
lable at ScienceDirect

Renewable Energy 92 (2016) 212e221
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Changing old habits: The case of feeding patterns in anaerobic
digesters

Gwen Willeghems*, Jeroen Buysse
Department of Agricultural Economics, Faculty of Bio-Science Engineering, Ghent University, Belgium
a r t i c l e i n f o

Article history:
Received 17 August 2015
Received in revised form
9 December 2015
Accepted 25 January 2016
Available online xxx

Keywords:
Non-linear programming
Kinetic model
Biogas plant
Economic profit
Organic loading rate
* Corresponding author. Coupure Links 653, 9000,
E-mail address: gwen.willeghems@ugent.be (G. W

http://dx.doi.org/10.1016/j.renene.2016.01.081
0960-1481/© 2016 The Authors. Published by Elsevie
a b s t r a c t

A non-linear programming model was developed to maximize the economic profit from an anaerobic co-
digester. The model consists of a combination of technical and economic equations, linked through the
biogas production variable. Five scenarios were simulated. These differed with regard to substrate inlet
mass flow rate, organic loading rate and hydraulic retention time. The impact on biogas production was
investigated and an economic analysis was undertaken based on the concepts of profitability and Net
Present Value. The model results indicate that varying the substrate inlet mass flow rate and organic
loading rate could have a positive impact on the profitability of co-digesters in Flanders. This can be
achieved either by increasing the interval time between feedstock input, or by feeding individual streams
of feedstock separately into the system, while at the same time reducing the hydraulic retention time.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Objectives of the work

The objective of this research paper is to look for strategies and
solutions that operators of anaerobic digesters can apply to
improve their economic performance and profitability. More spe-
cifically, in this paper, we focus on maximizing profit by optimizing
biogas production through optimizing substrate inlet mass flow
rate, organic loading rate (OLR) and hydraulic retention time (HRT).

Most research conducted so far has focused either on improving
system stability and biogas yield by investigating the microbio-
logical parameters of anaerobic digestion (AD), such as pH, changes
in volatile fatty acid (VFA) and ammonia concentration at a labo-
ratory scale, or on economic parameters such as investment costs
and subsidies for full-scale anaerobic digesters. Our research is
innovative in seeking to bridge the gap between the technical and
economic AD models by looking at operational system parameters
on the unit-process level, namely substrate inlet mass flow rate,
OLR and HRT for a real-life co-digester in Flanders, and linking
these to economic parameters.
Ghent, Belgium.
illeghems).
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1.2. Challenges of anaerobic digestion in Flanders

With an estimated average investment cost of V4800 and an
operational cost ofV520 per kWe installed capacity [1], the Flemish
biogas sector represents almost half a billion euros in investment
over the past 5 years and an annual turnover of aroundV50million.
Nevertheless, the sector is faced with loss-making businesses,
bankruptcy and deferred investments [2]. It is therefore important
to technically and economically optimize the processes involved in
biogas production.

Construction and operation of a biogas plant is a combination of
economic and technical considerations. Obtaining the maximum
biogas yield, through complete digestion of the substrate, requires a
long HRT, and subsequently a larger digester size. In practice, the
choice of system design, or of applicable HRT, is always based on a
compromise between attaining the highest possible biogas yield,
on the one hand, and ensuring that the plant is economically
justifiable on the other [3]. The industrial viability of AD requires a
suitable combination of physical and chemical process parameters
and low-cost substrates, hence the need for process optimization
[4]. Unfortunately, commercial AD processes often operate well
below their optimal performance due to a variety of factors, such as
a too lowOLR, basic design considerations that try to determine the
right balance between the construction practicalities of both mix-
ing and heat loss, and the mixing regime [5,6]. Additionally, AD of
single substrates presents some drawbacks linked to substrate
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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characteristics. Anaerobic co-digestion overcomes these drawbacks
and improves the plant's economic viability [7]. In what follows,
referrals to the term AD can be applied to mono- as well as co-
digestion.
1.3. AD modeling

In addition to the numerous experiments conducted in the
laboratory or in field studies to optimize the AD process, several
models have been developed to help understand, simulate and
predict the AD process. Modeling is always a goal-driven exercise,
and many alternative models have been proposed in the literature,
depending on the aim, e.g. process understanding, dynamic simu-
lation, optimization, or control [8]. These models can be divided
into two types of models, i.e. biochemical models and economic-
financial models.

AD is characterized by high complexity and non-linearity and
the difficulties in collecting large amounts of informative experi-
mental data for modeling purposes [8]. The fact is that AD is itself a
complicated, multi-stage, dynamic process that requires the
concerted efforts of several bacterial groups. The composition of
such groups varies in an unknown manner with changes in HRT,
feedstock, temperature, reactor type, and other operating condi-
tions [9]. An important variability exists in values reported for the
kinetic parameters, even when the same operational and environ-
mental conditions have been evaluated. One of the consequences
thereof is a variety of approaches to modeling and parameter
identification [8]. While complex models like ADM1 [10] are well
suited for process simulation, they are substantially limited when
applied to process control and optimization [11]. Because these
models demand a substantial quantity of specialized data, they are
not accessible to farmers and other stakeholders with limited sci-
entific knowledge on the issue of anaerobic digestion. Therefore, a
number of simple calculators were developed to estimate the
applicability of the AD process to a specific farm and provide in-
formation to a farmer or decision maker [12].

