

Bootstrapping time (Q)
New service installation time (Q)
Restoration time (Q)
Protection time (Q)

Figure 4. Recovery time of control and data traffic using all
combinations of restoration and protection.

Growth factor in the number of data flows
(1 factor = 240 flows and 16 affected data flows)

50
10

Fa
ilu

re
 r

ec
ov

er
y

ti
m

e
(m

s)

50

100

1000

10 15 20

50 ms

25 30 35

Control traffic (rest-rest)
Control traffic (rest-prot)
Control traffic (prot-rest)
Control traffic (prot-prot)

Data traffic (rest-rest)
Data traffic (rest-prot)
Data traffic (prot-rest)
Data traffic (prot-prot)

IEEE Network • January/February 2016112

However, the problem is that OpenFlow does not provide any
details of TLS operations. This could lead to interoperability
issues. In addition, TLS has many technical barriers for oper-
ators. These are:
•	Assigning controller certificates.
•	Assigning switch certificates.
•	Signing the certificates with a private key.
•	Installing the keys and certificates into all network devices.
In future work, we will consider the aforementioned security
issues and will explore controller failure solutions for in-band
OpenFlow. To solve the controller failure issues, we will use
two controllers. Hence, when one controller crashes, switches
can rely on a backup controller to take actions.

Acknowledgments
This research has received funding from EU FP7 under agree-
ment Nos. 317576 (CityFlow), 258457 (SPARC), and 258365
(OFELIA).

References
[1] J. Rexford, “Future Internet Architecture: Clean-Slate Versus Evolutionary

Research,” Commun. ACM, vol. 53, no. 9, Sept. 2010, pp. 36–40.
[2] J. Pan, S. Paul, and R. Jain, “A Survey of the Research on Future Inter-

net Architectures,” IEEE Commun. Mag., vol. 49, no. 7, July 2011, pp.
26–36.

[3] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” ACM Computer Commun. Review, vol. 38, no. 2, April 2008,
pp. 69–74.

[4] R. Ahmed and R. Boutaba, “Design Considerations for Managing Wide
Area Software Defined Networks,” IEEE Commun. Mag., vol. 52, no. 7,
July 2014, pp. 116–23.

[5] C. Tu, P. Wang, and T. Chiueh, “In-Band Control for an Ethernet-Based
Software-Defined Network,” ACM SYSTOR, 2014, pp. 1–11.

[6] P. Skoldstrom and K. Yedavalli, “Network Virtualization and Resource Allo-
cation in OpenFlow-Based Wide Area Networks,” IEEE ICC, June 2012,
pp. 6622–26.

[7] S. Sharma et al., “Automatic Bootstrapping of Openflow Networks,” IEEE
LANMAN, April 2013, pp. 1–6.

[8] S. Sharma et al., “Fast Failure Recovery for In-Band Openflow Networks,”
DRCN, March 2013, pp. 44–51.

[9] OpenFlow specifications; available https://www.opennetworking.org/
sdn-resources/onf-specifications

[10] A. S. Tan et al., “Automatic Topology Discovery in Software Defined Net-
works,” SIU, April 2014, pp. 939–42.

[11] S. Sharma et al., “Demonstrating Resilient Quality of Service in Soft-
ware Defined Networking,” IEEE INFOCOM WKSHPS, May 2014, pp.
133–34.

[12] S. Duangphasuk, S. Kungpisdan, and S. Hankla, “Design and Implemen-
tation of Improved Security Protocols for DHCP Using Digital Certificates,”
IEEE ICON, Dec. 2011, pp. 287–92.

[13] M Sune et al., “Design and Implementation of the OFELIA FP7 Facility:
The European OpenFlow Testbed,” Computer Networks, vol. 61, March
2014, pp. 132–50.

[14] V. Antonenko and R. Smelyanskiy, “Global Network Modelling Based on
Mininet Approach,” HotSDN, 2013, pp. 145–46.

[15] P. Casas, J. Mazel, and P. Owezarski, “Knowledge-Independent Traffic
Monitoring: Unsupervised Detection of Network Attacks,” IEEE Network,
vol. 26, no. 1, Jan. 2012, pp. 13–21.

Biographies
Sachin Sharma (sachin.sharma@intec.ugent.be) received his M. Tech degree
in computer applications in 2007 from IIT Delhi. From 2007 to 2010 he
worked as a senior R&D Engineer at Tejas Networks, Bangalore. Since 2010
he has been working toward a Ph.D. degree from Ghent University, Belgium.
During his Ph.D. work he has been involved in many European funded proj-
ects, including: SPARC, CityFlow, and Unify. He has more than 20 scientific
publications in international conferences and journals.

Dimitri Staessens received his M.Sc. degree in numerical computer science in
2004 from Ghent University, Belgium, and finished a Ph.D. on survivability of
optical networks in 2012. This work led to more than 30 publications, and
was performed in European projects such as NOBEL, DICONET, and NoE’s
ephoton/One and BONE. His current interests are in the control and manage-
ment of networks, SDN, and future network architectures, where he is active in
FP7 projects on RINA.

Didier Colle received his M.Sc. and Ph.D degrees in electrotechnical engi-
neering (option: communications) from Ghent University in 1997 and 2002,
respectively, and became an associate professor at the same university in
2011. He is group leader of the Future Internet Department of iMinds. His
research has published 300 articles in international journals and conference
proceedings. He has been very active in FIRE projects, with a focus on Open-
Flow and software defined networks.

Mario Pickavet is a full professor at Ghent University, where he is teaching
courses on discrete mathematics and network modeling. He is co-leading the
research cluster on network modeling, design and evaluation (NetMoDeL). He
has published approximately 300 international publications, in journals includ-
ing IEEE JSAC, IEEE Communications Magazine, and Proceedings of the IEEE,
and in conference proceedings. He co-authored the book Network Recovery:
Protection and Restoration of Optical, SONET-SDH, IP, and MPLS.

Piet Demeester is a professor on the faculty of engineering at Ghent University.
He is the head of the research group “Internet Based Communication Networks
and Services” (IBCN, Ghent University), and is leading the Internet Technolo-
gies Department of the strategic research center iMinds. He has co-authored
more than 1000 publications in international journals and conference proceed-
ings. He is a Fellow of the IEEE.

