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Abstract—In order to achieve high speed on electrical intercon-
nects, channel attenuation at high frequencies must be dealt with
by proper transceiver design. In this paper we investigate finite-
complexity MMSE pre-equalization under an average transmit
power constraint, to compensate for channel distortion in the case
of both full-response and precoded partial response signaling with
L-PAM mapping, and consider the resulting error performance
for symbol-by-symbol detection and sequence detection. For
a representative electrical interconnect, we point out that the
constellation size (2-PAM or 4-PAM), the type of signaling (full
response or partial response), the detection method (symbol-by-
symbol detection or sequence detection) and the number of pre-
equalizer taps should be carefully selected in order to achieve
satisfactory error performance at high data rates. For several
scenarios, precoded duobinary 4-PAM is found to yield the best
error performance for given average transmit power.

I. INTRODUCTION

All types of telecommunications equipment rely on a form
of electrical interconnects e.g. chip-to-chip, chip-to-module.
Over the last decade the requirements for electrical intercon-
nect speed have evolved from hundreds of Mbit/s to multiple
tens of Gbit/s [1]. Regardless of the advancements in channel
design, signals experience degradation during transmission
due to channel imperfections e.g. conductive and dielectric
losses, impedance discontinuities, noise coupling, cross-talk
and mode conversion [2].

Collectively, these impairments result in inter-symbol inter-
ference (ISI) and increased noise in the received signal which
reduces signal integrity and directly affects the achievable
error rate of the link. The modulation and equalization are
the main design parameters in this small-scale context. At
the modulation level, a vast majority of standard electrical
interconnect systems operate with non-return to zero (NRZ)
or pulse amplitude modulation with 4 levels (4-PAM) [3]. De-
spite its simplicity, NRZ modulation requires a large amount
of equalization for high-speed electrical interconnect which
motivates the use of partial response duobinary modulation
as proposed in [4]. By design, in partial response signaling
[5] a controlled intersymbol-interference amount is introduced
to spectrally shape the signal, such that the signal power is
more concentrated at the lower frequencies. Low-complexity
signal detection in the case of partial response involves a
modulo operation at the receiver; alternatively, at the expense
of higher complexity, maximum likelihood sequence detection
exploiting the inherent redundancy in the signal [7] can be
exploited.

Several authors have investigated pre-equalization in the
context of high-speed electrical interconnects. The authors

of [11] consider duobinary signaling, and use a frequency-
domain fitting to determine the coefficients of a finite impulse
response (FIR) linear pre-equalizer. In [12], the combination
of a programmable 2-tap pre-equalizer at the transmitter and
an adaptive 4-tap decision-feedback equalizer (DFE) at the
receiver are investigated for NRZ signaling. In [4], a 2-tap
pre-equalizer with fractional delay is optimized numerically to
minimize a semi-analytically computed bit error rate (BER).
In [10], the coefficients of a 6-tap equalizer are represented by
4 bits, and their values are optimized by means of a numerical
search to mimimize data-dependent jitter. In [9], a combination
of an FIR pre-equalizer and a one-tap DFE is considered
for partial response signaling; a minimum mean-square error
(MMSE) criterion is used to determine the filter taps. Most of
these papers consider the eye opening (simulated or measured)
or the measured BER as a performance measure.

In the present contribution we focus on linear MMSE pre-
equalization with limited complexity, for generic multi-level
mapping and full-response or precoded partial-response signal-
ing. Section II considers the optimization of not only the filter
tap values at the transmitter but also the scaling factor applied
to the signal at the input of the detector; we point out that this
approach yields a smaller mean-square error (MSE) compared
to the case where (as in [9]) only the filter taps are optimized.
Unlike other contributions on pre-equalization, the analytical
derivation of the optimum filter taps and scaling factor is
performed by transforming the MSE into an equivalent but
simpler expression that allows a geometrical interpretation.
The error performance of the detector is investigated in section
III. Accurate upper and lower bounds on the symbol error
probability, that take into account the presence of noise and
residual ISI, are presented in the case of symbol-by-symbol
detection; these bound are computationally less complex than
the semi-analytically computed error rate from [4].

