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The anaphase-promoting complex/cyclosome (APC/C) is a
multi-subunit E3 ubiquitin ligase that plays a major role in the
progression of the eukaryotic cell cycle. This unusual protein
complex targets key cell cycle regulators, such as mitotic cyclins
and securins, for degradation via the 26S proteasome by
ubiquitination, triggering the metaphase-to-anaphase transition
and exit from mitosis. Because of its essential role in cell cycle
regulation, the APC/C has been extensively studied in mammals
and yeasts, but relatively less in plants. Evidence shows that,
besides its well-known role in cell cycle regulation, the APC/C
also has functions beyond the cell cycle. In metazoans, the APC/C
has been implicated in cell differentiation, disease control, basic
metabolism and neuronal survival. Recent studies also have shed
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light on specific functions of the APC/C during plant
development. Plant APC/C subunits and activators have been
reported to play a role in cellular differentiation, vascular
development, shoot branching, female and male gametophyte
development and embryogenesis. Here, we discuss our current
understanding of the APC/C controlling plant growth.

Keywords Arabidopsis, cell cycle, plant development, ubiquitin-ligase

I. INTRODUCTION TO THE PLANT CELL CYCLE

The cell cycle, the sequence of events comprising DNA

replication, cell division and growth, is composed of distinct

phases. Replication of nuclear DNA happens in the so-called

Synthesis or S-phase, followed by the physical process of cell

division referred to as Mitosis or M-phase. S and M are sepa-

rated by two gap phases, G1 and G2, in which cells prepare for

replication and division, respectively. Not surprisingly, the

cell cycle machinery is strongly regulated at different points to

ensure the fidelity of chromosome duplication and cell divi-

sion. Highly conserved control mechanisms, known as check-

points, verify whether or not the cell cycle process has been

accurately completed at each phase prior to progression into

the next phase (De Veylder et al., 2007). Besides the normal

cell division, cells can also undergo a different type of cell

cycle, known as endoreduplication or endocycle, which con-

sists of one or several rounds of DNA synthesis without subse-

quent entry into mitosis (Edgar and Orr-Weaver, 2001; Breuer

et al., 2010; De Veylder et al., 2011).

Both the G1-to-S and G2-to-M transitions require the activ-

ity of CYCLIN-DEPENDENT KINASEs (CDKs). CDK activ-

ity is regulated at multiple levels, such as by association with

specific regulatory subunits, called cyclins; by phosphoryla-

tion and dephosphorylation; by interaction with inhibitory pro-

teins; and by targeted proteolysis (Inz�e and De Veylder, 2006;

Sullivan and Morgan, 2007). Eukaryotes use the ubiquitin-

dependent proteolysis system to control the abundance of the

cyclins and CDK inhibitors (CKIs) (Genschik et al., 1998;

Criqui et al., 2000; Jun et al., 2013).

In plants, two major classes of CDKs, known as CDKA and

CDKB, directly drive the cell cycle transitions (Boudolf et al.,

2004; Iwakawa et al., 2006). A-type CDKs are most closely

related to the mammalian CDK1 and CDK2, which contain

the evolutionary conserved PSTAIRE motif in their cyclin-

binding domain, and regulate both the G1-to-S and G2-to-M

transitions. One of the best characterized CDKA substrates is

RETINOBLASTOMA RELATED (RBR), a protein that

represses the activity of the heterodimeric transcription factor

complex E2F/DP (Kuwabara and Gruissem, 2014). The E2Fs

represent an important class of transcription factors that retain

a conserved DNA-binding domain. Usually, E2F proteins

associate with its dimerization partner (DP) protein to form a

heterodimeric complex that binds to the promoter of a number

of target genes required for multiple processes during the cell

cycle (Lammens et al., 2009). In contrast to A-type CDKs,

B-type CDKs have a divergent cyclin-binding domain and

control the G2-to-M transition (Hemerly et al., 1995; Por-

ceddu et al., 2001; Endo et al., 2012; Nowack et al., 2012).

In order to become active, CDKs must associate with their

regulatory partners, the cyclins. In mammals, there are four

main types of cyclins that control the cell cycle transition,

which are designated A, B, D and E-type cyclins. The entry

into the S-phase is under control of D- and E-type cyclins, pro-

gression through the S-phase depends on A- and E-type

cyclins, whereas the M-phase is coordinated by A- and B-type

cyclins (Bloom and Cross, 2007). In Arabidopsis, ten A-, nine

B-, and ten D-type cyclins have been described (Vandepoele

et al., 2002; Komaki and Sugimoto, 2012). The A-type cyclins

are mainly produced from the onset of the S-phase until the

middle of G2, the B-type cyclins specifically from G2 until

the end of mitosis, while the D-type cyclins mainly operate at

the G1-to-S transition (Menges et al., 2005; Inz�e and De

Veylder, 2006; Menges et al., 2006; Van Leene et al., 2010;

Harashima et al., 2013).

The activity of CDK/cyclin complexes is also negatively

regulated by CKIs. Based on structural and biochemical fea-

tures, the mammalian CKIs belong to two very distinct classes.

The Inhibitors of CDK4 (INK4) family is characterized by the

presence of multiple ankyrin repeats and selectively inhibit

G1-specific CDKs, and the Kinase Inhibitor Protein (KIP)/

CDK Inhibitor Protein (CIP) family binds and inhibits a

broader range of CDKs involved in the control of the G1-to-S

transition (Sherr and Roberts, 1999). In plants, no homologs of

the mammalian INK4 class of inhibitors have been identified.

However, plants encode multiple KIP/CIP-related proteins,

known as INHIBITOR OF CDK (ICK) or KIP/CIP RELATED

PROTEIN (KRP). Furthermore, plants contain a unique class

of CKIs, denominated SIAMASE (SIM) and SIAMESE

RELATED (SMR), not found in animals (Churchman et al.,

2006; Peres et al., 2007; Yi et al., 2014).

The Arabidopsis genome encodes seven ICK/KRP proteins

that all share a short amino acid motif with mammalian KIP/

CIP proteins (De Veylder et al., 2001; Torres Acosta et al.,

2011). Plants have A-type CDKs associated with A-type or D-

type cyclins that are bound and inhibited by ICK/KRP proteins

(Lui et al., 2000; Jasinski et al., 2002; Zhou et al., 2002;

Nakai et al., 2006; Cheng et al., 2013; J�egu et al., 2013; Wen

et al., 2013). Moreover, in agreement with their function as

inhibitors of the cell cycle, constitutive overexpression of

ICK1/KRP1, ICK2/KRP2, ICK4/KRP6 or ICK7/KRP4 results

in dwarfed plants with a reduced cell number and organ size

(Wang et al., 2000; De Veylder et al., 2001; Zhou et al.,

2003; Bemis and Torii, 2007). Knockout mutants of single

ICK/KRP genes do not show any phenotype, with the excep-

tion of the ick2/krp2 mutant that produces more lateral roots

(Sanz et al., 2011). Compared with wild-type plants, the qua-

druple (ick1/krp1, ick2/krp2, ick6/krp3, ick7/krp4) and quintu-

ple (ick1/krp1, ick2/krp2, ick5/krp7, ick6/krp3, ick7/krp4)

mutants have larger cotyledons; narrower, curled downwards
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and larger leaves; and larger petals and seeds. Furthermore,

these quadruple and quintuple mutants have more, but smaller,

cells in all organs examined. The quintuple mutant also has

increased fresh and dry weights (Cheng et al., 2013). CDK

activity gradually increases when more ICK/KRP genes are

down-regulated and this effect is exerted post-transcriptionally

(Cheng et al., 2013).

