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Summary: In diverse fields of empirical research—including many in the biological sciences—attempts are made to

decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example,

we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via

body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has

been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of

statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and

statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator,

or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious

decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual

definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later

ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions

under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the

assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI and GGT

from the Izhevsk Family Study. We aim to bridge the gap from ‘single mediator theory’ to ‘multiple mediator practice’,

highlighting the ambitious nature of this endeavour and giving practical suggestions on how to proceed.
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1. Introduction

Exploring the relative strength of different pathways from an exposure to an outcome is a

topic that has interested scientists across diverse fields for many decades. Early literature

(Wright, 1921) through to the 1980s (Bentler, 1980; Baron and Kenny, 1986) focused on

path analytic approaches, based on linear regression and structural equation models (SEMs).

Under stringent parametric constraints, particular combinations of parameters from these

models were taken to represent path-specific effects.

Starting with Robins and Greenland (1992), then Pearl (2001), followed by an explosion of

recent contributions (see Ten Have and Joffe, 2012, and references therein, and more recent

papers by VanderWeele and co-authors), the formal language and estimation methods from

the field of causal inference have shone light on this problem and widened the scope of such

analyses, under more explicit assumptions.

Robins and Greenland (1992) and Pearl (2001) used potential outcomes (Neyman, 1923;

Rubin, 1978) to give model-free definitions of direct and indirect effect estimands. Informally,

a direct effect acts around a mediating variable of interest, whereas the indirect effect acts

through this mediator; ‘direct’ thus refers to all other pathways other than through the

mediator being considered. The mediator could be multivariate, but if so its constituent

variables are considered en bloc: the direct effect acts around them all, and the indirect

effect is through at least one of them without being further disentangled (Figure 1 A).

[Figure 1 about here.]

In a setting with two mediators, M1 and M2 (see Figure 1 B), there are four possible

pathways from exposure (X) to outcome (Y ): through M1 alone, through M2 alone, through

both and through neither. In this paper, our primary aim is to express the total causal effect

of X on Y as the sum of separate effects along each of the possible pathways: the finest

possible decomposition. The existing literature on multiple (> 2) pathways from exposure to
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outcome can be characterized as follows; either (1) M2 is the mediator of interest, and M1 is

treated as a mediator–outcome confounder affected by exposure, leading to a coarser two-way

decomposition into an effect (indirect) through M2 and an effect (direct) not through M2

(Tchetgen Tchetgen and Shpitser, 2012; Vansteelandt and VanderWeele, 2013; VanderWeele

et al., 2014; VanderWeele and Chiba, 2014) (2) path-specific effects are estimated, but not in

such a way that their sum equals the total causal effect (Avin et al., 2005; Albert and Nelson,

2011), and (3) the multiple mediators do not causally affect one another (MacKinnon, 2000;

Preacher and Hayes, 2008), i.e. the arrow from M1 to M2 in Figure 1 B is assumed absent,

reducing the number of path-specific effects to three. Imai and Yamamoto (2013) fall into all

three categories in different sections of their paper, but at no point discuss the finest possible

decomposition of the total causal effect in the presence of the arrow from M1 to M2.

The outline for the remainder of the article is as follows. In Section 2 we briefly review

mediation estimands in the single mediator setting. In Section 3 we give our proposed

classification of estimands when there are two causally-ordered mediators, showing how

decomposition can be achieved, and suggesting strategies for reducing complexity. Section

4 gives sufficient assumptions under which the estimands introduced in Section 3 can be

identified, including details of a sensitivity analysis, and estimation methods are discussed

briefly in Section 5. The approach is illustrated in Section 6 using data from the Izhevsk

Family Study, and we conclude with some discursive remarks in Section 7. Extensions to n

causally-ordered mediators (Figure 1 C) are given in the Web Appendix.

2. A brief review of causal mediation estimands for one mediator

We briefly review mediation estimands for a single mediator. A more detailed account is

given in Daniel et al. (2014).

Consider an exposure X, mediator M and outcome Y (Figure 1 A). The total, direct and

indirect effects defined by Robins et al. (1992) and Pearl (2001) involve the counterfactual
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variables M(x), Y (x), Y (x,m) and Y (x,M(x′)). These are, respectively, the value M would

take were X set to x, the value Y would take were X set to x, the value Y would take were

X set to x and M to m, and the value Y would take were X set to x and M to M(x′).

For simplicity, we take X to be binary. The controlled direct effect (CDE) at

level m of M is E {Y (1,m)− Y (0,m)}, the pure natural direct effect (PNDE)

is E {Y (1,M(0))− Y (0,M(0))}, and the total natural direct effect (TNDE) is

E {Y (1,M(1))− Y (0,M(1))}. In each definition, M takes the same value in both halves of

the contrast, corresponding to a ‘direct’ effect. For the CDE, this value of M is the same for

all individuals, whereas for the natural direct effects, it differs by individual, according to

the value that M would naturally take were X set to 0 (pure) or 1 (total).

The pure natural indirect effect (PNIE) is E {Y (0,M(1))− Y (0,M(0))}, and the total

natural indirect effect (TNIE) is E {Y (1,M(1))− Y (1,M(0))}. Note that these correspond

to the idea of an indirect (mediated) effect, since they capture the effect on Y of changing

X, but only via its effect on M . The first argument of the counterfactual is the same in both

halves of each contrast, but this fixed value can be either 0 (pure) or 1 (total).

Note that the sum of the PNDE and TNIE and the sum of the TNDE and PNIE are the

same, and that this quantity is the total causal effect (TCE) of X on Y : PNDE + TNIE =

TNDE+PNIE = E {Y (1,M(1))− Y (0,M(0))} = E {Y (1)− Y (0)} = TCE. That is, there

are two definitions (pure and total) of natural direct and indirect effects, and two ways of

decomposing the TCE into a sum of a natural direct and indirect effect. VanderWeele (2013)

shows that the difference TNDE − PNDE = TNIE − PNIE corresponds to a ‘mediated

interaction’, non-zero if and only if there is an effect ofX onM and an interaction betweenX

and M in their effect on Y . Thus the choice between the definitions/decompositions, which

(in many contexts) is somewhat arbitrary, amounts to assigning the mediated interaction

either to the direct or indirect effect.
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3. Causal mediation estimands with two causally-ordered mediators

Turning to the setting with two mediators (Figure 1 B) we first note that M1 can affect M2

but not vice versa; in some applications, there may be doubt as to the direction of the arrow

between M1 and M2, which would introduce further difficulties beyond the scope of this

paper. We define four path-specific effects—one not mediated by either M1 or M2 (Figure 1

D), one through M1 alone (Figure 1 E), one through M2 alone (Figure 1 F), and one through

both M1 and M2 (Figure 1 G)—such that these sum to the TCE.

3.1 Potential values of mediators and outcome

Let M1(x), M2(x,m1), Y (x,m1,m2), M2 (x,M1 (x
′)) and Y (x,M1 (x

′) ,M2 (x
′′,M1 (x

′′′))) be

defined according to the obvious extensions of the definitions given in Section 2.

3.2 Natural direct effects

Let the natural-000 direct effect through neither M1 nor M2 be NDE-000 =

E {Y (1,M1(0),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}. This is the obvious extension

of the PNDE to two mediators and is the direct effect defined by Avin et al. (2005) and

Albert and Nelson (2011). The first argument is the only one that changes, from 1 to 0,

making it a direct effect. The other three arguments are fixed at 0; this is why we label it

‘000’. Rather than two types of effect (pure and total), there are now 8 types of effect—000,

100, 010, 001, 110, 101, 011 and 111—corresponding to each of the ways in which the other

three arguments could be set. See Table 1 for all 8 definitions.