II. PRE-EQUALIZATION OF PARTIAL-RESPONSE SYSTEMS

We consider the precoded partial response (PR) system
from Fig. 1, characterized by a polynomial hT (D) =
1 +

∑
m>0 hT ,mD

m with integer coefficients. At the trans-
mitter, the precoder converts a sequence of i.i.d. L-ary
digits {an}, that are uniformly distributed over the set
{0, 1, ..., L − 1}, into a sequence {bn}, according to bn =[
an −

∑
m>0 hT ,mbn−m

]
L

where [x]L denotes the modulo-
L reduction of x to the half-open interval [0, L). We restrict
our attention to the case where L is an integer power of 2. The
resulting precoder output {bn} consists of i.i.d. L-ary digits
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that are uniformly distributed over the set {0, 1, ..., L − 1}.
The sequence {bn} is mapped to the symbol sequence {dn}
according to dn = 2bn − L + 1, so that dn belongs to the
L-PAM constellation Ad = {−(L − 1), −(L − 3), ..., L −
3, L − 1}; we denote σ2

d = E[d2
n] = L2−1

3 . The L-PAM
symbols {dn} are applied to a linear pre-equalizer that op-
erates at the symbol rate 1/T , where T stands for the symbol
interval. Denoting the pre-equalizer coefficients by {gm}, the
corresponding pre-equalizer transfer function is G(ej2πfT ) =∑
m gme

−j2πfmT . The output of the pre-equalizer is fed to
a fixed unit-energy transmit filter Htr(f). Introducing the
notation < X(ej2πfT ) >= T

´ 1/(2T )

−1/(2T )
X(ej2πfT )df , the

resulting transmit symbol energy Etr is obtained as

Etr = σ2
d

〈
|G(ej2πfT )|2Rtr(e

j2πfT )
〉

= σ2
dg

TRtrg (1)

where g is a vector containing the pre-equalizer
coefficients, Rtr is a Toeplitz matrix determined
by (Rtr)m,n =

´
|Htr(f)|2 ej2πf(m−n)T df and

Rtr(e
j2πfT ) = 1

T

∑
n

∣∣Htr

(
f − n

T

)∣∣2. When Htr(f) is
a unit-energy square-root Nyquist filter, Rtr becomes the
identity matrix, and Rtr(e

j2πfT ) = 1. The transmitted
signal enters a channel with transfer function Hch(f), and
is affected by additive white Gaussian noise (AWGN) with
spectral density N0/2. The received signal is applied to
fixed filter Hrec(f). The receiver filter output is sampled
at the symbol rate at instants nT + τ , and the resulting
samples are multiplied by a scaling factor 1/ξ. Introducing
Hc(f) = Htr(f)Hch(f)Hrec(f), the scaled sample zn can be
represented as

zn = (1/ξ) ·
∑
m

dn−m(
∑
k

gkhm−k) + νn (2)

where hm = hc(mT+τ) is the sample of the impulse response
hc(t) of Hc(f), taken at mT + τ , and σ2

ν = σ2/ξ2 with
σ2 = (N0/2)

´
|Hrec(f)|2df denoting the noise variance at the

output of the receiver filter. The sampling delay τ is a design
parameter, which affects the value of the coefficients {hm}.
We intend to select the coefficients {gm} and the scaling factor
1/ξ such that zn in (2) is close to wn given by

wn = dn +
∑
m>0

hT ,mdn−m (3)

subject to the transmit power constraint (1). Note from (3) that
we take for wn a specific linear combination of the current
and past symbols {dm}, where {hT ,m} denote the integer
coefficients of the partial response polynomial hT (D) that has
been used in the precoding operation ; it is explained in section
III how the receiver detects the symbol an from a noisy version
of wn. The special case where hT (D) = 1 is referred to as
full response (FR) signaling; in the case of FR, the precoding
and (3) reduce to bn = an and wn = dn, respectively.

