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SUMMARY
Sleep deprivation is known to exert detrimental effects on various
cognitive domains, including attention, vigilance and working memory.
Seemingly at odds with these findings, prior studies repeatedly failed to
evidence an impact of prior sleep deprivation on cognitive interference in
the Stroop test, a hallmark paradigm in the study of cognitive control
abilities. The present study investigated further the effect of sleep
deprivation on cognitive control using an adapted version of the Stroop
test that allows to segregate top–down (attentional reconfiguration on
incongruent items) and bottom–up (facilitated processing after repetitions
in responses and/or features of stimuli) components of performance.
Participants underwent a regular night of sleep or a night of total sleep
deprivation before cognitive testing. Results disclosed that sleep depri-
vation selectively impairs top–down adaptation mechanisms: cognitive
control no longer increased upon detection of response conflict at the
preceding trial. In parallel, bottom–up abilities were found unaffected by
sleep deprivation: beneficial effects of stimulus and response repetitions
persisted. Changes in vigilance states due to sleep deprivation selec-
tively impact on cognitive control in the Stroop test by affecting top–down,
but not bottom–up, mechanisms that guide adaptive behaviours.

INTRODUCTION

Flexibility in information processing is a crucial requirement to
perform adequately in an everyday environment. Flexibility
and related processes are typically investigated using tasks
in which participants must adapt to changing requirements
(e.g. task-switching paradigms; Vandierendonck et al., 2010)
or inhibit an automatic response in favour of another one in
an interference context, as it is the case in the Stroop test
(Stroop, 1935). Typically in the Stroop test, participants are
instructed to report the ink colour of a colour word. The
irrelevant colour word can be either congruent (e.g. the word
‘blue’ printed in blue) or incongruent (e.g. the word ‘blue’
printed in red). A consistent finding is that inhibitory pro-
cesses involved in incongruent trials yield slower responses
and more errors than congruent trials.
Sleep deprivation exerts a well-recognized negative impact

on cognitive and brain processes subtending vigilance
(Basner and Dinges, 2011) and other attentional functions

(Lo et al., 2012; Muto et al., 2012; Roca et al., 2012; Tomasi
et al., 2009), with important inter-individual variability in
vulnerability to sleep deprivation (Chee and Tan, 2010;
Landolt, 2008). Sleep deprivation is also detrimental to
working memory (Chee et al., 2006) and inhibition (Anderson
and Platten, 2011) processes, but effects may be more
variable (Chuah et al., 2006; Drummond et al., 2012) or
much smaller and modulated by circadian phase (Lo et al.,
2012) or time of day (Schmidt et al., 2012a). Notwithstanding,
and perhaps surprisingly, available studies concur to suggest
that interference effects in the Stroop task are actually not
modulated by sleep deprivation. Indeed, studies conducted to
date failed to evidence reduction of interference effects in this
task, even after up to 40 h of extended wakefulness (Bratzke
et al., 2012; Cain et al., 2011; Kim et al., 2011; Sagaspe
et al., 2006).
However, trial-to-trial variations were not taken into

account. Sequential congruency between successive trials
modulates the Stroop interference effect (Notebaert and
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Verguts, 2007). That is, the interference effect for the current
trial is much smaller after an incongruent (I) than after a
congruent (C) trial. This phenomenon, referred to as the
congruency sequence effect (CSE), was initially explained in
terms of top–down cognitive control mechanisms (Botvinick
et al., 2001) when a conflict is detected, attentional recon-
figuration takes place that increases the attentional resources
to the relevant target dimension, thereby reducing the
interference effect on the next trial. The CSE was found
unchanged after sleep deprivation in a Flanker task (Tsai
et al., 2005), suggesting the preservation of cognitive control
mechanisms. However, a CSE can also be explained in
terms of a bottom–up account: faster reaction times for trial-
to-trial congruency repetitions (I–I and C–C) as compared
with congruency alternations (I–C and C–I; Mayr et al., 2003).
Here, at least part of the CSE can be explained in terms of
repetition of features of the stimulus and/or of the response
(Mayr et al., 2003). Hence, both bottom–up and top–down
factors may result in a so-called CSE in the Stroop task.
The impact of sleep deprivation was examined, respec-

tively, on bottom–up and top–down factors in the Stroop test.
The task had three possible stimuli and responses to allow
both trial-to-trial repetition and alternation in responses and/
or stimuli features (Notebaert et al., 2006), and data were
analysed using a two-step multiple regression analysis
(Notebaert and Verguts, 2007). In a first step, the regression
implements bottom–up predictors that reliably predict reac-
tion times. In a second step, residual variance predicts top–
down adaptation on top of bottom–up effects. A change in the
CSE after sleeping compared with after sleep deprivation
would be revealed as an interaction between Condition
(sleep or sleep deprivation) and the respective bottom–up or
top–down predictors.
Hence, Stroop performance can be decomposed into three