ICK/KRPs also play an important role in the control of

endoreduplication. Transgenic plants overexpressing ICK6/

KRP3 have a higher DNA ploidy level in the shoot apical mer-

istem (SAM) and leaves (Jun et al., 2013). Overexpression of

ICK2/KRP2 was reported to have a dosage-dependent effect

on the onset of endoreduplication, triggering the mitosis-to-

endocycle transition during leaf development (Verkest et al.,

2005).

In Arabidopsis, the SIM/SMR family of CKIs comprises

14 members (Yi et al., 2014). These proteins share a small

peptide domain of six amino acids with the ICK/KRP inhibi-

tors, which corresponds to the cyclin-binding motif (Peres

et al., 2007). The SIM protein has a central role in the estab-

lishment of endoreduplication during trichome development

(Churchman et al., 2006). Moreover, the SIM protein interacts

with D-type cyclins, as well as with CDKA, and inhibits the

kinase activity of CDKA/CYCD complexes (Churchman

et al., 2006; Peres et al., 2007; Yang et al., 2011; Yi et al.,

2014). In addition to SIM, SMR1 and SMR2 specially copur-

ify with CDKB1;1, whereas SMR4 and SMR5 exclusively

copurify with the A-type CDK and D-type cyclins (Van Leene

et al., 2010). Recently, for SMR4, SMR5 and SMR7, the cell

cycle inhibitory activity was confirmed through the analysis of

overexpressing plants, which show reduction in rosette size,

serrated leaves, fewer cells with increased cell size, which are

all phenotypes characteristic for inhibition of cell division.

Furthermore, SMR5 and SMR7 knockout plants display an

impaired DNA damage checkpoint in leaf cells upon treatment

with the replication inhibitory drug hydroxyurea (HU). More-

over, both SMR5 and SMR7 regulate the DNA damage check-

point in response to reactive oxygen species (Yi et al., 2014).

Protein degradation mediated by ubiquitin is a primary

mechanism by which changes in the cell cycle state are

achieved. The ubiquitination reaction is a multi-step enzy-

matic cascade that tags substrates with ubiquitin chains. First,

in an ATP-dependent reaction, the E1 activating enzyme binds

to and activates an ubiquitin molecule. Then, the ubiquitin

molecule is transferred to one of the E2 ubiquitin-conjugating

enzymes that, together with the E3 ubiquitin ligase enzyme,

transfers the ubiquitin molecule onto a lysine residue of the

target protein. This reaction is repeated several times, forming

a chain of ubiquitin molecules on the substrate, which will be

recognized by the 26S proteasome for subsequent degradation

(Hershko, 1997; Peters, 2006). E3 ubiquitin ligases are key

components of ubiquitination pathways, because they deter-

mine the substrate specificity of the ubiquitination reactions

by recruiting the appropriate E2 ubiquitin-conjugating enzyme

and possibly also by contributing to E2 activity (Peters, 2006;

Van Voorhis and Morgan, 2014). The two central E3 ubiquitin

ligases involved in cell cycle regulation are the SKP/CUL/

RBX/F-box (SCF) protein complex and the anaphase-pro-

moting complex/cyclosome (APC/C) (Vodermaier, 2004;

Genschik et al., 2014).

II. THE SCF E3 LIGASE

The SCF complex is a multi-subunit E3 ubiquitin ligase

composed of four components: the S-phase Kinase-Associated

Protein SKP1, the cullin-related subunit CUL1, the RING-

BOX protein RBX1, and an F-box protein (Figure 1a).

Because the F-box protein determines substrate specificity,

many different SCF complexes can be distinguished on the

basis of the associated F-box protein. The F-box protein forms,

together with SKP1, the substrate recognition module

(Cardozo and Pagano, 2004). In many cases, the interaction of

FIG. 1. The two main E3 ubiquitin ligases controlling the cell cycle. a) Sche-

matic representation of the structure of the SCF complex based on the 3D crys-

tal structure (Cardozo and Pagano, 2004). b) Schematic representation of the

APC/C complex. The scheme is based on a high-resolution structure using sin-

gle-particle electron microscopy (EM) of the complex (da Fonseca et al.,

2011) and experimentally confirmed interactions of the APC/C subunits from

Arabidopsis using two-hybrid interactions (Eloy et al., 2006; Heyman et al.,

2011). Green color: platform module; red: structural module; brown: catalytic

and substrate recognition module; orange: activators subunit; purple: plant-

specific APC/C interactors.
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the substrate with the F-box protein depends on the phosphory-

lation state of the SCF substrate, indicating that substrate mod-

ification and F-box protein availability are the most critical

steps in SCF-dependent proteolysis (Orlicky et al., 2003;

Vodermaier, 2004; Skaar et al., 2013). The Arabidopsis

genome encodes about 700 F-box proteins, which implicates

that plants have the capacity to create a multitude of F-box

containing complexes, possibly controlling the stability of

hundreds of substrates involved in numerous biological pro-

cesses (Gagne et al., 2002; Lechner et al., 2006). During the

cell cycle, SCF mainly regulates the G1-to-S transition by

degrading CKIs, such as SIC1 in Saccharomyces cerevisiae

(Dirick et al., 1995), KIP1 in humans (Pagano et al., 1995)

and ICK/KRP in plants (Verkest et al., 2005; Ren et al., 2008;

Jun et al., 2013). In Arabidopsis, it has been shown that degra-

dation of ICK1/KRP1, ICK2/KRP2, ICK4/KRP6, ICK5/KRP7

and ICK6/KRP3 by the 26S proteasome is mediated by the

SCF complex (Verkest et al., 2005; Jakoby et al., 2006; Kim

et al., 2008; Jun et al., 2013).

In Arabidopsis, several SCF-associated F-box proteins have

been identified. The best studied are SKP2A and SKP2B,

which are similar to the metazoan SKP1 and SKP2 (Zheng

et al., 2002). In mammals, these F-box proteins regulate prote-

olysis by acting as a substrate recognition factor forming the

SCFSKP1 and SCFSKP2 complexes (Carrano et al., 1999). In

Arabidopsis, SCFSKP2A binds to the transcription factor E2Fc

to mediate its proteolysis by the 26S proteasome (del Pozo

et al., 2006). E2Fc works as a negative regulator of cell divi-

sion and is likely necessary for DNA endoreduplication. Plants

with reduced levels of E2Fc show lower ploidy levels, while

overexpression of a truncated form that lacks the N-terminal

region, involved in regulating its stability, affects cell division

and cell size (del Pozo et al., 2002). SKP2A also contains an

auxin-binding site, explaining a direct involvement of auxin in

controlling the stability of E2Fc and cell cycle activity (Jurado

et al., 2010; del Pozo and Manzano, 2014). Similarly,

SCFSKP2B targets ICK1/KRP1 for degradation (Ren et al.,

2008).

Another F-box protein that can form part of an SCF com-

plex, is F-BOX LIKE (FBL17), which was first identified in

Arabidopsis. The SCFFBL17 complex targets the CKIs ICK4/

KRP6 and ICK5/KRP7 for proteasome-dependent degradation

(Kim et al., 2008; Gusti et al., 2009) and most likely all seven

Arabidopsis ICK/KRP proteins interact with FBL17 (Zhao

et al., 2012). FBL17 loss of function leads to the stabilization

of ICK4/KRP6 and inhibits cell cycle progression during pol-

len development. Cellular analysis indicates that SCFFBL17 is

an essential complex that promotes twin sperm cell production

and double fertilization in plants (Kim et al., 2008).