Figure 1. Precoded partial response system

For the sake of practical implementation, we focus on a
pre-equalizer with a finite number (Lg) of coefficients, i.e.,

g = (g0, g1, ..., gLg−1)T ; at the end of this section we point
out that restricting our attention to a causal pre-equalizer
represents no loss of generality. Introducing the matrix H and
the vector hT , with (H)m,n = hm−n and (hT )m = hT ,m,
we rewrite (2) as

zn = wn +
∑
m

dn−m(
1

ξ
Hg − hT )m + νn (4)

where the second term in (4) denotes residual ISI. Assuming
that the impulse response hc(t) has a finite duration, the
coefficients hm are zero for m /∈ {−Lh,min, −Lh,min +
1, ..., Lh,max}, so that (at most) Lh = Lh,min + Lh,max + 1
coefficients are nonzero; note that Lh depends on the duration
of hc(t), while Lh,min is a function of the sampling delay τ .
Hence, H and hT have nonzero rows only for the row index
ranging from −Lh,min to Lh,max+Lg−1 and from 0 to LT −1,
respectively. Therefore, the summation index m in (4) can be
restricted to the finite range Mfin = (−Lh,min, −Lh,min +
1, ..., Lh,max + Lg − 1) ∪ (0, 1, ..., LT − 1). The closeness
of zn to wn is expressed by the mean-square error (MSE)
E[(zn − wn)2], given by

E[(en)2] , E[(zn − wn)2] = σ2
d||

1

ξ
Hg − hT ||2 +

σ2

ξ2
(5)

In the following, we will select the pre-equalizer coefficients
g and the scaling factor ξ such that (5) is minimized under
the constraint (1).

Before minimizing the MSE, we will turn (5) into an
equivalent expression, which allows a geometrical interpre-
tation. Considering the singular-value decomposition (SVD)
HR−0.5

tr = UΣVT, where R−0.5
tr is the inverse of R0.5

tr ,
with R0.5

tr R0.5
tr = Rtr, we define the invertible transforms

g = R−0.5
tr Vx and hT = Uq, which convert the MSE (5)

into

E[(en)2] = σ2
d

∑
m∈M1

(
1

ξ
smxm−qm)2+σ2

d

∑
m∈M0

q2
m+

σ2

ξ2
(6)

and the constraint (1) into σ2
d

∑
m∈Mfin

x2
m = Etr where

M0 ⊂Mfin is the subset of indices for which the correspond-
ing eigenvalues of HR−1

tr HT are zero, M1 = Mfin \M0, and
sm = (Σ)m,m for m ∈ M1. Denoting the m-th column of
U by U<m>, the first term in (6) depends on the projection∑
m∈M1

qmU<m> of hT on the column space of H, and is
a function of both x and ξ; this term can be cancelled by a
proper selection of the pre-equalizer taps. The second term
in (6) is not affected by x nor ξ, and therefore represents
the irreducible part of the MSE; this term equals σ2

d times the
squared magnitude of the component of hT that is orthoghonal
to the column space of H. The sum of both these terms denotes
the contribution from the residual ISI, and equals the first term
of (5). The third term in (6) represents the noise contribution,
which is affected by the scaling factor ξ. Minimization of
the MSE (6) will yield optimum values of (x, ξ); having
obtained x, the actual optimum pre-equalizer coefficients g
are computed as g = R−0.5

tr Vx.
A suboptimum approach, adopted in [9], consists of mini-

mizing the MSE for a fixed ξ, and then selecting ξ such that
the constraint imposed by the transmitter is satisfied. When
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using for the MSE the expression (6) rather than (5), this yields
xm = ξsubqm/sm for m ∈M1 (which cancels the first term in
(6)) and xm = 0 for m ∈M0, with ξ2

subσ
2
d

∑
m∈M1

q2m
s2m

= Etr.
The corresponding MSE is given by

(E[(en)2])sub = σ2
d

∑
m∈M0

q2
m + µσ2

d

∑
m∈M1

q2
m

s2
m

(7)

where µ = σ2/Etr. Essentially, this solution minimizes
the residual ISI under the transmit energy constraint. This
approach is not optimum, because during the optimization over
x the coupling between x and ξ, introduced by the energy con-
straint , is ignored. The approach that is optimum in terms of
MSE involves the joint minimization of (6) w.r.t. x and ξ under
the energy constraint. The resulting minimum MSE (MMSE)
solution is xm = ξmmseqmsm/(s