[Table 1 about here.]

3.3 Indirect effects that allow decomposition

We now define indirect effects through M1 alone, M2 alone, and through both M1 and M2

such that their sum, together with the natural-000 direct effect, is equal to the TCE.

The natural-100 indirect effect through M1 alone is NIE1-100 =
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E {Y (1,M1(1),M2(0,M1(0)))− Y (1,M1(0),M2(0,M1(0)))}. Intuitively, this corresponds to

an indirect effect of X on Y via M1 alone since it captures the effect of X on Y only through

its effect on M1, with the effect of M1 on M2 removed. The argument that differs between

the two potential outcomes is the second one, the x shown here: Y (·,M1(x),M2(·,M1(·))).

The first argument is set to 1 in both potential outcomes, whereas the arguments that follow

x are set to 0; this is why we label it ‘100’. Similarly, the natural-110 indirect effect through

M2 alone is NIE2-110 = E {Y (1,M1(1),M2(1,M1(0)))− Y (1,M1(1),M2(0,M1(0)))},

and the natural-111 indirect effect through both M1 and M2 is NIE12-111 =

E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(1),M2(1,M1(0)))}, with each of the seven

other types given in Table 1. Note that only the 000 effects have been defined in previous

literature (Avin et al., 2005; Albert and Nelson, 2011).

For each effect type, we define its level to be the sum of the three fixed x-arguments. Thus

NDE-000 is a level-0 effect, NIE1-100 is a level-1 effect, etc.

Using the effects chosen above, it is easily verified that the total causal effect decomposes:

TCE = NDE-000 + NIE1-100 + NIE2-110 + NIE12-111. (1)

Note that Albert and Nelson (2011) study NDE-000 + NIE1-000 + NIE2-000 + NIE12-000,

and calculate each path-specific 000 effect as a proportion of this sum. Since this sum is

not in general equal to the total causal effect, these proportions are not analogous to the

‘proportion mediated’ typically calculated in settings with one mediator (Pearl, 2001).

3.4 Alternative decompositions

The decomposition given in (1) is not the only such decomposition. With one mediator

there are two types (pure and total) of two path-specific effects (direct and indirect); with

two mediators, there are eight types of four path-specific effects. Forming sums by choosing

one type of each effect, with one mediator, we found that two out of the four possible

sums equate to the TCE (PNDE+TNIE=TNDE+PNIE=TCE, but PNDE+PNIE ̸=TCE



6 Biometrics,

and TNDE+TNIE ̸=TCE). With two mediators, there are 84 = 4096 possible sums, and 24

of them equate to the TCE. That is, there are exactly 24 ways of decomposing the TCE into

a sum of its path-specific components through and around two mediators: the decomposition

shown in (1) and 23 others (see Table 2). That these 24 are unique and represent all possible

decompositions follows from the more general argument (for n mediators) given in Web

Appendix A, where we show that there are (2n)! ways of decomposing a TCE into a sum of

path-specific effects through n mediators.

[Table 2 about here.]

With n = 2, each decomposition includes one level-0, one level-1, one level-2, and one

level-3 effect. In short, there are 4! = 24 ways of allocating these four levels to the four

paths, and this gives rise to the 24 possible decompositions.

3.5 Example: Linear structural equation model with interactions

For illustration, we suppose that the data were generated from a linear structural equation

model with interactions (and, for simplicity, no confounders), i.e. a model implying the

following conditional expectations: E (M1 |X ) = α0 + αxX, E (M2 |X,M1 ) = β0 + βxX +

βm1M1 + βxm1XM1 and E (Y |X,M1,M2 ) = γ0 + γxX + γm1M1 + γm2M2 + γxm1XM1 +

γxm2XM2 + γm1m2M1M2 + γxm1m2XM1M2. Note that once interaction terms (or other

nonlinearities) are included in the SEM, the simple method of multiplying path coefficients

to calculate path-specific effects cannot be applied (VanderWeele and Vansteelandt, 2009).

In Web Appendix B we derive each of the 32 path-specific estimands in this special case in

terms of the parameters above, together with certain conditional variance/covariance terms.

For example, we have that

NDE-000 = γx + γxm1α0 + (γxm2 + γxm1m2α0) (β0 + βm1α0)︸ ︷︷ ︸+γxm1m2βm1σ
2
m1
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where σ2
m1

= Var (M1 |X ), and

NIE2-000 = γm2βx + γm1m2βxα0 + βxm1α0 (γm2 + γm1m2α0)︸ ︷︷ ︸+γm1m2βxm1σ
2
m1

where the terms denoted by the underbraces could be set to zero by adding appropriate

constants to M1 and M2 (so that α0 = β0 = 0); although in the presence of interactions

these terms differ for different effect types (see Web Appendix B). Note that NIE2-000,

for example, contains γm2βx, the term that would result from applying the “product of

coefficients” methods to a linear model without interactions (Wright, 1921). It also has a

further term involving σ2
m1

if there are two interactions present. A similar expression is seen

for NDE-000, where the ‘standard’ direct effect (γx) appears along with a variance term. The

formulæ for some of the other effects involves the covariance of M1(0) and M1(1); we return

to this point later. Note that the natural effects derived here would coincide with those used

in the LSEM approach in the absence of all interactions.

3.6 Practical suggestions for reducing complexity

With two mediators, it can be feasible to estimate all 32 path-specific effects, and hence all

24 decompositions, and compare them. However, with more mediators, the complexity grows

at such a rate that this becomes impractical, even for three mediators (see Web Appendix

A). In this section, we give three suggestions for reducing this complexity.

3.6.1 Focusing on effects of greatest substantive interest. Depending on the exposure, it

can often be argued that the 000 effects are substantively most interesting, and easiest to

interpret. For example, if X = 1 denotes a new experimental medical treatment, with X = 0

for the standard treatment, then the 000 effects are most naturally interpreted, since they

entail setting the free arguments in the effect to what they would be under the standard

treatment. If, in addition, one particular mediator is of greater interest than the others, then

the number of decompositions one needs to consider could be partially reduced by focusing
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only on decompositions that include level 000 of the indirect effect through the mediator of

interest (e.g. for M2, decompositions 9, 10, 14, 17, 21 and 23 in Table 2). With two mediators,

therefore, this strategy reduces the number of decompositions from 24 to 6.

3.6.2 Summary natural path-specific effects. We define the summary natural path-specific

effects SNDE (direct), SNIE1 (through M1 only), SNIE2 (through M2 only) and SNIE12

(through both M1 and M2) as follows:

SNDE =
1

4
(NDE-000 + NDE-111) +

1

12

∑
0<i+j+k<3

NDE-ijk

SNIE1 =
1

4
(NIE1-000 + NIE1-111) +

1

12

∑
0<i+j+k<3

NIE1-ijk

and similarly for SNIE2 and SNIE12.

The weights (1
4
and 1

12
) follow from how the path-specific types contribute to each of the

24 decompositions: in columns 2–5 of Table 2, each type-1 and type-8 (000 and 111) effect

appears 6 times, and each of the other effect types appears twice. It follows therefore that

SNDE + SNIE1 + SNIE2 + SNIE12 = TCE (2)

and (2) represents a summary of the 24 decompositions, which itself is a decomposition of the

TCE into four (summary) path-specific effects. Whereas with one mediator, the summary

direct and indirect effects can be interpreted as the direct and indirect effects that would be

seen in a particular randomized experiment (see Web Appendix C), we are not aware of a

similar intuitive interpretation of the summary effects for two or more mediators.