levels. The first level is the size of the interference effect,
which depends on how successfully the participants can
ignore the irrelevant information (e.g. selective attention). The
second level is bottom–up sequential modulation, which
encompasses the beneficial effects of stimulus and response
repetitions. And finally, the third level is top–down sequential
modulation, reflecting cognitive control adjustments. The
current experiment aimed at determining whether one or
several of these processing levels subtending performance in
the Stroop task suffer from sleep deprivation.

MATERIALS AND METHODS

Participants

Participants were recruited through word of mouth and adver-
tisements at the faculty of psychology. Twenty-five healthy
subjects (five males; mean age ! SD = 21.12 ! 1.88 years)
participated for monetary reward in this experiment. The larger
number of females reflects the gender distribution in the faculty
of psychology. Three subjects were removed from the statis-
tical analyses because of bad performance during the regular

sleep (RS) condition (see later), and three additional partici-
pantswere removeddue to non-optimal sleep quality during the
past month (Pittsburgh Sleep Quality Index > 6; Buysse et al.,
1989). The 19 remaining participants (five males; mean
age ! SD = 20.95 ! 1.96 years) were French-speaking,
right-hand dominant [on a range from "100 (fully left handed)
to +100 (fully right handed), average score 75.79 ! 44.26;
Edinburgh handedness questionnaire; Oldfield, 1971], with
normal or corrected-to-normal vision and no prior history of
sleep disorders. Six were moderate evening types, 10 inter-
mediate types, two moderate morning types, and one reached
the cutoff for extreme morning type (Morningness–Evening-
ness Questionnaire; Horne and Ostberg, 1976; range 36–72).
Participants gavewritten, informed consent to participate in this
study approved by the local Ethics committee of the Universit!e
Libre de Bruxelles (ULB). They were required to keep regular
sleep patterns during the week before and throughout the
experiment, and to avoid napping on experimental days. To
control for the regularity of sleep habits, they were asked to
complete daily sleep logs (St Mary’s Hospital sleep question-
naire; Ellis et al., 1981) for the 2 days before each testing
condition.

Materials and procedure

Participants were tested on computers running E-PRIME 2.0
software (Psychology Software Tools, Pittsburgh, PA, USA).
Stimuli consisted of the French colour word names ‘VERT’
(green), ‘JAUNE’ (yellow) and ‘ROUGE’ (red) displayed in
Arial capital fonts in the possible ink colours green, yellow
and red. Words were approximately 2 cm wide and 0.5 cm
high. Participants had to react as fast as possible by
indicating the stimulus ink colour using the index, middle or
ring finger of their dominant (right) hand to press the ‘c’, ‘v’, or
‘b’ keys on a standard Belgian–French keyboard. Stimuli
were randomized per participant and presented in the centre
of the computer’s screen approximately 50 cm from the
participants’ eye, and remained on display until a response
key was pressed, after which a grey fixation cross was
presented for 750 ms, followed by the next stimulus. The
nine possible word–ink colour combinations were presented
in random order, resulting in 33% congruent trials and 66%
incongruent trials. For 33% of the trials, the irrelevant word
was repeated, and for another 33% the relevant colour
(response repetitions) was repeated. No repetition at all was
present in the remaining 33%. Participants were first pre-
sented a practice block of 90 trials with feedback, followed by
eight consecutive blocks of 90 trials without feedback (total
720 experimental trials).
A within-subjects design was used. For all participants, the

Stroop task was administered twice at 09:00 hours, once
after a night of sleep (RS) and once after a night of total sleep
deprivation (SD condition). Conditions were administered in a
counterbalanced order between participants and spaced
apart by 1 week at least. During the RS night, participants
slept normally at home. During the SD night, they were kept
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in the laboratory from 22:00 hours to 10:00 hours under
supervision of one of the experimenters. During the SD night,
participants were kept in a dimmed light room (<10 lux) and
isocaloric snacks were provided hourly with continuous free
water access. Participants were asked to engage in quiet
activities (e.g. reading, watching movies) during the night.
The Karolinska Sleepiness Scale (KSS; Akerstedt and
Gillberg, 1990) was administered hourly during the SD night.
Smoking, alcohol and stimulant drinks were not allowed on
experimental days (including the day where the SD started)
and in the SD night.

