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ABSTRACT

Molecular profiling experiments have become stan-
dard in current wet-lab practices. Classically, enrich-
ment analysis has been used to identify biological
functions related to these experimental results. Com-
bining molecular profiling results with the wealth of
currently available interactomics data, however, of-
fers the opportunity to identify the molecular mech-
anism behind an observed molecular phenotype. In
this paper, we therefore introduce ‘PheNetic’, a user-
friendly web server for inferring a sub-network based
on probabilistic logical querying. PheNetic extracts
from an interactome, the sub-network that best ex-
plains genes prioritized through a molecular profil-
ing experiment. Depending on its run mode, PheNetic
searches either for a regulatory mechanism that gave
explains to the observed molecular phenotype or for
the pathways (in)activated in the molecular pheno-
type. The web server provides access to a large num-
ber of interactomes, making sub-network inference
readily applicable to a wide variety of organisms.
The inferred sub-networks can be interactively visu-
alized in the browser. PheNetic’s method and use are
illustrated using an example analysis of differential
expression results of ampicillin treated Escherichia
coli cells. The PheNetic web service is available at
http://bioinformatics.intec.ugent.be/phenetic/.

INTRODUCTION

Molecular profiling experiments, such as mRNA and/or
protein expression measurements, provide direct informa-
tion on which genes or gene products are (in)active un-
der a certain condition. Statistical overrepresentation meth-
ods give quick functional insights into genes listed by those
experiments, but fail to unveil how the genes from these
lists are mechanistically related (1–3). Network based ap-

proaches (4,5) combine the vast amount of interactomics
knowledge, represented as interaction networks, with the re-
sults of molecular profiling experiments to search for these
mechanistic insights. Such integrative approaches have sev-
eral benefits. First, the interaction networks help filtering
noise from gene lists. Second, the interaction networks com-
pensate for missing information: genes relevant to the pro-
cess under study, but not in the gene list, can be recov-
ered through their connectedness with the (in)active genes.
Third, integrating multiple molecular levels into the inter-
action network (e.g. protein–protein, protein–DNA, phos-
phorylation, metabolic, . . . ) provides a better insight into
the process of interest.

Sub-network inference algorithms aim to reconstruct
how genes from a gene list mechanistically interact (4,6).
This is performed by inferring the sub-network from the in-
teraction network that ‘best’ connects a set of listed genes,
where ‘best’ depends on the biological question at hand. In
this context, we have previously developed PheNetic, which
uses probabilistic logical querying to infer sub-networks
from omics-derived gene lists (7). PheNetic’ s performance
in relation to the state-of-the-art and its biological relevance
have been demonstrated through case studies (7,8).

State-of-the-art sub-network inference methods, despite
relying on different computational methodologies (9–16),
all have shown to be useful for omics data interpretation,
each in their own specific application domain, e.g. to link
genetic mutations to an expression phenotype, for gene pri-
oritization, etc. However, because these methods are based
on complex algorithms and workable implementations are
often unavailable in the public domain, the practical usage
of these methods is still limited. So far only few methods
are accessible through an easy and intuitive web interface
(17–19).

To offer a web service specifically tuned toward the anal-
ysis of gene lists identified from expression profiling exper-
iments, we present PheNetic, which is wrapped around the
similarly named core algorithm (7). Input data consist of
an interaction network as a representation of the publicly
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available interactomics data (downloadable from the web-
site for a large number of organisms), a differential expres-
sion data set and a list of genes of interest. PheNetic infers
from the interaction network the sparsest sub-network that,
based on the provided expression data set, is most likely dif-
ferentially (in)activated between the compared conditions.
The web service allows viewing and interpreting the result-
ing sub-networks in an interactive module. Additionally the
inferred sub-networks can be downloaded in different for-
mats for further analysis with tools such as Cytoscape (20).
The PheNetic web service is free and open to all users with-
out login requirement.

METHODOLOGY

PheNetic exploits the vast amount of publicly available in-
teractomics knowledge, represented as an interaction net-
work to reason about likely mechanisms that drive a molec-
ular phenotype, here reflected by a high-throughput differ-
ential expression experiment (Figure 1). Hereto, PheNetic
selects from an interaction network ‘paths’ or ‘explana-
tions’ of how the differentially expressed genes can be con-
nected to each other. Based on these paths PheNetic then
infers from the genome wide interaction network, a sub-
network that connects as many as possible genes from the
supplied gene list in the most parsimonious way i.e. using
the least number of edges or using the smallest sub-network.
It hereby assumes that genes from a gene list are involved
in common pathways and thus that paths between these
genes should ideally overlap. Depending on the run mode,
PheNetic can focus on inferring either the upstream regu-
latory mechanisms that are causal to the observed differen-
tial expression phenotype or on the pathways/protein com-
plexes that are (in)activated by the differentially expressed
genes (Figure 1). PheNetic thus extracts from a genome
wide static interaction network, the condition-dependent
sub-network that is most likely activated or repressed un-
der the assessed conditions.