2
m + µ) for m ∈ M1 and

xm = 0 for m ∈ M0, with ξ2
mmseσ

2
d

∑
m∈M1

q2ms
2
m

(s2m+µ)2 = Etr.
The resulting minimum MSE is given by

(E[(en)2])mmse

= µ2σ2
d

∑
m∈M1

q2
m

(s2
m + µ)2

+ σ2
d

∑
m∈M0

q2
m

+ µσ2
d

∑
m∈M1

q2
ms

2
m

(s2
m + µ)2

(8)

= µσ2
d

∑
m∈M1

q2
m

s2
m + µ

+ σ2
d

∑
m∈M0

q2
m (9)

The sum of the first and second term in (8) denotes the
contribution from the residual ISI, which is larger than the
corresponding contribution (first term in (7)) for the subop-
timum pre-equalizer; however, as ξ2

mmse > ξ2
sub, the MMSE

pre-equalizer gives rise to a smaller noise contribution (third
term in (8) smaller than second term in (7)). The net effect
is a smaller total MSE for the MMSE solution (first term
in (9) smaller than first term in (7)). At high SNR (i.e.,
µ � minm∈M1

s2
m), both approaches yield essentially the

same MSE.
The MSE performance of the pre-equalizer depends on the

sampling delay τ at the receiver. This delay can be decom-
posed as τ = nsT + εT , where ns = bτ/T c and 0 ≤ ε < 1;
nsT and εT denote the integer delay and fractional delay,
respectively. Basically, nsT and εT should be selected such
that the sampling delay compensates for the delay introduced
by the transfer function Hc(f) from the transmit filter input
to the receive filter output. When the implementation of the
sampling clock does not allow modifying the fractional delay
εT , only nsT can be adjusted, by simply introducing the
appropriate integer delay at the sampler. Having considered a
causal pre-equalizer g = (g0, g1, ..., gLg−1)T is without loss
of generality: a non-causal FIR pre-equalizer can be turned
into a causal pre-equalizer that yields the same performance,
by introducing additional delay at the transmitter and applying
the same additional delay to the sampler.

III. ERROR PERFORMANCE ANALYSIS

We consider a detector that ignores the presence of the
residual ISI in (4), and therefore assumes zn = wn + νn,

with wn given by (3). It can be verified that

[wn]2L = [2an − (L− 1) hT (D)|D=1]
2L

(10)

so that the modulo-2L reduction of wn depends only on the
digit an. Based on the relation (10), symbol-by-symbol detec-
tion can be performed on [zn]2L. The corresponding decision
ân is given by ân = α, where α ∈ {0, 1, ..., L−1} minimizes
F ([zn]2L, [w(α)]2L) , with w(α) = 2α−(L−1) hT (D)|D=1

and F (x, y) = min(|x−y|, 2L−|x−y|). The resulting symbol
error probability PE = Pr[ân 6= an] in the absence of residual
ISI is well approximated by PE = 2Q( 1

σν
) [8], where Q(x)

is the complement of the cumulative distribution function of a
zero-mean Gaussian random variable with unit variance. A
better error performance is achieved by applying sequence
detection, i.e., we look for the sequence {ân} for which
the corresponding sequence {ŵn} minimizes the squared
Euclidean distance

∑
n(zn−ŵn)2; sequence detection exploits

the correlation that is present in {wn} due to PR signaling, and
is implemented efficiently by means of the Viterbi algorithm.
In the absence of residual ISI, the resulting PE is essentially
proportional to Q(dmin2σν

), where d2
min denotes the minimum of

the squared Euclidean distances between allowed sequences
{wn} [8]; hence, for given hT (D), sequence detection yields
a performance gain (expressed in dB) of 10 log(

d2min
4 ) over

symbol-by-symbol detection. In the case of FR, we have
wn = 2an − (L − 1), so that symbol-by-symbol detection
gives rise to ân = α, where α ∈ {0, 1, ..., L− 1} minimizes
|zn − w(α)|; in the absence of residual ISI, this yields PE =
2L−1

L Q( 1
σν

). The actual error performance of the detectors
described above is deteriorated by the presence of residual
ISI. Here we investigate the performance of the symbol-by-
symbol detector, taking into account the residual ISI that
results from a finite-length pre-equalizer. The performance
of the Viterbi-based sequence detection will be assessed by
means of computer simulations in section IV.