Data analysis: multiple regression

Statistical analyses were conducted using SPSS software
version 20.0 (IBM, Armonk, NY, USA). Data were analysed
using the multiple regression approach outlined in the
Introduction (for a detailed presentation, see Notebaert
and Verguts, 2007; see also Lorch and Myers, 1990).
Briefly, bottom–up predictors are taken into account in a first
step. In the second step, new analyses are performed on
the residual variance to test whether conflict adaptation can
explain the variance that was not accounted for by bottom–
up effects.
In the first step, besides Congruency effects (congruent or

incongruent) and Condition (RS or SD), five binary bottom–
up factors were selected as well as their interaction with
Condition. These are the factors that can explain the CSE in
terms of bottom–up feature repetition and integration effects.
The interaction of these factors with Condition informs us
about the influence of sleep deprivation on these bottom–up
factors. The first two factors were: (i) repetition of the target
colour (sequence of relevant information: target is repeated);
and (ii) repetition of the distractor word (sequence of
irrelevant information: distractor is repeated). Other factors
encompassed: (iii) feature integration [complete (target and
distractor repeated) versus partial (target or distractor
repeated) repetitions and alternations (no repetition)]; and
(iv) negative priming (i.e. distractor becomes target). Only
transitions where both n " 1 and n were incongruent were
regarded as negative priming. The final bottom–up factor (v)
was defined by the transitions where relevant information on
the previous trial became the irrelevant factor on the next
trial (Rel–Irrel; target of the previous trial becomes the
distractor on the current trial). The second step tested
whether top–down factors could explain the residual vari-
ance from the first step. To test for conflict adaptation, a
factor with the value of 1 was entered if congruency was
repeated, and the value of 0 if congruency was alternated.
Also, the congruency of the previous trial was included
because lower error rates and a trend towards slower
response times following incongruent trials were observed in
a prior study (Ullsperger et al., 2005). Finally, the interac-
tions of both factors with Condition were entered to inves-
tigate whether sleep deprivation had a selective influence on
the top–down factors or not.

RESULTS

Sleep and vigilance parameters

The mean sleep duration for the penultimate night before
the experimental manipulation (N " 2) was 8 h 24 min
(SD ! 58 min, range 6 h 07 min–10 h 30 min) in the RS
and 8 h 33 min (! 1 h 33 min, range 5 h 30 min–12 h) in
the SD condition. The mean sleep duration for the night
before the experimental manipulation (N " 1) was 7 h
18 min (SD ! 1 h 15 min, range 5 h 30 min–10 h) in the
RS and 8 h 31 min (!1 h 07 min, range 6 h 20 min–11 h)
in the SD condition. A repeated-measure ANOVA conducted
on mean sleep duration with within-subject factors Night
(N " 2, N " 1 before testing) and Condition (RS versus
SD) and between-subject factor Order of the conditions
(SD–RS versus RS–SD) disclosed a main effect of Con-
dition (F1,17 = 10.51; P = 0.005), with longer sleep duration
in the sleep deprivation condition than in the sleep
condition and a trend for a main effect of Night of sleep
(F1,17 = 4.17; P = 0.06) with longer sleep duration at night
N " 2 than at night N " 1. The interaction between Night
and Condition was also significant (F1,17 = 4.70; P = 0.04).
Post hoc tests indicate that the average sleep duration for
the night before the experimental manipulation (N " 1) in
the RS condition was marginally shorter than at night
N " 2 (P = 0.06), and significantly shorter than at nights
N " 1 (P = 0.03) and N " 2 (P = 0.03) in the SD condi-
tion. All other interactions or effects were not significant (all
P > 0.28).
As expected during the SD night, KSS scores steadily

increased over successive hours [from well awake at
22:00 hours (2.53 ! 1.71) to very tired at 09:00 hours
(6.74 ! 1.82); F11,198 = 32.19; P = 0.000]. Vigilance state
was assessed in the two conditions by using the overall
variance in RTs in the Stroop task, for which the coefficient of
variance (CV = Stdev/avr RT) was calculated. Across par-
ticipants, the CV was 0.34 for the sleep condition and 0.47 for
the sleep deprivation condition (t18 = "5.33; P < 0.0001),
suggesting increased general state instability after sleep
deprivation.

