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CHAPTER I 

1. STEROIDS  

1.1 CHEMICAL STRUCTURE 

Steroids comprise a group of cyclic, organic compounds whose basis is a characteristic 

arrangement of seventeen carbon atoms (C17) in a four-ring structure, linked together 

from three C6 rings, followed by a C5 ring. These rings are synthesized by biochemical 

processes from cyclization of a C30 chain, squalene, into lanosterol or cycloartenol (see 

Chapter I, 1.4 SYNTHESIS AND ABSORPTION OF THE STEROID PRECURSOR CHOLESTEROL) 

[1]. 

The three cyclohexane rings are designated as rings A, B and C and the cyclopentane 

ring as ring D. The three cyclohexane rings (A, B, and C) form the skeleton of a 

perhydro-derivative of phenanthrene. The D-ring has a cyclopentane structure; hence, 

though it is uncommon, IUPAC steroids can also be named as various hydro-derivatives 

of cyclopentaphenanthrene (Figure 1.1.A.). This 17-carbon compound is also called 

gonane, the simplest steroid and a substructure present in most steroids.  

When the two methyl groups (C-10 and C-13) and 8 C side chain (at C-17) are present, 

the steroid is said to have a cholestane framework (5α-cholestane, a common steroid core, 

e.g. cholesterol, Figure 1.1.B.). Cholesterol is the precursor of steroids in both humans 

and animal species. 

 

 

 

 

 

Figure 1.1. (A) Chemical structure of the basic steroid cyclopentaphenanthrene skeleton 

including IUPAC-approved ring lettering, (B) Chemical structure of cholesterol, including 

all normally seen branches and atom numbering.  

Despite the shared basic steroid skeleton hundreds of different steroids can be found in 

animals, plants and even fungi. They include the sex hormones 17β-estradiol and 

 A.                B.  
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testosterone, bile acids, phytosterols, cortisol and drugs such as the anti-inflammatory 

corticosteroids (e.g. dexamethasone, prednisolone), ergosterols and many more. 

Individual steroids vary by the oxidation state of the carbon atoms in the rings (single or 

double bounds) and by the chains and functional groups attached to this four-ring 

skeleton (Figure 1.1., p. 3).  

Additionally, steroids can vary more markedly via changes to the ring structure (e.g., via 

ring scissions that produce secosteroids). Secosteroids enhance intestinal absorption of 

calcium, iron, magnesium, phosphate and zinc. In humans, the most important 

compounds in this group are vitamin D3 (also known as cholecalciferol, Figure 1.2) and 

vitamin D2 (ergocalciferol) [2]. Sterols, including cholesterol and phytosterols (see later), 

are another particularly important form of steroids, having a cholestane-derived 

framework and a hydroxyl group at the C-3 position (e.g., cholesterol, Figure 1.1.B, p. 3) 

(see also Chapter I, 4. PHYTOSTEROLS). 

 

 

 

 

 

 

Figure 1.2. Chemical structure of vitamin D3 or cholecalciferol. 

1.2 (STEROID) HORMONES AND THEIR ROLE IN THE ENDOCRINE SYSTEM 

Hormones are chemical compounds that are naturally produced by animals, human 

beings and even insects (ecdysteroids) and plants (auxins, gibberellic acid). They have a 

number of important functions in life, such as reproduction and growth. They act as 

signalling molecules between the different parts of the organism and trigger and 

modulate key reactions to support and promote life [3]. The most well-known hormones 

are the steroid hormones, e.g. 17β-estradiol, progesterone and testosterone, who are 

involved in endocrine regulation pathways. Next to influencing reproduction and 

growth, these steroids play other important roles as well. Testosterone regulates protein 
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synthesis, 17β-estradiol triggers protein disposition and progesterone has an antagonistic 

role on estrogens.  

In mammals, including horses and humans, hormones are secreted primarily by the 

gonads (testicles of males and the ovaries of females), although small amounts are also 

secreted by the adrenal glands, the skin and the brain. Other important organs of the 

endocrine system are the pituitary and (para)thyroid gland(s), the pancreas and 

hypothalamus (Figure 1.3) [3].  

 

 

 

 

 

 

 

 

 

Figure 1.3. Endocrine system of humans and horses. The adrenal glands and gonads (ovaries in 

females and testicles in males) are involved in steroid biosynthesis. Reproduced from DocStock 

(2014) and the Merck Veterinary Manual (2010). 

Within the testis the Leydig and Sertoli cells play the most important role. Luteinising 

hormone (LH) acts on the Leydig cells (who are analogous to the cells of the theca 

internata of antral follicles in the ovary), by binding to the membrane bound receptors for 

LH. When LH binds to the receptors, Leydig cells produce progesterone, most of which is 

converted to testosterone (Figure 1.4, p. 6). Leydig cells synthesize and secrete 

testosterone less than 30 minutes after the onset of an LH episode. Blood LH is elevated 

for about 30 to 75 minutes.  

The response (testosterone secretion) is short and pulsatile, lasting for a period of 20 to 

60 minutes. It is believed that the pulsatile discharge of LH is important for two reasons. 

High concentrations are essential for spermatogenesis and Leydig cells become refractory 

to sustained high levels of LH. In fact, continual high concentrations of LH result in 

reduced secretion of testosterone, through the negative feedback loop (Figure 1.4, p. 6) 

[4].  
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Sertoli cells on the other hand are responsible for spermatogenesis. Spermatogenesis is 

the process of producing spermatozoa, taking place within the seminiferous tubulus and 

under the direct control of testosterone. It consists of the sum of all cellular 

transformation in developing germ cells that occur in the seminiferous epithelium (Figure 

1.4) [5].  

Testosterone in the male is aromatized to estradiol in the brain and estradiol promotes 

reproductive behaviour. Recalling that there is a relatively constant supply of 

testosterone, and thus estradiol, to the hypothalamus, this allows male to initiate 

reproductive behaviour any time. In contrast the female experiences high estradiol during 

the follicular phase only and will display sexual receptivity during estrus only. Under the 

influence of estrogen, sensory inputs such as olfaction, audition, vision and tactility will 

lead a fast behavioural response [4].  

 

In addition to the production of testosterone by the Leydig cells, the testes also produce 

estradiol (E2) and other estrogens. Stallions secrete large amounts of estrogens (both 

free and conjugated form, see Chapter I, 6.2). In fact, urinary estrogens in the male are 

significantly higher than urinary estrogens in pregnant mares, but they are of little 

consequence, as they are secreted as molecules with low physiological activity [4]. In 

mares the ovarian granulosa cells mainly secrete progesterone (P) and estradiol (E2). 

Ovarian theca cells predominantly synthesize androgens, including testosterone (T). 

Ovarian luteal cells secrete progesterone and its metabolite 20α-hydroxyprogesterone [6]. 

Figure 1.4. Interrelationships among 

hormones produced by Sertoli cells, 

Leydig cells, the hypothalamus and 

the anterior lobe (AL) of the pituitary. 

T = testosterone, E2 = estrogen, DHT = 

dihydrotestosterone, LH = Luteinising 

Hormone,  GnRH = Gonadotrophin 

Releasing Hormone  

Illustration adapted from Senger 

“Pathways to Pregnancy and Partuition” 

Second edition, Current Conceptions, 

Inc. Pullman, Washington (2003) [5] 
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The adrenal glands are located just in front of the kidneys and consist of two parts, the 

cortex and the medulla. The adrenal cortex consists of three layers, each of which 

produces a different set of steroid hormones. The zona glomerulosa (most superficial 

layer) produces the mineralocorticoids, which help to control the body's balance of 

sodium and potassium salts (e.g. aldosterone). The zona fasciculata (middle layer) 

produces glucocorticoids, which are involved in metabolizing nutrients as well as in 

reducing inflammation (e.g. cortisol). The zona reticularis (inner layer) produces sex 

hormones such as estrogen and progesterone. The adrenal medulla plays an important role 

in response to stress or low blood sugar (glucose). It releases epinephrine (better known 

as adrenaline) and norepinephrine, both of which increase heart output, blood pressure, 

and blood glucose, and slow digestion (Merck Veterinary Manual, 2010).  

Next to adrenal and gonadal production of steroids recent papers implied that uterine and 

oviductal tissues can produce steroids as well [7-9]. The equine oviduct is an organ with 

potential steroidogenic capacities and highly responsive to local changes in progesterone 

and 17β-estradiol concentrations at the level of morphology, functionality and gene 

expression of the oviduct. Especially progesterone concentrations were found to be high 

in oviductal tissue and fluid ipsilateral to the ovulation side during diestrus, whereas other 

steroid hormone concentrations were not influenced by the side of ovulation [7-9].  

These data provide a basis for further studies of the importance of endocrine and 

paracrine signalling during early embryonic development in the horse. Experiments with 

porcine uterine slices harvested during both early pregnancy and luteolysis showed that 

the uterus can also produce steroid hormones. The studied cells secreted AED, T, and E2 

in vitro and progesterone served as a substrate for steroid synthesis in the uterine cells. 

Additional research will be needed to confirm these results and to expand them to other 

species (horses). 

Adipose tissue is also no longer considered to be an inert tissue that stores fat. White 

adipose tissue (WAT) is now being recognized as a major endocrine and secretory organ, 

releasing a wide range of protein factors and signals termed adipokines - in addition to 

fatty acids and other lipid moieties [10]. These are active in a range of processes, such as 

control of nutritional intake (leptin, angiotensin), inflammatory process mediators and 

control of sensitivity to insulin (e.g. “metabolic syndrome”, insulin resistance in horses) 

[11]. Obesity is a key component in development of the metabolic syndrome and it is 
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becoming increasingly clear that a central factor in this is the production by adipose cells 

of bioactive substances that directly influence insulin sensitivity and vascular injury.  

[10,12]. 

1.3 BIOSYNTHESIS OF STEROID HORMONES 

Biosynthesis of steroid hormones requires a battery of oxidative enzymes located in both 

mitochondria and endoplasmic reticulum (ER). The rate-limiting step in this process is 

the transport of free cholesterol from the cytoplasm into mitochondria. Within 

mitochondria, cholesterol is converted to pregnenolone by an enzyme in the inner 

membrane called CYP11A1.  

Pregnenolone (3β-hydroxypregn-5-en-20-one), also known as P5, is the immediate 

precursor for the synthesis of all of the steroid hormones, including progestogens, 

mineralocorticoids, glucocorticoids, androgens, and estrogens, as well as the neuroactive 

steroids (Figure 1.5, p. 9). In addition, pregnenolone can be biologically active in its own 

right, acting as a neurosteroid for treating schizophrenia [13]. Pregnenolone undergoes 

further steroid metabolism in one of three ways: 

1. Pregnenolone can be converted to progesterone (P). The critical enzyme step is 

two-fold using a 3β-hydroxysteroid dehydrogenase and a ∆4-5 isomerase. The 

latter transfers the double bond from C5 to C4 on the A ring. Progesterone is the 

entry into the ∆4-pathway, resulting in production of 17-hydroxy progesterone 

and androst4-ene-3,17-dione (AED), precursor to testosterone (T) and estrone. 

Aldosterone (the main mineralocorticoid) and corticosteroids are also derived 

from progesterone or its derivatives. 

2. The enzyme 17α-hydroxylase (CYP17A1) can convert pregnenolone to 17-

hydroxy-pregnenolone. Using this pathway, termed ∆5-pathway, the next step is 

conversion to dehydroepiandrosterone (DHEA) using a desmolase. DHEA is the 

precursor of AED, and AED in turn is the precursor of testosterone and the 

estrogens (estradiol, estrone and estriol). 

3. Pregnenolone can be converted to androsta-5,16-diene-3β-ol by 16-ene synthetase 

(not illustrated). 
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Figure 1.5. The steroid hormone cascade starting from cholesterol and pregnenolone.  

Cholesterol, the main steroid precursor, is absorbed from the intestines and produced in the liver 

from acetate (1.4 SYNTHESIS AND ABSORPTION OF THE STEROID PRECURSOR CHOLESTEROL). 

The biosynthesis of steroid hormones takes place in the testicles of males and the ovaries of 

females, although small amounts are also secreted by the adrenal glands in mammals, including 

horses and humans (adapted from Pearsson Education Inc. (2011)).  

Androgenic steroids 

P5 

Corticosteroids 
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1.4 ANABOLIC-ANDROGENIC STEROIDS (AAS) 

The term Anabolic-Androgenic Steroids (AAS) is mostly used to group the naturally 

occurring male sex hormone testosterone, testosterone precursors and metabolites, and 

sometimes also (synthetically) produced testosterone variants [14,15]. "Anabolic" refers 

to the muscle-building capacity, and "androgenic" refers to increased male sexual 

characteristics while "steroids" refers to the class of compounds (Figure 1.1.A., p. 3).  

Valid medicinal use of AAS is limited, for example in patients with a negative nitrogen 

balance, like weakened horses or to accelerate healing after trauma or surgery. Non-

therapeutic abuse of AAS however is widespread (Chapter I, 3. and Chapter VII). 

Anabolic steroids can be given by injection, taken by mouth, or used externally. In 

humans, AAS are classified as controlled substances, due to the possibility of serious 

adverse effects and a high potential for abuse as these hormones increase lean muscle 

mass and can improve athletic performance.  

1.5 SYNTHESIS AND ABSORPTION OF THE STEROID PRECURSOR CHOLESTEROL 

In humans and animals, cholesterol is the main precursor of all steroids, including sex 

steroids such as testosterone. Cholesterol is synthesized in the liver [16,17] and dietary 

and biliary cholesterol-containing low density lipoproteins can be absorbed from the 

intestines (Figure 1.7, p. 12).  

The results of isotope-labelling experiments revealed the source of carbon atoms in 

cholesterol is acetate (acetyl coenzyme A, Ac-CoA [18]. Cholesterol synthesis can be 

split up into three stages (Figure 1.6, p. 11):  

1. The synthesis of isopentenyl pyrophosphate IPP (C5), an activated isoprene unit 

that is the key building block of cholesterol, from acetyl CoA. This set of 

reactions, which takes place in the cytosol, starts with the formation of 3-hydroxy-

3-methylglutaryl-CoA (HMG-CoA) from acetyl CoA and acetoacetyl CoA. This 

intermediate is reduced to mevalonate and subsequently converted into IPP in 

three consecutive reactions requiring ATP. The synthesis of mevalonate is the 

committed step in cholesterol formation, making the enzyme catalysing this 

irreversible step (3-hydroxy-3-methylglutaryl CoA reductase, HMG-CoA 

reductase) an important control site in cholesterol biosynthesis. 
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2. The condensation of six molecules of IPP to form squalene (C30), by the reaction 

sequence C5  C10  C15  C30. Isopentenyl pyrophosphate attacks an allylic 

carbonium ion formed from dimethylallyl pyrophosphate to yield geranyl 

pyrophosphate. The resulting C15 compound is called farnesyl pyrophosphate. 

The same enzyme, geranyl transferase, catalyses each of these condensations. The 

last step in the synthesis of squalene is a reductive tail-to-tail condensation of two 

molecules of farnesyl pyrophosphate catalysed by the endoplasmic reticulum (ER) 

enzyme squalene synthase. 

3. Squalene cyclizes in an astounding reaction and the tetracyclic product 

(lanosterol) is subsequently converted into cholesterol. Squalene is first activated 

by conversion into squalene epoxide (2,3-oxidosqualene) in a reaction that uses O2 

and NADPH. Squalene epoxide is then cyclized to lanosterol by oxidosqualene 

cyclase. Lanosterol in turn is converted into cholesterol in a complex process. 

 

Figure 1.6. Biosynthesis of cholesterol from acetyl CoA.  

On the other hand, cholesterol absorption occurs primarily in the duodenum and proximal 

jejunum at levels of efficiency that vary greatly among individuals [18, 19]. In humans 

consuming a typical Western diet, about one quarter of the cholesterol entering the lumen 

of the small bowel is from the diet; the majority of cholesterol in the lumen comes 

directly from the bile and cells sloughed from the intestinal epithelium [20].  

Steroid hormones 
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There are two main phases of cholesterol absorption [20]. The first takes place in the 

lumen and involves digestion and hydrolysis of dietary lipids followed by solubilisation 

of cholesterol in mixed micelles containing bile acid and phospholipids (Figure 1.7). 

This solubilisation facilitates the movement of cholesterol from the bulk phase of the 

lumen to the surface of the enterocyte. In the second phase, cholesterol crosses the 

mucosal cell membrane by simple diffusion, and probably by facilitated diffusion as well 

(NPC1L1, Niemann-Pick C1-Like 1) [21].  

Thus far, a specific cholesterol transporter in the microvillus membrane of the enterocyte 

has not been identified [20, 21]. Within the cell the cholesterol is re-esterified (ACAT, 

Acetyl-CoA Acetate Transferase) and incorporated into apolipoprotein B-containing 

nascent lipoproteins (chylomicrons) that are secreted into the lymph. The absorption 

process is largely specific for cholesterol because plant sterols or phytosterols (see 

Chapter I, 4. PHYTOSTEROLS), although structurally similar to cholesterol, are generally 

absorbed either poorly or not at all [22-25] (Figure 1.7). 

 

Figure 1.7. Absorption of cholesterol and phytosterols from the intestinal lumen.  

Reproduced from Abumweis et al. (2014) [22] 

2. ANABOLIC STEROID ABUSE 

2.1 SCIENTIFIC HISTORY OF ANABOLIC STEROID ABUSE 

Back in the middle ages, it was already well-known that after castration male animals 

lose their fertility and most other male characteristics, including behaviour and physical 

appearance. In 1849 it was known that hormones are responsible for these characteristics. 

Testosterone plays a key role in the development of male reproductive tissues such as the 

testes and prostate as well as promoting secondary sexual characteristics such as 
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increased muscle, bone mass, and the growth of body hair [15]. In 1935 a Dutch, 

pharmaceutical research team was the first to isolate and identify the chemical structure 

of testosterone (from bull testicles). 

Research teams from Schering and Ciba independently discovered less expensive 

methods of synthesizing testosterone in August 1935. This steroid research was deemed 

so important that the lead researchers from the Schering and Ciba teams (Butenandt and 

Ruzicka) ultimately shared the 1939 Nobel Prize in Chemistry for their work on anabolic-

androgenic steroid hormones. The discovery of synthetic methods of preparing the 

anabolic-androgenic steroid known as testosterone was a major breakthrough in the 

pharmaceutical industry allowing steroid hormone research to flourish. 

Charles Kochakian, a synthetic steroid pioneer, made a milestone discovery in the history 

of steroids, his animal research with testosterone acetate proved that testosterone was 

indeed an anabolic hormone in 1936. Kochakian’s research group was the first to 

scientifically document a connection between testosterone and increased muscle mass. In 

1938, Allan Kenyon’s research group confirmed that the anabolic muscle effects of 

testosterone propionate occurred in human subjects as well during steroid experiments on 

eunuchoidal boys, men and women. 

In humans, the first documented use of testosterone as a performance-enhancing 

substance in sport was reported in the early 1950s. Russian weightlifters outcompeted all 

other athletes and their trainers conceded that they were using testosterone. Once 

Pandora’s Box was open, it was impossible to close. The growth and widespread use of 

anabolic steroids eventually led the regulatory agents to schedule testosterone and other 

anabolic agents under control (see Chapter I, 2.3 DOPING REGULATION: HUMANS AND 

ANIMALS).  

In animals, including farm animals (such as cattle, pigs and chicken) and race animals 

(merely horses, dogs and camels), the range of the issue is comparable. In farm animals, 

growth promoting agents have been abused on a regular basis within the European 

Union (EU), as it has been reported in a series of European International Symposia and 

Conferences, such as EuroResidue Conferences on Residues of Veterinary Drugs in Food 

and the Ghent Symposia on Hormone and Veterinary Drug Residue Analysis, amongst 

others. The number of active compounds is wide and continuously changing, as observed 

by the EU National Reference Laboratories (NRLs).  
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Not only AAS but also estrogenic and gestagenic (EGAs) as well as thyreostatic, 

corticosteroids and β-agonist compounds, are used alone or in growth promoting 

cocktails with low concentrations of several ones, compromising their detection [3]. As 

there is no worldwide restriction to the use of AAS as growth promoting and performance 

enhancing agents AAS are available on the (black) market as food supplements (e.g. 

DHEA) or even as injectable anabolic preparations (Bol or Bol esters), imported from  the 

US and other regions with less strict regulations regarding AAS [13]. 

2.2 RESIDUE-ANALYSIS IN FARM ANIMALS: REGULATIONS  

The use of AAS leaves trace residues of these hormones in the meat, which can have 

serious human-health consequences, including amongst others hepatoxicity, infertility 

and cancer. Because of this potential to threaten public health there have been several 

European regulations regarding the use of EGAs (including AAS) as animal growth 

promoters. Initially, the EU issued a ban on the use of estradiol and other natural and 

synthetic steroid hormones. This ban was already adopted in 1985 but was disputed 

before the European Court by the United Kingdom. It was annulled because of procedural 

deficiencies. The ban was finally agreed in 1988 and encompassed a ban on the use of 

estradiol 17-β, testosterone, progesterone, zeranol, trenbolone acetate and melengestrol 

acetate within Member States.  

Council Directive 96/22/EC (EC, 1996a) elaborated on this by prohibiting the 

administration of all substances with thyreostatic, estrogenic, androgenic or gestagenic 

effects and of β-agonists in animal husbandry (while certain therapeutic applications of 

these drugs were still allowed). Anabolic steroids were included in group A substances 

according to Annex I of Directive 96/23/EC (EC, 1996b), which pertains to growth-

promoting agents abused in animal fattening and unauthorized substances with no 

maximum residue limit (MRL).  

A zero-tolerance policy has been adopted since, and in particular, analytical 

requirements have been stated in regard to these hormones (EC, 2002; European 

Commission, Directorate General for Health & Consumers, 2004). However, the 

possibility of widespread abuse of hormonal substances by unscrupulous farmers and 

veterinary professionals in some parts of Europe still exists and the use of hormones to 

promote growth is still a legal practice in some parts of the world, which facilitates the 

existence of a possible “black market” of substances from these areas. 
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2.3 DOPING REGULATIONS׃ HUMANS AND HORSES 

In humans, anabolic steroids were added to the IOC's (International Olympic Committee) 

list of banned substances in 1975, as at that time the first test that was considered to be 

reliable was developed. Consequently, athletes were first tested for anabolic steroids 

during the 1976 Olympic Games in Montreal. Out of 786 drug tests performed at the 

1976 Olympic Games in Montreal, 11 athletes (1.4%) tested positive. Over the following 

years, thousands of athletes would test positive for the abuse of anabolic steroids in sports, 

including swimming, baseball, athletics, weight lifting and many other disciplines. 

As the abuse continued, additional measurements needed to be taken. In 1990 the 

American Congress developed the Anabolic Steroids Control Act, placing 25 steroids 

(including boldenone and testosterone) in the same legal class, class III controlled 

substances, as amphetamines, methamphetamines, opium and morphine. This control act 

was updated in 2014 (“Designer Anabolic Steroid Control Act of 2014, HR 4771), to 

include more steroids and designer steroids.  

The World Conference on Doping in Sport held in Lausanne in 1999 produced the 

Lausanne Declaration on Doping in Sport. This document provided for the creation of 

an independent international anti-doping agency to be fully operational for the Olympic 

Games in Sydney in 2000. Pursuant to the terms of the Lausanne Declaration, the World 

Anti-Doping Agency (WADA) was established on 10 November 1999 in Lausanne to 

promote and coordinate the fight against doping in sport internationally. WADA was set 

up as a foundation under the initiative of the IOC with the support and participation of 

intergovernmental organizations, governments, public authorities, and other public and 

private bodies fighting against doping in sport. The agency consists of equal 

representatives from the Olympic Movement and public authorities.  

Currently, AAS are still classified as class III controlled substances, they are part of the 

first section of the Prohibited List (2015), that discusses substances and methods that are 

prohibited at all times, both in-competition and out-of-competition and any athlete can be 

tested for these substances at any time. The list of anabolic agents is extensive and even if 

one is not specifically listed, it is still prohibited if it is a metabolite or has a similar 

chemical structure or similar biological effect(s) to anabolic agent (WADA 2015 

Prohibited Substances List). 
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Even as early as the 10th century BC, 

the Romans used an innocuous mix of 

water and honey called “hydromel”, 

which was believed to rejuvenate chariot 

race horses (Figure 2.1). The 

prohibition of hydromel might be the 

oldest equine anti-doping law. Anti-

doping laws in modern equestrian sports 

date back to the late 19
th

 century.  

Figure 2.1. Roman chariot racing 

on a black-figure hydria (510 BC). 

Chariot racing was the most popular 

sport in Rome, attracting up to 

350.000 spectators for prestigious 

races. 

Race and sport horses are, just like human athletes, frequently subjected to doping 

controls to guarantee a safe and fair competition. FEI (Fédération Equestre Internationale, 

responsible for all Olympic disciplines including jumping, dressage and eventing) and 

IFHA (International Federation of Horseracing Authorities) regulations state that "any 

use of substances with a potential to affect equine performance, health or welfare and/or 

with a high potential for misuse is contrary to the integrity of equestrian sport and the 

welfare of the horses".   

 

 

 

 

 

 

AAS have been included in the prohibited substances lists of equine anti-doping 

agencies such as FEI and IFHA for several decades, as soon as the influence of AAS on 

athletic performance had been confirmed. The pharmacological activity of AAS includes 

increased nitrogen retention, protein synthesis, appetite and the release of erythropoietin 

in the kidneys [3,16]. 

In the United States it took until 2008 for steroids to be banned from the racing courses. 

Under the new law, a horse may be given steroids only under certain therapeutic 

conditions, and a horse may not race for at least 60 days afterwards. Anabolic steroids 

may never be present in a competing horse (Press release, Kentucky Horse Racing 

Commission website, Sep. 5, 2008 and RMTC, Racing Medication and Testing 

Consortium, 2008).  

In Australia anabolic steroids were only prohibited on race day, but a new total ban 

(November 1
st
 2013 and effective from May 1st 2014, Australian Racing Board, ARB) 

applies to all thoroughbreds from the age of six months, both in and out of competition. 

This decision has been welcomed by the IFHA and FEI, to further two of their key 

objectives: to coordinate and harmonize the rules of all member-countries worldwide. 
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2.4 SEX STEROIDS AS REGISTERED DRUGS 

The BCFIvet repertorium (Belgisch Centrum voor Farmacotherapeutische Informatie, 

“gecommentarieerd geneesmiddelenrepertorium voor diergeneeskundig gebruik”) only 

includes nandrolone as a registered drug. Nandrolone can be used in patients with a 

negative nitrogen balance, like weakened horses or to accelerate healing after trauma or 

surgery. Gonadotrophins and drugs that stimulate the secretion of gonadotrophins are 

registered as well (e.g. eCG, hCG and FSH, to stimulate follicle formation and ripening). 

Additionally, EU commission regulation No 37/2010 of 22 December 2009 expands on 

pharmacologically active substances and their classification regarding maximum residue 

limits (MRLs) in foodstuffs of animal origin. EU commission regulation 37/2010 lists 

only a few sex steroids. No anabolic-androgenic steroids (AAS) are included. 

Progesterone is listed for use in mares, but only for intravaginal therapeutic or 

zootechnical use and in accordance with the provisions of Directive 96/22/EC. For 

progesterone no MRL is required. In line with the BCFIvet repertorium gonadotrophins 

and drugs that stimulate the secretion of gonadotrophins like GnRH, eCG, hCG and FSH 

(Natural FSH from all species and synthetic analogues) are listed. They can be used in all 

food producing species and no MRL is required. 

Although BCFIvet registration or EU commission regulation No 37/2010 might allow 

therapeutic use of a few (sex) steroids in production horses, FEI, IFHA or other 

regulations will imply on these horse as soon as they enter competition. The other way 

around, sport horses can be treated with other products than the ones listed above, as long 

as they are non-food producing and in line with FEI/IFHA regulations when entering 

competition. 

3. ENDOGENOUS STEROIDS 

3.1 REFERENCE RANGES FOR ENDOGENOUS STEROIDS IN HUMANS  

Multiple studies measured the excreted concentration of testosterone in urine (Table 

3.1, p. 18). The oldest data date back to the 1960s, when Camacho et al. (1963) already 

stated that the daily excretion of testosterone by normal adult men was many times 

greater than that of normal adult women [26] (Table 3.1, p. 18). 
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Table 3.1. A) Reference ranges for total testosterone in humans (male). 

Reference Population 
Male 

n Mean Outliers  

[27] Futterweit et al. (1964) American 10 171 μg/day 250 μg/day 

[28] Doberne and New (1975) American 10 84 μg/day / 

[29] Tresguerres et al. (1976) American 26 150 μg/day 346 μg/day 

[30] Gonzalo-Lumbreras et al. (2003) Spanish 12 125 ng/mL
*
 191 ng/mL

*
 

[31] Van Renterghem et al. (2010) Caucasian 2027 37 ng/mL >100 ng/mL 

[32] Martinez-Brito et al. (2013) Latin-American  2454 60 ng/mL >200 ng/mL 

[33] Moon et al. (2014) Korean 337 26 ng/mL >150 ng/mL 
*Samples were collected early in the morning, at the maximum of the excretion curves  

Table 3.1. B) Reference ranges for total testosterone in humans (female). 

Reference Population 
Female 

n Mean Outliers 

[27] Futterweit et al. (1964) American 10 6 μg/day  8 μg/day 

[28] Doberne and New (1975) American 10 4.2 μg/day / 

[29] Tresguerres et al. (1976) American 16 24 μg/day / 

[31] Van Renterghem et al. (2010) Caucasian 1004 12 ng/mL 200 ng/mL 

[34] Pesant et al. (2012) Canadian 155 1.23 nmol/L 1.7 nmol/L 

[32] Martinez-Brito et al. (2013) Latin-American  1181 13 ng/mL 54 ng/mL 

 

On average, in adult males, levels of testosterone are up to ten times as great as in adult 

females [35]. The reference ranges for blood test of adult males were between 1.8 and 7.5 

ng/mL (>50 years old) and 2.90 to 13 ng/mL (<50 years old), while the reference range 

for adult females was between 0.2 and 0.85 ng/mL (MedlinePlus.gov – National Library 

of Medicine reference values). As the metabolic consumption of testosterone in males is 

greater too, the daily production was estimated to be about 20 times greater in men [36]. 

3.2 REFERENCE RANGES FOR ENDOGENOUS STEROIDS IN HORSES 

Generally, less data are available regarding the normal ranges of excretion of testosterone 

and its related metabolites in horses, but testosterone and its precursors/metabolites are 

known to be endogenous in males (stallions and geldings) and females of this species at 

varying concentrations [98]. In a recent study investigating the effect of γ-oryzanol 

supplementation on endogenous testosterone levels in horses, the urine β-testosterone 

concentrations were always lower than 1.7 ng/mL for mares and geldings. Popot et al. 

(2008) [37] and Ho et al. (2004) [38] measured both ADD and βBol in urine (and faeces) 

of (male) horses. Testosterone levels measured by Popot et al. (2008) were between 71 

and 214 ng/mL. If urine samples are being analysed with gas chromatography/mass 

spectrometry for the identification of cryptorchidism, a cut-off level of 8 ng/mL is held as 

a marker for cryptorchidism, testosterone levels below 8 ng/mL are regarded normal for 
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geldings and according to these thresholds, no βBol should be found in geldings [39].  

Plasma concentrations for cycling mares vary between 20 and 60 pg/mL and can go up to 

245 to 350 pg/mL in bearing mares. Urine concentrations in cycling mares were found to 

between 1.4 and 20.1 ng/mL [40]. 

β-boldenone levels measured by Popot et al. (2008) in stallions varied between 1.0 and 

2.9 ng/mL urine (n = 7) [37]. The range of free and conjugated boldenone determined by 

Ho et al. was between 0.1 and 4.34 ng/mL (n = 63, from 37 male horses), and the mean 

was 1.27 ± 1.03 ng/mL. Boldenone was not detected in geldings (n = 8), in line with the 

results of Leung et al. (2007) [39]. The mean β-boldenone concentration measured in 

male horses by Dehennin et al. (2003) was 0.34 ng/mL (minimum 0.02, maximum 1.51 

ng/mL) (n = 156) [41]. 

For progesterone, a difference needs to be made between mares in anestrus (<2.0 ng/mL) 

and pregnant mares (60 to 120 pregnant days, 5 to 20 ng/mL) (RIA, college of veterinary 

medicine, Colorado State University, 2013).  

Additionally, as sport horses are frequently subjected to doping analysis, normal levels 

can be derived from the by anti-doping regulatory organs accepted levels (see also 2. 

ANABOLIC STEROID ABUSE). Very strict zero-tolerance policies are held for most steroids, 

but exceptions have been made for the naturally occurring androgenic steroids: boldenone 

and testosterone (and stanozolol and nandrolone) (Table 3.2, p. 20).  

As endogenous β-boldenone was found in urine and faeces of entire males [37, 38], 

IFHA (Article 6, 2015) [42], RMTC (Banned Medication List, 2014), and FEI (2015 

Equine Prohibited Substances List) [43], abandoned the zero-tolerance for stallions and 

set a threshold for free and conjugated boldenone of 15 ng/mL. Despite this threshold for 

entire males, the presence of βBol in urine from mares or geldings is still prohibited.  

For testosterone, thresholds were set for mares and fillies (unless in foal), up to 55 

ng/mL free and conjugated testosterone in urine and 20 ng/mL urine for geldings is 

allowed. For entire male horses “amounts in excess of amounts existing naturally in the 

untreated horse at normal physiological concentrations” are considered to be non-

naturally occurring physiological concentrations. The international threshold for 

testosterone in plasma is 100 pg/mL for geldings. Currently, no threshold for mares is set 

yet, but it is being suggested to introduce the same threshold of 100 pg/mL [42,43]. 
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For nandrolone or nortestosterone (free and conjugated) the RMTC threshold was set at 

1 ng/mL in urine (geldings, fillies and mares). In male horses other than geldings – 45 

ng/mL of metabolite, 5σ-estrane-3β, 17 σ-diol in urine or a ratio in urine of 5σ-estrane-3β, 

17 σ-diol to 5σ-estrene-3β, 17 σ-diol of >1:1 is considered to be indicative for abuse. 

Only a limited number of regulatory organs (e.g. The Canadian Horse Racing Board, 

CHRB) set a threshold for stanozolol, at 1 ng/mL urine. For FEI and IFHA for example, 

stanozolol is listed as a banned substance, and therefore strictly forbidden.  

Table 3.2. Anabolic-androgenic steroids (AAS) listed as banned substances according to the 

FEI 2015 banned substances list. FEI and IFHA set thresholds for two AAS, boldenone and 

testosterone, accepting that these compounds can be present as endogenous steroids (black). 

Other regulatory organs set thresholds for stanozolol and nandrolone (nortestosterone) as well 

(orange). 

17α-hydroxyprogesterone  Dromostanolone Methandriol Normethandrolone 

Androstenediol Drostanolone Methandrostenolone Oxabolone 

Androstenedione (AED) Epiternbolone Methenolone Oxandrolone 

Bolandiol Ethinylestradiol Methyldienolone Oxymesterone 

Bolasterone Ethylestrenol Methylnortestosterone Oxymetholone 

Boldenone
*
 Fluoxymesterone Methyltestosterone Paramethadione 

Boldione (ADD) Formebolone Methyltrienolone Prostanozol 

Calusterone Furazabol Mibolerone Stanozolol
◊
 

Clostebol Gestrinone Nandrolone
○
 Stenbolone 

Danazol Hydroxytest. Norandrostenediol Testosterone
∆
 

Dehydrochloromethyltest. Mestanolone Norandrostenedione Tetrahydrogestrinone 

Dehydrochlorotest. Mesterolone Norbolethone Tibolone 

Desoxymethyltestosterone Methandienone Norclostebol Trenbolone 

*
 For boldenone a threshold has been set at 15 ng free and conjugated boldenone per mL in urine 

from male horses (other than geldings). Zero-tolerance is held in mares and geldings (FEI, IFHA 

among others). 

∆ 
For testosterone 20 ng free and conjugated testosterone per mL in urine or 100 pg free 

testosterone per mL in plasma is acceptable for geldings and 55 ng free and conjugated 

testosterone per mL in urine from fillies and mares (unless in foal) (FEI, IFHA and others). 

○ 
For nandrolone (nortestosterone) a threshold of 1 ng per mL urine has been set for mares and 

geldings. For stallions the threshold is significantly higher, at 45 ng per mL urine (RMTC).  

◊ 
Only a limited number of regulatory organs (e.g. The Canadian Horse Racing Board, CHRB) set 

a threshold for stanozolol, at 1 ng per mL urine. 
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Figure 3.2. Typical signs of 

hyperadrenocorticism. Long, wavy 

coat (hirsutism), muscle wasting along 

the top line, abnormal fat distribution 

and increased drinking and urination. 

3.3 HORMONAL DISORDERS IN HORSES 

A tumour or other abnormal tissue in an 

endocrine gland (Overview of the endocrine 

system, Figure 1.3, p. 5) often causes it to 

overproduce hormones, e.g. granulosa cell 

tumour (GCT) of the equine ovary, 

responsible for the overproduction of 

testosterone (Figure 3.1) [44]. If an 

endocrine gland is destroyed or 

malfunctioning, underproduction of 

hormones can be detected, e.g. a 

malfunctioning thyroid gland is responsible 

for hypothyroidism in the horse [45].  

In many cases, the abnormal gland not only overproduces hormones, it also does not 

respond normally to feedback signals. This causes hormones to be released in situations 

in which the hormone levels would normally be reduced. Sometimes, the overproduction 

is caused by stimulation from another part of the body. Occasionally, a tumour outside 

the endocrine system can produce a substance similar to a hormone, causing the body to 

respond as though that hormone were being produced [46]. 

Equine Cushing's disease, also called 

hyperadrenocorticism (PPID or 

pituitary pars intermedia dysfunction), is 

the most common endocrine disease in 

horses. The signs are due primarily to 

chronic excess of cortisol (Figure 3.2). 

Increased cortisol levels may result from 

several mechanisms, including 

destruction of a portion of the pituitary 

gland and overproduction of certain other 

hormones [47].  

Figure 3.1. Granulosa Cell Tumour 

(GCT) with multiple cysts. GCT can 

be responsible for the detection of 

elevated testosterone levels in untreated 

horses and the with these levels linked 

male like behavior e.g. flehmen, herding 

and mounting. 

(www.vetsonline.com) 
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4. PHYTOSTEROLS 

4.1 BIOLOGICAL ROLE AND CHEMICAL STRUCTURE 

Phytosterols are omnipresent in plants, playing a similar role in plants as cholesterol plays 

in animals: regulating the fluidity of cell membranes and featuring in cellular 

differentiation and proliferation. Over 250 different naturally occurring sterols have been 

found in higher plants, and as many as 60 different sterols have been described in a single 

species (e.g. corn). Most phytosterols contain 28 or 29 carbons. Despite this diversity, the 

most frequently occurring phytosterols in nature and in human diets are β-sitosterol 

(65%), followed by campesterol (30%) and stigmasterol (5%) [48]. They differ in the side 

chain double bond at C22 and the substituents at C24 (Figure 4.1) [49].  

 

Figure 4.1. Chemical structures of the main phytosterols. 

In most plants, other phytosterols and stanols such as ∆5/∆7 avenasterols, cycloartenol 

and stigmastanol are less abundant. Except for some specific plants such as the 

Curcurbitaceae, with spinach and cucumbers as the most prominent members, that 

contain large amounts of ∆7-sterols. Phytosterols can be converted to phytostanols by 

chemical hydrogenation [50]. 

Grains are generally regarded as good sources of phytosterols yet different parameters 

can influence the exact concentration of phytosterols present. Cultivar and year-to-year 

variation of phytosterol content has been shown (e.g. in rye, Secale cereale L.). 

Additionally, the same cultivar can contain different proportions of phytosterols 

depending on environmental (pH) and climatological factors (temperature, rainfall) affect 

phytosterol concentration in cereals [49]. Previous research also showed that the different 

parts of the grain contain different concentrations of phytosterols. The outer layer of corn 

hulls for example, the pericarp, made up of non-living cell walls, is less ferulate-

phytosterol ester rich than the inner layer, the aleurone, that consists of a single layer of 

living cells, surrounded by thick cell walls [51].  

β-sitosterol Campesterol Stigmasterol 
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This difference is linked to the anatomical structure of the different seed structures, the 

proportion of membrane-rich tissues. Fruits and vegetables are generally regarded as low 

to moderately high in phytosterols [52]. No data are available on the concentrations of 

phytosterols in feed such as hay, straw and grass (See also Chapter III). 

In all plant tissues, phytosterols occur in five different forms (Figure. 4.2): as free 

alcohol (FS) (Figure 4.1, p. 22), as fatty-acid esters (SE), as steryl glycosides (SG), and 

as acylated steryl glycosides (ASG). The last three forms (SE, SG, and ASG) are 

generically called “phytosterol conjugates”. In free phytosterols (FS), the 3β-OH group 

on the A-ring of the sterol nucleus is not bound, whereas in the conjugates the OH is 

covalently bound with other constituents (fatty-acid, sugar or acetyl). The OH group is 

ester-linked with a fatty acid in SE and linked by a 1-O-β-glycosidic bond with a hexose, 

most commonly glucose, in SG. The third group of phytosterol conjugates (ASG) differ 

from SG by the addition of a fatty acid esterified to the 6-OH of the hexose moiety. Corn, 

rice and other grains can contain a fourth type of phytosterol conjugate, phytosteryl 

hydroxycinnamic-acid esters (HSE), in which the sterol 3β-OH group is esterified to 

ferulic or p-coumaric acid (Figure 4.2) [50]. 

 

Figure 4.2. Structures of phytosterol conjugates.  

The sites of cleavage via alkaline and acid hydrolysis are indicated with arrows 
(adapted from Moreau et al., 2002) [50]. 
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In humans, phytosterols have been proposed to offer protection against a variety of 

chronic ailments including cardiovascular diseases, obesity, diabetes, and cancer. As for 

cancer protection, it has been estimated that diets rich in phytosterols can significantly 

reduce cancer risk by as much as 20%. They enable more robust antitumour responses, 

including the boosting of immune recognition of cancer, influencing hormonal dependent 

growth of endocrine tumours, and altering sterol biosynthesis. In addition, phytosterols 

have effects that directly inhibit tumour growth, including the slowing of cell cycle 

progression, the induction of apoptosis, and the inhibition of tumour metastasis [53]. 

Protection against cardiovascular diseases takes place as consumed phytosterols compete 

with cholesterol for uptake in the mixed micelles (Figure 1.7, p. 12), needed for 

cholesterol absorption by the small intestine. As a result, cholesterol absorption, either 

from food or from bile salts is lowered by about 50%, leading to a lowering of about 10% 

of blood cholesterol level, despite an increase in hepatic cholesterol synthesis [50]. This 

reduction is achieved when phytosterols are given either as monotherapy or in addition to 

statin therapy, a common cholesterol lowering treatment [54]. The average Western diet 

contains about 400-800 mg of phytosterols per day, while the dose needed for lowering 

blood cholesterol is about 2 to 3 g per day [55].  

Therefore, many commercial foods, so called functional foods, are supplemented with 

phytosterols (e.g. margarine, yoghurt drinks). Plant sterols and stanols added to a variety 

of food products are generally recognized as safe (GRAS) by the FDA (GRAS Notice No. 

GRN 000112) (2003). Additionally, the Scientific Committee on Foods of the EU (2003) 

concluded that plant sterols and stanols added to various food products are safe for human 

use. However, the Committee recommended that intakes of plant sterols and stanols from 

food products should not exceed 3 g/day because there is no evidence of health benefits at 

higher intakes and there might be undesirable effects at high intakes. 

Phytosterols are also used as lanolin substitutes in pharmaceutical and cosmetic 

formulations, as a less expensive and safe additive. The use of lanolin or wool wax/grease 

is unfavored because of health damages such as BSE (bovine spongiform encephalopathy) 

caused by other animal-derived substances in recent years. Plant-derived phytosterols 

have the same properties as lanolin and form a good substitute.  
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4.2 LINK TO ANABOLIC STEROIDS 

All three main phytosterols (stigmasterol, campesterol and β-sitosterol) make good raw 

materials for the production of steroid hormones because of their typical A-ring 

molecular structure with a 3β-hydroxyl group and a 5,6-double bond [56]. The C19-

steroids, which include AED, ADD and testosterone, are the products of complete 

(microbial) side chain cleavage of phytosterols (Figure 4.2).  

Figure 4.2. Illustration of the closely related chemical structure of phytosterols and anabolic 

steroids. For the phytosterols, β-sitosterol, the most abundant phytosterol, is shown. The 

suggested microbial side chain cleavage is indicated with a dashed line (- - -).  

Microbial transformation of β-sitosterol into 17-ketosteroids such as androstenones has 

received much attention, since it allows the use of inexpensive sterols as raw material for 

the production of steroid intermediates used in the pharmaceutical industry; the microbial 

side chain cleavage of phytosterols is an alternative to multi-step chemical synthesis. 

Over 600 relevant patents related to the synthesis and usage of phytosterols and 

phytostanols have been postulated, highlighting the impact of phytosterols as 

economically relevant compounds (Espacenet, EU and USPTO, US; 2015). 

This microbiological conversion of phytosterols to steroids has been reported for a variety 

of microorganisms [57, 58] including Mycobacterium sp. [59-61], Arthrobacter and 

Nocardia sp. [62]. In addition, a number of studies have been devoted to the ability of 

invertebrate organisms to convert phytosterols into anabolic steroids: maggots of 

Lucilia Serica [63], Crustaceae [64] and zebra fish [65]. Additionally, Verheyden et al. 

(2010) indicated that feed-related molds might be able to transform phytosterols from 

feed into androstenones (See also Chapter V). 

Other studies indicated that phytosterols might play a role in the detection of steroids in 

urine and faeces of animals, fed on a phytosterol rich diet. Gallina et al. (2007) [66] 

suggested that stigmasterol might be an α-Boldenone precursor in veal calves and Draisci 

β-sitosterol AED, androst-4-ene-3,17-dione 
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et al. (2007) supported this hypothesis by linking the excretion profile of boldenone in 

urine of veal calves with the consumption of two different milk replacers, with different 

phytosterol and cholesterol content [67].  

Additionally, Song et al. (2000) showed that rats, fed a phytosterol rich diet, were able to 

transform phytosterols, leading to the excretion of ADD, AED and other androstenones in 

their faeces [68]. Thus far, no studies on the effect of phytosterol consumption on the 

excretion of steroids in horses have been performed. 

5. EQUINE DIGESTIVE TRACT 

5.1 ANATOMICAL OVERVIEW  

Horses (Equus Caballus) are monogastric, hindgut fermenters: the hindgut, consisting of 

the caecum and colon, comprises roughly two thirds of the volume of the equine digestive 

tract, making it the most important part of the digestive tract [69] (Figure 5.1, p. 27).  

Before reaching the hindgut feed passes through different other parts of the intestinal tract 

[70]: 

 Large molar teeth allow the horse to grind foodstuffs into small pieces and the act 

of chewing also stimulates three glands in the mouth to produce liters of saliva. 

The saliva contains bicarbonate as a buffering agent and amylase, for 

carbohydrate hydrolysis.  

 The oesophagus, a one way passage, funnels the feed from the mouth to the 

stomach. The top of the stomach is known as the squamous, or non-glandular, area 

whilst the bottom is the gastric, or glandular, region where the digestive secretions, 

such as HCl, are produced. The small size of the stomach is in line with the short 

retention time. Feed will only spend 30 to 120 min in the stomach before it moves 

on into the small intestine. Due to the rigid structure of the stomach it cannot 

accommodate large meals. Instead of stretching it will pass the food through more 

quickly. As a consequence thereof the digestion process will be less efficient. 

Roughage will typically spent more time in the stomach, while concentrates are 

passed through more quickly. Despite this limited capacity, the physiological state 

of an empty stomach is not advisable, as HCl secretion continues, hence the need 

for continuous foraging to avoid gastric ulcers [71]. 
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 The small intestine consists of three regions: the duodenum, jejunum and ileum 

and is about 15 to 22 metres long and 7 to 10 cm in diameter in a 500 kg horse. 

Fat, proteins, most of the vitamins and minerals and about 50 to 70% of soluble 

carbohydrate is absorbed in the small intestine. Unlike humans, the horse doesn't 

have a gall bladder, bile acids continuously drain from the liver into the small 

intestine and aid in the breakdown of fats and oil. 

