Scalable Architecture for Service Function Chain
Orchestration

Sahel Sahhaf!, Wouter Tavernier!, Janos Czentye?, Baldzs Sonkoly?
Pontus Skoldstrom?, David Jocha?, Jokin Garaly5
Y UGent-iMinds; > BME; 3 Acreo; * ETH; ® UPV/EHU

Abstract—Network Function Virtualization (NFV) enables to
implement network functions in software, high-speed packet pro-
cessing functions which traditionally are dominated by hardware
implementations. Virtualized Network Functions (NFs) may be
deployed on generic-purpose servers, e.g., in datacenters. The
latter enables flexibility and scalability which previously were
only possible for web services deployed on cloud platforms. The
merit of NFV is challenged by control challenges related to
the selection of NF implementations, discovery and reservation
of sufficient network and server resources, and interconnecting
both in a way which fulfills SLAs related to reliability and
scalability. This paper details the role of a scalable orchestrator
in charge of finding and reserving adequate resources. The latter
will steer network and cloud control and management platforms
to actually reserve and deploy requested services. We highlight
the role of involved interfaces, propose elements of algorithmic
components, and will identify major blocks in orchestration
time in a proof of concept prototype which accounts for most
functional parts in the considered architecture. Based on these
evaluations, we propose several architectural enhancements in
order to implement a highly scalable network orchestrator for
carrier and cloud networks.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] enables to im-
plement Network Functions (NFs) such as firewalls or NATs,
high-speed packet-processing functions in software which tra-
ditionally are dominated by hardware implementations or ded-
icated middleboxes. NF software may be deployed on generic-
purpose servers, e.g., in datacenters. Telecom services (e.g., an
Intrusion Detection) which can be decomposed into a Service
Graph (SG) of NFs, might now benefit from flexibility and
scalability-levels which previously were only possible for web
services deployed on cloud platforms such as Amazon EC or
Google Compute. Modern control paradigms such as Software
Defined Networking (SDN) [2] have the merit of simplifying
the service chain provisioning process and reducing the cost
in CAPEX and OPEX.

The mapping of NFs of services to infrastructure is one
of the core tasks of the orchestrator. This requires that the
orchestrator has a view of what are the individual resource
requirements of NFs, or even if given NFs might be decom-
posed to smaller NFs (Service Decomposition). However, as
indicated in Section IV, orchestration in realistic service and
infrastructure provider contexts quickly involves ten thousands
of resource elements, and a multiple of services to be orches-
trated.

Existing research related to service orchestration has
largely focused on: i) embedding algorithms in small-scale,
idealized settings, i.e., limited number of infrastructure nodes,

pre-determined SG decomposition, or on ii) NFV architectures,
e.g., [1], providing high-level functionality and interfaces for
enabling Service Function Chaining with virtual NFs.

Our contribution. In this paper we identify the context
and requirements of NFV orchestration over Telecom and
datacenter networks. We intend to bridge the gap between
abstract embedding algorithms and NFV architectures, by
proposing elements of a realistic and scalable resource or-
chestrator which is able to optimize placement of networking
and computing components across infrastructure. Within this
state-of-the-art emulation NFV framework [3] we implement
an orchestrator supporting decomposition, and identify most
significant factors contributing to orchestration time. The latter
serves the identification of elements for an improved resource
orchestrator framework which is truly scalable, as well as
the identification of a set of technologies which are able to
implement such design.

The rest of the paper is as follows. Section II describes
related work. In Section III we detail the concepts of Service
Function Chaining (SFC). Section IV details the problem and
context of orchestration of services in a realistic setting and
the relation of the orchestration functionality within NFV
architectures. An overview of most important orchestration
algorithm component is given in Section V, while Section VI
identifies experimental performance results and Section VII
proposes architecture improvements. Section VIII concludes
the paper.