III. THE APC/C COMPLEX

The APC/C is one of the most complex molecular machines

known to catalyze ubiquitination reactions. Depending on the

organism, the APC/C can contain more than a dozen core sub-

units. The APC/C complex essentially is required at the G2-to-

M transition and exit from mitosis by targeting different cell

cycle regulators, including mitotic cyclins and PDS1/

SECURIN (Irniger et al., 1995; Genschik et al., 1998; Pell-

man and Christman, 2001; Zheng et al., 2011; Gui and Homer,

2013) for proteolysis. PDS1/SECURIN is an inhibitor of the

protease SEPARASE. APC/C-mediated destruction of PDS1/

SECURIN leads to the activation of SEPARASE, which in

turn cleaves the COHESIN complex that physically attaches

to sister chromatids, enabling sister chromatid segregation

((Funabiki et al., 1996; Michaelis et al., 1997; Ciosk et al.,

1998). The molecular mechanism of SEPARASE-mediated

chromatid segregation is well conserved from yeast to human,

but so far remains unclear in plant biology. Direct searches for

SECURIN orthologs in plant genomes did not provide any sig-

nificant hit; however, this might be due to the fact that those

proteins are very poorly conserved at the amino acid sequence

level between species (Moschou and Bozhkov, 2012).

A. The Core Components of the APC/C

Several high-resolution techniques, such as single-particle

electron microscopy (EM), crystallography or nuclear mag-

netic resonance (NMR), have been used to understand the

structure of the APC/C. In budding yeast, single-particle EM

revealed the structure of APC/CCDH1 and also its substrates.

This analysis showed a triangular shape of the APC/C and

allowed for the identification of the combined catalytic and

substrate recognition module, which is located within the

central cavity. Using NMR spectroscopy, the specific interac-

tion between the D-box of the target protein (see further) and

APC10 has been demonstrated (da Fonseca et al., 2011;

Frye et al., 2013; Zhang et al., 2013; Chang et al., 2014;

Yamaguchi et al., 2015).

Although no information is available about the structure of

the plant APC/C, its hypothetical structure based on homology

with yeast is schematically represented in Figure 1b. The cata-

lytic core is formed by a CULLIN subunit, called APC2, and a

RING-H2 protein, denominated APC11. Together, these pro-

teins are sufficient to catalyze an ubiquitination reaction in

vitro, although without substrate specificity (Gmachl et al.,

2000; Leverson et al., 2000; Tang et al., 2001). The APC10/

DOC1 subunit is part of the combined catalytic and substrate

recognition module located within the central cavity of the

APC/C that consists of APC10, APC2 and APC11. APC10

together with CELL DIVISION CYCLE 20 (CDC20) and

CCS52/CDH1 (see further) are responsible for substrate recog-

nition (da Fonseca et al., 2011).

The subunits APC3, APC6, APC7 and APC8 all contain tet-

ratricopeptide repeat (TPR) domains that are important for

protein-protein interactions and assembly of the structural

module of the APC/C. In Arabidopsis, all APC/C subunits are

encoded by unique genes with the notable exception of APC3,
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for which two genes are present in the Arabidopsis genome,

APC3a/CDC27a and APC3b/HOBBIT (Blilou et al., 2002).

The largest subunit of APC/C, APC1, serves as a scaffold

module of the complex, and shares a structural motif, termed

proteasome/cyclosome (PC) repeat and consisting of eleven

repeats of 35 to 40 amino acid residues, with the two largest

subunits of the 26S proteasome, RPN1 and RPN2 (van Leuken

et al., 2008; McLean et al., 2011). The subunits APC4 and

APC5 are proposed to be so-called connector subunits that,

together with APC1, form the platform of the complex to

which the structural module formed by TPR-containing subu-

nits is attached together with the catalytic module (Thornton

et al., 2006; da Fonseca et al., 2011).

In addition to the subunits described above, the APC/Cs of

Schizoscaccharomyces pombe, S. cerevisiae and mammals

contain two other functional subunits (Barford, 2011), denomi-

nated APC13 and APC15. Although plant genomes contain

genes that encode proteins resembling APC13 and APC15

(Schwickart et al., 2004; Saze and Kakutani, 2007; Uzunova

et al., 2012), both subunits have not been identified by tandem

affinity purification (TAP) of the Arabidopsis APC/C, proba-

bly due to their small size (Van Leene et al., 2010) (Table 1).

In budding yeast, loss of APC13 leads to slow growth and

accumulation of G2/M cells, showing the important role of

this small subunit for APC/C function (Hall et al., 2003;

Schwickart et al., 2004). The homologs of APC13 in human

and fission yeast can complement the phenotype of the APC13

deletion mutant of budding yeast (Schwickart et al., 2004).

Moreover, APC13 promotes the high affinity association of

the TPR-containing subunits APC6 and APC3 within the

APC/C complex, and is required for efficient cyclin degrada-

tion during the anaphase (Schwickart et al., 2004). Plants with

lowered expression levels of APC13, also known as BONSAI,

have an abnormal shoot and inflorescence development (Saze

and Kakutani, 2007) (see further).

In human cells, APC15 appears to be part of the APC/C

platform domain, where it is located near APC4, APC5 and

APC1. APC15 is necessary for rapid auto-ubiquitination and

degradation of CDC20 (see further), the APC/C co-activator

subunit (Uzunova et al., 2012). Additionally, APC15 deple-

tion delays mitotic progression and cyclin B1 degradation in

human cells (Mansfeld et al., 2011). Hitherto, there is no func-

tional data about the plant APC15 homologs.

It is highly likely that the APC/C in eudicots and monocots

is similar. Indeed, in the rice (Oryza sativa) genome, genes

encoding all APC subunits can be identified. For APC1, only a

partial sequence is present, possibly due to mis-annotation

(Lima et al., 2010) (http://rice.plantbiology.msu.edu/).

Homology-based sequence analysis showed that also in maize

(Zea mays), all APC/C subunits are present (Table 1), and

they even contain the conserved domains found in the corre-

sponding subunits of other organisms, strengthening the evolu-

tionary conservation of the APC/C complex. In Table 2, an

amino acid identity and similarity comparison are shown

TABLE 1

The APC/C subunits in Arabidopsis thaliana, Oryza sativa and Zea mays

A. thaliana O. sativa Z. mays

APC subunits Gene Identifier Motifs

APC1 At5g05560 * GRMZM2G053980 Rpn1/2

APC2 At2g04660 Os04g40830 GRMZM2G168886 Cullin domain

APC3a At3g16320 TPR

APC3b At2g20000 Os06g41750 GRMZM2G392710

APC4 At4g21530 Os02g54490 GRMZM2G053766 WD40

APC5 At1g06590 Os12g43120 GRMZM2G431251 TPR

APC6a At1g78770 Os03g13370 GRMZM2G147603 TPR

APC6b GRMZM2G166684

APC7 At2g39090 Os05g05720 GRMZM2G089296 TPR

APC8a At3g48150 Os02g43920 GRMZM2G170591 TPR

APC8b Os06g46540

APC10a At2g18290 Os05g50360 GRMZM2G054247 DOC1

APC10b GRMZM2G174971

APC11a At3g05870 Os03g19059 GRMZM2G162356 RING-H2

APC11b Os07g22840

APC13 At1g73177 Os07g44004 GRMZM6G522911

APC15a AT5g63135 Os02g38029 GRMZM2G092743

APC15b GRMZM2G020201

Note. *partial sequence.
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between the Arabidopsis, rice and maize core APC/C subunits.

A schematic representation of the structure of the maize APC/

C subunits is shown in Figure 2.

B. APC/C Co-Activators

The APC/C is regulated by two structurally related co-acti-

vator proteins, known as CDC20 and CDC20 HOMOLOG 1

(CDH1) in mammalian, and CDC20 and CELL CYCLE

SWITCH 52 (CCS52) in plants. These proteins can bind and

activate the APC/C and provide substrate specificity. The co-

activators belong to a class of WD-40 repeat proteins that

form a b-propeller structure, and represent the major site for

protein interactions. The WD-40 domain facilitates the recruit-

ment of target proteins in an F-box protein-dependent manner

and is as such essential for substrate recognition in APC/C-

dependent proteolysis (van Leuken et al., 2008).