When summarising the effects in this fashion, it would be useful also to consider the

variability of the component effects, so that this information is not entirely lost. For example,

for the direct effects, we define:

var-NDE =
1

4

{
(NDE-000− SNDE)2 + (NDE-111− SNDE)2

}
+

1

12

∑
0<i+j+k<3

(NDE-ijk − SNDE)2 ,

weighted to reflect that the SNDE will be closer to NDE-000 and NDE-111 than to the other

effects. Similar expressions for var-NIE1, var-NIE2 and var-NIE12 are omitted.
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3.6.3 Mediator-specific natural effects. Another option is to focus on a coarser decom-

position. Indeed, as the number of mediators increases, we are unlikely to be interested in

each of the 2n path-specific effects. For example, with two mediators, we could combine the

effect through both M1 and M2 with either the effect through M1 alone, or with the effect

through M2 alone, leaving us with a decomposition into only three effects: the direct effect,

and two mediator-specific effects. Graphically, the path shown in Figure 1 G could either be

combined with that of Figure 1 F or with that of Figure 1 E. Both lead to natural nested

interpretations as follows. In the former (combining G and F, which we will denote as MS1,

mediator-specific type 1) the mediator-specific direct effect is the effect through neither M1

nor M2, the mediator-specific effect through M1 is the effect through M1 but not through

M2, and the mediator-specific effect through M2 is all of the effect through M2. Similar

definitions would apply to the latter (combining G and E, which we will denote as MS2). It

is perhaps easier to understand this ‘nesting’ argument, by generalising to three mediators,

as shown in Figure 1 H–Q.

The algebraic definitions are given in the bottom half of Table 1. Note that such a sequential

treatment of multiple mediators is also discussed in VanderWeele and Vansteelandt (2014).

These summaries do not assume no exposure–mediator or no mediator–mediator inter-

actions, as would be required in linear structural equation modelling (see Web Appendix

D). Discrepancies between these and estimates obtained under a no-interactions assumption

would prompt more closely studying the original contributing path-specific effects.

4. Assumptions that permit identification

4.1 Identification assumptions

Sufficient assumptions for the identification of the TCE are:
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(T.1) Consistency of X on Y : Y (x) = Y if X = x. For those with exposure x, outcome Y

and potential outcome Y (x) coincide (Rubin, 1978; Cole and Frangakis, 2009).

(T.2) No unmeasured confounding of the X–Y relationship: Formally, Y (x) ⊥⊥ X |C = c for

all c, where C is a set of measured background confounders, not affected by X.

Assumption (T.1) is required for the TCE to be interpretable as the effect that would be

seen in a hypothetical experiment in which we intervene on X in a well-defined fashion. The

consistency assumption then states that the results are relevant for any kind of intervention

which is such that it would have produced the data we have for those for whom X = x is

naturally observed.

Assumption (T.2) states that, after taking into account observed background confounders

C, any remaining association between X and Y can be given a causal interpretation.

This intuition carries through to the extensions of these assumptions in the remainder of

this section.

For the CDE, a sufficient set of assumptions is:

(C.1) Consistency of (X,M) on Y : Y (x,m) = Y if X = x and M = m.

(C.2) No unmeasured confounding of the (X,M)–Y relationship: Y (x,m) ⊥⊥ X |C = c for

all c and Y (x,m) ⊥⊥ M |C = c, X = x,L = l for all (c, l), where L is a set of measured

intermediate confounders, where ‘intermediate’ is used to denote that L may be affected

by X (but not by M).

If we assume that the data are generated from a non-parametric structural equation model

(NPSEM, see Pearl, 2009; Daniel et al., 2014) then, for the identification of the PNDE,

TNDE, PNIE and TNIE, a sufficient set of assumptions is (C.1), (C.2), and, in addition:

(N.3) Consistency of X on M : M(x) = M if X = x.

(N.4) No unmeasured confounding of the X–M relationship: M(x) ⊥⊥ X |C = c for all c.

(N.5) No mediator–outcome confounders affected by X, i.e. no intermediate confounders L.
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Without the NPSEM assumption, (N.5) is replaced by Y (x,m) ⊥⊥ M(x′)|C =

c, ∀c, m, x = 0, 1, x′ = 0, 1, which is more difficult to interpret. Either version of assumption

(N.5) can be relaxed, but only under strong parametric restrictions. For further details of all

aspects of this subsection, see Daniel et al. (2014).

4.2 Assumptions for identifying path-specific effects with two causally-ordered mediators

4.2.1 Non-parametric identification. For the CDE with two mediators

(E {Y (1,m1,m2)− Y (0,m1,m2)}), (C.1) and (C.2) generalize to:

(MC.1) Consistency of (X,M1,M2) on Y .

(MC.2) No unmeasured confounding of the (X,M1,M2)–Y relationship: Y (x,m1,m2) ⊥

⊥ X |C = c for all c, Y (x,m1,m2) ⊥⊥ M1 |C = c, X = x,L1 = l1 for all (c, l1) and

Y (x,m1,m2) ⊥⊥ M2 |C = c, X = x,L1 = l1,M1 = m1,L2 = l2 for all (c, l1, l2), where C

are measured background confounders (unaffected by X, M1 or M2), L1 is a set of

measured intermediate confounders, which may be affected by X, but not by M1, and

L2 is a second set of measured intermediate confounders, which may be affected by X

and/or M1, but not by M2. See Web Figure 5 A.

Under (MC.1) and (MC.2), the CDE is then identified using the g-computation formula

(Robins, 1986); see Web Appendix E.

The generalisations of (N.3)–(N.5) (for the natural effects) to two mediators, under the

assumption that the data are generated from a NPSEM, are as follows:

(MN.3) Consistency of X on M1 and of (X,M1) on M2.

(MN.4) No unmeasured confounding of the X–M1 or (X,M1)–M2 relationships :

M1(x) ⊥⊥ X |C = c for all c, M2(x,m1) ⊥⊥ M1 |C = c, X = x,L1 = l1 for all (c, l1) and

M2(x,m1) ⊥⊥ X |C = c for all c.

(MN.5) No mediator–outcome confounder affected by X, i.e. no (L1,L2) (Web Appendix F).
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Each half of each of the natural path-specific effects in Table 1 is of the form

E {Y (x,M1(x
′),M2(x

′′,M1(x
′′′)))} (3)

and thus if we could identify (3) under assumptions (MC.1), (MC.2) and (MN.3)–(MN.5),

all effects in Table 1 would be identified. To this end, we have the following result:

Theorem 1: Under assumptions (MC.1), (MC.2) and (MN.3)–(MN.5), we have that:

E {Y (x,M1(x
′),M2(x

′′,M1(x
′′′)))}

=

∫
C

∫
M1

∫
M1

∫
M2

E {Y |C = c, X = x,M1 = m1,M2 = m2}

· fM2|C,X,M1 (m2 |c, x′′,m′
1 ) fM1(x′′′)|C,M1(x′) (m

′
1 |c,m1 ) fM1|C,X (m1 |c, x′ )

· fC (c) dµM2 (m2) dµM1 (m
′
1) dµM1 (m1) dµC (c) . (4)

For the proof, see Web Appendix H.

Note that (4) involves one density (shown in a box) not written as a function of the

distribution of the observed data. A sensitivity analysis when this is unknown is discussed

in the next section. There are two special cases in which the boxed quantity in (4) is not

required, or is trivially known.

Special case 1: x′ = x′′′.

