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Abstract

This paper investigates the control challenges posed by non-collocated mechatronic systems and motivates the need for
a model-based control technique towards such systems. A novel way of online constraint handling by penalty adaptation
(PAMPC) is proposed and shown to be of particular relevance towards robust control of underdamped, non-collocated
systems by exploiting the structure of such systems. Further, a new tunneling approach is proposed for PAMPC to maintain
feasibility under uncertainty. The PAMPC is shown to be optimal for control of a benchmark mass-spring-damper system,

which poses all the mentioned challenges.
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1. Introduction

All actively controlled mechatronic systems are either collocated, or non-collocated. When the sensor measures at the
same point where the actuation occurs, such systems are termed as collocated. It turns out that the dynamic characteristics
of collocated systems are favourable for control system design. However, in real life, mechatronic applications generally
are non-collocated and in addition underdamped which pose unique challenges for the control engineer. Some such cases
include, bridges or flexible beams (Qiu et al., 2009) and production machines e.g. harvesters (Xie et al., 2013).

The flexible beam model is often used to analyze several characteristics of underdamped, non-collocated systems and
their control. In (Sokolov & Babitsky, 2001), the cantilever beam model was used to study vibration suppression with
non-collocated piezoelectric actuator and accelerometer. The proposed method of phase shifting was used to account for
the non-collocation effects and was effective in suppressing the first two bending modes of the beam.

When controllers are designed for lightly damped structures, shifting or damping resonances is often the main concern.
However, when it comes to non-collocated systems, anti-resonances should be considered as well. Further, an inaccurate
model estimation may result in interchanging the order of poles and zeros. This, together with the presence of hard actuator

constraints, could render the closed-loop unstable. Therefore, classical control techniques like pole-zero compensators
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with no systematic means of handling constraints can perform poorly given these characteristics of non-collocated systems
(Preumont, 2011). Over the last three decades Model Predictive Control (MPC) has occupied the center stage in the control
research community and had a tremendous impact on the process industry (H.Lee, 2011). Through the past decade there
is a gradual shift to the mechatronic domain, mainly fueled by progress in fast nonlinear MPC algorithms. In a collocated
setting, generalized predictive control has heen found to be suitable for damping the first vibration mode of a pinned-free
beam model by (Richelot et al., 2004). (Brown et al., 2013) used Generalized predictive control for reducing the vibration
of ground vehicles but have not considered constraints. The work carried by (Wills et al., 2008) highlighted the usefulness
of MPC in handling constraints for active noise and vibration control. However, to our knowledge no results are reported
on model based predictive control of non-collocated systems subjected to constraints.

In this paper, we present a novel online constraint management method, PAMPC and exploit the structure of under-
damped non-collocated systems to tune the PAMPC in nominal as well as perturbed settings. Further, we present tunneling
as a straightforward method to recover performance and feasibility under process disturbances as opposed to more con-
servative and computationally demanding approaches like min-max MPC (Maciejowski, 2002). The paper is structured as
follows: Section 2 presents the characteristics of a non-collocated system by means of a mass-spring-damper (MSD) sctup.
A PID-controller is tuned to highlight the difficultics in the control of a non-collocated system. Section 3 gives a bricl
on MPC and introduces the penalty adaptive constraint management system. The PAMPC design procedure for vibrating
systems followed by robustness and feasibility analysis is detailed in section 4. A demonstration of PAMPC in nominal
and perturbed settings on MSD setup is presented in section 5. Finally, the major conclusions of this research are presented
in section 6.

2. Non-collocation: Characteristics and Control

Non-collocation arises when the input force acts on the system at one point and the sensor measures the response at another.
These are limitations posed by the design of the mechatronic systems. It may be seldom feasible to act and sense at the
same point in reality.

Collocated systems, where the sensor and actuator are placed in the same position has the following property (Preumont,
2011): there is just one anti-resonance between two consecutive resonances. However, for non-collocated actuator-sensor

systems, the above property is lost. It additionally poses the following problems:

1. As the sensor moves away from the actuator, the zeros migrate along the imaginary axis towards infinity and reappear
from infinity on real axis.

2. If the resulting non-minimum phase zeros are within the system bandwidth, they can put severe restriction on the control
system.

3. A pole-zero flipping might result due to modest variations in system paramcicers and can causc the corresponding branch

in the root locus to become unstable!

As a direct consequence of the above, non-collocated control suffers from lack of robustness. We prove this over a

mass-spring-damper set-up, that classical controller like PID lacks severely in terms of performance and stability.