On average, feed reaches the large intestine after approximately 3 h and is fermented for 

36–48 h [70]. The hindgut itself contains a multitude of different bacterial species but also 

other micro-organisms such as yeasts, anaerobic fungi and protozoa belong to the 

normal microbiota of the horse. Together they are responsible for breaking down fibres 

and any soluble carbohydrates that have escaped digestion in the small intestine.  

Between 10
3
 and 10

5
 protozoa per mL have been isolated from the caecum and colon of 

ponies [71]. Approximately 70 species, most of which were ciliates, have been isolated 

from the large intestine and caecum (including species from the genera Blepharocorys, 

Buetschlia, Cycloposthium and Paraisotricha) [65]. Protozoa assist in the degradation of 

hemicellulose and pectins and upon removal, dry matter (DM) digestion decreases [71].  

 

Figure 5.1. Overview of the equine digestive tract. 

Anaerobic fungi play an important role in aiding fibre digestion by colonising the fibre 

particle and using their hyphae to help pull the particle apart, allowing intestinal bacteria 
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to access and colonise more quickly [74]. The bacterial flora exploit both amylolytic, 

lactate utilising, proteolytic, hemicellulolytic and cellulolytic activity and are responsible 

for the production of essential amino acids and vitamins B and K, which are essential for 

metabolism and energy utilisation [72]. 

The pH of the caecum and colon is approximately 6.0 and forms the ideal condition for 

anaerobic bacteria, fungi and protozoa to degrade hemicelluloses and pectins [75]. Upon 

high starch intake, residual starch may end up in the caecum and colon where it is slowly 

fermented and may favour the growth of amylolytic bacteria. This results in an increase in 

SCFAs and lactic acid production, leading to a significant decrease in pH [76]. This 

starch induced hindgut acidosis will reduce the growth and activity of the hindgut 

bacterial and fungal microbiota and consequently impair fibre digestion [71]. 

Finally, water is also absorbed in the colon and the remaining undigested material and 

bacteria expelled from the colon/caecum are passed into the rectum and excreted as 

faeces. 

5.2 DIET 

Horses are anatomically adapted to grazing continually on marginal forages [77,78]. In 

the wild, they travel great distances to obtain food and water. As wild grasses in their 

natural environment are typically high in fibre but low in energy, the horse grazes for 

approximately 12 to 16 hours a day [70]. The relatively small stomach and large hindgut 

are perfectly suited for this (5.1 ANATOMICAL OVERVIEW). The complex plant material is 

fermented by microorganisms in the hindgut to short chain fatty acids (SCFAs) such as 

acetate, propionate, and butyrate, which provide 60 to 70% of the daily energy needs of 

the horse [68]. Ideally, horses should be given free access to hay and/or pasture forages 

with salt and water ad libitum. A normal size horse (500 kg) will consume 1.5-2.5% of 

his body weight in dry matter (DM) a day [70,79]. If add-libitum foraging of grass is 

allowed, some horses will even consume up to the absolute max of 3% DM a day [80]. 

 

Despite this anatomical predisposition for ad-libitum feeding of low energy forage, 

today’s sport horses are no longer predominantly kept in this most natural state: for 

practical reasons and to stimulate performance diet has changed significantly. Peak 

performances (jumping, eventing and racing) or long lasting exercises (like riding school 

horses, trekking and endurance) might increase the horse’s energy requirements to the 
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point that forage does not suffice. In those cases part of the DM can be supplied through 

energy rich grain mixtures, so-called concentrates, containing oats, barley, corn, wheat 

and other grains [72]. However, it has been well documented that feeding >50% of the 

total DM fraction in the form of concentrates increases the risk of colic and laminitis in 

adult horses. High starch/sugar intake also has been correlated to increased incidence of 

insulin resistance [71,76]. Linseed, soy or corn oil can be added to the diet to reduce the 

risk of impaction colic, to improve coat condition or to easily add calories to the diet [81]. 

The addition of extra fat raises the energy density of feeds, which is advantageous for 

sport horses with high-energy requirements. Ad-libitum foraging in the prairie is rather 

rare for sport horses. Fodder such as hay, silage, straw and pelleted plants are offered to 

meet up with dry matter and fibre requirements.  

Additionally, feed supplements are frequently added to the diet of the horse, to optimise 

his athletic performance. A feed supplement is anything fed to a horse in addition to a 

natural diet of forage, such as certain vitamins and minerals, which might be lacking in 

the diet. Technically, concentrates can also be considered supplements, but the term 

evolved to comprise any additional nutrients, besides concentrates. In recent years, a 

growing number of horse owners have also been feeding herbal supplements and various 

compounds thought to enhance certain aspects of health and performance, such as hoof, 

joint or skin problems. The widespread use of these supplements and the lack of 

information regarding the composition and purity of these (herbal) supplements can 

threaten anti-doping policies. Additionally, up until now, only limited research has been 

performed to study the influence of the altered diet of sport horses on the hormonal 

balance of the horse. 

6. ANALYTICAL INSTRUMENTATION 

6.1 HISTORY 

Both in food residue and sport drug surveillance laboratories great progress has been 

made over the last few decades regarding the detection of residues and forbidden 

substances (doping) in different matrices. The analytical methods specifically used for 

the detection of steroids have been listed by De Brabander et al. (2004) and McKinney et 

al. (2009), but the overall historical evolution can be illustrated as presented in Figure 6.1. 

(p. 30). 
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Figure 6.1. Summary of the evolution of analytical techniques used for steroid detection. 

In the 60’s and early 70’s Thin Layer Chromatography (TLC) combined with 

fluorescence detection (TLC-FL) was the most used technique. Later on in the 70’s 

immunoassays such as ELISA (Enzyme Linked Immunosorbent Assays) and EIA 

(Enzyme Immunoassay) were developed and widely used (Figure 6.1). Both EIA and 

ELISA systems are based on the principle of immunoassay linked to an enzyme rather 

than radioactivity as the reporter label [82].  

Mass Spectrometry (MS) was introduced in late 70’s, but took until the late 90’s to 

conquer analytical labs worldwide. MS was first coupled to gas and later on to liquid 

chromatography (GC-MS or LC-MS) [83, 84]. Modern MS instruments are able to 

perform MS in series. The detection is carried out in the same compartment (MS
n
) or in 

different compartments (MS/MS), on both the precursor ion and fragment ions, allowing 

to reach higher specificity and sensitivity. As of 2010, GC is also gaining back 

importance, coupled to MS/MS (complimentary to LC-MS/MS). Additionally, 

comprehensive two dimensional separation techniques, LCxLC or GCxGC are [85,86] 

(Figure 6.1). 

 

High Resolution Mass Spectrometry (HRMS) on the other hand, operating at higher 

resolutions of 7,500 up to more than 100,000 Full Width at Half Maximum (FWHM), is 

being optimised now as a screening technique, but also for specific “omics” biomarker 

approaches such as metabolomics, proteomics and transcriptomics [87-90]. Additionally, 
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the development of Ultra-High Performance Liquid Chromatography (UHPLC), using 

sub-2 μm particles in the column, allowed higher flow rates and improved separation of 

compound with similar or identical masses and retention times (e.g. α- and β-isomers of 

testosterone), while at the same time shortening the run time [89].  

 

The type of matrix used for steroid detection varies according to the specific goal of the 

analysis. Traditionally, urine and blood samples are being sampled for the detection of 

forbidden substances in the light of anti-doping controls but faeces and hair are possible 

matrices as well [37, 91]. The analysis of equine mane hair for the detection of anabolic 

steroid esters has the potential to greatly extend the time period over which detection of 

abuse can be monitored, as parent steroids (e.g. testosterone esters) are incorporated into 

the main hare [91]. In residue analysis meat samples and skin swabs are also used [92]. 

 

6.2 PHASE I AND II METABOLITES  

A problem associated with the detection of boldenone and other related AAS is that they 

frequently result in little or no excretion of the parent steroid in urine and faeces. Instead, 

compounds are metabolized and excreted as their more hydrophilic phase I and II 

metabolites [93]. Phase I metabolites are formed through classical oxidative and 

reductive routes. Phase II metabolites, arise from the conjugation of these hydroxyl 

groups as either sulphates or ß-glucuronides, accounting for up to 90% of the excreted 

metabolites making them an important class for screening [94].  

In the case of boldenone metabolism, the 1,4-diene-3-one structure of the A-ring appears 

to stabilize the steroid for reductive metabolism and boldenone-17ß-sulphate is the major 

metabolite [95]. Therefore, extraction of urine and faeces samples includes hydrolysis of 

both metabolites, releasing the free compounds for detection. Removing conjugates 

allows to determine the overall concentration (free and conjugated) of the compound, as 

used to define the thresholds of both the IFHA and FEI (See earlier, 3. ENDOGENOUS 

STEROIDS).  

6.3 UHPLC-MS/MS 

Over the years various methods have been designed as initial screening tools to detect a 

large number of compounds in different drug classes. GC-MS has been the gold 

standard for the detection of residues and anabolic steroids (in urine) for many years [27, 
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88-89]. In the past decade, there has been a general shift from GC-MS towards LC-

MS/MS for drug residue and in doping control testing [96,97]. This is mainly attributed to 

the rapid improvement of LC-MS in recent years, leading to better sensitivity, faster 

instrument turnaround time, and the ability to handle heat labile and large biomolecules. 

Recently, this shift has come to a standstill, with even a partial shift back to GC-MS/MS, 

depending on the type of analysis [98-102]. At the moment, LC and GC techniques can 

be considered to be complimentary, as both techniques have their specific advantages 

and disadvantages. 

Recent work however has proven that UHPLC-MS/MS (Ultra High Performance Liquid 

Chromatography) instrumentation provides exceptional detection capability of AAS in 

equine matrices including mane hair [91], plasma [103] and urine [104]. LC-MS/MS is 

still widely used by anti-doping testing laboratories for this purpose and several rapid 

methods have been described to simultaneously detect different classes of compounds [98, 

105]. Therefore, throughout this thesis Ultra high performance liquid chromatography 

(UHPLC) was carried out using an Accela
TM 

autosampler and Accela
TM

 High Speed LC 

(Thermo Fisher Scientific, San Jose, CA, USA). Detection was carried out on a TSQ 

Vantage Triple Stage Quadrupole Mass Spectrometer (Thermo Fisher Scientific, San 

Jose, CA, USA) equipped with a Heated Electrospray Ionisation probe (HESI-II) or 

Atmospheric Pressure Chemical Ionisation probe (APCI). HESI ionisation has been 

associated with high sensitivity and background noise upon mass spectrometric analysis. 

APCI is not as widely used as electrospray ionisation despite the fact that the ionisation of 

the substrate is very efficient (as it occurs at atmospheric pressure and thus has a high 

collision frequency). Additionally, by using APCI the thermal decomposition of the 

analyte is significantly reduced because of the rapid desolvation and vaporization of the 

droplets in the initial stages of the ionisation [106]. 

Upon ionisation, ions are transferred to the Q0 ion optics, including the Q0 quadrupole 

and lenses L11 and L12, which transmits the ions from the Q00 ion optics to the mass 

analyser. The mass analyser of the TSQ consists of three quadrupole rod assemblies 

(Q1, Q2, and Q3) and three lens sets (L2, L3 and L4) (numbered from the ion source end 

of the manifold) and separates ions according to their mass-to-charge ratio and then 

passes them to the ion detection system (Figure 5.3, p. 33).  
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The rods of a quadrupole rod assembly opposite to each other are connected electrically 

(two pairs of two rods each). AC and DC voltages are applied to the rods and these 

voltages are ramped during scanning. Voltages of the same amplitude and sign are 

applied to the rods of each pair; the voltages applied to the different rod pairs are equal in 

amplitude but opposite in sign (Figure 5.2). 

Q2 always acts as an ion transmission device and is 

also known as the collision cell, as collision-

induced dissociation (CID) can take place in the 

chamber that encloses Q2 (if the argon collision 

gas is present). The Q2 quadrupole rods are bent 

(90°), preventing the transmission of unwanted 

neutral species to the detector (Figure 5.3). The Q1 

and Q3 quadrupoles can act as mass analysers or as 

ion transmission devices. 

 

Figure 5.3. Mass analyser, ion detection system and ion optics of the TSQ Vantage Triple 

Stage Quadrupole Mass Spectrometer. Adapted from the Thermo Fisher Scientific TSQ series 

Hardware Manual (revised December 2010) 

At the rear of the vacuum manifold, behind the mass analyser the TSQ mass spectrometer 

is equipped with a highly sensitive ion detection system. This system produces a high 

signal-to-noise ratio and allows for voltage polarity switching between positive and 

negative ion modes of operation and includes a conversion dynode and a channel electron 

Figure 5.2. Quadrupole rod 

assembly mass analyzer. 

(http://chemwiki.ucdavis.edu) 
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multiplier. The electron multiplier creates a cascade of electrons that finally results in a 

measurable current at the end of the cathode where the anode collects the electrons. This 

current is proportional to the number of particles striking the cathode, and thus the 

presence of a certain ion (compound) in the sample of interest [107]. 

6.4 GC-C-IRMS 

Yet still, GC-MS has remained an important tool for analysing saturated steroid 

metabolites, as they suffer from poor ionisation. Alternatively, many urinary screening 

procedures include hydrolysis of phase II metabolites, releasing the free compounds for 

detection, allowing to determine the overall concentration of the compound (free and 

conjugated), as used to define the thresholds of both the IFHA and FEI [42,43] (See also 

2. ANABOLIC STEROID ABUSE).  

As already mentioned, the administration of synthetic steroids, especially tackling the 

exogenous administration of steroids of endogenous origin, is an important obstacle for 

anti-doping regulatory organs. Therefore, doping control laboratories accredited by the 

WADA require methods of analysis that allow endogenous steroids to be distinguished 

from their synthetic analogues in urine. To that extend GC is also used in hyphenation 

with combustion isotope ratio mass spectrometry (GC-C-IRMS) a highly specialised 

instrumental confirmatory technique, by measuring  the carbon isotope ratio (∆
13

C) of 

urinary steroids and confirm their synthetic origin based on the abnormal 
13

C content [108, 

109]. 

The average isotope ratio of each terrestrial element was fixed around the time of the 

earth’s formation, but localized variations occur based on selective enrichment/depletion 

of the heavier isotopes (such as 
13

C) relative to the average values. For example, even 

though all plants use CO2 as a carbon source, various factors can influence a plant’s 

ability to enrich or deplete 
13

C in a process known as fractionation. GC-C-IRMS is 

capable of measuring these differences in relative ratio of light stable isotopes of carbon 

(
13

C/
12

C), hydrogen (
2
H/

1
H), nitrogen (

15
N/

14
N) or oxygen (

18
O/

16
O) in individual 

compounds, separated from often complex mixtures of components [110].  

Back in 1998 Mason et al. already showed that when the isotopic composition of 5β-

androstane-3α,17α-diol (the main metabolite of testosterone in bile) was normalised with 

respect to that of an endogenous reference compound (ERC, cholesterol) in the same 

sample, the metabolite could be used to distinguish between animals treated 
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intramuscularly with testosterone and untreated animals [111]. Throughout the last 

decade a variety of different methods has been developed and the number of different 

steroids under investigation by IRMS has grown considerably. Misuse of 

norandrosterone, boldenone, corticosteroids or epitestosterone can now be detected 

with the aid of carbon isotope ratios as well [112].  

However, in equine anti-doping establishing IRMS as a confirmatory tool is not that 

straightforward, as one of the factors influencing fractioning is genetic. 

Monocotyledonous plants (C4 plants), such as corn and desert or marine plants, typically 

have ∆
13

C values varying from -8 to -20‰. Most dicotyledons (C3 plants, including up to 

95% of the plants on earth), have ∆
13

C values varying from -22 to -35‰. Because 

animals can only incorporate carbon through the ingestion of plant (or animal matter), the 

carbon isotope ratios in an animal will reflect the isotope ratios of the food source: “you 

are what you eat” [110]. For horses this implies that ∆
13

C values are very close to the 

ones of exogenous substances, hampering the ability to differentiate between endogenous 

and exogenously administered compounds (steroids).  

Another problem associated with the use of IRMS in horses is the “third sex”: geldings. 

If tests are performed to determine if an atypical steroid profile in humans is due to 

administration of an endogenous steroid androsterone (Andro), etiocholanolone (Etio), 

and/or the androstanediols (5α- and 5β-androstane-3α,17β-diol) they are typically 

analysed by IRMS to determine the ∆
13

C values. The ratios of these target compounds are 

compared to the ∆
13

C ratio of an endogenous reference compound (ERC) such as 5β-

pregnane-3α,20α-diol (Pdiol) [113]. For geldings, it is very difficult to obtain such a, 

reliable, endogenous reference compound (ERC). It is possible to find a reliable ERC 

for stallions and mares, but this ERC is not consistent with geldings (personal 

communication, L.C.H.). 

In this context, Piper et al. (2011) and Cawley and Flenker (2008) also described some of 

the complexities that can be encountered to obtain valid ∆
13

C measurements from GC-C-

IRMS and the need for careful interpretation of all relevant information concerning an 

individual's metabolism in order to make an informed decision with respect to a doping 

violation [112, 114].  
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7. AIMS 

At the start of this project routine horse sport doping control was confronted with the 

detection of low levels of certain anabolic-androgenic steroids in urine. The question 

arose if these steroids are of natural origin or residues of exogenously administered drugs? 

This research project aimed at unravelling the possibility of endogenous prevalence of 

these steroids in untreated horses and possible explanations for this phenomenon. Based 

on previous research the digestive biotransformation of phytosterols was suspected to be 

a possible explanation for the excretion of thus far supposed to be synthetic steroids (e.g. 

β-boldenone). 

The first goal was to get a clear and objective view on the endogenous levels of different 

AAS and AAS related steroid precursors naturally present in untreated horses. A very 

sensitive, specific and reliable detection method was needed to this end. To be able to 

reach this high standard an UHPLC-MS/MS method has been developed and validated 

according to AORC and EU Council Decision 2002/657. With this method, a population 

of guaranteed untreated horses (n =105; mares, geldings and stallions) was screened for 

the excretion of AAS and AAS related steroids (Chapter II). 

In a second phase of this research, different hypotheses were tested for their possible 

contribution to the endogenous prevalence of AAS in horses: 

1. Which phytosterols are present in feed (forage and concentrates) and are they present 

at sufficiently high concentration levels? A method was optimised for the extraction 

and MS/MS detection of phytosterols from feed (Chapter III). 

2. Can phytosterols from feed be transformed to AAS by the equine microbiota present 

in the intestinal tract? Are in vitro digestion simulations a possible tool to study this 

biotransformation? Absorption of the transformation products, AAS or precursors, 

could as such be responsible for the excretion of AAS (Chapter IV). 

3. Can feed-related molds play a role in the detection of AAS? Can the consumption of 

molded feed lead to the excretion of AAS (in vitro)? (Chapter V). 

4. Is there a possible correlation between the administration of glucocorticoids, as anti-

inflammatory agents, and AAS excretion (both in vitro and in vivo)? (Chapter VI). 

  



CHAPTER I 

37 

 

REFERENCES 

[1]  I. Hanukoglu, Steroidogenic enzymes: structure, function, and role in regulation 

of steroid hormone biosynthesis, The Journal of steroid biochemistry and 

molecular biology, 43 (1992) 779-804. 

[2]  M.F. Holick, High prevalence of vitamin D inadequacy and implications for 

health, Mayo Clinic proceedings, 81 (2006) 353-373. 

[3]  P. Regal, A. Cepeda, C.A. Fente, Natural Hormones in Food-Producing Animals: 

Legal Measurements and Analytical Implications, InTech2012. 

[4] D. Egyetem, N.M. Egyetem, P. Egyetem. F. Husvéth. Physiological and 

reproductional aspects of animal production  (2011) 

[5] P.L. Senger. Pathways to Pregnancy and Partuition, Second edition (2003). 

Current Conceptions, Inc. Pullman, Washington. 

[6] J. Hu, Z. Zhang, W.J. Shen, and S. Azhar. Cellular cholesterol delivery, 

intracellular processing and utilization for biosynthesis of steroid hormones. Nutr 

Metab (Lond) (2010) 7: 47. 

[7] H. Nelis, J. Vanden Bussche, B. Wojciechowicz, A. Franczak, L. Vanhaecke, B. 

Leemans, P. Cornillie, L. Peelman, A. Van Soom, K. Smits. Steroids in the equine 

oviduct: synthesis, local concentrations and receptor expression. Reprod. Fertil. 

Dev. Mar 10 (2015) 

[8] A. Franczak, Kotwica G. Androgens and estradiol-17β production by porcine 

uterine cells: in vitro study. Theriogenology  Jan 15;73(2) (2010) 232-241 

[9] A. Franczak, Kotwica G. Secretion of estradiol-17β by porcine endometrium and 

myometrium during early pregnancy and luteolis. Theriogenology. Feb;69(3) 

(2008) 283-289 

[10] P. Trayhurn, Endocrine and signalling role of adipose tissue: new perspectives on 

fat, Acta Physiol Scand. Aug;184(4) (2005) 285-93. 

[11] A. Ertelt, A.-K. Barton, R.Schmitz, H. Gehlen,. Metabolic syndrome: is equine 

disease comparable to what we know in humans? Endocrine Connections  3(3) 

(2014), 81–93 

[12] M. Coelho, T. Oliveira., R. Fernandes,. Biochemistry of adipose tissue: an 

endocrine organ. Archives of Medical Science : AMS, 9(2) (2013), 191–200.  

[13]  C.E. Marx, D.W. Bradford, R.M. Hamer, J.C. Naylor, T.B. Allen, J.A. Lieberman, 

J.L. Strauss, J.D. Kilts, Pregnenolone as a novel therapeutic candidate in 

schizophrenia: emerging preclinical and clinical evidence, Neuroscience, 191 

(2011) 78-90. 

[14]  J.M. Hoberman, C.E. Yesalis, The history of synthetic testosterone, Scientific 

American, 272 (1995) 76-81. 

[15]  J.L. Dotson, R.T. Brown, The history of the development of anabolic-androgenic 

steroids, Pediatric clinics of North America, 54 (2007) 761-769, xi. 



CHAPTER I 

38 

 

[16]  C.B. Davis, Jr., G.E. Cox, C.B. Taylor, S.L. Cross, Cholesterol synthesis in 

human liver, Surgical forum, 9 (1958) 486-489. 

[17]  J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edition ed.2002. 

[18]  M.S. Bosner, L.G. Lange, W.F. Stenson, R.E. Ostlund, Jr., Percent cholesterol 

absorption in normal women and men quantified with dual stable isotopic tracers 

and negative ion mass spectrometry, Journal of lipid research, 40 (1999) 302-308. 

[19]  Y.A. Kesaniemi, C. Ehnholm, T.A. Miettinen, Intestinal cholesterol absorption 

efficiency in man is related to apoprotein E phenotype, The Journal of clinical 

investigation, 80 (1987) 578-581. 

[20]  S.M. Grundy, Absorption and metabolism of dietary cholesterol, Annual review 

of nutrition, 3 (1983) 71-96. 

[21]  P.A. Dawson, L.L. Rudel, Intestinal cholesterol absorption, Current opinion in 

lipidology, 10 (1999) 315-320. 

[22]  S.S. AbuMweis, C.P. Marinangeli, J. Frohlich, P.J. Jones, Implementing 

phytosterols into medical practice as a cholesterol-lowering strategy: overview of 

efficacy, effectiveness, and safety, The Canadian journal of cardiology, 30 (2014) 

1225-1232. 

[23]  M. Hernandez, J. Montenegro, M. Steiner, D. Kim, C. Sparrow, P.A. Detmers, 

S.D. Wright, Y.S. Chao, Intestinal absorption of cholesterol is mediated by a 

saturable, inhibitable transporter, Biochimica et biophysica acta, 1486 (2000) 232-

242. 

[24]  W. Kramer, H. Glombik, S. Petry, H. Heuer, H. Schafer, W. Wendler, D. Corsiero, 

F. Girbig, C. Weyland, Identification of binding proteins for cholesterol absorption 

inhibitors as components of the intestinal cholesterol transporter, FEBS letters, 487 

(2000) 293-297. 

[25]  T. Heinemann, G. Axtmann, K. von Bergmann, Comparison of intestinal 

absorption of cholesterol with different plant sterols in man, European journal of 

clinical investigation, 23 (1993) 827-831. 

[26]  A.M. Camacho, C.J. Migeon, Isolation, identification and quantitation of 

testosterone in the urine of normal adults and in patients with endocrine disorders, 

The Journal of clinical endocrinology and metabolism, 23 (1963) 301-305. 

[27]  W. Futterweit, N.L. Mcniven, R. Guerragarcia, N. Gibree, M. Drosdowsky, G.L. 

Siegel, L.J. Soffer, I.M. Rosenthal, R.I. Dorfman, Testosterone in Human Urine, 

Steroids, 4 (1964) 137-145. 

[28]  Y. Doberne, M.I. New, Elevated Urinary Androstanediol and Testosterone in 

Precocious Adrenarche, Pediatr Res, 9 (1975) 289-289. 

[29]  J.A.F. Tresguerres, B.P. Lisboa, J. Tamm, Simple Radioimmunoassay for 

Measurement of Testosterone Glucosiduronate in Unextracted Urine, Steroids, 28 

(1976) 13-23. 



CHAPTER I 

39 

 

[30]  R. Gonzalo-Lumbreras, D. Pimentel-Trapero, R. Izquierdo-Hornillos, 

Development and method validation for testosterone and epitestosterone in human 

urine samples by liquid chromatography applications, Journal of chromatographic 

science, 41 (2003) 261-265. 

[31]  P. Van Renterghem, P. Van Eenoo, H. Geyer, W. Schanzer, F.T. Delbeke, 

Reference ranges for urinary concentrations and ratios of endogenous steroids, 

which can be used as markers for steroid misuse, in a Caucasian population of 

athletes, Steroids, 75 (2010) 154-163. 

[32]  D. Martinez-Brito, M.T. Correa Vidal, X. de la Torre, V. Garcia-Mir, O. Ledea 

Lozano, M. Granda Fraga, Reference ranges for the urinary steroid profile in a 

Latin-American population, Drug testing and analysis, 5 (2013) 619-626. 

[33]  J.Y. Moon, W. Kwon, S. Suh, J.C. Cheong, M.K. In, B.C. Chung, J.Y. Kim, M.H. 

Choi, Reference ranges for urinary levels of testosterone and epitestosterone, 

which may reveal gonadal function, in a Korean male population, The Journal of 

steroid biochemistry and molecular biology, 140 (2014) 100-105. 

[34]  M.H. Pesant, G. Desmarais, G.D. Fink, J.P. Baillargeon, Reference ranges for total 

and calculated free and bioavailable testosterone in a young healthy women 

population with normal menstrual cycles or using oral contraception, Clinical 

biochemistry, 45 (2012) 148-150. 

[35]  A.D. Mooradian, J.E. Morley, S.G. Korenman, Biological actions of androgens, 

Endocrine reviews, 8 (1987) 1-28. 

[36]  A.L. Southren, G.G. Gordon, S. Tochimoto, G. Pinzon, D.R. Lane, W. 

Stypulkowski, Mean plasma concentration, metabolic clearance and basal plasma 

production rates of testosterone in normal young men and women using a constant 

infusion procedure: effect of time of day and plasma concentration on the 

metabolic clearance rate of testosterone, The Journal of clinical endocrinology and 

metabolism, 27 (1967) 686-694. 

[37]  M.A. Popot, S. Boyer, L. Menaut, P. Garcia, Y. Bonnaire, D. Lesage, Boldenone, 

testosterone and 1,4-androstadiene-3,17-dione determination in faeces from horses, 

untreated and after administration of androsta-1,4-diene-3,17-dione (boldione), 

Biomedical chromatography : BMC, 22 (2008) 662-670. 

[38]  E.N. Ho, K.C. Yiu, F.P. Tang, L. Dehennin, P. Plou, Y. Bonnaire, T.S. Wan, 

Detection of endogenous boldenone in the entire male horses, Journal of 

chromatography. B, Analytical technologies in the biomedical and life sciences, 

808 (2004) 287-294. 

[39] D.K.K. Leung, F.P.W. Tang, T.S.M. Wan, J.K.Y. Wong, Identification of 

cryptorchidism in horses by analysing urine samples with gas 

chromatography/mass spectrometry, The Veterinary Journal, 187 (1) (2011) 60–64 

[40] Y. Bonnaire, T. Dehennin, P. Plou, and P.L. Toutain, Testosterone Administration 

to Mares: Criteria for Detection of Testosterone Abuse by Analysis of Metabolites 

in Plasma and Urine, Journal of Analytical Toxicology, Vol. 19, (1995) 175-181 



CHAPTER I 

40 

 

 [41]  Y.P. Dehennin L.; Bonnaire, P.; Ho, E.N.M.; Yiu, K.C.H.; Wan T.S.M., Urinary 

excretion of endogenous boldenone by entire male horses: Identification and 

quantification by gas chromatography–mass spectometry,  The  14th Int Conf 

Racing Anal Vet., Hill DW, Hill WT (eds), Newmarket (2003) 58-64. 

[42]  IFHA, 6th article of the international agreement on breeding and racing (and 

appendixes) (2015). 

[43] FEI, Equine Prohibited Substances List (2015). 

[44]  P.M. Mccue, J.F. Roser, C.J. Munro, I.K.M. Liu, B.L. Lasley, Granulosa cell 

tumours of the equine ovary, Vet Clin N Am-Equine, 22 (2006) 799-+. 

[45]  D.N. Lori, J.R. MacLeay, Hypothyroidism in the horse, J Equine Vet Sci, 21 

(2001). 

[46]  The Merck Veterinary Manual, MERCK & CO., INC. WHITEHOUSE STATION, 

N.J., U.S.A. (2010). 

[47]  N.O. Dybdal, K.M. Hargreaves, J.E. Madigan, D.H. Gribble, P.C. Kennedy, G.H. 

Stabenfeldt, Diagnostic testing for pituitary pars intermedia dysfunction in horses, 

Journal of the American Veterinary Medical Association, 204 (1994) 627-632. 

[48]  V. Yankah, R.D. Steiner, W.E. Connor, P.J. Jones, Effect of supplementary 

cholesterol feeding on cholesterogenesis in Smith-Lemli-Opitz syndrome., Faseb J, 

15 (2001) A638-A638. 

[49]  V. Piironen, D.G. Lindsay, T.A. Miettinen, J. Toivo, A.M. Lampi, Plant sterols: 

biosynthesis, biological function and their importance to human nutrition, J Sci 

Food Agr, 80 (2000) 939-966. 

[50]  R.A. Moreau, B.D. Whitaker, K.B. Hicks, Phytosterols, phytostanols, and their 

conjugates in foods: structural diversity, quantitative analysis, and health-

promoting uses, Prog Lipid Res, 41 (2002) 457-500. 

[51]  R.A. Moreau, V. Singh, A. Nunez, K.B. Hicks, Phytosterols in the aleurone layer 

of corn kernels, Biochem Soc T, 28 (2000) 803-806. 

[52]  V. Piironen, J. Toivo, R. Puupponen-Pimia, A.M. Lampi, Plant sterols in 

vegetables, fruits and berries, J Sci Food Agr, 83 (2003) 330-337. 

[53]  P.G. Bradfor, A.B. Awad,  Phytosterols as anticancer compounds, Mol Nutr Food 

Res. (2007) Feb;51(2):161-70. 

[54] S.R.B.M. Eussen, C.J.M. Rompelberg, O.H. Klungel, J.C.H. van Eijkeren, 

Modelling approach to simulate reductions in LDL cholesterol levels after 

combined intake of statins and phytosterols/-stanols in humans, Lipids Health Dis, 

10 (2011). 

[55]  R. Bitzur, H. Cohen, Y. Kamari, D. Harats, [Phytosterols: another way to reduce 

LDL cholesterol levels], Harefuah, 152 (2013) 729-731, 751. 

[56]  F.-Q. Wang, K.W. Yao, D-Z, Soybean and health: from soybean phytosterols to 

steroid hormones, InTech, 2011. 



CHAPTER I 

41 

 

[57]  P. Fernandes, A. Cruz, B. Angelova, H.M. Pinheiro, J.M.S. Cabral, Microbial 

conversion of steroid compounds: recent developments, Enzyme Microb Tech, 32 

(2003) 688-705. 

[58]  S.B. Mahato, S. Garai, Advances in microbial steroid biotransformation, Steroids, 

62 (1997) 332-345. 

[59]  O.V. Egorova, V.M. Nikolayeva, M.V. Donova, 17-Hydroxysteroid 

dehydrogenases of Mycobacterium sp. VKM Ac-1815D mutant strain, The Journal 

of steroid biochemistry and molecular biology, 81 (2002) 273-279. 

[60]  C.L. Huang, Y.R. Chen, W.H. Liu, Production of androstenones from phytosterol 

by mutants of Mycobacterium sp., Enzyme Microb Tech, 39 (2006) 296-300. 

[61]  C.K. Lo, C.P. Pan, W.H. Liu, Production of testosterone from phytosterol using a 

single-step microbial transformation by a mutant of Mycobacterium sp, Journal of 

industrial microbiology & biotechnology, 28 (2002) 280-283. 

[62]  K. Kieslich, Microbial side-chain degradation of sterols, Journal of basic 

microbiology, 25 (1985) 461-474. 

[63]  K. Verheyden, H. Noppe, V. Mortier, J. Vercruysse, E. Claerebout, F. Van 

Immerseel, C.R. Janssen, H.F. De Brabander, Formation of boldenone and 

boldenone-analogues by maggots of Lucilia sericata, Analytica chimica acta, 586 

(2007) 163-170. 

[64]  T. Verslycke, S. Poelmans, K. De Wasch, J. Vercauteren, C. Devos, L. Moens, P. 

Sandra, H.F. De Brabander, C.R. Janssen, Testosterone metabolism in the 

estuarine mysid Neomysis integer (Crustacea; Mysidacea) following tributyltin 

exposure, Environmental toxicology and chemistry / SETAC, 22 (2003) 2030-

2036. 

[65]  I. Christianson-Heiska, P. Smeds, N. Granholm, E. Bergelin, B. Isomaa, Endocrine 

modulating actions of a phytosterol mixture and its oxidation products in zebrafish 

(Danio rerio), Comparative biochemistry and physiology. Toxicology & 

pharmacology : CBP, 145 (2007) 518-527. 

[66]  G. Gallina, G. Ferretti, R. Merlanti, C. Civitareale, F. Capolongo, R. Draisci, C. 

Montesissa, Boldenone, boldione, and milk replacers in the diet of veal calves: the 

effects of phytosterol content on the urinary excretion of boldenone metabolites, J 

Agric Food Chem, 55 (2007) 8275-8283. 

[67]  R. Draisci, R. Merlanti, G. Ferretti, L. Fantozzi, C. Ferranti, F. Capolongo, S. 

Segato, C. Montesissa, Excretion profile of boldenone in urine of veal calves fed 

two different milk replacers, Analytica chimica acta, 586 (2007) 171-176. 

[68]  Y.S. Song, C. Jin, E.H. Park, Identification of metabolites of phytosterols in rat 

feces using GC/MS, Archives of pharmacal research, 23 (2000) 599-604. 

[69]  R.A. Argenzio, Functions of Equine Large-Intestine and Their Interrelationship in 

Disease, Cornell Vet, 65 (1975) 303-330. 

[70]  R.J. Geor, M.  Coenen, P. Harris, Equine Applied and Clinical Nutrition: 

Importance of Nutrition for Health, Welfare and Performance (2013) 



CHAPTER I 

42 

 

[71]  L.M.T. Dicks, M. Botha, E. Dicks, M. Botes, The equine gastro-intestinal tract: 

An overview of the microbiota, disease and treatment, Livest Sci, 160 (2014) 69-

81. 

[72]  D.L. Kern, L.L. Slyter, J.M. Weaver, E.C. Leffel, Samuelso.G, Pony Cecum Vs 

Steer Rumen - Effect of Oats and Hay on Microbial Ecosystem, Journal of animal 

science, 37 (1973) 463-469. 

[73]  B.E. Moore, B.A. Dehority, Effects of diet and hindgut defaunation on diet 

digestibility and microbial concentrations in the cecum and colon of the horse, 

Journal of animal science, 71 (1993) 3350-3358. 

[74]  D.E. Akin, F.E. Barton, Rumen Microbial Attachment and Degradation of Plant-

Cell Walls, Fed Proc, 42 (1983) 114-121. 

[75]  A. Bonhomme-Florentin, Degradation of hemicellulose and pectin by horse 

caecum contents, The British journal of nutrition, 60 (1988) 185-192. 

[76]  A.S. Biddle, S.J. Black, J.L. Blanchard, An in vitro model of the horse gut 

microbiome enables identification of lactate-utilizing bacteria that differentially 

respond to starch induction, PloS one, 8 (2013) e77599. 

[77]  C. Janis, Evolutionary Strategy of Equidae and Origins of Rumen and Cecal 

Digestion, Evolution, 30 (1976) 757-774. 

[78]  S. Budiansky, The nature of horses, 1997. 

[79]  K. Daly, C.J. Proudman, S.H. Duncan, H.J. Flint, J. Dyer, S.P. Shirazi-Beechey, 

Alterations in microbiota and fermentation products in equine large intestine in 

response to dietary variation and intestinal disease, The British journal of nutrition, 

107 (2012) 989-995. 

[80]  K.A. Houpt, Ingestive Behavior, Vet Clin N Am-Equine, 6 (1990) 319-337. 

[81]  S.N. Geelen, W.L. Jansen, M.J. Geelen, M.M. Sloet van Oldruitenborgh-

Oosterbaan, A.C. Beynen, Lipid metabolism in equines fed a fat-rich diet, 

International journal for vitamin and nutrition research. Internationale Zeitschrift 

fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et 

de nutrition, 70 (2000) 148-152. 

[82]  R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay 

(ELISA), Clinical chemistry, 51 (2005) 2415-2418. 

[83]  F. Erni, Liquid chromatography-mass spectrometry in the pharmaceutical industry: 

objectives and needs, Journal of chromatography, 251 (1982) 141-151. 

[84]  R.S. Gohlke, F.W. McLafferty, Early gas chromatography/mass spectrometry, 

Journal of the American Society for Mass Spectrometry, 4 (1993) 367-371.  

[85] J. Dallüge, J. Beens, U.A. Brinkman. Comprehensive two-dimensional gas 

chromatography: a powerful and versatile analytical tool. J Chromatogr A. 2003 

Jun 6;1000(1-2):69-108. 



CHAPTER I 

43 

 

[86] Stoll, D. R., Li, X., Wang, X., Carr, P. W., Porter, S. E. G., & Rutan, S. C. (2007). 

Fast, comprehensive two-dimensional liquid chromatography. Journal of 

Chromatography. A, 1168(1-2), 3–2. http://doi.org/10.1016/j.chroma.2007.08.054 

 [87]  L. Van Meulebroek, J.V. Bussche, K. Steppe, L. Vanhaecke, Ultra-high 

performance liquid chromatography coupled to high resolution Orbitrap mass 

spectrometry for metabolomic profiling of the endogenous phytohormonal status 

of the tomato plant, Journal of chromatography. A, 1260 (2012) 67-80. 

[88]  K. Cho, B.S. Evans, B.M. Wood, R. Kumar, T.J. Erb, B.P. Warlick, J.A. Gerlt, 

J.V. Sweedler, Integration of untargeted metabolomics with transcriptomics 

reveals active metabolic pathways, Metabolomics : Official journal of the 

Metabolomic Society, 2014 (2014). 

[89] Girón, A. J., Deventer, K., Roels, K., & Van Eenoo, P. (2012). Development and 

validation of an open screening method for diuretics, stimulants and selected 

compounds in human urine by UHPLC–HRMS for doping control. Analytica 

chimica acta, 721, 137-146. 

 [90] J.H. Granger, A. Baker, R.S. Plumb, J.C. Perez, I.D. Wilson, Ultra performance 

liquid chromatography-MS(TOF): New separations technology for high 

throughput metabonomics, Drug Metab Rev, 36 (2004) 252-252. 

[91]  B.P. Gray, M. Viljanto, J. Bright, C. Pearce, S. Maynard, Investigations into the 

feasibility of routine ultra high performance liquid chromatography-tandem mass 

spectrometry analysis of equine hair samples for detecting the misuse of anabolic 

steroids, anabolic steroid esters and related compounds, Analytica chimica acta, 

787 (2013) 163-172. 

[92]  H.F. De Brabander, S. Poelmans, R. Schilt, R.W. Stephany, B. Le Bizec, R. 

Draisci, S.S. Sterk, L.A. van Ginkel, D. Courtheyn, N. Van Hoof, A. Macri, K. De 

Wasch, Presence and metabolism of the anabolic steroid boldenone in various 

animal species: a review, Food additives and contaminants, 21 (2004) 515-525. 

[93]  F. Pu, A.R. McKinney, A.M. Stenhouse, C.J. Suann, M.D. McLeod, Direct 

detection of boldenone sulfate and glucuronide conjugates in horse urine by ion 

trap liquid chromatography-mass spectrometry, Journal of chromatography. B, 

Analytical technologies in the biomedical and life sciences, 813 (2004) 241-246. 

[94]  M.C. Dumasia, E. Houghton, C.V. Bradley, D.H. Williams, Studies related to the 

metabolism of anabolic steroids in the horse: the metabolism of 1-

dehydrotestosterone and the use of fast atom bombardment mass spectrometry in 

the identification of steroid conjugates, Biomedical mass spectrometry, 10 (1983) 

434-440. 

[95]  E. Houghton, S. Maynard, Some aspects of doping and medication control in 

equine sports, Handbook of experimental pharmacology, (2010) 369-409. 

[96]  L.W. Chung, K.L. Lin, T.C. Yang, M.R. Lee, Orthogonal array optimisation of 

microwave-assisted derivatization for determination of trace amphetamine and 

methamphetamine using negative chemical ionisation gas chromatography-mass 

spectrometry, Journal of chromatography. A, 1216 (2009) 4083-4089. 



CHAPTER I 

44 

 

[97]  T. Piper, M. Thevis, U. Flenker, W. Schanzer, Determination of the 

deuterium/hydrogen ratio of endogenous urinary steroids for doping control 

purposes, Rapid communications in mass spectrometry : RCM, 23 (2009) 1917-

1926. 

[98]  J. Scarth, C. Akre, L. van Ginkel, B. Le Bizec, H. De Brabander, W. Korth, J. 

Points, P. Teale, J. Kay, Presence and metabolism of endogenous androgenic-

anabolic steroid hormones in meat-producing animals: a review, Food additives & 

contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 

26 (2009) 640-671. 

[99]  P. Van Eenoo, W. Van Gansbeke, N. De Brabanter, K. Deventer, F.T. Delbeke, A 

fast, comprehensive screening method for doping agents in urine by gas 

chromatography-triple quadrupole mass spectrometry, Journal of chromatography. 

A, 1218 (2011) 3306-3316. 

[100]  A.I. Revelsky, A.S. Samokhin, E.D. Virus, G.M. Rodchenkov, I.A. Revelsky, 

High sensitive analysis of steroids in doping control using gas 

chromatography/time-of-flight mass-spectrometry, Drug testing and analysis, 3 

(2011) 263-267. 

[101]  M. Thevis, A. Thomas, W. Schanzer, Current role of LC-MS(/MS) in doping 

control, Analytical and bioanalytical chemistry, 401 (2011) 405-420. 

[102]  B.D. Ahrens, B. Starcevic, A.W. Butch, Detection of prohibited substances by 

liquid chromatography tandem mass spectrometry for sports doping control, 

Methods in molecular biology, 902 (2012) 115-128. 

[103]  F. Guan, C.E. Uboh, L.R. Soma, Y. Luo, J. Rudy, T. Tobin, Detection, 

quantification and confirmation of anabolic steroids in equine plasma by liquid 

chromatography and tandem mass spectrometry, Journal of chromatography. B, 

Analytical technologies in the biomedical and life sciences, 829 (2005) 56-68. 

[104]  C.H. Wong, D.K. Leung, F.P. Tang, J.K. Wong, N.H. Yu, T.S. Wan, Rapid 

screening of anabolic steroids in horse urine with ultra-high-performance liquid 

chromatography/tandem mass spectrometry after chemical derivatisation, Journal 

of chromatography. A, 1232 (2012) 257-265. 

[105]  J.P. Scarth, P. Teale, T. Kuuranne, Drug metabolism in the horse: a review, Drug 

testing and analysis, 3 (2011) 19-53. 

[106]  V.G. Zaikin, J.M. Halket, Derivatization in mass spectrometry--8. Soft ionisation 

mass spectrometry of small molecules, European journal of mass spectrometry, 12 

(2006) 79-115. 

[107]  Thermo Fisher Scientific, TSQ series Hardware Manual (revised December 2010). 

[108]  A.R. McKinney, Modern techniques for the determination of anabolic-androgenic 

steroid doping in the horse, Bioanalysis, 1 (2009) 785-803. 

[109]  P. Teale, E. Houghton, Metabolism of anabolic steroids and their relevance to 

drug detection in horseracing, Bioanalysis, 2 (2010) 1085-1107. 



CHAPTER I 

45 

 

[110] Z. Muccio, G.P. Jackson, Isotope Ratio Mass Spectrometry. Analyst (2009) 

Feb;134(2):213-22. 

[111]  P.M. Mason, S.E. Hall, I. Gilmour, E. Houghton, C. Pillinger, M.A. Seymour, The 

use of stable carbon isotope analysis to detect the abuse of testosterone in cattle, 

Analyst, 123 (1998) 2405-2408. 

[112]  T. Piper, C. Emery, M. Saugy, Recent developments in the use of isotope ratio 

mass spectrometry in sports drug testing, Analytical and bioanalytical chemistry, 

401 (2011) 433-447. 

[113] P. Van Renterghem, M. Polet, L. Brooker, W. Van Gansbeke, P. Van Eenoo. 

Development of a GC/C/IRMS method-confirmation of a novel steroid profiling 

approach in doping control. Steroids (2012) Sep;77(11):1050-60.  

[114]  A.T. Cawley, U. Flenker, The application of carbon isotope ratio mass 

spectrometry to doping control, Journal of mass spectrometry : JMS, 43 (2008) 

854-864.

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER II 
 

Development and validation of a UHPLC-

MS/MS method to quantify low levels of 

anabolic-androgenic steroids naturally 

present in urine of untreated horses  

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: 

 “A validated UHPLC-MS/MS method to quantify low levels of anabolic-androgenic 

steroids naturally present in urine of untreated horses” 

By Anneleen Decloedt, Ludovic Bailly-Chouriberry, Julie Vanden Bussche, Patrice 

Garcia, Marie-Agnes Popot, Yves Bonnaire and Lynn Vanhaecke (2015), Analytical and 

Bioanalytical Chemistry, 407(15):4385-96, DOI 10.1007/s00216-014-8428-x



CHAPTER II 

49 

 

CHAPTER II 

1. ABSTRACT  

Doping control is a main priority for regulatory bodies of both the horse racing industry 

and the equestrian sports. Urine and blood samples are screened for the presence of 

hundreds of forbidden substances including anabolic-androgenic steroids (AASs). Based 

on the suspected endogenous origin of some AASs, with β-boldenone as the most illicit 

candidate, this study aimed to improve the knowledge of the naturally present AAS in 

horse urine. To this extent, a novel ultra high-performance liquid chromatography-tandem 

mass spectrometry (UHPLC-MS/MS) method was developed and validated according to 

the Association of Official Racing Chemists (AORC) and European Commission (EC) 

Council Decision 2002/657, proving the power of this new method. Low limits of 

detection (0.2 ng/mL), good reproducibility (percentage of standard deviation (%RSD) 

<10%), high recovery (94.6 to 117.1%), selectivity and specificity, and a linear response 

(confirmed with R
2
 >0.99 and lack-of-fit analysis) were obtained for all included AASs. 