II. RELATED WORK

Existing research on NFV orchestration focuses on two
aspects: 1) design and evaluation of embedding algorithms,
and ii) design and implementation of control architectures
for production environments. The first relates to the problem
of mapping a set of service-related (virtualized) resources to
physical infrastructure (e.g., servers and switches). Requested
resources might involve networking (bandwidth), as well as
node-level resources (computing or memory). The latter is re-
ferred to as the Virtual Network Embedding Problem (VNEP),
for which a survey can be found in [4]. Recent approaches
build on this state of the art, for example by integrating the
concept of service decomposition [5].

The second category of research is driven by Telecom
research and industry. The NFV Industry Specifications Group
(NFV ISG) of European Telecommunications Standards Insti-
tute (ETSI), is driven by Telecom operators to strategically
steer NFV-related activities. The ISG produced and publicly

released documents on NFV terminology, use cases, require-
ments and architectures. NFV Management and Orchestration
(MANO) is the ETSI-defined framework for the manage-
ment and orchestration of computing, networking, storage
and virtual machine resources in cloud and carrier networks.
Multiple community-driven and private software initiatives,
such as OpenMANO (https://github.com/nfvlabs/ openmano)
or vConductor [6], are developing proof of concepts of
proposed ETSI specs. These recent efforts involve single
domain designs, architectures and prototypes where scalable
orchestration is not the first focus. OpenStack is a cloud
infrastructure management framework in which Heat is the
component responsible for orchestration. Network connectivity
orchestration here relies on Neutron and is heavily focusing on
L3 and above, lacking fine-grained forwarding (L2) flexibil-
ity required for NFV orchestration. Larger frameworks such
as OPNFV (http://www.opnfv.org/) intend to combine exist-
ing cloud and network control frameworks (e.g., OpenStack,
OpenDayLight) to build a reference implementation for NFV
management/control.

EU-funded projects such as FP7 T-NOVA or Mobile Cloud
Networking (MCN) also investigate the merits of NFV in Tele-
com. T-NOVA focuses on an ‘NFV Marketplace” composed
of: i) a ‘Network Function Store” including NFs by several
3rd-party developers and ii) a Brokerage platform enabling
customers to trade with the T-NOVA service provider and
3rd-party function developers. MCN investigates NFV as an
enabler for increased flexibility in the backhaul of mobile
networks. Both projects define some kind of orchestrator
for mapping virtual resources to physical infrastructure and
managing the life-cycle of virtualized resources. These are
ongoing, and do not directly focus on the design and imple-
mentation of a scalable, potentially multi-domain orchestrator,
involving recursivity in the control and orchestration layers as
the proposed approach.

III. SERVICE FUNCTION CHAINING

In order to easily introduce joint programmatic interfaces
for controlling different types of resources, such as compute,
storage and networking ones, we have defined a common
model to be used at different reference points called Network
Function Forwarding Graph (NF-FG) [7]. It provides support
for functionalities such as resource orchestration or service
decomposition, on the one hand, and features such as scala-
bility, dynamicity or support for DevOps in Service Provider
environments, on the other. The model is capable of storing
service description as SG, resource information as Resource
Graph (RG) and mapping of requests to resources as NF-FG
(see Fig. 1, at left the SG is shown on top and NF-FG with
mapping is shown at bottom).

The SG defines the service functions and their logical
connectivity, the Service Access Points (SAPs) to the service
and the Service Level Specification to meet the Service Level
Agreement. It is only used as a standalone element when there
are no resources involved yet.

The RG describes the (virtual) resources that will be used
to deploy the requested services. It provides a homogeneous
representation of the (virtualized) infrastructure, in terms of
both capacities and capabilities, at the defined abstraction

level. For example, in domains with hierarchical orchestration
processes, the RG in the higher level orchestrators has a
wider scope and abstracts away the finer grain details of
the underlying resources, whereas the RG in the lower level
orchestrators has a fine grain detail of the resources.