2.1. Mass-spring-damper setup

The setup of Fig. 1(a) corresponds to a rectilinear electromechanical apparatus from ECP. The input of the plant is the
voltage sent to the motor u and the outputs of the plant are the mass displacements (; and y3).
The electrical motor dynamics are fast compared to the mechanical dynamics, which means that the motor can be
represented by a pure static gain:
F(t) = Ku(t) ()
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Fig. 1. (a): Mass spring damper setup, (b): Root locus of MSD demonstrating (nen)collocation property

The parameters of the system are:

ml = 1.7kg.m2 = 1.2kg, k1 = k2 = 800N/m,
k3 = 450N/m, ¢l = ON/(m/s), K = 3.35N/V

)

A mathematical representation of the system in Fig. 1(a) is derived from the free body diagram and the application of

Newton's Second Law of motion.

F(t) = magn + ka(yn —y2) + kb

0 = matfs + c1ta + kaye — ka(yr — ¥2)

Assuming zero initial conditions, the Laplace transform of (3) results in :

F(s) = m1sYi(s) + (k1 + k2)Yi(s) — kaYa(s)
0= m232Y2(s) + BYg(S) =}~ (kg 4+ JC:;JYQ(S) — kaYq (S)

Further algebraic manipulations lead to:

LS
=

or, including also model of the motor:

Y
E—-K

where the characteristic polynomial C'har Poly is given by:

mys? + e1s + (ko + ky)

CharPoly

¥

mas® +cys + (k2 + kg)

Char Poly

Y, ko

F ~ CharPoly

Y, ks

U~ KC!mrPoly

mytngs® +myers® + [my (ke + ka) + ma(ky + k2)ls® + c1(ky + k2)s + kika + kaks + ksky

@)

(4)

(5)

(6)
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Fig. 2. (a): Mass-2 response to step input of 1V, (b): Mass-2 frequency response function

In the first casc, the position encoder measures the displacement of mass one y, at the same point as the input force from
motor actuation, u, thus making the system collocated. In the second case, the displacement of mass two 5 is measured at
a different point than the input force u, thus making the system non-collocated.

The plot of Fig. 1(b) demonstrates some of the key distinguishing features of collocated and non-collocated systems.
The first is the alternating poles and zeros near the imaginary axis. This is the case for collocated systems i.e. mass-1 and
does not exist for non-collocated systems like mass-2. Another principal feature is stability. For mass-1, the stable region is
the negative real plane, and therefore this collocated system is and will be stable because the poles stay in the LH plane with
increasing gain. However, for mass-2, since the imaginary zeros are no longer present, thus the system can very quickly
become unstable as the poles travel to the positive RH plane. The step response of mass-2 is plotted in Fig. 2(a) which
highlights the oscillatory response and long settling time.

A system identification using prediction error method is performed on the MSD system, and the corresponding frequency
response function for the non-collocated case of mass-2 is plotted in Fig. 2(b). Multisine excitation signals covering the
band of interest were used for the identification with 10 ms sampling time.

Recollect that, a feature of collocated systems like mass-1 is the presence of an anti-resonance between two consecutive
resonance frequencies. This means the phase always oscillates within 0° and —180°. Furthermore, the zeros of the collocated
system are in fact the natural frequencies of the same system with the additional restraint at the collocated sensor and actuator.
Since the anti-resonant frequencies are based on the actuator-sensor location, the mass-2 bode plot of Fig. 2(b) depicts the

absence of the anti-resonance between the same two resonant frequencies and thus there is no 180° phase lead.

2.2. PID control

The objective is to control the position of the second mass which is a non-collocated scenario. A trivial but not at all suitable
choice is PID control. The PID-controller possesses three tuning parameters: the proportional gain K, the integration time
T;, and the differentiation time 75;. Towards tuning, a relay feedback test with relay amplitude r is applied to the process which
makes the output oscillate around the set-point with a certain critical amplitude A, and critical period T,. Consequently,

Wﬁc. The experiment is performed on the mass-spring-damper and yields :

the critical gain can be computed as K, =

r=0.5V, T.=0.25s, A.=0.35cm 8)
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Fig. 3. (a): Auto-tuner root locus with a pair of overlapped zeros, (b): Nyquist of AH-autotuner open loop

Starting from (8), Astrém and Hagglund have suggested several ways to compute the PID tuning parameters. We use a

tuning method similar to Ziegler-Nichols (Astrom & Wittenmark, 2011):
K, =06Kc¢; Ty=0.125Tc¢c; T;=4Ty %)

The resulting PID makes the closed loop unstable. This can be explained by the root locus analysis presented in Fig.
3(a).