If x′ = x′′′, then fM1(x′)|C,M1(x′) (m
′
1 |c,m1 ) = I (m1 = m′

1). Thus all path-specific estimands

in which x′ = x′′′ in both halves of the expression are nonparametrically identified under

assumptions (MC.1), (MC.2) and (MN.3)–(MN.5). These are: NDE-000, NDE-010, NDE-

101, NDE-111, NIE2-000, NIE2-100, NIE2-011 and NIE2-111. Also, note that MS1-NDE-00

and MS1-NDE-11, together with all of the MS2-NDE, MS2-NIE1 and MS2-NIE2 effects, are

made up of effects in which x′ = x′′′, and thus are also identified under assumptions (MC.1),

(MC.2) and (MN.3)–(MN.5).

Special case 2: No effect of M1 on M2.

If there is no effect of M1 on M2, the calculation above simplifies as follows
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Corollary 1: Under assumptions (MC.1), (MC.2) and (MN.3)–(MN.5), if there is no

effect of M1 on M2:

E {Y (x,M1(x
′),M2(x

′′))}

=

∫
C

∫
M1

∫
M2

E {Y |C = c, X = x,M1 = m1,M2 = m2}

· fM2|C,X (m2 |c, x′′ ) fM1|C,X (m1 |c, x′ ) fC (c) dµM2 (m2) dµM1 (m1) dµC (c) .

All effects (when M1 does not affect M2) are thus nonparametrically identified under

assumptions (MC.1), (MC.2) and (MN.3)–(MN.5).

In the absence of an effect of M1 on M2, the definitions and decompositions given in

Section 3 simplify. There is no longer a path through both M1 and M2, and thus the fourth

argument in each half of each effect disappears. This leaves 12 effects, and 6 decompositions;

the effects are listed in Table 3, with the decompositions given in Web Table 1. Some of

these effects and decompositions correspond to those given by Imai and Yamamoto (2013);

in particular, Imai and Yamamoto define the NDE-00, NDE-01, NDE-10, NDE-11, NIE1-00,

NIE1-11, NIE2-00 and NIE2-11, but not the remaining 4 effects (see Table 3) and they point

out that TCE = NDE-01 + NIE1-00 + NIE2-11 = NDE-10 + NIE1-11 + NIE2-00 but do not

give the other four possible decompositions (see Web Table 1). A summary of the comparison

between the estimands defined and identified in the current manuscript versus those defined

and identified in the previous literature is given in Web Table 2.

[Table 3 about here.]

Note that the decompositions given in Web Table 1 apply also to the mediator-specific

natural effects defined in Section 3.6.3.

As already noted, Avin et al. (2005) define only 000 effects, but, by symmetry, their

identification result applies also to the 111 effects. Insofar as they can be compared, our result

agrees with that of Avin et al. since they conclude that the effect along the direct pathway



14 Biometrics,

(X → Y ) and the effect along the indirect pathway through M2 alone (X → M2 → Y )

are identifiable, but that the effects along the other two pathways (X → M1 → Y and

X → M1 → M2 → Y ) are not. This corresponds to what we find, since NDE-000, NDE-111,

NIE2-000 and NIE2-111 are all included in our list of effects which can be estimated without

the sensitivity parameter, whereas none of the NIE1 or NIE12 effects is included in this list.

4.2.2 Identification and sensitivity analysis under a particular parametric model. When

there is an effect of M1 on M2, the effects not listed under ‘special case 1’ above require

knowledge of the boxed quantity in (4) when x′ ̸= x′′′. Under most estimation strategies (see

Section 5), we would assume a parametric model for the distribution of M1 given X and C,

for example that M1 |C, X ∼ N (f (C, X;β) , σ2), and we would estimate the parameters

β and σ2 from data on C, X and M1. Under assumptions (MN.3) and (MN.4) and if our

model for M1 |C, X is correctly specified, this gives us M1(x) |C ∼ N (f (C, x;β) , σ2) for

x = 0, 1. In this case, in order to know the boxed quantity in (4), we would need, in addition

to this model, the conditional correlation between M1(0) and M1(1) given C. There is no

information in the data on the value of this correlation; a sensible approach would thus be

to vary this parameter in a sensitivity analysis.

For example, consider the following form for the SEM for M1: M1 = h (C, X) +

UM1,0 (1−X)+UM1,1X+UM1,2, for some function h (C, X), where UM1 = (UM1,0, UM1,1, UM1,2)

and 
UM1,0

UM1,1

UM1,2

 ∼ N




0

0

0

 , σ2


1− κ2 0 0

0 1− κ2 0

0 0 κ2



 .

Then M1(1) |M1(0),C ∼ N (h (c, 1) + κ2 (M1(0)− h (c, 0)) , (1− κ4)σ2). Note that σ2 =

Var (M1 |C, X ) can be estimated from the data. However, the data contain no information

on κ2, the proportion of residual variance shared across worlds; this becomes the sensitivity
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parameter, to be varied from 0 to 1. For more details, see Web Appendix J. An example of

this sort of sensitivity analysis is given in Section 6.

A similar approach was taken by Daniels et al. (2012), for discrete mediators by Albert

and Nelson (2011), and in the context of treatment noncompliance by Roy et al. (2008). Note

that this sensitivity analysis solely assesses sensitivity to the arbitrary choice of conditional

distribution of M1(1) given M1(0) and C; it does not explore sensitivity to departures from

the other assumptions, namely (MC.1), (MC.2) and (MN.3)–(MN.5). An extensive literature

on sensitivity analyses with respect to the single mediator versions of these assumptions

exists, including in the presence of mediator–outcome confounders affected by the exposure

(see, for example, Imai et al., 2010; Tchetgen Tchetgen and Shpitser, 2012; VanderWeele

and Chiba, 2014). In future work, we will extend these sorts of sensitivity analyses to the

current setting.

An alternative route to parametric identification and sensitivity analysis would be to extend

the ‘no interaction’ assumption made by Robins and Greenland (1992) and relaxed by Imai

and Yamamoto (2013). Given, however, that the 24 possible decompositions differ precisely

when interactions are present, assuming them away may not be as attractive.

In Web Appendix K, we show what our identification results imply for the special case of

the linear model with interactions introduced in Section 3.5, and in Web Appendix L, we

show how identification is achieved, up to a set of sensitivity parameters, in the presence of

a restricted pattern of intermediate confounding.

5. A note on estimation methods

The most obvious estimation approach is to posit parametric (regression) models for each

density/expectation in the identifying equations above, to estimate their parameters from the

observed data (e.g. by maximum likelihood), and then to evaluate the integrals analytically.

Pearl (2009) calls this approach the mediation formula. Closely-related to the g-computation
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formula (Robins, 1986), which can be used to estimate controlled direct effects in the presence

of intermediate confounding, the mediation formula makes the additional step of integrating

over the (conditional counterfactual) mediator distribution, in order to obtain natural effects

(VanderWeele and Vansteelandt, 2009, 2010). When the integration is too cumbersome to

be done analytically, it can instead be done by Monte Carlo simulation (Robins, 1986; Imai

et al., 2010; Daniel et al., 2011).

The advantage of relying heavily on parametric models is that this approach is efficient

when all models are correct; however, as pointed out by Robins and Wasserman (1997) and

further discussed by Vansteelandt et al. (2012), the disadvantage is that it can be essentially

impossible to specify these models such that they imply a sensible parsimonious model

for the direct effect of interest. For this reason, and, more generally, to reduce reliance on

parametric modelling assumptions, alternative semiparametric estimation approaches have

been suggested (van der Laan and Petersen, 2008; VanderWeele, 2009; Vansteelandt et al.,

2012; Tchetgen Tchetgen and Shpitser, 2012; Zheng and van der Laan, 2012). G-computation

has nevertheless turned out to be rather successful in recent empirical applications (Young

et al., 2011; Westreich et al., 2012).