In mammals, the APC/C is activated during early mitosis by

CDC20, and the APC/CCDC20 complex is essential for

SECURIN degradation at the metaphase/anaphase transition

(Cohen-Fix et al., 1996; Gorr et al., 2005). Later in the telo-

phase and the G1-phase, the APC/C associates with CDH1,

and APC/CCDH1 marks B-type cyclins (CYCB) for degrada-

tion, facilitating exit from mitosis (Schwab et al., 1997;

Visintin et al., 1997; Zachariae et al., 1998; Kramer et al.,

2000).

The Arabidopsis genome harbors five genes encoding puta-

tive CDC20 proteins (Capron et al., 2003a; Kevei et al.,

2011). Two of them, CDC20.1 and CDC20.2, execute con-

served and redundant functions in the mitotic cell cycle, while

the three others, CDC20.3, CDC20.4 and CDC20.5, might be

pseudogenes (Kevei et al., 2011). CCS52, the plant ortholog

of CDH1, was first identified in alfalfa (Medicago sativa). In

Medicago, there are two CCS52 co-activators, CCS52A and

CCS52B, and partial suppression of CCS52A gene expression

in M. truncatula reduces endoreduplication and cell size

(Cebolla et al., 1999). Arabidopsis has three genes encoding

the CCS52 co-activators, CCS51A1, CCS52A2 and CCS52B.

CCS52A1 and CCS52A2 share high homology with each other

and both are closely related to CCS52A of Medicago, while

CCS52B is more similar to CCS52B (F€ul€op et al., 2005).

Mutation of either CCS52A1 or CCS52A2 in Arabidopsis

results in rosette leaves with a reduced endoreduplication

index, which represents the mean number of endoreduplication

cycles that a typical nucleus undergoes (Lammens et al.,

2008). In addition, down-regulation of CCS52A in tomato also

reduces endoreduplication and results in a decreased cell size

in developing tomato fruits. Curiously, ectopic overexpression

of CCS52A in tomato plants triggers an initial delay in

TABLE 2

Amino acid identity and similarity among the APC/C subunits in Arabidopsis thaliana (At), Oryza sativa (Os) and Zea mays

(Zm)

% Identity/Similarity

APC subunits At/Os At/Zm Os/Zm a/b

APC2 64/76 64/77 85/92

APC3 47/60 (a) 55/71 (b) 48/62 (a) 56/71 (b) 85/91 48/63

APC4 49/67 48/69 71/82

APC5 53/69 51/67 83/88

APC6 74/85 73/84 (a) 72/83 (b) 86/92 (a) 87/93 (b) 94/96

APC7 62/77 62/77 90/95

APC8 65/80 (a) 46/61 (b) 66/80 88/94 (a) 52/61 (b) 58/94

APC10 81/92 82/91 (a) 77/89 (b) 90/94 (a) 84/89 (b) 90/93

APC11 88/91 (a) 87/90 (b) 88/90 96/98 (a) 95/97 (b) 98/98

APC13 58/77 59/77 93/98

APC15 59/72 57/71 (a) 58/71 (b) 94/96 (a) 94/97 (b) 96/98

Note. a/b: identity and similarity between the subunits a and b of the different species.

FIG. 2. Schematic representation of the conserved domains of APC/C subu-

nits from Zea mays. All domains and full-length protein sequences are repre-

sented by colored boxes and gray lines, respectively.

492 N. B. ELOY ET AL.

D
ow

nl
oa

de
d 

by
 [

G
he

nt
 U

ni
ve

rs
ity

],
 [

D
ir

k 
In

zé
] 

at
 0

5:
46

 1
0 

N
ov

em
be

r 
20

15
 



endoreduplication, which is later resumed and even enhanced

(Mathieu-Rivet et al., 2010b). In Arabidopsis, ectopic expres-

sion of CCS52A2 or CCS52B results in slightly swelled roots

with cells that have higher ploidy levels, up to 32C and 64C.

Similarly, leaf trichomes of plants overexpressing CCS52A2

or CCS52B have four or five branches in contrast to three

branches of wild-type trichomes. This phenotype is also the

result of an enhanced level of endoreduplication (de Almeida

Engler et al., 2012). Simultaneously down-regulating

CCS52A2 and CCS52B, or down-regulating only CCS52B

results in decreased ploidy levels in cotyledon cells (de

Almeida Engler et al., 2012). Moreover, when CCS52A2- or

CCS52B-overexpressing plants are infected by root-knot or

cyst nematodes, the feeding cells normally induced in the roots

become gigantic with fewer, but enlarged nuclei, due to preco-

cious endoreduplication and hampered mitosis, causing

decreased nematode growth and reproduction. In contrast,

down-regulation of CCS52A and CCS52B results in smaller

feeding cells containing little cytoplasm, showing a delay in

nematode development (de Almeida Engler et al., 2012). In

Arabidopsis, in the root apex at the transition zone, which is

located between the meristem and the cell elongation zone,

cytokinin signaling activates the transcription factor ARABI-

DOPSIS RESPONSE REGULATOR 2 (ARR2), which

directly induces the expression of CCS52A1. The presence of

CCS52A1 is postulated to activate APC/C and to promote the

degradation of mitotic regulators, causing cell division to

arrest, thus controlling the onset of endoreduplication and mer-

istem size (Takahashi et al., 2013).

Similarly to vertebrates, the plant APC/C co-activators also

display temporal cell cycle regulation. In animals, CDC20

starts to accumulate in the S-phase, peaks at mitosis and drops

as cells exit mitosis, while the CDH1 activity is elevated in the

late anaphase and persists throughout the G1-phase (Hu et al.,

2011). In synchronized Arabidopsis cell cultures, the two func-

tional CDC20s, CDC20.1 and CDC20.2, are expressed from

the S-phase until the M-phase exit. Similarly, CCS52B is

expressed from G2/M- to M-phase, whereas CCS52A1 and

CCS52A2 transcripts are present from late M- until early G2-

phase (Menges et al., 2003; F€ul€op et al., 2005; Kevei et al.,

2011).

C. APC/C Inhibitors

Vertebrates utilize inhibitory proteins to restrict APC/C

activity until the appropriate time in mitosis and meiosis. One

of these inhibitors is EARLY MITOTIC INHIBITOR1

(EMI1), which plays an essential function during cell prolifer-

ation by preventing re-replication of DNA, and the destruction

of EMI1 triggers the activation of APC/C at mitosis (Grosskor-

tenhaus and Sprenger, 2002; Di Fiore and Pines, 2007;

Machida and Dutta, 2007). In vitro experiments have shown

that EMI1 inhibits CYCB ubiquitination and an excess of

EMI1 added to Xenopus egg extracts prevents CYCA, CYCB,

SECURIN and GEMININ degradation (Reimann et al., 2001).

In Xenopus and mouse, EMI2, a homolog of EMI1, plays an

important role in maintaining a balanced CDK activity at mei-

osis. In Xenopus oocytes, meiosis is driven by the CDK/

CYCB complex. At the end of meiosis I, CYCB is only par-

tially degraded and the decrease in CDK/CYCB activity is

essential for entry into meiosis II (Furuno et al., 1994). The

partial CYCB degradation required for the progression of mei-

osis I to meiosis II is obtained through temporally controlled

inhibition of the APC/C by the EMI2 protein (Madgwick

et al., 2006; Ohe et al., 2007; Tang et al., 2008). The mecha-

nism of APC/C inhibition by EMI1 and EMI2 proteins is

through competitive pseudosubstrate binding. Both proteins

compete with proper APC/C substrates, thereby preventing

their ubiquitination and degradation (Miller et al., 2006; Ohe

et al., 2007). In budding yeast, ACM1 (APC/CCDCH1 MOD-

ULATOR 1) plays a similar role as EMI1 in inhibiting APC/

CCDH1 during mitosis. ACM1 binds to CDH1 via a D- and

KEN-box (see further), acting as an APC/C pseudosubstrate,

thereby preventing substrate binding. ACM1 is then degraded

in late mitosis by APC/C (Martinez et al., 2006; Burton et al.,

2011). Although ACM1 is ubiquitinated by APCCDC20 during

mitosis (Enquist-Newman et al., 2008), it is not an APCCDH1

substrate. ACM1 normally binds to CDC20 via D-box 1, lead-

ing to its ubiquitination by APCCDC20, whereas it binds to

CDH1 via D-box 3 and the KEN-box, leading to inhibition of

APCCDH1. Thus, ACM1 appears to bind to CDC20 and CDH1

in two very different orientations, with different consequences:

ubiquitination or APC/C inhibition, respectively (Burton

et al., 2011).