The NF-FG contains the assignment of NFs to the vir-
tualized software resources; the definition of the forwarding
behavior in the virtualized network resources and the service
requirements which can be evaluated at the network and
software abstraction layers.

The NF-FG evolves from its original definition as SG to RG
mapping. On the one hand, while the NF-FG progresses down
through the architecture it will be further characterized, the
service decomposition process will also decompose the com-
ponents (e.g. NFs) and it will be split into smaller subgraphs
if deployed in different infrastructure domains. On the other
hand, during the service lifecycle the NF-FG will also evolve
from the initial deployment as a consequence of internal re-
optimization processes, modifications to the service requested
to the orchestrator or external changes (e.g. infrastructure
updates, auto-scaling).

Service decomposition is the process of transforming an
NF-FG containing abstract NF (s) to NF-FG (s) containing
less abstract, more implementation-close NF (s). This can also
include dividing the functionality of a complex NF to several,
less complex NFs. This allows for a step-wise translation of
high-level (compound) NFs into more elementary NFs, which
can eventually be mapped onto the infrastructure. During
the decomposition of an NF, the external interfaces remain
unchanged. Formally, a decomposition rule can be seen as a
NF —NF-FG mapping. There can be multiple decompositions
for an NF.

A sample NF decomposition for an Intrusion Detection
System (IDS) service is shown at the right of Fig.1. It can
be implemented with a hardware appliance or a monolithic
Virtual Machine (VM). The IDS control logic is decomposed
into an IDS Control VM, a Firewall (FW) component to block
the identified malicious traffic and a traffic analyzer. The FW
may be mapped to a Forwarding Element (FE) and the traffic
analysis is realized by a generic Deep Packet Inspection (DPI)
VM component.

IV. SERVICE CHAIN ORCHESTRATION

An orchestrator is responsible for the service management
and orchestration. The main functionalities of an orchestrator
are: 4) optimal mapping of Virtualized Network Functions
(VNFs) across infrastructure, i) instantiating VNFs at rea-
sonable locations, i7) keeping track of VNFs location, iv) as-
signing and scaling resources to the VNFs and v) serviceVNFs
monitoring.

Requirements. Orchestration process is impacted by scale
of Telecom operator network and the number of service
requests. Based on the discussions with network operators and
information available on Telecom operator networks such as
BT! and datacenters info in UK2, some parameters and re-
quirements for network topology, customers and their requests

Uhttp://www.kitz.co.uk/adsl/21cn_network.htm
Zhttp://www.datacentermap.com/united-kingdom/

- -—-
i generic IDS service]

|

|
i

i

i

— i

- -
///// i - !’

Elastic IDS:

! o
Elastic IDS Controller|

E-IDS Ctrl VM

Fig. 1. Example of SG, NF-FG and Network Function decomposition

were identified. A typical Telecom operator network has a
hierarchical structure with a dense core router meshed network
consisting of inner and outer core Points of Presence (PoPs).
The end customers are interconnected to this core network via
a hierarchy of tree-structured access- and metro aggregation
networks. Considering BT, such an infrastructure consists of
almost 50K devices at different parts in the network and
datacenters excluding CPEs. In case of including CPEs, almost
10M devices are needed to be orchestrated. The number of
new customers per day is equal to almost 2.5K and the number
of service requests is estimated around 5— 10K per day. There
are several IETF drafts on use cases for Service Function
Chain (SFC). Based on these drafts, a service chain request
is typically a Directed Acyclic Graph with topologies such as
a simple path or a forking path.

