
Ruyssinck et al. BMC Bioinformatics (2016) 17:76
DOI 10.1186/s12859-016-0913-0

METHODOLOGY ARTICLE Open Access

Netter: re-ranking gene network inference
predictions using structural network properties
Joeri Ruyssinck1,3*, Piet Demeester1,3, Tom Dhaene1,3 and Yvan Saeys2,4

Abstract

Background: Many algorithms have been developed to infer the topology of gene regulatory networks from gene
expression data. These methods typically produce a ranking of links between genes with associated confidence
scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties
of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take
into account connections found in the data and do not include known graph properties in their inference process.
This lowers the prediction accuracy of these methods, limiting their usability in practice.

Results: We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory
interactions obtained from a network inference method which can use, inter alia, graphlets and several
graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our
approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as
optimization criteria and show that Netter can improve the predictions made on both artificially generated data as
well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from
real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms
and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for
a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be.

Conclusions: Network inference from high-throughput data is a long-standing challenge. In this work, we present
Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible
system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to
specific prior knowledge by expert users but can also be applied in general uses cases. Concluding, we believe that
Netter is an interesting second step in the network inference process to further increase the quality of prediction.

Keywords: Gene regulatory networks, Network inference, Graphlets, Gene expression data

Background
Network representations are widely used and vital in
many areas of science and engineering. They serve both
as an endpoint for users to structure, visualize and handle
large amounts of data and as a starting point for various
algorithms that use networks for automated hypothesis
generation. In systems biology, one of the long-standing
challenges is the reverse engineering of the cell’s transcrip-
tome in the form of gene regulatory networks (GRNs).

*Correspondence: joeri.ruyssinck@intec.ugent.be
Joeri Ruyssinck is the sole first author, Yvan Saeys is the sole last author
1Department of Information Technology, Ghent University - iMinds, IBCN
research group iGent Technologiepark 15, B-9052 Ghent, Belgium
3Bioinformatics Institute Ghent, Ghent University - VIB, B-9000 Ghent, Belgium
Full list of author information is available at the end of the article

This has proven to be a daunting task, as the amount
of genes in the network vastly exceeds the amount of
available measurements. As a result, many computational
methods have been developed [1–3] which try to over-
come this challenge using various strategies. These meth-
ods differ not only in their accuracy to infer the network
but also strike a different balance between scalability and
complexity [4, 5]. In a recent community-wide effort, a
large blind assessment of unsupervised inference meth-
ods using microarray gene expression data was conducted
[6]. This study concluded that no single inference method
performs best across all data sets but that in contrast,
the integration of several techniques to form an ensemble
‘community’ prediction led to a robust and top perfor-
mance. In a collaborative effort between the DREAM

© 2016 Ruyssinck et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0913-0-x&domain=pdf
http://bioinformatics.intec.ugent.be
mailto: joeri.ruyssinck@intec.ugent.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 2 of 16

organizers, the GenePattern team [7] and individual con-
tributors, a web service GP-DREAMwas set up to run and
combine current state-of-the-art methods. To date, five
methods are offered: ANOVerence [8], CLR [9], GENIE3
[10], the Inferelator [11] and TIGRESS [12].
Common inference strategies of GRN inference algo-

rithms include the calculation of local pairwise measures
between genes or the transformation of the problem into
independent regression subproblems to derive connec-
tions between genes. It is clear that using these schemes,
the algorithm is unaware that the goal is to infer an actual
network topology. Therefore, the global network struc-
ture cannot influence the inference process. For example,
relevance networks [13] are created by calculating the
mutual information between each possible gene interac-
tion pair. A high mutual information score between a
gene pair is then considered as putative evidence of a
regulatory interaction. It is well known that this tech-
nique predicts a large amount of false positive interactions
due to indirect effects. Two widely-used methods, CLR
[9] and ARACNE [14] acknowledge this weakness and
implement strategies to mitigate this problem by incor-
porating a more global network context. ARACNE uses
the Data Processing Inequality on every triplet of genes
to filter out the weakest connection. CLR builds a back-
ground model for each pair of interacting genes and
will transform the mutual information score to its like-
lihood within the network context. WGCNA [15] also
incorporates a global network context in the network
reconstruction step of the algorithm. Pairwise correla-
tions are raised to the optimal power to maximally fit
a scale-free topology property of the constructed net-
work. In a more general context, Network Deconvolution
[16] was proposed as a post-processing technique to infer
direct effects from an observed correlation matrix con-
taining both direct and indirect effects. Similarly, a post-
processing method named Silencer [17] uses a matrix
transformation to turn the correlation matrix into a highly
discriminative ’silenced’ matrix, which enhances only the
terms associated with direct causal links. However, in
general and as to date, almost none of the state-of-the-
art algorithms make use of general or specific structural
knowledge of gene regulatory networks to guide the infer-
ence progress. In contrast, such structural properties of
GRN and biological networks in general have been stud-
ied extensively in literature [18, 19], introducing concepts
such as modularity, hub-nodes and scale-free biologi-
cal networks. The topology of a specific GRN is highly
dependent on the experimental conditions and the type
of cell [20] although general topological properties have
been reported. It has been described that both prokary-
otic and eukaryotic transcription networks exhibit an
approximately scale-free out-degree distribution, while
the in-degree distribution follows a restricted exponential

function [21]. Furthermore, the concept of relatively iso-
lated sets of co-expressed genes under specific conditions,
called modules, has been introduced, as discussed in [22].
Topological analyses of GRN have also revealed the exis-
tence of network motifs [23], recurrent subgraphs in the
larger network which appear more frequent than would
be expected in randomized networks. The existence of
such network motifs and their frequency of occurrence
inevitably has an impact on the global network struc-
ture. Finally, prior knowledge about the topology of the
specific GRN of the cell at hand can be available, in the
simplest scenario in the form of already known regula-
tory links extracted from literature. We believe that the
current non-inclusion of such known structural proper-
ties in the inference process leads to predictions that do
not achieve their full potential. Furthermore, they are
often characterized by different graph-invariant measures
than networks found in literature. Although it is hard to
completely transform these predictions into more realistic
networks, it is clear that the inclusion of structural knowl-
edge is desirable and will be beneficial to the prediction
accuracy. However, including such complex and diverse
topological information directly in the inference process
of existing algorithms is non-trivial and offers little room
for modifiability.
Instead in this work, we propose and validate a post-

processing approach that aims to be easily modifiable
and extendable. The resulting algorithm, named Netter,
uses as input any ranking of regulatory links sorted by
decreasing confidence obtained by a network inference
algorithm of choice. It then re-ranks the links based on
graph-invariant properties, effectively penalizing regula-
tory links which are less likely to be true in the inferred
network structure and boosting others. It is not the goal
of this work to put forth structural properties of GRN,
instead we wish to offer a flexible system in which the
end user can decide which structural properties are to be
included or emphasized. Expert users can easily design
and include novel structural properties and consequently
tune Netter to a specific use case. However, to vali-
date our approach, we also introduce and motivate three
simple structural properties and default settings which
can be used in a more general setting in which specific
knowledge of the GRN is unavailable. Using these pro-
posed structural properties and settings, we demonstrate
that Netter improves the predictions of six state-of-the-
art inference methods on a wide array of synthetic and
real gene expression datasets including the DREAM4 and
DREAM5 benchmarks. Netter also slightly improves the
DREAM5 community prediction of the E.coli. network
inferred from real expression data. We compare and dis-
cuss the performance of Netter with other techniques that
aim to incorporate the global network or post-process
GRN predictions. Next, we further investigate and discuss

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 3 of 16

the characteristics of improvement of Netter. Lastly, we
show that the performance gain of Netter is robust with
regard to its parameter settings and the exact definition of
its structural properties.