Taking into account that the symbol-by-symbol detection of
the digit an in the case of PR signaling is based on [zn]2L, a
correct symbol decision is obtained when zn − wn ∈ S, with
S =

⋃
i∈Z(2iL− 1, 2iL+ 1). The sample zn from (4) can be

represented as zn = wn + ISIn + νn, where

ISIn =
∑
m

dn−mem (11)

represents the residual ISI. The coefficients em in (11) are
obtained as em = htot,m − hT ,m, where {htot,m} are
the coefficients of the filter Htot(e

j2πfT ) from the pre-
equalizer input to the scaled output of the receive filter, i.e.,
Htot(e

j2πfT ) = 1
ξG(ej2πfT ) ·H(ej2πfT ) with H(ej2πfT ) =∑

m hme
−j2πfmT ; note that Htot(e

j2πfT ) does not depend
on the PAM constellation size. Let us denote by dn the vector
of data symbols that contribute to ISIn; in order to emphasize
the dependence of ISIn on dn, we write ISIn = isi(dn). The
symbol error probability, defined as PE = Pr[ân 6= an], can be
expressed as PE = E[PE(dn)], where the expectation is over
the symbol vector dn, and PE(dn) = Pr[isi(dn) + νn /∈ S]
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is the symbol error probability conditioned on dn. One can
easily verify that

PE(dn) = 1−
∑
i∈Z

Q(
∆i,−(dn)

σν
)−Q(

∆i,+(i,dn)

σν
) (12)

where ∆i,−(dn) = 2iL− 1− isi(dn) and ∆i,+(dn) = 2iL+
1− isi(dn). The infinite summation over i in (12) can be trun-
cated to only a few terms; more specifically, when for given dn
we have isi(dn) ∈ [(2i0 − 1)L, (2i0 + 1)L], the summation
index can be safely restricted to i ∈ {i0 − 1, i0, i0 + 1}.

Let us restrict our attention to the practically important
case where the pre-equalizer has been designed such that
no decision errors occur when noise is absent, i.e., the eye
opening at the receive filter output is not closed at the decision
instants nT +τ . Denoting by isimax the maximum of |isi(dn)|
over all possible dn, the eye is open when isimax < 1
(implying that |isi(dn)| < 1 for all dn). It follows from (11)
that

isimax = (L− 1)
∑
m

|em| (13)

Assuming that isimax < 1 and σ2
ν � 1, the conditional error

probability PE(dn) is well approximated by keeping in (12)
only the terms with i = 0, i.e.,

PE(dn) = Q(
1 + isi(dn)

σν
) +Q(

1− isi(dn)

σν
) (14)

Using the approximation (14) instead of the exact expression
(12), we obtain

PE = 2E
[
Q(

1 + isi(dn)

σν
)

]
(15)

where we have taken into account that the vectors dn and −dn
have the same probability. In the absence of residual ISI, (15)
reduces to PE = 2Q

(
1
σν

)
.

Let us denote by Me the set of indices m for which em
in (11) is nonzero, and by Ne the number of elements in
Me. The exact computation of the expectation E[PE(dn)]
then involves a summation of LNe terms, which becomes
computationally prohibitive for large Ne. This problem can
be circumvented by computing bounds on PE in the fol-
lowing way. First, we partition Me into the subsets Mlarge

and Msmall where Mlarge contains the indices m of the
N1 coefficients em with the largest magnitudes, and Msmall

contains the indices of the N2 = Ne − N1 remaining
coefficients em with the smaller magnitudes; we have 0 ≤
N1 ≤ Ne. Next, we decompose ISIn as ISIn = ISI1,n +
ISI2,n, where ISI1,n =

∑
m∈Mlarge

dn−mem and ISI2,n =∑
m∈Msmall

dn−mem. Denoting d1,n = {dn−m, m ∈Mlarge}
and d2,n = {dn−m, m ∈ Msmall}, we write ISI1,n =
isi1(d1,n) and ISI2,n = isi2(d2,n). Taking into account that
Q(u + v) + Q(u − v) is an increasing function of |v| when
u > 0 and assuming isimax < 1, the error probability (15) can
be bounded as PE,low ≤ PE ≤ PE,up, where