To solve the sub-network inference problem, PheNetic
first uses the differential expression data to convert the
genome wide interaction network N into a complete proba-
bilistic network F, where F is simply N but with probabilities
associated to the edges. The assumption here is that edges
connecting differentially expressed genes have a higher
probability to be (in)active under the studied conditions
than edges between nodes that are not differentially ex-
pressed. This probabilistic interaction network now allows
to assess the probability of connectedness P(path(A,Y)|F),
i.e. the probability that there exists a path between A and
Y. A path, in the context of this paper, is defined as a set
of consecutive directed or undirected edges without cycles
in the probabilistic network that connect start gene A from
the gene list L to any other end gene Y from the gene list
L and that are conform a given run mode. The probability
of a path is simply the product of the probabilities of the
edges along the path. PheNetic provides two different run
modes (Figure 2). In the upstream run mode, the first and
last edges of the path have to be regulatory interactions (e.g.
DNA–Protein, sRNA, . . . ). In addition, a path consists of
a first part starting from the start gene, in which the path
runs against the direction of the interaction network, i.e.

against the direction of the edges when the edge is defined
as directed, and a second part ending in the end gene, in
which the path follows the direction of the network. By do-
ing so the path describes a common regulatory mechanism
for both the start and end node of the path. In the down-
stream run mode only paths that follow the direction of the
network are valid.

The sub-network inference problem boils down to an op-
timization problem in which the ‘best’ sub-network Soptimal
is selected. Soptimal corresponds to the highest scoring sub-
network S according to Formula ((1)) and provides a trade-
off between selecting the least number of edges and linking
as many as possible genes from the gene list.

O(S) =
∑

A∈L, Y=L\A
P(path(A, Y)|S) − xc ∗ |S| (1)

where xc is a constant cost factor. The last term imposes
the sparsity of the inferred sub-network by penalizing lin-
early the sub-network size in number of edges with a factor
xc. The first term assesses how well the genes from the list
are connected in the inferred sub-network. As mentioned
earlier, P(path(A,Y)|F) is the probability that gene A is con-
nected to any gene Y from the gene list in the probabilistic
network F. When selecting a sub-network S, this probability
changes to P(path(A,Y)|S) as paths from F can become in-
valid in S, this because the sub-network contains less edges
than the probabilistic network. Based on the score O(S)
we can score each possible sub-network selected from the
probabilistic network to infer Soptimal. Inferring the proba-
bility P(path(A,Y)|S) is an NP-hard problem, that it is com-
putationally hard to compute this exactly. Therefore, Phe-
Netic approximates P(path(A,Y)|S) by rather than enumer-
ating all paths that connect A to Y, restricting the num-
ber of valid paths to the k-best or k-most likely paths be-
tween gene A and any other gene Y from the gene list L in
the complete probabilistic network (21). Knowledge com-
pilation converts the approximation from the probabilistic
network into a computationally tractable form (22). To ob-
tain Soptimal a greedy hill climbing optimization is performed
(7,23).

INPUT

The input required by the web service consists of an inter-
action network of the organism under study, the differential
expression data and a gene list.

Interaction network

The interaction network is a comprehensive representation
of all current interactomics knowledge on the organism
of interest (4). Networks are represented as mixed graphs
G(N,E) where nodes N correspond to biological entities
(e.g. protein, RNA, gene, . . . ) and edges E correspond to
the interactions between the nodes (6,24). Every edge is as-
signed an edge type, indicating the molecular layer to which
the interaction represented by the edge belongs to (e.g.
protein–DNA interactions, protein–protein, . . . ). Depend-
ing on its type and provided the proper information is avail-
able, an edge will be directed (e.g. protein–DNA interac-
tions, sRNA, phosphorylation, . . . ) or undirected (protein–
protein interactions, undirected metabolic interactions, . . . ).
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Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