In our case, the PID has a pole at origin and two overlapped real zeros. This clearly does not suffice to control a system
with two pairs of underdamped poles. As marked on this plot, the closed loop corresponding to the tuning parameters (9) is
clearly unstable, as the underdamped pole pair is already on the right half plane. This is a consequence of a non-collocated
system with relative order 3, i.e. 3 zeros at infinity. The root locus of Fig. 3(a) has one asymptote along the negative real
axis and two asymptotes at =% with unstable branches.

This can be further explained with the Nyquist diagram of Fig. 3(b). The auto-tuning methods determine the critical
frequency of the plant by the relay experiment and then enforce the open loop i.e. controller*plant to pass through the
desired point on the complex plane at the plants critical frequency. However, in our special case with resonances, the open
loop frequency response encircles the (—1,0) point at a frequency greater then the critical frequency, which leads to the
instability.

The poorly damped fourth order system gives an unstable closed loop when PID controllers are tuned with auto-tuners
or at best oscillatory response with settling time larger than open loop with other tuning techniques (De Keyser et al., 2012).
PIDs can neither control the oscillations, because of the poorly damped pole pair near the imaginary axis of the closed
loop. A further inclusion of actuator limits can have disastrous consequences on the closed loop, as it is well known that
clipping signals can make the system output unbounded (Camacho & Bordons, 2003). Therefore, a more sophisticated

model based control which cannot only counter the system dynamics but also deal with the constraints in a systematic

manner, is deemed necessary.

3. Constrained MPC by Penalty Adaptation

MPC is a form of control in which the current control action is obtained by solving on-line, during each sampling period,

a finite horizon open-loop optimal control problem (Maciejowski, 2002). This is done using the current state of the plant
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as the initial state for prediction of future states for which the optimization yields an optimal control sequence and the
first control value in this sequence is applied to the plant (i.e. receding horizon). Next, we present a brief description of
the Extended Prediction Self-Adaptive Control (EPSAC) and subsequently propose a novel semi-analytic formulation of
handling constraints online.

3.1. The EPSAC approach to MPC

The process is modeled with y(t), z(t), n(t) as process output, model output, disturbance respectively as (De Keyser,

2003):

q “B(g") Cla™)
A(g™) D(q~1)

where B /A represents the model dynamics with d samples delay and C/D is chosen to form the disturbance filter, with e

y(t) = z(t) +n(t) = u(t — 1) +

e(t) (10)

as white noise. The fundamental step is based on the prediction using the basic process model given by:
y(t + klt) = z(t + k|t) +n(t + k) 1))

where y(t + k|t) is the prediction of process output & steps in future computed at time ¢, over prediction horizon, based
on prior measurements and postulated values of inputs. Prediction of model output (% + k|t) and of colored noise process
n(t + k|t) can be obtained by the recursion of process model and filtering techniques respectively. The future response can
then be expressed as:

Y(t + EI£) = Ybase(t + KIt) + Yoptimise (£ + Kl£) (12)

The two contributing factors have the following origins:

*  Ybase(t + kIt) is the cumulative effect of past control inputs, base future control sequence wpqse(t + k|t) which is
chosen a-priori and predicted disturbances.

*  Yoptimize(t + klt) is the discrete time convolution of the future control actions {du(t|t), ... ou(t + N, — 1]t)} with
impulse, step response coetficients of the system, where du(t + k[t) = u(t + k|t) — Upase(t + K|t).

The design parameter N, is the control horizon. The optimal control is then obtained by minimizing the following cost
function:

V(6U) = Sp2 n [P+ Klt) — y(t + k[£)]* +~ (13)

where r(t + k|t) is the desired reference trajectory (i.e. low pass filter). The prediction horizon is the interval from Nj to
N3. The second cost term - can take any one of the following formulations:

v = V{0, NS u(t + K2, AL 0ult + B8], ABN [ Au(t + Kt)]?} (14)

with A being the control penalty and control increment Au(t + k|t) = u(t + k|t) — u(t + k — 1]t).

3.2. PAMPC: The Penalty Adaptation procedure

We consider the following cost function formulation (Dutta et al., 2012):

VAU) = (R-Y)T(R-Y)+ AUTAAU (15)
subject to: AU e U,



where U, is the set of convex constraints. In addition, R, Y, AU are now vectors of references, outputs, control increments
respectively and A a diagonal matrix of penalties. Ttis usual to define a first order reference trajectory over set-point with
time-constant 7.