As demand for renewable, clean, local energy increases, so will
the need for more accurate and detailed economic information on
the financial feasibility of anaerobic digesters [13]. Economic-
financial AD models have been developed and described by
Anderson et al. [13], Gebrezgabher et al. [14] and Walla and
Schneeberger [15], amongst others. They looked at developing tools
for assessing the financial feasibility of farm-based anaerobic di-
gesters, disposal of digestate in an economically and environmen-
tally sustainable manner, and optimal size for biogas plants. These
and other previous studies have generally found ADs to be a poor
investment for private firms, without assistance [14,16e20]. It is
therefore in the interests of the sector to increase the profitability of
commercial AD applications.

The goal of our research was to link together biochemical and
economic-financial models, by maximizing profit at the commer-
cial AD level through optimizing biogas production. Biogas opera-
tors are not typically involved in AD experiments at the
microbiological level, as they are processing large amounts of
feedstock every day for their livelihoods. To maximize their profit,
we have looked at strategies to increase biogas yield, and hence
economic profit, by proposing small adjustments in their daily
operational management. We propose a new type of black-box
optimization model, based on algebraic equations, which takes
into account the operational parameters of AD, as opposed to re-
action mechanisms and experimental measurements for a multi-
tude of parameters, to monitor the operating conditions and
performance of an AD treatment process at a small-scale com-
mercial facility.
2. Materials and methods

The aim of our research is to optimize (maximize) economic
profit based on the biogas yield of a mesophilic anaerobic farm-
scale digester co-digesting three types of feedstock. Our case is a
theoretical, hypothetical one but is based on a case study of similar
digesters in Flanders [21]. Due to the complexity of the AD process,
each type of model has been developed for a different purpose [12].
Since our purpose is to improve the profitability of commercial
anaerobic digesters by providing operators with hands-on practical
ways to achieve this, we do not focus on the biological or phys-
icoechemical parameters of the process, or on the kinetics of
bacterial growth. Rather, the core modeling efforts focus on the
operational parameters, such as substrate inlet mass flow rate, OLR
and HRT, to calculate substrate degradation and biogas formation.

The model is based on the observation that different types of
biomass have different speeds of degradation and different bio-
methanisation potentials (BMP). In commercial biogas reactors,
AD is a continuous process, meaning that there is a daily in- and
outflow of biomass. The difference in degradation and BMP for the
different input streams for co-digestion implies that some of the
biomass will have spent a relatively short time in the reactor and
therefore might not have achieved its full potential in gas produc-
tion before it is pumped out of the reactor. Currently, biogas op-
erators can deal with this challenge, either by installing a
secondary, post-digestion reactor which will allow for additional
gas production of 5e15%, or by separating the digested biomass and
recycling the fiber fraction to extend the HRT for slowly decom-
posing materials [22]. However, these adaptations imply a trade-off
between additional cost and extra gas yield. Our model simulates
the in- and outflow of the biomass in a co-digester and identifies
the optimal quantity and ratio for each type of feedstock to be
inserted at a certain time, as well as the optimal HRT for each
‘batch’ of feedstock inserted at a certain time, with the aim of
increasing biogas yield without additional costs. We assume that
co-digestion takes place under optimal mixing conditions. Mixing
in an anaerobic digester keeps the solids in suspension and ho-
mogenizes the incoming feed with the active microbial community
within the digester content. Experimental investigations have
shown that the mixing mode and mixing intensity have direct ef-
fects on the biogas yield, even though there are conflicting views on
mixing design [23]. In this study, however, we do not take into
account the possible effects of different mixing modalities on the
biogas yield.

2.1. Model description

To achieve our goal, we have developed a simplified AD single
objective optimization non-linear programming (NLP) model in
GAMS (General Algebraic Modeling System). The model is designed
for a one-stage continuously fed mesophilic AD system, in a
continuous-flow stirred-tank reactor (CSTR), and aims to maximize
the profit from biogas production over a time period of 365 days.

The development of the model is centered around a first-order
kinetic cumulative biogas yield function [24] which estimates the
cumulative yield Bi,t (l CH4$kg�1 VS added) of each type of biomass i
as a function of the ultimate methane yield Bi,max (l CH4$kg�1 VS
added), mi (day�1) the first-order rate constant and residence time t
(day). These values are typically determined using BMP assays. To
be able to use this function in our model, we needed to adapt the
unit of Bi,max from ‘l CH4$kg�1 VS added’ to ‘m3 CH4$ton�1 substrate
added’. This was done in two steps. Firstly, for each substrate, we
calculated the quantity of volatile solids (VS) present in 1 ton of that
particular substrate, using total solids (TS) content to make the link
between both. This calculation provided us with the unit of ‘l
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CH4$ton�1 substrate added’. The data required for this conversion
can be found in Table 1 ([25e29]). Secondly, to convert ‘l CH4$ton�1

substrate added’ to ‘m3 CH4$ton�1 substrate added’, we divided the
values by 1000 (assuming standard reference conditions of 15 �C
and 101.325 kPa). Equation (1) was used to calculate mwhere values
were not provided.

Bi;t ¼ Bi;max*
h
1� e�mi*t

i
(1)

Fig. 1 provides a graphical representation of the main assump-
tions of the model. The graphs are adapted from Refs. [25,26]. The
graph on the left shows the cumulative yield function for organic
biological waste (OBW), manure and maize, as these are the three
feedstocks that will be used to illustrate the model. The graph
shows that the shapes of the cumulative yield curves differ between
feedstock types, due to different degradation rates m, and, hence,
that different feedstocks have different ‘optimal’ HRT, when
considering the economics of commercial anaerobic digesters. This
implies that, during co-digestion, choices have to be made
regarding biogas yield versus retention time. Our model tries to
identify this optimal choice based on the price of feedstock and
electricity. The graph on the right shows the cumulative methane
yield function for manure. As gas production rate changes over the
course of the digestion, it is difficult to predict the specific methane
yield (SMY) at a given point in time without conducting numerous
experiments. Therefore, using the cumulative methane yield func-
tion, it is possible to estimate the SMYon a given day by subtracting
the cumulative yield for the previous days from the cumulative
yield on the current day. In the graph, an example is given for the
SMY on day 3 of the manure digestion. This reasoning is translated
in the model through Equation (6), given below in the text.