Methods
Figure 1 shows an overview of the Netter algorithm. In
the following subsections, we first formalize the prob-
lem statement and elaborate on the different steps of the
algorithm. Next, we introduce three different structural
properties which will be used to re-rank the input net-
works. Finally, we discuss the different network inference
methods that will be used to create the input networks and
briefly discuss the computational aspects of Netter. In the
process of formalizing the problem, we will introduce a
parameter for every design decision. In practice however,
many of these parameters do not substantially influence
the outcome of Netter and do not need tuning as we will
further discuss in the Results and discussion Section.

Input, problem definition and output
Most GRN inference methods return an absolute rank-
ing of all possible edges, sorted by decreasing confidence
that this link is a true regulatory interaction. This ranking
is then later transformed into a network representation

by selecting a threshold determined by the algorithm or
end-user. Netter uses as input such an absolute ranking
of potential gene regulatory links. This ranking can be
incomplete, however no regulatory links will be added
as Netter is strictly a re-ranking approach. No further
assumptions are made about which algorithms or data
sources were used. Although we focus here on unsuper-
vised network inference methods which use microarray
expression data to infer network topologies, Netter is
generally applicable to any method producing a rank-
ing from omics data. In practice, it only makes sense to
re-rank the top of the ranking noting that networks con-
sisting of 100 genes already produce a complete ranking of
9900 potential regulatory links (excluding self-regulatory
interactions). Therefore, in the first step of the algorithm
(Fig. 1a) , the top x most confident links of the prediction
are extracted, where x is a user-chosen value. The algo-
rithm will work on these links only, assigning them a new
rank, whereas the remaining links maintain their original
ranks and cannot influence the decision process.

Formulation as an optimization problem
Using the extracted top x links, an optimization procedure
is started which is performed several times and can be exe-
cuted in parallel (Fig. 1b). Each optimization procedure

Fig. 1 Overview of the re-ranking approach of Netter. A ranking of regulatory links sorted by decreasing confidence is assumed. This prediction can
be obtained by an inference method of choice using any data source. In a first step, the top x links of the ranking are extracted. Netter will assign
these links a new position, whereas the other links maintain their original ranks. The extracted ranking is awarded a cost and using simulated
annealing the cost function is minimized several times, obtaining re-ranked lists in the progress which are then averaged to obtain the final output
ranking. The cost function strikes a balance between modifying the original ranking to have better structural properties while remaining true to the
original ranking

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 4 of 16

outputs a new ranking, after which the final ranking of
Netter is obtained by averaging rank-wise over all output
rankings (Fig. 1c). Averaging over multiple output rank-
ings is a crucial step in Netter. It guarantees robustness
and performance gain as the total cost function which is
optimized is non-convex with many local optima. We will
further discuss this in the Results and discussion section.
A single optimization procedure tries to find a ranking
l ∈ L, the set of all possible rankings, which minimizes
a total cost function f assigning a positive value to any
ranking in L.

min
l∈L

f (l), with f : L → R+

This total cost function is defined as the weighted sum
of two cost functions s and � with the same (co)domain
as f :

f (l) = s(l) + α.�(l)

Here α is a global balance factor, s is a structural cost
function giving a score to a ranking based on structural
properties and � is a divergence function quantifying
how much a ranking is different from the original rank-
ing. Intuitively, f strikes a balance between modifying the
original ranking to have better structural properties while
remaining true to the original ranking (Fig. 1d).

Simulated annealing optimization
This optimization problem is then solved by following a
simulated annealing approach to the problem. In a sin-
gle step of the optimization process, we create a new
ranking l′ by randomly moving γ links up or down the
ranking by θ positions. γ is sampled uniform from [1,�]
in each step, while θ is sampled uniform for each link from
[−�,+�]. �, � being user-set integer values. In practice,
this way the optimization process will explore both minor
as substantial changes to the ranking. The newly gener-
ated ranking l′ is accepted as the new ranking if f (l′) <

f (l) or with a probability of e−(f (l′)−f (l))/T otherwise, with
T being the current temperature of the annealing pro-
cess, as proposed by [24]. We use a traditional exponential
cooling schedule in which the temperature is repeatedly
lowered by a constant factor μ after each iteration. To
avoid manual tuning of the annealing parameters for each
network, Netter will automatically adjust the parameters
and restart if the acceptance ratio of bad mutations dur-
ing a starting window (e.g. the first 10 % iterations) is not
within user-defined limits.

Assigning a structural cost function and a divergence cost
function to a ranking
In Netter, the structural cost function s assigns a score
to a ranking l based on topological properties. We adopt
the following procedure (Fig. 1e) to transform a ranking

into network representations of which structural proper-
ties can be calculated. In a first step, a subnetwork g1,
containing n links, is created by using the top n links of the
ranking. Next, a subnetwork g2 is created, containing the
first 2n links of the ranking. This process is repeated until
a subnetwork g[(x/n)−1] is created, containing all but the
last n links of the ranking. Summarizing, subnetworks g1,
g2, . . . , gi, g[(x/n)−1] of increasing size are created from the
ranking l, consisting of n, 2n, . . . , i.n, x-n links respectively.
We can then calculate a score for each of these subnet-
works by using a structural property function sstruct which
depends on some structural properties. s is then defined as
the weighted sum of the structural scores of the individual
subnetworks gi created from the ranking l.

s(l) =
∑

i
πi.sstruct(gi)

The coefficients πi, each associated with a subnetwork,
are set to decrease according to the network size. Smaller
subnetworks, corresponding to the top of the ranking are
in this way more influential in the total structural cost of
the ranking. Intuitively, this way the optimization proce-
dure will make the top of the ranking correspond more
to structurally realistic networks by moving links to the
top of the ranking which structurally improve the network
and move down others which seem odd to be present. As
the size of the search space of possible rankings allows
for an almost infinite amount of rankings which effec-
tively minimize the structural cost function close to its
lowest possible value, the divergence function � needs to
be included in the total cost function f. This function thus
acts as a regularization term and is defined as:

�(l) =
∑

link
(|original_rank(link) − new_rank(link)|2)

Structural property functions
The structural property function s is defined as the
weighted sum of individual structural penalty functions
sstruct which each have a user defined weighting coef-
ficient. The amount of structural properties which one
could associate with a typical GRN are plenty and are
much subject to debate. Furthermore, some structural
properties are highly dependent on the cell at hand or the
experimental conditions. Therefore, Netter is designed
to allow for the easy inclusion and exclusion of new or
existing structural properties. Expert users or researchers
which have prior knowledge can tune Netter to specific
use cases. For example, a custom penalty could be defined
which penalizes the non-inclusion of known interactions.
It is not the main focus of this work to develop or sug-
gest (complex) structural penalty functions. However, to
validate our re-ranking approach, we introduce several
general structural properties based on graph-invariant
properties and graphlets. In this article, we restrict these

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 5 of 16

functions to be a simple v-shaped mapping of a cer-
tain structural property of the network y to a cost value,
although Netter can include any function that maps a net-
work to a positive value. The v-shaped function is defined
as follows:

sstruct(y) := ‖ay + b‖
Here, the parameters a and b can be specific for each of

the sstruct and the default values can be found in Additional
files 1–3. In the results section we discuss how changes in
the relative weighing coefficients and the exact shape of
the individual structural penalty functions (by varying a
and b) influence the performance of Netter.

Graphlet-based structural penalty
Graphlets have been introduced as small connected non-
isomorphic induced subgraphs of a larger network [25].
They differ from the concept of network motifs by the
fact that an induced subgraph needs to contain all the
edges between its nodes which are present in the parent
network. Since the original study, several other graphlet-
based network properties have been derived and success-
fully applied in various applications [26]. If we focus on
4-node graphlets, it is clear that hub-like structures in the
network will promote the occurrence of G4 (see Fig. 2)
graphlets. We postulate that the relative frequency of G4
graphlets as compared to all other 4-node graphlets could
be used as an optimization criterion to create networks
which are more modular. The need for increased mod-
ularity can be motivated by the fact that in the inferred
networks, the network topology resembles a full-mesh
structure as opposed to a scale-free, modular topology
that is generally associated with a GRN. To be precise, we
created a graphlet-based penalty function which defines
y as the relative percentage of G4 graphlets compared to
all other 4-node graphlets. Next, a and b are set in the
v-shaped cost function such that a lower cost corre-
sponds to networks with a high relative percentage of G4
graphlets. Including this penalty does not eliminate the
possibility of other valid biological structures to appear in
the network (e.g. feed forward loops), as strong signals will
always be retained due to the divergence cost penalty or
other included penalties. This penalty will merely discour-
age the occurence of weak signals connected to stronger
signals (links that appear at the top of the original ranking)

that would result in less modular networks. In practice,
penalties based on other graphlets can (and are encour-
aged) to be included in Netter to further refine the desired
network shape. One can also include penalties based on
subgraph counts in a directed network context (i.e. net-
work motifs). However, for demonstration purposes, we
will only include the G4-graphlet relative frequency as
optimization criterion as we believe it is the most sim-
ple and intuitive criteria. In the Results section and in
Additional file 1 we discuss the default mapping (a and b)
and the stability of this penalty.

Regulatory gene limiting penalty
In the case a list of known regulatory genes is not available,
as in the DREAM4 benchmark, predictions tend to favor
the presence of outgoing links originating from almost
every node in the inferred network. This is due to indirect
effects, if for example a gene A regulates both genes B and
C in the same process, most algorithms will also predict
a regulatory link between B and C. Furthermore, in the
absence of interventional or time-series data, the direction
of a regulatory link is hard to predict resulting in a large
amount of bi-directional links as both directed edges will
usually be close to each other in the ranking. In reality, it is
improbable that every gene in the network has an outgo-
ing link in the network, as this would suggest that the gene
has a regulatory function. Although the graphlet-based
structural penalty partially addresses these problems, a
simple regulatory gene limiting penalty was created which
defines y as the amount of nodes in the network with
at least one outgoing link relative to the total amount of
genes in the network. Parameters a and b were set such
that a high cost was associated with networks containing a
high percentual number of nodes that have outgoing links.
Additional file 2 describes the exact default mapping and
a more detailed performance stability analysis.

Anti-dominating penalty
In some cases after re-ranking, we noticed that a regu-
latory gene and its target genes would completely dom-
inate the top of the prediction list, leaving no room
for other modules. This behavior is unwanted, as one
wants to discover different areas of the network. This
penalty counters this problem by penalizing a percentual
large amount of links originating from the same gene in

Fig. 2 All 3-node and 4-node connected network graphlets. Figure adapted from [26]

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 6 of 16

the network. The anti-dominating penalty defines y as
the ratio between the maximum amount of links origi-
nating from a same gene in the network and the total
amount of links in the network. Additional file 3 describes
the default mapping and a stability analysis of this
penalty.

Computational aspects of Netter
The large search space of possible rankings results in the
necessity of performing many steps to minimize the opti-
mization function. Therefore, it is critical that a single
step is performed as efficient as possible. Two compu-
tationally expensive processes can be distinguished in a
single iteration. First, the new candidate ranking l′ created
from l, needs to be transformed into new subnetworks gi.
Second, structural penalties need to be calculated using
the newly created subnetworks of which some, e.g. the
graphlet count, can be computationally expensive. Exe-
cuting both processes from scratch would result in an
unacceptable runtime. However, because the new rank-
ing l′ is similar to the current ranking l an incremental
approach to the problem can be used. Therefore, Netter
uses an incremental update scheme to keep track of the
subnetworks and can efficiently revert back in case the
new ranking is rejected. All penalty functions, including
the graphlet enumerator have been defined and devel-
oped to work in an incremental way and new structural
penalties should also be implemented in this setting. Each
optimization procedure in Netter is ’embarrassingly par-
allel’. Therefore, Netter will assign new optimization runs
to each idle, available core. To give an estimate of the exe-
cution time of Netter: a typical set-up as described further
including 100 independent optimization runs, took 5 sin-
gle core hours on a Intel i3 CPU M350 clocked at 2.27
GHz, 8.00 GB of RAM and a 64-bit OS. However, the
running time is highly dependent on the parameter set-
tings and the list of included penalties. Furthermore, the
amount of independent runs (= 100) is conservative and
can be further lowered if computing power is an issue. We
discuss this in more detail in the Results and discussion
subsection.

Selected network inference methods
In order to test Netter we performed a large number of
experiments using a variety of network inference meth-
ods. We selected six network inference methods in total
with varying complexity and performance. In addition, in
case of the DREAM5 networks, the community prediction
networks as created and published in [27] were added.
Of the six selected network inference methods, three are
based on mutual information scores: CLR [9], ARACNE
[14] and BC3NET [28]. Three other methods use machine
learning techniques to infer the network GENIE3 [10],
NIMEFI [29] and TIGRESS [12].