Figure 2. Conceptual representation of the sub-network inference by PheNetic. The colors of the edges indicate the different types of interactions with
green referring to protein–protein, red to protein–DNA and orange to metabolic interactions. Arrows indicate the direction of the interaction. PheNetic
will infer the sub-network from the interaction network that best connects the genes from a gene list (A, gray box), given the differential expression data.
PheNetic can be used in two different run modes: the upstream run mode (B top) and the downstream run mode (B, bottom). To infer the upstream
regulatory sub-network (C, top), paths (thick black arrow) between the genes of the gene list should first run upstream, against the natural direction of the
interaction network, and then run downstream, following the natural direction of the interaction network. In addition to this, both the terminal edges of
the path have to be regulatory interactions (e.g. DNA–Protein, sRNA, . . . ). To infer the activated downstream pathways (C, bottom), paths between the
genes of the gene list run downstream, hereby following the natural direction of the network. By selecting the smallest sub-network that best connects the
genes from the gene list given the specific run mode, PheNetic is able to select the regulatory mechanisms responsible for the observed expression (D, top)
or on the pathways/protein complexes that are differentially expressed or that result in the observed differential expression (D, bottom).
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The web service provides interaction networks for a large
number of organisms. The provided interaction networks ei-
ther correspond to manually curated networks used in pre-
vious publications (7,8) or to networks derived from the
String database (25). Note that users can also upload their
own networks without any constraint on the interaction
types or network structure.

Differential expression data set

To construct the probabilistic network F from the genome
wide interaction network N, each edge is assigned a value
that reflects how likely the start node and end node of the
edge are (in)activated in the specific experimental condition
given the differential expression data.

To this end, per node the probability that an expression
value at least as extreme as the one associated with that
node would be observed by chance is calculated given the
null hypothesis that the gene which corresponds to the node
is not significantly differentially expressed, is true. Calcula-
tion is performed using a two-tailed T-test assuming that
the log fold changes follow a normal distribution N(μ,σ ).
By calculating the standard normal distribution N(0,1) of
this normal distribution, the probability can be calculated
for any differential expression value Dgene using Formula (2)
in which Zgene corresponds to the z-transformation of Dgene.

Pgene ={
P(X>Zgene)+P(X<−Zgene) i f Zgene>0

P(X<Zgene)+P(X > −Zgene) i f Zgene<0

(2)

As we are interested in giving high scores to genes which
have high differential expression values, 1-Pgene will be used
to score each gene. Using the cumulative normal distribu-
tion Φ(μ,σ ) this can be simplified as shown in Formula (3).
If no differential expression measurement for a specific gene
is available, Scoregene is set to 0.5.

Scoregene = abs(1 − 2 ∗ �(μ,σ )(Dgene)) (3)

These scores are subsequently used to define a measure for
the probability that an edge is involved in a certain condi-
tion as the product of the scores of the genes at both ends
of the interaction (Formula (4)).

Pedge = Scoreedge start ∗ Scoreedge end (4)

In terms of probabilistic networks Pedge denotes the proba-
bility that the edge is present, which also explains why the
probability of a path is the product of the probability of the
edges along that path.

We illustrate the effect of the probability calculation
based on the sample data provided on the website. The
log folds of the sample data have a mean of −0.036 and
a standard deviation of 1.255. As an example the value
for the edge between nhaA, with DnhaA equal to −2.80,
and nhaR, with DnhaR equal to −2.00, is determined. As
Φ(μ,σ )(DnhaA) is equal to 0.01 and Φ(μ,σ )(DnhaR) is equal
to 0.05, the ScorenhaA is equal to 0.98 and the ScorenhaR is
equal to 0.9 allowing to calculate Pedge equaling 0.88. This
same exercise is performed for the edge between recA, with
DrecA equal to 0.55, and narG, with DnarG equal to 5.17.
Then Φ(μ,σ )(DrecA) is equal to 0.60 and Φ(μ,σ )(DnarG)

is equal to 0.999 which means ScorerecA equals 0.2 and
ScorenarG equals 0.998 resulting in Pedge equaling 0.199.
This indicates that the edge between nhaA and nhaR re-
ceives a higher Pedge as both genes are clearly differentially
expressed compared to the edge between recA and narG as
recA only is slightly differentially expressed.

Gene list

PheNetic will infer the sub-network from the interaction
network that best connects the genes from a gene list, given
the differential expression data. The most straightforward
way of defining a gene list is to select from the differential
expression data set the most differentially expressed genes
based on log fold changes and/or P-values. However, the
user is free to provide any list of genes. For example, a list
of genes filtered based on criteria different than those of-
fered by the web service and/or a list of genes for which the
user wants to know whether they are related to the pathways
triggered by the differential expression data set but that are
not necessarily differentially measured themselves.