PE,low = 2E
[
Q(

1 + isi1(d1,n)

σν
)

]
(16)

PE,up = E
[
Q(

∆up,+

σν
) +Q(

∆up,−

σν
)

]
(17)

In (17), we have ∆up,+ = 1 + isi1(d1,n) + isi2,max and
∆up,− = 1 + isi1(d1,n) − isi2,max, with isi2,max = (L −
1)
∑
m∈Msmall

|em| denoting the maximum of |isi2(d2,n)| over
d2,n. As compared to (15), which involves a summation
over LNe terms, the expectations in (16) and (17) over d1,n

represent summations over only LN1 terms; the selection
of N1 is a trade-off between high accuracy (large N1) and
low computational complexity (small N1). A looser upper
bound on (15) is obtained as PE ≤ 2Q

(
1−isimax

σν

)
where

isimax is given by (13), with the summation index restricted
to m ∈ Me. This upper bound is obtained from (15) by
assuming that isi(dn) = −isimax for all dn, and relates the
error performance to the noise variance σ2

ν and the eye opening
1− isimax at the input of the detector.

In the case of FR signaling, the detection does not involve
the modulo operation. In order to obtain the symbol error
probability for given L and {em} for FR signaling, we first
consider the error probability PE(α) = Pr[d̂n 6= dn | dn = α]
conditioned on the transmitted symbol, and next we average
PE(α) over α ∈ Ad, The resulting error probability is obtained
as PE = PE,in + PE,out, with

PE,in =
2

L

∑
α∈Ad,in

E

[
Q(

1 + e0α+ isi0(d
(0)
n )

σν
)

]
(18)

PE,out =
2

L
E

[
Q(

1 + (L− 1)e0 + isi0(d
(0)
n )

σν
)

]
(19)

where Ad,in = {−(L− 3),−(L− 5), ..., (L− 3)} is the set of
inner constellation points, d

(0)
n collects the data symbols that

contribute to ISIn from (11) with the exception of the useful
symbol dn,

isi0(d(0)
n ) =

∑
m 6=0

dn−mem (20)

denotes the ISI caused by the symbols contained in d
(0)
n ,

and the expectation in (18-19) is with respect to d
(0)
n . In the

absence of residual ISI, FR gives rise to PE = 2L−1
L Q

(
1
σν

)
.

Using a similar reasoning as for PR signaling, upper and
lower bounds on PE are easily derived when isimax < 1, by
bounding the individual terms in (18-19).

IV. NUMERICAL RESULTS

In this section, we will derive numerical performance re-
sults, based on a channel transfer function obtained from
simulation of an electrical backplane interconnect including
two traces on daughter boards, two high-speed backplane
connectors and a 10-cm long differential trace on a printed
circuit board. The pre-equalizer performance results have been
optimized not only over the pre-equalizer coefficients {gn}
and the scaling factor 1/ξ, but also over the sampling delay
τ (which we restrict to be a multiple of T/10). Besides FR
signaling, we will consider PR signaling with polynomials
hT (D) = 1+D and hT (D) = (1+D)2 = 1+2D+D2, which
will be referred to as duobinary (DB) and double duobinary
(DDB), respectively.
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Figure 2. 1/MSE as a function of Etr/N0 for 2-PAM at 100 Gbaud.

Figure 3. PE as a function of Etr/N0 for symbol-by-symbol detection (2-
PAM, 100 Gbaud)) .

For FR, DB and DDB signaling, Fig. 2 shows 1/MSE
as a function of Etr/N0 in the case of 2-PAM, with MSE
denoting the mean square error (9) after scaling the receiver
filter output sample. Note that for these systems the transmit
power is given by Ptr = Etr/T , with 1/T = 100 Gbaud.
For increasing Etr/N0, MSE converges to the last summation
in (9), which is caused by hT not belonging to the column
space of H; this gives rise to the 1/MSE floor occurring
at large Etr/N0 in Fig. 2. For moderate and large Etr/N0,
1/MSE considerably increases when going from 5 to 11 pre-
equalizer taps: the residual ISI is substantially reduced when
using more pre-equalizer taps, yielding a much larger 1/MSE
floor. We observe that PR signaling significantly reduces MSE
as compared to FR, with DB slightly outperforming DDB.
Taking into account that for 2-PAM and 4-PAM we have
σ2

d = 1 and σ2
d = 5, respectively, it follows from (9) that the

curves of 1/MSE versus Etr/N0 for 4-PAM at 100 Gbaud
(i.e., 4-PAM operating at 200 Gbit/s) are obtained by shifting
downward by 7 dB the curves from Fig. 2.