To date, orthologs of EMI1 and ACM1 proteins have not

been described in plants. However, several APC/C inhibitors

that appear to act similarly to EMI proteins have been identi-

fied. Tandem affinity purification using APC/C subunits as

bait and subsequent protein identification by mass spectrome-

try allowed the identification of two plant-specific APC/C

inhibitors, known as ULTRAVIOLET-B-INSENSITIVE 4

(UVI4) and OMISSION OF SECOND DIVISION 1 (OSD1)/

GIGAS CELL1 (GIG1) (Van Leene et al., 2010). The former

protein has previously been reported to affect endoreduplica-

tion in leaves (Hase et al., 2006). UVI4 regulates APC/C

activity by binding to the CCS52A1 co-activator, thereby

inhibiting the destruction of CYCA2;3. The uvi4 mutant fails

to accumulate CYCA2;3 during the S-phase and prematurely

aborts the cell cycle, triggering the onset of the endoreduplica-

tion (Imai et al., 2006; Heyman et al., 2011). Similarly,

OSD1/GIG1, an UVI4 homolog that shares partial structural

and functional similarities with the vertebrate EMI2, was also

found to be an APC/C inhibitor (Cromer et al., 2012). As

detailed above, a balanced APC/C activity is essential to pro-

mote meiotic progression. This also is the case in plants, and

OSD1/GIG1 appears to have an important role in this process.

Arabidopsis mutants in OSD1/GIG1 fail to enter the second

meiotic division during both male and female gametogenesis,
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thus producing diploid gametes (d0Erfurth et al., 2009;

Bulankova et al., 2010; d0Erfurth et al., 2010). In addition,

OSD1/GIG1 also has a function during the mitotic cell cycle.

Whereas UVI4 expression levels increase at the G1-to-S transi-

tion, suggesting that UVI4 exerts its role as an APC/C inhibi-

tor during the S-phase, OSD1/GIG1 expression levels peak at

the G2-to-M transition, acting later during mitosis. Mutant

osd1/gig1 plants show abnormal cotyledon development, dis-

playing different types of giant guard cells, some of which are

reminiscent of single-celled stomata. The latter are typically

generated when guard mother cells fail to undergo cytokinesis

or are arrested at the G2-phase (Iwata et al., 2011). Moreover,

in plants overexpressing OSD1/GIG1, an accumulation of

CYCB1;2 is observed, supporting the idea that OSD1/GIG1

affects cyclin stability. Overexpression of the APC/C activator

CDC20 in osd1/gig1 mutant plants results in a severe endomi-

tosis phenotype. Endomitosis is a cell cycle form in which

cells undergo various aspects of mitosis, but fail to execute

cytokinesis. Thus, OSD1/GIG1 may prevent the ectopic occur-

rence of endomitosis by repressing the activity of APC/CCDC20

during mitosis (Heyman et al., 2011; Iwata et al., 2011).

D. Novel Proteins Interacting with APC/C

In Arabidopsis, TAP using APC/C subunits as bait was used

to isolate the entire APC/C from cell cultures (Van Leene

et al., 2010). The cell cultures used for this TAP showed an

equivalent distribution of cells in the G1- and G2-phase, leav-

ing the possibility that interacting proteins might be part of dif-

ferent alternative cell phase-specific complexes (Van Leene

et al., 2007). The twelve APC/C subunits that constitute the

core complex (Van Leene et al., 2010) and novel APC/C inter-

actors not described so far, were identified by mass spectros-

copy. Many of these proteins were used in turn as bait for

novel TAP experiments (Van Leene et al., 2007; Van Leene

et al., 2010).

One of the identified novel APC/C interactors, denominated

SAMBA, was characterized as a plant-specific negative regu-

lator of growth. The SAMBA gene is highly expressed in devel-

oping seeds and during early plant development, indicating a

specific regulatory role at initial developmental stages. In

agreement with this prediction, samba mutants have an

enlarged meristem size and show growth-related phenotypes,

including the formation of large seeds, leaves, and roots (Eloy

et al., 2012). This growth-enhancing phenotype is further,

often synergistically, enhanced when SAMBA is combined

with other growth-regulatory genes (Vanhaeren et al., 2014).

Using the information available from the interactome iden-

tified by TAP, yeast two-hybrid and bimolecular complemen-

tation (Eloy et al., 2006; Boruc et al., 2010; Van Leene et al.,

2010; Heyman et al., 2011), an interaction network around the

twelve known APC/C subunits was built (Figure 3). The com-

bined network has 111 interactions, including all APC/C subu-

nits, well-known cell cycle proteins such as CDKA,

CYCA2;3, CAK (CDK ACTIVATING KINASE), and APC/

C-associated proteins such APC/C co-activators (CDC20,

CCS52A and CCS52B) and APC/C regulators (UVI-4, UVI4-

like/OSD1/GIG1 and SAMBA). Moreover, the network con-

tains many proteins belonging to several functional categories,

including unknown proteins, hormone metabolism-related and

RNA regulation proteins. As mentioned above, the auxin hor-

mone can directly bind to SKP2, thus controlling SCF activity.

Some proteins of the APC/C interaction network are related to

auxin and ethylene signaling, hinting at a possible role of

APC/C activity in hormone metabolism. Moreover, some

novel interactors could be potential APC/C substrates or

regulators.

IV. TARGET PROTEINS OF THE APC/C

The capacity of the APC/C to recognize and target specific

proteins for destruction depends on the presence of short con-

served amino acid motifs known as degrons. The classical

APC/C degron is the destruction box or D-box, which occurs

as a nine-residue motif (RxxLxxxxN). The D-box was first

characterized in B-type cyclins and contains at least an argi-

nine and a leucine separated by two residues (Glotzer et al.,

1991). The KEN-box (KENxxxN/D) is the second well-

characterized APC/C degron, often occurring together with the

D-box in APC/C target proteins (Pfleger and Kirschner, 2000).

Besides the well-known D- and KEN-boxes, two additional

degron motifs are recognized by the APC/C, the A-box and

GxEN-box. The A-box has been found in the N-terminal

region of Aurora A (Aur-A), a kinase that is required for the

formation of a bipolar mitotic spindle and accurate chromo-

some segregation. The A-box consists of a short sequence, Q47

RILGPSNVPQRV, which is highly conserved in all vertebrate

Aur-As, and is absolutely required for its CDH1-dependent

destruction (Littlepage and Ruderman, 2002). In Arabidopsis,

there are three Aurora kinases, denominated AURORA-1, -2

and -3, having a conserved degron A-box that resembles the

one found in human Auroras. In mammals, this motif has been

shown to be essential for Aurora degradation, indicating that

Arabidopsis Auroras may be subject of proteasome-dependent

proteolysis as well (Demidov et al., 2005; Petrovsk�a et al.,

2012). The GxEN-box has been identified in the C-terminus of

the Xenopus chromokinesin kid (Xkid) protein, which is

essential for chromosome alignment on the metaphase spindle.

The motif is required for Xkid degradation by the APC/C

(Castro et al., 2003). The GxEN-box degron is also found in

the Ama1 protein, which is an APC/C activator specific for

meiotic progression. In yeast, mutation of the GxEN-box

degron leads to the stabilization of Ama1 (Tan et al., 2013).