The advantage of directly penalizing AU makes sense as it penalizes the high frequencies, which is of particular
relevance for underdamped systems. It is well known that all forms of constraints i.e. on input, output, input rate can
be accommodated in U,.. Now we have a quadratic programming (QP) problem which can be solved by interior-point
or active-set based iterative optimizers (H.Lee, 2011). Note that, by doing so not only do we increase the computational
burden but also loose the analytical solution to (15). Moreover a whole set of controller parameters need to be tuned.

The original contribution of this paper lies in re-formulating the entire constrained optimization problem to an equivalent
unconstrained one with adapted penaltics such that all the constraints arc satisficd. Thus, as a first step all the controller
parameters like horizons, etc., must be fixed beforehand based on the structure of the system (to be discussed in next
section) and only then the penalty is adapted online to ensure optimal constraint satisfaction. We call this controller the
PAMPC, the details follow.

In the second step, the controller is initialized with the unconstrained solution to (15), which is:

AU = (GTG +A)1GT(R-Y) (16)

i.e. the well known least squares solution with G, the step response matrix.
In the third step, we check for constraint violation. Let us say v is the index of the constraint that is violated. Denote
the error by E = R — Y. Now rewrite (16) as:

AAU = —-GTG.AU + GTE an

The idea is to fix the violated constraint Au(t + v — 1|t) with its limit u. in the above system of equations and solve for the
corresponding . together with the rest of the control inputs, thus maintaining the solvability of the system. Let us denote
the v** column of matrix G by G, and the matrix formed by rest of the columns other than v by Gh. Similarly, let the
vector AU, denote all the elements except v** and Au,, the vt* element. Finally A, denotes the v** element of matrix A
and A, the matrix with v** row and column removed.

Collecting all the Awu’s other than the one which is violated, we have:

Ay AU, = -GTG,.AU, — Au,GTG, + GTE (18)
Thus, a solution to the above set of equations can be found as:
AU, = (GTG, + A,) H(-2u,GTG, + GTE) (19)

The fourth step is to form the optimal control move vector AU by inserting the fixed value u, in the above computed
control sequence AU,,. Now, we are in a position to compute the control penalty such that the active constraint u, is

respected:
Ay, = ~GTGAU +GTE (20)

The steps three and four are repeated by sequentially checking for constraint violations in the future time steps until
all constraints are salisfied. Once all constraints are salisfied, the absolute control applied to the plant is [ormed by:
u(t[t)” = u(t — 1) + Auy. This forms the outer loop which runs within each sampling interval. In the next sampling time,

this loop along with step two are repeated and so on.
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Theorem 1 Convergence of PAMPC control loop is always achieved.

Proof 1 Consider a compact constraint set with origin in its interior. The PAMPC algorithm makes

Au(t+v —1[t)| smaller
every lime when il exceeds constraints by fixing it 1o | Aw,|. This in turn means that A, increases with each iteration. Finally,
infinite penalty on Au(t + v — 1]£)? would mean Au(t +v — 1|t) — 0, Y, refer (16), which satisfies the stop criterion
of PAMPC.

4. Robust Design of PAMPC
4.1. Tuning of PAMPC by Structural Exploitation

Here we present the choice of tuning parameters except penalty A which are needed in the first step for PAMPC. Tuning
of MPC controllers has drawn significant attention in the literature, however the vast majority of analytical tuning methods
are applicable only when the constraints are inactive (Garriga & Soroush, 2010). The rest of the tuning methods are trial
and error iterative approaches (Darby & Nikolaou, 2011). (Wang & Boyd, 2010) point to the fact that a manifold increase
in computation speed occurs if the structure of the problem at hand is exploited.

The computational complexity in each iteration scales with the square of control horizon i.e O(N?2) for PAMPC and
thus it is advisable to use short control horizons. However a control horizon of N, = 1, which results in mean-level control
is not capable of optimal performance in high order systems which have multiple modes (D.W.Clarke et al., 1987). A

time-optimal performance can definitely be guarantced by choosing the dead-beat settings for the unconstrained case.

Theorem 2/f Ny > ng+np+d+1, Ny =ng+d+ 1, N, = ng + 1, then minimization of the cost function drives
y(t) inng + d+ 1 samples to the reference (n 4, ng are the degrees of polynomials A, B respectively).

