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Abstract— We present a preconditioner for an intrusive
Stochastic Galerkin Method (SGM) based scattering solver that
also leverages the Multilevel Fast Multipole Method (MLFMM).
The proposed preconditioner is essential in developing a general
and intrusive SGM method. The simulation results were obtained
for a canonical scattering structure with perfect electrically
conducting (PEC) strips with statistically varying geometry.
Results are reported for the number of iterations, with and
without using a preconditioner, and for the time required to
setup the preconditioner.

I. INTRODUCTION

Stochastic modeling of electromagnetic structures that ex-
hibit inherent variability has been studied in recent years.
Methods based on polynomial chaos expansion (PCE) have
better accuracy and efficiency over traditional Monte Carlo
(MC) analysis [1]. These methods can be divided into two
classes: non-intrusive ones, which rely on reusing a tradi-
tional deterministic solver, and intrusive solvers, which require
modification of the computational algorithm. Both types were
combined with the Method of Moments (MoM) for solving
Boundary Integral Equation (BIE) scattering problems [2].
The basic idea of all PCE based methods is to describe the
random variations by a linear combination of polynomials. The
number of polynomials K grows rapidly with the number of
stochastic parameters and the polynomial order. The intrusive
SGM approach results in a large linear system of equations that
needs to be solved. To decrease the computational time needed
to solve such a large system, the Multilevel Fast Multipole
Method (MLFMM) is invoked [3]. It was shown that the cal-
culation of matrix element interactions through a plane wave
decomposition of the Green’s function remains applicable in
the stochastic case if the variations of sources residing in
sufficiently separated boxes are mutually independent. The
total complexity of one matrix-vector product is shown to be
equal to the deterministic MLFMM complexity scaled by a
factor that depends on K. To further decrease the solution
time, the number of iterations in the iterative solver should be
reduced.
We consider the same structure as in [3], which is a standard
structure for analyzing novel methods. PEC strips are orga-
nized in a periodic two-dimensional, but finite array, as in
Fig. 1. For each strip, its width w is considered as a random

variable, as well as its y-coordinate of the position of its center,
which is described by its relative offset h w.r.t. the nominal
value. The nominal positions of the centers are equally spaced
with a constant spacing T . The variability is described with
vectors of widths w and heights h, which are chosen to
be independent uniformly distributed random variables. The
widths vary between 0.5T − λ/20 and 0.5T + λ/20, while
heights vary between −λ/20 and λ/20, where T = 0.5λ, and
λ is the wavelength.
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Fig. 1. Periodic 2D array of PEC strips. Widths w and heights h are random.
The figure is taken from [3]

In order to show the benefits of the SGM-MLFMM, in [3],
the 2× 2 structure in Fig. 1 was taken as a starting point and
expanded into a 4× 4 and 8× 8 structure, keeping the same
rectangular organization of the strips. It was shown that the
crossover point, when a SGM-based MoM and MLFMM are
compared, is the same as in the deterministic case.
To reduce the number of iterations, we introduce a precon-
ditioner that is based on a block-Jacobi preconditioner. This



type of a preconditioner was introduced in [4]. The SGM
matrix exhibits a block structure where the diagonal blocks
are, in general, equal to the average (mean) matrix Z0 of
the structure. The random variations are to be found in the
other blocks. This means that the resulting matrix is diagonally
dominant, and for small relative variations, this block diagonal
matrix with Z0 on the diagonal is a good representation of
the whole matrix and thus it can be used as a preconditioner.
However, when using the MLFMM, the entire Z0 with size
N ×N is never stored. Therefore, the preconditioner is based
on the diagonal blocks within the Z0 matrix that correspond
to the near interactions, in our case, near interactions between
points in one box on the lowest MLFMM level that contain
one PEC strip. The organization of this matrix is presented
schematically in Fig. 2. The black squares within the diagonal
block correspond to the near interactions within one box and
in the MLFMM approach these blocks are actually stored.
The size of the blocks could be increased at the cost of a
higher setup time, since the number of sources and random
variables inside the block are increased. Moreover, more near
interactions in the MLFMM tree would be involved which
affects the solution time.
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Fig. 2. Block diagonal organization of the preconditioner matrix. Due to the
lack of the space, the simple situation for the 2 × 2 array with K = 4 is
presented.

II. SIMULATION RESULTS

Here we provide results for two types of the structures,
one involving 4 × 4 and another involving 8 × 8 strips. The
first structure is represented with 32 random variables and
discretized with N = 320 unknowns. The second one is
described with 128 random variables and discretized with 1280
unknowns. Simulations are obtained with total polynomial
orders 1 and 2, as presented in Table I. The iterative precision
is set to 10−8 and a stabilized biconjugate gradient iterative

solver is used [5]. To compare results, we will focus on the
total setup time tse, solution time tso and the number of
iterations Niter needed to obtain the predefined accuracy. The
last column in Table I indicates whether the preconditioner was
used or not. The total number of unknowns is Nstoc = KN .

TABLE I
SIMULATION RESULTS

Nstoc K tse [s] tso[s] Niter Preconditioner
10 560 33 16.4 3 49 yes
10 560 33 15.7 12.9 225 no
179 520 561 76 100 56 yes
179 520 561 74.4 450 258 no
165 120 129 90 249 190 yes
165 120 129 88.6 987 778 no

10 732 800 8 385 423 31 114 212 yes
10 732 800 8 385 422 116 816 818 no

It is clear from the table that the number of iterations when
using a preconditioner is smaller than without preconditioner.
This significantly reduces the solution time, even though the
time for a single iteration is increased due to the application
of the preconditioner. We can see small differences in setup
time, which now involves additional calculation of the inverse
of the block matrix. However, this difference is negligible
compared to the total time. It is clear that this type of the pre-
conditioner, although simple, remains effective for the SGM-
MLFMM solver. Even for small electromagnetic structures,
this preconditioner is needed, since complexity grows fast with
the number of polynomials K.

III. CONCLUSIONS

Developing an efficient preconditioner is essential in the
construction of general and intrusive MLFMM-based stochas-
tic methods. We have shown that a simple block-Jacobi
preconditioner can serve for this purpose. The choice of the
preconditioner is based on the particular properties of the
SGM matrix and the geometry. One should be careful when
determining the size of the blocks on which preconditioning
will be applied, especially so for large structures. Further
research is needed to combine this preconditioner with large
electromagnetic structures and to study their effectiveness.
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