With this method, urine samples of 105 guaranteed untreated horses (47 geldings, 53 

mares, and 5 stallions serving as a control) were screened for β-boldenone and five 

related natural steroids: androsta-1,4-diene-3,17-dione (ADD), 4-androstene-3,17-dione 

(AED), α-testosterone (αT), β-testosterone (βT), and progesterone (P). Progesterone, β-

testosterone, and α-testosterone were detected in more than half of the horses at low 

concentrations (<2 ng/mL). Occasionally, not only testosterone and progesterone but also 

low concentrations of AED, ADD, and boldenone (Bol) were found (0.5–5 ng/mL). 
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2. INTRODUCTION 

Race and sport horses are, just like human athletes, frequently subjected to doping 

controls to guarantee a safe and fair competition, to protect the welfare of the animal and 

the integrity of racing, and to allow horses to compete on their inherent merits. Samples 

(urine, blood, hair, or other matrices) are screened for the presence of hundreds of 

forbidden substances including β2-agonists, stimulants, sedatives/tranquilizers, local 

anesthetics, anabolic-androgenic steroids (AASs), and others. Because of their popularity 

as drugs of abuse within the horseracing industry and their involvement in equine 

reproduction, research on AAS receives a high focus in the horse [1].  

The most well-known AAS is testosterone, the principal male sex hormone. Closely 

related to testosterone, both structurally and functionally, are β-boldenone (βBol; 

androsta- 1,4-diene-3-one-17β-ol or 1,2-dehydrotestosterone), androstadienedione (ADD; 

androsta-1,4-diene-3,17-dione), and androstenedione (AED; androst-4-ene-3,17-dione) 

(Figure 1, p. 51). AED is a natural intermediate in the synthesis of testosterone [2], and 

boldenone (Bol), ADD, and Bol esters (e.g. undecylenate ester) are available on the black 

market as anabolic preparations. The pharmacological activity of boldenone is mainly 

anabolic, with a low androgenic potency. The administration of boldenone increases 

nitrogen retention, protein synthesis, appetite, and the release of erythropoietin in the 

kidneys [3, 4].  

In humans and livestock, boldenone was long considered to be a synthetic hormone and 

zero tolerance was maintained [12]. As the occurrence of boldenone in biological samples 

was rising in different European Union member states, the question arose whether this 

increased number of boldenone findings was due to illegal treatment of humans and 

animals or if low concentrations of boldenone could be endogenously formed [13, 14]. 

Indeed, boldenone has been shown to be naturally present in bovine urine and feces [15, 

16], whereas Pompa et al. [17] described de novo synthesis of boldenone in cattle feces 

[17] (Figure 1, p. 51).  

In horses, endogenous boldenone was found in the urine and feces of entire males [18, 

19]. As such, today, International Federation of Horseracing Authorities (IFHA) (Article 

6, 2015) [20] and Fédération Equestre Internationale (FEI) (2015 Equine Prohibited 

Substances List) [21] abandoned zero tolerance for stallions and set a threshold for free 
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and conjugated boldenone of 15 ng/mL. Despite this threshold for entire males, the 

presence of boldenone in the urine from mares or geldings is still prohibited. For 

testosterone, thresholds are set as well, up to 55 ng/mL of free and conjugated 

testosterone in urine for mares and fillies (unless in foal) and 20 ng/mL in urine for 

geldings.  

 

Figure 1. Illustration of the closely related chemical structures of the steroids of interest and 

summary of proven (in horses) and related pathways of AAS metabolism. Common enzymes 

are depicted in a O. βBol (β-boldenone), ADD (androstadienedione; 1,4-diene-3,17-dione), AED 

(androstenedione; androst-4-ene-3,17-dione), αT (α-testosterone), βT (β-testosterone) are 

illustrated. 
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A problem associated with the detection of boldenone and other related AAS is that they 

frequently result in little or no excretion of the parent steroid in urine. Instead, 

compounds are metabolized and excreted as their more hydrophilic phase I and II 

metabolites (See also Chapter I, 6.2 Phase I and II metabolites). Phase I metabolites are 

formed through classical oxidative and reductive routes. The horse tends to secondarily 

reduce 17 keto groups to form a mixture of 17α- hydroxy and 17β-hydroxy isomers. 

Phase II metabolites arise from the conjugation of these hydroxyl groups as either 

sulfates or β-glucuronides, accounting for up to 90% of the excreted metabolites [22], 

making them an important class for screening.  

In the horse, there is a trend for sulphation to predominate for steroids with a 17β-

hydroxyl group, while steroids with a 17α-hydroxyl group tend to form glucuronide 

conjugates [23]. In the case of boldenone metabolism, the 1,4-diene-3-one structure of the 

A-ring appears to stabilize the steroid for reductive metabolism and boldenone-17β-

sulfate is the major metabolite [24]. Therefore, extraction includes hydrolysis of both 

metabolites, releasing the free compounds for detection, allowing to determine the 

overall concentration (free and conjugated) of the compound, as used to define the 

thresholds of both the IFHA and FEI [20, 21]. 

Gas chromatography coupled to mass spectrometry (GC-MS) has been the gold standard 

for the detection of anabolic steroids in urine for many years [25–30]. In the past decade 

however, there has been a shift towards liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in doping control testing [31,32]. This is mainly attributed to 

the rapid improvement of LC-MS in recent years, leading to better sensitivity, faster 

instrument turnaround time, and the ability to handle heat labile and large biomolecules. 

GC-MS on the other hand offers advantages over LC-MS for the screening of fully 

saturated steroids (e.g. endogenous steroids such as pregnane-3-α,-20-α-diol, the main 

metabolite of progesterone in urine).  Therefore, LC and GC-MS/MS techniques can be 

considered to be complimentary, as both techniques have their specific advantages and 

disadvantages. Recent work however has proven that ultra high-performance liquid 

chromatography tandem mass spectrometry (UHPLC-MS/MS) instrumentation 

specifically provides exceptional detection capability of AAS in multiple equine matrices 

including mane hair [33], plasma [34], and urine [35]. 
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However, the studies published so far focus on stallions and/or horses to which steroids 

have been administered intramuscularly or orally [18, 19, 35–39], and not on naturally 

present endogenous AAS, with β-boldenone as the most illicit candidate for endogenous 

presence. Therefore, this study focused on healthy, guaranteed untreated, out-of-

competition horses, in an attempt to improve the knowledge on the natural endogenous 

AAS in horse urine in general. In total, the urine of 105 guaranteed untreated horses (47 

geldings, 53 mares, and 5 stallions) was screened for β-boldenone and five other related 

steroids: ADD, AED, α-testosterone (αT), β-testosterone (βT), and progesterone (P) via 

UHPLC-MS/MS. The method was validated according to the Association of Official 

Racing Chemists (AORC) [40] and European Commission (EC) Council Decision 

2002/657 [41]. Hypotheses on the origin and correlations between occurrences of these 

AASs in untreated horses are discussed. 

3. MATERIAL AND METHODS 

3.1 CHEMICALS AND REAGENTS 

αT (androst-4-ene-17α-ol-3-one, purity ≥98%), βT (androst-4-ene-17β-ol-3-one, purity 

≥98%), methyltestosterone (MT; androst-4-ene-17α-methyl-17β-ol-3-one, purity ≥98%), 

ADD (androsta-1,4-diene-3,17-dione, purity ≥98%), proteinase type XXIII from 

Aspergillus melleus (3 enzyme units/mg), and β-glucuronidase (Helix pomatia, 

aqueous, >100.000 units/mL) were purchased from Sigma-Aldrich (St. Louis, USA). 

AED (androst-4-ene-3,17-dione, purity ≥98%) and β-boldenone (androsta-1,4-diene-17β-

ol-3-one, β-Bol, purity ≥98%) were obtained from Steraloids (Newport, USA). 

Progesterone (purity ≥98%) was obtained from Alpha Pharma (Omega Pharma, 

Zwevegem, Belgium).  

Methanol Optima® was bought at Fisher Scientific UK Limited (Leicestershire, UK). 

Diethyl ether, ethyl acetate, sodium hydroxide, methanol (analytical grade), sulfuric acid 

(H2SO4, 97%, analytical grade), potassium phosphate monobasic (KH2PO4), and formic 

acid (HCOOH, 98–100%, analytic grade) were purchased from VWR (Merck, Darmstadt, 

Germany). Solvolysis solvent consisted of 900 mL ethyl acetate, 95 mL analytical 

methanol, and 5 mL H2SO4 per liter. The HF Bond Elut-C18 cartridges (6 mL, 500 mg) 

were obtained from Agilent Technologies (Diegem, Belgium). HPLC grade, ultrapure 

water was acquired from an in-house water purification system (Arium® 611UV; 

Sartorius Stedium Biotech, VWR, Haasrode, Belgium).  
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Stock solutions of each steroid were prepared in methanol Optima® (Fisher Scientific, 

UK) at 2 μg/mL. Dilutions up to 1 ng/mL were made, and all solutions were kept at 4 °C. 

3.2 SAMPLE COLLECTION AND EXTRACTION 

As spontaneously voided samples were collected and the horses were not given any 

medication or treatment, according to the latest Belgian and European animal welfare 

rules (RD 29th of May 2013, published on the 10th of July), they are not considered to be 

experimental animals. As such, the authors state that they have followed the principles 

outlined in the Declaration of Helsinki for all animal experimental investigations. In 

addition, informed consent has been obtained from the owners. Horses were owned by the 

author herself or horses belonging to the faculty (Faculty of Veterinary Medicine, 

Merelbeke, Belgium); their medical history was known and well documented. Horses 

were guaranteed to be untreated with AAS or other treatments that are known to 

interfere with the excretion of AAS. 

Urine samples were captured in sterile 50-mL tubes, and per horse, two aliquots (A and B) 

of 3 mL were made and all samples were immediately stored at −20 °C prior to analysis. 

The immediate freezing of collected samples and their instant analysis after thawing is 

the proposed procedure to prevent all transformations that can occur in stored urine, 

usually due to microbiological contamination [42].  

The sampled population consisted of 47 geldings and 53 mares aged 1 up to 23 years old 

(average age of 8.9 ± 5.6 years old), which were all out of competition. No foals (<12 

months) were sampled. Five stallions were also sampled for comparison. Horses were on 

a standard but non-controlled diet of concentrate (two meals, 1–3 kg/day), hay, and 

straw or flax, combined with pasture access for several hours a day. Most of the horses 

were Belgian Warmbloods (B.W.P., 74/105) or Royal Dutch Sport Horses (K.W.P.N, 

10/105), but some other breeds were included as well: Thoroughbred (seven), Andalusian 

horse (one), Arabian horse (two), Quarter Horse (two), Gipsy Horse (one), and breedless 

ponies (seven).  

Excessive fluid intake can substantially dilute urinary concentrations and result in false-

negative reports. On the other hand, poor drinking can lead to the overestimation of the 

detected compounds. Different methods for correction (normalization) of 

drug/metabolite concentrations in urine have been put forward [43]. In this study, the 
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density of the urine samples was measured through the specific gravity (SG) of the urine 

samples using a pocket refractometer (PALUSG(CAT); Atago, Tokyo, Japan). The 

measured SG was used to correct the detected concentrations using the formula described 

by Cone et al. [44]. All concentrations that are given in the results are SG normalized.  

ConcentrationSG normalized = Concentrationspecimen x (SGreference‐1) / (SGspecimen‐1) 

3.3 HYDROLYSIS OF THE GLUCURO- AND SULFO-CONJUGATED COMPOUNDS 

Hydrolysis of the urine samples is preferred over the analysis of unhydrolysed urine to 

increase the sensitivity of detection. Pooling nonconjugated and released sulfate and 

glucuronide conjugated fractions allows to increase the detectable concentration of free 

compounds and, in line with the IFHA and FEI regulations, to evaluate free and 

conjugated boldenone as a whole.  

For the hydrolysis of the urine samples, 1 mL of phosphate buffer (1 M KH2PO4, pH 6.1) 

was added to 3 mL of urine. Next, the internal standard methyltestosterone (MT, 5 

ng/mL), 50 μL of a protease solution (≥450 units/mL), and 25 μL of β-glucuronidase 

were added. For each sample, the pH was set at 6.1 ± 0.1 (by adding drops of 6, 1 or 0.1 

M HCl) and hydrolysis was executed at 55 °C (1 h). After hydrolysis, 3 mL of ultrapure 

water was added and non-hydrolyzed proteins were removed by agglutinating them at the 

bottom of the tube by centrifugation (2400 x g, 15 min). Finally, the supernatant was 

filtered over a cotton wool filter before solid phase extraction (SPE). 

3.4 SOLID PHASE EXTRACTION, WASHING, AND SOLVOLYSIS 

The cartridges (6 mL, 500 mg C18, Bond Elut, Isolute) were conditioned with 4 mL 

methanol and 4 mL ultrapure water. The centrifuged and filtered urinary samples were 

loaded onto the column and washed consecutively with 7 mL ultrapure water and 7 mL 

hexane. The cartridges were dried under vacuum (−0.5 bar). Next, the nonconjugated and 

glucuronide-conjugated fraction was eluted with diethyl ether (7 mL) and the sulfate-

conjugated fraction with solvolysis solvent (7 mL).  

The diethyl ether fraction is washed instantly. The sulfate-conjugated fraction is first 

incubated at 55 °C (2 h) to allow solvolysis to take place. Both fractions were washed 

with 1.5 M sodium hydroxide by turning (8 min, 60 rpm), centrifugation (6 min, 1400×g), 

and collecting the washed fractions. These fractions were pooled and dried under 

nitrogen (50 °C, 45 min). Each sample was reconstituted in 100 μL of ultrapure methanol 
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(Optima®), vortexed, and ultrasonicated (3 min). Finally, 100 μL of ultrapure water was 

added and the sample was vortexed and ultrasonicated (3 min) again. After centrifugation 

(12,300 × g, 10 min), the sample was transferred to an LC-MS vial with insert for 

UHPLCMS/ MS analysis 

3.5 UHPLC-MS/MS ANALYSIS 

UHPLC was carried out using an Accela™ autosampler and a Accela™ High Speed LC 

(Thermo Fisher Scientific, San Jose, CA, USA) with a Nucleodur™ Sphinx RP column 

(1.8 μm, 50×2.1 mm, Macherey-Nagel). All analytes could be accurately separated in a 

total run time of only 9 min (Figure 2).  

 

Figure 2. Chromatograms and fragmentation spectra of a standard solution of steroids. 

(0.1 ng of ADD, AED, Bol, αT, βT, MT, and P was brought on column) 
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The mobile phase consisted of ultrapure water as solvent A and methanol Optima® as 

solvent B, both acidified with 0.1% formic acid (26.5 mM). A gradient was run at 300 

μL/min, starting with 58% solvent B for the first 2 min, steadily increasing to 100% 

solvent B at 5.5 min, and then held at 100% solvent B for 1.5 min (up to 7 min). Then, the 

column was allowed to equilibrate at the initial conditions of 42% solvent A and 58% 

solvent B for 2 min. 

Table 1. SRM specifics for all analytes of interest: precursor ion, product ions, retention 

time (RT), appropriate S-Lens RF amplitude, and the corresponding collision energy (CE) 

Analyte Precursor  

Ion 

(m/z) 

Product 

Ions 

(m/z) 

(Relative)  

Retention Time 

(min) 

S-lens 

 

(V) 

Collision 

Energy 

(V) 

ADD 

 

 

 

AED 

 

 

 

βBol 

 

 

αT 

 

 

 

ßT 

 

 

 

P 

 

 

 

MT 

 

285.2 

 

 

 

287.2 

 

 

 

287.2 

 

 

289.2 

 

 

 

289.2 

 

 

 

315.2 

 

 

 

303.2 

77 

91 

121 

147 

79 

81 

97 

109 

77 

121 

135 

79 

97 

109 

253 

79 

97 

109 

253 

79 

97 

109 

297 

97 

109 

285 

2.45 

(0.61) 

 

 

3.39 

(0.85) 

 

 

2.85 

(0.71) 

 

4.06 

(1.01) 

 

 

3.59 

(0.90) 

 

 

4.64 

(1.16) 

 

 

4.01 

(1.00) 

54 

 

 

 

70 

 

 

 

56 

 

 

70 

 

 

 

70 

 

 

 

75 

 

 

 

73 

51 

39 

22 

15 

36 

37 

21 

25 

51 

26 

17 

40 

23 

27 

16 

39 

22 

27 

15 

38 

23 

28 

13 

30 

28 

15 

 

3.6 STANDARD ADDITION APPROACH AND DATA ANALYSIS 

Multiple parameters such as the color, pH, density, and protein content of the urine 

samples demonstrate the diverse biochemical composition of the individual urine 

samples. Therefore, an individual quantification method was combined with fitting the 

metabolites’ area ratio in a calibration curve. As such, multiple calibration curves were 

made for the validation of the method (see below), but the standard addition approach 
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was used as an additional urine-specific quantification. The extract of one aliquot of 

each urine sample (A, blank sample) was reconstituted in methanol/water (50:50). 

Injection on the UHPLC-MS/MS system resulted in an area under the curve, relative to 

the present concentration of the analyte in the blank sample. This area was divided by the 

area under the curve for the internal standard (5 ng/mL MT), gaining the area ratio (ArA) 

of the blank sample for each analyte present. To the other aliquot (B, spiked sample), 5 

ng/mL (ρ) of the six analytes was added before extraction. Reconstitution of this aliquot 

was also performed in methanol/water (50:50). UHPLC-MS/MS analysis of this aliquot 

resulted in an area ratio of ArB for each analyte. Using the following formula, the 

unknown concentration of the analyte in the blank sample (CA) was calculated: 

CA = ArA / (ArB‐ArA) x ρ 

CA   Concentration of the analyte in aliquot A (blank) (ng/mL) 

ArA or ArB  Area ratio of aliquot A or B 

ρ   Concentration of added analyte (5 ng/mL) 

Data were interpreted using Xcalibur 2.1 qualitative and quantitative software 

(Foundation 1.0.2 Rev. B; Thermo Fisher Scientific, San Jose, USA). 

3.7 QUALITY ASSURANCE: VALIDATION OF THE ANALYTICAL METHOD 

To confirm the quantitative performance of the used analysis method, the accuracy, 

precision, linearity, and sensitivity were appraised. Prior to analysis, the individual 

targeted compounds and standard mixtures were injected to check the selectivity and 

operation conditions of the chromatographic devices and. The different molecules were 

identified based on their relative retention time, relative to the internal standard. The 

instrument’s limit of detection, determined by standard injection with a signal-to-noise 

ratio (S/N) of at least 3, was 5 pg on the column for all components. All specified product 

ions (Table 1, p. 57) were used for peak integration for quantification purposes. 

Quantification was performed by standard addition of each individual urine sample, as 

described above.  

The method was validated using EU Council Decision 2002/657 [41] and AORC MS 

guidelines [40]. Six replicates of each of the three spiked levels (1, 1.5, and 2 ng/mL) 

were analyzed. Analysis was carried out on three separate occasions, using fortified 
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matrix (pooled urine from three geldings and two mares, 10.0 ± 4.9 years old). This pool 

was a mixture of visually different urine samples from mares and geldings, which are 

dark and light in color and different in turbidity. As a consequence, the validation allows 

expecting equal or even better results when using other urine samples.  

In this validation process, specificity and selectivity, linearity, limits of detection and 

quantification, ruggedness, repeatability, within-laboratory reproducibility, and recovery 

for each compound were determined according to EU Council Decision 2002/657 and 

AORC guidelines. 

4. RESULTS AND DISCUSSION 

4.1 Validation study 

4.1.1 Specificity 

Analysis of 20 non-fortified pooled urine samples (n = 5) was performed to check the 

specificity of the method and calculate the endogenous concentrations of Bol, ADD, AED, 

βT, αT, and P. As chromatograms of the non-fortified urine extracts did not contain 

interfering matrix peaks at the respective retention times of the analytes added, good 

specificity was concluded. Furthermore, the chromatograms of fortified samples 

displayed a significant increase in peak area intensity and showed no other matrix 

substances interfering at the specific retention time of the compound, when the 

chromatographic peak of interest had a S/N of at least 3. As a result, based on these 

results and the criteria described in CD 2002/657/EC, the developed method was found to 

be specific.  

In the non-fortified pooled urine used for the validation, only αT was found endogenously 

at a concentration of 3.5 ± 0.2 ng/mL. Therefore, the endogenous concentration, 

calculated as the average concentration of 20 non-fortified samples, was subtracted from 

the calculated total concentrations. 

4.1.2 Selectivity 

The different compounds were identified on the basis of their specific retention time 

relative to the retention time of the standard solution. When using high-resolution 

separation techniques, such as UHPLC, the maximum difference in retention time of the 

reference standard and the test compound should be within ± 50% of the half-height 
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peak width or 3 s, whichever is larger [40]. All compounds were able to meet this 

AORC criterion in every sample analysed.  

In accordance to CD 2002/657/EC, a minimum of four identification points (IPs) is 

required for UHPLC-MS/MS of steroids (precursor ion and greater than or equal to two 

diagnostic product ions). AORC regulations demand greater than or equal to three ions. 

Both criteria were met, as all compounds included in this method were identified through 

their precursor ion and three or four product ions: two larger, diagnostic, ions (e.g. m/z 

253 or 285), and one or two smaller ions (e.g. m/z 77, 79, 81 or 91) (Table 1, p. 57). 

From a diagnostic point of view these smaller ions are less significant than the larger ions 

(see also Figure 2, p. 56). m/z 91 for example is a typical fragment seen after 

fragmentation of alkyl benzenes. m/z 77 is typically corresponding to the phenyl cation. 

m/z 97 (Figure 3) on the other hand is considered to be a diagnostic ion for androst-4-en-

3-one-based steroids (e.g. testosterone)  [45]. 

 

 

 

 

 

 

4.1.2 Linearity 

For evaluation of linearity, calibration curves were constructed with nine fortification 

levels (0.25, 0.5, 1, 2, 4, 6, 8, and 10 times the recommended concentration (RC) of 1 

ng/mL, according to Council Decision  2002/657/) based upon the expected natural 

presence of the compounds in non-fortified urine samples. Each curve was run twice. The 

mean slope, R
2
, and lack-of-fit linear model were calculated for all calibration curves     

(n = 8, including the within-laboratory variation).  

Slopes for the different compounds ranged between 0.300 and 0.582 with a small 

variation (0.010–0.020) (Table 2, p. 61). The least squares method (R
2
) and the lack-of-

fit test were used for fitting the calibration curves.   

Figure 3. ESI product ion mass 

spectrum of the protonated 

molecule [M + H]
+
 at m/z 289 of 

testosterone. Recorded on an AB 

SCIEX TripleTOF 5600 with a 

collision offset voltage of 30 V as 

part of the structure elucidation of 

the diagnostic product ion at m/z 

97 derived from androst-4-en-3-

one-based steroids by ESI-CID 

and IRMPD spectroscopy [45]. 
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The lack-of-fit test (F test, α= 0.05) proved linear for all compounds, with F values lower 

than the F reference value (SPSS 21). The coefficient of determination R
2
 was always 

higher than 0.99, except for progesterone. For progesterone, an average R
2
 of 0.986 ± 

0.005 was calculated. All other analytical validation parameters were met for 

progesterone (Table 2, p. 61). 

4.1.2 Precision 

Precision, the closeness of agreement between independent test results obtained under 

stipulated (predetermined) conditions, is usually expressed in terms of imprecision and 

computed as a percentage of standard deviation (%RSD) of the test result (definition 1.22 

2002/657/EC). Less precision is determined by a larger %RSD. 

For one set of samples, 18 aliquots of urine (n = 6×3) were fortified, six samples per level, 

with 1, 1.5, and 2 times the RC of 1 ng/mL (see “Linearity”). To evaluate the precision of 

the developed analytical method, repeatability and withinlaboratory reproducibility were 

determined. Repeatability was confirmed by extracting and analysing the same set of 

samples (n = 6×3) on three different occasions.  

The withinlaboratory reproducibility was confirmed by repeating the above analysis by a 

different operator on a different occasion under different conditions. Both validation 

parameters were evaluated by calculating the relative standard deviations (%RSD) (Table 

2, p. 61). These were very low (%RSD <10%), confirming the good reproducibility and 

precision of the developed method. 

4.1.3 Trueness 

The determination of trueness is assessed using certified reference material (CRM), if 

available. Alternatively, recovery can be determined during validation, if no certified 

reference material is available (as described under 4.1.2.1 (2002/657/EC)). Trueness is 

then expressed as the recovery in spiked samples. Recovery is the percentage of the true 

concentration of a substance recovered during the analytical procedure.  

The same set of samples (n = 6×3) was extracted and analysed on four different occasions 

by two different operators. Recovery was calculated for each analyte in each sample. The 

mean recovery per level is given in Table 2 (p. 61). Recoveries (94.6–117.1%) are 

according to EU Council Decision 2002/657 for substances at concentrations ranging 

from 10 to 100 ng/mL (20% RSD). For very low concentrations (<10 ng/mL) as used in 
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this validation, the %RSD is not specified, but extrapolation of the %RSD for higher 

concentrations would then even allow %RSD up to 25%. The guidelines for performance 

criteria and validation procedures of analytical methods rely on the level calculated by the 

Horwitz equation [46]. For 1–10 ng/mL, the Horwitz-based %RSD is even less strict than 

EU Council Decision 2002/657  (32–45% RSD). 

4.1.4 Stability 

Urine samples and extracts were immediately stored at −20 °C. The immediate freezing 

of the collected samples and their instant analysis after thawing is the proposed procedure 

to prevent all transformations that can occur in stored urine, usually due to 

microbiological contamination [42]. Indeed, if the urine samples were frozen immediately, 

no differences were seen between the samples extracted at the moment of storage and the 

samples extracted 3 weeks later. The same goes for the reanalysis of stored extracts  

(3 weeks); the measured concentrations were not significantly different from the results 

obtained after the primary analysis. 

4.1.5 Limit of detection and quantification 

The limit of detection (LOD) and limit of quantification (LOQ) were determined by using 

the mean blank signal as the basis for the calculation of the LOD and LOQ values. On 

each occasion, five non-fortified matrix samples were analysed in parallel to calculate the 

S/N at the time window in which the analyte is expected. Three times the S/N was used as 

the LOD and ten times the S/N as the LOQ. For each component, the mean S/N was 

plotted against the concentration (R
2
 >0.99). Based on the fitted curve, the detection 

limits for the different components were calculated (S/N >3). LODs for the different 

compounds were between 0.17 and 0.31 ng/mL. For the LOQ, the same calculation was 

used, but with the cut-off at S/N >10, and the LOQs amounted between 0.54 and 1.02 

ng/mL. All performance characteristics of the validation are presented in Table 2 (p. 61). 

The mathematically determined LODs were confirmed by adding 0.20 ng/mL of each 

component to a pooled urine sample. The ion chromatograms of a standard injection of 

boldenone (0.01 ng/µL, Figure 4.A, p. 64), a non-fortified urine sample (Figure 4.B, p. 

64), and the equivalent fortified urine (0.20 ng/mL, Figure 4.C, p. 64) are illustrated. 
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Figure 4. Comparison of the chromatograms obtained using UHPLC-MS/MS on different 

samples. (A) Standard injection of boldenone (0.01 ng/μL). (B) Non-fortified urine. (C) Urine 

fortified with 0.20 ng/mL boldenone (LOD). The three specific transitions of the target compound 

boldenone (m/z 287.2) were monitored as follows: m/z 287.2→m/z 77, m/z 287.2→m/z 121, and 

m/z 287.2→m/z 135 

In conclusion, the full-fledged validation of this method following both CD 2002/657/EC 

and AORC guidelines exceeds the less extensive quality assurance procedures, such as 

calibrators and limited calibration curves (three to five points), which are used to confirm 

comparable methods [18, 47, 48]. The obtained and confirmed LODs are very low 

compared to other previously published LC-MS/MS methods in urine: the LOD of ADD, 

for example, (0.2 ng/mL) is very low compared to the described LOD of 10 ng/mL [35]. 

Good linearity (R
2
 >0.99 and lack-of-fit analysis) and low %RSD (<10%) were obtained 

compared to comparable methods (%RSD >10%) [47]. Additionally, the (relative) 

retention times of the different compounds are stable over time (<2% variation), whereas 
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the previously described retention times differ more than 10% [48]. Moreover, the newly 

developed UHPLC-MS/MS method allows to adequately separate all natural steroids in a 

9-min run time, while run times of up to 24 min were used by previous methods, 

separating even less compounds [15]. 

 

4.2  URINE SCREENING OF UNTREATED HORSES 

The validated extraction and UHPLC-MS/MS method was put into practice with the 

urinary screening of 105 guaranteed untreated horses (43 geldings, 57 mares, and 5 

stallions). The density of all the urine samples was measured as the SG of the urine 

samples using a pocket refractometer (PAL-USG(CAT); Atago, Tokyo, Japan). The 

measured SG of each individual urine sample (1.024 ± 0.003) was used to correct the 

detected concentrations using the formula described by Cone et al. [44] (see Chapter II, 

3.2 SAMPLE COLLECTION AND EXTRACTION). All concentrations given here are SG 

normalized.  

Upon analysis of the urine samples from 100 mares and geldings, 81% of them were 

found to excrete steroids at a certain level. Nevertheless, almost all of them were 

considered to be negative in the light of horse doping control. However, in one gelding’s 

urine, β-boldenone was detected at a concentration of 1.0 ng/mL (Table 3, p. 66). As 

this horse did not show elevated urinary testosterone levels (0.2 ng/mL) nor any clinical 

signs or behaviour linked to cryptorchidism [49], the detected β-boldenone residue is 

suspected to be of natural origin (as this horse was not treated in any way).  

For confirmation, three additional aliquots were taken from the same urine sample and 

analysed. The result of these three replicates (1.0 ± 0.2 ng/mL) confirmed the first result. 

This horse was also resampled 2 months after the first sampling, but no boldenone was 

found at that moment. These results suggest that the presence of a (low) concentration of 

boldenone is variable. A combination of different factors such as the general condition of 

the horse, his training status, his gastrointestinal microbial content, the weather, feed 

and/or seasonal influences might be involved in this transient detection [50, 51]. As direct 

hydrolysis was applied, i.e. potential 1-dehydrogenation of steroids ex vivo, might also be 

responsible for boldenone detection. Confirmatory analysis with direct detection of the 

intact boldenone sulphate could be used to support these findings [52]. 
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Table 3. Detection of ADD, AED, Bol, T and ßT in urine of guaranteed untreated horses 

(mares, n = 53; geldings, n = 47; and stallions, n = 5). For each compound, the number of 

horses with the compound detected as well as the average concentration in these horses and the 

overall average concentration of the group ( mares, gelding or stallions) are given. NF = not found 

(below the respective limit of LOD for this compound, see Table 2, p. 61). 

ADD and AED, which are chemically closely related to β-boldenone and testosterone 

(Figure 1), were also found in the urine of some horses. Indeed, ADD was found in the 

urine of a 10-year-old mare horse out of 100 horses at a concentration of 5.2 ng/mL. 

Looking at the chromatogram, next to ADD, a large peak of testosterone was present, 

indicating an elevated concentration of α-testosterone (12 ng/mL), eightfold higher than 

the average determined for mares in this study (1.5 ± 2.4 ng/mL).  

Measuring testosterone levels have been used historically as a diagnostic marker for the 

presence of ovarian tumours (See Chapter I, 3.3 HORMONAL DISORDERS IN HORSES). 

Testosterone concentrations have been reported to be elevated above the normal range of 

cycling mares in 40 to 50% of mares with granulosa cell tumours (GCTs) [53]. 

Affected mares can show dominant and male-like behaviour (e.g., mounting). No 

prominent male-like yet some dominant behavior was observed in the mare studied here. 

Due to the lack of severe symptoms, the ovaries of this mare have, thus far, not been 

clinically examined to confirm this hypothesis. Progesterone and β-testosterone levels 

for this horse were normal, 2.6 and 2.5 ng/mL, respectively. These levels do not 

Analyte Gender 
Number of 

Detection 

(Average) concentration 

in detected  

(ng/mL) 

Average 

concentration group  

(ng/mL) 

ADD 
mare (1/53) 5.5 0.1 ± 0.8 

gelding (0/47) NF NF 

stallion (2/5) 1.0 ± 0.4 0.4 ± 0.5 

AED 
mare (4/53) 1.4 ± 1.3  0.1 ± 0.5 

gelding (4/47) 0.7 ± 0.6 0.1 ± 0.3 

stallion (0/5) NF NF 

Bol 
mare (0/53) NF NF 

gelding (1/47) 1.0 0.0 ± 0.2 

stallion (2/5) 0.9 ± 0.1 0.4 ± 0.5 

αT 
mare (29/52) 2.6  ± 2.7 1.5 ± 2.4 

gelding (23/47) 4.3  ± 4.2 2.2  ± 3.5 

stallion (0/5) NF NF 

ßT 
mare (25/53) 3.2 ± 2.7 1.4 ± 2.4 

gelding (25/47) 2.5 ± 2.2 1.4 ± 2.0 

stallion (5/5) 108 ± 14 108 ± 14 
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significantly differ from the average progesterone (1.0 ± 1.6 ng/mL) and β-testosterone 

concentrations (1.4 ± 2.4 ng/mL) of the mares in this study. 

Moreover, all measured testosterone concentrations were far below the IFHA 

international thresholds (2015) for geldings (20 ng/mL) and mares (55 ng/mL). In a 

previous study investigating the effect of γ-oryzanol supplementation on endogenous 

testosterone levels in horses, the urine β-testosterone concentration was always lower 

than 1.7 ng/mL. Neither the effect of γ-oryzanol intake nor the difference in gender (mare 

or gelding) could be proven [54]. The results from the present study confirm this low 

concentration of β-testosterone in both mares (1.4 ± 2.4 ng/mL, n = 53) and geldings 

(1.4 ± 2.0 ng/mL, n = 47) (Table 3, p. 66). 

AED was even more present than ADD and was detected in the urine of 8% of the 

geldings and mares: four geldings (four out of 47) and four mares (four out of 53), and 

the concentrations were not significantly different according to the gender (1.4 ± 1.3 

ng/mL for mares and 0.7 ± 0.6 ng/mL for geldings) (Table 3, p. 66). This suggests that 

the presence of AED is not related to the gender of the horse. Interestingly, one of the 

gelding’s urine contained boldenone as well, suggesting a possible correlation between 

AED and boldenone. This horse has been resampled, and the corresponding sample was 

negative for both AED and boldenone, sustaining this potential correlation. This result 

supports the hypothesis that external factors may play a role in the anabolic steroid status 

of the horse, as mentioned earlier. 

The urine of all five stallions sampled during this study, contained large amounts of β-

testosterone (108 ± 14 ng/mL). These concentrations are, as expected, much higher than 

those for geldings and mares. The average concentration for geldings (1.4 ± 2.0 ng/mL) 

and mares (1.4 ± 2.4 ng/mL) are 100-fold lower. In two entire males (two out of five) for 

which concentrations of 120 and 126 ng/mL β-testosterone were found, boldenone was 

found as well at 1.0 and 0.8 ng/mL. This 100-fold difference between the detected β-

testosterone and boldenone level is in accordance with the previous results of Popot et al. 

[19] and Ho et al. [18]. The mean boldenone concentration for the five stallions (0.4 ± 0.5 

ng/mL) is also in accordance with the mean concentration of boldenone of 0.34 ng/mL 

(minimum 0.02, maximum 1.51 ng/mL) (n = 156) measured in male horses by Dehennin 

et al. [55]. Interestingly, in two male horses, we also found a low concentration of ADD 

(1.0 ± 0.4 ng/mL), and these were the two stallions that also showed β-boldenone. 
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In summary, these results demonstrate that, in contrast to what was expected, all steroids 

that were included in this method could be shown to be naturally present in urine of at 

least one horse, and 81% of these horses were found to excrete steroids at a certain level. 

T and P are found in the urine of most of the horses, both geldings and mares, at low 

concentrations. AED and ADD, which are closely related to AAS and possible precursors 

of forbidden substances such as boldenone, can be present in the urine of untreated horses 

at low concentrations (1 ng/mL).  

Reduction of these, or other, precursor steroids might lead to the unexpected detection of 

low concentrations of forbidden steroids such as β-boldenone. The urine of one horse 

did indeed contain 1 ng/mL β-boldenone. The transformation of ADD to boldenone and 

AED to testosterone is carried out by the same enzyme, 17β-hydroxysteroid 

dehydrogenase, which is found in most cells of the human body [2]. In horses, this 

enzyme is merely found in the testis and epididymis (stallion) and ovaries and uterus 

(mare) [11] (Figure 1, p. 51). Further research is warranted to elucidate the alternative 

origins of AED and ADD in horses and the possible transformation pathways to 

forbidden substances such as boldenone.  
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5. CONCLUSION 

Based on the suspected endogenous origin of some AAS, this study aimed to improve the 

knowledge on the naturally present low levels of AAS in horse urine. A rapid UHPLC-

MS/MS method was developed and successfully and thoroughly validated according to 

AORC guidelines and EU Council Decision 2002/657 and applied on 105 urine samples 

from guaranteed untreated horses. In contrast to what was expected, all steroids that were 

included in this method could be shown to be naturally present in urine of at least one 

horse, and 81% of these horses were found to excrete steroids at a certain level. 

5.1 EXECUTIVE SUMMARY 

 A selective and precise extraction and UHPLC-MS/MS method was developed 

and validated according to AORC guidelines and EU Council Decision 2002/657 

 The method proved to be very sensitive (LOQ=0.7 ng/mL, 3-mL sample) 

 All stallions were shown to produce β-testosterone (108 ± 14 ng/mL), and two of 

them excreted β-boldenone (0.9 ± 0.1 ng/mL) and ADD (1.0 ± 0.4 ng/mL) as well 

 The method was able to detect low concentrations of progesterone, β-testosterone, 

and α-testosterone (1–5 ng/mL) present in the urine of mares and geldings (41, 52, 

and 55, respectively, out of 100 horses) 

 Occasionally, other steroids (ADD, Bol, and/or AED) were found in the urine of 

untreated geldings or mares at low concentrations (0.5–5.0 ng/mL). 
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CHAPTER III 

1. Abstract 

Phytosterols are omnipresent in plants, as they play an important role in cell membrane 

stability and as signal transducers. Over the last few decades, the scientific interest in 

phytosterols has significantly increased. Most of the interest has focused on the 

cholesterol-lowering properties of phytosterols, but they may also interfere with the 

endogenous steroid hormone synthesis. Despite this dual interest in phytosterols, accurate 

and fully validated methods for the quantification of phytosterols in food and feed 

samples are scarce. During this study a new extraction and detection method for the main 

phytosterols (β-sitosterol, campesterol and stigmasterol) was optimized and fully 

validated according to EU Council Decision 2002/657 and AOAC guidelines. A 

fractional factorial design was used to optimize the extraction procedure. The most 

optimal conditions were perfected for all influential factors. Detection was carried out on 

a UHPLC-MS/MS apparatus. The newly developed extraction and UHPLC-MS/MS 

detection method reached all evaluated performance parameters. The individual 

recoveries ranged between 95 and 102%. Good results for repeatability and intra-

laboratory reproducibility (RSD%) were observed (<10%). Excellent linearity was proven 

based on determination coefficient (R
2
 >0.99) and lack-of-fit test (F test, α = 0.05). The 

LODs and LOQs in grain matrices were as low as 0.01-0.03 mg/100 g and 0.02-0.10 

mg/100 g for campesterol, stigmasterol and β-sitosterol, respectively. With this method 

we were able to quantify all main phytosterols in different grains (oats, barley, corn, malt) 

and it was shown that the method can be used on other solid feed and food samples as 

well, including new matrices such as straw, hay, grass and yellow peas. Additionally, the 

method allowed to quantification of campesterol, stigmasterol and β-sitosterol in liquid 

samples low in phytosterols such as concentrate-based juices, beer and soft drinks. 

 

Keywords 

Phytosterols - Ultra-High Performance Liquid Chromatography  

Tandem Mass Spectrometry – Validation - Extraction optimisation 
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2. Introduction 

Phytosterols are omnipresent in plants, as they play an important role in cell membrane 

stability and fluidity. They can also participate in the control of membrane-associated 

metabolic processes, as signal transducers. Over the last few decades, the scientific 

interest in phytosterols increased significantly, based upon two very distinct properties 

related to their chemical structure. Most of this interest has focused on the cholesterol-

lowering properties of phytosterols and phytostanols [1]. Phytosterols are structurally 

very similar to cholesterol except that they contain a substitution at the C24 position on 

the sterol side chain (Figure 1, p. 79) [2]. A lot of research has been dedicated, in both 

humans and model animals, to the confirmation and unravelling of the mechanisms 

responsible for these cholesterol lowering capacities. It is generally assumed that 

phytosterols reduce cholesterol absorption in the intestinal tract, through the displacement 

of cholesterol from the micelles [3].  

The European Foods Safety Authority (EFSA) and Food and Drugs Agency (FDA) 

concluded that, relative to a placebo, blood LDL cholesterol levels can be significantly 

reduced by 7 to 10.5% (respectively 5 to 15%) if a person consumes 1.5 to 2.4 grams (1 

to 3 grams) of plant sterols and stanols a day [4]. The effect is usually established within 

the first 2–3 weeks after diet change and could be sustained for more than one year [5]. A 

daily dietary intake of at least 2 grams a day of phytosterols (expressed as non-esterified 

phytosterols) is required to make an authorized health claim relating phytosterol 

consumption to cholesterol lowering and cardiovascular disease risk [6]. No significant 

alterations in high-density-lipoprotein (HDL)-cholesterol or triglycerides in general were 

reported, and the effectiveness of this approach has been positively tested in 

hypercholesterolaemic patients, as well as in individuals with normal cholesterol levels 

[7]. 

On the other hand, phytosterols may interfere with the endogenous steroid hormone 

synthesis. This possible involvement in the synthesis, excretion and detection of steroids 

in humans and sports or farm animals is currently under discussion. Most anabolic-

androgenic steroids (AAS) are strictly forbidden, as they can increase nitrogen retention, 

protein synthesis, appetite and the release of erythropoietin in the kidneys, leading to 

unfair competition or illegitimate weight gain. The conversion of phytosterols to steroids 
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has been reported in different biological systems mainly involving a variety of 

microorganisms such as Mycobacterium sp., Arthrobacter and Nocardia sp. [8-10]. On 

the other hand, a number of studies have been devoted to the ability of invertebrate 

organisms to convert phytosterols into anabolic steroids and a study in rats reported the in 

vivo intestinal biotransformation of consumed phytosterols to steroids (ADD, AED and 

androstanedione) [11]. Additionally, recent work indicated that a novel mechanism of 

endogenous steroid-synthesis is to be considered: non-toxic feed-borne fungi, naturally 

present on animal feed, were shown capable of converting phytosterols into steroids 

[12,13]. Complete (microbial) side chain cleavage produces the C19-steroids, which 

include AED, ADD, boldenone and testosterone (Figure 1). Other studies reported 

similar biotransformation potential in environmental mold species [14,15]. 

 

Figure 1. Chemical structure of the three main phytosterols (campesterol, stigmasterol 

and β-sitosterol) compared to the structure of different C-19 steroids, including β-

boldenone. 

Despite this dual interest in phytosterols, accurate and fully validated methods for the 

accurate quantification of phytosterols in food and feed matrices are scarce (Table 1, p. 

80). Different methods can be used to purify, separate and detect phytosterols in food and 

feed samples. Separation can be achieved with a wide variety of chromatographic 

techniques including column chromatography (CC), gas chromatography (GC), thin-layer 

chromatography (TLC), normal-phase high-performance liquid chromatography (HPLC), 
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reversed-phase HPLC and capillary electro chromatography (CEC). GC can be 

considered as the most reported separation technique [14]. GC however requires 

derivatisation of the samples, in most cases silylation of sterols to trimethylsilyl (TMS) 

ether derivatives is performed prior to analysis. Detection is carried out through flame 

ionisation detection (FID), UV detection (UV), evaporative light scattering detection 

(ELSD), infrared detection (IR), nuclear magnetic resonance detection (NMR) or mass 

spectrometry (MS) [16]. The use of advanced MS techniques such as High Resolution 

MS or MS/MS for the quantification of phytosterols in feed and food has thus far not 

been explored. Additionally, most methods published so far only focus on food samples, 

including fruits, vegetables, cereals, nuts and berries, and not on feed (Table 1). 

It should be noted that no official reference method has been developed for the analysis 

of phytosterols or phytostanols in food and feed. Some international reference methods 

exist for the analysis of sterol fractions of fats and oils, such as the ISO 6799, IUPAC 

methods 2.401 and 2.403, ISO 12228 and AOCS Ch 6-91. Also, Codex Stan 210 refers to 

ISO 6799 and IUPAC 2.403 methods. All these methods have been developed for the 

analysis of sterols as natural minor food components, implying that the total sterol 

contents are 1% or lower [28]. 

Table 1. Different methods for the quantification of phytosterols in food (1999-2014). 

 Authors Year Matrix Method Quality control 

[24] 

[26] 

Normén et al. 1999 

2002 

Cereal foods GC-FID/GLC recovery ISTD 

Theoretical LOD 

[31] Toivo et al. 2001 Sunflower, corn, onion, oil GC-MS 
Calibration curves, LOD 

ISTD dicholesterol 

Recovery, %RSD 

[21] Piironen et al. 2002 Cereals and cereal products GC-MS 

[22] Piironen et al. 2003 Vegetables, fruit and berries GC-MS 

[32] Phillips et al. 2004 

2005 

Cereals, nuts, fruits 

Nuts and seeds 

GC-FID Recovery 

Commercial reference samples 

[33] Sorenson et al. 2006 Saw palmetto raw materials 

Dietary supplements 

GC-MS Single-laboratory validation 

[34] Nair et al. 2006 Supplements, health care HPLC-ELSD Full validation, incl. LOD/LOQ  

in solvent 

[35] Winkler et al. 2007 Corn distiller's dried grain GC-MS Unknown 

[18] Ryan et al. 2007 Grains HPLC-PAD (UV) 

GC-FID 

Unknown 

[19] Mo et al.  2013 Edible oils APCI LC-MS/MS Calibration curves, recovery, 

LOD/LOQ 
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Within this study a new extraction and detection method was optimised and fully 

validated according to EU Council Decision 2002/657 and AOAC (Association of 

Analytical Chemists) MS guidelines. The method allowed quantifying campesterol, 

stigmasterol and β-sitosterol in different grains (e.g. corn, oats, barley and malt) and it 

was shown that the method can be used on other solid feed and food samples as well 

including grass, hay, straw, yellow peas, apple, hop and tomato. Additionally, the method 

allows quantifying campesterol, stigmasterol and β-sitosterol in liquid samples low in 

phytosterols such as concentrate-based juices, beer and soft drinks as well. 

3. MATERIAL AND METHODS 

3.1 LC-MS
2
 REAGENTS AND CHEMICALS 

Methanol Optima
®

 (HPLC grade) and chloroform (analytical grade) were purchased from 

Fisher Scientific (Leicestershire, UK). Sodium hydroxide and methanol (analytical grade) 

were purchased from VWR (Merck, Darmstadt, Germany). HPLC grade, ultrapure (UP) 

water was acquired from an in-house water purification system (Arium® 611UV, 

Sartorius Stedium Biotech, VWR, Haasrode, Belgium).  

Cholesterol (≥99%, from lanolin), β-sitosterol (≥97%, from soy beans) and stigmasterol 

(≥97%) were purchased from Fluka (Sigma Aldrich, St-Louis, USA). Campesterol 

(≥99%) was obtained from Applied Science Laboratoria (Bedford, USA). Stock solutions 

of each component were made in methanol Optima
®
 at 200 ng/µL. Dilutions up to 0.1 

ng/µL were made in methanol Optima
®
. All solutions were kept at 4 °C. 

3.2 FEED AND FOOD SAMPLES 

Oats (Avena sativa) were kindly gifted by Canadian Oats Milling (Alberta, Canada). 

Yellow peas (Lathyrus aphaca) were obtained from JM Grain Inc (North Dakota, USA). 

Apples (Malus domestica ‘Jonagold’) were bought at a nearby grocery shop. Corn (Zea 

mays) crops were harvested straight from the field (East-Flanders, Belgium). Hop 

(Humulus lupulus) was a Hallertau magnum variety, dried, grinded and distributed by 

Simon H. Steinerhop (Mainburg, Duitsland). Barley (Horleum vulgare) and pale malt 

(Horleum vulgare) were obtained through mouterij Dingemans NV (Stabroek, Belgium). 