Proof 2 Consider a regulation problem by minimization of the cost function (15) with zero penalty subject to equality
constraints Au(t + k — 1|t) = 0 for k > N,. This guarantees an unique solution since N, = Ny — Ny + 1 i.e the number
of variables are same as number of equations. Further, after N,, steps the controller must go to O ensuring output remains

at 0 as well.

For the case with constraints, the control horizon N,, and minimum prediction horizon V| remain the same as in dead-beat
settings as these are strongly related to the structure of the plant. However, in the case of underdamped systems based on
the rate of decay of the peak response, a prediction horizon of Ny = 2 * w,/ws 1.€ twice the sampling frequency over
bandwidth frequency gives a good trade off between feasibility and optimality. This choice of N,, << N, increases the
stability of the closed loop, as this is equivalent to large terminal penalty. The time constant of the reference trajectory 7
dictates the closed loop pole and thus must be fixed according to the desired speed of the closed loop. This leaves only the
penalty term A which should be initialized to a very small value < 1/N, and is then adapted online by PAMPC. Note that,

in general A is fixed beforehand, and such a choice cannot be optimal under constraints.

4.2. Robust Feasibility of PAMPC by Tunneling

Robustness is delivered by PAMPC through an appropriate design of the disturbance filter, For well damped processes, it
is common to choose C/D = 1/(1 — g~ !). However, for poorly damped systems, the ‘integrator’ disturbance filter gives
oscillatory response.

Theorem 3 Part-1: If A is a factor of D, then A is no longer a factor of the closed-loop characteristic equation (CLCE).
Part-2: Roots of C appear as poles in the closed loop transfer function (CLTF).
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Fig. 4. (a): MSD control with PAMPC and QP, (b): Comparison of the computational costs

Proof 3 Part-1: The unconstrained MPC can be equivalently expressed in the following conventional 3-DOF form.:
Tu(t) = -Jy(t) + K.r(t) 1)

where I, J, K are polynomials which can be computed by solving Diophantine equations (Dutta et al., 2014). It turns out
that if A is a factor of D, A appears as a common factor of I, J, K and thus cancels out of CLCE.

Part-2: The polynomial C can be factored out of the LHS of the CLCE: A.T + q % 'B.J = 0, obtained from (21), and
hence the roots of C appear as the poles of the CLTF.

Therefore, the first adaptation we make is to introduce the process denominator A as an additional factor of D in order to
get a more stable response. The second step is to choose C = (1 — p.g~!)"4 with 0 < p < 1 in order to ensure that the
closed loop is stable. In general, higher values of parameter p increases robustness but disturbances are rejected slower.
For constrained systems, however, feasibility should not be lost i.e. under possible acting disturbances, the controller
output must lie within the constraints. As opposed to taking a conservative approach of computing the controller for the
worst case scenario of disturbance sequence, we propose an online methodology to maintain feasibility by "tunneling’ i.e.

creating tunnels through the input constraints. This approach is presented in the following two steps:

1. Compute and store the error at output as the difference between predicted model output and actual measured output i.e
n(t). From this, estimate the disturbance acting on the input: u4(t) = (A/B).n(t). Note that the plant must be inverse
stable. In case of noise, filtcred measurements must be stored.

2. Predict future input disturbance based on: uy(t + &) = f(ug(t +k — 1), uqa(t + k—2),...) where k € [0, N,, — 1] and
f is a dynamic system learning kernel like neural network, the complexity of which depends on the complexity of the
disturbance signal. Next, update the constraints based on the tunnel: U; = U, — Uy, where U, is the updated tunneled
constraint trajectory and U, contains the predicted "ug4’s.

Theorem 4 Consider a PAMPC controller with disturbance filter designed for robustness against a class of disturbances.
Robust feasibility can then be guaranteed if the predicted input disturbance sequence Uy is subtracted from input constraints
U, through the control horizon N,,.

Proof 4 Consider a robust PAMPC controller that computes an optimal, constraint admissible sequence U*. Since, the

optimization problem is solved for constraints U,, any or all of the future control values can lie on the constraint. In that
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Fig. 5. (a): The result of suboptimal tuning, (b): Robust control under model uncertainty

case, the real control input to plant is: U, = U, + Uy, clearly violating the constraints. But, if the constraint set is tunneled
to Uy = U, — Uy, we have: Up = Uy + Uy = (Ue — Uy) + Ug = U, which is feasible.

The above approach would guarantee that the robust control inputs remain constraint admissible even under process
disturbances.