Selected data sets and evaluation measures
Netter’s performance was evaluated using the five expres-
sion datasets from the DREAM4 in silico 100 multi-
factorial [27, 30, 31] challenge and the two expression
compendia from the DREAM5 network inference chal-
lenge [6]. Furthermore, to avoid overfitting specific struc-
tural properties of these benchmarks, we created an
additional 25 networks of different dimensions and asso-
ciated expression compendia using two different syn-
thetic gene expression data generators SynTRen [32] and
GeneNetWeaver [30, 33]. Table 1 provides an overview
of the dimensions and properties of the datasets. Using
all of these datasets, we inferred the network topology
using the algorithms described in the next subsection.
Next, we chose a cutoff value x and re-ranked the result-
ing prediction using Netter. As evaluation measure, we
consider both the Area Under the Receiver Operating
Characteristic curve (AUROC) and the Area under the
Precision-Recall (AUPR) curve, only taking into account
the true edges present in the first x predicted links of the
original ranking. Gold edges which are not present in this
original ranking are removed from the gold standard prior
to calculating the scores. This allows for a fair compari-
son between the original ranking and the re-ranked list as
Netter is strictly a re-ranking algorithm and cannot add
any edges outside the selected x edges. Furthermore, it
allows a more clear comparison between networks of dif-
ferent dimensions. As a result, the AUROC and AUPR
scores in this article depend on the original predicted
ranking and cannot be compared between different meth-
ods. For some of the additional tests, a reduced dataset of
15 networks was used instead of the full dataset to ease
the computational demands. This networks in this dataset
were randomly selected from the full dataset and contain
only GENIE3 predictions. For each test, we will clearly
indicate if the full or reduced dataset was used.

Results and discussion
To interpret the performance results of Netter, it is impor-
tant to note that from a theoretical point of view, a
post-processing approach can never improve every net-
work prediction it is applied on. If this would be the case,
repeatedly applying this algorithm on the outcome of a

Table 1 Overview of the datasets used in the performance tests

Name Networks Reg.genes Genes Samples Type

DREAM4 5 100 100 100 Artif.

DREAM5 artif. 1 195 1643 805 Artif.

DREAM5 E. coli. 1 334 4511 805 Real

SynTRreN-100 5 100 100 100 Artif.

SynTRreN-150 5 150 150 150 Artif.

GNW-200 15 200 200 200 Artif.

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 7 of 16

previous re-ranking would eventually result in the perfect
ranking. An analogy can be found in lossless compres-
sion, where one also tries to find general properties to
obtain a good compression ratio for a large set of probable
items sampled from the population. In the specific case
of Netter, each consecutive re-ranking will result in less
information of the original prediction being used to guide
the re-ranking process and therefore should be avoided.
Furthermore, for a specific network it is hard to explain
why a loss in prediction accuracy occurred. A possible rea-
son is that the initial prediction was of insufficient quality
to guide to optimization process in the right direction. It
is known that these network inference algorithms achieve
low accuracy and that algorithms can produce different
rankings even with those obtaining similar performance
metric scores [6, 29]. Further on in this section, we will
briefly discuss the performance gain of Netter with regard
to the initial prediction accuracy. Also in the following
subsections, we present the results of performance tests,
compare Netter to other similar technique, discuss the
effect of successive applications of Netter and compre-
hensively investigate the influence of the various param-
eters settings and choice of the structural cost function
definitions.

Performance tests
We ran Netter on all networks and all method predictions
using the following settings. The cutoff value x was set to
the first 750 links or the amount of non-zero links in the
case less edges received a non-zero score. The mutation
parameters � and � were set to 70 links and 50 posi-
tions respectively. The subnetwork size parameter n was
set to 25 and the associated coefficients πi were set to
0.5i, for i = [1 . . . amount of subnetworks]. The anneal-
ing scheme allowed an acceptance ratio of bad mutations
of approximately 10 % after the first 3000 of 30,000 itera-
tions. The optimization process was performed 100 times
for each prediction before averaging and all penalty func-
tions discussed in the previous section were included. The
relative weighing parameter was set to 25 for the graphlet
penalty, 2 for the gene regulatory penalty and 75 for the
anti-dominating penalty, α was set to 10−5. The influence
of the individual penalty cost function shape, the rela-
tive weighing coefficients and other parameters on the
performance is discussed in the next section. Each re-
ranking experiment was repeated three times and, due
to the ensemble approach of Netter, the rankings were
almost identical.
Figure 3 shows the change in AUPR and AUROC com-

pared to the original ranking after applying Netter on
all datasets except DREAM5, each dot resembles a re-
ranked network. For more details we refer to Additional
file 4 which includes the evaluation metrics for each net-
work. The results show that Netter substantially increases

the prediction accuracy in the majority of cases across
all algorithms. For the AUROC scores, the boxplot bars
remain well above the baseline of 0.0, with only a few
re-rankings resulting in a decrease in performance. Look-
ing at the AUPR, the increase in performance is more
pronounced compared to the AUROC change, with some
re-rankings achieving an increase in AUPR of more than
0.25, which in some cases nets to a relative increase of
more than 100 % compared to the original ranking.
To give a more intuitive view on the accuracy gain, we

take a closer look at a network (GNW-network 2) on
which a substantial improvement was achieved. Figure 4
shows a network comparison view between the original
GENIE3 ranking and the re-ranked list in which the first
75 links are plotted. The true positive links are shown as
black solid lines, whereas grey curved lines indicate false
positives. The resulting networks have 31 out of 75 of their
predicted links in common. In the original, there were 36
true positive links, while the re-ranked prediction con-
tains 69. Of the 36 true positives in the original prediction,
28 are still in the re-ranked network while 41 of the 44
new links entering the network are true positives. Fur-
ther analysis shows that especially the top of the ranking
is improved (Fig. 5). Indeed, for this example the first false
positive is encountered at position 50 for the re-ranked
list and at position 1 for the original. The fact that the
improvement occurs at the top of the ranking is a desirable
feature in practice.
Focusing on DREAM5, Table 2 shows an overview of

the AUPR of GENIE3, NIMEFI, TIGRESS and the com-
munity network. We did not re-rank the predictions of
the mutual information methods, as these methods were
outperformed by the former in the DREAM5 challenge.
The table shows that the original AUPR score on the
artificial network is already quite high and Netter is
unable to further improve the prediction. However, on
the E. coli. network inferred using real expression data,
Netter substantially improves the predictions of GENIE3
and NIMEFI while the TIGRESS performance decreases.
Netter is also able to slightly improve the community
network as produced by the DREAM5 challenge.