Parameters

When starting an analysis the user has to specify the run
mode. Two run modes are available, namely the upstream
mode, to infer the gene regulatory network acting upstream
of the expression response and, the downstream mode to
infer the (in)activated pathways. Additionally, the user has
to specify the cost (see Formula (1)). Decreasing the cost in-
creases the size of the inferred sub-network and vice versa.
By stepwise decreasing the cost, the user will find an or-
dered series of sub-networks starting with the smallest sub-
network containing the least number of edges that best link
the genes in the gene list and then gradually obtaining larger
networks.

Additionally the user can change more advanced param-
eters such as the path length and the k-best paths. The path
length specifies the length of the ‘paths’ or ‘explanations’
that connect the genes from the gene list through the inter-
action network. The range of the path length is fixed be-
tween 2 and 5 interactions, based on both biological (26–
28) and computational considerations. By default the path
length is set to 4 based on the results of the original Phe-
Netic publication (7). The ‘k-best paths’ parameter indi-
cates how many of the most likely paths between gene A and
any gene Y from the gene list PheNetic should use to ap-
proximate the probability of connectedness between A and
Y. The selection of the k-best paths and their probability
defines the size of the search space from which the most
optimal sub-network will be computed. Higher values for
k means sampling a larger search space and a potentially
more optimal selected sub-network, but this comes at the
expense of longer running times. The parameter can be set
between 5 and 50.

OUTPUT

On job completion the inferred sub-network can easily be
displayed by loading the results in the visualization mod-
ule (Figure 3). An interactive network is visualized in the
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Figure 3. Representative result of PheNetic on the test data set, measuring the differential expression behavior of E. coli cells subjected to Ampicillin. (A)
Upstream run mode. This mode recovers the regulatory mechanism identifying regulators potentiating the observed differential expression,such as the
pleiotropic global regulator Fis, the respiratory regulators FNR and NsrR, the regulator of iron homeostasis Fur, the stationary phase sigma factor rpoH
and the ROS mediated response regulators OxyS/RpoE (B) Downstream run mode. This mode recovers differentially activated/repressed pathways such
as the nitrate metabolism, iron ion homeostasis and anaerobic respiration. In the network visualization, the level of differential expression of the nodes is
indicated by red and green for respectively over and under-expression. The more intense the color, the higher the level of differential expression. The color
of the edge indicates the interaction type. If an interaction is directed according to its original interaction source, this is indicated by an arrow.

browser which shows the biological entities and their inter-
actions. The differential expression levels are represented by
the color of the nodes where green refers to under- and red
to over-expression. The color of an edge indicates the in-
teraction type and the arrow, if applicable, indicates the di-
rection of the edge. The visualization module allows users
to further annotate and explore the inferred sub-network
by providing the possibility to upload standard gene names
and to perform a GO enrichment test. To perform gene en-
richments, the user has to upload an annotation file in the
format as defined by Gene Ontology (29). Genes associated
with each of the enriched GO terms will be highlighted in
the visualized sub-network, upon clicking the correspond-
ing enriched term. This allows the user to quickly identify
clusters of similar functionality in the sub-network. To cap-
ture the annotated sub-network, snapshots can be taken in-
side the browser. Inferred sub-networks can be downloaded
in multiple formats, compatible with other network visual-
ization tools such as the SIF format for Cytoscape (20).

USE CASE

To illustrate a typical workflow, an example analysis on a
publicly available data set was performed (Gene Expression
Omnibus, GSE56133), measuring in Escherichia coli the ef-
fect of ampicillin on expression behavior (30). The example
data can be loaded in the web service by clicking the load
example buttons or can be downloaded from the help pages.
The gene list is generated by selecting the genes with a log
fold change above 1.5 in combination with a corrected P-
value below 0.05.