5. PAMPC applied to position control of MSD

MPC has been applied to vibrating systems, the most relevant would be the work by (Cairano et al., 2007) which deals
with the predictive control of a mass spring damper system. However the study excludes analysis based on the structure of
the system. The control system design based on the properties of underdamped non-collocated systems has been noted as a
challenging problem in (Obrzut, 2009). Moreover, the majority of research in vibration control has focused on unconstrained
systems (Beards, 1992). The PAMPC approach presented in this paper exploits the structure of the underdamped system
in its design phase and manages the constraints online by finding optimal penalties. Let us demonstrate the efficiency of
PAMPC on the MSD benchmark system.

Recall that, the objective is to control the position of mass-2 with an input voltage to the motor for fast response with

minimum overshoot. This system is subjected to the following asymmetric input constraints:
—-1.82V <u < +2.86V (22)

The process model of (6) is used with the pole structure shown in Fig. 1(b), and the sampling time is same as before i.e. 10
ms. A discretization of the system yields ng = 3, ng =4, d = 0. We detail the PAMPC design procedure:

* FixN,=nag+1=5,Ni=ng+d+1=4.

*  Compute rounded value of Ny = 2 * wg /wy, = 28.

*  Obtain a minimum positive integer 7 which ensures no overshoot (through simulation), in this case 7 = 6.
» Initialize A = 1/Ny = 0.03.

With these settings the PAMPC controller is implemented on the MSD and the results are plotted in Fig. 4(a). As can be
seen the settling time is within 0.23s (10 times faster than open loop, see Fig. 2(a)) with no overshoot and the constraints are
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respected as well. Notice that, in the beginning the maximum input constraint is active, thereby conforming the effective
constraint management strategy by PAMPC.

For the sake of comparison, a MPC controller having more degrees of freedom is now designed with NV, = 14, N} =
1, Ny = 15,A = 0.03, 7 = 1 and optimized by a QP solver instead of the penalty adaptation procedure. The constrained
optimal solution in this case is plotted in the same Fig. 4(a) vis-a-vis PAMPC. PAMPC delivers much better performance
for this underdamped non-collocated benchmark system. This is because the penalty matrix A which has N,, = 5 entries in
its diagonal adapts considerably from initial value to deliver the required performance with constraint satisfaction. The QP
based mean-level MPC however uses the conventional parameterization and can only guarantee constraint satisfaction, but
has no means to find the correct penalty matrix and hence ends up with higher settling time and control effort. Computation
time is a critical factor for the evaluation a control algorithm especially for fast systems, hence we compared the computation
costs of active-set and interior-point QP solvers with PAMPC. The results are plotted in Fig. 4(b) for the first few iterations
which are relevant due to active constraints. It is clear that PAMPC is at least 5 times faster than the QP solvers.

Further, we deliberately detune the prediction horizon only, once to half and then to double of its original value, to
show the effectiveness of our suggested tuning procedure. It can be noted from Fig. 5(a) that a shorter Ny = 14 induces
oscillations, whereas higher No = 56 does not lead to any improvement from N, = 28 of Fig. 4(a) but certainly increases
the computation burden. Next, we consider the case where the model has +5% uncertainty in terms of the gain, the two
natural frequencies and damping ratios. Under these settings, the PAMPC with the same parameters as above but now with
the disturbance filter designed as: C/D = 1/(A.(1 — ¢~ ')) is considered. The results are plotted in Fig. 5(b) which shows
the settling time is now just over 0.3s and has zero overshoot. This is then compared to the one where a standard integrator
filter is used. Notice, that in this case the oscillations persist in the controlled closed loop.

In a last test, an additive step disturbance equal to one third of the input range is introduced at 0.15s. In this scenario
we keep the above tuning with the improved filter for PAMPC and add the tunneling mechanism from the previous section.
The learning function here is just a constant with no memory; the results are illustrated in Fig. 6(a). The PAMPC controller
maintains the nominal performance with no constraint violations. Notice that Fig. 6(b), the penalties are changed once
again after 0.15s to adapt to the step disturbance, before they converge again. This is compared to the controller without

tunneling, and it can be clearly seen that this results in serious constraint violations.
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6. Conclusions

In this paper, the control challenges posed by constrained, underdamped, non-collocated mechatronic systems have been
highlighted through a mass-spring-damper representative system. First, a novel predictive control strategy PAMPC is
introduced which manages constraints by penalty adaptation and can be tuned by considering the structure of the system
in its design phase. Second, an online constraint tunneling approach is presented towards robust feasibility of the PAMPC
controller under process disturbances. Such a methodology has been demonstrated to achieve superior performance for the
robust control of the MSD system.
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