Capability. In order for the orchestrator to fully exploit
the capabilities of the servers, all the features/capabilities
available in the infrastructure should be identified. Devices
such as Acceleration Hardware (AH) (e.g., FPGAs, GPUs and
MICs) and advanced network interfaces cards can improve the
performance of many NFs by offloading several performance-
critical tasks in an NF to these devices. The challenges occur
when the complexity of NFs increases which makes the
implementation of NFs infeasible due to resource limitation
in AH. A solution to this issue is the support of service
decomposition in the orchestration process (see Section III).
Complex NFs can be decomposed to more elementary NFs and
there should exist the hardware description of performance-
critical NFs to be installed on AH. An important task is to
design the NFs in such a way that efficient usage of specific
capabilities is ensured. Note that for the mapping of NFs to
the infrastructure, both hardware static metrics (e.g., location
and supported features) and dynamic metrics (e.g., CPU uti-
lization and current available memory) should be known to
the orchestrator. Besides, values of resource demands should
be coherent with node specification constraints. Depending on
the form of the exposed resources, comparison of demands and
available resources can be a challenging task. To address this
issue, different profiling tools (e.g., GNU gprof or Tuning and
Analysis Utilities (TAU)) can be used to measure the applica-
tion’s performance. Benchmarks such as the one provided by

Standard Performance Evaluation Corporation (SPEC) enables
direct comparison of processors’ performance. Additionally,
analytical techniques (e.g., Amdahl’s law and Gustafson’s law)
can be used to model the performance of multi-core CPUs. In
spite of existence of several profiling tools, it is challenging
to have a benchmarking with high-accuracy.

Interface. A generic API for an orchestrator has to support
the following operations: i) instantiate/tear down/change NF-
FG: once an NF-FG arrives at the orchestrator, it tries to
execute it based on its global resource view. Changing a
request includes operations such as modifying the NF demands
and inserting/removing NFs in the NF-FG i) get/send virtual
resource info: the orchestrator provides resources, capabilities
and topology information iii) notification/alarm: any failure
or unexpected event can be reported by the orchestrator
1v) get/send observability info: measurement reports on Key
Quality Indicators (KQIs) related to NFs can be provided
by the orchestrator v) start/stop/restart NFs and switches
vi) connect/disconnect NFs to switches and vii) configure
switches. Possible option for addressing the last operations is
using different protocols at the southbound interface of the
controllers such as OpenFlow, NETCONF and OFconfig.

A. ESCAPE framework

We have established a prototyping framework called ES-
CAPE? including 3 layers of Infrastructure Layer (IL), Orches-
tration Layer (OL), Service Layer (SL) and demonstrated the
first version in [3]. The main goal of ESCAPE is to support
the development of several parts of the service chaining
architecture including VNF implementation, traffic steering,
virtual network embedding, etc. However, here we focus on the
orchestration part. ESCAPE is (mainly) implemented in Python
on top of POX (OpenFlow controller) platform and Mininet.
The modular approach and loosely coupled components make
it easy to change several parts and evaluate own algorithms.
The system architecture of the next version of ESCAPE
(without the Mininet based IL) is shown in Fig. 2.

3Extensible Service ChAin Prototyping Environment using Mininet, Click,
NETCONF and POX (ESCAPE)

SG editor NF-1B editor

GUI

SG mgmt VNF mgmt

Service Layer

Service Layer API

SG mapper &
SG DB
mapping
strategy 5G. RG manager =\
NF-FG Service Orchestrator SG instances
(5G->NF-FG) [
[Virtual 3
L resource /. i
- e NF-IB NF-1B
Virtual resources RG NF-FG manager (%?::LbSéTd
o e e T T T T T T T T T T T T T T T T S T AT AT e T AT AT AT T 4
RG NF-FG

Virtualizer
manager

Orchestration Laye!

NF-FG, RG,
RO mapper NF-IB NF-FG

mapping
strateg)

NF-FG

I G DB [;I
ager
.

u Virtual
resource
& | NF-FG
5 manager NF-FG hero
Abstract domain RG
resource view
daptation API
= Domain
3 Virtualizer
Abstract domain (DoV)
resource view
Domain
dapter (CA) o & !
R action functions e 3 Resource |
DB manager . Database
DX inet Stack ger L i
pter pter pter 4

Fig. 2. System architecture of ESCAPE

SL contains an API and a GUI at the top level where
users can request and manage services and NFs. The API
is capable of formulating SG from the request and passes
that to a dedicated service orchestrator which is responsible
for gathering resource information (RG) from Virtual resource
manager. This is the virtual view provided by the Virtualizer
of the lower layer. Mapping of SG to RG is delegated to the
SG mapper module which constructs an NF-FG storing the
request, the virtual resources and the mapping between NFs
and infrastructure nodes.