The remainder of this section describes the actual model, in
which the technical Equations (6e14) are linked with the economic
ones (2e5, 15, 16) through the calculation of biogas production. The
model parameters and variables are represented by Greek and Latin
symbols respectively. The units are given within brackets and in
italics.

The objective function (2) maximizes the total profit P (V) for a
period of one year, i.e. the time span for the model,

Max: P (2)

and calculates this by subtracting the operational costs OC (V) from
the income I (V) (3). Equations (4) and (5) provide the calculations
for I and OC and are taken from the aforementioned case-study of
Flemish agricultural digesters [21]. The income I (V) (Equation (4))
is calculated based on the total biogas yield

P
i;t0

Yi;t0 (m
3) and the

income from electricity and heat generated by the methane pro-
duced. To convert m3 CH4 to MWh electric power we multiply the
biogas yield with a conversion factor ε, which is set at
0.01 MWh.m�3 [30]. The income from biogas consists of four
different elements. The first element is the income from the sale of
generated electricity pelec (V.MWhe�1). The second element is the
income from the sale of heat pheat (V.MWhth�1). Thirdly, we take
Table 1
Feedstock parameters used for model simulations.

Feedstock Quantity
(ton)

Gate fee paid by AD
operators (euro.ton�1)

Density
(ton.m�3)

TS
(%)

VS (%
of TS)

TKN (g N. l
feedstock�

OBW 3333* 10** 0.51þþþ 28*** 86*** 1.62***

Manure 1388.75* �17** 1y 14*** 80*** 0.69***

Maize 833.25* 35** 0.9yy 31þþ 95þþ 0.30yyy

* model assumption, ** personal communication with biogas AD operator, *** [25], þ calc
y [27], yy [28], yyy [35].
into account the subsidies generated by green power. These consist
of green electricity certificates sGEC (V.MWhe�1) and green heat
certificates sGHC (V.MWhth�1). The final element to be added is the
expenses avoided pelec,avoid and pheat,avoid due to own consumption
of generated power (V.MWhe�1) and heat (V.MWhth�1), respec-
tively. The factors 4elec and 4heat refer to the relative amount of own
electricity and heat consumption, respectively. Furthermore, when
methane is converted into electricity and heat through a Combined
Heat and Power (CHP), we assume this happens with a 35% effi-
ciency for electricity, and a 50% efficiency for heat [30]. The OC
calculation (Equation (5)) comprises two parts. The first part (i.e.
115,846.03 V.year�1) relates to maintenance and human resource
costs, which are constant and independent of the quantity of
feedstock. The second part of the calculation (i.e.
110:37�P

i;t0
Qi;t0 � 691;794 V:year�1) relates to the disposal cost of

the digestate and is, therefore, linearly dependent on the total
amount of feedstock

P
i;t0

qi;t0 (ton) processed. This disposal cost in-

cludes the separation through centrifuge of the digestate into a thin
fraction, which is applied to the land, and a thick fraction, which is
processed by an external processor. The linear correlation was ob-
tained through a linear regression based on calculated digestate
disposal costs as a function of ingoing feedstock quantity. In this
specific case, digestate disposal costs account for almost half of the
total OC.

P ¼ I � OC (3)

I ¼
0
@X

i;t0
Yi;t0* ε

1
A*
�
0:35*

�ð1� 4elecÞ*pelec þ sGEC

þ 4elec* pelec;avoid
�þ 0:5*

�ð1� 4heatÞ* pheat þ sGHC

þ 4heat* pheat;avoid
��

(4)

OC ¼ 115;846þ 110�
X
i;t0

qi;t0 � 691;794 (5)

The total biogas yield
P
i;t0

Yi;t0 (m3) is generated by the sum of the

separate yields Yi,t0 from all inputs i inserted at a time t0 (days)
(Equation (6)). Qi,t0 (m3$day�1) represents the absolute quantity of
an input i, inserted at a time t0 while Q'i,t0 ,t (m3$day�1) represents
the relative quantity of the originally inserted Qi,t0 that still remains
in the digester after a time t (day). Indeed, the insertion of new
input material into the digester implies that part of the older ma-
terial is removed (as reactor volume q (m3) is a constant), hence
equally removing part of the biogas potential of that original
quantity Qi,t0. This assumption is translated into the calculation of
biogas yield Yi,t0 for each individual input i inserted at a time t0.
More specifically, constraint (6) is derived from the cumulative
biogas yield reaction (1) described above, with bi (m3 CH4$ton

�1

input added) the maximum methane yield, and mi (day�1) the first-
order rate constant. For each day t after the insertion of the original
1)
Naþ (g.l
feedstock�1)

Kþ (g.l
feedstock�1)

Bmax (Nl CH4$kg
VS added�1)

b (m3 CH4$ton
feedstock added�1)

m
(day�1)

0.33*** 0.44*** 353*** 85þ 0.06þ

0.11*** 0.36*** 242*** 27þ 0.12þ

0.01yyy 0.45yyy 502þþ 147þ 0.03þþ

ulations based on collected data, þþ [26], þþþ [29].