To date, no GxEN-box motif was found in plants. In all cases,

the mutation or deletion of one of above-described degrons

leads, in the absence of other degrons, to a failure in the APC/

C-mediated destruction of the substrates by the 26S protea-

some. In plants, there is experimental evidence that D- and
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KEN-boxes are functional, demonstrating the conserved role

of both degrons for APC/C-mediated degradation by the 26S

proteasome.

In yeast and vertebrates, many APC/C substrates are known

and the best studied are the cell cycle regulators such as

cyclins, CKIs and DNA replication proteins. Other known

APC/C targets are very diverse, including transcription factors,

kinesin motor proteins and other microtubule-associated pro-

teins, actin-binding proteins, regulators of sister chromatid

cohesion and chromatin remodeling, and even metabolic

enzymes such as 6-phosphofructo-2-kinase with a role in the

glycolytic pathway (Goto and Eddy, 2004; Rankin et al.,

2005; Stewart and Fang, 2005; Zhao and Fang, 2005; Colombo

et al., 2011; Lim et al., 2013; Singh et al., 2014). In plants, the

number of verified APC/C targets is limited and, as detailed

later, more research is required to identify them.

As a first effort to study cyclin proteolysis during the plant

cell cycle, CYCA and CYCB stability was investigated in

transgenic tobacco BY-2 cells and later on in Arabidopsis

plants. When cyclins are mutated within the D-box, cell cycle-

specific proteolysis is eliminated, showing that mitotic cyclins

in plants, as in others organisms, are subjected to destruction

via the 26S proteasome in a D-box-dependent manner (Gens-

chik et al., 1998; Criqui et al., 2000; Boudolf et al., 2009). In

agreement, loss of function of the APC/C activator CCS52A1

stabilizes CYCA2;3 in Arabidopsis (Boudolf et al., 2009).

Similarly, in tomato plants, down-regulation of CCS52A also

stabilizes CYCA3;1, an S-phase-specific A-type cyclin likely

involved in the control of endoreduplication (Joub�es et al.,

2000; Mathieu-Rivet et al., 2010b).

The recently identified APC/C interactor, SAMBA, has

been show to bind CYCA2;3 in a D-box-dependent manner.

FIG. 3. Protein-protein interaction network of all APC/C subunits from Arabidopsis. The interaction map was created using the experimentally confirmed inter-

actions identified by affinity purification coupled with mass spectrometry, yeast two-hybrid and/or bimolecular fluorescence complementation using the APC/C

subunits (Boruc et al., 2010; Van Leene et al., 2010; Heyman et al., 2011; Eloy et al., 2012). The APC/C subunits used as bait are shown as red triangles. The

circles show the interacting proteins with the APC/C proteins. The yellow color indicates the APC/C activators (CDC20, CCS52A and CCS52B), the blue color

represents the APC/C-regulatory proteins (UVI4 and UVI4-like/OSD1GIG1), the green color indicates cell cycle-regulatory proteins, including CYCA2;3,

CDKA and CAK (CDK ACTIVATING KINASE), and the black color designates the SAMBA protein. The most connected protein is the APC8 subunit (*),

which is part of the structural core and contains TPR motifs. The network was accomplished using the program CORNET 2.0 (De Bodt et al., 2012).
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Moreover, loss of function of SAMBA stabilizes CYCA2;3 in

Arabidopsis plants during early developmental stages, suggest-

ing that SAMBA can also act as a potential activator of the

APC/C during the initial stages of development (Eloy et al.,

2012). The higher CYCA2;3 levels in samba mutants is likely

to shorten cell cycle duration.

Several APC/C target proteins with a role other than the

control of cell division have been described. One of these

proteins is MONOCULM 1 (MOC1), which has been found

to be a key regulator of rice tillering and shoot branching

(Lin et al., 2012; Xu et al., 2012). MOC1 stability is con-

trolled by TILLERING AND DWARF 1 (TAD1), the rice

ortholog of CCS52. MOC1 harbors a canonical D-box at

the N-terminus, and the replacement of the two conserved

arginine and leucine residues by alanine, abolishes the

interaction with TAD1 and reduces its degradation, show-

ing that MOC1 is destroyed in a D-box-dependent manner.

Moreover, in the absence of TAD1, the APC/C fails to

recruit MOC1 for degradation, which results in the accu-

mulation of MOC1 (Lin et al., 2012; Xu et al., 2012).

Another APC/C target protein is the rice RAA1 (ROOT

ARCHITECTURE-ASSOCIATED 1). RAA1 is a small

GTP-binding protein, encoded by a gene homologous to

the FLOWERING PROMOTING FACTOR 1 (FPH1) pro-

tein in Arabidopsis, and was identified as a putative cell

cycle inhibitor and a negative regulator of primary root

growth (Xu et al., 2010). APC/C-mediated degradation of

RAA1 is D-box-dependent and is essential for the transi-

tion from metaphase to anaphase during cell division (Han

et al., 2008; Xu et al., 2010). Yet another APC/C substrate

is RICE SALT SENSITIVE 1 (RSS1), a key protein for

the maintenance of meristem activity and viability under

salt stress environments. The stability of RSS1 is D- and

KEN-box-dependent, likely through APC/CCDC20. The loss

of function of rss1 exhibits an extreme dwarf and short

root phenotype under high-salt conditions (Ogawa et al.,

2011).

In Arabidopsis, the DOUBLE-STRANDED-RNA-BIND-

ING 4 (DRB4) protein is involved in the biogenesis of differ-

ent classes of small RNAs. In a two-hybrid assay, the protein

interacts with APC10, and the reduction of APC/C activity by

down-regulation of either APC6 or APC10 leads to a strong

accumulation of DRB4, showing that DRB4 is proteasome-

dependently degraded (Marrocco et al., 2012).

Recently, the ETHYLENE RESPONSE FACTOR 115

(ERF115) has been identified as a rate-limiting transcrip-

tion factor for cell division and stem cell renewal at the

root quiescent center. Proteolysis of ERF115 was shown to

be affected specifically in ccs52a2 knockout plants, but not

in the ccs52a1 mutant. ERF115 has two putative D-box

motifs, and inactivation of both degrons stabilizes the pro-

tein, showing that ERF115 is a novel proteolytic target of

APC/CCCS52A2 in a D-box-dependent manner (Heyman

et al., 2013).

V. APC/C FUNCTION DURINGMEIOSIS AND
GAMETOGENESIS

Meiosis reduces the ploidy level of the original cell by halv-

ing the nuclear DNA content in two subsequent chromosome

segregation steps, without an interfering S-phase, leading to

the formation of haploid gametes (Wijnker and Schnittger,

2013). Furthermore, the process allows for exchanges of

genetic material by recombination, generating more diversity.

To enter the meiotic program, cells exit the cell cycle early in

the G1-phase prior to the accumulation of G1 cyclins. In yeast,

the transition between mitotic and meiotic cell division is pro-

moted by APC/CCDC20 through degradation of the transcrip-

tional repressor Ume6 (Mallory et al., 2007). Unlike mitosis,

meiosis has two distinctive phases, known as meiosis I and

meiosis II. In meiosis I, which is divided in prophase I, meta-

phase I, anaphase I, and telophase I, the homologous chromo-

somes are separated, producing two haploid cells. During

meiosis II, the cell will generate four haploid cells, in a similar

process to that of mitosis. The four main processes of meiosis

II are: prophase II, metaphase II, anaphase II and telophase II.

During meiosis I, for the proper progression from metaphase I

to anaphase I, APC/C needs to destroy the separase inhibitor

SECURIN, similar to its function during the normal mitotic

cell cycle (Cooper and Strich, 2011).