Multiple regression for Stroop performance in RS and SD
conditions

Excessively slow responses or high number of errors can be
the consequence of SD in itself. For this reason, data
trimming was performed on the basis of the RS condition
only. Participants falling out the RS condition were also
eliminated from the SD condition. This was the case for three
participants exhibiting excessively slow responses (>2 SD
from the mean; n = 1) or too many errors (>2 SD from the
mean, n = 2). Errors and trials following an error (8.89% of
trials) were excluded from the analyses on RTs. Reaction
times faster than 200 ms (commissions) and slower than
3000 ms were also excluded (1.14% of trials).
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In addition to the regression analysis, Fig. 1 shows CSEs
on the basis of the mean reaction times in all conditions (RS
or SD and bottom–up or top–down). A first analysis demon-
strated that the order of tasks (e.g. first RS or first SD) did not
interact with any of the factors of interest. It was therefore not
taken into consideration for the remaining analyses.
Results of the regression analysis are reported in Table 1.

Regression parameters (i.e. beta) refer to the unique contri-
bution of each predictor on the mean RT. The regression
parameter or value of each predictor should be interpreted as
the unique effect of this predictor on the mean RT. For
instance, a value of 50 indicates that when this factor takes
on the value of 1, RTs are on average 50 ms slower than
when this factor takes on the value of 0, when all other factors
are held constant. As shown in Table 1, results disclosed a
main effect for Stroop congruency. To illustrate the reading of
Table 1 (top rows), participants were about 29 ms faster on
congruent compared with incongruent trials (P < 0.001). The
effect of Condition demonstrated a general slowing after
sleep deprivation (P < 0.001). This analysis also highlighted
contributions of target sequence and feature integration
factors in both conditions (P < 0.05). Interestingly, also the
factor testing for the interaction between Condition and
Congruency was significant (P < 0.05), showing that the
congruency effect was 18 ms stronger after SD than after RS.
An additional analysis demonstrated that this stronger con-
gruency was not due to mental fatigue induced by the length
of the experiment: regardless of the condition, the Stroop
congruency effect was equally strong in the first as in the
second half of the experiment (F < 1).
The second step of the analysis investigated possible top–

down adaptation. Importantly, the results of the second step

analysis (Table 1, bottom rows) revealed a significant inter-
action between conflict adaptation and Condition, indicating
stronger conflict adaptation after RS than after SD (P < 0.05).
None of the other factors reached significance (all P > 0.15).
Hence, the analysis indicates that even when bottom–up
factors are taken into account, top–down conflict adaptation
still influenced RTs in the RS but not in the SD condition.

DISCUSSION

The aim of the present study was to investigate the influence
of sleep deprivation on the different components subtending
interference effects in the Stroop task. The results demon-
strate that top–down cognitive control mechanisms are
altered by sleep deprivation, whereas bottom–up mecha-
nisms remain essentially unchanged. Indeed, feature repe-
tition effects were robustly observed both after a normal night
of sleep and after a night of sleep deprivation. Top–down
conflict adaptation, however, was only observed after a night
of sleep.
Bottom–up sequential modulation is usually interpreted in

terms of simple priming mechanisms, where for instance the
presentation of the same stimulus primes the execution of the
same response, thus resulting in faster RTs (Mayr et al.,
2003). Top–down conflict adaptation, on the other hand,
relies on a widespread control network that necessitates the
availability of cognitive resources (Botvinick et al., 2001).
According to the latter theory, conflict adaptation is the
readjustment of selective attention with more attention to
relevant information after conflict detection. Sleep deprivation
is known to exert a deleterious effect on various attentional
parameters (see, for reviews, Lim and Dinges, 2010a;
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Schmidt et al., 2007). Therefore, both the overall size of the
Stroop effect (selective attention) and the sequential modu-
lation of the congruency effect (reset of selection attention)
could be affected by sleep deprivation. Complementary to
this interpretation, Verguts and Notebaert (2009) linked
conflict adaptation to arousal, proposing that the experienced
conflict during incongruent trials triggers a small arousal
response that facilitates binding between task-relevant cor-
tical areas. Such adaptation-by-binding account might
explain the effects of sleep deprivation in terms of reduced
arousal, in line with neuroimaging studies showing that both
circadian and homeostatic parameters have an impact on
both arousal and higher-level cognitive parameters (Schmidt
et al., 2009, 2012b). In line with the current results, Horowitz
et al. (2003) observed that sleep deprivation did not affect
shifts of attention in a visual search task, but that less top–
down control was exerted at the decision level. Others found
that sleep deprivation actually exerts an impact on all
components of the attentional network (Muto et al., 2012;
but see Roca et al., 2012), which makes it difficult at this
point to disentangle these complementary accounts.
Besides the global preservation of bottom–up effects and