We consider the symbol error probability PE resulting
from symbol-by-symbol detection, assuming MMSE pre-
equalization with 5 taps and 11 taps, for FR, DB and DDB
signaling; the constellation is 2-PAM. Fig. 3 shows as a
function of Etr/N0 the simulated error probability, along
with the upper bound (17) on PE for the cases where isimax

from (13) does not exceed 1; when computing (17) we have
selected N1 such that the horizontal shift between the upper

bound and the lower bound (16) at high Etr/N0 is less than
about 0.5 dB, so that the upper bound can be considered as
sufficiently tight. For FR signaling with 5-tap and 11-tap pre-
equalization, we get isimax > 1, which results in a symbol
error probability floor because of eye closure. We observe
that FR is significantly outperformed by both DB and DDB at
moderate to high Etr/N0, and that DB performs better than
DDB; this behavior is in agreement with the 1/MSE curves
from Fig. 2.

Figure 4. PE as a function of Eb/N0 for 4-PAM operating at 50 Gbaud
with 5 and 11-tap pre-equalizer.

Whereas for symbol-by-symbol detection DB performs
better than DDB, we see that DDB outperforms DB when
sequence detection is applied (figure not included). The benefit
from sequence detection is larger for DDB than for DB, be-
cause the former yields the larger minimum squared Euclidean
distance d2

min between allowed sequences {wn}: for DB and
DDB we have d2

min = 8 and d2
min = 16, respectively.

Here we investigate the error performance for 4-PAM oper-
ating at half the baudrate and half the bandwidth (50 Gbaud
and 25 GHz, respectively) as compared to the 100 Gbit/s
2-PAM transmission; hence, the channel is less dispersive
in the case of 4-PAM. As in this second scenario the 2-
PAM and 4-PAM transmissions operate at the same bitrate,
it is convenient to compare their error performance for given
Eb/N0, with Eb = Etr/ log2(L) representing the transmitted
energy per bit (for 2-PAM, we have Eb/N0 = Etr/N0); note
that Ptr = EbRb, with Rb = log2(L)/T denoting the bitrate.

Fig. 4 shows the 50 Gbaud 4-PAM error performance related
to the second scenario, for Lg = 5 and Lg = 11, respectively.
For Lg = 5, DDB with symbol-by-symbol detection and with
sequence detection both exhibit an error floor, caused by the
large ISI peak power. We observe that for Lg = 5 with symbol-
by-symbol detection, FR outperforms DB (2 dB difference at
low PE), whereas DB yields the better performance when
sequence detection is used (3-4 dB better than FR at low
PE). The residual ISI is substantially reduced when taking
Lg = 11, so that error floors are absent. For Lg = 11 with
symbol-by-symbol detection, DB is slighly better than FR (1.5
dB difference at low PE), which in turn outperforms DDB;
error performance is further improved by means of sequence
detection, with DB slighly outperforming DDB (less than 0.5
dB difference at low PE).
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2-PAM, 100
Gbit/s

4-PAM, 100
Gbit/s

4-PAM, 200
Gbit/s

5/11 taps 5/11 taps 11 taps
FR - - -/— 5.7/3.3 dB - - -

DB SymDet 10.5/7.0 dB 7.3/2.8 dB 19.1 dB
DDB SymDet 18.4/8.5 dB - - -/6.6 dB - - -

DB SeqDet 5.7/3.9 dB 2.4/0.0 dB 13.7 dB
DDB SeqDet 4.8/1.8 dB - - -/0.1 dB 14.7 dB