Straw and hay samples were obtained from DB fourage (Knesselare, Belgium). Gras 

samples were collected straight from the field (Lolium Perenne, Ghent, Belgium).  
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100-g homogenous subsamples were freeze-dried (-0,020 mBar at -50 °C, 24 h) in a 

Christ Alpha 1-4 LSC freeze dryer (SciQuip, Shropshire, UK) and samples were 

thoroughly mixed (Moulinette, Moulinex, Belgium) and grinded with a mortar and pestle 

and/or grinded in a rotating laboratory disc mill DLFU certified by EBC, MEBAK and 

IOB (0.1-0.2 mm) (Buhler Miag, Benelux).  

All phytosterol concentrations listed are expressed per dry weight, unless indicated 

differently. Samples were subsequently stored under dry and dark conditions at -18 °C. 

Liquid samples were obtained from different producers including the “Brouwersverzet” 

(Old Brown beer, Anzegem, Belgium), “Brouwerij Timmermans” (Old Kriek lambic 

beer, Itterbeek, Belgium), AB Inbev (Jupiler, Leuven, Belgium) and Ghent University 

College (Bijloke, Ghent, Belgium). Orange juice, apple juice and an orange based soft 

drink were purchased from The Coca-Cola Company (Ghent, Belgium).  

3.3 EXTRACTION PROTOCOL OPTIMISATION 

Previous research has shown that is possible to extract phytosterols from different food 

matrices (Table 1, p. 80). Most extraction protocols described use a liquid-solid 

extraction from grinded and freeze-dried material with an apolar solvent (hexane) or 

chloroform-methanol, (2:1 v/v). Based on these existing protocols an initial protocol was 

formulated: 200 mg subsamples were weighted and spiked with 5 ng/mg cholesterol (100 

μL of a 10 ng/μL standard solution). Six ml chloroform:methanol (2:1 v/v) was added to 

the sample and thoroughly vortexed (30 sec), ultrasonicated (10 min) and centrifuged 

(4,400 x g, 10 min). With a glass pipette the organic extract was separated from the 

powder and transferred to a new recipient (50 mL sterile, plastic tube). The powder was 

re-extracted with 6 ml chloroform:methanol (2:1 v/v) and again thoroughly vortexed (30 

sec), ultrasonicated (10 min) and centrifuged (4,400 x g, 10 min).  

Subsequently, the organic solvent was washed with 5.5 ml 0.1 M NaCl, shaken and left 

to separate into two distinct phases (30 min). The upper, watery phase was removed and 

the chloroform fraction dried with 1 g Na2SO4, shaken and incubated overnight (16h). 

The following day, the extract was filtered over a SPE filter cartridge (Isolute MSPD 

reservoir) under vacuum and 1 ml chloroform was added to the filter cartridge, to elute 

the remaining sample. The entire filtrate was evaporated to dryness under a gentle 

nitrogen stream (2 bar, 50 °C for 45 min). Upon analysis, the extract was reconstituted in 

180 µl methanol Optima
®

; vortexed (30 sec) and ultrasonicated (10 min). Afterwards, 20 
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µl ultra-pure water was added and the sample was vortexed (30 sec), ultrasonicated (3 

min) and vortexed (30 sec). After centrifugation (12,300 x g, 10 min) the sample was 

transferred to an LC-MS vial with insert for UHPLC-MS/MS analysis.  

This initial, literature based protocol was further optimized as a feed (grain) extraction 

procedure for phytosterols using a fractional factorial design (FFD). All dependent 

variables that might significantly affect the extraction efficiency were screened to 

elucidate the significant factors (D-Optimal Design), which subsequently could be 

optimized in a surface response modeling approach (SRM), designed with Modde 5.0 Pro 

software, a tool for design of experiments (DOE) and subsequent data analysis 

(Unimetrics, MKS Company, Sweden).  

The FFD and SRM approach allow a quicker and more cost-effective optimisation, 

compared to one-at-the-time experiments. In general, a FFD is a good screening 

approach as the amount of possible scenarios (trials) produced by the model is 

significantly lower than that for full factorial designs. Unlike full n factorial designs, 

which require all combinations of n versions of each of k variables, a FFD only needs n
(k-

1)
 [17]. 

3.4 UHPLC–TRIPLE QUADRUPOLE MS/MS ANALYSIS 

Ultra-high performance liquid chromatography (U-HPLC)-MS/MS detection was used to 

quantify phytosterols. Separation was carried out using an Accela
TM

 High Speed LC 

(Thermo Fisher Scientific, San Jose, CA, USA) equipped with a Thermo Scientific™ 

Hypersil GOLD™ Column (particle size: 1.9 μm, 50 x 2.1 mm I.D.). The mobile phase 

consisted of ultra-pure water as solvent A and methanol Optima
®
 as solvent B.  

The gradient was run at 300 µl/min, starting with a linear gradient of 90% solvent B for 

the first 2 min, increasing to 100% solvent B at 5.5 min, and then held at 100% solvent B 

for 1.5 min (up to 7 min). Afterwards, the column was allowed to equilibrate at the initial 

conditions of 10% A and 90% B for 2 min. The divert valve was used to load the detector 

from 1.5 to 4.5 min. All analytes could be accurately separated in a total run time of only 

10 min (Table 2, p. 84). 
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Table 2. SRM specifics for all analytes of interest: precursor ions, product ions, (relative) 

retention time (RT), appropriate S-Lens RF-amplitude and the corresponding collision energy 

(CE). 

Analyte 

 

Precursor 

Ion 

 

(m/z) 

Product  

ions 

 

(m/z) 

(Relative)  

Retention Time 

 

(min) 

S-lens 

 

 

(V) 

Collision 

Energy 

 

(eV) 

Campesterol 

 

 

 

Stigmasterol 

 

 

 

β-sitosterol 

 

 

 

Cholesterol* 
*internal standard 

383.3 

 

 

 

395.3 

 

 

 

397.3 

 

 

 

369.3 

 

81 

91 

95 

105 

81 

91 

105 

297 

91 

95 

105 

147 

91 

95 

105 

2.38 

(1.11) 

 

 

2.40 

(1.12) 

 

 

2.61 

(1.22) 

 

 

2.14 

(1.00) 

86 

 

 

 

59 

 

 

 

88 

 

 

 

84 

 

 

35 

49 

34 

43 

37 

52 

44 

18 

47 

35 

40 

28 

52 

34 

40 

 

Detection was carried out on a TSQ Vantage Triple Stage Quadrupole Mass 

Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with an 

Atmospheric Pressure Chemical Ionisation probe (APCI). Injection volumes were 10 μL 

each and the APCI source was operated in the positive ion mode. The discharge current 

was set at ± 4 µA. The sheath, sweep and auxiliary gas pressure were set at 20, 2 and 10 

arbitrary units respectively, the capillary temperature at 300 °C and the vaporizer 

temperature at 320 °C. The collision gas pressure was kept at 1.5 mTorr and the cycle 

time was 0.8 s. Data were acquired in the multiple reaction monitoring (MRM) mode. 

The resolution of the quadrupole mass filter (Q1) was set with a peak width of 0.2 Da at 

half height, the Q3 filter at 0.7 Da at half height. All specified product ions (Table 2) 

were used for peak integration and quantification purposes. 

Data were interpreted using Xcalibur 2.1. w/Foundation 1.0.2 Rev. B qualitative and 

quantitative software (Thermo Electron, San Jose, USA). Area ratios were calculated 

relative to the internal standard cholesterol, that was added to both calibration and 

unknown samples, to compensate for losses during sample preparation or variability 

during the analytical determination. Cholesterol can be considered as a good internal 

standard as it is very similar to phytosterols (calibrated analytes), chemically and in 
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retention time, but chromatographically distinguishable, cheap and not endogenously 

present in plant-derived samples. 

3.5 DATA ANALYSIS AND QUALITY ASSURANCE OF THE ANALYTICAL METHOD: 

VALIDATION PROCEDURE ACCORDING TO EU COUNCIL DECISION 2002/657 AND 

AOAC MS GUIDELINES 

To confirm quantitative performance of the newly developed extraction and detection 

method a validation process was performed. Specificity and selectivity, linearity, limits of 

detection and quantification (LOD and LOQ), ruggedness, repeatability, within-

laboratory reproducibility and recovery (accuracy) for each compound were determined 

according to EU Council Decision (2002/657/EC). Prior to analysis, the individual 

targeted compounds and standard mixtures were injected to check the selectivity and 

operation conditions of the chromatographic devices. The different molecules were 

identified based on their relative retention time, relative to the internal standard (ISTD) 

cholesterol. The instrument’s limit of detection, determined by standard injection with a 

signal-to-noise ratio (S/N) of at least 3 was <0.1 ng on column for all components.  

The method was validated according to EU Council Decision 2002/657/EC and AOAC 

MS guidelines. Six replicates of each of the three spiked levels were analyzed. These 

spiked levels were set as the expected endogenous concentration (EEC) and 1.5 and 2 

times this EEC. Analysis was carried out on three separate occasions, using fortified 

barley matrix. Previous research states that barley is moderately high in phytosterols (50 

± 2 mg/100 g) compared to other grains [18]. As a consequence, the validation allows 

expecting equal or even better results when using other feed (or food) samples.  

3.6 QUANTITATIVE ANALYSIS OF DIFFERENT FEED AND FOOD SAMPLES 

Area ratios were determined by integration of the area of an analyte under the specific 

SRM chromatograms in reference to the integrated area of the internal standard. In each 

matrix, two calibration curves were constructed based upon nine fortification levels (0, 

0.25, 0.5, 1, 2, 4, 6, 8 and 10 times the EEC). The EEC was preliminary determined by 

standard addition and/or based upon available, reference values in literature. At least 

three non-fortified samples were extracted together with a nine-point calibration curve, at 

two different occasions (n ≥ 24 samples per matrix). The calibration was run twice, 

before and after the experimental, non-fortified samples. Unknown samples were 

quantified by fitting the metabolites’ area ratio in the corresponding calibration curve.  
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4. RESULTS AND DISCUSSION  

4.1 EXTRACTION PROTOCOL OPTIMISATION 

Different parameters of the extraction protocol were evaluated during the extraction 

optimisation: the solvent used the volume of the extraction solvent, temperature for 

drying under nitrogen, single or double liquid-liquid extraction, drying with Na2SO4 and 

the inclusion of an additional hydrolysis step. A fractional factorial D-optimal design was 

chosen, optimizing the seven variables through 16 trial and 3 central point samples. A 

significantly higher response was seen after extraction with methanol:chloroform, 

compared to the extraction with the strictly apolar solvent hexane, which was used by Mo 

et al. (2013) among others [19]. This can be explained by the highly effective solvolysis 

conducted by methanol and chloroform, compared to the less invasive hexane treatment.  

Additionally, a larger extraction volume (15-20 mL) was found to be more successful at 

extracting the phytosterols from the sample than the lower volumes initially used (based 

upon previously described methods). On the other hand, the added acidic hydrolysis step 

before extraction did not lead to a significant increase in response, the solvolysis effect of 

methanol:chloroform hydrolysis makes acidic hydrolysis redundant (Figure 2). Drying 

with Na2SO4 and washing were not found to be of significant positive influence on the 

detected response, for any of the phytosterols.  

 

Figure 2. Coefficient plot obtained for stigmasterol after FFD D-Optimal Design (Modde 

5.0). A = solvent (chloroform:methanol); B = solvent (hexane); C = extraction volume; D = 

drying temperature under nitrogen; E = single LLE; F = double LLE; G = drying with Na2SO4; H 

= no drying with Na2SO4; I = hydrolysis before extraction; J = no hydrolysis before extraction. 
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A Response Surface Modeling (RSM) approach following a Central Composite Face 

(CCF) design was used to confirm the influence of Na2SO4 for drying and 0.1 M NaCl as 

a washing solution. Both parameters were found to have a negative influence on the 

phytosterol response detected. Therefore, these time-consuming steps were not included 

in the optimized protocol.  

An additional RSM approach was used to optimize the two significant quantitative 

parameters: drying temperature and extraction volume (illustrated for campesterol, 

Figure 3A). The optimal drying temperature was found to be at 46 °C, instead of 50°C, 

higher or lower temperatures led to a decrease in response, for stigmasterol, β-sitosterol, 

campesterol and cholesterol (Figure 3B). Based upon the surface modeling plot, all 

extraction volumes of more than 12.5 mL seemed to be equally efficient. However, when 

looking into detail at the volume – response correlation, 16 mL was found to be the ideal 

volume (50 mg d.w. sample) (Figure 3C).  

 

Figure 3. (A) Response surface modelling plot for campesterol. (B) Response prediction plot for 

campesterol, in relation to the applied drying temperature under nitrogen (°C). (C) Response 

prediction plot for campesterol in relation to the extraction volume used (mL) (Modde 5.0, Conf. 

level = 95%). 
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Volumes above 16 mL did show slightly higher responses (Figure 3. B, p. 87), but the 

extraction volume was limited to 16 mL (2:1 v/v chloroform:methanol) to limit the use of 

chloroform and thus the release of chloroform into the environment, as biodegradation in 

(surface) water and soil is slow. WHO assessed the potential effects of indirect exposure 

in the general environment on human health as well as environmental effects 

(International Chemical Assessment Document 58 on chloroform, 2014) and found that 

chloroform is metabolized rapidly in the liver by the cytochrome P-450 enzymes, but 

with the formation of phosgene (by oxidation) and by reduction to the dichloromethyl 

free radical. Both chloroform and/or these metabolites can cause depression of the central 

nervous system (CNS), hepatotoxicity, nephrotoxicity and cancer. 

For liquid samples, the protocol was left unchanged to allow the parallel extraction of 

liquid and solid samples. The optimal sample volume for liquids was determined using a 

small full factorial design. Full factorial design was preferred over FFD as optimizing just 

one parameter already significantly limits the number of trials needed. Different sample 

volumes (2.5-25 mL) were tested (in triplicate) and 5 mL was found to be the optimal 

sample volume, both in relative response per mL and signal-to-noise. 

4.2 DATA ANALYSIS AND QUALITY ASSURANCE OF THE ANALYTICAL METHOD: 

VALIDATION PROCEDURE ACCORDING TO EU COUNCIL DECISION 2002/657 AND 

AOAC GUIDELINES 

The analytical method was validated according to the criteria specified in CD 

2002/657/EC for quantitative confirmation, including quantitative performance of the 

used analysis method, accuracy, specificity, precision, linearity, LOD and LOQ and the 

AOAC MS criteria. 

4.2.1. Specificity 

Twenty non-fortified corn and barley samples (n = 20) were analyzed as well as 20 

samples of each fortified with the three most relevant phytosterols (β-sitosterol, 

campesterol and stigmasterol) and the ISTD cholesterol. Standard injections did not show 

any interference between the different components. In all grain samples (corn, oats and 

barley), a peak was found preceding the stigmasterol peak. Optimisation of UHPLC 

separation allowed to accurately distinguish this peak from the true stigmasterol peak 

based on the difference in retention time (relative retention time difference of minimally 
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10%). The newly developed UHPLC-MS/MS method was found specific for all three 

phytosterols and the ISTD in the presence of matrix components.  

4.2.2. Selectivity 

Analytes were identified based upon their relative retention time and a system of 

identification points (IPs). The most stringent EU Council Decision 2002/657 guidelines 

were used as the golden standard: they require a minimum of four IPs for confirmatory 

analysis. Both the precursor ion and product ions can be used as IPs. A LR-MS precursor 

ion can earn 1 IP and each transition product or product ion can earn 1.5 IP.  

For each component included in this UHPLC-MS/MS method, the precursor ion and at 

least three product ions were evaluated, amply meeting the identification point criterion. 

Additionally, the method yielded individual relative retention times with coefficients of 

variation smaller than 1%, well within the stated tolerance level of 2.5% for LC according 

to the 2002/657/EC and AOAC guidance documents. 

4.2.3. Calibration curves 

The linearity of the chromatographic response was assessed with calibration curves using 

barley samples fortified to produce nine calibration points. Based upon the minimal EEC 

in grains, as determined with preliminary standard addition experiments and previously 

published data, samples were spiked with 0, 0.25, 0.5, 1, 2, 4, 6, 8 and 10 times the 

minimal EEC in barley (1 mg for stigmasterol, 2.5 mg for campesterol and 10 mg/100 g 

for β-sitosterol). Linearity was evaluated through the coefficient of determination (R
2
) 

and lack-of-fit (F-test, SPSS 21, IBM, USA). A linear correlation (R
2 

>0.99) was seen 

between the added concentration of phytosterols and the detected chromatographic 

response for all compounds, for each nine-point calibration curve (n = 8). Additionally, 

the regression model equations, resulting from the lack-of-fit test, indicated linearity for 

all compounds, with F values lower than the F reference value (F-test, α = 0.05). 

4.2.4. Trueness: recovery 

The determination of trueness is assessed using certified reference material (CRM), if 

available. Alternatively, recovery can be determined during validation, if no certified 

reference material is available, as described under 4.1.2.1 (2002/657/EC). Trueness is 

then expressed as the recovery in spiked samples. Recovery is the percentage of the true 

concentration of a substance recovered during the analytical procedure.   
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The same set of samples (n = 6x3) was extracted and analyzed on four different occasions 

by two different operators. Recovery was calculated for each analyte in each sample. The 

mean recovery per level is given in Table 3 (p. 90). Recoveries (95-102%) are according 

to the strictest EU Council Decision 2002/657 guidelines for substances at concentrations 

≥10 μg/kg (such as phytosterols), a mean recovery of 80 to 110% should be reached 

(interval -20 to +10%).  

4.2.5. Precision 

Precision, the closeness of agreement between independent test results obtained under 

stipulated (predetermined) conditions and usually expressed in terms of imprecision and 

computed as standard deviation (%RSD) of the test result (definition 1.22 2002/657/EC). 

Less precision is determined by a larger %RSD or coefficient of variance (CV). One set 

of samples consisted of 18 aliquots of (n = 6x3) fortified with 1, 1.5 and 2 times the 

component specific EEC (6 samples per level, see linearity). 

To evaluate the precision of the developed analytical method, repeatability and within-

laboratory reproducibility were determined. Repeatability was confirmed by extracting 

and analyzing the same set of samples (n = 6x3) on three different occasions, by the same 

operator. The intralaboratory reproducibility was confirmed by repeating the above 

analysis (n = 6x3) by a different operator on a different occasion under different 

conditions in the same lab.  

Both validation characteristics were evaluated by calculating the relative standard 

deviations (%RSD) (Table 3, p. 90). These were within the ranges set by the CD 

2002/657/EC based upon the Horwitz equation, one of the acceptability criteria for many 

of the recently adopted chemical methods of analysis of AOAC International, the 

European Union, and other European organizations dealing with food analysis [20]. The 

Horwitz equation states that %PRSD = 2
(1-0.5logC)

 where C is the concentration found or 

added, expressed as a mass fraction. For concentrations exceeding 1 mg/kg (C = 10
-6

), 

maximal %RSD allowed is 16%. All %RSD calculated were below the postulated value, 

confirming good reproducibility and precision of the developed method. The low %RSD 

obtained (<10%) were significantly better compared to comparable methods, where 

%RSD easily exceeded 10% or they were not determined (Table 1, p. 80). 
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4.2.6. Limit of detection and quantification 

The limit of detection (LOD) and limit of quantification (LOQ) were determined 

according to ICH (International Conference on Harmonisation) 1) visual observation, 2) 

S/N ratio and, 3) based on the S.D. (σ) of response and slope. LOD respectively LOQ is 

then 3.3 or 10*σ/s with s the slope of the calibration curve of the respective compound 

and σ the S.D. of response, which can be obtained by standard deviation of “blank 

response”, residual standard deviation of the regression line, standard deviation of the y-

intercept of the regression line or Sy/x i.e. standard error of estimate. 

Based upon the S/N ratio LODs for the different compounds were between 0.01 and 0.03 

mg/100 g d.w.. For the LOQ, the same calculation was used, but with the cutoff at S/N 

>10, and the LOQs amounted between 0.02 and 0.10 mg/100 g d.w.. LODs and LOQs 

calculated based on the S.D. (σ) of response and slope are presented in Table 3 (p. 90), 

together with all other performance characteristics of the validation procedure performed.  

As no phytosterol-free, vegetable matrix was available, the mathematically determined 

LODs could not be confirmed by adding the corresponding concentration of each 

component to a pooled phytosterol-free sample. The obtained and confirmed LODs were 

very low compared to other previously published GC-MS/GC-FID or PAD methods. The 

LOD of 0.01- 0.03 mg/100 g is significantly better than the LOD of 0.5 mg/100 g and 

0.16 mg/100 g described by other authors [20,22]. Other authors only calculated the 

limits of detection (LOD) and quantification (LOQ) in solvent. Nair et al. (2006) 

determined that the LOD and LOQ were 2 and 5 μg/ml, respectively, which is more 

sensitive than obtained by photo diode array detection (5 and 7 μg/ml), however far less 

sensitive than the LODs and LOQs in solvent, as determined for our UHPLC-MS/MS 

method (0.01 μg/mL). Additionally, the LOQs in liquid (beer) samples in our study were 

lower than 0.05 μg/mL. 

In conclusion, the validation of this method following both Council Decision 

2002/657/EC and AOAC guidelines exceeds the less extensive quality assurance 

procedures used by other authors (Table 1, p. 80). Additionally, the (relative) retention 

times of the different compounds are very stable over time (<2% variation). Due to the 

structural similarity of phytosterols, long HPLC separations (up to 80 min) are often 

required to separate these compounds [23]. However, the UHPLC and selectivity of 
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tandem mass spectrometric (MS-MS) detection can facilitate quantitative analysis of 

overlapping peaks and thereby allow shorter chromatographic runs (10 min) [24]. 

4.3 QUANTITATIVE ANALYSIS OF DIFFERENT FEED AND FOOD SAMPLES 

The applicability of this newly optimised method was confirmed by analysing various 

grains and other solid feed and food samples (Table 4, p. 94) and liquid samples, such 

as fruit concentrate-based juices, a soft drink and different beer samples (Table 5, p. 95). 

To ensure exact and correct quantification all feed samples were rigorously homogenized 

and identical subsamples were taken. If possible, obtained phytosterol concentrations 

were compared to available GC-MS and GC-FID results. Samples were extracted on two 

different occasions and on each occasion a nine-point calibration curve with three 

additional blank samples was extracted (n =2x12 samples) for quantification purposes. 

The newly developed extraction and detection method was found to be applicable on 

different complex feed and food matrices, allowing to quantify phytosterols present in 

different matrices, including matrices that have been evaluated in previous studies, but 

also not yet investigated matrices [25]. 

Grains have been a matter of study for the past decade, as they are generally regarded as 

good sources of phytosterols. Normen et al. (2002) reported 28.1, 37.0, 22.5, and 68.3 mg 

of total phytosterols per 100 g of wheat flour, corn flour, rice flour, and rye flour [26]. 

Ryan et al. (2007) extracted finely ground grains with hexane/isopropanol (3:2, v/v) and 

found total phytosterols in corn, barley, millet, rye, and buckwheat to be 43.6, 50.4, 57.8, 

75.9, and 106.5 mg per 100 g of the grains, respectively [18].  

Importantly, when different cultivars and harvest years were being compared total 

phytosterols (in rye) were in the range of 76.1–100.7 mg per 100 g flour [27], compared 

to 75.9 mg (Ryan et al., 2007) and 68.3 mg per 100 g flour (Normén et al., 2002), 

highlighting the influence of the harvest year, cultivar and analytical method used on the 

detected concentrations of phytosterols in grains. These differences were confirmed by 

Piironen et al. (2002), who used GC with a mass spectrometer (MS) for identification, 

when two cultivars of rye, wheat, barley, and oats grown in the same year were 

compared. The highest plant sterol content was observed in rye (mean content 95.5 

mg/100 g), whereas the total sterol contents (mg/100 g) of wheat, barley and oats were 

69.0, 76.1, and 44.7, respectively. In addition, the comparison of 10 rye cultivars and 

breeding lines had total sterol contents of 70.7–85.6 mg/100 g [21]. These results are in 
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line with the results obtained in the current study, using the newly developed and 

validated extraction and UHPLC-MS/MS detection method for barley as well as for oats 

and corn (Table 4). 

Table 4. Concentrations of β-sitosterol, stigmasterol and campesterol detected in different grains 

(oats, barley, corn and malt), feed (grass, hay, straw and yellow peas) and food samples (apple, 

tomato and hop), determined using the newly optimised and validated extraction and UHPLC-

MS/MS method. 

Matrix Compound 

Endogenous 

concentration 

(mg/100 g d.w.) 

Endogenous 

concentration 

(mg/100 g f.w.) 

R
2*

 

Barley  

96% d.w.  

(Horleum vulgare) 

Stigmasterol 2.8 ± 0.4 2.7 ± 0.4 0.995 

Campesterol 8.1 ± 0.8 7.8 ± 0.8 0.998 

-sitosterol 31 ± 3 30 ± 3 0.998 

Barley malt  

96% d.w.  

(Horleum vulgare) 

Stigmasterol 2.2 ± 0.2 2.1 ± 0.2 0.990 

Campesterol 8.9 ± 0.4 8.5 ± 0.4 0.993 

β-sitosterol 39 ± 2 37 ± 2 0.997 

Corn 

94% d.w. 

(Zea mays)  

Stigmasterol 4.0 ± 0.5 3.8 ± 0.4 0.993 

Campesterol 18 ± 1 17 ± 1 0.995 

-sitosterol 60 ± 3 56 ± 3 0.991 

Oats 

96% d.w. 

(Avena sativa) 

Stigmasterol 0.6 ± 0.1 0.6 ± 0.1 0.999 

Campesterol 3.0 ± 0.1 2.9 ± 0.1 0.999 

Β-sitosterol 20 ± 2 19 ± 2 0.999 

Grass 

26% d.w. 

(Lolium perenne) 

Stigmasterol 1.6 ± 0.1 0.4 ± 0.0 0.993 

Campesterol 16 ± 1 4.2 ± 0.3 0.991 

β-sitosterol 113 ± 8 29 ± 2 0.967 

Straw 

90% d.w. 

(Triticum) 

Stigmasterol 17 ± 1 15 ± 1 0.990 

Campesterol 14 ± 1 

48 

13 ± 1 0.992 

β-sitosterol 48 ± 4 44 ± 4 0.994 

Yellow peas 

87% d.w. 

(pisum sativum L.) 

Stigmasterol 4.7 ± 0.3 4.1 ± 0.3 0.994 

Campesterol 10 ± 0 8.7 ± 0.3 0.996 

β-sitosterol 67 ± 3 58 ± 3 0.992 

Hay 

92% d.w. 

(mixed) 

Stigmasterol 17 ± 1 16 ± 1 0.987 

Campesterol 33 ± 2 31 ± 2 0.983 

β-sitosterol 141 ± 9 130 ± 8 0.990 

Hop 

93% d.w. 

(Humulus lupulus) 

Stigmasterol 3.2 ± 0.2 3.0 ± 0.2 0.996 

Campesterol 9.8 ± 0.3 9.1 ± 0.3 0.997 

-sitosterol 127 ± 8 118 ± 7 0.999 

Red tomato 

6% d.w. (flesh) 

(Solanum lycopersicum) 

Stigmasterol 5.4 ± 0.4 0.3 ± 0.0 0.997 

Campesterol 1.5 ± 0.1 0.1 ± 0.0 0.993 

β-sitosterol 4.3 ± 0.5 0.3 ± 0.0 0.990 

Apple 

17% d.w. (flesh) 

(Malus domestica ‘Jonagold’) 

Stigmasterol 0.3 ± 0.0 0.05 ± 0.01 0.999 

Campesterol 1.5 ± 0.2 0.26 ± 0.04 0.999 

β-sitosterol 65 ± 5 11 ± 1 0.999 

* Mean R2 of two calibration curves extracted at two different occasions  
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Table 5. Concentration of β-sitosterol, stigmasterol and campesterol detected in concentrate-

based drinks and beers, using the newly optimised and validated extraction and UHPLC-MS/MS 

method. 

Matrix Compound 

Endogenous 

concentration 

(μg/100 mL) 

R
2*

 

Orange juice 

from concentrate 

 

Stigmasterol 20 ± 2  0.995 

Campesterol 71 ± 5 0.994 

-sitosterol 421 ± 38 0.990 

Apple juice 
from concentrate 

Stigmasterol 3 ± 0 0.998 

Campesterol 27 ± 3 0.994 

β-sitosterol 207 ± 10 0.994 

Soft drink 
6% orange concentrate 

Stigmasterol 19 ± 1 0.992 

Campesterol 73 ± 3 0.990 

β-sitosterol 479 ± 34 0.997 

Lager beer 
5.2% vol 

Stigmasterol 3 ± 1 0.998 

Campesterol 24 ± 5 0.993 

β-sitosterol 200 ± 38 0.992 

Old brown beer 
6% vol 

Stigmasterol 3 ± 0 0.991 

Campesterol 26 ± 3 0.996 

β-sitosterol 182 ± 39 0.992 

Kriek lambic beer 
6% vol 

400 g/L wild cherries 

 

Stigmasterol 3 ± 0 0.990 

Campesterol 25 ± 2 0.991 

β-sitosterol 179 ± 26  0.993 

Ale  
8% vol 

Double hop 

Stigmasterol 4 ± 0 0.996 

Campesterol 30 ± 3 0.998 

β-sitosterol 255 ± 20 0.999 

* Mean R2 of two calibration curves extracted at two different occasions 

Dry peas (Pisum sativum L.) (Table 4, p. 94) have the largest production volume of all 

special crops in Canada and the US. Thus far, claims have been made regarding the 

cholesterol lowering properties of these dry peas, yet limited data was available regarding 

the exact phytosterol content. According to EC guidelines seedlings of peas contain 0.1 – 

0.2% phytosterols [28]. The yellow peas analysed in this study showed to contain 

respectively 4.7 ± 0.3 mg stigmasterol, 10 ± 0 mg campesterol and 67 ± 3 mg β-sitosterol 

per 100 g f.w., proving that yellow peas are indeed a good source of phytosterols, 

containing comparable levels of phytosterols as grains.  

Apples (Malus domestica “Jonagold”) were found to contain stigmasterol (0.05 ± 0.01 

mg/100 g f.w.), campesterol (0.3 ± 0.0 mg/100 g f.w.) and β-sitosterol (11.0 ± 0.8 mg/100 

g f.w.). These values are slightly lower than the concentrations measured by Piironen et 

al. (2002). They detected but were not able to quantify stigmasterol and found 0.9 ± 0.0 



CHAPTER III 

96 

 

mg campesterol and 15.7 ± 0.4 mg β-sitosterol /100 g f.w. This can be due to the 

difference between “Jonagold” and “BORKH” apple species and the fact that the values 

obtained for Malus domestica “Jonagold” only included the eatable flesh of the fruit and 

not the peel and seeds. Apple seeds and apple seed oil are frequently sold as phytosterol 

rich supplements. Other sources refer to 12 mg total phytosterols/100 g f.w. as the 

reference value for apples [16], and the latter is very close to the sum of the 

concentrations found for apples in this study, again confirming the applicability of the 

newly developed extraction and detection method. 

Previous research by Muller et al. (2007) and Rapota and Tyrsin (2015) indicated that 

sitosterol from beer (Table 5, p. 95) and hop (Table 4, p. 94) could also potentially 

compete with cholesterol for protein binding and uptake. However, Rapota and Tyrsin 

were only able to qualitatively determine the presence of phytosterols in malt and hop, no 

quantitative data were reported, yet included in the future perspectives [29]. Muller et al. 

(2007) on the other hand was able to proof the presence of β-sitosterol in four beers, but 

the concentrations found were below or very close to the LOD of the in this study applied 

extraction and detection method (5 ng/g freeze-dried beer). In Weiss beer they found 7 ng 

β-sitosterol/g freeze dried beer [30].  

With the new UHPLC-MS/MS method we were able to quantify β-sitosterol, campesterol 

and even stigmasterol in all beers tested so far (Figure 4, p. 97). Moreover, we were also 

able to accurately measure phytosterols in hop, barley and barley malt.  

Other beverages such as juices (orange and apple juice) and an orange concentrate-based 

soft drink were also put to the test. Orange juice and an orange based soft drink were 

found to contain the highest amounts of phytosterols, compared to the apple juice and 

beers, which contained similar concentrations of phytosterols (Figure 5, p. 98). The 

highest concentration of phytosterols in beers was measured in the artisanal Ale (Bijloke, 

Ghent, Belgium), probably due to the fact that the original extract of this beer (17.3 °P), 

in most cases a good indicator of the grain bill, is significantly higher than the original 

extract of the other beers (13.4 ± 1.6 °P). 
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Figure 4. Comparison of the chromatograms obtained using UHPLC–MS/MS. (A) Standard 

injection of cholesterol, stigmasterol, campesterol and β-sitosterol, (B) Blank lager beer sample 

with added cholesterol (ISTD, 0.2 μg/mL) (C) Lager beer sample fortified with stigmasterol (0.18 

μg/mL), campesterol (0.9 μg/mL) and β-sitosterol (6 μg/mL).  
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Figure 5. Concentrations of β-sitosterol, stigmasterol and campesterol detected in fruit 

concentrate-based juices and beers, determined using the new detection method. 
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5. CONCLUSION 

In this study, A FFD statistical design was successfully applied to optimize phytosterol 

extraction from food and feed samples. This resulted in the discrimination of seven 

influential factors for which the most optimal conditions were perfected. Compared to 

previous methods, the optimized extraction protocol is generic, less labor intensive and 

no derivatisation with e.g. tri-methylsilylether is needed. Moreover, a new UHPLC-

MS/MS method, allowing to adequately separate the main phytosterols in a 10-min run 

time, was developed. The combined extraction and UHPLC-MS/MS detection method 

was fully validated according to EC/2002/657 and AOAC MS guidelines and complied to 

all evaluated performance characteristics. The individual recoveries in fortified samples 

ranged between 95 and 102%. Good results for repeatability and intra-laboratory 

reproducibility (RSD%) were observed (<10%). Excellent linearity was proven based on 

determination coefficient (R
2
 >0.99) and lack-of-fit test (F test, α = 0.05). The calculated 

LOD and LOQ were very low, 0.01 to 0.03 and 0.02 to 0.10 mg/100g, respectively, 

compared to previously published methods. Additionally, it was shown our new method 

allows to quantify the main phytosterols in different grains and in other, both liquid and 

solid, feed and food samples. Also in some novel matrices, which had not been analysed 

for phytosterols before, such as hop, yellow peas, grass, hay, straw and different beers 

and concentrate-based fruit juices, all three phytosterols could be quantified propitiously, 

even in the latter low-in-phytosterol matrices.  

5.1 HIGHLIGHTS 

 Optimisation of phytosterol extraction using a Fractional Factorial Design  

 Full-fledged validation of phytosterol extraction and detection 

 UHPLC-MS/MS as a valid alternative for less sensitive GC methods 

 Confirmation of previously determined phytosterol levels in grains 

 Phytosterol quantification in yet unexplored matrices such as roughage  
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CHAPTER IV 

1. ABSTRACT 

Traditionally, most androgenic steroids other than testosterone, and testosterone 

metabolites and precursors, are considered to be synthetic, anabolic steroids. 

Nevertheless, in stallions, it has been shown that βBol can originate from naturally 

present testosterone. Other precursors, including phytosterols from feed, have been put 

forward to explain the prevalence of low levels of steroids (including βBol and ADD) in 

urine of mares and geldings. However, the possible biotransformation and identification 

of the precursors has thus far not been investigated in horses. To study the possible 

endogenous digestive transformation, in vitro simulations of the horse hindgut were set 

up, using fecal inocula obtained from eight different horses. The functionality of the in 

vitro model was confirmed by monitoring the formation of short-chain fatty acids and the 

consumption of amino acids and carbohydrates throughout the digestion process. In vitro 

digestion samples were analyzed with a validated UHPLC–MS/MS method. The addition 

of βBol gave rise to the formation of ADD (androsta-1,4-diene-3,17-dione) or αT. Upon 

addition of ADD to the in vitro digestions, the transformation of ADD to βBol was 

observed and this for all eight horses’ inocula, in line with previously obtained in vivo 

results, again confirming the functionality of the in vitro model. The transformation ratio 

proved to be inoculum and thus horse dependent. The addition of pure phytosterols 

(>50% β-sitosterol) or phytosterol-rich herbal supplements on the other hand, did not 

induce the detection of βBol, only low concentrations of AED, a testosterone precursor, 

could be found (0.1 ng/mL). As such, the digestive transformation of ADD could be 

linked to the detection of βBol, and the consumption of phytosterols to low 

concentrations of AED, but there is no direct link between phytosterols and βBol. 

 

 

 

Keywords 

In vitro digestion - Hindgut - Equine  

Anabolic steroids - Endogenous – Phytosterols 
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2. INTRODUCTION 

Uncovering doping abuse is a hot topic in today’s high-level horse sport industry, 

including Olympic disciplines and racing, to prevent unfair advantages and to prevent 

horses from further damaging themselves by masking pain, or competing above their 

personal limits. Therefore, the presence of hundreds of forbidden substances such as 

narcotics, psychoactive drugs, corticosteroids and anabolic steroids is being controlled. 

Of the steroids the natural androgenic steroid testosterone is best known to the public. 

Closely related to testosterone (βT) in terms of chemical structure are, epitestosterone 

(αT), AED (androst-4-ene-3,17-dione), ADD (androsta-1,4-diene-3,17-dione) and βBol 

(androsta-1,4-diene-3-one-17β-ol or 1,2-dehydrotestosterone) (Figure 1).  

 

Figure 1. Illustration of the closely related chemical structure of phytosterols and anabolic 

steroids. For the phytosterols, β-sitosterol, the most abundant phytosterol, is shown. The 

suggested microbial side chain cleavage is indicated with a dashed line (- - -). Campesterol and 

stigmasterol differ from β-sitosterol in the side chain double bond at C22 and the substituents at 

C24.   



   CHAPTER IV  

107 
 

For a very long time boldenone was considered to be a synthetic hormone and zero-

tolerance was maintained. As the number of boldenone-positive urine samples was 

increasing, partly thanks to the constantly improving analytical capabilities (limit of 

detection) of the European laboratories as a function of time. The question arose whether 

this was also due to illegal treatment of animals or if boldenone could be of natural origin 

[1]. As mentioned in chapter III, boldenone could be formed from, the chemically closely 

related, phytosterols naturally present in plant material (feed). In this respect, the 

substitution in animal feed of animal fat by fat from vegetable origin, due to the crises 

from bovine spongiform encephalopathy and polychlorobiphenyl, might be related.  

Indeed, boldenone has been shown to be naturally present in bovine urine and feces [1–3] 

whereas Pompa et al. (2006) described de novo synthesis of boldenone in cattle feces [4]. 

Moreover, βBol has been detected in urine from entire male horses [5,6]. According to 

these findings the IFHA (International Federation of Horseracing Authorities) and FEI 

(Fédération Equestre Internationale) set a threshold for boldenone at 15 ng free and 

conjugated boldenone per milliliter in urine from male horses (other than geldings) [7,8]. 

The presence of boldenone in urine from mares or geldings is however still illegal.  

Nevertheless, our previous research has demonstrated that AED and ADD, which are next 

to testosterone the main suspected precursors of boldenone [9], can be present in urine of 

both untreated geldings and mares at low parts-per-billion levels [10]. In the urine of one 

AED producing gelding even a low concentration (1.0 ng/mL) of boldenone was found 

(See also chapter II). AED and ADD may originate from the microbial side chain 

cleavage of phytosterols (e.g. β-sitosterol) (Figure 1, p. 106).  

Phytosterols are omnipresent in plants, regulating the fluidity of cell membranes and 

featuring in cellular differentiation and proliferation, just like cholesterol in animals 

[11,12]. The three major phytosterols are β-sitosterol, stigmasterol and campesterol 

(Figure 1, p. 106); they differ in the side chain double bond at C22 and the substituents at 

C24. All three types make good raw materials for the production of steroid hormones 

because of their typical A-ring molecular structure with a 3β-hydroxyl group and a 5,6-

double bond. The C19-steroids, which include AED, ADD and testosterone, are the 

products of complete (microbial) side chain cleavage of phytosterols.  
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This conversion of phytosterols to steroids has been frequently reported in different 

biological systems, mainly involving a variety of microorganisms [13] such as 

Mycobacterium sp. [14–16], Arthrobacter and Nocardia sp. [17]. In addition, a number of 

studies have been devoted to the ability of invertebrate organisms to convert phytosterols 

into anabolic steroids: maggots of Lucilia Sericata [9], Crustaceae [18] and zebra fish 

[19]. However, this biotransformation of phytosterols to steroid hormones has thus far not 

been demonstrated in horses. For other compounds, it has been proven that the oral 

uptake of feed contaminants can lead to the detection of these contaminants in the 

horse’s urine. Selection of feed materials appears to be of great importance to prevent 

involuntary positive result to anti-doping tests [20].  

To elucidate the endogenous origin of AED or ADD in horses and the possible 

transformation pathways to forbidden substances such as boldenone, a good experimental 

set-up was needed to study the horse’s digestive metabolism. Horses are hindgut 

fermenters: the hindgut, caecum and colon, comprises roughly two thirds of the volume 

of the equine digestive tract [21]. As such, horses are especially adapted to grazing 

continually on marginal forages [22]. Complex plant material is fermented by microbes in 

the hindgut to short chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, 

which provide 60–70% of the daily energy needs of the horse [23].  

In vitro incubation systems have been developed to simulate the gastrointestinal tract 

(GIT) of humans [24] and many different animals [25]. Such in vitro digestions were used 

to monitor digestion and passage rates [26] and transformations of different compounds 

e.g. phenolic compounds [27]. Generally, using an in vitro batch system enhances 

reproducibility; unlike when using an in vivo set-up, reaction parameters can be 

standardized. Though the use of these types of batch cultures has its limitations, i.e. 

absence of gastrointestinal absorption and lack of interaction with the host colonic 

mucosa, in vivo studies were not considered here due to lack of versatility in terms of 

mechanistic explorative potential as well as time consuming and costly nature [28]. Using 

in vitro digestion simulations allows to avoid the use of living animals, limiting 

experimental costs and ethical constraints. 

In this case, an in vitro incubation system allows studying transformation reactions taking 

place in the hindgut. As no standardized horse gut simulation protocol was available 

[29], the in vitro digestive simulation protocol applied during this study was adapted from 
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previously reported in vitro models, simulating the upper and lower gastrointestinal tract 

of bovines, porcines and humans [30–34]. A recent study however confirmed the valuable 

use of in vitro assays to study the horse hindgut, using an in vitro digestion assay to 

identify lactate-utilizing bacteria that differentially respond to starch induction, in the 

light of laminitis in horses [23]. The by Biddle et al. (2013) in vitro obtained results were 

in line with previous in vivo results described by other authors [35] and the by Biddle et 

al. (2013) applied in vitro incubation protocol [36] was very similar to the protocol used 

in the current study.  

The specific advantages of batch cultures for this study lie with the fact that they allow to 

focus on the fermentation reactions taking place in the hindgut, and they enable the use of 

different fecal inocula (horses) in a short time frame, without ethical constraints. The in 

vitro batch incubations performed only simulate the hindgut fermentation processes, as 

they are thought to be responsible for the endogenous origin of AED and ADD: complex 

fermentation reactions only take place in the caecum and colon, the enzymatic activity 

measured in the foregut of horses [37] is fairly low: the α-amylase activity was estimated 

between 10 and 50 U/g [38] compared to 3500 U/g for other species such as humans and 

pigs [39].  

As such, this study aimed to evaluate the use of in vitro digestions as a tool to imitate in 

vivo hindgut fermentation and, by varying the supplied precursors (steroids, phytosterols 

or entire feed) and using inocula from eight different horses, to elucidate the possible 

endogenous digestion transformation pathways taking place in the horse’s hindgut. 

Samples were analyzed with a new, sensitive UHPLC–MS/MS method, validated 

according to EC (EU Council Decision 2002/657) and AORC (Association of Official 

Racing Chemists) guidelines [10]. 

3. MATERIAL AND METHODS  

3.1. LC–MS
2 

REAGENTS AND CHEMICALS  

α-testosterone (androst-4-ene-17α-ol-3-one, αT, purity ≥99%), β-testosterone (androst-4-

ene-17β-ol-3-one, βT, purity ≥99%), methyltestosterone (androst-4-ene-17α-methyl-17β-

ol-3-one, MT, purity ≥99%), androstadienedione (androsta-1,4-diene-3,17-dione, ADD, 

purity ≥99%), proteinase type XXIII from Aspergillus melleus (3 enzyme units per 
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milligram) and β-glucuronidase (Helix pomatia, aqueous, >100.000 units per milliliter) 

were purchased from Sigma–Aldrich (St-Louis, US). Androstenedione (androst-4-ene-

3,17-dione, AED, purity ≥99%), α-boldenone (androsta-1,4-diene-17α-ol-3-one, αBol, 

purity ≥99%) and β-boldenone (androsta-1,4-diene-17β-ol-3-one, βBol, purity ≥99%) 

were obtained from Steraloids (Newport, US). Progesterone (purity ≥99%) was obtained 

from Alpha Pharma (Omega Pharma, Zwevegem, Belgium). Methanol Optima, was 

bought at Fisher Scientific, UK Limited (Leicestershire, UK). Diethyl ether, ethyl acetate, 

sodium hydroxide, methanol (analytical grade), H2SO4, KH2PO4 and formic acid (98–

100%, analytic grade) were purchased from VWR (Merck, Darmstadt, Germany). 

Solvolysis solvent consisted of 900 mL ethyl acetate, 95 mL methanol and 5 mL H2SO4 

per liter. The HF Bond Elut-C18 cartridges (6 mL, 500 mg) were obtained from Agilent 

Technologies (Diegem, Belgium). HPLC grade, ultrapure water was acquired from an in-

house water purification system (Arium 611UV, Sartorius Stedium Biotech, VWR, 

Haasrode, Belgium).  

Stock solutions of each steroid were made in methanol Optima at 1000 and 200 ng/mL. 

Dilutions up to 1 pg/mL were made in methanol Optima. All solutions were kept at 4 °C.  

3.2 IN VITRO DIGESTION: BATCH INCUBATIONS  

3.2.1. Buffers and broths  

Digestion and fecal inoculum buffers were prepared in ultrapure water and autoclaved 

(121 °C, 15 min, 1 atm). All further handlings of the in vitro digestion were done in a 

laminar flow cabinet. Fecal inoculum buffer contained K2HPO4 (8.8 g/L), KH2PO4 (6.8 

g/L) (Merck, Darmstadt, Germany), and sodium thioglycolate (1.0 g/L) (Sigma–Aldrich, 

Steinheim, Germany). BHI (Brain Heart Infusion) broth (Oxoid, Hampshire, England) 

ready to use powder was dissolved in ultrapure water (37 g/L). L-cysteine (0.5 g/L) 

(SAFCSupply Solutions, St. Louis, MO) was added to improve anaerobicity [40]. CPB 

(Cysteine Peptone Bouillon) consists of a mixture of 5 g yeast extract (AppliChem, 

Darmstadt, Germany), 1 g peptone (Oxoid, Hampshire, England), 8.5 g NaCl (Merck, 

Darm-stadt, Germany), 0.5 g L-cysteine and 10 mL haemine solution (Sigma–Aldrich, 

Steinheim, Germany) in 1 L ultrapure water (Table 1, p. 111) [41]. 
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Table 1. Formula of CPB compared to BHI medium. 

Formula CPB BHI 

Yeast extract 5.0 g / 
Beef Heart Infusion 

Solids 

/ 5.0 g 

Brain infusion solids / 12.5 g 

Peptone 1.0 g 10.0 g 

NaCl 8.5 g 5.0 g 

Na2HPO4  2.5 g 

L-cysteine 0.5 g 0.5 g 

haemine 2 mg / 

NAD 4 mg / 

UP H2O 1 L 1 L 

Haemine solution was prepared by adding 2 mL concentrated NH4OH solution (25%, 

Merck, Darmstadt, Germany) and 0.1 g haemine to 500 mL sterile ultrapure water and 

sterilized afterwards (121 °C, 15 min, 1 atm). After filtration over a 0.45 mm filter 

(Merck, Darmstadt, Germany), pH was adjusted to 7.0 and sterilized again. Under sterile 

conditions 0.25 mL of nicotinamide adenine dinucleotide (Sigma–Aldrich, Steinheim, 

Germany) solu-tion in water (2 mg/mL) was added. The total solution was mixed and 

stored at 4 °C until use. BHI agar plates were prepared with ultra-pure water and 37 g/L 

BHI, 12 g/L agar and 0.5 g L cysteine (Oxoid, Hampshire, England).  