OL encompasses the most important components of the
resource orchestration process which replaces the ETSI’s Vir-
tualized Infrastructure Managers (VIMs). An API is set up on
the top centralizing the interaction with the upper layer. On the
one hand, the request coming as an NF-FG is forwarded to the
Resource Orchestrator (RO) via the corresponding Virtualizer
(which is responsible for policy enforcement as well). On
the other hand, the virtual view created and managed by
the Virtualizer is provided as an RG to the upper layer.
RO is the key entity managing the components involved in
the orchestration. The input is an NF-FG which should be
mapped to the abstract domain view provided by the Domain
Virtualizer. RO collects and forwards all required data to RO
mapper. More specifically, the NF-FG, the domain view (as
an RG) and the Network Function Information Base (NF-IB)
are passed to the RO mapper which invokes the configured
mapping strategy and interacts with the Neo4j graph database
containing information on NFs and decomposition rules* (see
Section IV-B). The outcome is a new NF-FG which is sent
to the Controller Adaptation part. The role of Controller

4NF-IB corresponds to “VNF Catalogue” in NFV MANO with the differ-
ence of supporting service decomposition.

Adapter (CA) is twofold. First, it gathers technology specific
information on resources of different domains then builds an
abstract domain view. The interaction with different types of
technology domains are handled by adapters (e.g., OpenStack
adapter for clouds managed by OpenStack). Second, the in-
coming NF-FG request is decomposed according to the low-
level domains and delegated to the corresponding adapters.

B. Network Function-Information Base (NF-IB)

The NF-IB is the entity responsible for storing the NF mod-
els/abstractions, NF relationships, NF implementation image(s)
and NF resource requirements (see Fig. 2). The NF-IB supports
the definition of abstract NFs such as a FireWall, referring to
a type, a potential number of ports/interfaces, as well as de-
pendencies to other NFs. As explained in Section III, abstract
NFs might be implemented through more refined NFs or might
be decomposed themselves into multiple NFs interconnected
into an NF-FG with the same external interfaces as the higher-
level NF. The NF-IB is capable of storing these relationships
into a tree-like data structure in support of the decomposition
process (cfr. Figure 1). The leaves of the decomposition tree
are NFs for which low-level implementation and deployment
information is available such as images, provisioning scripts,
resource requirements in terms of CPU, memory and storage.

We have implemented the NF-IB in Neo4j database. As
this database is capable of storing key-value pairs for nodes
and edges, for each NF we have stored the explained tree-
like structure with all the corresponding information of nodes
and links. Several modules have been implemented to enable
i) updating of the database and i) retrieval of all possible
decompositions of a given SG.

V. EMBEDDING ALGORITHM

We have implemented a proof of concept embedding algo-
rithm which supports service decomposition using the Neo4j-
based NF-IB explained in Section IV-B. It is implemented in
Python in compliance with the ESCAPE framework. Given an
NF-FG to this module, it retrieves all possible decompositions
from the NF-IB and selects a suitable decomposition which is
mapped to the network infrastructure. In order to connect to the
Neo4j-based NF-IB from Python, we have used Py2neo library.
The embedding algorithm was proposed in [S] but was only
evaluated in terms of service acceptance ratio. As detailed in
[4], there exist several algorithmic approaches in the literature
to solve the embedding problem. Importantly, the implemented
embedding algorithm is different from the existing approaches
in the sense that service decompositions are taken into account
at the time of embedding and a resource-aware selection is
made. We briefly explain this algorithm in this section.