Table I
RELATIVE TRANSMIT POWER Ptr/Pref AT A TARGET PE OF 10−9

Let us define the power efficiency as the average transmit
power Ptr needed to achieve PE = 10−9; the smaller Ptr, the
more efficient the considered scheme. Using Ptr = EbRb =
Etr/T , the power efficiency of a particular scheme can be
derived from the corresponding curve showing PE versus
Eb/N0 or Etr/N0 when N0 is known. Noting by Pref the
power efficiency for precoded DB 4-PAM with sequence
detection at 100 Gbit/s and 11-taps pre-equalizer, Table I
shows the relative power efficiency Ptr/Pref (expressed in
dB) for the different modulation schemes; the entry “- - -
” indicates the occurrence of an error probability floor, which
either exceeds 10−9 or yields an unacceptably large transmit
power to reach PE = 10−9. Fig. 4 shows that, for precoded
DB 4-PAM with sequence detection at 100 Gbit/s and 11-taps
pre-equalizer, PE = 10−9 is achieved at Eb/N0 = 23.4 dB,
yielding (Pref)dBm = 23.4 + 110 + (N0)dBm/Hz; for instance,
when N0 = -140 dBm/Hz, we have Pref = -6.6 dBm.

Let us first focus on 2-PAM operating at 100 Gbit/s. Con-
sidering a 5-taps pre-equalizer and using symbol-by-symbol
detection, DB yields the best performance (Ptr/Pref = 10.5
dB) among the modulations considered; using sequence de-
tection, DDB is to be preferred (Ptr/Pref = 4.8 dB), yielding
an improvement of 5.7 dB over symbol-by-symbol detection.
Increasing the number of pre-equalizer taps to 11, the best
modulation when using symbol-by-symbol detection is DB
(Ptr/Pref = 7.0 dB), whereas sequence detection improves
the power efficiency by 5.2 dB, i.e., for DDB (Ptr/Pref = 1.8
dB). Hence, moving from 5 taps to 11 taps and from symbol-
by-symbol detection to sequence detection yields performance
gains on the order of 3 dB and 5 dB, respectively.

In the case of 4-PAM operating at 100 Gbit/s, the best
schemes for 5-taps pre-equalization with symbol-by-symbol
detection and sequence detection are FR (Ptr/Pref = 5.7
dB) and DB (Ptr/Pref = 2.4 dB), respectively, with the
latter providing a 3.3 dB gain over the former. When using
11 taps, DB is the best modulation for both symbol-by-
symbol detection (Ptr/Pref = 2.8 dB) and sequence detection
(Ptr/Pref = 0.0 dB), with the latter performing 2.8 dB better
than the former. Note that at 100 Gbit/s, for a given number
of taps and a given detection method, the best schemes for 4-
PAM outperform the best schemes for 2-PAM, by roughly 4.5
dB and 2 dB for symbol-by-symbol detection and sequence
detection, respectively.

Finally, we consider 4-PAM operating at 200 Gbit/s, using
11-tap pre-equalization. Table I shows that DB is the best
scheme, for both symbol-by-symbol detection (Ptr/Pref = 19.1
dB) and sequence detection (Ptr/Pref = 13.7 dB), with the

latter offering a 5.4 dB performance advantage. Compared to
the best schemes for 100 Gbit/s with 5 taps (11 taps) pre-
equalization, doubling the bitrate from 100 Gbit/s to 200 Gbit/s
gives rise to a power penalty of 13.4 dB (16.3 dB) for symbol
detection and 11.3 dB (13.7 dB) for sequence detection.

V. CONCLUSIONS

In this contribution, we have investigated limited-
complexity pre-equalization for full response and partial re-
sponse signaling in the context of high-rate data transmission
on electrical interconnects. We have presented the math-
ematical framework for deriving the MMSE pre-equalizer
coefficients under an average transmit power contraint. For
a specific representative interconnect, we have determined the
symbol error performance for various combinations of data
rate (100 Gbit/s, 200 Gbit/s), type of signaling (FR, DB,
DDB), constellation size (2-PAM, 4-PAM), detection method
(symbol-by-symbol detection, sequence detection) and pre-
equalizer complexity (5 taps, 11 taps). The various schemes
have been compared in terms of the required transmit power
in order to achieve a symbol error probability of 10−9.

This study illustrates the need for carefully selecting the
constellation size, the signaling format, the detection method
and the pre-equalizer complexity in order to achieve a satis-
factory error performance for transmission at 100 Gbit/s and
beyond on electrical interconnects.
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