Comparing Netter to similar techniques
In this subsection, we will compare Netter with other
post-processing approaches for GRN inference predic-
tions and other algorithms that incorporate global net-
work information in their inference process. We are not
aware of any other methods that use structural properties
of the output network to guide the inference prediction on
a large scale. However, as discussed in the introduction,
both CLR and ARACNE can be considered as exten-
sions of relevance networks which correct the mutual
information (MI) scores using a more global network
context. Network Deconvolution and the Silencer on the

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 8 of 16

0.0

0.1

0.2

ARACNE BC3NET CLR GENIE3 NIMEFI TIGRESS
Network inference method

C
ha

ng
e

in
 A

U
R

O
C

 s
co

re

0.2

0.0

0.2

0.4

ARACNE BC3NET CLR GENIE3 NIMEFI TIGRESS
Network inference method

C
ha

ng
e

in
 A

U
P

R
 s

co
re

Fig. 3 Change in AUROC and AUPR scores after applying Netter. Change in AUROC and AUPR scores after applying Netter on all datasets except
DREAM-5 which are shown in Table 2. The different bars represent the network inference algorithm used to create the initial network. Each dot on
the figure is a different re-ranked network and is the result of a single Netter re-ranking procedure consisting of 100 averaged independent
optimization runs

other hand are post-processing techniques that attempt
to separate direct causal effects from indirect effects and
have been applied for GRN inference. As mentioned in
the introduction, WGCNA raises a pairwise correlation
matrix to a certain power to maximally fit the scale-free
topology measure. Although, the idea is similar to Netter,
both methods cannot be compared directly. WCGNA
only changes the edge weight values but does not change
the ranking of edges. As baseline for our comparison, we
infer networks by calculating MI scores for each pair of
genes. Next, we also infer the networks using ARACNE
and CLR. For each network, we post-process these three
predictions using Netter, Network Deconvolution and the
Silencer. This results in twelve different predictions for
each network. We use the same full dataset as in the
performance tests. Again we use the AUROC and AUPR
scores as evaluation metrics, however we do not adopt
the pre-processing procedure described in the ‘Selected
data sets and evaluation measures’ subsection, as we are
interested in comparing between methods as opposed to
relative gains in this test.
Figure 6 shows the change in evaluation metric com-

pared to the MI prediction. Each dot resembles a final
network prediction. In total 11 boxplots are shown, two
include ARACNE and CLR predictions without further
post-processing. The remaining nine are post-processed
networks of the mutual information, ARACNE and CLR
predictions using Netter, the Silencer or Network Decon-
volution.
The figure shows that the ARACNE method has a

higher AUPR score compared to the MI network but at
the cost of a decreased AUROC score. This is caused by
ARACNE setting a large number of interactions to 0, a
more aggressive approach than most other algorithms.

CLR both has higher AUROC and AUPR scores than the
original MI prediction. These performance gains are to be
expected, as both algorithms are widely adopted and have
been successfully applied to various use cases. Among
the post-processing algorithms, Netter is the clearly the
most successful one. Applying Netter results in a substan-
tial improvement for the AUPR score of the ARACNE
and CLR predictions as also shown in the previous sub-
sections and a small improvement in AUPR score for the
MI network. The smaller gain for the MI network can
be explained by the lower accuracy of the initial predic-
tion, as we will further discuss in the following subsection.
Netter does not seem to influence the AUROC score of
the MI, ARACNE or CLR predictions. This is because
Netter is a conservative approach, only re-ranking the
first x (in casu 750), allowing no new links to enter the
prediction. Applying Network Deconvolution results in a
decrease in AUROC and AUPR in all but a few cases for
the MI prediction. It has no effect on the ARACNE pre-
dictions and lowers the prediction accuracy of CLR in
general. The Silencer is able to correct the loss in AUROC
score originating from ARACNE but does not have a pos-
itive effect in all other cases. The performance of the
Silencer has been subject to controversy [34]. Concluding,
we believe that Netter compares favorably to other post-
processing approaches. Furthermore it has the advantage
that it is not limited to correlation-like measures but can
be applied to rankings or ranking ensembles of different
algorithms.

Characteristics of improvement with regard to the initial
prediction accuracy
Figure 7 shows the results of the performance tests in
a different way. We grouped the 180 re-rankings into 6

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 9 of 16

Fig. 4 Network comparison view of a GENIE3 prediction before and after the re-ranking procedure of Netter. The first 75 links of each ranking are
plotted. True positive links are shown as black solid lines, whereas grey curved lines indicated false positives

equally sized bins using the accuracy of the initial pre-
diction as binning criteria. The y-axis shows the relative
gain in AUPR compared to the original prediction (e.g. an
original AUPR score of 0.20 which is increased to 0.40 by
applying Netter would be plotted at a y-value of 100 %).
For each bin, the means of the boxplot are well above
the baseline of 0 and in less than 30 % of the cases the
performance is lowered. Furthermore, higher gains (up
to 150 %) are achieved as opposed to less accurate re-
rankings (maximum at −50 %). The potency of Netter to

improve predictions is at its lowest for predictions which
are the least accurate to start with. This makes sense, as
Netter relies on the accuracy of the initial prediction to
guide its re-ranking process in the right direction. We see
a general trend that applying Netter becomes increasingly
interesting up to a certain level if the initial accuracy of the
prediction is higher. The majority of predictions with the
highest initial accuracy have a lower mean improvement,
although some of the most accurate initial predictions can
still be substantially improved by applying Netter.

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 10 of 16

Fig. 5 The difference in the amount of true links discovered at various
thresholds for a re-ranking. At every possible threshold of the ranking,
the amount of true positive links discovered by the original ranking is
subtracted from the amount of true positive links discovered by the
re-ranked network. The network is the same as the one plotted in Fig. 4

Successive applications of Netter
Netter can also be applied on the outcome of a previ-
ous Netter re-ranking. Figure 8 shows the evolution of the
AUPR score of chaining Netter on the reduced test dataset
of 15 GENIE3 predictions. A second re-ranking proce-
dure has a mixed effect on the performance, with about
as many networks improving in accuracy as predictions
becoming less accurate. Further successive applications
of Netter result in an accuracy loss in the general case
although many networks continue to show an improve-
ment compared to original ranking after 5 re-rankings.
The obtained accuracy is comparable to running Netter
with increasingly less stringent regularization penalty
(divergence cost function) as the influence of the original
ranking is decreased with every re-ranking.