3.2.2. Fecal inoculum  

To simulate the hindgut fermentation reactions in the in vitro batch incubation, a fecal 

inoculum is required. Fresh fecal matter was collected from adult mares and geldings 

(8–18 years old) during spontaneous discharge. As spontaneously voided samples were 

collected, and the horses were not given any medication or treatment, according to the 

latest Belgian and European animal welfare rules (RD 29th May 2013, published on the 

10th of July), they are not considered to be experimental animals. As such, the authors 

state to have followed the principles outlined in the Declaration of Helsinki for all animal 

experimental investigations. In addition, informed consent has been obtained from the 

owners, horses were owned by the author herself or horses belonging to the faculty 

(Faculty of Veterinary Medicine, Merelbeke, Belgium); their medical history was known 

and well documented. Horses were guaranteed to be untreated with AAS or other 

treatments that are known to interfere with the excretion of AAS.  

All horses were Belgian Warmblood Horses (B.W.P.) or Royal Dutch Sport Horses 

(K.W.P.N) and on a standard but non-controlled diet of concentrate (2–4 kg/day), hay (8–
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10 kg/day) and straw as their bedding material, combined with pasture access for several 

hours a day. The fresh fecal matter was kept anaerobic (in a firmly closed bag) to protect 

it from oxygen exposure. Samples were at 37 °C during transport, before further 

processing in the lab. Fecal slurry was made by adding 1/5 fecal phosphate (v/v) 

buffered saline and homogenization in a stomacher for 10 min. The suspension was 

transferred into 50 mL falcon tubes and centrifuged at 500 x g for 5 min, removing large 

fibers. To the supernatant glycerol (99.5%) (Analar Normapur, Fontenay-sous-Bois, 

France) was added at a 20% (v/v) ratio, which was gently mixed under atmospheric 

conditions, before storage at -80 °C [42]. 

3.2.3. Digestion protocol and sampling  

Dark, autoclaved 125 mL penicillin flasks were used to avoid light and UV influences. 

To 45 mL medium (CPB or BHI broth), 5 mL of the fecal inoculum was added. The 

following supplements (see below for complete list) were added depending on the 

experimental set-up: steroids, phytosterols or phytosterol-rich herbal supplements. When 

adding phytosterols (50% β-sitosterol), 0.2% (v/v) Tween 80 was added to the in vitro 

digestion to increase solubility of the hydrophobic phytosterols [43]. The flasks were 

capped and anaerobic conditions were established using a flush system for 1 h, 

alternating every 2 min between N2 (1 bar) and vacuum suction. The anaerobic conditions 

in flasks were confirmed using resazurin-saturated test strips. The flasks were then 

incubated for 72 h (37 ± 0.5 °C, 150 rpm) (Innova 42 series, incubator shaker series, New 

Brunswick Scientific), conform the maximal expected in vivo retention time in the 

hindgut (48 to 72 h) [44]. 

Samples (3 mL) were taken after 0, (12), 24, 48 and 72 h of incubation. Sampling was 

done as secure and standardized as possible using syringes, causing as little disturbance as 

possible to the bacterial environment. Incubations were gently stirred to homogenize 

before sampling. Samples were stored at -20 °C prior to extraction.  

3.2.4. Validation of the in vitro digestion protocol 

To confirm the functionality of the in vitro model confirmatory experiments have been 

performed assessing the microbiological growth and bioactivity of the hindgut flora in the 

in vitro digestion simulation, validating the use of in vitro digestion batch incubations as a 

tool to study equine hindgut fermentations. Microorganism-associated activities were 

monitored as described by Kiebooms et al. (2012), Biddle et al. (2013) and Molly et al. 
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(1994). Molly et al. (1994) used the same confirmatory methods to validate the Simulator 

of the Human Intestinal Microbial Ecosystems (SHIME) in vitro reactor [23,30,45].  

Short-chain fatty acids (SCFA) (acetic acid, phenylacetic acid, propionic acid, 3-

phenylpropionic acid, 3,4-dihydrophenylpropionic acid, butyric acid, isobutyric acid, 3-

hydroxybutryric acid, valeric acid, isovaleric acid and 4-methylvaleric acid) were 

monitored in samples taken during the in vitro batch incubations (0 and 72 h) and 

analysed using an ultra-high performance liquid chromatograph (UHPLC, 2.1 x 150 mm 

Acquity UPLC HSS T3 1.8 µm) coupled to an Orbitrap high-resolution mass 

spectrometer (Thermo Fisher Scientific, Exactive
TM

), according to Vanden Bussche et 

al., 2014 [46]. The production of SCFAs throughout the in vitro digestion simulation was 

used as a quality control parameter by Biddle et al., (2013), for an equine in vitro 

digestion simulation, and Molly et al. (1994), to validate the SHIME reactor system 

[23,45].  

Amino acids (L-lysine, L-threonine, L-alanine, L-serine and L-phenylalanine) were 

monitored in samples during the in vitro batch incubations (0 and 72 h) and analyzed 

using an ultra-high performance liquid chromatography (UHPLC, 2.1 x150 mm Acquity 

UPLC HSS T3 1.8 µm) coupled to an Orbitrap high-resolution mass spectrometer 

(Thermo Fisher Scientific, Exactive
TM

). Cadaverine, the decarboxylation product of the 

amino acid lysine, was monitored as well (Vanden Bussche et al., 2014) [46].  

Carbohydrate metabolism was also monitored during the in vitro batch incubations (0 

and 72 h) using an ultra-high performance liquid chromatograph (UHPLC, 2.1 x 150 mm 

Acquity UPLC HSS T3 1.8 µm) coupled to an Orbitrap high-resolution mass 

spectrometer (Thermo Fisher Scientific, Exactive
TM

). Glucose levels were confirmed 

quantitatively by analyzing the in vitro digestion samples with a Dionex Ion 

Chromatograph (ICS-3000, Thermo Scientific
TM

 Dionex
TM

) method developed by 

Vanbeneden et al. (2006) [47].  

To evaluate the rate of bacterial fermentation, pH of the digestive samples was 

monitored over time (Seven Easy pH, Mettler Toledo, Schwerzenbach, Switzerland). 

Absorbance or optical density measured at a wavelength of 600 nm (OD600) was used as 

a measurement of biomass over time, an indication of cell density (Eppendorf 

BioPhotometer, Hamburg, Germany). All samples were diluted (2, 4, 8–16 times) as the 
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relationship between OD and biomass concentration only approximates to linearity at low 

OD values (<0.5). Recalculated OD values were then plotted against incubation time.  

Additionally, total anaerobic bacteria were counted after 48 and 72 h of fermentation. 

One milliliter of in vitro digestion sample was serially diluted (10-fold) using a sterile 

peptone solution (1 g/L peptone, 0.4 g/L agar, 8.5 g/L NaCl, and 0.5 g/L cysteine), and 

spirally plated (EddyJet, IUL instruments, Barcelona, Spain) onto BHI agar plates (37 g/L 

BHI, 12 g/L agar and 0.5 g L cysteine) (Oxoid, Hampshire, England). After incubating 

the plates for 48 h at 37 °C (Led Techno lab equipment, Termaks incubator, Eksel, 

Belgium), colony-forming units (CFU) were counted and expressed as log10 CFU/mL in 

vitro digestion and compared to in vivo reference values. BHI agar is an enriched non-

selective medium for the isolation and cultivation of most anaerobic bacteria and other 

fastidious microorganisms. The basic nutritive properties are brain heart infusion from 

solids as well as meat peptones, with the addition of yeast extract. This medium was 

supplemented with haemin and vitamin K1 as growth factors for most anaerobic bacteria. 

3.2.5. In vitro digestion supplements  

Steroids that were used as supplements to the in vitro digestion were of analytical quality 

(see 3.1, purity ≥99%), including α-testosterone (αT), β-testosterone (βT), androsta-1,4-

diene-3,17-dione (ADD), androst-4-ene-3,17-dione (AED), β-boldenone (βBol) and 

Progesterone (P). Phytosterols (50% β-sitosterol) were purchased from Sigma–Aldrich 

(St-Louis, US). Polysorbate 80 (Tween 80) is a nonionic surfactant and emulsifier derived 

from polyethoxylated sorbitan and oleic acid. By adding 0.2% Tween 80 (v/v) to the 

medium up to 2 g/L of the hydrophobic substrate β-sitosterol can be solubilized [49].  

For horses, the consumed concentration of phytosterols can be calculated based on the 

average diet of a normal size horse (500 kg), consuming 3% of his body weight in dry 

matter a day (15 kg) [50]. For sport horses this dry matter is mostly (up to 60%) supplied 

through energy rich grain mixtures, the so-called concentrates (9 kg/day) [51]. Those 

grains can be very rich in phytosterols. Corn, which is often used in horse feed, contains 

up to 1.3 g of phytosterols per kg dry weight (d.w.) [52]. Even a simple apple or carrot 

contains respectively 1.5 and 1.4 g/kg d.w.[53]. Additionally, linseed-, soy- or corn oil 

(5–10 g phytosterols per kilogram) is frequently added to the diet to prevent impaction 

colic, to improve the coat condition or to easily add calories to the diet [54]. The addition 

of extra fat raises the energy density of feeds, which is advantageous for sport horses with 
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high-energy requirements. As such, a sport horse will easily take in more than 10 g of 

phytosterols a day. As the average hindgut of a horse has 125 L content and the feed 

stays there for 24–72 h, adding 10 mg of phytosterols to 50 mL of in vitro digestion was 

used to simulate the intake of a normal sport diet, 100 mg for the simulation of a 

phytosterol-enriched diet. Two commercial phytosterol rich supplements were tested as 

well. Both supplements claim to support digestion, activate the saliva production, 

improve intestinal motility, and therefore improve the availability of nutrients, and anti-

inflammatory effects. The producer advises to dose 1 g/day per horse (500 kg body 

weight). 

3.2.6. Bacterial strains  

Mycobacterium sp. DSM 2966 (NRRL B-3683) and Mycobacterium sp. DSM 2967 

(NRRL B-3805) were vacuum dried cultures delivered by the Leibniz Institute DSMZ 

(German Collection of Microorganism and Cell Cultures). Reactivation was executed in 

nutrient broth (Oxoid) at 30 °C (7 days), according to DSMZ guidelines for these two 

strains. This process was repeated three times to remove any stabilizing agents. In a glass 

vial, 1 mL of the final bacterial suspension was added to 3 mL glycerol, vortexed and 

stored at -80 °C. Hereof, 100 ml was added per 10 mL broth to inoculate the incubations 

with Mycobacterium sp. DSM 2966 or 2967.  

3.3. EXTRACTION OF IN VITRO DIGESTION AND URINE SAMPLES  

3.3.1. Hydrolysis  

For the hydrolysis of in vitro digestion samples, 1 mL of phosphate buffer (1 M KH2PO4, 

pH 6.1 ± 0.1) was added to 3 mL of sample. Next, the internal standard 

methyltestosterone (MT, 5.0 ng/ mL), 50 ml of a ≥450 units/mL protease solution and 25 

ml β-glucuronidase were added. Of each sample the pH was set at 6.1 ± 0.1 (by adding 1 

M HCl) and the hydrolysis was executed at 55 °C (1 h). After hydrolysis, 3 mL of 

ultrapure water was added and large, non-hydrolyzed proteins were removed by 

agglutinating them at the bottom of the tube through centrifugation (2400 x g, 15 min). 

Finally, the supernatant was filtered over a cotton wool filter before solid phase extraction 

(SPE).  

3.3.2. Solid phase extraction (SPE), liquid–liquid extraction and solvolysis  

The SPE cartridges (6 mL, 500 mg C18, Bond Elut, Isolute) were conditioned with 4 mL 

methanol and 4 mL ultrapure water. The centrifuged and filtered samples were loaded 
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onto the column and washed with consecutively 7 mL ultrapure water and 7 mL hexane. 

The cartridges were dried under vacuum (-0.5 bar). Next, the non-conjugated and 

glucuronide-conjugated fractions were eluted with diethyl ether (7 mL) and the sulfate-

conjugated fraction with solvolysis solvent (7 mL). Solvolysis of the sulfate conjugated 

fraction is executed at 55 °C (2 h). Both fractions were washed with 1.5 M sodium 

hydroxide (5 mL) by turning (8 min, 60 rpm) and centrifugation (6 min, 1400 x g).  

3.3.3. Pooling and reconstitution  

The washed fractions were pooled and dried under nitrogen (50 °C, 30 min). Each sample 

was reconstituted in 100 ml of ultrapure methanol, vortexed and ultrasonicated (3 min). 

Finally, 100 ml of ultrapure water was added, vortexed and ultrasonicated as well. After 

centrifugation (12300 x g, 10 min) the sample was transferred to an LC–MS vial with 

insert for UHPLC–MS/MS analysis.  

3.4. UHPLC–TRIPLE QUADRUPOLE MS/MS ANALYSIS  

The ultra-high performance liquid chromatography (U-HPLC) MS/MS detection was 

performed according to Decloedt et al. [10]. Separation was carried out using an 

Accela
TM

 High Speed LC (Thermo Fisher Scientific, San Jose, CA, USA) with a 

Nucleodur
TM

 Sphinx RP column (1.8 µm, 50 x 2.1 mm, Macherey-Nagel). The mobile 

phase consisted of ultra-pure water containing 0.1% formic acid (26.5 mM) as solvent A 

and methanol Optima1 with 0.1% formic acid (26.5 mM) as solvent B. All analytes could 

be accurately separated in a total run time of only 9 min.  

Detection was carried out on a TSQ Vantage Triple Stage Quadrupole Mass Spectrometer 

(Thermo Fisher Scientific, San Jose, CA, USA) equipped with a Heated Electro Spray 

Ionization probe (HESI-II). Injection volumes were 10 mL each and the HESI source was 

operated in the positive ion mode. It was found that positive ion mode afforded better 

sensitivity [55]. Data were acquired in the multiple reaction monitoring (MRM) mode. 

The precursor ions selected and their collision energies are listed in Table 2 (p. 117). All 

specified product ions were used for peak integration for quantification purposes. Data 

were interpreted using Xcalibur 2.1. w/Foundation 1.0.2 Rev. B qualitative and 

quantitative software (Thermo Electron, San Jose, USA).  

The internal standard methyltestosterone (MT, 5 ng/mL) was added to both calibration 

and unknown in vitro digestion samples, to compensate for losses during sample 
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preparation or variability during the analytical determination. Methyltestosterone is a 

good internal standard as it is very similar to the calibrated analytes, chemically and in 

retention time, but chromatographically distinguishable, cheap and not endogenously 

present. Unknown in vitro digestion samples were quantified by fitting the metabolites’ 

area ratio in a calibration curve.  

Table 2. SRM specifics for all analytes of interest: precursor ions, product ions, 

retention time (RT), appropriate S-Lens RF-amplitude, and the corresponding 

collision energy (CE). 

Analyte 

 

Precursor 

Ion 

 

(m/z) 

Product 

Ions 

 

(m/z) 

(Relative)  

Retention Time 

 

(min) 

S-lens 

 

 

(V) 

Collision 

Energy 

 

(eV) 

ADD 

 

 

 

AED 

 

 

 

αBol 

 

 

ßBol 

 

 

αT 

 

 

 

ßT 

 

 

 

P 

 

 

 

MT* 
*Internal 

standard 

285.2 

 

 

 

287.2 

 

 

 

287.2 

 

 

287.2 

 

 

289.2 

 

 

 

289.2 

 

 

 

315.2 

 

 

 

303.2 

77 

91 

121 

147 

79 

81 

97 

109 

77 

121 

135 

77 

121 

135 

79 

97 

109 

253 

79 

97 

109 

253 

79 

97 

109 

297 

97 

109 

285 

2.93 

(0.68) 

 

 

3.77 

(0.87) 

 

 

3.90 

(0.90) 

 

3.33 

(0.77) 

 

4.38 

(1.01) 

 

 

3.93 

(0.91) 

 

 

4.93 

(1.14) 

 

 

4.33 

(1.00) 

54 

 

 

 

70 

 

 

 

56 

 

 

56 

 

 

70 

 

 

 

70 

 

 

 

75 

 

 

 

73 

51 

39 

22 

15 

36 

37 

21 

25 

51 

26 

17 

51 

26 

17 

40 

23 

27 

16 

39 

22 

27 

15 

38 

23 

28 

13 

30 

28 

15 

3.5. QUANTIFICATION: DATA ANALYSIS AND QUALITY ASSURANCE OF THE ANALYTICAL 

METHOD  

Quantitative performance of the used analytical method, accuracy, precision, linearity and 

sensitivity were previously validated in urine for αT, βT, AED, ADD, P and βBol [10] 

(See also Chapter II). Prior to each analysis, the individual targeted compounds and 

standard mixtures were injected to check the selectivity and operational conditions of 

the chromatographic devices. The different metabolites were identified based on their 
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relative retention time, relative to the internal standard. The instrument’s limit of 

detection, determined by standard injection with a signal-to-noise ratio of at least 3 was 5 

pg on column for all analytes of interest. All specified product ions were used for peak 

integration for quantification purposes. 

 

Extracts of a blank in vitro digestion (45 mL CPB + 5 mL fecal inoculum) fortified with 

different levels of a standard solution were injected to validate the method for in vitro 

digestion samples. Area ratios were determined by integration of the area of an analyte 

under the specific SRM chromatograms in reference to the integrated area of the internal 

standard. The validation was performed with 18 aliquots of blank in vitro digestion 

suspension fortified (6 samples per level) with 1, 2 and 4 ng/mL of each analyte. In 

parallel, a calibration curve was constructed based upon nine fortification levels (0, 0.25, 

0.5, 1, 2, 4, 6, 8 and 10 ng/mL) and this curve was run twice, before and after validation 

and experimental samples. Two additional calibration curves were extracted on two other 

occasions, by two other operators, to check intralaboratory reproducibility.  

The R
2
, mean slope and lack of fit to a linear model were calculated (SPSS 21) for all 

calibration curves. Fitting the area ratios of the samples in the nine-point calibration 

curve allowed quantification of the samples. Three additional blank samples were 

analyzed as well, to calculate the signal to noise ratio at the time window in which the 

analyte is expected. Three times the signal to noise ratio was used as the detection limit 

(LOD) ten times the signal to noise ratio as the quantification limit (LOQ). In line with 

Decloedt et al. (2015), for the quantification of the urine samples an individual 

quantification method was combined with fitting the metabolites’ area ratio in a 

calibration curve, to avoid the urine composition from biasing the quantification. As such, 

the standard addition approach was used for urine specific quantification. One aliquot was 

left blank, while the other was fortified with 5.0 ng/mL of each analyte [10]. 

4. RESULTS  

4.1. QUANTIFICATION: DATA ANALYSIS AND QUALITY ASSURANCE OF THE ANALYTICAL 

METHOD  

The mean slope for each component was calculated based upon all calibration curves. 

Slopes for the different compounds ranged between 0.134 and 0.307 with a small 
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variation (0.004–0.020). The least squares method was used for fitting the calibration 

curves and evaluating linearity of the method. For each individual analyte, the obtained 

correlation coefficients (R
2
) of the calibration curves were always higher than 0.99, 

showing good linearity in the range of 0.25–10 ng/mL. The lack of fit (F-test, α = 0.05) 

proved linear for all compounds, with F values lower than the F reference value. 

Recoveries for all compounds were checked based upon the 18 aliquots of blank in vitro 

digestion that were fortified (6 samples per level) with 1, 2 and 4 ng/mL of each 

compound (ADD, AED, βBol, αBol, αT, βT and P) (Table 3).  

Table 3. Validation parameters of the quantitative performance of the used 

extraction and detection method for the seven steroids of interest, in in vitro 

digestion samples. 

Analyte R
2 

LOD LOQ Nominal level Recovery Repeatability 

(ng/mL) (ng/mL) (ng/mL) (%) RSD% 

αBol 0.992 0.33 1.07 1.0 81.7 13.6 

    2.0 95.4 5.8 

    4.0 119.3 8.3 

ßBol 0.999 0.23 0.76 1.0 95.4 5.5 

    2.0 100.5 4.2 

    4.0 109.7 12.1 

ADD 0.998 0.10 0.33 1.0 96.2 6.3 

    2.0 98.8 5.3 

    4.0 107.0 11.6 

AED 0.992 0.11 0.38 1.0 87.4 5.4 

    2.0 94.8 10.9 

    4.0 100.7 8.8 

αT 0.998 0.22 0.72 1.0 104.9 6.0 

    2.0 101.6 2.3 

    4.0 107.5 11.7 

ßT 0.993 0.14 0.46 1.0 91.1 6.9 

    2.0 101.3 3.9 

    4.0 114.9 12.2 

P 0.991 0.23 0.76 1.0 123.3 8.0 

    2.0 106.7 17.7 

    4.0 102.0 16.2 

 

As the method was already fully validated in urine, matrix effects can be compared. On 

average, the UHPLC–MS/MS is two times more sensitive in in vitro digestion samples 

than in urine. Other validation parameters (recovery, precision, repeatability) were 

consistent between urine and in vitro digestion matrix (Table 3 and table 2, p. 61).  
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Figure 2. Comparison of the chromatograms obtained using UHPLC–MS/MS. (A) Standard 

injection of αBol and βBol (0.001 ng/mL), (B) blank in vitro digestion sample and (C) blank in 

vitro digestion sample fortified with 0.10 ng/mL αBol and βBol (LOD for βBol). The LOD for 

αBol is at 0.3 ng/mL. Three specific transitions of the target compound boldenone (m/z 287.2) 

were monitored: m/z 287.2 → m/z 77, m/z 287.2 → m/z 121, and m/z 287.2 →  m/z 135.  

The sensitivity of the method was confirmed by adding 0.10 ng/mL of each component to 

a blank in vitro digestion sample (Illustrated for α and βBol, Figure 2). For the other 

compounds (AED, ADD, αT, βT, P, αBol) comparable results were obtained (not 

illustrated). We can conclude that the method is sensitive (up to 0.10 ng/mL), specific, 

precise and a linear quantification is possible. Therefore, this validated method was found 

adequate to analyze in vitro digestion samples of the following experiments. 
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4.2. IN VITRO DIGESTION: PROOF OF PRINCIPLE  

Visually, the change in turbidity and the production of volatile fatty acids was the first 

sign of bacterial growth and fermentation taking place. The pH of the in vitro digestion 

amounted 7.0 ± 0.0 at the start, dropping to 5.5 ± 0.1 and slightly increasing back to 6.0 ± 

0.5 by the end of the incubation (72 h) (full lines, Figure 3). The pH drop was in line 

with the exponential increase in biomass (cell density) in the first 24 h, measured as the 

absorbance at 600 nm (OD600) (dashed lines, Figure 3). OD600 and pH changes over 

time were similar for all three inocula in both CPB and BHI medium, but the absolute 

values differed according to the medium used. The pH drop and biomass accumulation 

were less pronounced in CPB than in the energy-rich medium (BHI) (Table 1, p. 111). 

The content of CPB was adapted from van de Kerkhof (2002) who was able to confirm 

that boldenone can be naturally occurring in humans, with an in vitro digestion 

experiment [41]. Therefore, CPB was tested as an alternative for the general-purpose BHI 

broth [33].  

 

Figure 3. OD600 and pH of the in vitro digestions over time (0 to 72 h). 

Three different inocula (P,R and L) were tested in triplicate. 

Total anaerobic bacteria counts (CFU/mL in vitro digestion plated onto BHI agar) 

confirmed these results. After 48 h, 8.2–8.4 log10 CFU/mL were found in the BHI 

medium based in vitro digestions, while 7.0–7.2 log10 CFU/mL were present in the CPB 

based in vitro digestions. In line with the slight pH increase and biomass decrease after 

36–48 h, the CFU/mL counts after 72 h were slightly lower, at respectively 7.6–8.2 log10 

and 6.3–6.7 log10 CFU/mL, for BHI and CPB medium, respectively (three different 



CHAPTER IV 

122 

 

inocula, in triplicate), in line with reference values for feces and colon, 7.6– 8.0 and 6.3–

8.0 log10 CFU/mL respectively (diet dependent) [48].  

Relative quantitative data, T0 compared to T72 and to non-inoculated media 

(respectively CPB and BHI), were obtained for carbohydrates, amino acids and SCFA. 

GENE-E software, a matrix visualization and analysis platform designed to support 

visual data exploration, was used to visualize the obtained date (Figure 4).  

 

Figure 4. Relative quantification of short-chain fatty acids (SCFA), carbon sources and 

amino acids at the start and at the end of the in vitro digestion. Samples after 0 or 72 h of 

incubation, with two different media (BHI and CPB) and using different equine inocula (P and L) 

are illustrated (GENE-E generated heatmap, One Minus Pearson Clustering). 

GENE-E software includes heat mapping, filtering and clustering algorithms. The in vitro 

digestion data were clustered according to a Minus One Pearson Correlation clustering 

algorithm (GENE-E software, Broads Institute). The T72 samples clustered together 
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while the non-inoculated BHI medium was clearly clustered with the non-incubated (T0) 

samples from both horses (L and P), as these samples were high in carbon sources, high 

in amino acids and no SCFAs could be detected. The T72 samples on the other hand were 

typically very high in SCFAs, as can be expected from in vivo results, and low in amino 

acids and carbon sources. A similar trend could be observed for the CPB based in vitro 

digestions.  

For glucose, the relative quantitative data (Figure 4) were confirmed quantitatively by 

analyzing the in vitro digestion samples with a Dionex Ion Chromatography (ICS-3000, 

Thermo Scientific
TM 

Dionex
TM

) method described by Vanbeneden et al. (2006) [47]. The 

glucose concentration initially present in the in vitro digestions with BHI medium was 

1.67 ± 0.01 g/L and 0.13 ± 0.01 g/L with CPB medium (compared to an eight-point 

calibration curve, 0.25 to 10 g/L). At the end of the in vitro digestions (T72), glucose was 

no longer detectable in the incubations with CPB medium while 0.13 ± 0.00 g/L was left 

in the in vitro digestions with BHI medium (in triplicate, for three different inocula). 

These results were in line with the results obtained through UHPLC–Orbitrap–MS 

analysis (Figure 4, p. 122; glucose). 

On the other hand, Mycobacterium sp. DSM 2966 (NRRL B-3683) and Mycobacterium 

sp. DSM 2967 (NRRL B-3805) are known to be able to catalyze the biotransformation of 

phytosterols to AED and ADD [15–17,43,49,56]. This allows using them as a positive 

control to test the biotransformation promoting operational conditions of the in vitro 

digestion. In each medium (20 mL, CPB or BHI) three replicate cultures of strain 2966 

and 2967 were made with added pure phytosterols (>50% β-sitosterol, 10 mg). As such 

we could check which of the strains is the most interesting in the light of the 

transformation to AAS, and which medium is preferred.  

Interestingly, both strains were able to produce βBol, even within 24 h, and both strains 

tended to transform β-sitosterol into AED, αT and βT and low concentrations of P as 

well, but no α-Bol was detected. The transformation efficiency of both strains was 

however very different. Within 72 h (Figure 5, p. 124) strain 2967 produced more than 

1049 ± 155 ng/mL AED and 380 ± 15 ng/mL ADD, while strain 2966 only produced 

respectively 10 ± 5 and 30 ± 5 ng/mL AED and ADD.  
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Therefore, strain 2967 was preferred as the positive control for further biotransformation 

experiments. Negative controls without Mycobacterium sp. 2966 or 2967 did not lead to 

the detection of any AAS. Mycobacterium sp. 2966 and 2967 did produce some AAS 

without the addition of phytosterols, yet more than 100 times less efficient than the 

respectively replicates with added phytosterols (not illustrated). In this case, it is most 

likely that cholesterol from the medium was used as precursor.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Biotransformation of phytosterols (>50% β-sitosterol) (A) By both 

Mycobacterium strains (DSM sp. 2966 and 2967) in CPB medium (72 h incubation). (B) 

by Mycobacterium sp. 2967 to ADD in CPB and BHI medium, over time (96 h).  

Mycobacterium sp. 2967 can transform phytosterols into steroids in both CPB and BHI, 

but up to nine times more ADD is found when using CPB medium, compared to BHI 

(Figure 5B). This can be explained by the fact that CPB is a less rich medium compared 

to BHI, stimulating bacteria to metabolize the more complex, thus less energy efficient 

phytosterols. CPB medium has a lower, yet sufficient energy content than BHI per 

milliliter, CPB does not contain added glucose and less amino acids and fats from 

peptone and organic derived solids than BHI (Table 1, p. 111). This might trigger the 

hindgut fermenters to exploit their enzymatic capacity to the maximum, metabolizing less 
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favorable compounds as well (e.g. the precursors added, phytosterols), without limiting 

their basic survival. Together with the positive results obtained by Van de Kerkhof et al. 

[41] with CPB medium for the in vitro endogenous boldenone detection in humans, CPB 

was the medium used in the hindgut simulating in vitro digestions. 

4.3. BLANK IN VITRO DIGESTION  

Fecal inocula from two untreated, healthy horses (horse n° 1, a 9 years old gelding and 

horse n° 2, an 8 years old mare) were used. Urine of the gelding contained βT (4.8 

ng/mL), αT (1.5 ng/mL) and P (6.1 ng/mL). The mare was excreting βT (6.0 ng/mL), αT 

(2.5 ng/mL) and P (2.6 ng/mL) (Table 4, p. 128). Samples from the in vitro digestive 

simulations (with CPB medium) were taken after 0, 24, 48 and 72 h. No ADD, AED, αT, 

βBol or αBol were found during this experiment. At the start of the incubation both 

digestions showed traces of P (1.1 ± 0.1 and 0.9 ± 0.1 ng/mL for the gelding and mare, 

respectively). This concentration was maintained throughout the experiment. The 

digestive fluids contained low concentrations of βT as well, amounting respectively 0.6 ± 

0.1 ng/mL for the gelding and 0.3 ± 0.2 ng/mL for the mare. βT disappeared within 24 h 

(Figure 6A, gelding). 

 

Figure 6. Detected AAS-related steroids during in vitro digestion in CPB medium using a 

gelding’s fecal inoculum. (A) Blank in vitro digestion, (B) fortified with 5 ng βT per mL at the 

start of the incubation (time = 0 h).  

4.4. IN VITRO DIGESTIONS WITH ADDED STEROID PRECURSORS  

To improve the knowledge on the steroid transformation possibilities in the equine 

hindgut, the in vitro digestions were fortified with low concentrations of different steroids 

(βT, αT, P, βBol, AED or ADD at 5.0 ng/mL). The reaction products were monitored. 

The same inocula (horse n° 1, a 9 years old gelding and horse n° 2, an 8 years old mare, 

Table 4, p. 128) as in the previous experiment were used. In both the mare and gelding 
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added αT and βT (5.0 ng/mL) were no longer detectable shortly after the start of the 

digestion. Within 24 h the concentrations dropped below the limit of detection (<0.1 

ng/mL) (Figure 6B, gelding, p. 125) and no other AAS were detected throughout the 

experiment. When adding βBol (5.0 ng/mL) to the digestion, a different reaction pathway 

was initiated. In the mare’s digestive fluids (Figure 7A), βBol concentrations declined 

rather slowly: detection of βBol was possible until 48 h (1.4 ± 0.3 ng/mL). After 24 h, the 

conversion of βBol to ADD was detectable (1.4 ± 0.2 ng/mL), lasting until the next 

sampling after 48 h (1.5 ± 0.2 ng/mL), with a subsequent decline below the LOD after 72 

h of incubation. Very low concentrations of progesterone and βT were found, similar to 

the results for blank and βT spiked incubations. In the gelding (Figure 7B), βBol 

concentrations declined faster (below LOD after 24 h), and a different transformation 

product (αT) was found after 24 h, lasting up until 48 h (0.3 ± 0.2 ng/mL), with a 

subsequent decline below the LOD after 72 h of incubation.  

 

Figure 7. Detected anabolic steroids during the β-boldenone fortified in vitro digestion in 

CPB medium. (A) Using a mare’s inoculum, (B) using a gelding’s inoculum. Both digestions 

were fortified with 5.0 ng β-boldenone per milliliter at the start of the incubation (time = 0 h). 

ADD and AED are chemically closely related to βBol and our previous research has 

shown that the urine of some geldings and mares contains low concentrations of 

endogenous AED (4 geldings 1.4 ± 1.3 ng/mL and 4 mares 0.7 ± 0.6 ng/mL) or ADD 

(one mare, 5.5 ng/mL) [10] (See also Chapter II). Inocula from the same mare and 

gelding as the previous experiment were used and fortified with AED (5.0 ng/mL). AED 

concentrations declined rapidly and no transformation to one of the other AAS was 

detected.  

When adding ADD (5.0 ng/mL) to the in vitro digestion, the ADD concentration 

diminished throughout the digestion, resulting in the formation of βBol (Figure 8, p. 
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127). As βBol is the forbidden steroid with the most elicit suspected endogenous origin 

[1,57], this transformation capacity was studied thoroughly. Feces samples from six 

additional horses were used and the in vitro digestions were done in triplicate with the 

addition of ADD at three different levels (0 ng/mL = blank, 5.0 ng/mL = low level and 50 

ng/mL = high level). An additional sample was taken after 12 h. βBol concentrations in 

all digestive simulations (eight horses) were highest after 12–24 h (Figure 8) and for 

most of the incubations detectable up until 72 h. No αBol was detected in any of the in 

vitro digestions. Urine samples from the eight horses used in this experiment were 

analyzed in parallel (Table 4, p. 128). Horse n° 5 (mare) produced ADD (5.5 ng/mL) and 

demonstrated an elevated αT concentration (13 ng/mL). Horse n° 6 (gelding) produced 

βBol (1.0 ng/mL) and AED (1.5 ng/mL).  

 

Fig. 8. Detection of β-boldenone during in vitro digestion of ADD in CPB medium. (A) Using 

inocula from the previously used horses: a mare’s (horse n° 2) and a gelding’s inoculum (horse 

n°1). (B), (C), and (D) using six other inocula from three mares (horse n°3, 5 and 8) and three 

geldings (horse n° 4, 6 and 7). All digestions illustrated were fortified with 50 ng ADD per 

milliliter digestion at the start of the incubation (time = 0 h). Results from digestions with the 

mares’ inocula are indicated with a dashed line, geldings with a connected line. The in vitro 

digestions for these 8 horses were done in triplicate. 
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With two inocula (in triplicate, horse n° 1 and n° 2; Table 4), the limiting effect of BHI 

medium on the formation of βBol from ADD was confirmed, as previously deduced from 

the Mycobacterium DSM 2966 and 2967 experiments (Figure 5B, p. 124). ADD 

concentrations were declining more slowly and the formation of βBol was significantly 

lower.  

Table 4. Detected AAS and related steroids in urine of the horses used for in vitro 

digestion. NF = not found, concentration below the limit of detection in urine (<0.2 

ng/mL) [10]. 

Horse 

n° 

Sex 

 

Age 

(years) 

Urinary concentration (ng/mL) 

ADD AED αBol βBol αT ßT P 

1 gelding 9 NF NF NF NF 1.5 4.8 6.1 

2 mare 8 NF NF NF NF 2.5 6.0 2.6 

3 mare 12 NF NF NF NF 2.2 2.8 6.0 

4 gelding 18 NF NF NF NF 8.2 0.6 3.5 

5 mare 8 5.5 NF NF NF 13.0 2.6 2.7 

6 gelding 8 NF 1.5 NF 1.0 NF 0.3 NF 

7 gelding 11 NF NF NF NF 4.0 8.4 4.7 

8 mare 18 NF NF NF NF 14.7 1.7 4.2 

3.5. IN VITRO DIGESTIONS WITH ADDED PHYTOSTEROLS (>50% Β-SITOSTEROL) OR 

PHYTOSTEROL-RICH HERBAL SUPPLEMENTS  

Both AED and ADD can originate from the microbial side chain cleavage of 

phytosterols (e.g. β-sitosterol). However, this biotransformation of phytosterols to steroid 

hormones has thus far not been demonstrated in horses while the microbial conversion of 

phytosterols to steroids has been frequently reported in other biological systems, mainly 

involving a variety of micro-organisms [15,17,58]. The addition of phytosterols (10 or 

100 mg, >50% β-sitosterol) to the in vitro digestion (horse n° 1, 2, 4 and 6; Table 4) did 

not lead to the detection of boldenone (in triplicate) or any of the other AAS. For one 

horse (horse n°4) we did detect a low concentration of AED (0.10 ± 0.02 ng/mL or 0.5 ± 

0.1 mg/g β-sitosterol).  

Interestingly, a trace of AED was already present at the start of the incubation, and the 

concentration augments with the incubation time, confirming the biotransformation of the 

added phytosterols by the fecal micro-organisms. Two different phytosterol-rich herbal 

supplements that claim to support digestion and metabolism were tested as well. They 

were individually added to the in vitro digestion system (in triplicate). During these 
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digestions no transformation to AAS was detected. One of the supplements was however 

found to contain traces of αT (37 ± 3 ng/g, the advised daily dosage for a 500 kg body 

weight horse).  

5. Discussion  

In some cases, low concentrations of βBol, ADD and AED (<5 ng/mL) have been 

detected in urine of horses that were never in contact with synthetic AAS (See also 

Chapter II) [10]. As a possible explanation for this, phytosterols and phytosterol 

transformation products have been put forward, since it has been proven that steroid 

hormone intermediates could be produced from phytosterols through microbial 

transformation [13,16,17], and/or feed-related molds [59].  

In this study, the addition of pure phytosterols (>50% β-sitosterol) to in vitro simulations 

of the equine hindgut indeed led to the detection of a low concentration of AED (0.10 ± 

0.02 ng/ mL in vitro digestion or 0.5 ± 0.1 mg/g β-sitosterol) for one horse (1/4). This 

transformation has been previously confirmed in rats fed with phytosterols, excreting 

steroids (AED, ADD and androstanedione) in their feces [60]. However, the in vitro 

digestions with added phytosterols did not lead to the detection of α or βBol, ADD, or α 

or βT. Based on these results, we cannot directly link the digestive transformation of 

consumed phytosterols to the detection of βBol. These results are in line with the data 

obtained in humans by Verheyden et al. (2009) [61]. In this report, male and female 

volunteers were asked to consume a phytosterol rich yogurt drink during the first three 

weeks of the study. βBol was not detected in any of the urine samples. Still, ADD and 

AED were detected in the urine of some of the volunteers.  

The presence of ADD is interesting as additional in vitro digestions allowed us to identify 

ADD as a precursor of βBol when present in the hindgut. When adding ADD to the in 

vitro digestion, all of the performed digestions (eight different fecal inocula) resulted in 

the formation of βBol. This is in line with in vivo experiments which demonstrated that 

when ADD is orally administered to a horse, βBol is found in the feces, within 24 h, and 

demonstrates the ability to simulate the in vivo hindgut fermentation reactions with in 

vitro incubations, making in vitro digestions a useful tool to study the fermentation 

reactions that take place in the horse’s hindgut [6]. Multiple hypotheses and different 

inocula can be tested, with reproducible results.  
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Interestingly, the horse that was able to transform phytosterols into low concentrations of 

AED (0.10 ± 0.02 ng/mL) was also the one with the highest capacity to transform ADD to 

βBol (14 ± 2 ng/mL). As AED is also closely related to Bol, and both AED and ADD are 

possible microbial transformation products of phytosterols, AED was added to the 

different in vitro digestions as well. Upon addition of AED to the digestion it was 

degraded rapidly but no other steroids of interest were detected. When other steroids (αT, 

βT or P) were added to the in vitro digestions, a similar fast microbial degradation could 

be observed.  

There was no correlation between the gender of the horses and the detected 

concentrations of βBol after the addition of ADD. The interindividual variation 

between the different horses outweighed the gender effect between mares and geldings, 

supporting the crucial impact of the individual hindgut flora on the enzymatic 

transformation capacity. Therefore, it is interesting to keep in mind that it has been 

reported that diet differences significantly influence the individual microbial composition 

of the horse’s hindgut, leading to an adapted, horse-specific hindgut flora [23,50]. 

Traditionally, the equine digestive tract is anatomically and physiologically adapted to a 

relatively nomadic lifestyle of continually browsing for low-starch and fiber-rich feed 

[51]. In the healthy horse, anaerobes within the caecum ferment this fiber-rich feed to 

volatile fatty acids and lactate [35].  

The dietary energy obtained from naturally available nutrient sources (grasses, rushes, 

sedges and perhaps occasional cereals) is however inadequate for daily, high intensity- 

and prolonged exercise. Therefore, the modern domesticated sport horse requires an 

increased quality and quantity of feed intake. This can be supplied by feeding energy rich 

grain mixtures, full of rapidly fermentable carbohydrates in the form of starch or sugars. 

Additionally, vegetable oils are frequently added to the diet [54]. The addition of extra fat 

easily raises the energy density of feeds, which is advantageous for sport horses with 

high-energy requirements. Thus far, this dietary influence on the individual hindgut flora 

has only been studied in the light of fermentative laminitis, acidosis, colic, and stomach 

ulcers [62], but not regarding the enzymatic transformation capacity of the hindgut.  

When βBol was added to the digestion, different reaction pathways were initiated 

depending on the inoculum. The reaction products were either ADD or αT. Moreover, 

when βBol is slowly degraded by the mare’s inoculum, more time seems to be at hand for 
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transformation, leading to a higher concentration of ADD. The maximal transformation 

ratio βBol:ADD amounted 29%, while for the gelding’s inoculum the ratio βBol:aT was 

less than 7%. Fecal inocula from two untreated, healthy horses (horse n° 1, a 9 years old 

gelding and horse n° 2, an 8 years old mare) on a moderate grain-rich diet (4 kg a day) 

were used as the negative control experiments. The digestive fluids of these blank in 

vitro digestion incubations contained low concentrations of βT and P. βT disappeared 

within 24 h, due to microbial breakdown by the hindgut bacteria (gelding). The presence 

of P and βT in the in vitro digestion simulation is in line with the presence of P and βT in 

the urine of the horses. αT was also present in urine but was not detected in the digestive 

fluids. These results demonstrate that, without specific additives, the hindgut of these 

healthy, untreated horses does not exert metabolic activity that directly leads to the 

formation of AAS or AAS-related precursors.  

Interestingly, when using this gelding’s inoculum, the detected concentration of βT at the 

start exactly summed the added concentration of βT and the concentration detected at the 

start of the blank incubation. This low concentration of βT is not detected when using the 

mare’s inoculum, indicating that it must originate from the gelding’s inoculum. Steroid 

hormones circulating in the bloodstream are metabolized in the liver and passed with bile 

into fecal matter [63], resulting in their detection in feces [6]. The passage of steroids 

from plasma to feces takes about 24 h [64]. Fecal androgen concentrations have been 

merely assessed in stallions [6]. Fecal estrogen concentrations on the other hand, have 

been used to monitor pregnancy [65,66] and diagnose cryptorchidism [67].  

The other way around, it has been proven that, together with nutritional compounds, 

contaminants, possibly including steroids or steroid precursors, can be absorbed from the 

intestinal tract [20]. Passage by the liver leads to the formation of type II metabolites, 

steroid glucuronide- and sulphate conjugates, which are excreted and detected in urine 

[68]. Other transformation reactions, the so called type I transformations, can also take 

place in the liver. To study these type I transformation reactions, in vitro set-ups have 

been developed as well. Scarth et al. (2010) for example, used equine liver microsomes 

and S9 tissue fractions to study the metabolism of the androgenic/anabolic steroid stano-

zolol [69]. Using high-resolution accurate mass full scan analysis on the Orbitrap, equine 

liver microsome and S9 in vitro fractions were found to generate all the major type I 

metabolites observed following in vivo administrations.  
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Wong et al. (2011) on the other hand, confirmed the use of homogenized liver and, in 

addition to the previously reported in vitro metabolites, some additional known in vivo 

metabolites in the equine could also be detected for testosterone (βT) and epitestosterone 

(αT) [70]. Unfortunately, to our current knowledge, the equine liver metabolism of AED 

has not yet been tested. Labrie et al. (1997) did confirm that one of the 17β-

hydroxysteroid dehydrogenase isoenzymes (17β-HSD) is able to control the last step in 

the formation of testosterone from AED in all rhesus monkeys and human peripheral 

intracrine tissues examined. Types 3 and 5 17β-HSD, respectively catalyze the formation 

of testosterone from AED in the testis and peripheral tissues [71].  

Additionally, predigestive effects (e.g. UV radiation, oxidation, heat, moist and feed-

related molds) might affect the phytosterol side chain stability in feed [59]. These 

parameters could trigger local hotspots for transformation in a feed batch, especially 

when self-heating is involved [72]. When a horse consumes such hotspots, this could lead 

to the transient and temporary detection of low concentrations of AAS in the horse’s 

urine. Further research must be conducted to confirm or to disprove these hypotheses. 
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6. CONCLUSION  

The use of in vitro batch incubations to simulate the equine hindgut was validated by 

performing a series of quality controls, including monitoring the formation of short chain 

fatty acids, the depletion of amino acids and carbon sources and the transformation of 

ADD, the suspected βBol precursor. Upon addition of ADD the in vitro transformation of 

ADD to βBol could be detected for eight different horses. The transformation capacity 

was fecal inoculum- and thus horse dependent, but no αBol was found in any of the in 

vitro digestion samples. These results are in line with in vivo results, proving that in vitro 

digestions are a useful tool to study the fermentation reactions that take place in the 

equine hindgut.  

The addition of phytosterols to the in vitro digestion simulations led to the detection of 

AED, an important steroid precursor. As such, the digestive transformation of consumed 

phytosterols cannot be directly linked to the detection of βBol, but, by providing the 

necessary precursors, they might form an intermediate step in the systemic steroid 

biotransformation pathway. Predigestive influences such as UV radiation, oxidation, heat 

and feed-borne molds might contribute to the predigestive degradation of phytosterols, 

increasing the release of Bol, ADD, T or other AAS related precursors, including AED, in 

the hindgut. This new research question will be the upcoming challenge to unravel the 

detection of low concentrations of forbidden, and considered to be synthetic, steroids such 

as the mere suspect βBol, in untreated horses. 
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CHAPTER V 

1. ABSTRACT 

To ensure fair competition and to protect the horse’s welfare, horses have to compete on 

their own merits, without any unfair advantage that might follow the use of drugs. 

Therefore, regulatory authorities list all substances that are not allowed in competition, 

including most anabolic-androgenic steroids. As zero-tolerance is retained, the question 

arose if the consumption of moldy feed could lead to the excretion of steroids, due to the 

biotransformation of plant phytosterols to steroids. A rapid UHPLC-MS/MS analytical 

method, previously validated according to AORC (Association of Official Racing 

Chemists) and EU Council Decision 2002/657 guidelines, was used to measure steroids in 

different sample types. Multiple moldy feed samples were tested for the presence of 

steroids. The effect of digestion was tested by in vitro simulation of the horse’s hindgut in 

batch incubations. In most feed samples no steroids were detected, even when the 

products were molded. Moldy corn however showed to contain up to 3.0 ± 0.4 μg/kg 

AED (androst-4-ene-3,17-dione), the main testosterone precursor. This concentration 

increased when moldy corn with added phytosterols was digested in vitro. One herbal 

phytosupplement also showed to contain α-testosterone (up to 37 ± 3 ng/g). These results 

demonstrate that it is important to caution against the consumption of any feed or (herbal) 

supplement of which the detailed ingredients and quantitative analysis are unknown. 

Especially the consumption of moldy corn should be avoided, not only from a horse 

health and welfare point of view, but also to avoid possible inadvertent positive doping 

results. 

 

 

Keywords 

UHPLC-MS/MS – Feed – Horse 

Anabolic-androgenic steroids - Molds 
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2. INTRODUCTION 

To ensure fair competition and to protect the horse’s welfare, horses have to compete on 

their own merits, without any unfair advantage that might follow the use of performance 

enhancers. Therefore, regulatory authorities such as IFHA (International Federation of 

Horseracing Authorities) and FEI (Fédération Equestre Internationale) list and control all 

substances that are not allowed in and out of competition. Anabolic-androgenic steroids 

(AAS) are part of this list as they can increase nitrogen retention, protein synthesis, 

appetite and the release of erythropoietin in the kidneys, making them very popular as 

drugs of abuse. To the public, the natural, androgenic steroid testosterone is the best 

known AAS. Closely related to testosterone (βT) in terms of chemical structure are, 

epitestosterone (αT), AED (androst-4-ene-3,17-dione), ADD (androsta-1,4-diene-3,17-

dione), β-boldenone (β-Bol, androsta-1,4-diene-3-one-17β-ol or 1,2-dehydrotestosterone) 

and α-boldenone (α-Bol, androsta-1,4-diene-one-17α-ol)  (Figure 1). 