Fig. 1. Graphical representation of the main assumptions of the model (adapted from Refs. [25] and [26]).
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quantity Qi;t0 of feedstock (on day t’), the model calculates how
much of that original feedstock Q 0

i;t0 ;t remains in the reactor
(relative to the original quantity) and how much biogas the
remaining quantity will produce that specific day. Equation (6)
states that for all times t � t0, Yi,t0 equals the quantity Qi,t0, multi-
plied by the sum over time of the amount Q'i,t0 ,t, which is, in turn,
multiplied by the cumulative input-specific biogas yield equation.
Equation (6) differs from the original reaction (1) in the way that it
calculates the daily discrete yield generated by each Q'i,t0 ,t, instead
of cumulative yield, as explained in Fig. 1.

Yi;t0 ¼ Qi;t0 �
X
t

h
Q 0
i;t0;t� bi�½ð1� expð � mi�ðt� t0ÞÞÞ � ð1� expð

� mi�ðt� ðt0 � 1ÞÞÞÞ�
i

for t

� t0

(6)

Constraint (7) indicates that every Q 0
i;t0 ;t is to be seen as a rela-

tive value, with a maximum of 1.

Q 0
i;t0;t ¼ 1 for t � t0 (7)

Equation (8) describes how Q 0
i;t0;t changes over time, and how it

is dependent on Q 0
i;t0;t�1, i.e. the relative value of the same input,

inserted at the same time t’, remaining in the digester the previous
day t-1, and on the sum of all inputs

P
i
Qi;t inserted at the same time

t, and the digester capacity q.

Q 0
i;t0;t ¼ Q 0

i;t0;t�1�
 
1�

X
i

Qi;t

!,
q (8)

To ensure the stability of the operation, we added a number of
additional constraints which are defined based on knowledge of
the AD process and on typically available substrate characteristics.
Firstly, in order to avoid an OLR which is too high and digester
wash-out, constraint (9) was inserted which prohibits the model
from inserting more than a certain percentage a (%) of digester
capacity in new input material at a certain time t.X
i

Qi;t
�
q <a (9)

Secondly, based on the study by García-Gen et al. [31] on sub-
strate blend optimization, a number of other parameters were
defined. These parameters are total Kjeldahl nitrogen (TKN, in g.l�1)
(Equation (10)), and salinity as Naþ concentration (g.l�1) (Equation
(11)) and Kþ concentration (g.l�1) (Equation (12)). The values for
these parameters are determined for each input, and for each time t
the overall value is calculated in g.l�1. For each parameter, a mini-
mum ɣ and maximum G limit (g.l�1) can be fixed within the model,
depending on the specific case in question.

gTKN <

 P
i;t0

Q 0
i;t0;t* Qi;t0* TKNi

!
 P

i;t0
Q 0
i;t0;t* Qi;t0

! <GTKN (10)

gNaþ <

 P
i;t0

Q 0
i;t0;t* Qi;t0* Na

þ
i

!
 P

i;t0
Q 0
i;t0;t* Qi;t0

! <GNaþ (11)

gKþ <

 P
i;t0

Q 0
i;t0 ;t* Qi;t0* Kþ

i

!
 P

i;t0
Q 0
i;t0;t* Qi;t0

! <GKþ (12)

Equation (13) limits the total quantity of inputs present in the
digester at a time t to the digester capacity q and Equation (14)
states that after 60 days a specific input will have passed through
the system completely, hence Q0 after 60 days equals 0. This
constraint was inserted mainly due to computational limitations.
Equation (15) sets the time period over which the model runs to
365 days.

q >
X
i;t0

�
Q 0
i;t0;t� Qi;t0

�
(13)

Q 0
i;t0;t ¼ 0 for t � 60 (14)

Qi;t0 ¼ 0 for t
0 � 365 (15)

Finally, we were able to calculate the HRT and OLR of all inputs
inserted at time t’. HRTt’ (day) was calculated as the quotient of the
sum of daily feedstock mass and the digester capacity q [32]
(Equation (16)) and OLRt’ (kg VS.m�3$d�1) as the quotient of total
daily mass of volatile solids (VS) in the feedstock and the digester
capacity (Equation (17)). The total daily mass of VS was calculated,
for each input, by multiplying Qi,t’ (m3$day�1) with the density di
(ton.m�3), the total solid content TSi and the volatile solid content
VSi as a relative fraction of TSi. To calculate the total daily mass of
VS, the sum of the absolute VSi over all the inputs was taken and the
unit was transformed from ton VS.m�3.d�1 to kg VS.m�3.d�1.
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HRTt0 ¼ q

,X
i

Qi;t0 (16)

OLRt0 ¼
 X

i

	
Qi;t0 � vi�TSi �VSi


!,
q (17)

To complete the economic analysis, a comparative Net Present
Value (NPV, V) of the AD installation was undertaken to compare
the different scenarios. Equation (18) provides the formula for
calculating the NPV, where T represents the number of years, IT (V)
and OCT (V) the respective income and operating costs for each
year, r the discount rate (%) and IC (V) the initial capital investment
cost of the installation. The investment costs are dependent on the
capacity of the digester and the CHP and are calculated using
Equation (19). Equation (19) was partly derived from the same case-
study as Equations (4) and (5) [21], and partly from the study of
Szarka et al. and a survey of CHPmanufacturers in Germany in 2011
[33,34]. The first part of the equation (i.e. 388,500 V) incorporates
all investment costs related to the digestate centrifuge, storage
tank, hygienisation, evaporation and air scrubber units, civil works,
permits and grid connection. The second part of the equation (i.e.,
184.42*q þ 64,975 V) is linearly dependent on the volume of the
digester and incorporates all investment costs relating to the
digester itself. The third part of the equation i.e.
CHPt�ð15;648�CHP�0:5361

t VÞ relates to the CHP installation, where
CHP stands for the daily engine capacity needed (kWe) to transform
biogas into electric power and heat. Increasing the capacity of CHP
units decreases the specific prices, particularly for units with an
installed capacity between 30 and 500 kWe [33,34]. In Equation
(20), the CHPt (kWe) is calculated by multiplying the total daily
methane yield

P
i
Yi;t with ε*1000 to transform m3 CH4 into kW.