Parameter and structure cost function stability analysis
The large number of parameters which can be set in
Netter raises the questions of how one can tune these
parameters and how influential these parameters are on

Table 2 AUPR before and after re-ranking predictions of the
DREAM5 dataset

Net. GENIE3 NIMEFI TIGRESS Community

Orig. New Orig. New Orig. New Orig. New

Artif. 0.94 0.96 0.81 0.82 0.92 0.90 0.91 0.88

E. coli. 0.15 0.21 0.18 0.21 0.20 0.16 0.13 0.15

the prediction accuracy. Furthermore, one needs to be
sure that a small change in the definition of the structural
functions does not lead to a large change in the re-ranking
accuracy. To address the first question, Netter is equipped
with a logger system which can track among others the
prediction accuracy, the total cost function, the individ-
ual penalty functions and the accept/revert ratio of the
simulated annealing process at desired intervals.
To address the second question, first the performance

tests used a large and diverse dataset: including bench-
mark data and networks of different dimensions, created
by two different simulators to decrease the change of
obtaining inflated figures by chance. Secondly, we have
performed parameter sweeps by changing the value of
one parameter and keeping the other constant. Thirdly,
we substituted the default structural cost function map-
ping for each penalty with three times sixteen other simple
structural cost functions with different slopes and inter-
sects by varying a and b. Table 3 lists the default parameter
settings and explores different values for the structural
penalty functions, the balance factor α, the subnetwork
size parameter n and associated coefficients πi. The tables
shows the average AUPR over all 15 networks, the indi-
vidual values can be found in the Additional files 1–4.
We discuss the parameter settings and the results of the
stability tests in the following subsections.

Influence of the number of optimization runs on the
convergence of Netter
Netter runs a number of independent optimization runs
before averaging and producing the final output ranking.
We have shown that using this ensemble method, the out-
put of Netter is robust if the same settings are used. We
further explore the stability of Netter with regard to a vari-
able number of independent optimization runs. Figure 9
shows 10 runs of Netter using 10, 40, 70 and 100 inde-
pendent runs before averaging on the E.coli. DREAM5
network. All other networks show similar behaviour. It
shows that the mean performance gain increases if more
optimization runs are performed. The variance between
the final re-ranking also decreases with an increasing
amount of optimization runs. However, the mean perfor-
mance difference between 10 runs and 100 runs is only
0.01, while the difference with the original ranking evala-
tion is 0.08. Therefore, if computing power is a bottleneck
and many networks need to be re-ranked, a reduced num-
ber of optimization runs can be used without a large loss
in accuracy.

Influence of the subnetwork size n and coefficientsπi

When calculating the structural cost function, the rank-
ing is divided into subnetworks of increasing size. The
size is determined by the parameter n and the impact on
the total structural cost function of a single subnetwork

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 11 of 16

AUPR AUROC

−0.2

0.0

0.2

A A−D A−R A−S C C−D C−R C−S M−D M−R M−S A A−D A−R A−S C C−D C−R C−S M−D M−R M−S

Network inference procedure

D
iff

er
en

ce
 in

 A
U

R
O

C
 o

r
A

U
P

R

Fig. 6 Performance comparison of Netter to similar (post-procesing) algorithms. (A = ARACNE, C = CLR, M = Mutual information, R = Netter
re-ranking, D = Network Deconvolution, S = Silencer. ’–’ indicates post-processing. The MI prediction is used as a baseline and the relative
difference in AUPR and AUROC of the complete ranking of the other predictions is plotted. Each dot represents a single network prediction

gi is determined by the associated coefficient πi. Increas-
ing the subnetwork size will decrease the computation
time, as there are fewer subnetworks of which the struc-
tural properties need to be tracked. On the other hand, a
larger subnetwork size leads to less structural differenti-
ation options for the different links, possibly resulting in
a lower accuracy. Table 3 shows the results for varying n
and πi. The performance is stable with regard to the coef-
ficient choice for πi and the subnetwork size n over a wide
range of values. Concluding, we recommend to set n to a
small value (e.g. 25 or 1/30 of x) to ease the computational
demands but to allow for maximum differentiation, how-
ever the choice of n and πi is not crucial with regard to the
performance.

Influence of varying the global balance factor α
Probably the most important parameter in the re-ranking
algorithm is the parameter α which determines the trade-
off between the divergence cost and structural cost of a
ranking. If this parameter is set too high, the algorithm
will not allow any changes to be made to the original

ranking. Whereas if the parameter is set too low, the
re-ranking process will not use the original ranking to
guide the optimization process. We vary this parameter
by setting the values 10−i , with i = 2 . . . 6. The results
are shown in Table 3. For high values of α, the network
will only allow small changes to the network, resulting
in accuracy which is between the accuracy of the orig-
inal prediction and the maximum accuracy which can
be achieved after re-ranking. Interestingly, the accuracy
seems to be stable for the values i = 4 . . . 6. We believe
this is due to the ensemble approach in which we average
over several optimization processes.

Influence of varying the relative weight of a individual
structure penalty function
The impact of the individual penalty functions on the
total structural cost function can be adjusted by chang-
ing the associated weights of each penalty function. These
weights are typically set by running the algorithm sev-
eral times with some initial settings and by tracking the
individual penalty scores using the logging system. The

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 12 of 16

−50

0

50

100

150

(0.12−0.17) (0.17−0.21) (0.21−0.28) (0.28−0.31) (0.31−0.37) (0.37−0.49)

Equally sized bins of 30 networks

R
el

at
iv

e
(%

)
ch

an
ge

 in
 A

U
P

R

Fig. 7 Characteristics of improvement with regard to the initial prediction accuracy. Relative (%) change in AUPR of the full dataset is plotted, binned
in equally sized groups of 30 networks. In general, Netter’s potential to improve the prediction is higher when the initial prediction is more accurate

−0.2

0.0

0.2

0.4

1 2 3 4 5
consecutive re−rankings

A
U

P
R

 in
cr

ea
se

 o
r

de
cr

ea
se

network

dream4−1

dream4−2

dream4−3

dream5−1

dream5−2

gnw−200−1

gnw−200−2

gnw−200−3

gnw−200−4

gnw−200−5

gnw−200−6

syn−100−1

syn−100−2

syn−150−1

syn−150−2

syn−150−3

Fig. 8 Evolution of the performance during consecutive applications of Netter. Netter is consecutively applied using default setting and penalty
functions on the reduced test dataset. The performance increase or decrease compared to the original prediction is plotted after each re-ranking

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 13 of 16

Table 3 Stability tests of α, n, πi and the relative weights of the structural penalties

Default setting n = 25,πi = 0.5i n = 50,πi = 0.5i n = 75,πi = 0.5i πi = 0.25i,n = 50 πi = 3i, n = 50

0.41 0.41 0.41 0.41 0.42

Default setting α = 10−5 α = 10−2 α = 10−3 α = 10−4 α = 10−6

0.41 0.37 0.40 0.41 0.42

Default setting g4 = 2.0 g4 = 0.0 g4 = 1.0 g4 = 5.0 g4 = 10.0

0.41 0.39 0.41 0.41 0.41

Default setting r = 25.0 r = 0.0 r = 1.0 r = 15.0 g = 35.0

0.41 0.36 0.38 0.41 0.41

Default setting a = 25.0 a = 0.0 a = 50.0 a = 75.0 a = 100.0

0.41 0.40 0.41 0.41 0.41

The average AUPR score on a subset of 15 GENIE3 predictions is shown and compared to the score using default settings. Parameters not listed were set to default values.
(g4 = graphlet, r = regulatory, a = anti-dominating)

influence of these parameters is shown in Table 3. For all
three penalty functions, a performance loss can be seen
if the penalty influence is set to zero and as such is not
included in the structural cost function. The weight of all
three penalties is shown to be robust for a wide range of
values, meaning that a small change in this weight does

not result in a big effect on the outcome. As a rule of
thumb, we suggest that the weights are set using the log-
ger system to values such that all penalties which the user
designed and included more or less equally contribute to
the decrease in the overall penalty function. This way,
the weights of the individual penalty functions seem to

0.21

0.22

0.23

0.24

10_runs 40_runs 70_runs 100_runs

Amount of independent optimization runs

A
U

P
R

Fig. 9 Influence of the number of optimization runs on the convergence of Netter. Netter is run ten times with a varying number of independent
optimization runs (10, 40, 70, 100). Each dot represents the AUPR of the re-ranked prediction

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 14 of 16

have little effect on the accuracy increase of the re-ranking
process.