 

Figure 1. Illustration of the closely related chemical structures of phytosterols and anabolic 

steroids. For the phytosterols, β-sitosterol, the most abundant phytosterol, is shown. The 

suggested microbial side chain cleavage is indicated with a dashed line (- - -). Campesterol and 

stigmasterol differ from β-sitosterol in the side chain double bond at C22 and the substituents at 

C24.   
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For a very long time boldenone was considered to be a synthetic hormone and zero-

tolerance was maintained. As the number of boldenone-positive urine samples was 

increasing, the question arose whether this was due to illegal treatment of animals or if 

boldenone is an endogenous steroid [1]. By using new and more sensitive analytical 

methods, boldenone has been shown to be naturally present in bovine urine and feces [2-

4] and low concentrations of β-boldenone have been detected in the urine from untreated 

intact male horses [5-7]. According to the latter findings the IFHA (International 

Federation of Horseracing Authorities) and FEI (Fédération Equestre Internationale) set a 

threshold for boldenone at 15 ng free and conjugated boldenone per mL in urine from 

male horses (other than geldings) [8,9]. The presence of boldenone in mares or geldings is 

however still prohibited. This zero-tolerance is very strict as, with the current extensive 

extraction protocols and high-end mass spectrometry detection methods, traces of up to 

0.1 ng/mL could be detected [10]. 

Previous research showed that the consumption of NOPS (Naturally Occurring 

Prohibited Substances, e.g. xanthine or morphine), even at levels much below the 

effective dosage, may be responsible for an inadvertent positive anti-doping urine 

analysis [11]. Additionally, recent work indicated that a novel mechanism of endogenous 

steroid-synthesis is to be considered: non-toxic feed-borne fungi, naturally present on 

animal feed, might be capable of converting phytosterols into steroids [12]. Complete 

(microbial) side chain cleavage produces C19-steroids. Other studies reported similar 

biotransformation potential in environmental mold species, isolated from soil [13]. In 

some cases, this has been held as an argument to defend urinary detection of anabolic 

steroids (e.g. “Moldy oats blamed for positive swabs”, The Southland Times, March 

2012, New-Zealand). Unfortunately, the study mentioned earlier only focused on cattle 

feed and the effect of mold enzymes on the feed was not measured over time nor 

compared to a relevant negative control (e.g. mold-free feed). Moreover, they did not 

study the actual influence of digestion of contaminated feed on cattle or, in this case, 

horses [12].  

The conversion of phytosterols to steroids has been reported in other biological systems 

[14], mainly involving a variety of microorganisms [15] such as Mycobacterium sp. [16-

18]), Arthrobacter and Nocardia sp. [19]. In addition, a number of studies have been 

devoted to the ability of invertebrate organisms to convert phytosterols into anabolic 

steroids: maggots of Lucilia Serica [20], Crustaceae [21] and zebra fish [22]. One study 



CHAPTER V 

146 

 

reported the intestinal in vivo biotransformation of consumed phytosterols to steroids 

(androsta-1,4-diene-3,17-dione, androst-4-ene-3,17-dione and androstane-3,17-dione) by 

rats [23]. However, the biotransformation of phytosterols to steroid hormones has thus far 

not been studied in relation to the equine consumption of moldy phytosterol-rich feed. 

The term “moldy” is used to describe the diseased appearance resulting from infection 

by one or more, parasitic, fungal species [24]. It is a major biotic constraint to grain 

production worldwide, especially present when grain development coincides with wet and 

warm weather conditions [25]. Due to their parasitic nature, molds are very interesting 

biotransformation candidates as they are capable of adapting to different substrates. 

Generally, microorganisms capable of degrading hydrophobic hydrocarbons, such as 

phytosterols, possess different physiological properties, including active transporters, cell 

wall adaptations and the excretion of biosurfactants [26-28]. Molds developed their own 

efficient strategy to cope with these difficult substrates, by producing a wide variety of 

extracellular enzymes and biosurfactants [24], to promote the extracellular transformation 

of these difficult substrates.  

As a result, it may be hypothesized that aerobic storage of moldy feed can lead to the 

formation of steroids or steroid precursors. Alternatively, the contamination of feed with 

known phytosterol converting bacteria could possibly lead to the transformation of 

phytosterols from feed. On the level of the horse, the consumption of moldy or bacterially 

contaminated feed could as such lead to the detection of endogenous steroid levels. As 

zero-tolerance is retained for most AAS, this could have serious consequences.  

To tackle these different research questions, a full-fledged in vitro approach was set-up. 

Due to ethical constraints, it is not appropriate to test the consumption of moldy feed in 

vivo. In vitro batch incubations were performed following a previously validated in vitro 

digestion model [29] (See also chapter IV) to simulate the hindgut fermentation of moldy 

feed, as they are thought to be responsible for the biotransformation reactions from 

phytosterol metabolites to AAS or related precursors. All samples were analyzed with a 

recently developed and validated, sensitive and robust UHPLC-MS/MS method [10].  
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3. MATERIALS AND METHODS 

3.1 LC-MS/MS
 
REAGENTS AND CHEMICALS 

α-testosterone (androst-4-ene-17α-ol-3-one, αT, purity ≥99%), ß-testosterone (androst-4-

ene-17ß-ol-3-one, ßT, purity ≥99%), methyltestosterone (androst-4-ene-17α-methyl-17ß-

ol-3-one, MT, purity ≥99%), androstadienedione (androsta-1,4-diene-3,17-dione, ADD, 

purity ≥99%), proteinase from Aspergillus melleus (3 enzyme units per mg) and β-

glucuronidase (Helix pomatia, aqueous, >100.000 units per mL) were purchased from 

Sigma-Aldrich (St-Louis, US). Androstenedione (androst-4-ene-3,17-dione, AED, purity 

≥99%), α-boldenone (androsta-1,4-diene-17α-ol-3-one, α-Bol, purity ≥99%) and ß-

boldenone (androsta-1,4-diene-17ß-ol-3-one, ß-Bol, purity ≥99%) were obtained from 

Steraloids (Newport, US). Progesterone (P, purity ≥98%) was obtained from Alpha 

Pharma (Omega Pharma, Zwevegem, Belgium).  

Methanol Optima
®
, was bought at Fisher Scientific, UK Limited (Leicestershire, UK). 

Diethyl ether, ethyl acetate, sodium hydroxide, methanol (analytical grade), H2SO4, 

KH2PO4 and formic acid (98-100%, analytic grade) were purchased from VWR (Merck, 

Darmstadt, Germany). Solvolysis solvent consisted of 900 ml ethyl acetate, 95 ml 

methanol and 5 ml H2SO4 per liter. Phytosterols (>50% β-sitosterol) were purchased from 

Sigma-Aldrich (St-Louis, US). Polysorbate 80 (Tween 80) is a nonionic surfactant and 

emulsifier derived from polyethoxylatedsorbitan and oleic acid. By adding 0.2% Tween 

80 (v/v) to the medium up to 2 g/L of the hydrophobic substrate ß-sitosterol can be 

solubilized [30]. The HF Bond Elut-C18 cartridges (6 ml, 500 mg) were obtained from 

Agilent Technologies (Diegem, Belgium). HPLC grade, ultrapure (UP) water was 

acquired from an in-house water purification system (Arium® 611UV, Sartorius Stedium 

Biotech, VWR, Haasrode, Belgium).  

Stock solutions of each steroid were made in methanol Optima
®
 at 1000 and 200 ng/µL. 

Dilutions up to 1 pg/µL were made in methanol Optima
®
. All solutions were kept at 4 °C. 

3.2 BUFFERS, BROTHS AND FEED SAMPLES 

All buffers and broths were prepared in ultrapure water, autoclaved (121 °C, 15 min, 1 

atm) and further handlings were done in a laminar flow cabinet. Phosphate buffered 

saline (PBS, pH 7) contained NaCl (8 g/L), KH2PO4 (0.134 g/L) and K2HPO4 (1.12 g/L). 

Fecal inoculum buffer contained K2HPO4 (8.8 g/L), KH2PO4 (6.8g/L) (Merck, Darmstadt, 

Germany), and sodium thioglycolate (1.0 g/L) (Sigma-Aldrich, Steinheim, Germany), as 
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a reducing agent. CPB (Cysteine Peptone Bouillon) consists of a mixture of 5 g yeast 

extract (AppliChem, Darmstadt, Germany), 1 g peptone (Oxoid, Hampshire, England), 

8.5 g NaCl (Merck, Darmstadt, Germany), 0.5 g L-cysteine and 10 mL haemine solution 

(Sigma-Aldrich, Steinheim, Germany) in 1 L ultrapure water [31]. L-cysteine (0.5 g/L) 

(SAFCSupply Solutions, St. Louis, MO) was added to improve anaerobicity [32]. 

Haemine solution was prepared by adding 2 mL concentrated NH4OH solution (25%, 

Merck, Darmstadt, Germany) and 0.1 g haemine to 500 mL sterile ultrapure water and 

sterilized afterwards (121 °C, 15 min, 1 atm). After filtration over a 0.45 µm filter 

(Merck, Darmstadt, Germany), pH was adjusted to 7.0 and the medium was sterilized 

again. Under sterile conditions 0.25 mL of nicotinamide adenine dinucleotide (Sigma-

Aldrich, Steinheim, Germany) solution in water (2 mg/mL) was added. The total solution 

was mixed and stored at 4 °C until use.  

Sabouraud Dextrose Agar was obtained from Oxoid LTD (Basingstoke, Hampshire, 

England) and prepared according to the manufacturer’s guidelines with 30 g/L Sabouraud 

Dextrose Liquid Medium and 1.5% Agar (15 g/L). Moldy and mold-free feed were 

collected from the field (corn) or obtained from a nearby horse shop (carrots and 

commercial grain mix). Two commercial phytosupplements were bought in a specialized 

horse shop.  

Mycobacterium sp. DSM 2966 (NRRL B-3683) and Mycobacterium sp. DSM 2967 

(NRRL B-3805) were vacuum dried cultures delivered by the Leibniz Institute DSMZ 

(German Collection of Microorganism and Cell Cultures). Reactivation was executed in 

nutrient broth (Oxoid) at 30 °C (7 days), according to DSMZ guidelines for these two 

strains. This process was repeated three times to remove any stabilizing storage agents. In 

a glass vial, 1 mL of the final bacterial suspension was added to 3 mL glycerol, vortexed 

and stored at -80 °C until use.  

3.3 AEROBIC INCUBATION OF MOLDY FEED 

Moldy feed (carrots, field corn and a commercial grain mix) were mixed (10 min, 

Moulinette, Moulinex, Berkshire, UK) until a homogenous mash or powder was 

obtained. Dark, autoclaved 125 mL penicillin flasks were used to exclude light and UV 

influences. To 45 mL medium (CPB broth), 5 g of the moldy feed was added. The feed 

was incubated at two different temperatures (37 °C and 21 °C: room temperature, RT) to 

simulate the normal storage temperature (RT) and a higher temperature (37 °C), to 
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simulate the influence of self-heating in moldy hot spots [33]. Samples ( 3 mL) were 

taken after 0, 24, 48, 72 and 96 h. 

1 mL of phosphate buffer (1M KH2PO4, pH 6.1 ± 0.1) was added to 3 mL of sample. 

Next, the internal standard MeT (5 ng/mL), 50 µl of a ≥450 units/mL protease solution 

and 25 µl ß-glucuronidase were added. Of each sample the pH was set at 6.1 ± 0.1 (by 

adding 1M HCl) and hydrolysis was executed at 55 °C (1 hour). After hydrolysis, 3 mL 

of ultrapure water was added and large, non-hydrolyzed proteins were removed by 

agglutinating them at the bottom of the tube through centrifugation (2400 x g, 15 min). 

Finally, the supernatant was filtered over a cotton wool filter before solid phase extraction 

(SPE). 

The SPE cartridges (6mL, 500 mg C18, Bond Elut, Agilent) were conditioned with 4 

mL methanol and 4 mL ultrapure water. The centrifuged and filtered samples were loaded 

onto the column and washed with consecutively 7 mL ultrapure water and 7 mL hexane. 

The cartridges were dried under vacuum (-0.5 bar). Next, the non-conjugated and 

glucuronide-conjugated fractions were eluted with diethyl ether (7 mL) and the sulfate-

conjugated fraction with solvolysis solvent (7 mL). Solvolysis of the sulfate conjugated 

fraction was executed at 55 °C (2 hours). Both fractions were washed with 1.5 M sodium 

hydroxide (5 mL) by turning (8 min, 60 rpm) and centrifugation (6 min, 1400 x g).  

The washed fractions were pooled and dried under nitrogen (50 °C, 30 min). Each 

sample was reconstituted in 100 µl of ultrapure methanol, vortexed and ultrasonicated (3 

min). Finally, 100 µl of ultrapure water was added and the sample vortexed and 

ultrasonicated again (3 min). After centrifugation (12300 x g, 10 min) the sample was 

transferred to an LC-MS vial with insert for UHPLC-MS/MS analysis. 

3.4 AEROBIC INCUBATION OF A COMMERCIAL GRAIN MIX WITH MYCOBACTERIUM SP.  

100 µL Mycobacterium stock sp. DSM 2966 and 2967 (glycerol, stored at -80 °C) was 

added per 10 mL broth (CPB). After a preculturing step of three days (150 rpm, 37 °C) 

the Mycobacteria culture (5 mL) was used to inoculate the commercial grain mix powder 

(5 g) in 40 mL CPB medium. The incubation was kept aerobically and monitored for 72 

h; samples were taken after 0, 12, 24, 48 and 72 hours. Samples were extracted according 

to the extraction protocol described above.  

Additionally, to fully study the possibilities of Mycobacterium sp (DSM 2967) as a 
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phytosterol transforming agent, the oxygen dependence for growth and enzymatic 

activity was tested. To create anaerobic conditions, the flasks were capped and anaerobic 

conditions were established using a flush system for 1 h, alternating every 2 min between 

N2 (1 bar) and vacuum suction. 

3.5 ACTIVITY OF EXTRACELLULAR ENZYMES EXCRETED BY CORN-RELATED MOLDS  

Moldy corn crops were collected from the fields (East-Flanders, autumn). The moldy 

corn kernels were pooled and mixed thoroughly (10 min, Moulinette, Moulinex, 

Berkshire, UK) until a homogenous, yellowish corn powder was obtained. This powder 

was diluted in sterile UP water (1:3) and plated onto Sabouraud Dextrose Agar plates 

under a laminar flow cabinet. These agar plates were incubated for 4 days (28 °C). All 

morphologically different mold colonies were isolated on new Sabouraud Dextrose 

Agar plates until pure isolates were obtained (Figure 2). Subsequently, through this 

procedure obtained mold isolates were classified based upon their morphology.  

 

Figure 2. Isolation procedure and experimental set-up to test the biotransformation potential of 

extracellular enzymes excreted by mold species isolated from moldy corn. 

The different isolated mold strains were individually grown under moist conditions at    

28 °C until a monolayer was obtained (4-7 days). The mycelium (2 g) was transferred 
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into a 50 mL tube; vortexed in sterile, UP water (20 mL) and the mycelium was separated 

from the extracellular enzyme suspension by centrifugation (14000 x g, 5 min, 4 °C). In a 

15 mL tube 0.5 mL of the supernatant was added to 0.5 mL PBS buffer and incubated 

with or without an excess of the suggested precursors (1 µM AED, ADD, phytosterols) at      

37 °C for 1 to 4 hours. Samples were extracted immediately after the incubation period 

was finished (Figure 2, p. 150). 

Extraction of the extracellular-enzyme suspension samples was based on the method 

described by De wasch et al. (2002) for Neomysis integer biotransformation experiments 

[34] (Figure 2, p. 150). The internal standard (methyltestosterone, MT) was added at 5 

ng/mL prior to extraction. The metabolites were extracted from the medium by liquid-

liquid extraction (LLE) using 2 x 4 mL ethyl acetate. After centrifugation (5 min, 4 °C, 

14000 x g) the organic phase was withdrawn and the ethyl acetate fractions were 

combined and vacuum evaporated to dryness under nitrogen (50 °C, 15 min).  

Each sample was reconstituted in 100 µl of ultrapure methanol, vortexed and 

ultrasonicated (3 min). Finally, 100 µl of ultrapure water was added and the sample was 

vortexed and ultrasonicated (3 min). After centrifugation (12300 x g, 10 min) the sample 

was transferred to an LC-MS vial with insert for UHPLC-MS/MS analysis. The obtained 

results were compared per treatment (different steroid precursor added) and per mold 

species as compared to the control samples, with independent samples t-tests (SPSS 

Statistics 21.0.0., SPSS Inc, Chicago, IL) (P=0.05).  

3.6 IN VITRO DIGESTION OF MOLDY FEED 

To simulate the hindgut fermentation reactions that take place in the equine hindgut, in 

vitro batch incubations were set up. Previous research (See also Chapter IV) showed that 

in vitro digestion simulations are a good tool to study in vivo metabolic transformations in 

the equine hindgut [29,35]. For these incubations a fecal inoculum was required. Fresh 

fecal matter was collected from an 18-year old, well-trained gelding during spontaneous 

discharge. This horse was selected based upon his high natural anabolic-androgenic 

steroid profile in urine (8.2 ng/mL α-testosterone, 0.6 ng/mL β-testosterone and 3.5 

ng/mL progesterone). 

Additionally, previous research proved that this horse’s microbiome has high 

biotransformation capacity, especially at transforming added phytosterols to AED (0.10 

± 0.02 ng/mL) and added ADD (50 ng/mL) to β-Bol (up to 14 ± 2 ng/mL) [29]. The horse 
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was fed on a standard but non-controlled diet of concentrate (4 kg/day), hay (10 

kg/day) and straw. The horse was a Royal Dutch Sport Horse (K.W.P.N) and guaranteed 

to be untreated with AAS or other treatments that are known to interfere with the 

excretion of AAS, his medical history was well known and documented. As 

spontaneously voided urine and faecal samples were collected, and the horse was not 

given any medication or treatment, according to the latest Belgian and European animal 

welfare rules (RD 29th May 2013, published on the 10th of July), he was not considered 

to be an experimental animal. As such, the authors state that have followed the principles 

outlined in the Declaration of Helsinki for all animal experimental investigations. In 

addition, informed consent from the owner was obtained.  

The fresh fecal matter was kept anaerobic (in a firmly closed bag) during transport to 

protect it from oxygen exposure and at 37 °C, until further processing in the lab. Fecal 

slurry was made by adding 1:5 (20% w/w) phosphate buffered saline followed by a 

homogenization step in a stomacher (Stomacher 400 Classic Laboratory Blender, Seward, 

West Sussex, UK) for 10 min. The faecal slurry was transferred into 50 mL falcon tubes 

and centrifuged at 500 x g for 5 min, removing large fibers. To the supernatant, glycerol 

(99.5%) (Analar Normapur, Fontenay-sous-Bois, France) was added at a 20% (v/v) ratio, 

which was gently mixed under atmospheric conditions, before storage at −80 °C. 

Dark, autoclaved 125 mL penicillin flasks were used to avoid light and UV influences. To 

45 mL medium (CPB broth), 5 mL of the fecal inoculum was added. For each condition, 

three in vitro digestions were done in parallel (replicates). As such the effect of moldy 

and mold-free corn on the detection of steroids could be tested. For both moldy and mold-

free corn, the effect of adding additional phytosterols (corn + phytosterols and moldy 

corn + phytosterols) was tested as well. One negative control (blank in vitro digestion) 

was done in parallel. To complete the set-up, a control with only pure phytosterols as the 

phytosterol source was included as well (>50% β-sitosterol) (Table 1, p. 153). The 

medium volume was adjusted to obtain a constant total in vitro digestion volume in the 

flask of 50 mL for each condition. When adding pure phytosterols, 0.2% (v/v) Tween 80 

was added to the in vitro digestion to solubilize the hydrophobic phytosterols [30].  

The flasks were capped and anaerobic conditions were established using a flush system 

for 1 h, alternating every 2 min between N2 (1 bar) and vacuum suction. The flasks were 

then incubated for 72 h (37 ± 0.5 °C, 150 rpm), conform the expected in vivo retention 
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time in the hindgut of 48 to 72 h [36]. Samples (3 mL) were taken after 0, (12), 24, 48 and 

72 h of incubation. Sampling was done as secure and standardized as possible using 

syringes, causing as little disturbance as possible to the bacterial environment. 

Incubations were gently stirred to homogenize before sampling. Samples were stored at   

-20 °C prior to extraction. Extraction was performed according to the previously 

described extraction procedure (See 3.3 AEROBIC INCUBATION OF MOLDY FEED).  

Table 1. Experimental set-up of the in vitro digestion of moldy corn (n=3) 

*The total in vitro digestion volume was kept constant at 50 mL 

3.7 UHPLC–TRIPLE QUADRUPOLE MS/MS ANALYSIS 

Ultra-high performance liquid chromatography (U-HPLC) MS/MS detection was 

performed according to Decloedt et al. (2015) [10,29]. Separation was carried out using 

an Accela
TM

 High Speed LC (Thermo Fisher Scientific, San Jose, CA, USA) with a 

Nucleodur™ Sphinx RP column (1.8 μm, 50 x 2.1 mm, Macherey-Nagel). The mobile 

phase consisted of ultra-pure water containing 0.1% formic acid (26.5 mM) as solvent A 

and methanol Optima® with 0.1% formic acid (26.5 mM) as solvent B. A gradient was 

run at 300 µl/min, starting with a linear gradient of 58% solvent B for the first 2 min, 

increasing to 100% solvent B at 5.5 min, and then kept at 100% solvent B for 1.5 min (up 

to 7 min). Afterwards, the column was allowed to equilibrate at the initial conditions of 

42% A and 58% B for 2 min. All analytes could be accurately separated in a total run 

time of only 9 min [10]. 

Detection was carried out on a TSQ Vantage Triple Stage Quadrupole Mass 

Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a Heated 

Electrospray Ionization probe (HESI-II). Injection volumes were 10 μL each and the 

HESI source was operated in the positive ion mode. It was found that positive ion mode 

afforded better sensitivity [37]. An ESI Ion Spray Voltage of 3 kV was applied. The 

sheath and auxiliary gas pressure were set at 45 and 15 arbitrary units respectively, the 

Name  

in vitro digestion  

Faecal 

inoculum 

(mL) 

CPB  

medium  

(mL)* 

Corn  

 

(g) 

Moldy corn  

 

(g) 

Phytosterols 

 

(g) 

Blank in vitro digestion  5 45 / / / 

Phytosterols  5 45 / / 0.1 

Corn + phytosterols  5 40 5 / 0.1 

Moldy corn + phytosterols  5 40 / 5 0.1 

Corn  5 40 5 / / 

Moldy corn  5 40 / 5 / 
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capillary temperature at 310 °C and the heater temperature at 370 °C. Data were acquired 

in the multiple reaction monitoring (MRM) mode. The resolution of the quadrupole mass 

filter (Q1) was set with the peak width of 0.2 Da at half height, the Q3 filter at 0.7 Da at 

half height.  

All specified product ions were used for peak integration for quantification purposes 

[10,29]. Data were interpreted using Xcalibur 2.1. w/Foundation 1.0.2 Rev. B qualitative 

and quantitative software (Thermo Electron, San Jose, USA). Area ratios were calculated 

relative to the internal standard methyltestosterone (MT, 5 ng/mL), that was added to 

both calibration and unknown samples, to compensate for losses during sample 

preparation or variability during the analytical determination. Methyltestosterone can be 

considered as a good internal standard as it is very similar to the calibrated analytes, 

chemically and in retention time, but chromatographically distinguishable, affordable and 

not endogenously present.  

3.8 DATA ANALYSIS, QUANTIFICATION AND QUALITY ASSURANCE OF THE ANALYTICAL 

METHOD  

Quantitative performance of the used analysis method, accuracy, precision, linearity 

and sensitivity was previously validated in different matrices (urine and in vitro digestion 

samples for αT, βT, AED, ADD, α-Bol and β-Bol) [10,29] (See also chapter II and IV). 

Prior to each new analysis, the individual targeted compounds and standard mixtures 

were injected to check the selectivity and operational conditions of the 

chromatographic devices. The different metabolites were identified based on their relative 

retention time, relative to the internal standard. The instrument’s limit of detection, 

determined by standard injection with a signal-to-noise ratio of at least 3 was 5 pg on 

column for all analytes of interest.  

Area ratios were determined by integration of the area of an analyte under the specific 

SRM chromatograms in reference to the integrated area of the internal standard. A 

calibration curve was constructed based upon ten fortification levels (0, 0.125, 0.25, 0.5, 

1, 2, 4, 6, 8 and 10 ng/mL) and this curve was run twice, before and after the 

experimental samples. Unknown samples were quantified by fitting the metabolites’ area 

ratio in the calibration curve. 
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4. RESULTS  

4.1 AEROBIC INCUBATION OF MOLDY FEED 

Different moldy and mold-free feed samples were tested for the presence of AAS and 

related steroid precursors. Most of them did not contain steroids, yet one of the herbal 

phytosupplements did contain α-testosterone (up to 37 ± 3 ng/g). Although three different 

moldy feeds were monitored for 96 h (5 sampling points), at two different temperatures 

(RT and 37 °C) and in two different media (CPB and PBS), mostly AAS free samples 

were obtained. Upon incubation of moldy carrots and a spoiled commercial grain mix no 

AAS were detected. Although the aerobic incubation of moldy corn did not lead to the 

transformation of phytosterols to ADD, boldenone or βT, traces of αT and P (<0.5 µg/kg) 

were formed at one time point (24 h) and AED was formed throughout the entire 

incubation, in both CPB and PBS, at a comparable concentration (3.0 ± 0.4 µg/kg). At the 

higher temperature (37 °C, in PBS) the detected concentration was stable after 48 h, while 

the concentration tended to decline at RT (Figure 3).  

 

Figure 3. Aerobic transformation of phytosterols from moldy and mold-free corn to AED in CPB 

medium, at two different temperatures (RT and 37 °C). 

4.2 AEROBIC INCUBATION OF A COMMERCIAL GRAIN MIX WITH MYCOBACTERIUM SP  

In feed deliberately contaminated with Mycobacterium sp. 2967, a known phytosterol 

transforming agent (instead of spontaneously present molds), βT was detected, with both 

media (CPB and PBS) and at both temperatures (RT and 37 °C). ADD, AED, α-Bol, β-

Bol, αT and P were not found. At the start of the incubation traces of βT were already 
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present in the samples and no significant increase was observed throughout the 

experiment. Therefore, we concluded that the feed itself was contaminated with βT, and 

the detection was not related to the incubation with Mycobacterium sp. 2967. As a result, 

the deliberate inoculation of feed with a known phytosterol transforming bacteria, 

Mycobacterium sp. 2967, did not lead to the production of AAS.  

To ensure that the ingestion of Mycobacterium sp. and the resulting possible presence of 

these microorganisms in the equine hindgut could not influence the in vivo excretion of 

AAS, the oxygen dependence of mycobacterial cell growth and enzymatic activity was 

tested. Based upon the previous results (See also chapter IV), Mycobacterium sp. 2967 

was chosen as the test strain, and only CPB medium was used [29]. The 

biotransformation capacity was evaluated under aerobic versus anaerobic conditions for a 

prolonged period of time (1.5 to 6 days). 

Under anaerobic conditions, the bacteria did not grow and no transformation of 

phytosterols was observed either. Enzymatic activity and thus metabolism ceased 

immediately upon oxygen restriction. Only the positive control, with pure phytosterols 

added as the substrate and under aerobic conditions, kept its transformation potential. 

This implies that the potent phytosterol transforming Mycobacteria sp 2967 is strictly 

aerobic and as such can’t be held responsible for the in vivo transformation of 

phytosterols to detectable AAS in the digestive system of the horse. 

4.3 ACTIVITY OF EXTRACELLULAR ENZYMES EXCRETED BY CORN-RELATED MOLDS  

Three morphologically different mold strains could be isolated from the moldy corn 

powder: a prominent Mucor species and two other less dense types that were present after 

prolonged incubation, a yellow and a white species (secondary contributors to the 

molding process). The extracellular enzymes from these three mold isolates and an 

additional negative control (UP H2O) were tested for their biotransformation capacity of 

AAS precursors (AED/ADD/β-sitosterol) in PBS buffer (phosphate Buffered Saline). The 

endogenous mold levels were also measured, by incubating the extracellular enzymes 

without any added precursors. 

To include the effect of incubation time on the biotransformation capacity, the 

biotransformation reaction was monitored at two different time points, after an incubation 

period of 1 and 4 h. A negative control (PBS + UP H2O), without any extracellular 

enzymes, was tested as well. Within 1 hour, the exposure of ADD (1 µM) to the 
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extracellular enzymes of the Mucor sp led to the detection of β-Bol (3.6 ± 0.8 ng/mL), 

while no β-Bol was detected when AED or pure phytosterols (>50% β-sitosterol) were 

added, nor in the negative control, without added precursors. No α-Bol was detected 

either. This concentration increased when exposure time was prolonged (up to 5.8 ± 0.1 

ng/mL after 4 h). A low, yet significant, concentration of βT (0.15 ± 0.05 to 0.23 ± 0.01 

ng/mL) was detected as well, while βT was not found when ADD was exposed to the 

extracellular enzymes excreted by the other isolates (Table 2). 

Table 2. Detected steroids after exposure of ADD to the extracellular enzymes of three 

isolated corn-related mold species. No α-Bol, P or αT were found (n=4). 

Species 
βBol (ng/mL) AED (ng/mL) βT (ng/mL) 

1h 4h 1h 4h 1h 4h 

Blank 0.09 ± 0.01
a 0.08 ± 0.00

a 1.5 ± 0.1
a 1.4 ± 0.1

a NF
a NF

a 

Mucor sp 3.6 ± 0.8
c 5.8 ± 0.1

d 1.7 ± 0.5
a 1.2 ± 0.1

a 0.15 ± 0.05
b 0.23 ± 0.01

b 

Yellow mold 0.2 ± 0.1
b 0.23 ± 0.02

c 2.2 ± 0.6
b 1.7 ± 0.1

b NF
a NF

a 

White mold 0.2 ± 0.0
b 0.15 ± 0.00

b 2.6 ± 0.2
b 2.1 ± 0.1

b NF
a NF

a 
 

NF = not found (<0.01 ng/mL) 
abcd = significant difference between mold strains and blank control samples (t-test, p = 0.05) 

When AED was added as precursor the detection of βT (14 ± 3 ng/mL after 1 h and 20 ± 

3 ng/mL after 4h) was the most prominent, and traces of ADD and αT could be detected 

as well (Table 3). When AED was added to the negative control (PBS + H2O) a low 

concentration of βT could be detected within one hour (1.5 ± 0.1 ng/mL) and this 

concentration was maintained when prolonging the incubation time (1.4 ± 0.0 ng/mL). A 

low concentration of αT (<0.2 ng/mL) was also detected. 

Table 3. Detected steroids after exposure of AED to the extracellular enzymes of three 

isolated corn-related mold species. No P, β- or α-Bol were found (n=4). 

species 
ADD (ng/mL) βT (ng/mL) αT (ng/mL) 

1h 4h 1h 4h 1h 4h 

blank NF 0.05 ± 0.01
a
 1.5 ± 0.1

a
 1.4 ± 0.0

a
 0.16 ± 0.01

a
 0.15 ± 0.00

a
 

Mucor sp NF 0.04 ± 0.01
a
 14 ± 3

c
 20 ± 3

c
 0.18 ± 0.01

a
 0.18 ± 0.01

b
 

Yellow mold NF 0.05 ± 0.01
a
 2.0 ± 0.3

b
 1.7 ± 0.1

b
 0.17 ± 0.01

a
 0.14 ± 0.02

a
 

White mold NF 0.04 ± 0.01
a
 2.4 ± 0.1

b
 1.9 ± 0.2

b
 0.18 ± 0.01

a
 0.15 ± 0.02

a
 

NF = not found (<0.01 ng/mL) 
abc = significant difference between mold strains and blank control samples (t-test, p = 0.05) 



CHAPTER V 

158 

 

The addition of pure phytosterols (>50% β-sitosterol) to the extracellular enzymes led 

to the detection of ADD and AED at comparable concentrations (<0.1 ng/mL). These 

small alterations in AED concentration were not significantly different from the negative 

control (Table 4). The addition of phytosterols to the Mucor sp. extracellular enzymes did 

lead to a low yet significant detection of ADD after 4h (0.02 ± 0.00 ng/mL) (in triplicate), 

which was not observed for any of the other strains nor in the negative control.  

Table 4. Detected steroids after exposure of pure phytosterols (>50% β-sitosterol) to the 

extracellular enzymes of three isolated corn-related mold species.  
No α-Bol, β-Bol, αT, βT or P were found (n=4). 

Species 
ADD (ng/mL) AED (ng/mL) 

1h 4h 1h 4h 

blank 

suspension 
NF

a NF
a
 

 

0.05 ± 0.03
a 0.05 ± 0.02

a 

Mucor sp NF
a 0.02 ± 0.00

b 0.03 ± 0.02
a 0.04 ± 0.02

a 

Yellow mold NF
a NF

a 0.04 ± 0.02
a 0.04 ± 0.02

a 

White mold NF
a NF

a 0.07 ± 0.05
a 0.06 ± 0.02

a 

NF = not found (<0.01 ng/mL) 
ab = significant difference between mold strains and blank control samples (t-test, p = 0.05) 

 

4.4 IN VITRO DIGESTION OF MOLDY FEED 

Predigestive biotransformation of phytosterols in moldy feed (carrots, corn and 

commercial grain mix) showed that aerobically incubated moldy corn can contain up to 

3.0 ± 0.4 µg/kg AED, an important anabolic-steroid precursor (Figure 3, p. 155). 

Therefore, this feed was subjected to the in vitro digestive simulation, a tool to study in 

vivo digestion, of which the functionality has been proven in previous studies [29,35]. No 

AAS were detected in the blank in vitro digestion without added precursors. When adding 

(moldy) corn and/or phytosterols (>50% β-sitosterol) to the in vitro digestion, AED was 

detected throughout the entire digestion period (0 to 72 h). The highest concentrations of 

AED were obtained for the combination of moldy feed with added phytosterols (0.28 ± 

0.02 ng/mL) (Figure 4, p. 159).  

The detected concentration was higher than the concentration detected when no additional 

phytosterols were added to the digestion (0.20 ± 0.05 ng/mL). The addition of mold-free 

corn and/or pure phytosterols (>50% β-sitosterol) led to low concentrations of AED in the 

digestion (0.05-0.12 ng/mL).  
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Figure 4. Detection of AED during the in vitro digestion of (moldy) corn. 

5. DISCUSSION 

Different moldy and mold-free feed samples were tested for the presence of AAS. Most 

of them did not contain AAS, yet one of the herbal phytosupplements showed to contain 

α-testosterone. In addition, the aerobic incubation of moldy corn showed that AED is 

formed and this in both PBS buffer and CPB medium, at a comparable concentration. 

Traces of αT and P were also detected. The detected concentration of AED was slightly 

higher at room temperature. As the majority of fungal species are mesophiles, growing at 

temperatures within the range 0–35 °C with the optimum growth temperature being 25–

30 °C, this can be linked to the difference in biotransformation. The optimum growth 

temperature is closer to RT than to 37 °C [29]. On the other hand, neither moldy carrots 

nor the moldy commercial grain mix led to the direct production of AAS.  

Two complementary explanations can be formulated to explain the difference between 

the different feed types. At the one hand, the phytosterol content differs between 

feedstuffs. Grains, and especially corn, are known to contain high levels of phytosterols 

(>1200mg per kg fresh weight) [38], while carrots only contain 100-200 mg of 

phytosterols per kg fresh weight [39]. The phytosterol concentration present in 

commercial grain mix was unknown (no analytical data available). Based on the 
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composition of the product it can be estimated as in between both values (500-1000 mg 

per kg fresh weight). On the other hand, corn was harvested directly from the field, while 

carrots and the commercial grain mix were bought in a shop. A different mold 

contamination process might as such be responsible for the moldy appearance, and as 

different mold species can vary in their (extra)cellular enzymes, this can differentially 

affect the phytosterol biotransformation potential [40]. The latter was confirmed by the 

extracellular enzyme experiments executed in this study.  

The Mucor species, naturally present on corn, was up to ten times more efficient at 

transforming phytosterols to AAS precursors (AED and ADD), and AED and ADD to 

respectively βT and β-Bol, than the other two isolates. Studying more different isolates 

would allow monitoring the variation between different mold species and will be 

important to take into account the range of enzymes excreted by different mold species. 

Different species differ in their ability to degrade different substrates and few organisms 

have the potential to degrade all available plant cell wall components [41,42].  

Generally, microorganisms adapted to use hydrophobic hydrocarbons, such as 

phytosterols, need to possess the following physiological properties: (1) lipophilic cell 

walls and adaptive changes in surface properties allowing direct adhesion to hydrophobic 

substrates, (2) high affinity uptake systems such as active transporters and membrane-

associated enzymes for initial degradation, (3) the ability to excrete biosurfactants or 

bio-emulsifiers to increase the bioavailability of phytosterols.  

Based on these properties, molds are interesting biotransformation candidates as they are 

capable of adapting to different substrates, due to their parasitic nature and capability to 

produce a wide variety of extracellular enzymes. The enzymatic potential of fungi has 

already been a matter of study for industrial applications of fungal extracellular enzymes 

e.g. microbial biodegradation of pollutants, including hydrocarbons (e.g. oil) [27,43,26]. 

Extracellular enzyme production supplements the direct uptake of nutrients and is linked 

to nutrient availability and environmental conditions.  

Interestingly, for some mold species, including Mucor sp., it has been described that they 

can produce biosurfactants, compounds of microbial origin that exhibit surfactant 

properties [26,44]. These biosurfactants are specifically interesting in the light of 

phytosterol conversion, as phytosterols are difficult to solubilize, highly hydrophobic 

substrates that are as such difficult to access enzymatically. The industrial large-scale, 
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biological production of steroids from phytosterols therefore uses chemical surfactants 

such as ethoxylated sorbitan esters (Tween 60 or 80®) to create micro-emulsions, 

enhancing phytosterol solubilization and availability. Therefore, the excretion of 

biosurfactants is a crucial parameter in the identification of molds as possible phytosterols 

transforming agents. 

Based on the results obtained with moldy feed samples, moldy and mold-free corn were 

used to study the effect of digestion of moldy feed on the horse’s steroid profile. Due to 

ethical constraints, it was not appropriate to test the consumption of moldy feed in vivo. 

Alternatively, in vitro incubation systems have been developed to simulate the 

gastrointestinal digestion of horses [29,35], humans [45,46] and many other animals [47-

49]. Though these types of in vitro batch cultures do have their limitations, i.e. absence of 

gastrointestinal absorption and lack of interaction with the host colonic mucosa, using an 

in vitro batch system enhances reproducibility; unlike when using an in vivo set-up, 

reaction parameters can be standardized.  

For horses, results obtained in vitro showed to be in line with previously described in 

vivo results [50], proving that in vitro digestions are a useful tool to study the 

fermentation reactions that take place in the equine hindgut [29]. The focus is on the 

hindgut as complex fermentation reactions only take place in the caecum and colon, the 

enzymatic activity and digestion measured in the foregut of horses is fairly low [51], the 

α-amylase activity was estimated between 10 and 50 U/g [52] compared to 3500 U/g for 

other species such as humans and pigs [53].  

When adding (moldy) corn and/or phytosterols (>50% β-sitosterol) to the in vitro 

digestion, AED was detected throughout the entire digestion period. The highest 

concentrations of AED were obtained for the combination of moldy feed with added 

phytosterols. In the latter case, the phytosterols were transformed by the combination of 

mold and hindgut microbial activity. The combination of mold enzymatic activity and 

the in vitro digestion fermentation showed to be crucial to power the transformation of 

phytosterols into AED, the main testosterone precursor.  

Digestion of mold-free corn and/or added pure phytosterols (>50% β-sitosterol) gave 

rise to AED in the digestion as well, but at very low concentrations (≤0.1 ng/mL). As 

these concentrations were very close to or below the detection limit [29], they were not 

considered significant. The digestion of pure phytosterols, mold-free corn, and the blank 
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in vitro digestion without any added precursors did not lead to the significant detection of 

AED or other steroids, while the concentration of AED produced through the digestion of 

moldy corn (with and without added phytosterols) was significant.  

The difference between moldy corn with and without added phytosterols indicates that 

the conversion with added phytosterols is higher, probably due to the fact that the 

bioavailability of these phytosterols exceeds the bioavailability of the phytosterols 

embedded in corn. In vivo, the stomach and small intestinal digestion will contribute to 

this bioavailability. When adding phytosterols to the extracellular enzymes of all three 

corn-related mold isolates, AED peaks were detected as well, but not to a significant 

level. As a result, it may be deduced that the extracellular enzymes were not able to 

directly transform β-sitosterol into AED, but that the combination of mold enzymes and 

fermentation was crucial to detect low, yet significant, levels of AED.  

The extracellular enzyme experiments with the Mucor corn isolate revealed the 

formation of ADD, the main boldenone precursor, from pure phytosterols (>50% β-

sitosterol), but at a very low rate. ADD was not detected after 1 hour of incubation but 4 

hours of incubation with phytosterols did lead to the detection of ADD. Studying the 

effect of a longer incubation time could be useful to reveal the full biotransformation 

potential of the Mucor species. Additionally, the isolated Mucor species showed to be 

very efficient at transforming ADD to boldenone, supporting the possibility of a two-step 

reaction from pure phytosterols to ADD to β-Bol. When supplied with AED, the Mucor 

sp isolate could form up to 20 ng/mL βT (after 4 hours).  

Both other secondary, mold isolates were also able to transform ADD to boldenone, but 

less efficiently. Their biotransformation capacity was barely higher than that of the 

negative control. In line with the Mucor sp isolate, the other two isolates were able to 

form βT and traces of αT out of AED. However, the detected concentrations for these two 

isolates were 3 to 10 times lower than those obtained with the Mucor species. Still, 

qualitatively, the results were quite comparable.  

Additionally, the formation of certain steroids in the blank enzyme suspension (PBS 

buffer + H2O, without any enzymes) was low, yet present. Minor impurity of the added 

supplements (≥99% purity) or spontaneous oxidation or reduction in the presence of 

oxygen and water could be responsible for this baseline detection. This confirms the 
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importance of comparing the extracellular mold enzyme results to the results of control 

samples, as marked in the introduction. 

The suit of processes taking place between consumption of feed to urinary excretion and 

detection of steroids is very complex, involving many different contributors and side-

reactions. In this study we focused on biotransformations taking place in the feed itself, 

catalyzed by mold enzymes, and the effect of the equine hindgut digestive processes 

(including microbial fermentation) on the digestion of (moldy) feed. Other metabolic 

pathways can additionally contribute to the formation of intermediate precursors (e.g. 

AED to testosterone). Recent work by Fabregat et al. (2015) confirmed the formation of 

1,4-androstadien-3,17-dione (ADD), 4,6-androstadien-3,17-dione, 17β-hydroxy-4,6-

androstadiene-3-one and 17β-hydroxy-1,4-androstadiene-3-one (boldenone) upon hepatic 

phase I metabolism of T. Analogously to T, this pathway leading to the formation of ∆1 

and ∆6 metabolites, might also prevail for other steroids, opening the possibility of 

targeting additional biomarkers [54].  

Moreover, compounds and phase I metabolites may be further reduced and/or modified 

during phase II catabolism in the liver. The set of phase I and II products could in turn 

be transformed in the hindgut by the wide range of microorganisms, under aerobic or 

mainly anaerobic conditions. This enterohepatic circulation might additionally increase 

the yield of biochemical modifications by reprocessing the “flow-through” [55]. Yet 

unexplored and thus unchartered reactions and reaction products of the enterohepatic 

circulation should be taken into account, when considering the connection to the urinary 

excretion of steroids.  

This biological complexity is extremely difficult to reproduce in vitro. Based on the 

results obtained in this study, additional in vivo research is warranted to further unravel 

the correlation between the controlled consumption of phytosterol rich or enriched feed, 

albeit exposed to mold enzymes, and the urinary and faecal excretion of steroids in 

horses. 
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6. CONCLUSION 

Different moldy and mold-free feed samples were tested for the presence of anabolic-

androgenic steroids. Moldy corn showed to contain low levels of AED, the main 

testosterone precursor. The effect of digestion of moldy corn was tested by in vitro 

simulation of the horse’s hindgut. The in vitro digestion of moldy corn with phytosterols 

showed the highest AED concentrations, suggesting that AED was produced as a result of 

the phytosterols being subjected to the combined effect of fermentation and mold-related 

extracellular enzyme activity.  

However, in most other feed samples no AAS were detected, even when the products 

were molded. These results prove that plant phytosterols cannot be held directly 

responsible for the excretion of AAS in horses, but it is important to caution against the 

consumption of any feed or herbal supplement of which the detailed ingredients and 

quantitative analysis are unknown. Especially the consumption of moldy corn should be 

avoided, not only from a horse health and welfare point of view, but also to avoid a 

possible inadvertent positive doping result, as these crops can contain low levels of 

steroids. 
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CHAPTER VI 

1. ABSTRACT 

Reasons for performing study. Anabolic-androgenic steroids (AAS) are strictly forbidden 

in equine sports because of their stimulating effect on muscle growth and performance. 

Nevertheless, low levels of AAS have been found in some untreated horses. 

Glucocorticoids (GC), used as an anti-inflammatory therapy and structurally related to 

AAS, might play a role in this phenomenon. 

Objectives. In this study the influence of glucocorticoid treatment on the excretion of low 

levels of AAS in horse urine was studied both in vivo and in vitro, in order to unravel the 

possible correlation between glucocorticoid treatment and the detection of AAS.  

Study Design. The in vivo effects of glucocorticoid treatment on the AAS excretion 

profile were investigated by analysing urine samples collected from a gelding treated 

intra-articular with betamethasone (11.4 mg). Additionally, multiple in vitro digestion 

simulations were set up to study the possibility of a direct biotransformation of natural 

and synthetic glucocorticoid to AAS, by the microbiota of the equine hindgut.  

Methods. Urine and in vitro digestion samples were extracted and analysed with fully 

validated UHPLC-MS/MS and UHPLC-Orbitrap-HRMS analytical methods. In vitro 

digestion simulations were performed according to a previously validated protocol. 

Results. A significant influence of betamethasone treatment on the urinary excretion of α-

testosterone (αT), β-testosterone (βT) and androsta-1,4-diene-3,17-dione (ADD) was 

seen. αT-concentrations up to 20 ng/mL were detected. ADD was not found before 

treatment but could be detected up to 93 days post-treatment. Cortisone and cortisol also 

peaked (>30 ng/mL) between day 37 and 48 post-treatment. The in vitro digestion results 

revealed no direct biotransformation of glucocorticoids to AAS by the microbiota of the 

equine hindgut. 

Conclusions. This study shows that an intra-articular glucocorticoid treatment can trigger 

the excretion of AAS in urine, not by direct biotransformation upon gastrointestinal 

digestion, but more likely by influencing the hypothalamic-pituitary-adrenal axis.   



CHAPTER VI 

174 

 

2. INTRODUCTION 

Given their potential to increase physical performances, anabolic-androgenic steroids 

(AAS) are frequently being abused in equine sports [1-3]. The abuse of these steroids has 

pushed regulatory institutes, like FEI (Fédération Equestre International) and IFHA 

(International Federation of Horseracing Authorities), to develop appropriate and reliable 

analytical methods to confirm abuse of these prohibited substances. For most compounds, 

zero-tolerance policy is held. In other cases, international thresholds can be adopted for 

substances endogenous to the horse [4, 5].  

17β-Testosterone (βT) (Figure 1) for example is generally accepted as an endogenous 

androgenic-anabolic steroid [2, 6]. Other AAS, with 17β-boldenone (ß-Bol or 1-

dehydrotestosterone, Figure 1) as a mere suspect, might be of endogenous origin as well 

and are under further investigation. ß-Bol has been demonstrated to be naturally present 

in entire male horses [7, 8]. Other steroids, such as androsta-1,4-diene-3,17-dione (ADD 

or boldione) and androst-4-ene-3,17-dione (AED), can function as a precursor for 17β-

boldenone and 17β-testosterone, respectively, in various animal species [7], including 

horses [8-10].  