We therefore adopt the fully-parametric approach, implemented by Monte Carlo simula-

tion, extending it to handle multiple mediators and incorporating the sensitivity analysis of

Section 4.2.2. In future work, semiparametric estimation methods will be explored.

6. An illustrative data example: the Izhevsk Family Study

6.1 Data and question of interest

The population-based controls from a case-control study conducted in Izhevsk, Russia (Leon

et al., 2007) are used to study the effect of heavy drinking during the previous year (defined

as the consumption of > 10 litres ethanol) on systolic blood pressure (SBP), measured
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in mmHg. We decompose this into an effects via body mass index (BMI), via gamma-

glutamyl transpeptidase (GGT), via both BMI and GGT, and a direct effect, i.e. via other

pathways. BMI is known to affect GGT (and not vice versa), and thus the set-up is as we

have discussed, with M1 = BMI and M2 = GGT. We estimate the path-specific effects

using data on 1275 men with complete information on yearly ethanol consumption (from

which ‘heavy drinking’ is derived) and all baseline confounders: age (treated as a continuous

variable), socio-economic status (SES) score (the first principal component from an asset

score analysis), smoking status (current/ex/never) and cigarettes per day (6 10,10–20,> 20):

together we label these confounders C (Leon et al., 2007). Note that in this setting there are

no (measured) intermediate confounders. Subjects with missing values of BMI, GGT and/or

SBP are not excluded, since these partially-observed records can be incorporated, under the

missing at random assumption (Rubin, 1976). Some descriptive statistics are shown in Web

Table 3.

6.2 Estimation by parametric g-computation via Monte Carlo simulation

Flexible parametric models for M1 |C, X , M2 |C, X,M1 and Y |C, X,M1,M2 were explored.

To render the normality assumption for the errors more tenable, M1 and M2 (i.e. BMI and

GGT) were log-transformed. All models included all possible two- and three-way interactions

between exposure and mediators, so that the path-specific effects of different types differ as

much as the data dictate. In addition, quadratic terms for the continuous variables (age, SES,

BMI and GGT) were considered where relevant, as well as interactions between exposure

and confounders; these were included only if they improved the AIC (see Web Appendix M).

Write E (M1 |C, X ) = ν1 (C, X;β1), E (M2 |C, X,M1 ) = ν2 (C, X,M1;β2), and

E (Y |C, X,M1,M2 ) = ν3 (C, X,M1,M2;β3) for the conditional expectations implied by

this model, and let the error variances be σ2
1, σ

2
2 and σ2

3, respectively.

The estimation of path-specific effects is carried out as follows.
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(1) Estimate the parameters (β,σ) of the structural equation model by OLS/ML.

(2) For each subject i, draw Vi from N (0, κ2σ̂2
1). κ is the sensitivity parameter (see Web

Appendix J), to be varied between 0 (no cross-world correlation conditional on C) and

1 (perfect cross-world correlation conditional on C).

(3) For x = 0, 1, draw M1,i (x) for each i from N
(
ν1

(
Ci, x; β̂1

)
+ Vi, (1− κ2) σ̂2

1

)
.

(4) For x = 0, 1 and x′ = 0, 1, draw M2,i (x,M1,i(x
′)) from N

(
ν2

(
Ci, x,M1,i(x

′); β̂2

)
, σ̂2

2

)
.

(5) For x = 0, 1, x′ = 0, 1, x′′ = 0, 1 and x′′′ = 0, 1, draw Yi (x,M1,i(x
′),M2,i(x

′′,M1,i(x
′′′)))

from N
(
ν3

(
Ci, x,M1,i(x

′),M2,i(x
′′,M1,i(x

′′′)); β̂3

)
, σ̂2

3

)
.

(6) To estimate each of the 32 effects E {Y (x,M1(x
′),M2(x

′′,M1(x
′′′)))

−Y (z,M1(z
′),M2(z

′′,M1(z
′′′)))}, the empirical average of

Yi (x,M1,i(x
′),M2,i(x

′′,M1,i(x
′′′)))− Yi (z,M1,i(z

′),M2,i(z
′′,M1,i(z

′′′))) is found.

To decrease Monte Carlo error, the simulation is done on a dataset 1000 times the size

of the original (with the values of C copied 1000 times), although the estimation of the

parameters σ2
1, σ

2
2, σ

2
3 is based on the original sample. Standard errors are computed using

the nonparametric bootstrap. For comparison, a LSEM (with no interactions) is also fitted.

6.3 Results

The results are shown in Tables 4 and 5 and Web Figures 1 and 2. There is evidence of

a total effect of heavy drinking on SBP, but the associated confidence interval is wide

(mean difference 7.63mmHg, 95% CI 3.89–11.37). Only a small proportion (1.7%) of the

large variation in SBP across this sample of men is explained by the dichotomous heavy

drinking variable. It is not surprising therefore that the estimates of the various path-specific

effects are also imprecise. Examination of the residual distribution for each contributing

associational model shows good agreement with the assumption of normality while evidence

for the interaction terms was weak (see Web Table 5). There is evidence of a small indirect

effect through GGT alone (mean difference ranging from 2.85 to 3.10mmHg, lower 95%
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confidence limit ranging from 1.05 to 1.43, upper 95% confidence limit ranging from 4.31 to

5.06), little evidence of path-specific effects through either BMI alone or both BMI and GGT,

with the remaining part of the total effect attributed to a direct effect via other pathways

(mean difference ranging from 5.07 to 5.25mmHg, lower 95% confidence limit ranging from

1.35 to 1.48, upper 95% confidence limit ranging from 8.76 to 9.03). There is little variation

between the eight versions of each effect. As a consequence, when we depict the 24 possible

decompositions in Figure 2, they are all similar, which suggests—in this example—that

conclusions about the comparative strengths of different pathways could be drawn from just

one particular decomposition.

[Table 4 about here.]

[Table 5 about here.]

[Figure 2 about here.]

Due to the lack of important interactions, the summary effects included in Table 4 and

Web Figure 1 are similar to each of the 8 effects in each instance. They are also similar to the

results obtained when assuming no exposure–mediator interactions as implicitly done when

fitting a traditional LSEM and multiplying path coefficients (note however the narrower CIs

in the latter, due to the assumption of no interactions). The mediator-specific effects (Table 5

and Web Figure 2) also show a similar picture, with little difference between the two ways of

defining the mediator-specific effects, due to the small magnitude of the path-specific effect

through both BMI and GGT.

The results appear to be insensitive to variations in κ (Tables 4 and 5), and confirm that

some effects do not depend on κ as theory suggests (see Web Figures 16 to 19).
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6.4 Limitations

The exposure (heavy drinking) is likely subject to misclassification. This is of particular

concern in mediation analyses, if either of the mediators (in this case GGT) is a good proxy

for the true exposure, leading to an inflation of the estimated indirect effect. A feature

of the Izhevsk Family Study, not exploited here, is that extremely rich information was

collected (from both the subjects and a proxy) on the types, quantities and patterns of

alcohol consumption. In these analyses we used only the information on estimated total

ethanol consumption in one year and simplified it into a binary variable (heavy/not heavy).

Concerns that the indirect effect through GGT could be inflated due to GGT’s role as a

good proxy for true alcohol exposure could potentially be reduced by incorporating more of

the collected alcohol information.

In this setting, assumptions (T.2), (MC.2) and (MN.4) imply that age, SES and smoking

are sufficient to control for confounding of the alcohol–BMI, alcohol–GGT and alcohol–

SBP relationships, and that BMI and alcohol, in addition to these baseline confounders are

sufficient to control for confounding of the GGT–SBP relationship. In addition, we assume

that all the specified parametric models are correctly specified, and that the assumptions

made regarding the missing data mechanisms justified.