Influence of the individual structure cost penaltymappings
In order to test the robustness, we replaced the default
v-shaped function (f (y) = ‖ay + b‖) of each structural
penalty in a 4 by 4 grid search. b was set such that the
function had zero cost at different values for the structural
property y and for each setting of b, four different slopes
were selected by varying a. Additional files 1–3 contain
the exact values of a and b, a visualization of the functions
and the performance metrics of the networks re-ranked
by Netter using these settings. For the graphlet based and
the gene limiting penalty, the decrease in average AUPR
over the 15 networks was at most 0.02 and corresponded
to the setting in which the penalty function was moved
furthest from the original intersect. We therefore con-
clude that these penalties are stable over a wide range of
possible mapping definitions. The anti-dominate penalty
showed a slightly faster decrease in AUPR if the intersec-
tion with the x-axis was moved further to the right. In
the extreme case the performance dropped to 0.38 from
0.41. The performance loss is slightly more pronounced
because unlike the latter penalties the penalty cost associ-
ated with y-values left of the intersect have no meaning,
as it does not make sense to discourage rankings which
explore different regions of the network. Concluding, the
exact shape of all three structural penalty functions is
robust and only decreases slowly if the function is moved
closer to the inverse function. The individual network
re-ranking scores can be found in Additional files 1–3.

Further exploration of the impact of the structural penalty
function definition
In addition to the tests in the previous subsection in which
we varied the shape and the relative performance of the
structural penalty functions, we believe it also important
to investigate how Netter behaves in extreme settings.
The goal is to both establish some baselines for the per-
formance metrics and to help gain intuition about the
presented performance and stability results. In a first test,
we excluded all structural penalties and the divergence
cost function and again re-ranked the reduced subset of 15
networks. The simulated annealing scheme was altered to
accept every proposed ranking. This results in randomly
shuffling the ranking for a set number of iterations before
averaging the obtained rankings. Table 4 shows the AUPR

Table 4 AUPR results of re-ranking without penalty functions for
a set number of iterations

Initial Default re-rank. 300 iter. 3000 iter. 30,000 iter.

0.34 0.41 0.34 (±0.01) 0.31 (±0.02) 0.21 (±0.02)

Average values over 10 runs are shown on the reduced test dataset. Standard
deviation is listed between brackets

results for 300, 3000 and the default value of 30,000 itera-
tions averaged over the standard value of 100 independent
optimization runs.
This experiment was repeated 10 times and the stan-

dard deviation between runs is shown between brackets.
The table shows that the performance drops as the num-
ber of iterations increases. This is expected, as the initial
prediction is more confident about the top of the ranking
which would as a result contain more true positive links.
Randomly shuffling the ranking would eventually lead to
a uniform distribution of the true positive links, result-
ing in a worse AUPR score and an AUROC score of 0.5.
Due to the ensemble nature of Netter, the standard devi-
ation of the performance loss between the final obtained
rankings remains small, although the obtained ranking
diverges more than in the latter case.
In a second test, we modify the structural penalties such

that they attempt to optimize the inverse function. For the
regulatory gene limiting penalty and the graphlet-based
penalty this is achieved by changing the v-shaped func-
tion intercept to 1− b. The optimization process will then
attempt to lower the amount of G4 graphlets and increase
the numbers of nodes with outgoing edges. We excluded
the anti-dominating penalty from these experiments, as
the inverse of this function is not well defined. Table 5 lists
the average AUPR score over the subset of 15 networks.
Even in the extreme case in which one uses two inverted

functions which are clearly not typical for a gene regu-
latory network, the accuracy of the prediction remains
higher than the randomly shuffled network. This is due to
the divergence cost function which attempts to keep the
new ranking as close as possible to the original. In case
only one inverted function is used, the performance loss is
less pronounced, suggesting that other structural proper-
ties can counter the effects of ill-chosen penalty functions
to some extent. Overall we believe that the performance
gain is promising if well-motivated structural properties
are used and the performance gain is robust to the exact
transformation of the structural property into a penalty
function.

Conclusions
In this work we presented Netter, a novel post-processing
algorithm for gene regulatory network predictions. Our
algorithm re-ranks a sorted list of predicted regulatory
interactions using known structural properties of the
network. The algorithm works by defining an optimiza-
tion problem in which we minimize a weighted sum of

Table 5 AUPR results of re-ranking with the inverse of the default
structural properties

Initial Default re-rank. Inv. graphlet Inv. regulatory Both inv.

0.34 0.41 0.32 0.30 0.26

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 15 of 16

desired structural properties and a regularization term
penalizing divergence from the original prediction. This
optimization problem is solved several times using sim-
ulated annealing, after which the obtained networks are
aggregated using average rank to obtain the final out-
put. We offer a flexible system in which desired structural
properties can be developed and included. Expert users
can tune the system to include specific prior knowledge
but we show that by using three suggested more gen-
eral penalty functions we can obtain a large accuracy gain
on benchmark and artificial data. Using these settings
Netter outperforms other post-processing methods such
as the Silencer and Network Deconvolution. Although our
method is heavily parameterized, we have shown that the
performance increase is robust for a wide range of val-
ues and structural cost penalty functions. Furthermore,
especially the top of the ranking is improved by Netter,
making our method appealing for practical use. Finally, we
have shown that Netter can further improve the DREAM5
community prediction of the E.coli. network inferred from
real expression data.

Additional files

Additional file 1: Add 1 Graphlet Penalty.pdf. Additional file 1 is a pdf
file containing the default mapping of the graphlet based penalty and a
detailed view of the stability tests. (PDF 362 KB)

Additional file 2: Add 2 Regulatory Penalty.pdf. Additional file 2 is a
pdf file containing the default mapping of the regulatory gene penalty and
a detailed view of the stability tests. (PDF 411 KB)

Additional file 3: Add 3 AntiDominating Penalty.pdf. Additional file 3
is a pdf file containing the default mapping of the anti-dominating penalty
and a detailed view of the stability tests. (PDF 411 KB)

Additional file 4: Add 4 Performance tests individual results.xlsx.
Additional file 4 is an xlsx file containing the detailed results of all
performance tests. (XLSX 295 KB)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JR, TD and YS designed the study. JR devised and implemented the algorithms
and experiments. JR, PD, TD and YS wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by the Ghent University Multidisciplinary Research
Partnership Bioinformatics: from nucleotides to networks.