The objective of the algorithm is to minimize the em-
bedding cost which is achieved by minimizing the resources
consumed in the infrastructure to map a request. This allows
accepting more requests over time and increases the accep-
tance ratio. As service decompositions are known from the
design time, we can make a resource-aware decomposition
selection which would certainly improve the performance of
the embedding as a reasonable decomposition is selected which
corresponds to the existing resources and thus leads to better
placement of the NFs.

The algorithm is based on a backtracking mechanism and
is composed of two phases: i) Decomposition selection and
1) Mapping.

In the first phase, given an NF-FG all of its possible
decompositions are retrieved from the Neo4j-based NF-IB. For
each decomposition a cost is calculated based on: i) number
of NFs in the decomposition, ii) number of candidate physical
nodes with sufficient capacities which can potentially host the
NFs in the decomposition and iii) Cluster Factor (CF) which
is calculated as follows: the NFs with similar types which are
directly connected (without intermediate NFs with other types)
are grouped in a same cluster. The number of clusters in the
decomposition is the CF of that decomposition.

NFs types refer to the implementation of the NFs as
they can be implemented through different techniques such
as: Virtual Machine (VM) images in different virtualization
techniques (e.g. Xen, Vmware), process in a container, packet
I/O drivers (e.g. DPDK), or hardware appliances. It is of great
importance to take NFs types into account at the time of the
embedding because not all physical nodes of the infrastructure
support all types.

CF is taken into account in the cost function to enable more
efficient resource consumption. The more the number of NFs
with the same type, the more NFs might be mapped into a
same physical node. This leads to less resource consumption,
if the similar-type NFs are interconnected directly.

The minimum cost decomposition is selected in the first
phase of the algorithm. The mapping phase is based on a
backtracking mechanism which tries to minimize the resource
consumption of the mapping. The NFs of each cluster (see
explanation for CF calculation) are sorted based on their
requirements in descending order and the mapping of the NFs
of the cluster with maximum requirement starts first. For each
of the unmapped NFs, we sort its corresponding candidate
physical nodes based on their distance (hop count) to the used
physical nodes in ascending order. Every time a physical node
is selected to host an NF it is checked if all connected links
to the NF can be mapped as well. If not, another candidate
physical node is investigated. If none of the nodes can host the
NF the algorithm backtracks to the previous mapped NF and
selects another candidate node. For more detailed explanation
of the algorithm, we refer the interested readers to [5].

VI. PERFORMANCE EVALUATION

The goal of experiments in this paper is to identify the
major blocks in orchestration time in the implemented proof
of concept prototype. Additionally, we see the effect of in-
crease in the topology size, SG size and number of service
decompositions on the performance of the embedding.

In our recent work [5], we have evaluated the proposed
embedding algorithm in terms of cost and acceptance ratio.
We refer the interested readers to [5] to see the added value
of considering service decompositions at the time of the em-
bedding and the impact of the service decomposition choices
on the resource footprint.

As our intention is to evaluate the embedding execution
time on physical topologies with different sizes, we have
generated random regular networks with 100-1000 nodes with

read demp

%

select demp

map

o

Exccution time (s)

=

[5 NFs/SG
[BE8 10 NFs/SG

)

200 400 600 800 1000
Number of physical nodes

Fig. 3. Embedding execution time for SGs with one decomposition
100
80
H rcad demp
C B sclect demp
g 60
£ B map
2
3 40
2 I 2 decomp/NF
EF8 3 decomp/NF
o E#A 4 decomp/NF
0 200 400 600 800 1000
Number of physical nodes
Fig. 4. Embedding execution time for SGs with 5 NFs

degree 3. For each of the generated topologies, the resources
of nodes such as memory, storage and CPU and the links
bandwidth and delay are numbers uniformly distributed be-
tween 100-300. The SGs are also generated randomly and each
pair of nodes is connected with probability 0.5. The resource
demands of NFs and links within an SG are numbers uniformly
distributed between 1-20. Each scenario is iterated 50 times
and the average value is reported.