 

Figure 1. Chemical structures of 17β-testosterone (ßT) and 17β-boldenone (ß-Bol). ß-Bol differs 

from βT only by one double bond at the 1-position. 

The current FEI prohibited substances list (2015) includes an international threshold of 

15 ng ß-Bol (free and conjugated) per mL urine of entire male horses, whereas the 

presence of ß-Bol in urine from mares and geldings is still prohibited [4, 5]. Nevertheless, 

low concentrations (<5ng/ml) of AED, ADD and ß-Bol have been reported in routine 

analysis (personal communication) and after urinary screening of untreated horses [9].  
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The potentially endogenous presence of 17β-boldenone and related compounds might be 

a complicating factor in doping control [11]. Proper investigation on the origin of these 

AAS is required to guarantee adequate doping policies in the future.  

Earlier studies have shown that dietary contaminants in feed can cause horses to get a 

positive doping result in urine analysis [12], pointing at the equine enteric tract as a 

potential source of ß-Bol or related steroids. Hence, the hypothesis that 

glucocorticosteroids (GC), being structurally related to the group of AAS, can be 

transformed to AAS by the microbiota of the equine colon was formulated.  

Glucocorticoids are endogenously secreted by the adrenal cortex, under control of the 

hypothalamic-pituitary-adrenal axis (HPA axis). Hypothalamic corticotrophin-releasing 

hormone (CRH) initiates the secretion of adrenocorticotropic hormone (ACTH) in the 

pituitary gland. Glucocorticoid receptors in the hypothalamus inhibit CRH-secretion, 

thereby establishing a classical endocrine regulatory negative feedback loop [13].  

Endogenous glucocorticoids are classically known to be secreted as a reaction to stress 

[14]. At rest (n = 50) cortisol levels are at 24 ng/mL. Reference values for cortisol levels 

after race (n = 100) are 70 ng/mL, and after endurance (n = 50) cortisol levels can go up 

to 65 ng/mL (personal communication L.C.H.). Other biological functions include the 

control of energy homeostasis and the suppression of inflammation [15]. Because of these 

anti-inflammatory effects, glucocorticoid treatments are frequently used in equine 

medication [16].  

The structural resemblances between glucocorticoids and AAS increase the probability 

of a possible transformation, as compounds belonging to both groups contain the same 

steroid (sterane) skeleton and have common precursors [17]. Glucocorticoids though 

possess 21 C-atoms in total (Figure 2, p. 170), whereas the androgenic steroids only have 

19 C-atoms (androstanes) (Figure 1) [18]. This structural difference is in line with the 

glucocorticoid character, requiring a C11-hydroxyl group, and respectively androgenic 

character of the components [19].  

Supporting this hypothesis is the fact that the detection of anabolic-androgenic steroids 

(ß-Bol, AED and/or ADD) in urine often coincided with a glucorticoid administration in 

the weeks or months before sampling [9] (See also chapter II).  
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Figure 2. Chemical structures of hydrocortisone (cortisol, endogenous GC) and 

betamethasone (synthetic GC). The anti-inflammatory activity of the synthetic corticoid 

betamethasone has proven 25 times higher than the relative activity of the endogenous corticoid 

cortisol (hydrocortisone). 

3. MATERIAL AND METHODS 

3.1 IN VIVO EXPERIMENTAL SET-UP 

To elucidate the in vivo effects of a glucocorticoid treatment on a horse’s urinary AAS 

excretion profile urine samples were collected from a gelding with mild bone spavin 

treated with 1 mL Chronodose (Celestone®) in each hock. The term ‘bone spavin’ 

describes degenerative osteoarthritis of the hock [20]. As in most cases, the two most 

distal joints were affected (art. centrodistalis and art. tarsometatarsea). Intra-articular 

injection of betamethasone is valuable in this regard for its anti-inflammatory and 

analgesic properties.  

Chronodose is a frequently used formulation in equine medicine that contains two forms 

of betamethasone: betamethasone-acetate and bethamethasone-disodiumphosphate. 

Betamethasone-acetate (3 mg/mL = 2.7 mg/mL betamethasone) is responsible for the 

medicament’s long term effects. By esterification, a depot effect is created, out of which 

betamethasone is slowly released over time, whereas betamethasone-disodiumphosphate 

(4 mg/mL = 3 mg/mL betamethasone) renders the glucocorticoid activity on the short 

term [21].  

Urinary samples were collected and analysed on a regular basis to monitor the excretion 

of AAS, such as ß-Bol or its precursors, and (endogenous) glucocorticoid, over time. 

Three samples were collected before treatment (day -10, -2 and 0) and 36 samples over 

the following four months post-treatment (up to day 122). All samples were midstream 
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urine samples captured in sterile 50 mL-tubes and stored at -20 °C until extraction and 

further analysis. All samples were taken in the evening (between 7 and 9 p.m), limiting 

the influence of diurnal rhythm related variation of cortisol and testosterone 

concentrations (See also chapter I). 

As spontaneously voided samples were collected and the horse was treated for medical 

reasons, and not specifically in the light of this study, according to the latest Belgian and 

European animal welfare rules (RD 29th of May 2013, published on the 10th of July), this 

horse was not considered to be an experimental animal. As such, the authors state that 

they have followed the principles outlined in the Declaration of Helsinki for all animal 

experimental investigations. In addition, informed consent had been obtained from the 

owner of the horse. External influences on the ACTH-axis were kept to a minimum as 

both diet and environmental conditions were controlled. Throughout the entire follow-up 

period (pre- and post-treatment) the horse was kept on a normal, non-controlled diet of 

grass and hay (24 h/day), in a stable herd. Throughout the entire period of monitoring, 

the horse did not suffer from any other condition other than the mild bone spavin the 

horse was initially treated for. 

3.2 IN VITRO SIMULATION OF THE EQUINE HINDGUT: BIOTRANSFORMATION OF 

GLUCOCORTICOIDS 

In order to investigate the possible biotransformation of glucocorticoids into AAS by 

microbial fermentation, in vitro simulations of the equine hindgut were set up. Faecal 

inocula from four different horses were incubated in vitro to simulate equine hindgut 

digestion, following a previously described protocol, of which the functionality had been 

shown by full-fledged validation: all results obtained following this protocol were in line 

with in vivo results, proving that these in vitro digestions are a useful tool to study the 

fermentation reactions that take place in the equine hindgut [22, 23].  

In this set-up a variety of glucocorticoids was tested. Cortisol or hydrocortisone (Figure 

2, p. 170) was chosen based on its natural presence under stress. Hydrocortisone is the 

main endogenous glucocorticoid in large mammals, hydrocortisone blood levels rise 

when the horse is exposed to an acute or chronic stressor [24, 25]. Cortisone, 

prednisolone and betamethasone were also tested as these are frequently used by 

veterinarians as anti-inflammatory treatment. Cortisone is specifically interesting as it is 

the inactive form of cortisol/hydrocortisone and therefore suitable as a cortisol-prodrug 
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[19, 26]. Betamethasone was also included as it is a highly potent anti-inflammatory drug, 

often used in joint disease therapy (e.g. the horse studied in the in vivo section of this 

study) [20, 27].  

Spontaneously discharged, fresh faeces was collected from four healthy, untreated 

horses, fed on controlled diet of concentrate (4 kg/day), hay (10 kg/day) and straw 

bedding. Faecal slurry was made by adding 1/5 (w/w) phosphate buffered saline and 

homogenization in a stomacher. Glycerol (99.5%, Analar Normapur, Fontenay-sous-Bois, 

France) was added at 20% (v/v) ratio, after which the inoculum was stored at -80 °C.  

CPB (Cysteine Peptone Bouillon) consists of a mixture of 5 g yeast extract (AppliChem, 

Darmstadt, Germany), 1 g peptone (Oxoid, Hampshire, England), 8.5 g NaCl (Merck, 

Darmstadt, Germany), 0.5 g L-cysteine (SAFC Supply Solutions, St. Louis, Missouri, 

added to improve anaerobicity), and 10 mL haemin solution (Sigma-Aldrich, Steinheim, 

Germany) in 1L ultrapure water [28, 29]. The CPB broth was autoclaved at 121 °C for 15 

min (1 atm), and stored at 4 °C until usage. All handlings of the in vitro digestion were 

done in a laminar flow cabinet.  

Dark, autoclaved 125 mL penicillin flasks were used to avoid light and UV influences. 

45 mL CPB medium and 5 mL faecal inoculum (horse n° 1-4) was added. Cortisone, 

prednisolone, cortisol or betamethasone were separately added to 3 flasks each (same 

digestion in triplicate). An additional negative control was included for each horse, 

without adding a precursor. The flasks were capped and anaerobic conditions were 

established using a flush system for 1 h, alternating every 2 min between N2 (1 bar) and 

vacuum suction. The flasks were then incubated for 72 h (37 ± 0.5 °C, 150 rpm). Samples 

(3 mL) were taken after 0, 12, 24, 48 and 72 h of incubation. Incubations were gently 

stirred to homogenize before sampling. Samples were stored at -20 °C prior to extraction.  

3.3 LC-MS REAGENTS AND CHEMICALS 

α-testosterone (androst-4-ene-17α-ol-3-one, αT, purity ≥99%), ß-testosterone (androst-4-

ene-17ß-ol-3-one, ßT, purity ≥99%), methyltestosterone (androst-4-ene-17α-methyl-17ß-

ol-3-one, MeT, purity ≥99%), androstadienedione (androsta-1,4-diene-3,17-dione, ADD, 

purity ≥99%), cortisol (hydrocortisone or 17-hydroxycorticosterone, purity ≥98%), 

cortisone (17-hydroxy-11-dehydrocorticosterone, purity ≥ 98%), dihydrocortisone, 

prednisone, methylprednisolone, prednisolone (1-dehydrohydrocortisone, purity ≥99%), 

betamethasone (9α-Fluoro-16β-methylprednisolone, purity ≥98%), cortisol-d4 (purity 



CHAPTER VI 

179 

 

≥99%) proteinase type XXIII from Aspergillus melleus (3 enzyme units per mg) and β-

glucuronidase (Helix Pomatia, aqueous, >100.000 units per mL) were purchased from 

Sigma-Aldrich (St-Louis, US) and prednisolone-d8 from TRC (Canada). 

Androstenedione (androst-4-ene-3,17-dione, AED, purity ≥99%), α-boldenone (androsta-

1,4-diene-17α-ol-3-one, αBol, purity ≥99%) and ß-boldenone (androsta-1,4-diene-17ß-ol-

3-one, ßBol, purity   ≥99%) were obtained from Steraloids (Newport, US). Progesterone 

(purity ≥99%) was obtained from Alpha Pharma (Omega Pharma, Zwevegem, Belgium). 

Methanol Optima® was bought at Fisher Scientific, UK Limited (Leicestershire, UK). 

Diethyl ether, ethyl acetate, sodium hydroxide, methanol (analytical grade), H2SO4, 

KH2PO4 and formic acid (98-100%, analytic grade) were purchased from VWR (Merck, 

Darmstadt, Germany).  

Solvolysis solvent consisted of 900 mL ethyl acetate, 95 mL methanol and 5 mL H2SO4 

per liter. The HF Bond Elut-C18 cartridges (6 mL, 500 mg) were obtained from Agilent 

Technologies (Diegem, Belgium). HPLC grade, ultrapure water was acquired from an in-

house water purification system (Arium
®
 611UV, Sartorius Stedium Biotech, VWR, 

Haasrode, Belgium). (Glucocortico)steroid stock solutions were made in methanol 

Optima
®

 at 25 ng/µL
 
and kept at 4 °C. 

3.4 EXTRACTION OF URINE AND IN VITRO DIGESTION SAMPLES 

3.4.1 Hydrolysis 

Hydrolysis increases the sensitivity of detection, as pooling non-conjugated and released 

sulphate and glucuronide-conjugated fractions allows to increase the detectable 

concentration of free compounds. 1 mL of phosphate buffer (1M KH2PO4, pH 6.1 ± 0.1) 

was added to 3 mL of sample. Next, the internal standard (methyltestosterone, 5 ng/mL), 

50 µl of a ≥450 units/mL protease solution and 25 µl ß-glucuronidase were added. Of 

each sample the pH was set at 6.1 ± 0.1 (by adding 1M HCl) and hydrolysis of the 

glucuronide-conjugated steroids was executed at 55 °C (1 hour). Afterwards, 3 mL of 

ultrapure water was added and large, non-hydrolysed proteins were removed by 

agglutinating them at the bottom of the tube through centrifugation (4000 x g, 15 min). 

Finally, the supernatant was filtered over a cotton wool filter before solid phase extraction 

(SPE). 
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3.4.2. Solid phase extraction (SPE) 

SPE cartridges (6 mL, 500 mg C18, Bond Elut, Isolute) were conditioned with 4 mL 

methanol and 4 mL ultrapure water. The centrifuged and filtered samples were loaded 

onto the column and washed with consecutively 6.5 mL ultrapure water and 6.5 mL 

hexane. The cartridges were dried under vacuum (-0.5 bar). Non-conjugated and 

glucuronide-conjugated fractions were eluted with diethyl ether (7 mL) and the sulphate-

conjugated fraction with solvolysis solvent (6.5 mL). Solvolysis of the sulphate-

conjugated steroids was executed at 55 °C (2 hours). Both fractions were washed with 

1.5 M sodium hydroxide (5 mL) by turning (8 min, 60 rpm) and centrifugation (6 min, 

3000 x g). 

3.4.3. Pooling and reconstitution 

Washed fractions were pooled and dried under nitrogen (50 °C, 45 min). Each sample 

was reconstituted in 100 µl of ultrapure methanol, vortexed and ultrasonicated (3 min). 

Finally, 100 µl of ultrapure water was added, vortexed and ultrasonicated as well. After 

centrifugation (9000 x g, 10 min) the sample was transferred to a LC-MS vial with insert 

for analysis. 

3.5 ANALYTICAL METHODS (UHPLC-MS/MS AND UHPLC-ORBITRAP-HRMS) 

Of each sampling point (39 in total) three 3 mL aliquots were extracted and analysed with 

two different analytical methods: a UHPLC-MS/MS and an Orbitrap-MS method. Mean 

concentrations and the standard deviation on the mean concentrations were evaluated.  

The UHPLC-MS/MS method used an Accela
TM

 autosampler and Accela
TM

 High Speed 

LC (Thermo Fisher Scientific, San Jose, USA) coupled to a MS/MS TSQ Vantage Triple 

Stage Quadrupole
TM

 benchtop mass spectrometer (UHPLC-MS/MS, Thermo Fisher 

Scientific, San Jose, USA). This method was previously validated for quantitative 

detection of AAS in urine and in vitro digestion samples [9, 22].  

For the analysis of glucocorticoids, the authors used the untargeted method described by 

De Clercq et al. (2014), with the use of an UHPLC system coupled to a high-resolution 

Orbitrap Exactive™ benchtop mass spectrometer (UHPLC-HR-Orbitrap-MS, Thermo 

Fisher Scientific, San Jose, USA) [30]. 
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3.6 QUANTIFICATION 

Prior to each analysis, the individual targeted compounds and standard mixtures were 

injected to check the selectivity and operational conditions of the chromatographic 

devices. The different metabolites were identified based on their relative retention time, 

relative to the internal standard. The instrument’s limit of detection, determined by 

standard injection with a signal-to-noise ratio of at least 3 was 5 pg on column for all 

analytes of interest. All specified product ions were used for peak integration for 

quantification purposes. 

Area ratios were determined by integration of the area of an analyte under the specific 

SRM chromatograms in reference to the integrated area of the internal standard. In 

addition, the standard addition approach was used for urine specific quantification. The 

applied formula, explained in detail in Decloedt et al. (2015), with CA representing the 

unknown urinary concentration, is: 

 

𝐶𝐴 =
𝐴𝑟𝐴

(𝐴𝑟𝐵 − 𝐴𝑟𝐴) 𝑥 𝜌 
 

 

A varying fluid intake between sampling can result in fluctuations of the urinary flow, 

and hence dilution or concentration of urinary components [31]. To facilitate proper 

interpretation of, and comparison between, urine samples, corrections had to be made to 

the measured concentrations. Urine densities were measured with a Digital Hand-Held 

‘Pocket’ Urine S.G. refractometer (PAL-USG (CAT), Atago, Tokyo, Japan). Urine 

samples were allowed to equilibrate to room temperature (23 °C) before measuring urine 

densities, as in healthy individuals a good correlation between specific gravity (SG at 

room temperature) and osmolality is obtained [32].  

Cone et al. (2009) specifically described a method of correction (‘normalization 

procedure’) based on specific gravity, which the authors used to correct for excessive 

dilution or concentration of the urinary components: 

 

Concentrationnormalized =
SGref−1

SGspecimen−1
* Concentrationmeasured 
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SGref is the reference specific gravity and SGspecimen was given by the specific gravity of 

the urine sample of interest, determined for each sample by measuring the degree of light 

refraction with the refractometer. All concentrations presented in the results section are 

SG normalized concentrations. 

4. RESULTS 

4.1 URINARY PROFILE AFTER INTRA-ARTICULAR ADMINISTRATION OF BETAMETHASONE 

In the post-treatment urine samples only traces of betamethasone (<0.5 ng/mL) could be 

detected, and only in the first days post-treatment. The endogenous glucocorticoids, 

cortisone and cortisol (hydrocortisone), were present before treatment at concentrations 

ranging between 1 and 5 ng per mL, repressed for a few days shortly after treatment (0 to 

3 ng per mL) and peaked between day 37 and day 48, up to respectively 36 ± 2 ng per mL 

and 33 ± 2 ng per mL. This suppression and rise of production of endogenous 

glucocorticoids (Figure 3A, p. 177) is possibly induced by the HPA axis as a part of the 

negative feedback system.  

Simultaneously, a yet unknown effect on the excretion profile of the anabolic-androgenic 

steroids ADD, α-testosterone (αT) and β-testosterone (βT) was seen post-treatment 

(Figure 3B, p. 177). A temporary decrease of urinary αT and βT levels was detected 

shortly after treatment, whereas ADD, formerly not found in the gelding’s urine, appeared 

in low concentrations (up to 4 ng per mL), as long as 93 days post-treatment. 

Additionally, αT-levels peaked between day 48 and day 77 (12 ± 2 ng per mL), short after 

the incline of endogenous glucocorticoids levels. These results suggest a correlation 

between the increase in AAS excretion and the endogenous glucocorticoid overshoot after 

exogenous glucocorticoid suppression.  

In general, the analysis of post-treatment urine samples revealed that the influence of the 

treatment undoubtedly could be measured, up to several weeks after betamethasone intra-

articular infiltration. The overall impression was a disruption of pre-treatment AAS 

concentrations, a change in mutual proportions as well as in their long-term concentration 

pattern. ADD or boldione for instance, was not found before treatment, but could be 

found for weeks after treatment, with concentrations up to 4 ± 1 ng mL. 
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4.2 IN VITRO DIGESTION: BIOTRANSFORMATION OF GLUCOCORTICOIDS 

No significant concentration of AAS could be measured after analysis, in either series  of 

in vitro digestion simulations (different equine inocula) with respectively cortisol, 

betamethasone, cortisone or prednisolone. No direct transformation from 

glucocorticosteroids to AAS was shown in the hindgut.  

 

5. DISCUSSION 

Based upon the results obtained from this case study a hypothesis regarding the 

interconnection between glucocorticoid administration and AAS excretion can be 

formulated. Following the exogenous, intra-articular injection of betamethasone, pituitary 

ACTH-release dropped, causing the endogenous adrenal glucocorticoid-synthesis to 

stagnate (measurable as a decline in both cortisol and cortisone levels) [13]. In humans, it 

has already been described that glucocorticoid therapy, and especially prolonged high 

dose systemic therapy, can have a suppressive effect on endogenous steroid production. 

Therefore, dose and duration of glucocorticoid therapy should be kept as low as possible 

[33]. 

When urinary betamethasone elimination continued and betamethasone effect decreased, 

the regulatory (positive) feedback loop was activated, resulting in higher endogenous 

glucocorticoid-production and ultimately even an overshoot of endogenous 

glucocorticoids that was seen from day 37 to 48 for cortisol and cortisone. This overshoot 

was then quickly normalized by the regulatory system, revealing glucocorticoid urinary 

levels as before and restoring homeostasis. This demonstrates the adequate control of 

glucocorticoid concentrations by the HPA axis. Shortly after the GC overshoot emerged, 

a significant rise in αT levels was detected, implicating a possible correlation between 

increased (endogenous) glucocorticosteroid concentrations and raised urinary αT levels.  

The horse in this study was only suffering from mild bone spavin, therefore only 2x1 mL 

(a total of 11.4 mg betamethasone) was injected. Consecutively, traces of 

betamethasone, the originally injected glucocorticoids, were only found during the first 

days post-treatment (<0.5 ng per mL). This was in line with previously obtained results 

by Vine et al. (2007), who noted that following intra-articular injection of 1 mL of 

Celestone Chronodose® into both radial carpal joints of both front knee joints, 
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betamethasone could be detected in urine and plasma for three days and one day, 

respectively and no betamethasone acetate could be detected in either urine or plasma 

[34].  

Higher initial glucocorticoid doses are however quite common in veterinary medicine, 

glucocorticoid doses up to 0.06 mg/kg body weight are therapeutically used in horses, by 

which it is recommended not to exceed a total body dose of 30 mg betamethasone and 

respect a limitation of 15 mg per joint. In acute cases of atopic or flea allergy dermatitis, 

anti-inflammatory dosages (prednisolone, 0.5–1 mg/kg/day) alleviate pruritus and limit 

self-trauma from scratching until the underlying cause can be addressed. Similar dosages 

are used in the management of chronic allergic bronchitis and feline asthma [35].  

When using these higher initial doses it can be expected that the effects as seen in this in 

vivo experiment will be more pronounced. When achieving higher initial glucocorticoid 

levels, the sensitivity of the analytical methods (UHPLC-Orbitrap-HRMS system for 

glucocorticoids) might be met to a better degree, enabling a more profound analysis of 

betamethasone and its metabolites, and the effects on endogenous AAS and 

glucocorticoids over a longer period of time.  

Based on the results of the in vitro digestion experiments, the authors can yet reject the 

hypothesis in this concern; no direct (intestinal) biotransformation of 

glucocorticosteroids to AAS by microbial fermentation in the equine hindgut could be 

detected. The in vivo case study on the other hand supplies sufficient preliminary results 

to support an indirect interconnection of glucocorticoid treatment and the detection of 

AAS, probably by influencing the HPA axis. The amount of testosterone synthesized is 

regulated by the HPA axis. When testosterone levels are low, gonadotropin-releasing 

hormone (GnRH) is released by the hypothalamus, which in turn stimulates the pituitary 

gland to release the follicle-stimulating hormone (FSH) and luteinizing hormone (LH). 

These latter two hormones respectively promote spermatogenesis in the Sertoli cells, 

while LH stimulates synthesis of testosterone in the Leydig cells of the testis (stallions), 

thecal cells of the ovaries, placenta (mares) as well as in the zona reticularis of the adrenal 

cortex (geldings, stallions and mares) (See also chapter I, Figure 1.4). 

This case study can be regarded as a first step in the unravelling of the possible 

correlation between the administration of glucocorticoids and the excretion of anabolic-
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androgenic steroids in equine urine. Elaborating on these initial findings, large scale 

experiments, will allow to include the effect of additional factors (such as stress or pain, 

training, diet and disease) influencing the andrenal gland activity. As in this study, such 

large scale experiments should include the analysis of both pre- and post-treatment urine 

samples, compared to a group of untreated control horses (both geldings and mares). 

Additionally, based upon these first results, experiments elucidating the effect of other 

glucocorticoids (e.g. prednisolone and cortisone) on the steroid excretion profile in 

horses are to be considered as well. 

Overall, experiments as those described in this study conduce to the elucidation of 

possible alternative origins of endogenous AAS, such as ß-Bol, and contribute to a 

future where proper and honest doping policies can be applied in equine sports. Overall, 

the experiments indicate a significant long-term influence of glucocorticoid treatment on 

the AAS urinary excretion profile. Given the fact that glucocorticosteroids play an 

important role
 
in worldwide anti-inflammatory therapy, especially in horses and equine 

sports, it stands clear that further research is needed to elucidate the exact correlation with 

the excretion of anabolic-androgenic steroids. to avoid possible inadvertent doping results 

for AAS, following glucocorticoid treatment (See also Chapter VII).  
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GENERAL DISCUSSION 

1. POSITIONING OF THE RESEARCH  

1.1 ECONOMICAL RELEVANCE OF EQUINE SPORTS AND RACING 

The great economical relevance of horse-related business in Flanders was proven by the 

results of a large study published in 2008, carried out at the request of the Flemish 

government. With 200.000 people involved with horses on a regular basis, 150.000 

horses registered, and over 3.550 fulltime equivalents working in 1.750 different 

companies, horse-related business can be considered an important contribution to the 

Flemish economy. Together, these created an added value of over 219 million euros in 

2008 [1]. More recent figures of September 2013 showed that the importance only 

increased over the next years, reflected by the number of people involved and the number 

of horses registered in Belgium (over 243.000 people and over 172.000 horses registered 

in Flanders).  

In Belgium horse racing is not as important anymore as it used to be some decades ago, 

with only a few prestigious races left. “Waregem Koerse” at the Hippodroom surrounding 

the Gaverbeek (Waregem) and “Oostende Koerse” at the Wellington Hippodroom 

(Ostend) are the most well-known examples, attracting thousands of spectators for each 

race day. Six racing associations organise races throughout Belgium, generating a yearly 

turn-a-round of 6 million euros [1].  

In other (European) countries horse racing still commands widespread public support, 

with ten to hundred thousands of people visiting, and betting on trot and gallop races. 

France is one of the main players in this field, with over 240 hippodromes organising 

more than 7000 races a year, with 9.9 billion euro in the game and over 70.000 employers 

involved directly or indirectly (2011) [2]. 

1.2 ANABOLIC STEROIDS ABUSE, BACK TO THE FUTURE? 

As discussed in the introduction, anabolic steroids abuse has been a matter of all times. 

The first widespread usage of steroids in horses dates back to the early 60’s and 70’s. As 

strict zero-tolerance has been held for many years, anabolic-androgenic steroids might 

seem to be an issue of the past as new and possibly more effective “designer” drugs 
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have been developed over the years. AICAR, 5-aminoimidazole-4-carboxamide-1-β-D-

ribofuranoside, a metabolic modulator and TB-500, a synthetic peptide, containing an 

active binding site for thymosine β-4, stimulating muscle development in horses, are 

examples of those newly developed performance enhancers. However, recent cases of 

steroid abuse prove that, although AAS abuse is better under control than it was some 

decades ago, it will be of all times. The potential of AAS to improve performance 

remains too tempting to some trainers and riders.  

In racing today use of anabolic steroids is still among the most high-profile medical 

issues, with recent cases of trainers Mahmood Al Zarooni (United Arab Emirates, 2013) 

and Gerard Butler (Britain, 2013) being suspended for the illegal use of AAS. Data from 

the FEI Tribunal website on the other hand illustrate that from January 2010 to December 

2012, 41 endurance horses globally tested positive for anabolic steroids, and more than 

80 percent of the eventual cases before the Tribunal came from FEI Group VII countries 

(Middle-East).  

But not only in racing and endurance AAS abuse remains a major issue. If Group VII 

countries are excluded from the endurance records, endurance worldwide has a cleaner 

AAS abuse record than show jumping. Jumps trainer Philip Fenton in Ireland for 

example was recently handed a three-year ban for having 1 kg of the banned steroid 

Nitrotain (Ethylestrenol) on his premises (2014) (FEI Table of Suspensions, July 2015). 

Maxime Livio, a CIC*** French eventing rider, his horse Bingo S tested positive for 

testosterone in Pattaya, Thailand (2014).  

These examples illustrate that, unfortunately and despite great efforts from the regulatory 

organs, AAS abuse is still rooted deeply into different equine sport disciplines at both the 

amateur and professional level.  

1.3 ENDOGENOUS AAS: COMPLICATING DOPING ANALYSIS 

Steroids can be classified into three broad classes: exogenous, designer and endogenous 

steroids. With the present-day AAS abuse issue in mind (1.2), the development of new 

and better techniques is needed to detect, and to distinguish between, steroids belonging 

to these different classes. 

Anabolic steroids have been studied for over 50 years and during that time numerous 

compounds with a variety of functional groups have been produced and many have been 
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published. Only a small number have been introduced to the pharmaceutical market, the 

so-calles “known” exogenous steroids, available on the market today (e.g. stanozolol and 

trenbolone) [3]. They contain synthetic structures that do not occur in natural steroids 

(Figure 1). Confirmation of exogenous steroid abuse is relatively straightforward, as 

qualitative demonstration of the compound in the sample suffices.  

Designer steroids are also exogenous steroids, containing synthetic structures that are 

thought not to occur naturally, but they have not yet been classified as a controlled 

substance and in many cases, like a pro-hormone, require a chemical reaction or 

enzymatic alteration once in the body to become active. In most cases they possess 

additional minor modifications compared to the well-known marketed exogenous 

steroids. These minor changes render their detection with targeted mass spectrometry 

more difficult. A worrying feature is that no data are available on the efficacy and safety  

of the use of these compounds [3]. 

 
Figure 1. Chemical structures of exogenous steroids A) trenbolone (Finaplix, Tren) and, B) 

stanozolol (Winstrol, Winny). Stanozolol and trenbolone both contain a synthetic, conjugated 

system. 

Endogenous steroids, such as testosterone, are steroids that are known to exist naturally, 

in one or more animal species [4]. Confirmation of endogenous steroids abuse is difficult, 

as simple quantitative detection of the compound is not sufficient. In horses only 

testosterone and 17β-boldenone are generally regarded as endogenous (respectively in all 

horses and in stallions only).  

The classification of a steroid as “endogenous” is however a grey area. The “semi”-

endogenous presence of 17β-boldenone and related compounds for example, in mares and 

geldings, is a complicating factor in doping control (chapter II). Proper investigation on 

the origin of these AAS is required to guarantee adequate doping policies in the future [5]. 

  

 A.     B.  
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1.4 ANALYTICAL METHODS TO DETECT (ENDOGENOUS) STEROID ABUSE 

In the introduction the most applied analytical methods used to detect steroid abuse were 

already mentioned, but depending on the context and the specific class of steroids (see 

1.3), the method of choice can be different. Most methods are based upon the direct 

detection of the steroid of interest and/or its metabolites in biological matrices, merely 

urine and/or blood samples. This direct detection is coupled to two different approaches. 

For boldenone for example, a quantitative threshold concentration has been set for 

stallions (15 ng per mL), while zero-tolerance is held for mares and geldings.  

For testosterone a threshold concentration of 20 ng per mL for geldings and 55 ng per mL 

for mares is held. For stallions no threshold has been set, as the natural testosterone 

concentration is under the influence of age, seasonal variations and whether or not the 

stallion is a breeding stallion [6]. The idea of a threshold concentration relies on the 

statistical likelihood that a certain concentration can be detected in an untreated horse. 

The threshold must be based upon populations’ studies and relevant to the concentrations 

measured post-treatment [7]. If the threshold concentration is set too high, concentrations 

measured post-treatment could be inadvertently listed as endogenous. 

As an alternative to the direct measurement of endogenous steroids a range of assays 

have been developed, measuring the biological effect of the steroid(s) rather than the 

responsible compound(s). Two categories of assays can be distinguished: biosensors and 

biomarkers. Biosensors utilise biological techniques to detect steroidal activity in a 

sample ex vivo, whereas biomarker techniques aim to monitor perturbation of “normal” in 

vivo physiological parameters. 

With the rise of high resolution non-targeted approaches, the use of specific qualitative 

biomarkers has gained popularity over the last few years. Biomarkers or biological 

markers are metabolites that are measurable indicators of some biological state or 

condition, e.g. (illegal) treatment with a certain compound. Biomarker monitoring can 

already be considered a new era in human anti-doping [8] and different biomarker 

approaches are being developed for equine purposes at the moment. As such, longitudinal 

monitoring of biomarkers can reveal non-physiological responses independently of the 

used doping technique or substance, and may cause sanctioning of illicit practices [9]. 

An example hereof is an efficient strategy developed to screen for abuse of nandrolone, 

a “semi”-endogenous steroid in stallions, monitoring the endogenous steroid profile 
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disruption in urine and blood upon nandrolone administration [9]. A panel of 

(endogenous) steroids of interest were extracted from equine urine and plasma samples 

and analysed by GC-MS/MS for quantification. Statistical processing of the collected 

data permitted to establish statistical models capable of discriminating control samples 

from those collected post-administration. These statistical models succeeded in 

predicting the compliance status of routine samples collected from racing horses.  

Another example of biomarker use in equine anti-doping is the detection of boldenone 

misuse. Exogenous boldenone is known to be extensively conjugated in phase-II 

metabolism (see Introduction). Gomez et al. [10] found that after boldenone treatment, 

boldenone sulphate, and in some cases αBol sulphate, were present in urine samples, 

together with low concentrations of exogenous boldenone (the original, active drug) and 

BM1 (the main boldenone metabolite, 5β-androst-1-en-17β-ol-3-one). Thus, according to 

Gomez et al. [10], βBol and αBol sulphates may be used as markers for the exogenous 

administration of boldenone and they can be used to reduce the number of samples to be 

analysed by IRMS. In samples were boldenone and BM1 are detected at low 

concentrations,  that thus might be of endogenous origin, only if boldenone sulphates and 

αBol sulphates are also present, further analysis by IRMS will be needed to confirm 

exogenous administration. However on the other hand, Ho et al. [11] identified intact 

boldenone sulphoconjugates as a direct evidence for the endogenous nature of boldenone 

in entire male horses. In addition, the limitations of the IRMS approach (see chapter I) 

need to be kept in mind. 

This illustrates that both the quantitative threshold concentration and the qualitative 

biomarker biosensor/biomarker approaches have their limitations, including requiring 

large population studies for validation and the fact that statistical outliers can be present 

at any time. These limitations are part of the reason that zero-tolerance is still the 

preferred method to deal with “semi”-endogenous steroids, unless irrefutable evidence 

has been gathered proving the endogenous prevalence of a certain compound, in mares, 

geldings and/or stallions. Solid and sound, large-scale evaluation of the endogenous 

steroid profile of untreated horses on the prevalence and origin of endogenous AAS was 

necessary.  

  



CHAPTER VII 

198 

 

2. SCIENTIFIC CONTRIBUTIONS AND RESEARCH FINDINGS 

Within the conceptual framework of this thesis, a number of research questions 

(objectives) have been postulated (See AIMS, p. 29). The accomplishment of these 

different objectives has been described in the different chapters (II to VI). As the 

findings from chapter II conflicted with zero-tolerance policy currently held in equine 

sports, additional research was needed to elucidate the underlying biological 

mechanisms behind these inadvertent findings. Different experiments were set-up to test 

different hypotheses. In the following section, the eliciting findings and conclusions of 

the different chapters will be presented and integrated in the light of the entire study 

(Figure 2). 

Figure 2. Schematic overview of the main accomplishments of this thesis 

2.1 DEVELOPMENT AND VALIDATION OF A UHPLC-MS/MS METHOD TO QUANTIFY 

LOW LEVELS OF AAS NATURALLY PRESENT IN URINE OF UNTREATED HORSES 

As highlighted in the introduction (Chapter I, 3. ENDOGENOUS STEROIDS) and earlier in 

this section (Chapter VII, 1.3), the endogenous prevalence of AAS can seriously 

complicate doping analysis. In horses, endogenous boldenone was found in the urine and 

faeces of entire males [11, 12]. As such, today, IFHA and FEI (2014 Equine Prohibited 
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Substances List) abandoned the zero tolerance for stallions and set a threshold for free 

and conjugated boldenone of 15 ng/mL [13, 14]. Despite this threshold for entire males, 

the presence of boldenone in the urine from mares or geldings is still prohibited. For 

testosterone, thresholds are set as well (55 ng/mL for mares and fillies (unless in foal) and 

20 ng/mL for geldings).  

Although these thresholds have been set, data on the endogenous prevalence of boldenone, 

testosterone and other related AAS in untreated horses are scarce. Most studies 

published so far focussed on stallions and/or horses to which steroids had been 

administrated intramuscularly or orally [11, 12, 15-19], and not on naturally present 

endogenous AAS, with βBol as the most illicit candidate for endogenous presence.  

Therefore, the first objective was to analyse urine samples from healthy, guaranteed 

untreated, out-of-competition horses, in an attempt to improve the knowledge on the 

natural, endogenous AAS present in horse urine in general. A specific extraction method, 

including extensive sample clean-up was combined with a new, sensitive and rapid 

UHPLC-MS/MS method. In total, urine samples of 105 guaranteed untreated horses 

(47 geldings, 53 mares, and 5 stallions) were screened for βBol and five other related 

steroids: ADD, AED, αT, βT and P via the newly developed and validated UHPLC-

MS/MS method. In contrast to what was expected, all steroids that were included in this 

method could be shown to be naturally present in urine of at least one horse, and 81% of 

these horses were found to excrete steroids at a certain level. Nevertheless, almost all of 

them could be considered “negative” in the light of horse doping control.  

Low concentrations of progesterone, β-testosterone, and α-testosterone (1–5 ng/mL) 

were found in the majority of the urine samples. Occasionally, other steroids (ADD, βBol, 

and/or AED) were also found in the urine of untreated geldings or mares at low 

concentrations (0.5–5.0 ng/mL). Especially the detection of ADD and βBol in urine form 

an untreated mare and gelding was intriguing, as zero-tolerance for both compounds is 

held under FEI and IFHA regulations. ADD and AED, which are chemically closely 

related to βBol and βT, were also found in the urine of some horses. ADD was found in 

the urine of a mare with an elevated concentration of α-testosterone (below the 

threshold), yet eightfold higher than the average determined for mares in this study, 

suggesting that the mare was in estrus and/or the presence of ovarian tumours or cysts 

(See also chapter I) [20].  
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In chapter II, all stallions were shown to produce high concentrations of βT, and two of 

them also excreted βBol and ADD. The βT concentrations were, as expected, much 

higher than those for geldings and mares and in line with previously published results by 

Popot et al. (2008) and Ho et al. (2004). The detection of boldione (ADD) in stallions is 

rather new. Popot et al. [12] stated that 1,4-androstadiene-3,17-dione (ADD) was 

undetectable in faeces collected from untreated horses and according to FEI and IFHA 

regulation, ADD is listed as a forbidden substance in urine (listed under its trivial name 

boldione) [13, 14].  

As highlighted in chapter II, the 105 horses screened during this part of this research 

project most horses were used for recreation only and guaranteed to be untreated with 

AAS. Still, a limited number of horses were found to excrete AAS (Bol, ADD or AED). 

Other authors and personal communication (Laboratoire des Courses Hippiques, routine 

analysis) revealed that results of the horses reported in this study were not the only 

(untreated) horses with low, yet detectable levels of endogenous AAS (e.g. Bol and 

ADD) in their urine [10].  

In a separate study 80 additional horses were screened for the excretion of 1-dehydro 

AAS [21]. This study included horses in competition, mostly racing but also some 

dressage and jumping horses were sampled. Consequently, for some horses from this 

second group it could not be guaranteed that they weren’t treated with AAS (see further 

on in this section). In this additional screening, the focus was more on horses in 

competition, where stallions and geldings are preferred for their athletic performance 

and stable character. Therefore, the distribution of the horses over the different genders 

shifted towards geldings and stallions, compared to the group of horses analysed in 

chapter II. In this second study 16 stallions, 39 geldings and 25 mares were sampled. 

The results obtained from this screening of, possibly treated, sport horses were merely in 

line with the results obtained in Chapter II for untreated horses, when looking at βT, αT 

and P. The average values for αT for mares and geldings were not significantly different 

form the respectively obtained values in chapter II. However, some outliers could be 

observed among the sport horses. An increase was seen between the average value for 

βT in urine of mares (1.4 ± 2.4 ng/mL) and geldings (1.4 ± 2.0 ng/m) from the first group 

(chapter II) and the average values for mares (1.8 ± 2.7 ng/mL) and especially geldings 

(2.8 ± 12.2 ng/mL) belonging to the (sport) horse group. 
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αBol was not found in any of the urine samples from geldings, mares and stallions 

belonging to both populations. In the sport horse group 7 out of 16 stallions excreted β-

Bol, at an average concentration of 1.0 ± 1.4 ng/mL, in line with previous results. As in 

chapter II, ADD was found in some stallions (n = 2/16, at an average concentration of 2.7 

± 1.0 ng/mL).  

Additionally, two mares and three geldings from the sport horse group were found to 

excrete βBol at low concentrations (<2 ng/mL). The first gelding was found to excrete 

βBol (1.4 ng/mL)and  his βT concentration was also elevated (40 ng/mL). This 

concentration is above the accepted threshold for testosterone (22 ng/mL) and high 

enough to form a plausible explanation for the detection of β-Bol. As this horse wasn’t 

treated with AAS, the complementary results for β-Bol and βT point towards 

cryptorchism for this horse.  

The second βBol excreting gelding from the sport horse group, a six-year old trotter, 

excreted 1.7 ng/mL βBol but didn’t exceed the FEI/IFHA threshold for testosterone (9.4 

ng/mL). Still, this testosterone level is tenfold higher than  the average for geldings from 

the untreated horses screening in chapter II. Upon request, the owner of the horse 

revealed that the horse had received “an undefined treatment” a few weeks before 

sampling. Other horses from the same stable had elevated testosterone levels as well, as 

already touched upon earlier on in this section, enforcing the suspicion of AAS abuse at 

this specific stable.  

The other βBol excreting horses from the sport horse group, a third gelding (0.6 ng/mL 

βBol) and two mares (0.3 and 0.2 ng/mL βBol) didn’t show any abnormalities in their 

testosterone levels and were guaranteed to be untreated with AAS. The values obtained 

for these horses are most likely true endogenous levels of β-Bol and in line with the low 

levels measured in chapter II. 

This screening of sport horses showed some nice examples of the thin line anti-doping 

analysis has to walk on when evaluating inadvertent results. As proven by the example 

from the trotting stable, owners and trainers are very inventive at circumventing doping 

regulations. This highlights the importance of evaluating relevant, untreated reference 

populations and taking into account the entire excretory profile, medical history and 

behaviour of a horse before drawing conclusions regarding the classification of 
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inadvertent results as of endogenous or exogenous origin. As touched upon earlier on in 

this manuscript, and although these techniques still have their inherent limitations (see 

further on and chapter I, p. 32-33), biomarker approaches, IRMS and the development of 

the Equine Biological Passports (EBP) (see: 3. FUTURE PERSPECTIVES), will be essential 

tools to aid in this decision. 

An additional possibility that needs to be taken into account upon detection of AAS in 

urine samples is the ex vivo formation of steroids in urine. It is established that (bovine) 

urine can result positive for boldenone and ADD in consequence of faecal contamination. 

The simple transfer of steroids to urine is one minor aspect of faecal contamination; a 

secondary aspect is de novo production of steroids in faeces after deposition and in 

faeces-contaminated urine. De novo production is almost certainly due to microbial 

activity, either from the urine or gut microbiota. Up until now, the responsible 

microorganisms are to be identified and the precursor compounds and transformations 

leading to the presence of these illegal steroids are still to be revealed.  

Yet, similar results have been reported in equine urine samples. For example, laboratories 

may observe a low concentration of boldenone or boldenone-sulphate in a routine post-

racing sample for testing and notice an increase of this compound upon storage. 

Furthermore, upon addition of deuterated testosterone-sulphate or methyltestosterone to 

these samples, the conversion to deuterated boldenone and methandienone could be 

observed (personal communication, AORC laboratories). Different approaches can be 

used to tackle this ex vivo formation of steroids, including strict, sterile sampling 

procedures to minimise microbial contamination, pre-extraction and direct storage at        

-20 °C of the samples. 

2.2 EXTRACTION OPTIMISATION, DEVELOPMENT AND VALIDATION OF A UHPLC-

MS/MS METHOD FOR THE DETEECTION AND QUANTIFICATION OF PHYTOSTEROLS IN 

FEED 

Endogenous βBol found in stallions is thought to originate from a similar transformation 

of naturally present, high levels of (β-)testosterone [12] (testicular aromatisation) (Figure 

3). For mares and geldings other precursors, including phytosterols from feed, have 

been put forward to explain the prevalence of low levels of steroids such as βBol and 

ADD in urine, as it has been proven that steroid hormone intermediates could be 
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produced from phytosterols through microbial transformation [22-24], and/or feed-related 

molds [25] (See also Chapter V).  

 

Figure 3. Illustration of the (microbial) ∆1-steroid dehydrogenase (SDH) activity held 

responsible for the detection of boldenone in entire male horses. 

Despite the dual interest in phytosterols, both as cholesterol lowering agents and as 

possible steroid precursors, accurate and fully validated methods for the quantification 

of phytosterols in food and feed samples are scarce. Therefore, a new UHPLC-MS/MS 

method was optimized and fully validated for extraction and detection of the main 

phytosterols (β-sitosterol, campesterol and stigmasterol). A fractional factorial design 

was used to optimize the extraction procedure and the applicability of this newly 

optimised method was confirmed by analysing matrices with known phytosterol contents 

(tomato, grains). Afterwards yet unexplored solid feed samples (roughage and 

concentrates) and some additional food samples (liquid and solid) were analysed. 

Grass (Lolium Perenne) was found to contain at least 130 mg phytosterols per 100 g d.w. 

while hay (mixed origin) was found to even contain up to 190 mg phytosterols per 100 g 

d.w., with elevated stigmasterol (ten times higher than grass). For the sampled feed 

grains (e.g. corn, oats and barley) total concentrations of phytosterols reached 25 to 85 

mg (per 100 g d.w.). The highest levels were measured in corn, the lowest in oats. Straw 

(Triticum) was found to contain total concentrations of phytosterols up to 80 mg per 100 

g d.w., comparable to the concentration measured in corn, however with a different 

distribution between the different phytosterols (straw was four times higher in 

stigmasterol than corn). 

Dry peas (Pisum sativum L.) are high in fibre and protein and therefore a popular 

ingredient in concentrates, yet limited data were available on the phytosterol content [26]. 

This study showed that yellow peas contain respectively 4.7 ± 0.3 mg stigmasterol, 10 ± 0 
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mg campesterol and 67 ± 3 mg β-sitosterol per 100 g f.w., proving that yellow peas are 

indeed a relevant source of phytosterols, containing comparable levels of phytosterols as 

grains.  

Even apple flesh was found to contain significant amounts of the three main phytosterols 

(12 ± 1 mg/100 g f.w.). In comparison, Piironen et al. (2003) was not able to quantify 

stigmasterol and found campesterol and β-sitosterol concentrations reached 16 mg/100 g 

f.w. [27]. This difference can be attributed to the difference between “Jonagold” and 

“BORKH” apple species and the fact that the peel and seeds, which are known to be 

phytosterol-rich, were included by Piironen et al. Other sources refer to 12 mg total 

phytosterols/100 g f.w. as the reference value for apples, and the latter is in line with the 

sum of the concentrations found for apples in this study [28]. 

Overall, analysis of these different feed samples confirmed the applicability of the newly 

developed extraction and detection method and showed that both concentrates (dry peas 

and regular grains such as oats, barley and corn) as well as bedding material (straw) and 

roughage (hay, grass) can contain large quantities of different phytosterols, supporting 

the hypothesis of a possible involvement in endogenous steroid formation 

2.3 VALIDATION OF AN IN VITRO DIGESTION SIMULATION OF THE EQUINE HINDGUT AS A 

TOOL TO STUDY THE INFLUENCE OF PHYTOSTEROL CONSUMPTION ON THE EXCRETION 

OF ANABOLIC–ANDROGENIC STEROIDS IN HORSES 

Phytosterols, which were found to be present at very high concentrations (up to 200 mg 

per 100 g d.w.) in grains and feed (2.2), have been put forward as a possible explanation 

for the endogenous presence of low levels of AAS in urine of mares and geldings. 

Nevertheless, the possible biotransformation had thus far not been investigated in horses. 

In vitro simulations of the horse hindgut were set up, using faecal inocula obtained from 

different horses to study the possible digestive transformation. 

