Deploying elastic routing capability in an
SDN/NFV-enabled environment

Steven Van Rossem™, Wouter Tavernier*, Balazs Sonkoly t, Didier Colle*,
Janos Czentye T, Mario Pickavet* and Piet Demeester*

*Ghent University, IBCN, INTEC, Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium
Email: {steven.vanrossem, wouter.tavernier, didier.colle, mario.pickavet, piet.demeester} @intec.ugent.be
f Budapest Univ. of Technology and Economics
Email: {sonkoly, czentye} @tmit.bme.hu

Abstract—SDN and NFV are two paradigms that introduce
unseen flexibility in telecom networks. Where previously telecom
services were provided by dedicated hardware and associated
(vendor-specific) protocols, SDN enables to control telecom net-
works through specialized software running on controllers. NFV
enables highly optimized packet-processing network functions
to run on generic/multi-purpose hardware such as x86 servers.
Although the possibilities of SDN and NFV are well-known,
concrete control and orchestration architectures are still under
design and few prototype validations are available. In this
demo we demonstrate the dynamic up- and downscaling of an
elastic router supporting NFV-based network management, for
example needed in a VPN service. The framework which enables
this elasticity is the UNIFY ESCAPE environment, which is a
PoC following an ETSI NFV MANO-conform architecture. This
demo is one of the first to demonstrate a fully closed control
loop for scaling NFs in an SDN/NFV control and orchestration
architecture.

Index Terms—Elastic Router, NFV, SDN, UNIFY

I. INTRODUCTION

Traditional telecom services are highly dependant on phys-
ical topologies and vendor-specific hardware. To overcome
this, SDN (Software Defined Networking) and NFV (Net-
work Function Virtualization) principles are getting commonly
adopted to design new platforms for creating, managing and
scaling network services on-demand, in a faster and more
resource-optimized way. In this context, elasticity denotes
the ability of assigning hardware resources dynamically, as
response to fluctuations in eg. service demand or resource
availability. By monitoring specific KPI's (Key Performance
Indicators), the service can deploy more or less NF’s (Network
Functions), only consuming the resources needed for its real-
time average performance. In worst-case conditions, or as the
service configuration changes, the number/type of resources
can be altered.

Using new possibilities enabled by SDN/NFV, a service
creation platform is being worked out in the UNIFY project[1].
It aims at unifying cloud and carrier network resources in a
common orchestration framework. In this paper, we demon-
strate the basic mechanisms which enable an elastic service
management, by using an elastic router as illustrating example.

II. ARCHITECTURE

A router can for example be offered as a service itself,
Routing-as-a-Service (RaaS), or be deployed as a functional
part of a more advanced service. Let’s envision a user-
requested VPN service, where a business is connecting its
offices over the public internet. It would need a L3VPN
connecting N private LAN networks over the Internet, each
requiring a full-duplex throughput R. In this context, the
provider would need an elastic routing function in his offered
VPN service such that:

(i) The number of ports IV scales to the number of requested
VPN islands by the enterprise user.
(ii) It can dynamically adapt its traffic processing capacity
to the required service needs (throughput R).
(iii) Hardware resources are assigned dynamically, optimized
in function of the current service requirements (N, R).

A. Elastic Router

The elastic router consists of one or more SDN-enabled
(virtual) switches in the forwarding plane. On the control
plane, an OpenFlow Controller (OF Ctrl) is configuring the
SDN switches and gathers flow statistics. An extra Ctrl App
on top of this controller monitors the service’s KPI’s and can
trigger an elastic topology change, deploying more or less
SDN switches. A configuration interface via the Ctrl App
enables the service user to configure parameters in eg. the
IP routing table. This is illustrated in figure 1.

OF Ctrl
L3VPN
routing function
dataplane topology)
______ i aw'_‘z\k‘-w.y'_____‘

Fig. 1. VPN service with an elastic router providing N ports. The dynamic
creation of extra ports is illustrated by the dashed links/blocks. The Ctrl App
triggers the change between (a) single switch instance and (b) a new switch
topology (VLB) with distributed processing.

NFV enables the deployment of these (virtual) NF’s (SDN
switches, OF Ctrl, Ctrl App) on servers in a datacenter. The
required processing rate of the elastic router determines the
needed resources for these VNF’s (Virtual Network Func-
tions), especially for the forwarding elements.