First, PheNetic was used to infer the upstream regulatory
program (Figure 3A), driving the observed differential ex-
pression. To this end, the upstream run mode is selected in

combination with default parameter settings. The analysis
connects 544 genes on an interaction network containing
more than 18731 interactions in under a minute. Zooming
in on the resulting sub-network reveals the inferred regula-
tory program which contains the pleiotropic global regula-
tor Fis, the respiratory regulators FNR and NsrR, involved
in respectively anaerobiosis and cell protection against ni-
tric oxide (NO), Fur known to be involved in iron home-
ostasis, rpoH responsible for stationary phase response and
finally OxyS/RpoE involved in an ROS mediated response.
These observations correspond to the biology of the exper-
iment, which hypotheses that ‘addition of antibiotics’ in-
terferes with the bacterial physiology through the genera-
tion of reactive oxygen species that are known to induce
pleiotropic effects by means of general stress response reg-
ulators (Fur, rpoH-rpoE, oxyS) (30). Although an antibi-
otic mediated induction of rpoH and FNR cannot be ex-
cluded the presence of these regulators in the sub-network
could also be related to the general physiological state of the
cells (stationary phase transition toward micro-aerobiosis).
These results illustrate how the resulting sub-network can
help prioritizing plausible regulators of the observed molec-
ular phenotype. Moreover, many of the regulatory genes
that do not themselves display high levels of differential ex-
pression can be recovered in the inferred sub-network be-
cause of their connectedness with significantly differentially
expressed genes (e.g. FNR, cysB, Fur and rpoE).

To identify the pathways triggered by the differentially
expressed genes, we run PheNetic in the ‘downstream’ run
mode, in combination with default parameter settings. Fig-
ure 3B shows how the resulting sub-network is different
from the one selected with the upstream run mode. In con-
trast to the latter one which is sparser and more focused

 at G
hent U

niversity on January 6, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W249

on regulators linked to the differentially expressed genes,
the network identified with the downstream run mode con-
sists of strongly connected components and ‘linear’ path-
ways. These components mostly contain genes with similar
functionalities or involved in the same pathways that are to-
gether differentially up or down regulated. From these re-
sults it is possible to identify activated pathways/protein
complexes associated with mechanisms such as anaerobic
respiration, iron homeostasis, carbohydrate metabolism, . . .
with the help of the provided enrichment tool.

CONCLUSION

Viewing in house generated gene lists in the light of the
growing amount of interactomics knowledge will become
mandatory: integrating one’s own experimental results with
these complementary resources allows for a more robust
analysis and a more global view on the molecular mech-
anism. Web servers such as Responsenet2.0 (19), Steiner-
Net (17) and PheNetic anticipate on this increasing need
for integrative analysis by providing non-expert users ac-
cess to non-trivial sub-network inference methods and al-
lowing them to view their own in-house data in the light of
current interactomics knowledge. PheNetic provides an au-
tomated flow in which an uploaded gene list is interpreted
using precompiled interactomics networks. Depending on
the run mode, users can focus on extracting the sub-network
from the interaction network that drives (upstream regula-
tory analysis) or is reflected by the observed expression phe-
notype (downstream analysis).

The main difference between PheNetic and the already
available web servers ResponseNet and SteinerNet is the
underlying algorithmic approach which determines the par-
ticularities of the selected sub-networks as well as their in-
tended applications. ResponseNet is a flow based algorithm
that infers the subnetwork that best connects sources to
targets over the interaction network. This type of analy-
sis makes ResponseNet suitable for analyzing cause-effect
data such as the analysis of knock-out screenings in combi-
nation with transcriptomics data. SteinerNet infers Steiner
trees, or minimum spanning trees that connect sets of genes
in the most optimal way over the interaction network. As
this method selects a tree structure from the interaction net-
work, sub-networks selected by SteinerNet cannot contain
parallel paths between the selected genes, in contrast to the
sub-networks detected by PheNetic.

All three web servers interpret in-house data using inter-
action networks: SteinerNet and PheNetic can be used to
interpret differential expression data and ResponseNet to
interpret cause effect data. The web servers provide mod-
ules to visualize and interpret the obtained sub-networks in
an interactive environment. The SteinerNet interface pro-
vides the data to be downloaded and analyzed in network
tools such as Cytoscape, whereas the interface of Respon-
seNet allows for a more elaborate analysis providing the
editing of the selected network and an exploratory analy-
sis of the genes selected in the resulting sub-network. Both
web servers focus on analyzing data from human, other ver-
tebrate model organisms and yeast, providing networks for
those organisms only. PheNetic specifically focuses on the
analysis of expression profiling experiments, hereby provid-

ing networks for a wide variety of organisms, with a focus
on micro-organisms (bacteria and yeast). As it is non-trivial
in the context of sub-network inference to statistically as-
sess the significance of the predictions, the available web
servers provide summarizing statistics and/or GO enrich-
ment analysis of the inferred sub-networks as additional
validation steps.
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