In the first experiment, we have evaluated the execution
time of the embedding of an SG into physical networks of
different sizes for two scenarios: i) SGs with 5 NFs and i)
SGs with 10 NFs. Each SG has only one decomposition. Fig. 3
reports the execution time of different blocks in the embedding
algorithm. These blocks include: i) retrieving/reading of all
decompositions from the NF-IB (read dcmp), i7) decomposi-
tion selection (select dcmp) and 4ii) mapping of the selected
decomposition (map). Based on the results, the mapping is the
dominant block and it increases significantly with the increase
in the number of NFs, when only one decomposition exists for
an SG.

The next experiment evaluates the effect of increase in
the number of decompositions for an SG. Fig. 4 reports
the execution times for 3 scenarios in which the number of
decompositions per NF in an SG changes from 2 to 4. As there
are 5 NFs in each SG, the number of decompositions in each
scenario is: 52, 5% and 5*. As we see ‘map’ and ‘read dcmp’
blocks seem to scale quite well, whereas ‘select dcmp’ is the
block which scales poorly with increasing number of nodes
in the network. For small topologies with few nodes, ‘read
demp’ is the dominant block while for larger topologies (1000
nodes and more) ‘select dcmp’ seems to be the main concern.
It is worth mentioning that the ‘read demp’ block includes the
time for reading NFs decomposition from the NF-IB and the
time needed for calculating the service decompositions. This
is because only NFs decompositions are stored in the NF-IB

and possible service decompositions should be calculated upon
request.

The experiments in this section clearly identified the major
blocks in the orchestration time in the proposed embedding ap-
proach. Knowing these blocks, in the next section, we propose
several architectural enhancement to improve the scalability of
the orchestrator.

VII. DISCUSSION: TOWARDS A SCALABLE
ORCHESTRATION FRAMEWORK

In this section, we propose several architectural enhance-
ments and explain existing challenges in order to implement
a highly scalable orchestrator and meet the requirements
mentioned in Section IV.

Parallel/distributed embedding. Based on the results, we
identified the ‘read dcmp’ block to be the most time consuming
block in the embedding in smaller topologies while ‘select
decmp’ block seems to be a major issue in larger topologies.
Changing the embedding algorithm to a distributed approach
in which costly calculations are done in parallel can improve
the performance of the embedding significantly. A possibility
to parallelize the ‘read demp’ block of the algorithm is to use
Neo4j which supports High-Availability (HA) by distributing
the full database onto multiple nodes, resulting in database
read performance that scales near linearly with the number
of nodes in the cluster. Using the Neo4j HA the ‘select
demp’ block can simply be computed in parallel as the cost
calculation of each decomposition is independent of others.
However, parallelizing the ‘map’ block is a challenging task.
This phase is equivalent to the typical VNEP as SGs composed
of atomic NFs are similar to virtual networks which should be
mapped to a physical infrastructure and thus similar solutions
to VNEP can be considered for the mapping phase (e.g. [8]).
The options for mapping parallelization are: ¢) considering all
possible combination of NFs mapping to the physical nodes
and selecting the minimum cost mapping. The feasibility/cost
of each mapping can be checked in parallel. This approach is
feasible only in small topologies (0(100) nodes) as the number
of combination increases drastically with a small increase in
the topology size, ii) selecting the first-fit physical node for
mapping of NFs and finding the shortest path between nodes.
NFs mapping/path calculation can be done in parallel. If the
first-fit mapping is not successful, the next one is selected.
A challenge is to avoid different threads reserving the same
resource. Batch scheduling is a solution in which each job gets
dedicated access to the resources.