In case of a single switch instance, where N ports require
receiving and sending at rate R, the processing rate of the
switch must be NR. When N, R increase, we can imagine
that the resources of a single server will fall short. To still
fulfill the SLA (Service Level Agreement) with these servers,
we need to alleviate this N R requirement. This can be done
by load-balancing traffic among multiple switch instances
on different servers, which increases the throughput the
elastic router can process. Implementing logical routers using
multiple router/switch instances is a known research area
[2]. Many examples are also found in datacenter network
topologies (eg. Clos/Fat-Tree, Jellyfish). In this paper we
focus on direct VLB (Valliant Load Balancing). This is the
topology shown in figure 1b.

We decompose the single switch instance to a VLB topo-
logy, where we shift from a single switch with N ports, to a
full mesh of NV switches. In its simplest case, it can be shown
that if all flows originating from a node have rates no bigger
than (Nilfl), this node can send all the flows along direct paths,
directly to its destination node, effectively lowering the switch
required processing rate to 2R [3].

B. Network Function Profiling

If we assume that the maximum processing throughput R is
specified in the SLA, then it can be noted that by rate-limiting
the links to the elastic router, the worst-case processing rate
is known. Therefore also the needed hardware resources and
topology can be predicted at service deployment. However,
when average traffic rates vary below the worst-case limit, the
elastic router can dynamically optimize its resource use by
changing its dataplane topology during service run-time.

This requires a mapping function which translates any high-
level performance parameters (SLA specifications including
processing rate or latency) to low-level infrastructure resource
requirements (vCPU, memory, bandwidth, delay). We call this
mapping a VNF profile. The VNF profile can be used to
inform the Service Provider which resources are needed for
the required performance when deploying the service. The
profile can be provided by the VNF developer or it could be
benchmarked by another party, VBaaS, VNF Benchmarking
as a Service, as described in [4].

In the elastic router, a VNF profile would be useful for the
SDN switch VNF’s. That way, the maximum packet processing
rate of the deployed switch instance is known and can be
anticipated upon. It is used in the Ctrl App to set its threshold
for changing the switch topology.

C. Network Function State Migration

In our elastic router service, the flow tables of every
dataplane switch should be migrated or merged upon a to-
pology change. Also flow statistics should not be reset, as

they might be useful for the Service Provider to measure
eg. datavolume. The Ctrl App initiates the topology change
and has a direct interface to the SDN switches via the OF
Ctrl. Tt is therefore best positioned to set flow rules in each
new SDN switch instance, including any user configuration
settings. The elastic router service could be further enhanced
with specialized API’s for reliable state migration, as proposed
in the openNF framework [5]. This however, would require
additional implementation modifications in all the NF’s.

D. Automatic elasticity provisioning using NFV/SDN

The emulation environment used to deploy the elastic router
service is developed in the aforementioned UNIFY project[1].
A high-level breakdown of this architecture is shown in figure
2. We distinguish 3 main layers in this model:

[router End/Enterprise user Service (change) requests |

onfiguration
A

feedback interface Service Layer

-monitor KPI's
-trigger resource change request

O

[Ctrl App |
L OF Ctrl__ |

| -'éL'JN switch N |

aiion Layer |

Infrastructure Layer

[sDNswitech1 | ..

Fig. 2. Elastic router deployed in the Unify framework. The feedback interface
enables the running service to dynamically control its resources.

o The user requests the VPN service via the Service Layer.
Here, the high-level requirements (number of ports N,
throughput R) are translated to the required NF’s (SDN
switches, OF Ctrl, Ctrl App) and their interconnections.

e The Orchestration Layer finds an optimal way to map the
required NF’s to the available infrastructure (the available
servers to deploy the NF’s).

o The Infrastructure layer comprehends all available hard-
ware resources (compute, storage and network nodes).
Different Controllers are each handling the resources in
their domain (eg. the compute controller finds available
servers to deploy the NF’s, the network controller steers
the traffic between the deployed NF’s).

The feedback interface from the Ctrl App to the Orches-
tration Layer further enhances the elastic service. It creates a
fully closed control loop by enabling the running service to
monitor and control its own needed resources (like deploying
more SDN switch instances), without any intervention via
the service layer or the user. It allows a quick reaction to
changing conditions as resource control requests are handled
locally, unlike with a higher-layered management entity. It can
be noted that the feedback interface is in fact similar to the
interface between Service and Orchestration Layer. They both
provide a way to monitor and configure running/new services
(by changing/adding interconnected NF’s on the Infrastructure
Layer).

ESCAPE is a PoC that implements the above architecture
[6]. It virtualizes available network resources for the deploy-
ment of NF’s in the context of a network service (deployable
in Mininet, via OpenStack or as Docker containers). An
SDN network domain with an OpenFlow controller (POX) is
steering the network traffic between the NF’s.