This amount is then divided by 24 to calculate the hourly capacity
needed, followed by a multiplication with the electrical efficiency
factor 0.35 to transform kW into kWe. About 55% of the total in-
vestment cost relates to the purchase of the digester and CHP.

NPV ¼ �ICþ
 X

T

ðIT � OCTÞ
.
ð1þ rÞT

!
(18)

IC ¼ 388;500þ 184*qþ 64;975

þ CHPt�
�
15;648� CHP�0:5361

t

�
(19)

CHPt ¼
 X

i

Yi;t

!
* ε*1000 = 24*0:35 (20)

2.2. Model parameterization and assumptions

The model can be adapted to different cases by changing pa-
rameters and assumptions. A specific case is further developed to
show the capacities and limitations of the model more clearly and
to highlight potentially interesting management strategies for that
specific case. We have chosen a Flemish case with three types of
feedstock in the same ratio as they are currently being digested in
Flanders. These feedstocks comprise OBW e more specifically food
waste, manure (cattle slurry) and silage maize as an energy crop, at
a ratio of 60%, 25% and 15% respectively [2]. Specific feedstock pa-
rameters were adapted from the literature (Table 1, [25e29,35]). In
each scenario, the same amount of feedstock was used in order to
keep the operational costs constant, as these costs, in our case, are
based solely on the amount of feedstock used (Equation (5)). As we
use the same amount of feedstock we did not take into account the
transportation costs of biomass. However, when the model is used
to compare scenarios with different amounts of feedstock, it is
important to include these, as biomass exhibits high transportation
costs per unit of energy ultimately generated. Moreover, because
different types of biomass have different biogas-generating prop-
erties, the design of the supply logistics system can be the deter-
minant factor for the economic viability of energy generation from
an AD plant [36]. The gate fee per ton of feedstock is listed in
Table 1. Manure has a negative value, as AD operators get paid for
accepting manure. This is because the Flanders region has a very
high livestock density and, since the implementation of the Nitrates
Directive, it has to manage a manure surplus. Furthermore, the
capacity of the digester was set at 1000 m3 and the model was run
for a total of 365 days. The conclusions derived from this case are
not affected by the digester capacity or its shape, although the
shape could also be optimized [37]. For our calculations, a was
varied to create different levels of OLR. In order to make compari-
son possible between the different scenarios, we added an addi-
tional constraint stating that all feedstock needed to be used
completely in each scenario. This is because if the total tonnage of
incoming feedstock is equal for each scenario, the operational costs
are also constant for all scenarios. This allowed us to see whether a
higher biogas yield could be achieved, with exactly the same
amount of feedstock, merely by playing with the operational pa-
rameters. The quantities of feedstock were chosen in a way that
they did not, in any scenario, pose limitations or infeasibilities with
regard to determining the optimal HRT and substrate inlet mass
flow rate. Moreover, the total amount of feedstock available for the
simulation was determined based on the digester volume, realistic
feedstock volumes that are fed on a yearly basis to such a digester,
and a realistic OLR for full scale digesters [21]. Feedstock quantities
have to be divided by their respective densities to obtain their
volumes, as these form part of the restrictions for our model. For
each scenario, the OLRwas also calculated to ensure that it was kept
within realistic limits (see Section 2.3 and Table 2) and restrictions
regarding minimum and maximum TKN, Naþ and Kþ levels were
adhered to, based on the levels proposed by García-Gen et al. [31]
(see Table 2). Specific feedstock values for TKN, Naþ and Kþ were
converted from g.kg TS�1 to g.l feedstock�1 using data on TS con-
tent and density (see Table 1).

With regard to the income calculation, in Flanders, pelec equals
around 45 V.MWhe�1, pheat 45 V.MWhth�1, sGEC 93 V.MWhe�1,
sGHC 31 V.MWhth�1, pelec,avoid 140 V.MWhe�1, and pheat,avoid
45 V.MWhe�1 [21]. Moreover, we set 4elec at 0.2 and 4heat at 0.35.
However, as determining the overall electricity price including
subsidies is a complex issue and very case-dependent, we assume a
lump sum of 185 V.MWhe�1 produced. We calculate the compar-
ative NPV for a period of 10 years (T ¼ 10) and a discount rate of 5%
(r ¼ 0.05).

As our model focuses on strategic options for increasing profit,
and hence, improving biogas yield, we do not take into account the
time it takes to start up a new biogas installation and develop the
required microbial communities and assume the digester is oper-
ating in a steady-state. After all, digester start-up may take months,
as temperature, pressure, and mixing all affect the efficiency of
digester operation [38] and this type of research is outside the
scope of our study.

2.3. Model scenarios

In this study, we have simulated three different main scenarios.
The first, default, scenario simulates the conventional way co-
digesters currently work, i.e., inserting volumes of different



Table 2
Overview of the optimized variables for the five different sub-scenarios.