7. Concluding remarks

Researchers are often interested in a decomposition into multiple path-specific effects through

many mediators, but due to the focus in the causal inference literature primarily on

one mediator, multiple mediator analyses are typically performed using LSEM, ignoring

interactive and non-linear effects, and often ignoring the effect of one mediator on another.

We have shown that extending the mediation framework to multiple mediators gives rise

to complexities (in terms of multiplicity of definitions) and challenges (for identification)
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beyond what might have been anticipated. As well as outlining these, we have provided

suggestions on how to proceed in practice, via coarser decompositions and summary effects.

Important future developments include extending semiparametric estimation approaches to

estimate the effects defined here.

Supplementary material

Web Appendices, Tables and Figures, referenced in Sections 1, 3.4–3.6, 4.2 and 6.1–6.3 are

available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Top line: representations of mediation with (A) one, (B) two and (C) n mediators, causally-ordered.

Second line: a depiction of mediation through two causally-ordered mediators, with each of the four paths from X

to Y highlighted; (D) shows the direct path (through neither M1 nor M2), (E) the indirect path through M1 alone,

(F) the indirect path through M2 alone, and (G) the indirect path through both M1 and M2. Lines 3 and 4: an

illustration of the two possible ways of defining mediator-specific natural effects through three mediators. (H)–(L)

show the first way, and (M)–(Q) the second.
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Figure 2. With κ = 1 (perfect correlation between M1(0) and M1(1) given C), all 24 possible decompositions

of the total causal effect of heavy drinking on SBP into four path-specific components: a direct effect unmediated by

BMI or GGT, an indirect effect via BMI alone, an indirect effect via GGT alone, and an indirect effect via both BMI

and GGT. The numbers superimposed on the bars represent the code for that effect type (as defined in the caption

of Table 2). The numbers along the x-axis represent the decomposition number, also defined in Table 2.
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Table 1
The top half of this table gives the definitions of all natural path-specific effects when there are two causally ordered

mediators. There are eight versions (one level-0, three level-1, three level-2 and one level-3) of each of the four
effects (direct, indirect through M1 alone, indirect through M2 alone, and indirect through both M1 and M2). The
ones shown in bold are the ones defined in Sections 3.2 and 3.3. Note that the level 0-effects are those studied by

Avin et al. (2005) and Albert and Nelson (2011). The bottom half of the table gives the definitions of the
mediator-specific effects introduced in Section 3.6.3.

Path Level Effect Definition

0 NDE-000 E {Y (1,M1(0),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
1 NDE-100 E {Y (1,M1(1),M2(0,M1(0)))− Y (0,M1(1),M2(0,M1(0)))}
1 NDE-010 E {Y (1,M1(0),M2(1,M1(0)))− Y (0,M1(0),M2(1,M1(0)))}

Direct 1 NDE-001 E {Y (1,M1(0),M2(0,M1(1)))− Y (0,M1(0),M2(0,M1(1)))}
(through ∅) 2 NDE-110 E {Y (1,M1(1),M2(1,M1(0)))− Y (0,M1(1),M2(1,M1(0)))}

2 NDE-101 E {Y (1,M1(1),M2(0,M1(1)))− Y (0,M1(1),M2(0,M1(1)))}
2 NDE-011 E {Y (1,M1(0),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(1)))}
3 NDE-111 E {Y (1,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(1,M1(1)))}

0 NIE1-000 E {Y (0,M1(1),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
1 NIE1-100 E {Y (1,M1(1),M2(0,M1(0)))− Y (1,M1(0),M2(0,M1(0)))}

Indirect 1 NIE1-010 E {Y (0,M1(1),M2(1,M1(0)))− Y (0,M1(0),M2(1,M1(0)))}
through 1 NIE1-001 E {Y (0,M1(1),M2(0,M1(1)))− Y (0,M1(0),M2(0,M1(1)))}
M1 2 NIE1-110 E {Y (1,M1(1),M2(1,M1(0)))− Y (1,M1(0),M2(1,M1(0)))}
only 2 NIE1-101 E {Y (1,M1(1),M2(0,M1(1)))− Y (1,M1(0),M2(0,M1(1)))}

2 NIE1-011 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(1)))}
3 NIE1-111 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(0),M2(1,M1(1)))}

0 NIE2-000 E {Y (0,M1(0),M2(1,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
1 NIE2-100 E {Y (1,M1(0),M2(1,M1(0)))− Y (1,M1(0),M2(0,M1(0)))}

Indirect 1 NIE2-010 E {Y (0,M1(1),M2(1,M1(0)))− Y (0,M1(1),M2(0,M1(0)))}
through 1 NIE2-001 E {Y (0,M1(0),M2(1,M1(1)))− Y (0,M1(0),M2(0,M1(1)))}
M2 2 NIE2-110 E {Y (1,M1(1),M2(1,M1(0)))− Y (1,M1(1),M2(0,M1(0)))}
only 2 NIE2-101 E {Y (1,M1(0),M2(1,M1(1)))− Y (1,M1(0),M2(0,M1(1)))}

2 NIE2-011 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(0,M1(1)))}
3 NIE2-111 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(1),M2(0,M1(1)))}

0 NIE12-000 E {Y (0,M1(0),M2(0,M1(1)))− Y (0,M1(0),M2(0,M1(0)))}
1 NIE12-100 E {Y (1,M1(0),M2(0,M1(1)))− Y (1,M1(0),M2(0,M1(0)))}

Indirect 1 NIE12-010 E {Y (0,M1(1),M2(0,M1(1)))− Y (0,M1(1),M2(0,M1(0)))}
through 1 NIE12-001 E {Y (0,M1(0),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(0)))}
both M1 2 NIE12-110 E {Y (1,M1(1),M2(0,M1(1)))− Y (1,M1(1),M2(0,M1(0)))}
and M2 2 NIE12-101 E {Y (1,M1(0),M2(1,M1(1)))− Y (1,M1(0),M2(1,M1(0)))}

2 NIE12-011 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(1,M1(0)))}
3 NIE12-111 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(1),M2(1,M1(0)))}

MS1-NDE-00 E {Y (1,M1(0),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
MS1-NDE-01 E {Y (1,M1(0),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(1)))}
MS1-NDE-10 E {Y (1,M1(1),M2(0,M1(0)))− Y (0,M1(1),M2(0,M1(0)))}
MS1-NDE-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(1,M1(1)))}

MS1-NIE1-00 E {Y (0,M1(1),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
MS1-NIE1-01 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(1)))}
MS1-NIE1-10 E {Y (1,M1(1),M2(0,M1(0)))− Y (1,M1(0),M2(0,M1(0)))}
MS1-NIE1-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(0),M2(1,M1(1)))}

MS1-NIE2-00 E {Y (0,M1(0),M2(1,M1(1)))− Y (0,M1(0),M2(0,M1(0)))}
MS1-NIE2-01 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(0,M1(0)))}
MS1-NIE2-10 E {Y (1,M1(0),M2(1,M1(1)))− Y (1,M1(0),M2(0,M1(0)))}
MS1-NIE2-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(1),M2(0,M1(0)))}

MS2-NDE-00 E {Y (1,M1(0),M2(0,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
MS2-NDE-01 E {Y (1,M1(0),M2(1,M1(0)))− Y (0,M1(0),M2(1,M1(0)))}
MS2-NDE-10 E {Y (1,M1(1),M2(0,M1(1)))− Y (0,M1(1),M2(0,M1(1)))}
MS2-NDE-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(1,M1(1)))}