III. DEMONSTRATION

The Infrastructure layer in the demo is situated in 2
domains: Mininet and Openstack, demonstrating the multi-
domain orchestration capabilities of the ESCAPE framework.
The SDN-enabled switches are deployed as open vSwitch
instances in a Mininet environment with a custom API acting
as infrastructure Controller allowing to add/remove switches.
Another custom Controller is able to deploy virtual machines
in an Openstack environment. The Ctrl App and OF Ctrl are
implemented by an OpenFlow controller instance (Ryu). This
process runs in a virtual machine, started in the Openstack
domain. On each of the N ports we generate N — 1 ingress
traffic flows of rate r (equally distributed to the N — 1 other
ports). As shown in figure 3, the Ctrl App monitors the
switches’ processing rate and triggers, through the feedback
interface, a topology change.

. e

{:}' Ctrl App detects node overload
and triggers topology change
N=4 N=5 N=5

single switch single switch VLB topology
(CPU load 85%) (CPU load:120%) (node CPU load: 65%)

'S

v
n

w

egress port rate (Mbps)
(5]
W

[N}

N=3 cl
single switch
(CPU load 51%)

n

elastic router deployment

Fig. 3. Elastic router demo (r=1Mbps) showing the ability to set the number
of ports N via the service layer and scale resources adaptively to R via the
feedback interface (The used topology and CPU load is displayed as info).

The threshold for the topology change is depending on the
packet processing capacity of the SDN switch. For the demo,
we assume the VNF profile of the SDN switches to be hard
coded in the Ctrl App by the VNF developer. The main KPI
for the Ctrl App to monitor, is the ingress packet rate of a
switch. When this exceeds the threshold, the switch instance
can no longer meet the service performance request and the
packet processing is offloaded to multiple switches in a VLB
topology.

The demo will deploy the elastic router service using
the ESCAPE framework and 2 laptops, each with its own
infrastructure domain (Mininet and Openstack). A GUI shows
how the router topology is changing in function of the traffic
load as shown in figure 4.

IV. CONCLUSION

The elastic router use case is a simple an clear example
that helps to identify following aspects of an elastic service
deployment:

Ky Topulogy Viewsr

Mositor -
— &=
3 -
180t S -» v
/ |_| N .
Sl
e \ "”/,- %
&
e —
i
§ seee| threshald
)E:_-_ Hyw Tapalogy Views
f
L0004+ =@
-

(a) (b}

Fig. 4. Info provided by the Ctrl App: (a) plot showing the ingress packet rate
and the threshold (b) visual representation of the switch topology currently
deployed.

(i) Mapping of high-level SLA’s to hardware resources via
a VNF profile.

(i) A Ctrl App function that monitors KPI’s and optimizes
resource use in function of real-time processing needs.

(iii) A feedback interface that allows quick changes in the
running service.

(iv) Reliable state migration during changes in a running
service.

An architecture is proposed and used to deploy an elastic
router. The generic design of the deployment platform, makes
it easily extendible to manage all kinds of network services.
It can be noted that, using NFV, the functionality of the
forwarding nodes in this topology can also be augmented from
simple packet switching to more advanced packet processing
(like firewalling), which will further increase the load on the
generic/multi-purpose servers in the datacenters. This further
justifies the relevance of elasticity in innovative service de-
ployment platforms.
ACKNOWLEDGMENT

This work was conducted within the framework of the FP7 UNIFY project,

which is partially funded by the Commission of the European Union.
REFERENCES

[1] A. Cséaszar, W. John, M. Kind, C. Meirosu, G. Pongricz, D. Staessens,
A. Takacs, and F.-J. Westphal, “Unifying cloud and carrier network:
Eu fp7 project unify,” in Utility and Cloud Computing (UCC), 2013
IEEE/ACM 6th International Conference on. 1EEE, 2013, pp. 452-457,
http://www.fp7-unify.eu/.

[2] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploiting par-
allelism to scale software routers,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, p. 15.

[3] H. Liu and R. Zhang-Shen, “On direct routing in the valiant load-
balancing architecture,” in Global Telecommunications Conference, 2005.
GLOBECOM’05. IEEE, vol. 2. 1EEE, 2005, pp. 6—pp.

[4] R.S. Raphael Vicente Rosa, Christian Esteve Rothenberg, “VBaaS: VNF
benchmark-as-a-service,” in Proceedings of the 4th European Workshop
Software Defined Networks (EWSDN). EWSDN, 2015.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proceedings of the 2014 ACM Conference on SIGCOMM.
ACM, 2014, pp. 163-174.

[6] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tav-
ernier, and F. Risso, “Multi-domain service orchestration over networks
and clouds: a unified approach,” in Proceedings of the 2015 ACM
conference on SIGCOMM. ACM, 2015.