HRT
(days)

OLR (kg
VS.m�3.d�1)

TKN (g N. l
feedstock�1)

Naþ (g.l
feedstock�1)

Kþ (g.l
feedstock�1)

Total CH4 yield (m3

produced)
Increase in yield as compared to scenario
1 (%)

scenario 1
conventional

46 2.93 1.34 0.26 0.43 539,921

scenario 2-a
equal shares

40 3.39 1.34 0.26 0.43 555,273 2.8

scenario 2-b
equal shares

25 5.43 1.34 0.26 0.43 557,593 3.3

scenario 3-a
free choice

40 2.75e3.07 0.39e1.62 0.03e0.33 0.17e1.55 574,804 6.5

scenario 3-b
free choice

25 2.60e4.92 0.39e1.62 0.03e0.33 0.17e1.55 580,257 7.5
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feedstock in the same ratio every day. The second scenario keeps
the ratio of the different feedstocks constant but allows the model
to maximize the cumulative biogas yield by choosing the optimal
time to insert these inputs (but always simultaneously and in a
constant ratio) while the third scenario lets the model freely decide
which volume of a certain feedstock to insert at which optimal time
in order to obtain a maximum cumulative biogas yield. Both the
second and third scenarios have two sub-scenarios each, based on
variations in the OLR. These OLRs were based on results reported in
the literature. In a full-scale case study, Lindorfer et al. [5] reported
stable working conditions for an anaerobic digester with an OLR of
4.25 kg VS. m�3.d�1. Comino et al. [39] even reached an OLR of
7.78 kg VS.m�3.d�1 before experiencing system breakdown.
Moreover, both studies reported an increase in biogas productivity
as a consequence of increasing the OLR.

For scenario 1, the magnitude of a was irrelevant, as we forced
themodel to insert inputs in the same ratio every day for a period of
one year to simulate real-life conditions. The OLR that resulted from
this simulation was 2.93 kg VS.m�3.d�1, which falls within the
normal, realistic range. For scenarios 2 and 3, we selected two
values for a, namely 2.5 and 4%. These values are translated into a
respective OLR of 3.39 and 5.43 kg VS.m�3.d�1for the second sce-
nario, and, from 2.75 to 3.07 and from 2.60 to 4.92 kg VS.m�3.d�1

respectively for the third scenario.

3. Results and discussion

3.1. Technical results of scenarios

The outcome of the model simulation is presented below in
Fig. 2 and Table 2. The results for all five sub-scenarios are provided
and compared.

Fig. 2 shows Qi,t0 as a function of the time t0 and
P
i
Yi;t as a

function of the time t. To provide a better view onwhich quantities
are inserted when, we opted to reduce the scale of the vertical axis.
As a result of this decision, the quantities of inputs inserted at day 1
are not shown in the figure. The quantities and ratio of feedstocks
on the first day are the same for scenarios 1, 2-a and 2-b, i.e. 739,
157 and 105m3 for OBW,manure andmaize respectively, due to the
constraint of equal ratios. When we look at the initial quantities
inserted for the third, ‘free choice’ scenario, we can see that the
model opts to insert 100%, or 926 m3, of all available maize feed-
stock at the outset of the simulation, as maize has the highest
biogas potential of all three types of feedstock and inserting it at the
start will allow for the maximization of biogas production. Apart
from maize, the model opts to insert 74 m3 of OBW and no manure
in the third scenario.

Fig. 2 shows the differences between the scenarios. When
comparing scenarios 1 and 2, the output clearly indicates that it
would be economically more advantageous to insert larger
amounts of feedstock spread over a greater time interval, instead of
smaller ones every day. This time interval ranges from inserting
input the very next day to leaving amaximum intermission of 1 day
for scenario 2-a, and a maximum of 3 days for scenario 2-b, apart
from the longer period after the start, to allow the large amounts of
feedstock to reach their optimal biogas production, and the period
towards the end, where the last inputs are inserted around day 345.
The latter is, of course, the result of constraining the model's
running time to 365 days. Inserting inputs later would not provide
an optimal biogas yield, as time is limited. The increase in biogas
yield that can be achieved by adopting this approach is 2.8e3.3%
depending on the scenario (see Table 2).

Similar to the second scenario, the simulation in scenario 3 in-
dicates that higher profits can be attained if inputs are inserted in
relatively higher quantities at greater time intervals. These time
intervals range from a maximum of 1 day for scenario 3-a to a
maximum of 4 days for scenario 3-b. The main difference, however,
from scenario 2 is that the different feedstocks are inserted sepa-
rately in the digester, as a ‘batch’, rather than in equal quantities, as
typically happens in a co-digester. This is associated with the dif-
ference in biogas potential for the different feedstocks. Fig. 1 il-
lustrates that manure reaches its BMP before OBW and maize.
Therefore, maize is inserted on the first day of digestion to allow for
it to get as close to its BMP as possible. Then OBW is inserted, fol-
lowed by manure, which reaches its BMP the quickest. Moreover,
maize displays the highest SMY, followed by OBW and manure
(Table 1). Therefore, when looking at the biogas yield, it doesn't
make much sense to have a long HRT, as most of biogas production
would be achieved after 20e40 days. However, it makesmore sense
to increase organic loading in the reactor, as this will increase the
volumetric methane production (VMP, in m3 gas.m�3

digester.day�1, [40]) while at the same time reducing the HRT,
because the amount of feedstock inserted must increase to satisfy
the organic load. This approach can result in an increase in biogas
yield of 6.5e7.5% depending on the scenario (see Table 2).