In Arabidopsis, two cyclins were shown to have a meiotic

function, the A-type cyclin, CYCA1;2, also known as TARDY

ASYNCHRONOUS MEIOSIS (TAM), and a cyclin with

properties of both A- and B-type cyclins, the so-called SOLO

DANCERS (SDS). Arabidopsis knockout plants of CYCA1;2/

TAM exit the meiotic cycle after the first division, generating

diploid gametes instead of haploids (Wang et al., 2004;

d’Erfurth et al., 2010). The sds mutant exhibits defects in

homolog chromosome pairing and crossover formation during

prophase I, leading to reduced levels of meiotic recombination

(Azumi et al., 2002; De Muyt et al., 2009; Bulankova et al.,

2010).

B-type cyclins have prominent roles during mitosis, and

currently CYCB3;1 is the only B-type cyclin detected during

meiosis by promoter-GUS fusion reporter lines (Bulankova

et al., 2013). Two CYCB3;1 mutants alleles, cycb3;1-1 and

cycb3;1-2, produce pollen mother cells (PMCs) with unusual

structures, resembling incomplete cell walls formed at ectopic

locations. These cellular observations indicate that CYCB3;1

activity contributes to the spatial and temporal regulation of

cell wall formation in PMCs (Bulankova et al., 2013).

Functional characterization of APC/C subunits in Arabi-

dopsis has revealed that all subunits investigated so far are

essential for gametophytic development and/or embryogene-

sis. Mutations in APC1, APC2, APC4 or APC6 arrest female

gametogenesis due to the inability to destroy CYCB, as

revealed by CYCB accumulation in the mega-gametophyte

(Capron et al., 2003b; Kwee and Sundaresan, 2003; Wang

et al., 2012; Wang et al., 2013). Hypomorphic apc6 lines
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show CYCB accumulation in developing leaves as well (Mar-

rocco et al., 2009). Similarly, disruption of APC8 or APC13

function causes the failure of CYCB1;1 degradation during the

male gametophyte development (Zheng et al., 2011). Both

apc8 and apc13 mutants are affected in pollen development,

leading to an increased proportion of uni-nucleated mature

pollen and indicating that the APC/C is required at mitosis

during male gametophytic development (Zheng et al., 2011).

Single apc10 and double apc3a/apc3b mutants show that

APC10 and APC3 are also essential for female gametophyte

development (P�erez-P�erez et al., 2008; Eloy et al., 2011),

whereas APC1 and APC4 are also critical for embryogenesis

(Wang et al., 2012; Wang et al., 2013).

VI. THE ROLE OF THE APC/C DURING PLANT
DEVELOPMENT

Whereas the role of the APC/C in mitosis and meiosis is

reasonably well characterized, little is known about its func-

tion during plant development. Evidence shows that the APC/

C complex is also involved in plant growth, since overexpres-

sion of core APC/C subunits leads to enhanced growth.

In tobacco plants, ectopic expression of APC3a, also known

as CDC27a, results in an increased growth rate and organ size.

The transgenic plants are taller, displaying a larger leaf size

and significant increases in stem and root dry matter. More-

over, analysis of the meristem revealed a smaller cell size with

increased cell numbers compared to the wild type. The

observed phenotype appears to be the effect of enhanced APC/

C activity, which was demonstrated by an elevated ubiquitina-

tion of the mitotic cyclin, CYCB1;1 (Rojas et al., 2009). In

addition, the APC3b subunit has been implicated in the main-

tenance of cell division at meristems during post-embryonic

development (Blilou et al., 2002; P�erez-P�erez et al., 2008).
In Arabidopsis, constitutive overexpression of APC10

results in increased leaf size due to a faster rate of cell division

during the early stages of leaf development. The average time

to complete an entire cell cycle in leaves shortens from

21 hours to 19 hours (Eloy et al., 2011). Moreover, the over-

expression of APC10 in Arabidopsis causes an increased pro-

tein degradation of CYCB1;1, possibly accelerating the

transition through mitosis (Eloy et al., 2011). Also in tobacco,

overexpression of APC10 produces taller plants with larger

leaves due to an increased cell number. Additionally, the trans-

genic plants produce more seed capsules and have an aug-

mented biomass accumulation. In addition, a cross between

APC10- and APC3a-overexpressing tobacco plants results in

T1 plants that have an enhanced growth phenotype compared

to the overexpression of the single APC/C subunits (de Freitas

Lima et al., 2013).

Whereas overexpression of APC/C subunits can stimulate

plant growth, reduced expression levels of APC6 or APC10

provoke several defects in vascular development in Arabidop-

sis. Transgenic plants with diminished APC6 or APC10

expression show a reduced leaf size and curled leaves, and at

later developmental stages, mutant plants develop severe mor-

phological aberrations, such as shorter inflorescences and a

remarkable formation of clusters of siliques (Marrocco et al.,

2009). Consistently with the phenotype observed in Arabidop-

sis, rice mutants of APC6 are dwarfed and have smaller seeds

(Kumar et al., 2010). Moreover, knockdown of APC6 inMedi-

cago truncatula results in defective primary root growth, and

fewer lateral roots (Kuppusamy et al., 2009). APC3b is

required for postembryonic progression of cell differentiation

in the shoot and root meristem, and for maintenance of cell

division. Mutation in APC3b interferes with postembryonic

cell division and differentiation of the distally located quies-

cent centrum, columella root cap and lateral root cap cells

(Willemsen et al., 1998). Additionally, perturbation in APC3b

expression leads to severe dwarfism, a phenotype called HOB-

BIT, which is characterized by the limited capacity of meriste-

matic cells to divide post-embryonically (Blilou et al., 2002).

In Arabidopsis, a weak allele of APC8, apc8-1, shows

pleiotropic phenotypes, including distorted leaf shapes and

abnormal shoot meristem development. Furthermore, apc8-1

displays defects in flower and silique development, exhibiting

bushy inflorescences and shorter siliques (Zheng et al., 2011).

Loss of function of APC13 results in a so-called Bonsai-like

phenotype, which is characterized by an inhibition of inter-

node elongation and termination of shoot growth, leading to

dwarfed plants (Saze and Kakutani, 2007). Moreover, muta-

tion of either APC8 or APC13 results in a reduced transcrip-

tion of microRNA159 (miR159) and lessened accumulation of

mature miR159 (Palatnik et al., 2007; Brownfield et al., 2009;

Zheng et al., 2011).

Altered expression of CCS52A1 or CCS52A2 negatively

affects plant development. Transgenic tomato plants with

reduced expression levels of CCS52A display a smaller fruit

size. Similarly, tomato plants overexpressing CCS52A have an

underdeveloped root system and small and curly leaves, and

they also hardly produce viable flowers and few very small

fruits with an irregular shape (Mathieu-Rivet et al., 2010a;

Mathieu-Rivet et al., 2010b). In addition, overexpression of

CCS52A1 in Arabidopsis was shown to completely suppress

the formation of multicellular trichomes in siamese mutants,

demonstrating that the CDK inhibitor SIAMESE cooperates

with CCS52A1 to control the endoreduplication in trichomes

(Kasili et al., 2010). CCS52A2 mutant plants also have a

reduced organ size and biomass. Whereas strong overexpres-

sion of CCS52A1 or CCS52A2 negatively affects organ size,

mild overexpression of CCS52A1 or CCS52A2 under the con-

trol of the ubiquitin promoter results in a significant increase

in the organ sizes, showing that engineering of the expression

of CCS52 genes in a dose-dependent manner is a possible new

route for biomass production (Baloban et al., 2013). More-

over, CCS52A1, but not CCS52A2, is transcriptionally regu-

lated by the trihelix transcription factor, GT2�LIKE 1

(GTL1). GTL1 directly represses the transcription of
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CCS52A1 to arrest the progression of endoreduplication and

cell growth by down-regulating the APC/CCCS52A1 activity

(Breuer et al., 2012).