Hierarchical embedding. The other alternative to achieve
a scalable orchestration process is to have a hierarchical
embedding process. In this process, SG can be divided into
different subgraphs using service decompositions available in
the NF-IB and each subgraph can be given to a different
domain to be orchestrated locally. The main challenge in such
distributed embedding relates to the amount of resource and
infrastructure information that needs to be advertised to the
upper layer orchestrators to facilitate an efficient embedding
process. Each domain may expose to upper layers only high-
level and aggregated information such as total available ca-
pacities and capabilities or aggregated PoP-level information
instead of detailed router-level topologies. Such incomplete

information in the higher layer orchestrator might lead to
inefficient embeddings with performance far from the optimal
solution. It is a challenging task to identify the trade-off
between the efficiency of the embedding and the amount of
infrastructure information exposed by each domain.

Pre-defined service chains. Another enhancement option,
independent of the embedding approach, is to have pre-defined
service chains with pre-defined decomposition templates. With
such templates different parts of the embedding can be done
proactively.

VIII. CONCLUSION

In Service Function Chaining (SFC), virtualized Network
Functions (NFs) are chained to compose a network service.
This paper has focused on the design of an adequate resource
orchestrator to steer the control of SFCs. The main goal of
an orchestrator is to map network functions of a requested
service (i.e., service function chain) to infrastructure network
and compute resources. Orchestration might involve thousands
of requests in the period of one business day to be mapped
on one or more infrastructure provider networks involving
ten thousands of network elements. Scalability is therefore
an important characteristic of an orchestrator component. The
system architecture, related components and a new service rep-
resentation model were explained in detail. Important elements
of mapping algorithms were characterized and an algorithm
supporting service decomposition was implemented as a proof
of concept. The key time consumers within the implemented
PoC were identified, and a scalable distributed orchestrator
architecture, as well as related technologies were proposed
based on these findings.

ACKNOWLEDGMENT

This work was conducted within the framework of the FP7
UNIFY project, which is partially funded by the Commission
of the European Union.

REFERENCES

[1] ETSI, “White Paper: Network Functions Virtualisation (NFV),” 2013.
[Online]. Available: http://portal.etsi.org/NFV/NFV_White_Paper2.pdf

[2] ONF, “Open networking foundation,” 2014. [Online]. Available:
https://www.opennetworking.org/

[3] A. Csoma, B. Sonkoly, L. Csikor, F. Nemeth, A. Gulyas, W. Tavernier,
and S. Sahhaf, “ESCAPE: Extensible Service ChAin Prototyping Envi-
ronment using Mininet, Click, NETCONF and POX. Demonstation.” in
ACM SIGCOMM 2014, 2014.

[4] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888-1906, 2013.

[5] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Network service
chaining with efficient network function mapping based on service
decompositions,” in Ist IEEE Conference on Network Softwarization,
NetSoft 2015, 2015.

[6] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An
enabler for achieving virtual network integration as a service,” Commu-
nications Magazine, IEEE, vol. 53, no. 2, pp. 116-124, 2015.

[7] W. Tavernier, S. Sharmaa, S. Sahhaf, R. Szab6, D. Jocha,
P. Skoldstrom, J. Matias, J. Garay, G. Agapiou, B. Sonkoly,
M. Rost, T. Jungel, A. Rostami, and X. Cai, “D3.1 Programmability
framework,” UNIFY Project, Deliverable 3.1, Oct. 2014. [Online].
Available: https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/
Deliverables/UNIFY_D3.1%20Programmability %20framework.pdf

[8] Q. Yin and T. Roscoe, “Vf2x: fast, efficient virtual network mapping
for real testbed workloads,” in Testbeds and Research Infrastructure.
Development of Networks and Communities. Springer, 2012, pp. 271-
286.

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
https://www.opennetworking.org/
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY_D3.1%20Programmability%20framework.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY_D3.1%20Programmability%20framework.pdf

	Introduction
	Related work
	Service Function Chaining
	Service Chain Orchestration
	ESCAPE framework
	Network Function-Information Base (nfib)

	Embedding algorithm
	Performance evaluation
	Discussion: Towards a scalable orchestration framework
	Conclusion
	References