MS2-NIE1-00 E {Y (0,M1(1),M2(0,M1(1)))− Y (0,M1(0),M2(0,M1(0)))}
MS2-NIE1-01 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(0),M2(1,M1(0)))}
MS2-NIE1-10 E {Y (1,M1(1),M2(0,M1(1)))− Y (1,M1(0),M2(0,M1(0)))}
MS2-NIE1-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(0),M2(1,M1(0)))}

MS2-NIE2-00 E {Y (0,M1(0),M2(1,M1(0)))− Y (0,M1(0),M2(0,M1(0)))}
MS2-NIE2-01 E {Y (0,M1(1),M2(1,M1(1)))− Y (0,M1(1),M2(0,M1(1)))}
MS2-NIE2-10 E {Y (1,M1(0),M2(1,M1(0)))− Y (1,M1(0),M2(0,M1(0)))}
MS2-NIE2-11 E {Y (1,M1(1),M2(1,M1(1)))− Y (1,M1(1),M2(0,M1(1)))}
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Table 2
All 24 possible decompositions of the total causal effect (TCE) into a direct effect (NDE), an indirect effect via M1

alone (NIE1), an indirect effect via M2 alone (NIE2), and an indirect effect via both M1 and M2 (NIE12). In each
decomposition, there is one level-0 effect, one level-1 effect, one level-2 effect, and one level-3 effect. The definitions
of each of these effects is given in Table 1. In columns 2–5, the effect types are labelled: 1=000, 2=100, 3=010,

4=001, 5=110, 6=101, 7=011, and 8=111.

Decomp- Effect and type
TCE =

osition NDE NIE1 NIE2 NIE12

1 1 2 5 8 NDE-000 + NIE1-100 + NIE2-110 + NIE12-111
2 1 2 8 5 NDE-000 + NIE1-100 + NIE2-111 + NIE12-110
3 1 5 2 8 NDE-000 + NIE1-110 + NIE2-100 + NIE12-111
4 1 6 8 2 NDE-000 + NIE1-101 + NIE2-111 + NIE12-100
5 1 8 2 6 NDE-000 + NIE1-111 + NIE2-100 + NIE12-101
6 1 8 6 2 NDE-000 + NIE1-111 + NIE2-101 + NIE12-100
7 2 1 5 8 NDE-100 + NIE1-000 + NIE2-110 + NIE12-111
8 2 1 8 5 NDE-100 + NIE1-000 + NIE2-111 + NIE12-110
9 3 5 1 8 NDE-010 + NIE1-110 + NIE2-000 + NIE12-111
10 3 8 1 6 NDE-010 + NIE1-111 + NIE2-000 + NIE12-101
11 4 6 8 1 NDE-001 + NIE1-101 + NIE2-111 + NIE12-000
12 4 8 6 1 NDE-001 + NIE1-111 + NIE2-101 + NIE12-000
13 5 1 3 8 NDE-110 + NIE1-000 + NIE2-010 + NIE12-111
14 5 3 1 8 NDE-110 + NIE1-010 + NIE2-000 + NIE12-111
15 6 1 8 3 NDE-101 + NIE1-000 + NIE2-111 + NIE12-010
16 6 4 8 1 NDE-101 + NIE1-001 + NIE2-111 + NIE12-000
17 7 8 1 4 NDE-011 + NIE1-111 + NIE2-000 + NIE12-001
18 7 8 4 1 NDE-011 + NIE1-111 + NIE2-001 + NIE12-000
19 8 1 3 7 NDE-111 + NIE1-000 + NIE2-010 + NIE12-011
20 8 1 7 3 NDE-111 + NIE1-000 + NIE2-011 + NIE12-010
21 8 3 1 7 NDE-111 + NIE1-010 + NIE2-000 + NIE12-011
22 8 4 7 1 NDE-111 + NIE1-001 + NIE2-011 + NIE12-000
23 8 7 1 4 NDE-111 + NIE1-011 + NIE2-000 + NIE12-001
24 8 7 4 1 NDE-111 + NIE1-011 + NIE2-001 + NIE12-000
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Table 3
The definitions of all natural path-specific effects when there are two mediators that are not causally ordered. There
are four versions (one level-0, two level-1 and one level-2) of each of the three effects (direct, indirect through M1

and indirect through M2; note that there is no effect through both M1 and M2 when the mediators are not causally
ordered).

Path Level Effect Definition

0 NDE-00 E {Y (1,M1(0),M2(0))− Y (0,M1(0),M2(0))}
Direct 1 NDE-10 E {Y (1,M1(1),M2(0))− Y (0,M1(1),M2(0))}
(through ∅) 1 NDE-01 E {Y (1,M1(0),M2(1))− Y (0,M1(0),M2(1))}

2 NDE-11 E {Y (1,M1(1),M2(1))− Y (0,M1(1),M2(1))}

0 NIE1-00 E {Y (0,M1(1),M2(0))− Y (0,M1(0),M2(0))}
Indirect 1 NIE1-10 E {Y (1,M1(1),M2(0))− Y (1,M1(0),M2(0))}
through M1 1 NIE1-01 E {Y (0,M1(1),M2(1))− Y (0,M1(0),M2(1))}

2 NIE1-11 E {Y (1,M1(1),M2(1))− Y (1,M1(0),M2(1))}

0 NIE2-00 E {Y (0,M1(0),M2(1))− Y (0,M1(0),M2(0))}
Indirect 1 NIE2-10 E {Y (1,M1(0),M2(1))− Y (1,M1(0),M2(0))}
through M2 1 NIE2-01 E {Y (0,M1(1),M2(1))− Y (0,M1(1),M2(0))}

2 NIE2-11 E {Y (1,M1(1),M2(1))− Y (1,M1(1),M2(0))}
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Table 4
Estimates, SEs and 95% confidence intervals for the total causal effect (TCE), followed by each of path-specific

effects we have defined. All estimates are for mean differences in SBP measured in mmHg. The results are given for
three values of the sensitivity parameter κ: 1, 0.5 and 0.

Effect
κ = 1 κ = 0.5 κ = 0

Estimate 95% CI Estimate 95% CI Estimate 95% CI

TCE 7.63 (3.89,11.37) 7.62 (4.04,11.20) 7.64 (4.05,11.24)

NDE-000 5.08 (1.38,8.78) 5.08 (1.35,8.81) 5.09 (1.53,8.66)
NDE-100 5.07 (1.35,8.79) 4.92 (1.13,8.70) 4.88 (1.25,8.51)

NDE-010 5.25 (1.47,9.03) 5.25 (1.52,8.98) 5.26 (1.62,8.90)
NDE-001 5.24 (1.48,9.01) 5.17 (1.45,8.90) 5.16 (1.52,8.80)
NDE-110 5.11 (1.46,8.76) 4.96 (1.28,8.65) 4.91 (1.39,8.44)
NDE-101 5.10 (1.44,8.77) 5.11 (1.43,8.79) 5.11 (1.59,8.62)

NDE-011 5.21 (1.45,8.97) 5.14 (1.44,8.83) 5.12 (1.50,8.73)
NDE-111 5.21 (1.46,8.95) 5.21 (1.53,8.89) 5.21 (1.62,8.80)

SNDE 5.15 (1.57,8.73) 5.12 (1.56,8.68) 5.11 (1.68,8.54)√
var-NDE 0.07 0.10 0.11

DEnointer 5.24 (1.72,8.76) 5.24 (1.73,8.75) 5.24 (1.86,8.62)