the elimination of top–down influences after sleep deprivation,
the regression analysis also yielded evidence for a stronger
Stroop congruency effect after sleep deprivation than after
regular sleep. This observation is in contrast with prior studies
reporting no influence of sleep deprivation on the Stroop
interference (Bratzke et al., 2012; Cain et al., 2011; Sagaspe
et al., 2006). Nevertheless, some methodological differences
exist between the current and other studies. In Sagaspe et al.
(2006), participants had to respond verbally rather than
manually, which might change the dynamics of the Stroop
task. Other studies used proportionally more incongruent than

congruent trials (Cain et al., 2011), or congruent trials were not
included (i.e. only incongruent and neutral trials in Sagaspe
et al., 2006). Amongst prior studies, the design used by
Bratzke et al. (2012) is probably the most similar to the current
one. Participants used manual responses with four different
colours, and were presented the same amount of congruent
and incongruent trials. At variance with the current study,
however, participants were tested numerous times. Whereas
the Stroop task was only administered twice in the current
study (once with, once without sleep deprivation), it was
administered multiple times within a single participant in prior
studies using constant routine protocols (Bratzke et al., 2012;
Cain et al., 2011; Sagaspe et al., 2006). Although these
protocols allow more efficiently disentangling the effects of
accumulated sleep pressure from those of circadian position
(Schmidt et al., 2007), multiple repetitions of a task pertaining
to the executive functions domainmay favour the development
of alternate strategies (Blatter et al., 2005) and/or introduce a
trade-off between practice and sleep deprivation. This trade-
off would indicate that participants developed to some extent a
‘reading suppression response’ (Dulaney and Rogers, 1994;
Feinstein et al., 1994) through task repetition, which may
counteract the deleterious effect of sleep deprivation. Whether
these differences are sufficient to explain the fact that the
current study observed a subtle modulation of the Stroop
congruency effect while others did not, remains at this point an
empirical question that should be investigated in further
studies.
In the present study, it was unambiguously demonstrated

that sleep deprivation exerts a selective detrimental impact on
selective attention and cognitive control. Additionally, an
increased Stroop interference effect after sleep deprivation
was observed, a phenomenon indicative of impaired selective

Table 1 Results of two-step multiple regression analysis both after normal sleep and after sleep deprivation Predictors under the line were
added in step two of the analysis. Average beta values are presented together with their standard errors

b (avr across participants)

Stroop performance

One sample t-test t(18) P (two-sided)

Predictor
Condition (RS or SD) 94,62 (21,37) 4,428 0
Congruency "29,26 (4,39) "6,668 0
Condition 9 Congruency "18,45 (6,93) "2,661 0.016
Sequence of targets "115,54 (14,63) "7,900 0
Condition 9 Sequence of targets "24,79 (13,39) "1,851 0.081
Sequence of distractor "3,18 (5,2) "0.884 0.388
Condition 9 Sequence of distractor "4,79 (5,42) 0.277 0.785
Feature integration "18,23 (7,28) "2,503 0.022
Condition 9 feature integration "16,18 (18) "1,255 0.225
Target becomes distractor "0,39 (2,92) "0.135 0.894
Condition 9 target becomes distractor "0,99 (6,56) "0.151 0.882
Distractor becomes target 7,33 (8,06) 0.909 0.375
Condition 9 distractor becomes target "16,99 (15,55) "1,092 0.289
Congruency of previous trial 3,59 (2,77) 1.296 0.211
Condition 9 congruency of previous trial "4,10 (3,61) "1.138 0.270
Conflict adaptation "3,52 (2.34) "1.500 0.151
Condition 9 conflict adaptation 6,60 (2,50) 2.634 0.017
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attention mechanisms. In line with this interpretation, Lim and
colleagues (Lim et al., 2010b) demonstrated using functional
magnetic resonance imaging a negative influence of sleep
deprivation on target detection abilities, with attention-driven
biasing of information processing after normal sleep but not
after sleep deprivation. Similarly, Trujillo et al. (2009) found
that 1 night of sleep deprivation impacts endogenously
driven selective attention (top–down) more than exogenously
driven (bottom–up) selective attention. In this respect, one
could argue that sustaining a focus on the task-relevant
dimension in the Stroop task also requires to some extent
endogenous attention. An alternative or complementary
explanation would be that automatic bottom–up effects
become more prominent as top–down cognitive control
processes no longer inhibit them. Accordingly, performance
for automatic memory processes is better when participants
are tested at their non-preferred time of the day (Delpouve
et al., 2014; May et al., 2005), i.e. when cognitive resources
are less available. At present, the current results show that
changes in vigilance states due to sleep deprivation selec-
tively impact on cognitive control in the Stroop test by
affecting the top–down, but not bottom–up, mechanisms that
guide adaptive behaviours.
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