In rice, modification of the activity of the CCS52 ortholog,

TAD1, also causes severely impaired plant development. The

tad1 mutant plants show a reduced plant height and an

increased number of tillers, whereas TAD1-overexpressing

plants display reduced tiller numbers (Lin et al., 2012; Xu

et al., 2012).

In Arabidopsis, simultaneous down-regulation of both

CDC20.1 and CDC20.2 leads to a severe delay in plant devel-

opment. These CDC20 RNAi lines show a reduced meristem

size and root length, and smaller leaves with less cells. More-

over, the transgenic plants display reduced fertility, with

shorter siliques and many aborted ovules, as a consequence of

male sterility (Kevei et al., 2011).

Also several APC/C substrates have been shown to have a

role in development. The rice MOC1 protein, which has been

demonstrated to be an APC/C substrate (see above), controls

the initiation and outgrowth of axillary meristems at both veg-

etative and reproductive stages.Moc1 rice plants are character-

ized for having a single main culm without any tillers and

reduced panicles branches (Li et al., 2003; Lin et al., 2012;

Xu et al., 2012).

VII. PERSPECTIVES FOR FUTURE RESEARCH

In vertebrates, APC/C has been reported to function in dif-

ferentiated cells. Functional analyses of APC/CCDH1 and APC/

CCDC20 have uncovered critical roles for these two distinct

APC/C complexes in the post-mitotic regulation of axon and

dendrite morphogenesis, respectively (Konishi et al., 2004).

The APC/CCDH1 complex restricts axon growth and controls

their patterning in the mammalian brain, while APC/CCDC20

promotes dendrite growth and arborization (Yang et al.,

2010). Furthermore, it has been shown that loss of APCCDH1

activity enhances glycolysis, suggesting that the APC/C might

control components of metabolic pathways as well (Almeida

et al., 2010). In plants, genes encoding APC/C subunits also

show strong expression in non-dividing tissues like leaves,

roots and siliques (Figure 4), suggesting that in plants they

could also have functions not only during cell division, but

also during differentiation and development. As detailed

above, overexpression and loss-of-function data on APC/C

and its substrates indicate such regulatory role.

The further elucidation of the role of the APC/C during

development will require the identification and functional

analysis of APC/C substrates. The first attempt in plants to

identify APC/C interactors using TAP revealed novel proteins

(Van Leene et al., 2010), of which some were shown to be

essential for the control of the APC/C in plants (see above;

Blomme et al., 2014). At least one of the interactors, ERF115,

was shown to be an APC/C substrate (Heyman et al., 2013).

However, TAP might not be the best method to identify poten-

tial APC/C targets, as it requires a strong interaction of pro-

teins with the purified complexes (Dedecker et al., 2015).

In human cells, the identification of several new APC/C

substrates was performed using what is known as

FIG. 4. Genevestigator Arabidopsis organ-specific expression of APC/C subunits. Expression values obtained from compiled Arabidopsis microarray experi-

ments as reported by Genevestigator. Data are reported as absolute expression values.

498 N. B. ELOY ET AL.

D
ow

nl
oa

de
d 

by
 [

G
he

nt
 U

ni
ve

rs
ity

],
 [

D
ir

k 
In

zé
] 

at
 0

5:
46

 1
0 

N
ov

em
be

r 
20

15
 



co-regulation proteomics. The underlying hypothesis is that all

proteins ubiquitinated by the APC/C for degradation by the

proteasome in a cell cycle-dependent manner would show sim-

ilar abundance profiles over the course of the cell cycle. Thus,

a time-course experiment was conducted to identify substrates

degraded by the APC/C during mitosis (Singh et al., 2014).

By comparing the profile and abundance with the known APC/

C substrates, this approach generated a list of eight putative

new APC/C substrates, all showing high similarity of protein

accumulation with the known APC/C substrates, like CYCB

and SECURIN. The list generated shows enrichment for

microtubule-associated proteins of the kinesin motor family.

The identified kinesins are KIFC1, KIF2C, KIF4A, KIF13A,

KIF14, KIF18A, KIF22 and KIF23. Among the five kinesins

tested for in vitro degradation, four of them show a time-

dependent degradation profile, similar to that of the known

APC/C substrates, CYCB and SECURIN. Moreover, the kine-

sin proteins are stabilized in the presence of two APC/C inhibi-

tors, the EMI1 as a non-competitive inhibitor and SECURIN

as a competitive inhibitor, or by mutation in their D-box, vali-

dating the used approach for the identification of new APC/C

substrates (Singh et al., 2014). A similar approach could be

used to identify APC/C substrates in plants. Some cell cul-

tures, such as tobacco BY-2 cells, are highly synchronizable

(Nagata and Kumagai, 1999), but limited information is avail-

able about the proteome of this plant (Laukens et al., 2004;

Duby et al., 2010).

It is expected that several different APC/C complexes oper-

ate in specific plant tissues or during specific phases of plant

development. By performing TAP on specific tissues/organs

and/or plants in specific developmental stages, such APC/C

subcomplexes could be identified. A TAP performed with

SAMBA as bait in Arabidopsis cell cultures and seedlings

showed some differences in the purified proteins (Van Leene

et al., 2010; Eloy et al., 2012). TAP on cell cultures yielded

16 proteins, and eight common proteins were found in both

experiments. All eight were the core APC/C subunits APC1,

APC2, APC3b, APC4, APC5, APC6, APC7 and APC8; the

cell culture-specific proteins were the two APC/C inhibitors,

UVI-4 and UVI4-like, the replication license factor, MCM6,

and five other proteins not related to the cell cycle; and the

seedling-specific proteins were the remaining APC/C core sub-

units, APC3a and APC10, and the activator CCS52A2 (Van

Leene et al., 2010; Eloy et al., 2012). Due to the limitation of

having enough Arabidopsis material to perform such experi-

ments, a similar approach could be followed using different

plants with more biomass that will give enough material from

different organs and tissues.

Above-described methods can also be combined with strat-

egies that specifically enrich ubiquinated proteins, as recently

demonstrated in Arabidopsis (Kim et al., 2013). This affinity-

based technology makes use of concatenated ubiquitin-inter-

acting domains that increase the purification stringency and

yield of ubiquitin-containing proteins followed by high-

sensitivity mass spectrometry. This proteomics approach has

elucidated processes in Arabidopsis affected by ubiquitination

(Kim et al., 2013).

Measurements of the APC/C activity in vivo can be accom-

plished using reporter proteins fused to the target proteins.

One can take advantage of several reporter proteins, such as

GFP (Green Fluorescence Protein) and YFP (Yellow Fluores-

cence Protein) to be fused to the potential substrates (with and

without degrons) and evaluate the level of degradation by

treating it with the proteasome inhibitor MG132 (Heyman

et al., 2011; Iwata et al., 2011; Zheng et al., 2011). Recently,

new specific chemical inhibitors of the APC/C, such as apcin,

have been developed (Sackton et al., 2014) and it will be of

interest to test whether these molecules also abolish plant

APC/C activity.

The APC/C has an essential role during both mitosis and

meiosis, as exemplified by the often lethal phenotypes when

one of the core subunits is inactivated. These essential func-

tions render the analysis of the role of APC/C at later develop-

mental stages (e.g., in differentiating cells) difficult, because it

cannot easily be separated from the effect in dividing cells. A

possible solution is the use of conditional expression systems,

for example those based on CRE-LOX recombination

(Kawade et al., 2010). In such a system, a simple treatment,

either chemical (e.g., dexamethasone) or physical (e.g, heat

shock), causes the excision of a functional APC/C subunit in a

respective mutant background, thus producing tissue sectors in

which a given APC/C subunit is inactivated (Kawade et al.,

2010). Such systems can also be used to analyze the effect of

specific mutations in core APC/C subunits or their essential

substrates.
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