NIE1-000 −0.36 (−1.01,0.29) −0.23 (−1.02,0.56) −0.18 (−1.05,0.69)
NIE1-100 −0.36 (−1.01,0.28) −0.50 (−1.13,0.13) −0.54 (−1.22,0.14)
NIE1-010 −0.39 (−100,0.21) −0.39 (−1.06,0.28) −0.36 (−1.09,0.37)

NIE1-001 −0.39 (−100,0.21) −0.42 (−1.07,0.22) −0.41 (−1.08,0.27)
NIE1-110 −0.36 (−1.01,0.29) −0.23 (−1.02,0.56) −0.18 (−1.05,0.69)
NIE1-101 −0.43 (−1.09,0.24) −0.50 (−1.21,0.21) −0.51 (−1.23,0.21)
NIE1-011 −0.39 (−100,0.23) −0.41 (−1.03,0.22) −0.39 (−1.03,0.25)

NIE1-111 −0.42 (−1.09,0.24) −0.37 (−1.10,0.36) −0.34 (−1.12,0.45)

SNIE1 −0.40 (−0.98,0.18) −0.39 (−0.99,0.20) −0.37 (−0.99,0.24)√
var-NIE1 0.02 0.07 0.09

IEnointer
1 −0.39 (−0.94,0.16) −0.40 (−0.96,0.15) −0.38 (−0.94,0.18)

NIE2-000 2.85 (1.39,4.32) 2.86 (1.45,4.27) 2.85 (1.41,4.30)
NIE2-100 3.04 (1.09,4.98) 3.04 (1.04,5.04) 3.03 (1.04,5.03)
NIE2-010 2.96 (1.05,4.87) 3.03 (1.09,4.97) 3.06 (1.10,5.01)

NIE2-001 2.85 (1.39,4.32) 2.86 (1.45,4.27) 2.85 (1.41,4.30)
NIE2-110 2.96 (1.05,4.87) 3.03 (1.09,4.97) 3.06 (1.10,5.01)
NIE2-101 3.10 (1.14,5.06) 3.18 (1.14,5.22) 3.19 (1.13,5.25)
NIE2-011 2.93 (1.43,4.44) 2.94 (1.46,4.41) 2.93 (1.46,4.40)

NIE2-111 3.04 (1.09,4.98) 3.04 (1.04,5.04) 3.03 (1.04,5.03)

SNIE2 2.96 (1.56,4.36) 2.97 (1.56,4.38) 2.97 (1.55,4.39)√
var-NIE2 0.08 0.10 0.10

IEnointer
2 2.34 (1.27,3.41) 2.34 (1.24,3.45) 2.34 (1.26,3.42)

NIE12-000 −0.05 (−0.17,0.08) −0.04 (−0.25,0.17) −0.03 (−0.32,0.25)
NIE12-100 −0.05 (−0.20,0.10) 0.01 (−0.20,0.23) 0.04 (−0.24,0.32)
NIE12-010 −0.12 (−0.29,0.06) −0.14 (−0.44,0.17) −0.13 (−0.51,0.24)

NIE12-001 −0.05 (−0.20,0.10) 0.01 (−0.20,0.23) 0.04 (−0.24,0.32)
NIE12-110 −0.12 (−0.34,0.09) 0000 (−0.35,0.36) 0.06 (−0.36,0.48)
NIE12-101 −0.05 (−0.21,0.10) −0.12 (−0.44,0.20) −0.14 (−0.53,0.26)
NIE12-011 −0.05 (−0.17,0.08) −0.06 (−0.26,0.15) −0.05 (−0.32,0.21)

NIE12-111 −0.05 (−0.20,0.10) 0.01 (−0.20,0.23) 0.04 (−0.24,0.32)

SNIE12 −0.08 (−0.22,0.05) −0.07 (−0.22,0.07) −0.06 (−0.22,0.09)√
var-NIE12 0.04 0.08 0.10

IEnointer
12 −0.07 (−0.19,0.04) −0.08 (−0.19,0.03) −0.07 (−0.19,0.04)
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Table 5
Estimates, SEs and 95% confidence intervals for the total causal effect (TCE), followed by each of mediator-specific
effects we have defined. All estimates are for mean differences in SBP measured in mmHg. The results are given for

three values of the sensitivity parameter κ: 1, 0.5 and 0.

Effect
κ = 1 κ = 0.5 κ = 0

Estimate 95% CI Estimate 95% CI Estimate 95% CI

TCE 7.63 (3.89,11.37) 7.62 (4.04,11.20) 7.64 (4.05,11.24)

MS1-NDE-00 5.08 (1.38,8.78) 5.08 (1.35,8.81) 5.09 (1.53,8.66)

MS1-NDE-10 5.11 (1.46,8.76) 4.96 (1.28,8.65) 4.91 (1.39,8.44)

MS1-NDE-01 5.24 (1.48,9.01) 5.17 (1.45,8.90) 5.16 (1.52,8.80)

MS1-NDE-11 5.21 (1.46,8.95) 5.21 (1.53,8.89) 5.21 (1.62,8.80)

MS1-NIE1-00 −0.39 (−100,0.21) −0.39 (−1.06,0.28) −0.36 (−1.09,0.37)

MS1-NIE1-10 −0.36 (−1.01,0.28) −0.50 (−1.13,0.13) −0.54 (−1.22,0.14)

MS1-NIE1-01 −0.39 (−100,0.23) −0.41 (−1.03,0.22) −0.39 (−1.03,0.25)

MS1-NIE1-11 −0.42 (−1.09,0.24) −0.37 (−1.10,0.36) −0.34 (−1.12,0.45)

MS1-NIE2-00 2.81 (1.35,4.26) 2.82 (1.41,4.23) 2.82 (1.38,4.26)

MS1-NIE2-10 2.97 (1.09,4.86) 2.91 (0.98,4.84) 2.89 (0.98,4.8)

MS1-NIE2-01 2.82 (1.35,4.28) 2.80 (1.39,4.21) 2.80 (1.36,4.24)

MS1-NIE2-11 2.91 (1.03,4.79) 3.04 (1.10,4.99) 3.09 (1.11,5.08)

MS2-NDE-00 5.08 (1.38,8.78) 5.08 (1.35,8.81) 5.09 (1.53,8.66)

MS2-NDE-10 5.10 (1.44,8.77) 5.11 (1.43,8.79) 5.11 (1.59,8.62)

MS2-NDE-01 5.25 (1.47,9.03) 5.25 (1.52,8.98) 5.26 (1.62,8.90)

MS2-NDE-11 5.21 (1.46,8.95) 5.21 (1.53,8.89) 5.21 (1.62,8.80)

MS2-NIE1-00 −0.51 (−1.25,0.23) −0.53 (−1.27,0.22) −0.49 (−1.25,0.26)

MS2-NIE1-10 −0.49 (−1.27,0.29) −0.50 (−1.29,0.29) −0.48 (−1.30,0.34)

MS2-NIE1-01 −0.43 (−1.10,0.24) −0.45 (−1.12,0.23) −0.42 (−1.11,0.27)

MS2-NIE1-11 −0.48 (−1.2,0.24) −0.49 (−1.23,0.25) −0.47 (−1.21,0.27)

MS2-NIE2-00 2.85 (1.39,4.32) 2.86 (1.45,4.27) 2.85 (1.41,4.30)

MS2-NIE2-10 3.02 (1.11,4.94) 3.03 (1.06,4.99) 3.02 (1.06,4.99)

MS2-NIE2-01 2.93 (1.43,4.44) 2.94 (1.46,4.41) 2.93 (1.46,4.40)

MS2-NIE2-11 3.04 (1.09,4.98) 3.04 (1.04,5.04) 3.03 (1.04,5.03)