In conclusion, it can be derived from the simulation outcome
that higher biogas production results from batch feeding, and
higher relative feedstock quantities, coupled with greater time in-
tervals, which coincide with higher levels of a and OLR. In this way,
anaerobic digester plants can increase their profitability, based on
the same total quantity of inputs, simply by making a small change
to their operational strategy.

3.2. Economic results of scenarios

Table 3 displays the economic outcome of the model
simulations.

The operational costs are the same for all scenarios and amount
toV35,102. The economic profit increases by 3e8% compared to the
conventional scenario, depending on the scenario used. This



Fig. 2. Overview of input quantities Qi,t0 (m3) in function of input timings t’ (days) for different types of feedstock and of CH4 production
P
i
Yi;t (m

3) in function of time t (days) for
the five sub-scenarios.

Table 3
Economic results for the five different sub-scenarios, calculated for a time period of one year.

Income
(V)

Profit
(V)

Increase in profit compared to scenario 1
(%)

CHP capacity
(kWe)

Investment cost
(V)

NPV (V) Increase in NPV compared to scenario 1
(%)

scenario 1
conventional

349,599 314,497 197 818,969 1,609,493

scenario 2-a
equal shares

359,539 324,437 3.2 220 828,508 1,676,710 4.2

scenario 2-b
equal shares

361,041 325,939 3.6 240 836,377 1,680,441 4.4

scenario 3-a
free choice

372,186 337,084 7.2 239 835,992 1,766,878 9.8

scenario 3-b
free choice

375,716 340,614 8.3 255 842,050 1,788,084 11.1
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increase is therefore solely due to the increase in biogas yield and
related income from electricity sales.

Furthermore, assuming operational conditions and costs remain
unchanged over the period, the comparative NPV was calculated.
When it comes to the calculation of investment cost, it is important
to note that, for the same digester capacity, there are differences in
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total biogas production between the scenarios, as well as variations
in daily biogas production within the scenarios (see Fig. 2). In the
case of pulse feeding (scenarios 2 and 3), additional CHP capacity is
required, compared to continuous biogas production (scenario 1),
to handle the peaks in electricity production, otherwise the total
amount of electricity is reduced in proportion to the CHP-
downtime [33]. We therefore selected the appropriate CHP capac-
ity for each scenario by using Equation (20) and taking the
maximum daily CHPt value as the required capacity. We only
looked at the period of stable operation ewe selected day 65e300
as benchmark values -, hence excluding the start phase as it is not
representative of the rest of the operational period. The selected
CHP values and corresponding investment costs are displayed in
Table 3. As higher NPV values imply greater economic benefits, the
numbers in the table indicate that, increases ranging from 4 up to
11%, as compared to the conventional scenario, could be attained by
applying the changes in operational management proposed by the
model.

It is important to note that, as the OC in this study do not include
all the costs incurred by the biogas installation, such as the costs of
the supply logistics system, the NPV is used only to compare the
different scenarios with one another. Neither the model nor the
paper provides a judgment on whether the biogas plant in itself is
profitable or not.

3.3. Discussion

Although the analysis based on our NLP model yields useful
insights into the optimal performance of a biogas plant, it holds
some limitations and is based on a number of assumptions.

Firstly, the performance of commercial biogas plants should
ideally be improved by focusing on a number of different areas (see
Section 1.2, [6]). We have, however, chosen to focus on only one
specific aspect, i.e. the optimization of OLR and HRT.

Secondly, the feedstocks chosen for the model have significantly
different first-order kinetic constants e as can be seen in Fig. 1,
leading to a significant difference in optimal HRT for maximizing
methane production. This means that varying the HRT can result in
significant biogas yield increases. However, if the kinetic constants
for different feedstocks in an AD are similar, there is one constant
optimal HRT depending on the prices of inputs and outputs.
Varying the HRT and the feeding mix would not, in that case, in-
crease biogas yields. Moreover, biogas operators would need to
have a clear idea about the BMP and kinetic constants of the specific
feedstock they are using: Angelidaki et al. [41] and Triolo et al. [42]
found that data on BMP may vary between laboratories, as these
data cannot usually be compared due to differences in experi-
mental design, equipment used and variations in temperature and
experimental conditions. Moreover, the inoculum to substrate (IS)
ratio should be recognized as one of the major parameters affecting
the results of anaerobic assays [43e45], as it is clearly shown that IS
ratio can affect not only the biodegradability but also the CH4
production rate or hydrolysis rate, calculated from first-order ki-
netics models [44]. A lower than optimal IS ratio can cause inhi-
bition, while a higher one can cause a BMP overestimation [46]. For
our study, we assume an optimal IS ratio was used to determine the
BMP, and as new feedstock is inserted in much lower quantities
than are already present in the digester, and hence inoculated, we
assume there will be no inhibition and biogas production will be
similar to the predictions from the BMP test.

Thirdly, we use a simplified cumulative biogas yield function
and assume that the digester has already reached an equilibrium
state of digestion, implying that biogas production is already taking
place optimally. However, at the start of the model simulation, the
digester is filled with feedstock as if it is in start-up phase. This
means there is a discrepancy between the assumptions. However,
we assume this will not greatly affect the overall results. Addi-
tionally, as indicated in Section 3.1, at the start of the third scenario,
the digester is 90% filled with maize. We acknowledge that this is
not a feasible operational start-up for a biogas plant. However,
starting the scenario 3 in a currently running operation should be
theoretically feasible because the most important restrictions for a
stable AD operation are satisfied in the model.