Author details
1Department of Information Technology, Ghent University - iMinds, IBCN
research group iGent Technologiepark 15, B-9052 Ghent, Belgium. 2Data
Mining and Modelling for Biomedicine group, VIB Inflammation Research
Center, Ghent, Belgium. 3Bioinformatics Institute Ghent, Ghent University - VIB,
B-9000 Ghent, Belgium. 4Department of Internal Medicine, Ghent University,
Ghent, Belgium.

Received: 14 July 2015 Accepted: 20 January 2016

References
1. Narendra V, Lytkin NI, Aliferis CF, Statnikov A. A comprehensive

assessment of methods for de-novo reverse-engineering of
genome-scale regulatory networks. Genomics. 2011;97(1):7–18.

2. Soranzo N, Bianconi G, Altafini C. Comparing association network
algorithms for reverse engineering of large-scale gene regulatory
networks: synthetic versus real data. Bioinformatics. 2007;23(13):
1640–1647.

3. Hache H, Lehrach H, Herwig R. Reverse engineering of gene regulatory
networks: a comparative study. EURASIP J Bioinformatics Syst Biol.
2009;2009:8–1812.

4. De Smet R, Marchal K. Advantages and limitations of current network
inference methods. Nat Rev Micro. 2010;8(10):717–29.

5. Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K. Comparative
analysis of module-based versus direct methods for reverse-engineering
transcriptional regulatory networks. BMC Systems Biology. 2009;3(1):49.

6. Marbach D, Costello J, Kuffner R, Vega N, Prill R, Camacho D, et al.
Wisdom of crowds for robust gene network inference. Nat Meth.
2012;9(8):796–804.

7. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern
2.0. Nat. Genet. 2006;38(5):500–1.

8. Küffner R, Petri T, Tavakkolkhah P, Windhager L, Zimmer R. Inferring
gene regulatory networks by ANOVA. Bioinforma. 2012;28(10):1376–1382.

9. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.
Large-Scale Mapping and Validation of Escherichia coli Transcriptional
Regulation from a Compendium of Expression Profiles. PLoS Biol.
2007;5(1):8.

10. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory
Networks from Expression Data Using Tree-Based Methods. PLoS ONE.
2010;5(9):12776.

11. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The
Inferelator: an algorithm for learning parsimonious regulatory networks
from systems-biology data sets de novo. Genome Biology. 2006;7(5):36.

12. Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: Trustful Inference
of Gene REgulation using Stability Selection. BMC Syst Biol. 2012;6(1):145.

13. Butte AJ, Kohane IS. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput. 2000;5:415–26.

14. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD,
et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
Networks in a Mammalian Cellular Context. BMC Bioinforma.
2006;7(Suppl 1):7–7.

15. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinforma. 2008;9:559.

16. Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a
general method to distinguish direct dependencies in networks. Nat
Biotechnol. 2013;31(8):726–33.

17. Barzel B, Barabási AL. Network link prediction by global silencing of
indirect correlations. Nat Biotechnol. 2013;31(8):720–5.

18. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s
functional organization. Nat Rev Genet. 2004;5(2):101–13.

19. Grigorov MG. Global properties of biological networks. Drug Discovery
Today. 2005;10(5):365–72.

20. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M.
Genomic analysis of regulatory network dynamics reveals large
topological changes. Nature. 2004;431(7006):308–12.

21. Albert R. Scale-free networks in cell biology. J Cell Science. 2005;118:
4947–957.

22. Schlitt T, Brazma A. Current approaches to gene regulatory network
modelling. BMC Bioinforma. 2007;8(Suppl 6):9.

23. Alon U. Network motifs: theory and experimental approaches. Nat Rev
Genet. 2007;8(6):450–61.

24. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated
Annealing. Science. 1983;220(4598):671–80.

25. Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or
geometric? Bioinforma. 2004;20(18):3508–515.

26. Pržulj N. Biological network comparison using graphlet degree
distribution. Bioinforma. 2007;23(2):177–83.

27. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci. 2010;107(14):6286–291.

http://dx.doi.org/10.1186/s12859-016-0913-0
http://dx.doi.org/10.1186/s12859-016-0913-0
http://dx.doi.org/10.1186/s12859-016-0913-0
http://dx.doi.org/10.1186/s12859-016-0913-0

Ruyssinck et al. BMC Bioinformatics (2016) 17:76 Page 16 of 16

28. de Matos Simoes R, Emmert-Streib F. Bagging statistical network
inference from large-scale gene expression data. PLoS ONE. 2012;7(3):
33624.

29. Ruyssinck J, Huynh-Thu VA, Geurts P, Dhaene T, Demeester P, Saeys Y.
Nimefi: Gene regulatory network inference using multiple ensemble
feature importance algorithms. PLoS ONE. 2014;9(3):92709.

30. Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating Realistic In
Silico Gene Networks for Performance Assessment of Reverse
Engineering Methods. J Comput Biol. 2009;16(2):229–39.

31. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X,
et al. Towards a Rigorous Assessment of Systems Biology Models: The
DREAM3 Challenges. PLoS ONE. 2010;5(2):9202.

32. Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H,
Verschoren A, et al. SynTReN: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms. BMC
Bioinforma. 2006;7(1):43.

33. Schaffter T, Marbach D, Floreano D. GeneNetWeaver: In silico benchmark
generation and performance profiling of network inference methods.
Bioinforma. 2011;27(16):2263–270.

34. Bastiaens P, Birtwistle MR, Bluthgen N, Bruggeman FJ, Cho KH,
Cosentino C, et al. Silence on the relevant literature and errors in
implementation. Nat Biotech. 2015;33(4):336–9.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Input, problem definition and output
	Formulation as an optimization problem
	Simulated annealing optimization
	Assigning a structural cost function and a divergence cost function to a ranking
	Structural property functions
	Graphlet-based structural penalty
	Regulatory gene limiting penalty
	Anti-dominating penalty

	Computational aspects of Netter
	Selected network inference methods
	Selected data sets and evaluation measures

	Results and discussion
	Performance tests
	Comparing Netter to similar techniques
	Characteristics of improvement with regard to the initial prediction accuracy
	Successive applications of Netter
	Parameter and structure cost function stability analysis
	Influence of the number of optimization runs on the convergence of Netter
	Influence of the subnetwork size n and coefficients i
	Influence of varying the global balance factor
	Influence of varying the relative weight of a individual structure penalty function
	Influence of the individual structure cost penalty mappings

	Further exploration of the impact of the structural penalty function definition

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