Fourthly, the model does not take microbiological AD parame-
ters into account, but rather looks at operational parameters for
profit optimization. Therefore, the model does not provide details
for microbiological reactions. This comment also applies to the
cumulative biogas yield function used as the basis for the model.
The function describes the yield for individual feedstocks, but does
not take into account the synergetic effects a co-digestion might
have on the mixture. However, the improvement in methane pro-
duction is mainly a consequence of the increase in OLR, rather than
those synergetic effects [7]. This is confirmed in our simulations.
Therefore, we assume no negative side-effects would take place.

Moreover, the analysis takes into account a variety of OLRs,
some of which are close to rates that have been reported, in the
literature, to cause system breakdown. Therefore, it needs to be
kept in mind that some of the OLR rates used in our exercise might
be overestimated, resulting in an overestimation of digester per-
formance and economic outcomes. Nevertheless, Banks and
Heaven [40] studied the effect of increasing OLR in a CSTR and
found that the SMY for a substrate with constant VS content re-
mains relatively constant, as the loading is increased up to a certain
OLR threshold level. Increasing loads above this level would over-
reach the metabolic capacity of the digester, with a resulting
decline in SMY. According to that same study, little information is
available for maximum OLR, as this requires a large experimental
effort and most commercial digesters work within empirically
established ranges.

Additionally, in the second and third scenarios, feedstock is not
necessarily inserted every day, as is the current common practice
for commercial digesters, but a time lag of a couple of days may
exist, resulting in ‘pulse feeding’. De Vrieze et al. [47] demonstrated
that stable operation can be maintained in anaerobic digestion
when stronger pulse feeding patterns are applied, albeit at the cost
of increased daily operational variation. Furthermore, changing
feeding patterns can change the evenness, dynamics and richness
of the bacterial community. Also, the regular application of a
limited pulse of organic material and/or a variation in the substrate
composition might promote higher functional stability (i.e. stable
methane production and a certain redundancy towards stress) and
hence higher tolerance to high levels of ammonium and organic
overloading in anaerobic digestion.

Furthermore, there can be a potential variation in the compo-
sition of the biogas which can impact the down-stream processes,
mainly the engine performance. On the one hand, the value and
richness of the biogas depend on the amount of hydrocarbon
components present e in this case CH4 e and this amount varies
depending on the type of feedstock used [30]. This is particularly
important in the third scenario, as this is the scenario where the
relative feedstock input ratios change, and hence also the concen-
tration of the different compounds in the biogas. On the other hand,
biogas contains impurities such as Sulphur and siloxanes which
have to be removed through biological, physical, or chemical
techniques [48]. We assumed engines of small, farm-scale digesters
are sufficiently robust to deal with fluctuations in CH4 concentra-
tions andwe did not take into account the possible need to invest in
biogas purification units.

Finally, at this stage, the model only considers a single digester,
without post-digestion in a second digester. In practice, however,
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some digesters are equipped with a second or even third digester
where post-digestion can take place. This alters the outcome of the
model, as the feedstock would have more time to reach its biogas
potential in the post-digesters. As mentioned previously, post-
digestion can increase biogas yield by 5e15% [22].

4. Conclusions

This paper presents an NLP model to optimize economic profit
from an anaerobic farm-scale co-digester through the maximiza-
tion of biogas production. The model consists of a combination of
technical and economic equations. Five scenarios were simulated,
differingwith regard to substrate inlet mass flow rate, OLR and HRT.
The impact on biogas productionwas investigated and an economic
analysis was undertaken based on the concepts of profitability and
comparative NPV.

Higher yields than in the conventional scenario were realized
under scenarios with higher OLRs and increased time intervals
between points of feedstock insertion. Under these scenarios, be-
tween 2.8 and 7.5% more biogas was produced than under the
conventional one. The results of the technical analysis were
extended in the economic analyses where those same scenarios
resulted in economic profit and NPV increases of between 3.3 and
8.7, and 6.0 and 15.7% respectively. It can be concluded that varying
substrate inlet mass flow rate and OLR, either by increasing the
time between feedstock inputs, or by feeding individual streams of
feedstock separately into the system, and at the same time reducing
HRT, can have a positive impact on the profitability of pocket co-
digesters.

The model simulations were carried out under a number of
assumptions, including optimal biogas production, looking solely at
operational AD parameters, a variety of OLRs, some of which were
close to border values, fluctuations in these OLRs, and single stage
digesters.

The analysis yields useful insights into the performance of a
small, farm-scale co-digester and demonstrates the implications of
making small adjustments to the operational management of such
a digester. However, it must be emphasized that this exercise is a
theoretical optimization and that, even though the technical con-
straints are adhered to, model verification would have to be con-
ducted to validate the results.

The model and optimized feeding patterns could be adapted by
commercial biogas operators, who, due to financial restrictions,
might be limited to a certain quantity and type of feedstock, and
who could, without additional investments, see their biogas pro-
duction and profits increase. Even if adapting feeding patterns is
more difficult to implement, it is important to determine the ki-
netic behavior of the feedstock that is being used. Based on this
kinetic behavior, biogas operators should co-digest types of feed-
stock with similar kinetic constants in order to maximize biogas
production as opposed to feedstock with dissimilar kinetic
constants.

In further research, this model can be used as a base module in
which techno-economic optimization can be conducted by taking
into account variability in feedstock availability and prices, and
adding additional modules such as a post-digester and an ammonia
stripper and scrubber. Another optionwould be to use this model as
a base for flexible power generation by steering biogas production
through an adapted feeding regimen, in order to link biogas pro-
duction to electricity prices in the day-ahead or continuous
intraday market [33].
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