In vitro digestion methods have been widely used and refined for ruminants since their 

initial development by Tilley and Terry [29]. However up until now, no fully validated, 

standard equine in vitro digestion protocol was available. A reliable in vitro digestion 

method however can provide timely and cost-efficient evaluation of nutrient behaviour in 

vivo and even allow for quality control of processed feeds. Therefore, an equine protocol 

was developed, adapted from protocols for other monogastric organisms by Tilly et al. 

and Boisen and Fernandez (see Chapter IV) [29, 30]. In parallel, Biddle et al. published 
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the use of a very similar equine in vitro model to identify of lactate-utilizing bacteria that 

differentially respond to starch induction, in the light of laminitis (2013) [31].  

The functionality of the in vitro model as a tool to study equine hindgut fermentations, 

was validated by assessing the microbiological growth (cell density and pH) and 

bioactivity of the hindgut flora, through the formation of SCFA and the consumption of 

amino acids and carbohydrates throughout the digestion process. The same parameters 

were monitored by Kiebooms et al. (2012), Biddle et al. (2013) (horse) and Molly et al. 

(1994) [31-33] to validate the use of similar in vitro digestion systems for pigs and 

humans. The latter Simulator of the Human Intestinal Microbial Ecosystems (SHIME) is 

the most well-known example. In vitro digestion samples were analysed with the 

previously validated UHPLC–MS/MS method, which was additionally validated for in 

vitro digestion samples (Chapter IV).  

Addition of βBol to the in vitro digestions gave rise to the formation of ADD (androsta-

1,4-diene-3,17-dione) or αT. Upon addition of ADD to the in vitro digestions, the 

transformation of ADD to βBol was observed and this for all horses’ inocula, in line with 

in vivo treatment with ADD, an additional confirmation of the functionality of the in vitro 

model. The transformation ratio proved to be inoculum and thus horse dependent, and no 

α-Bol was found in any of the in vitro digestion samples.  

The addition of pure phytosterols (>50% β-sitosterol) or phytosterol-rich herbal 

supplements on the other hand, did not induce the detection of βBol, only low 

concentrations of AED, a testosterone precursor, could be found. As such, the digestive 

transformation of ADD could be linked to the detection of βBol, and the consumption of 

phytosterols to low concentrations of AED, but there is no direct link between 

phytosterols and βBol. Therefore, the digestive transformation of consumed phytosterols 

cannot be directly linked to the detection of βBol, but, by providing the necessary 

precursors, they might form an intermediate step in the systemic steroid 

biotransformation pathway. 

Previous research by other authors has shown that feed contaminants can be absorbed 

from the intestinal tract [34]. In the latter case, this can include steroids, steroid 

precursors and phytosterols. Passage by the liver leads to the formation of type II 

metabolites, steroid glucuronide- and sulphate conjugates, which are excreted and 
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detected in urine [35]. Other transformation reactions, the so called type I 

transformations, can also take place in the liver (see: 3. FUTURE PERSPECTIVES). 

Additionally, predigestive influences such as UV radiation, oxidation, heat, moist and 

feed-related molds can also affect the phytosterol side chain stability in feed [25]. These 

parameters could trigger local hotspots for transformation in a feed batch, especially 

when self-heating of molded feed is involved [36]. If a horse consumes such hotspots, 

this could lead to the transient detection of low concentrations of AAS in the horse’s 

urine.  

2.4 MOLDY FEED, A POSSIBLE EXPLANATION FOR THE EXCRETION OF ANABOLIC-

ANDROGENIC STEROIDS IN HORSES? 

Due to their parasitic nature, molds are very 

interesting biotransformation candidates as they are 

capable of adapting to different substrates. 

Microorganisms capable of degrading hydrophobic 

hydrocarbons (such as phytosterols) generally need 

specific physiological properties, including active 

transporters, cell wall adaptations and the excretion of 

biosurfactants [37-39].  

Molds however developed their own efficient strategy to cope with difficult substrates, 

by producing a wide variety of extracellular enzymes and biosurfactants [40], to 

promote the extracellular transformation of these difficult substrates. These 

biosurfactants are specifically interesting in the light of phytosterol conversion, as 

phytosterols are difficult to solubilize, highly hydrophobic substrates that are as such 

difficult to access enzymatically.  

As a result, it may be hypothesized that aerobic storage of moldy feed can lead to the 

formation of steroids or steroid precursors. The aerobic incubation of moldy corn indeed 

showed that AED can be formed and this in both PBS buffer and CPB medium, at a 

comparable concentration. Traces of αT and P were also detected. 

On the level of the horse, the consumption of moldy or bacterially contaminated feed 

could lead to the detection of endogenous steroid levels. To tackle this question a full-

fledged in vitro approach was set-up, following the previously validated in vitro 

Figure 4. Moldy corn 
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digestion protocols (See chapter IV and 2.3). All samples were analysed with the 

sensitive and robust UHPLC-MS/MS method validated for in vitro samples (chapter IV). 

When adding (moldy) corn and/or phytosterols (>50% β-sitosterol) to the in vitro 

digestion, AED was detected throughout the entire digestion period. The highest 

concentrations of AED were obtained for the combination of moldy feed with added 

phytosterols. In the latter case, the phytosterols were transformed. The combination of 

mold enzymatic activity and the in vitro digestion fermentation reactions showed to 

be crucial to power the transformation of phytosterols into AED, the main testosterone 

precursor.  

The difference between moldy corn with and without added phytosterols indicates that 

the conversion ratio is higher with added phytosterols, probably due to the fact that the 

bioavailability of these added phytosterols exceeds the bioavailability of the 

phytosterols embedded in corn. In vivo, the stomach and small intestinal digestion will 

contribute to the bioavailability of phytosterols from the feed, by liberating phytosterols 

from the matrix by acidic and enzymatic hydrolysis. When adding phytosterols to the 

extracellular enzymes of all three corn-related mold isolates, AED peaks were detected as 

well, but not to a significant level. As a result, it may be deduced that the extracellular 

enzymes were not able to directly transform β-sitosterol into AED, but that the 

combination of mold extracellular enzymatical activity and fermentation (digestion) was 

crucial.  

Still, no ADD or Bol was detected during the in vitro digestion experiments. The 

extracellular enzyme experiments with the Mucor corn isolate revealed the formation of 

ADD, the main boldenone precursor, from pure phytosterols (>50% β-sitosterol), but at a 

very low rate and with a longer incubation time (4 hours).  

This study focused on biotransformations taking place in the feed itself, catalysed by 

mold enzymes, and the effect of the equine hindgut digestive processes (including 

microbial fermentation) on the digestion of (moldy) feed. It is important to keep in mind 

that the suit of processes taking place between consumption of feed and the urinary 

excretion and detection of steroids is very complex, involving many different contributors 

and side-reactions. Other metabolic pathways can additionally contribute to the 

formation of intermediate precursors (e.g. AED from moldy feed to testosterone). Recent 
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work by Fabregat et al. (2015) confirmed the formation of 1,4-androstadiene-3,17-dione 

(ADD), androsta-4,6-diene-3,17-dione, 17β-hydroxy-4,6-androstadiene-3-one and 17β-

hydroxy-1,4-androstadiene-3-one (boldenone) upon hepatic phase I metabolism of T. 

Analogously to T, this pathway leading to the formation of ∆1 and ∆6 metabolites, might 

also prevail for other steroids, opening the possibility of targeting additional biomarkers 

[41].  

Moreover, compounds and phase I metabolites may be further reduced and/or modified 

during phase II catabolism in the liver. The set of phase I and II products could in turn be 

transformed in the hindgut by the wide range of microorganisms, under aerobic or mainly 

anaerobic conditions. This enterohepatic circulation might additionally increase the 

yield of biochemical modifications by reprocessing the “flow-through” [42].  

Yet unexplored and thus unchartered reactions and reaction products of the enterohepatic 

circulation should be taken into account, when considering the connection to the urinary 

excretion of steroids. This biological complexity is hard to reproduce in vitro. The results 

obtained in this are sufficient to support additional in vivo research is warranted to further 

unravel the correlation between the controlled consumption of phytosterol rich or 

enriched feed, albeit exposed to mold enzymes, and the urinary and faecal excretion of 

steroids in horses (see: 3. FUTURE PERSPECTIVES). 

2.5 INFLUENCE OF GLUCOCORTICOID TREATMENT ON THE EXCRETION OF 

ANABOLIC-ANDROGENIC STEROIDS IN EQUINE URINE  

The detection of AAS (ß-Bol, AED and/or ADD) in urine of horses that were not treated 

with AAS (Chapter II) often coincided with an anti-inflammatory, analgesic 

glucocorticoid therapy in the weeks or months before sampling. Earlier studies in veal 

pointed at the enteric tract as a potential source of ß-Bol and related steroids [43]. 

Therefore, the hypothesis was raised that GC could be transformed to AAS by the 

microbiota of the equine colon, as glucocorticosteroids (GC) are structurally related to the 

group of AAS.  

In vitro digestion simulations were set up according to the previously validated protocol 

(chapter IV), with different GC precursors being submitted to the digestive fermentation 

reactions: cortisol, betamethasone, cortisone and prednisolone. No significant 

concentration of AAS could be measured at any of the sampled points in time during 

digestion, in either series of in vitro digestion simulations (cortisol, betamethasone, 
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cortisone and prednisolone). No direct transformation from glucocorticosteroids to 

AAS was shown in the hindgut.  

However, the urinary AAS and GC excretion profile of a gelding treated intra-articularly 

with betamethasone was found to be disrupted by this glucocorticoid treatment. At first, 

the pituitary ACTH-release dropped, causing the endogenous adrenal GC-synthesis to 

stagnate [44]. In humans, it has been described that glucocorticoid therapy, and especially 

prolonged high dose systemic therapy, can have a suppressive effect on endogenous 

steroid production [45]. 

When urinary betamethasone elimination continued and betamethasone levels decreased, 

the regulatory (positive) feedback loop was activated, resulting in higher endogenous 

GC-production and a temporary overshoot for the endogenous corticosteroids, cortisol 

and cortisone and αT and ADD. This overshoot was then quickly normalized by the 

regulatory system, revealing urinary levels as before and restoring homeostasis.  

As the horse in this study was only suffering from mild bone spavin, a moderate dose of 

betamethasone was administered. It is expected that the effects as seen in this in vivo 

experiment will be more pronounced and long-lasting when higher initial GC doses are 

being administered. The sensitivity of the analytical methods (UHPLC-Orbitrap-HRMS 

system for GC) would be met to a better degree, enabling a more profound analysis of 

betamethasone and its metabolites, and the effect on endogenous GC and AAS over a 

longer period of time (see: 3. FUTURE PERSPECTIVES). 

Based on the results of the in vitro digestion experiments, the authors can reject the 

original hypothesis in this concern; no direct (intestinal) biotransformation of 

glucocorticosteroids to AAS by microbial fermentation in the equine hindgut could be 

detected. The interconnection of GC treatment and the detection of AAS must be 

indirect, most likely by influence the hypothalamic-pituitary-andrenal axis. The 

amount of testosterone synthesized is regulated by the HPA-axis. When testosterone 

levels are low, GnRH is released by the hypothalamus, which in turn stimulates the 

pituitary gland to release FSH and LH. These latter two hormones stimulate the synthesis 

of testosterone in the testis (stallions), thecal cells of the ovaries, placenta (mares) as well 

as in the zona reticularis of the adrenal cortex (geldings, stallions and mares).  
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In chapter II, ADD was found in the urine of a mare that also excreted α-testosterone. 

What’s interesting in the light of  this part of the study is that this horse was suffering 

from navicular disease and was treated with GC two months before the sampling took 

place. To that concern, the results obtained for the gelding in the current study are very 

much in line with the, at that time unexplainable, momentary result of this mare. 

Additionally, the gelding that was found to excrete β-Bol and AED in chapter II was also 

treated intra-articulary with GC, a few weeks before sampling. Unfortunately, no data 

could be obtained on the treatment dosage and GC used. The other horses that were found 

to excrete AED, and no ADD or Bol, were not known to be treated with GC in the weeks 

or months before sampling. 

In general, the analysis of post-treatment urine samples revealed that the influence of GC 

treatment undoubtedly could be measured, up to several weeks after betamethasone 

intra-articular infiltration. The overall impression was a disruption of pre-treatment AAS 

concentrations, a change in mutual proportions as well as in their long-term concentration 

pattern. ADD or boldione for instance, was not found before treatment, but could be 

found for weeks after treatment, with concentrations up to 5 ng per mL.  

Given the fact that glucocorticosteroid treatment plays an important role in worldwide 

anti-inflammatory therapy, especially in sport horses, it stands clear that further 

research is needed to elucidate the exact correlation with the excretion of anabolic-

androgenic steroids. Larger scale experiments, as well as experiments with other GC are 

to be considered to this extend, to avoid possible inadvertent doping results for AAS, 

following glucocorticoid treatment (see: 3. FUTURE PERSPECTIVES). 
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3. FUTURE PERSPECTIVES 

3.1 ENDOGENOUS STEROID FORMATION 

The mere focus of this research project was on the confirmation of endogenous AAS in 

untreated and the possible correlation with digestive or mold-related biotransformation of 

phytosterols (in vitro), focussing on reactions taking place in the hindgut (See also 

chapter I, IV and V). Recently however SHIME technology, mimicking the entire human 

digestive tract,  has been expanded to hosts other than humans, such as production 

animals (e.g. pig) and companion animals (e.g. dog, cat). An equine SHIME model 

might be the next best thing (www.prodigest.eu). This ongoing advancement of equine in 

vitro digestion simulations might offer great opportunities to continue the unravelling of 

the role of phytosterols in the detection of AAS in horses. 

Still, some additional transformations are to be taken into account in vivo. To study these 

type I transformation reactions, separate in vitro set-ups have been developed as well. 

Scarth et al. (2010) for example, used equine liver microsomes and S9 tissue fractions to 

study the metabolism of the androgenic/anabolic steroid stanozolol [46]. Using high-

resolution accurate mass full scan analysis on the Orbitrap, equine liver microsome and 

S9 in vitro fractions were found to generate the same major type I metabolites observed 

following in vivo administrations. Wong et al. (2011) on the other hand, confirmed the 

use of homogenized liver and, in addition to the previously reported in vitro metabolites, 

some additional known in vivo metabolites in the equine could also be detected for 

testosterone (βT) and epitestosterone (αT) [47].  

Unfortunately, to our current knowledge, the equine liver metabolism of AED or 

phytosterols has not yet been tested. Labrie et al. (1997) did confirm that one of the 17β-

hydroxysteroid dehydrogenase isoenzymes (17β-HSD) is able to control the last step in 

the formation of testosterone from AED in all rhesus monkeys and human peripheral 

intracrine tissues examined. Types 3 and 5 17β-HSD, respectively catalyse the formation 

of testosterone from AED in the testis and peripheral tissues [48]. Additional in vitro 

experiments with liver microsomes or liver homogenate might help to unravel the 

underlying pathways responsible for endogenous steroid formation.  

  

http://www.prodigest.eu/
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3.2 DIETARY CONTAMINATION AND TRANSFORMATION 

Feed intake was monitored yet not controlled nor taken into account during the 

population studies monitoring the urinary excretion of AAS (Chapter II and VII). An 

interesting approach is currently put into practice, whereby all feeds that were supplied to 

horses that test “positive” for urinary AAS excretion are being subjected to both 

microbiological and chemical analyses. 

Chemical analysis could reveal which phytosterols are present and at what 

concentrations (chapter III), and if the feed already contains AAS or AAS precursors. 

These can in turn be transformed enzymatically, either by the horse’s liver and/or 

intestinal microbiota, into boldenone or related AAS. The chemical, analytical methods 

applied today are increasingly sophisticated and sensitive, the likelihood of detecting 

contaminants increased, with limits of detection that were previously unattainable. A 

good example hereof is a method developed for the detection of thyreostats in feed by 

Kiebooms et al. (2015), able to detect as low as 0.5 ng TU (thiouracil) per g feed [49]. 

Furthermore, an increasing variety of (herbal) supplements is brought onto the market, 

introducing unusual components into the equine diet, including exotic herbs and plant 

derivates or extracts [50]. In Europe most feeds and supplements are tested by their 

manufacturers for potential contamination with commonly recognized, prohibited 

substances. These analyses are offered by routine labs such as HFL Ltd (UK) and LCH 

(France). However, the ongoing globalisation of the feed industry hampers this strategy, 

with feedstuff and raw materials being imported from different regions of the world, were 

quality control might be insufficient [51]. Additionally, novel crop infesting plants and 

(micro)organisms may be found in these countries. No official records are available for 

horse supplements, but results for human sport supplements indicated that up to 20% of 

supplements tested contained prohibited substances, including anabolic steroids such as 

testosterone and nandrolone [52]. Labelling hay, haylage and silage is even less 

widespread, although roughage quality is highly variable, depending on field conditions 

during growth and harvesting (humidity, soil, use of fertilisers/pesticides, etc). Forage 

analysis typically consists of Crude Protein (CP), Acid Detergent Fiber (ADF), Neutral 

Detergent Fiber (NDF), Calcium (Ca), Phosphorus (P), Potassium (K) and Magnesium 

(Mg). Other elements such as Iron (Fe), Manganese (Mn), Zinc (Zn) and Copper (Cu) are 

also useful in determining the final ration (e.g. www.sgs.com, hay and forage testing). 

http://www.sgs.com/
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Additionally, the detection of specific mold, yeast or bacterial species not present in 

steroid free feed might lead to the identification of crucial contributors in the formation of 

AAS in vivo. Bacterial identification traditionally relies on phenotypic identification 

using gram staining, culture and biochemical methods. However, these methods suffer 

from two major drawbacks. First, they are limited to organisms that can be cultured in 

vitro, which is not the case for all organisms (the so-called viable but non-

cultivable/culturable organisms, VBNC) [53]. Second, some strains exhibit unique 

biochemical characteristics that do not fit into patterns that have been used as a 

characteristic of any known genus and species [54].  

Therefore, non-culture-based, molecular, techniques have been developed to overcome 

these limitations of traditional phenotypic procedures for the detection and 

characterization of bacterial phenotypes. Real time PCR and microarrays are the most 

commonly employed molecular techniques [55]. Real time PCR is highly sensitive and 

especially interesting as it allows both identification and quantitation of bacteria at 

species level. Microarray based bacterial identification relies on the hybridization of 

preamplified bacterial DNA sequences to arrayed species-specific oligonucleotides. Each 

probe is tagged with a different coloured dye which fluoresces upon hybridization.  

To identify mold and yeast species merely culture-dependent, phenotypic and limited 

non-culture dependent, molecular techniques are available. ISO horizontal methods (e.g 

ISO 21527:2008) for the enumeration of yeasts and moulds in foods and animal feed are 

still the most applied, with adaptations for dried (<0.95 water activity) and non-dried feed 

and food. Similar standard methods have been published by other bodies (e.g. USFDA, 

US Food and Drugs Agency). These methods typically employ a surface plating 

technique. Selective agars for yeasts and moulds usually contain antibiotics to help 

suppress bacterial growth. Plates are typically incubated at 25 °C for 5 to 7 days (see 

chapter V) and then examined for the presence of yeast and mould colonies. 

3.3 PHYTOSTEROL-ENRICHED FEED CONSUMPTION: IN VIVO 

An interesting set-up that has not been tackled in this study, is the in vivo feeding of 

phytosterol-enriched feed and the influence thereof on the excretion of anabolic-steroids 

in horses. Thus far, similar studies have been performed in humans, veal calves and rats, 

with differing results. In rats it was shown that the consumption of 0.5 g phytosterols per 

kg bodyweight led to faecal excretion of ADD,  AED and androstanedione [56].  
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In humans the influence of phytosterol consumption on the excretion of boldione (ADD) 

was measured in a small-scale 5-week study with healthy volunteers asked to consume a 

phytosterol-enriched yogurt drink every morning during the first three weeks of the study 

[57]. The results demonstrate that αT, βT and AED were frequently excreted by both 

males and females, while endogenous ADD was sporadically produced at concentrations 

ranging from 0.8 to 1.7 ng per mL urine. Endogenous Bol could not be proven. No 

evidence of phytosterol related anabolic steroids’ excretion was observed after 

consumption of phytosterol containing functional food at the recommended dose. 

Considering the relatively short-term duration of this in vivo trial, small sample size and 

relatively low recommended dose used as a reference (2 g per day, 0.025 g per kg 

bodyweight) it is recommended to conduct more extensive long-term studies to further 

explore the potential interferences of phytosterols with human steroidogenesis and 

excretory steroid patterns. 

Some feeding experiments have been performed in veal calves as well, fed on milk 

replacers with differing phytosterol contents [58, 59]. In urine from control animals, the 

αBol concentration (<2 ng per mL) was strictly related to the phytosterol content of the 

diet, while, in urine from animals treated with ADD and βBol, αBol levels were not 

modified by the production from dietary precursors. The results confirmed that a αBol 

level higher than 2 ng per mL should be considered as evidence of suspected illegal 

treatment and that the urinary excretion of βBol is due to exogenous administration of 

17β-Bol. According to these results, αBol concentrations below 2 ng per mL can be 

considered of endogenous origin. 

In vivo experiments with controlled feeding of moldy feed to horses are not possible 

because of ethical reasons, keeping the possible health issues related to the consumption 

of moldy feed in mind. Alternatively, mold extracellular enzymes could be isolated by 

centrifugation and used to pretreat phytosterol-rich feeds. These feeds can in turn be fed 

to the test individuals, to mimic the effect of moldy feed consumption, without exposing 

the horse to the possible health risks linked to the consumption of moldy feed such as the 

accumulation of mycotoxins. 

3.4 SILAGE, HAYLAGE AND MASHES 

Both silage, haylage and mashes are feedstuffs produced at elevated temperatures and 

under high-moist conditions which makes them prone to spoilage. With the results of 
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chapter V in mind, it would be very interesting to monitor the effect of silage and mash 

production (and spoilage) on the stability of phytosterol sidechains, under the different 

microbiological and fungal conditions, associated with the respective production process.  

Mash (“Slobber” in Dutch) is typically fed to horses during winter and there are a variety 

of bran mash recipes commonly used. Most involve mixing warm water with (wheat) 

bran until the bran is saturated: the mixture clogs together when squeezed. Wheat bran is 

a low-density feed that is similar in nutrient content to oats, with about four times the 

phosphorous content of most grains and relatively high in fibre and vitamins. A number 

of other ingredients can be added to increase nutritional value of the mash or to make it 

more appealing to the horse. Providing horses with a bran mash is especially encouraged 

when the horses might not be drinking enough water: following stressful work or during 

long trailer transport. As mashes are usually prepared on the spot, the risk of spoilage 

(and mold-related biotransformations) is rather low. 

Silage/haylage on the other hand is the high-moisture feedstuff resulting from the acidic 

preservation by fermentation of forage crops. In Belgium, grass and corn (and/or corn 

stalks and leaves) are the most used raw materials. The most common definition states 

that silage is moist (35-50 % DM) and in most cases stored as a horizontal, bunker silo 

with above-ground concrete walls. Silage is well-known in veal feeding practice. Haylage 

on the other hand is drier (50-75 % DM) and packed as round bales in plastic. Some 

haylage is so dry (70-85% DM) it is merely hay wrapped in plastic [60]. 

Both for silage and haylage there are two main phases in the ensiling process. The first 

step in the preservation of silage/haylage is the aerobic phase, which occurs in the 

presence of oxygen, until oxygen is depleted through the process of respiration of the 

plant material. Water-soluble carbohydrates (sugars) are oxidized with the production of 

carbon dioxide and heat. The first phase should be as brief as possible to maintain silage 

quality. Excessive aerobic fermentation reduces the energy content of the silage and may 

cause heat damage to proteins. Additionally, as molds need oxygen for growth, rapidly 

creating anaerobic conditions well cease mold growth. This is very important in the light 

of the results of chapter V, where moldy feed was linked to the detection of AED, the 

testosterone precursor. Shortening the aerobic phase can be achieved by compressing and 

tightly packing fermented fourage with adequate thickness of plastic to remove air. When 
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available oxygen is depleted anaerobic bacteria (merely Lactobacillus sp), which only 

grow in the absence of oxygen, take over and the fermentation process begins. 

Early harvested, high quality forage usually supplies adequate starch and sugars for 

fermentation, but late-harvested forage (alfalfa at mid- to late flowering or grass that is 

headed) may not, making them more prone to spoilage and mold-related 

biotransformations (as discussed in chapter V). Moist conditions favour the anaerobic 

phase. Therefore, silage has a lower pH (pH 4.3-4.7) compared to hay and haylage, that 

show little or no lactic acid bacteria activity and thus higher pH (pH 6-5.6). As molds 

favour neutral pH environments, incomplete fermentation of silage might elevate the risk 

of mold hotspots, which have been linked to the detection of AED in chapter V. Adding a  

commercial Lactobacillus sp inoculum to the forage can aid fermentation. Lactobacillus 

sp are always present in the field, but lower levels might be present when the crop grows 

under cool conditions. To get good coverage the liquid inoculum can be applied on the 

chopper as the forage passes. 

3.5 INFLUENCE OF CORTICOSTEROID TREATMENT ON THE EXCRETION OF AAS 

The results of chapter VI revealed that (intra-articular) corticosteroid treatment can have 

significant influence on the endogenous steroid excretion in horses. As these results were 

only based upon a clinical case study combined with the results of the urinary screening 

(chapter II and VII), it would be interesting to repeat this experiment on a population of 

horses (mares and geldings), and compare the results to a relevant group of horses treated 

with a placebo. A placebo treatment with e.g. non-steroidal hyaluronic acid will mimic 

the stress caused by the “handling” of treatment (handling by the vet, local anaestheticum 

and injection of the drug). Stress is an important parameter to be controlled, as it could 

have a significant influence on the results, as stress influence the pituitary axis regulation 

of endogenous (stress) hormones such as cortisol and cortisone.  

In this particular case study betamethasone was the corticosteroid of choice to treat the 

clinical signs of bone spavin in the horse studied. Comparing the effect of different 

glucocorticoid treatments (e.g. with prednisolone, cortisone or methylprednisolone) can 

deliver more information regarding the specific influence of different glucocorticoids on 

the excretion of both endogenous glucocorticoids and anabolic-androgenic steroids.  
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Additionally, the dose used is an interesting variable as well, as thus far no answers can 

be formulated regarding the dosage-dependence of the phenomena described in Chapter 

VI. Given the fact that glucocorticosteroids play an important role in worldwide equine 

sports medicine,  it stands clear that additional, profound research is needed to elucidate 

possible alternative origins of endogenous AAS, such as ß-Bol. The possibility of 

measuring inadvertent doping results for AAS, following glucocorticoid treatment, could 

then be excluded, which will in turn contribute to a future where proper and honest 

doping policies can be applied in equine sports.  

 

3.6 EQUINE BIOLOGICAL PASSPORT (EBP) 

In humane anti-doping, WADA introduced the Athlete Biological Passport (ABP) in 

2009. An APB is “an individual, electronic record for professional athletes, in which 

profiles of biological markers of doping and results of doping tests are collated over 

a period of time”. The EBP is considered to be an effective tool in the fight against 

doping as monitoring selected biological variables over time can indirectly reveal 

the effects of doping, rather than attempting to detect the doping substance or method 

itself (See also biosensors/markers, 1.4) [61].  

The concept of launching a similar equine biological passport (EBP) is not new, the 

first discussions started back in 2010, but the tone and urgency of its discussion 

among veterinary and regulatory authorities is changing in the wake of 2015’s recent 

doping scandals (e.g. cobalt scandal in Australia). This sudden public focus might 

spur funding that helps turn complicated concepts, such as introduction of EBPs as a 

means to curtail doping, into reality.  

With the metabolomic technology invested in the equine passport, the industry can 

be proactive in identifying those who are engaging in doping practices, without 

necessarily knowing what the specific substance is, eliminating the strict reliance on 

targeted analysis of post-racing urine and blood samples. Every horse has a unique 

metabolic signature that can be identified by monitoring metabolites or marker. This 

individualized approach facilitates a greater understanding of the specific traits of 

each horse, providing more precise measurement of the biological effect of training, 

stress and/or drugs (controlled medication or doping) than is available with current 

technologies. Metabolomics is already recognized as a cutting-edge science in human 

medicine and anti-doping.  
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Additionally, the EBC can include monitoring the genes of racehorses, identifying 

changes throughout their careers, to combat gene doping. Gene doping is defined by 

the World Anti-Doping Agency as "the non-therapeutic use of cells, genes, genetic 

elements, or of the modulation of gene expression, having the capacity to improve 

athletic performance". Suspected targets for gene doping are erythropoietin (EPO), 

myostatin and the insulin-like growth factor (ILGF). 

Leading racing authorities are currently working on the development of EBPs. 

Unfortunately, the use of biological passports will be a logistic and analytical 

challenge to all but the top-flight racing analytical labs around the world. The EBP is 

a whole-of-organisation initiative requiring high-tech equipment and the cooperation 

of analysts (scientists), stewards, anti-doping investigators and veterinarians to 

ensure all of the available information concerning prohibited practices to be 

integrated in real-time.  

Additionally, the development and introduction of the athlete biological passport 

(ABP) showed that many legal issues can arise in the light of the case law of the 

Court of Arbitration for Sport (CAS) [62]. For example, a procedural particularity of 

the longitudinal profiling cases relates to the starting point of the time-limit to lodge 

a claim against an athlete at internal level: doping charges on the basis of 

longitudinal profiling entail a series of tests along with the evaluation of the results. 

This is why an international federation can only establish the offence and raise 

charges once the panel of medical experts have determined that the athlete’s blood 

profile constitutes sufficient proof of the recourse to a prohibited method.  

From the fact that the detection method of ABP is not based on the finding of a 

prohibited substance arise certain other well-worth mentioning legal issues as well, 

since the application of the ABP is only indirectly regulated. Art. 3.2 WADC 

(“Methods of Establishing Facts and Presumptions”) states that “Facts related to 

anti-doping rule violations may be established by any reliable means, including (...)  

conclusions drawn from longitudinal profiling”. As a consequence, the validity of 

the ABP as a reliable means to establish an anti-doping rule violation has been 

contested by certain athletes stating that it is merely a “useful screening test”. This 

has been countered by the Panel, but it illustrates how difficult it is to develop and 

introduce a new detection method as a watertight, legally robust test.  
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As a final conclusion regarding the EBP we can state that in the past doping sinners 

have always been a step or two ahead of the authorities, but when this new way of 

handling drug abuse -not by finding the drugs but finding changes in the physiology 

of the horse created by the drugs- can be put into practice, the gap may be about to 

close. A cheerful outlook for the fight against doping abuse in equine sports! 
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SUMMARY 
The higher the pressure to win, the more athletes are inclined to take steps to improve 

one’s performance through questionable means. The same goes for today’s high-

performance equine sports, where doping is a hot topic. Therefore, strict anti-doping and 

medication rules are being enforced “to maintain the welfare of the horse and to ensure 

fair play in competition, in the light of breeding and bets being placed on the outcome of 

the race”. All horses in-competition are regularly subjected to doping analysis, to prevent 

the abuse of forbidden substances from affecting the performance of the horse. Anabolic-

androgenic steroids (AAS) have been part of the forbidden substances list for many years, 

because of their muscle building and performance enhancing capacities and possible side-

effects. For most AAS zero tolerance is held. In this context, the aim of this research 

project was to assess the possibility of the natural presence of AAS in horses, and the 

underlying biomechanisms. 

In chapter I the main steroids and their natural prevalence in humans and horses are 

listed. The biological synthesis of steroids in the horse and the theoretical link to 

phytosterols are also discussed. In the light of the link between phytosterols and AAS, 

both the horse’s endocrine system and digestive tract were illustrated. Some important 

physiological disorders of the endocrine system that can influence the endogenous steroid 

production, such as Cushing’s disease and ovarian tumours, were touched upon as well.  

Only two steroids, testosterone and boldenone, are generally regarded as potentially 

natural steroids in horses, and can thus be present in urine. For these compounds, gender-

specific thresholds have been set by the different regulatory organs (e.g. Fédération 

Equestre Internationale and International Federation of Horse Racing Authorities). To 

maintain these thresholds multiple mass spectrometric methods have been developed and 

used over the years. The historical evolution of these analytical methods has also been 

dealt with in chapter I. Nowadays increased analytical capabilities, such as better limits of 

detection, allow to detect continuingly lower and lower (endogenous) levels of steroids.  

In chapter II a new and sensitive UHPLC-MS/MS method to quantify naturally present 

AAS in urine was developed and validated. With this method urine samples from 105 

horses that were not treated with AAS were analysed. More than 80% of the mares and 

geldings showed to excrete low levels of steroids, in most cases testosterone and/or 
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progesterone. Occasionally, low concentrations of the AAS androst-4-ene-3,17-dione 

(AED), androsta-1,4-diene-3,17-dione (ADD) and boldenone were also found (<5 ng/mL). 

At the moment however, zero tolerance is held for both ADD and boldenone. In the strict 

sense, these samples, and thus these horses, did not comply with current anti-doping 

regulations, despite the fact that they were not treated with AAS. 

A first hypothesis was formulated, linking these results to the transformation of 

phytosterols from feed, as these are chemically closely related to AAS. However, no data 

regarding the natural content of phytosterols in feed were available. In Chapter III an 

accurate extraction and detection method to quantify phytosterols in feed was optimized 

and validated. With this method we were able to quantify the main phytosterols (β-

sitosterol, campesterol and stigmasterol) in concentrates (oats, barley, corn, dry peas) and 

roughage (hay, grass, straw). In both concentrates and roughage high concentrations of 

phytosterols showed to be present, varying between 25 and up to 190 mg per 100 g dry 

weight. 

In vitro digestion simulations were used as a tool to study the hypothesized 

biotransformation of phytosterols from feed to AAS. Up until now, no standardized in 

vitro digestion protocol is available for horses. Therefore, in chapter IV an existing 

protocol for monogastric animals was adapted and validated to simulate the equine 

hindgut. To validate this model the production of short chain fatty acids, conversion of 

amino acids, depletion of sugars and growth and activity of the microbial flora was 

monitored. Transformations that take place in vivo, such as the transformation of ADD to 

boldenone could be simulated in vitro, supporting the functionality of the in vitro 

digestion model. No direct biotransformation of phytosterols to AAS was seen, but the 

main testosterone precursor AED could be formed. 

Previous research (Verheyden et al., 2010) indicated that feed-born molds naturally 

present in veal feed could also play a role in the formation of AAS or AAS precursors out 

of phytosterols. The experiments described in chapter V focused on the analysis of 

molded (horse) feed and the possible effect of accidental consumption of this feed on the 

horse. Mucor sp. infected corn showed to be a possible source of AED. In vitro digestion 

of this molded corn, with or without added phytosterols, led to an increased detection of 

AED. These results confirm the biotransformation of AED from phytosterols, the 
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combination of mold enzymatic activity and the in vitro digestion fermentation reactions 

showed to be crucial to power the transformation of phytosterols into AED. 

Based upon these results, the endogenous detection of ADD or βBol in urine samples 

from some mares or geldings (chapter II) remains unexplained. Yet, the horses that were 

found to excrete ADD or βBol showed to be treated with glucocorticoids a few weeks or 

months before sampling. A two-sided experiment, as described in chapter VI, was set-up 

to unravel this possible involvement of glucocorticoid anti-inflammatory treatment in the 

detection of AAS. Urine from a gelding treated with glucocorticoids was monitored up to 

120 days post-treatment. On the other hand, in vitro digestion simulations were used to 

test the possible direct biotransformation of different glucocorticoids (cortisol, cortisone, 

betamethasone and prednisolone) into AAS. The in vivo results revealed that both the 

endogenous glucocorticoid and the steroid profile were disrupted, up to 70 days post-

treatment. Consecutively, endogenous concentrations of cortisol and cortisone (day 37 to 

48) and testosterone (day 41 to 77) were increased. The results of the in vitro digestion 

experiments however rejected the direct intestinal transformation from glucocorticoids to 

AAS. The interconnection of glucocorticoid treatment and the detection of AAS must be 

less direct, most likely by influencing the hypothalamic-pituitary-andrenal (HPA) axis. 

In chapter VII the eliciting findings and conclusions of the different chapters were 

integrated in the light of the entire study. We can conclude that it is possible to detect low 

concentrations of AAS (AED, ADD or Bol) in urine of mares and geldings that were 

never in contact with synthetic AAS. The detection of AED can be coupled to the 

consumption of molded corn, while the detection of ADD (and potentially βBol) could be 

seen in correlation with a glucocorticoid treatment, disrupting the horse’s endogenous 

anabolic steroid profile. In this way, mere qualitative detection of these compounds does 

not imply AAS abuse. Additional analyses, such as Isotope-Ratio Mass Spectrometry 

(IRMS) or the detection of abuse-related biomarkers, are needed to reject or confirm 

exogenous administration. The detection of high concentrations (> 5 ng/mL) of AAS still 

points towards AAS abuse. These results should not be considered as a safe conduct for 

unbounded AAS detection in geldings and mares, nor is it a passport for impunity. 

Eventually, chapter VII sums up the main research questions that are to be investigated in 

this area in the near future. Important next steps will be the unraveling of the role the liver 

plays in the endogenous formation and transformation of AAS, a profound analysis of 
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contaminated feed and the analysis of (spoiled) fermented feed such as haylage and silage. 

Additional experiments are required to better understand the possible involvement of 

glucocorticoid treatment on the excretion of endogenous (cortico)steroids post-treatment. 

Finally, chapter VII focuses on the development of “Equine Biological Passport” (EBP), 

which will contain both genetic and biochemical information, a means of tracking 

biological changes in horses over time. In the near future the EBP might allow putting a 

stop to doping in equine sports, by staying ahead of the cheats. These are bright prospects, 

leading towards clean and fair equine sports competitions worldwide. 

 



 

 

 

 

 

 

 

SAMENVATTING



 

 

 



SAMENVATTING 

233 

 

SAMENVATTING 
Waar het in de sport om winnen, eer en geld gaat is middelenmisbruik om de sportieve 

prestaties te verbeteren nooit veraf. In de hedendaagse, prestatiegerichte paardensport is 

doping dan ook een ‘hot item’. Strenge doping- en medicatieregels dienen nageleefd te 

worden met als doel “het welzijn van het paard te beschermen en de veiligheid en de 

integriteit van de sport te garanderen, met eerlijke wedstrijden waarbij de uitslagen 

authentiek zijn met het oog op de fokkerij en de aan deze wedstrijden gekoppelde 

weddenschappen”. Paarden die uitgebracht worden op wedstrijd, in eender welke 

discipline, worden dan ook regelmatig gecontroleerd op het gebruik van verboden 

middelen. Anabole-androgene steroïden (AAS) maken sinds jaar en dag deel uit van de 

lijst met verboden middelen, omwille van hun spierversterkende en prestatie 

bevorderende eigenschappen en hun mogelijke nevenwerkingen. Voor de meeste AAS 

wordt bijgevolg dan ook een nultolerantie beleid gevoerd. Ondermeer door de verbetering 

van de analytische methoden wordt het mogelijk om steeds lagere concentraties van deze 

stoffen te meten. Dit onderzoek richtte zich dan ook op het mogelijk van nature 

voorkomen van lage concentraties van deze AAS bij paarden, en de achterliggende 

biomechanismen. 

In hoofdstuk I wordt een overzicht gegeven van de verschillende steroïden en hun al dan 

niet natuurlijk voorkomen bij paarden en mensen. De natuurlijke synthese van steroïden 

door het paard alsook het theoretische verband met fytosterolen komt hier aan bod. In het 

kader van deze link met fytosterolen wordt in dit hoofdstuk naast het endocrien systeem 

ook het verteringsstelsel van het paard kort weergegeven. Enkele belangrijke klinische 

afwijkingen van het endocrien systeem, die een invloed kunnen hebben op de endogene 

productie van steroïden (zoals de ziekte van Cushing en ovariële tumoren), worden 

eveneens besproken.  

Van slechts twee steroïden, testosteron en boldenone, wordt er algemeen aanvaard dat ze 

van nature geproduceerd kunnen worden door paarden en dus voorkomen in de urine. 

Voor deze stoffen werden dan ook geslachtsgebonden, maximale drempelwaarden 

vastgelegd door de verschillende regulatorische organisaties (o.a. Fédération Equestre 

Internationale, FEI en Internation Federation Horse Racing Authorities, IFHA). Om deze 

regels te kunnen handhaven werden doorheen de jaren verschillende, massa-

spectrometrische, methoden ontwikkeld en op grote schaal toegepast. De evolutie van 
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deze analytische methoden wordt ook besproken in hoofdstuk I. Door de verbetering van 

deze analysemethoden wordt het mogelijk om steeds lagere (endogene) concentraties 

steroïden te meten.  

In hoofdstuk II wordt de ontwikkeling en validatie van een nieuwe, gevoelige UHPLC-

MS/MS methode voor de kwantificatie van AAS in urine besproken. Met behulp van 

deze methode werden urinestalen van 105 onbehandelde paarden geanalyseerd. Hieruit 

bleek dat meer dan 80% van de ruinen en merries lage concentraties van de verschillende 

steroïden uitscheidden, voornamelijk testosteron en/of progesteron. Bij enkele paarden 

werden echter ook lage concentraties AAS zoals androsteendion (AED), 

androstadiëendion (ADD) en boldenone teruggevonden (<5 ng/mL). Voor zowel ADD als 

boldenone geldt tot op vandaag de nultolerantie. Strikt genomen zouden deze paarden dus 

niet voldoen aan de regels, ondanks dat ze niet behandeld werden met AAS. 

Als mogelijke verklaring voor deze resultaten werd de endogene omzetting van 

fytosterolen uit het voeder, die chemisch nauw verwant zijn aan steroïden, naar voor 

geschoven. Data met betrekking tot het natuurlijk voorkomen van fytosterolen in voeder 

waren echter niet voor handen. In hoofdstuk III wordt dan ook de ontwikkeling van een 

accurate extractie- en detectiemethode voor de kwantificatie van fytosterolen in voeder 

besproken. Met behulp van deze methode werd het mogelijk de gehalten aan de 

belangrijkste fytosterolen (β-sitosterol, campesterol en stigmasterol) te bepalen in 

krachtvoer (haver, gerst, maïs, erwten) en ruwvoer (hooi, gras en stro). In zowel kracht- 

als ruwvoer bleken hoge concentraties fytosterolen aanwezig te zijn, gaande van 25 tot 

190 mg per 100 g drooggewicht.  

De mogelijke endogene omzetting van fytosterolen uit het voeder naar AAS werd 

bestudeerd met behulp van in vitro verteringssimulaties. Aangezien er tot op heden geen 

gestandaardiseerd in vitro digestieprotocol beschikbaar is voor paarden, werd in 

hoofdstuk IV een bestaand protocol voor éénmagige (niet-herkauwende) dieren 

geadapteerd en gevalideerd voor de simulatie van de achterdarmvertering van het paard. 

Voor de validatie van dit model werd zowel de productie van korte keten vetzuren als de 

omzetting van aminozuren en depletie van suikers alsook de groei en activiteit van de 

microbiële flora opgevolgd. In vivo aangetoonde omzettingen, zoals de omzetting van 

ADD naar boldenone, konden in vitro gesimuleerd worden, wat de functionaliteit van het 
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in vitro model bevestigt. Er bleek geen rechtstreekse omzetting van fytosterolen naar 

AAS plaats te vinden, hoewel de testosteron precursor AED wel gevormd kon worden. 

Voorafgaand onderzoek (Verheyden et al., 2010) toonde aan dat schimmels die van 

nature voorkomen op het voeder van runderen ook een rol kunnen spelen bij de omzetting 

van fytosterolen naar AAS of AAS precursoren. Het onderzoeksluik dat in hoofdstuk V 

besproken wordt omvat daarom de analyse van beschimmelde (paarden)voederstalen 

alsook het mogelijke effect van accidentele consumptie van dergelijk beschimmeld 

voeder op het paard. Met Mucor sp. besmette maïs bleek een bron van AED te zijn. In 

vitro digestie van deze beschimmelde maïs, al dan niet aangerijkt met fytosterolen, gaf 

aanleiding tot een verhoogde vorming van AED. Deze resultaten bevestigen de vorming 

van AED uit fytosterolen en dit onder invloed van de gecombineerde enzymatische 

werking van enerzijds de schimmels en anderzijds de darmflora van het paard.  

Het natuurlijk voorkomen van ADD of βBol bij ruinen en merries (hoofdstuk II) kan 

hierdoor echter niet verklaard worden. De paarden waarbij ADD of βBol aangetoond 

werd, bleken echter vaak een glucocorticosteroïde behandeling te hebben ondergaan in de 

weken of maanden voorafgaand aan de staalname. Een tweeledige experimentele opzet, 

zoals besproken in hoofdstuk VI, werd dan ook uitgevoerd om de mogelijke rol van 

glucocorticoïden in de vorming van AAS te ontrafelen. Enerzijds werd een met 

glucocorticoïden behandelde patiënt opgevolgd tot 120 dagen na behandeling, om de 

langetermijneffecten op het endogene steroïdprofiel te bestuderen. Anderzijds werden 

verschillende glucocorticoïden (cortisol, cortisone, prednisolone en betamethason) 

onderworpen aan de enzymatische activiteit van vertering (in vitro). In vivo werd 

vastgesteld dat zowel het endogene glucocorticoïden- als het steroïdenprofiel tot 70 dagen 

na de initiële glucocorticoïde behandeling verstoord was. Achtereenvolgens werden 

verhoogde endogene concentraties cortisol en cortisone (dag 37 tot 48) en testosterone 

(dag 41 tot 77) waargenomen. Voor behandeling kon geen ADD waargenomen worden, 

waar dit na behandeling wel het geval was (tot 100 dagen na de initiële behandeling). De 

resultaten van de in vitro digesties toonden echter aan dat deze verstoring niet het gevolg 

was van een rechtstreekse intestinale omzetting van glucocorticoïden naar AAS. Het 

verband tussen de glucocorticoïden behandeling en de detectie van AAS bleek indirect, 

waarschijnlijk via het beïnvloeden van de hypothalamus-hypofyse-bijnier-as.  
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In hoofdstuk VII worden de resultaten van de verschillende in het kader van dit 

onderzoek uitgevoerde experimenten geïntegreerd en de belangrijkste wetenschappelijke 

conclusies geformuleerd. We kunnen besluiten dat het mogelijk is om, weliswaar lage, 

concentraties AAS aan te treffen in de urine van ruinen en merries die niet behandeld 

werden met AAS. Voor de detectie van AED kan de consumptie van beschimmeld voeder 

als mogelijke verklaring naar voor geschoven worden. De detectie van ADD en/of βBol is 

mogelijk gelinkt aan een voorafgaande behandeling met glucocorticoïden die het 

endogene steroïdprofiel van het paard verstoorde. Het aantreffen van deze componenten 

is dan ook geen sluitend bewijs voor het aantonen van misbruik. Bijkomende analyses 

zoals Isotoop-Ratio Massa Spectrometrie (IRMS) of de detectie van biomerkers 

gerelateerd aan AAS misbruik dienen dan ook toegepast te worden op stalen waarin 

dergelijke AAS aangetroffen worden. Op basis van de resultaten van dit werk kunnen we 

wel stellen dat het aantreffen van hogere concentraties AAS (> 5 ng/mL) nog steeds wijst 

in de richting van misbruik van deze stoffen. Deze resultaten kunnen dan ook niet als 

vrijgeleide beschouwd worden voor het gelegitimeerd aantreffen van AAS bij ruinen en 

merries. 

In hoofdstuk VII worden tenslotte tevens enkele interessante onderzoekspistes voor de 

nabije toekomst besproken. Belangrijke volgende stappen in dit onderzoek zijn enerzijds 

het ontrafelen van de rol van de lever in de endogene vorming en transformatie van AAS 

alsook een uitgebreide studie naar het voorkomen van gecontamineerd voeder in de 

praktijk en analyse van (al dan niet bedorven) gefermenteerd voeder zoals kuilvoer en 

slobbers. Daarnaast zijn bijkomende studies nodig om inzicht te krijgen in de effecten van 

behandeling met glucocorticoïden op de excretie van endogene (cortico)steroïdhormonen. 

Als laatste wordt in dit hoofdstuk ook de rol van het “Equine Biological Passport” (EBP) 

besproken. De ontwikkeling van een biologisch paspoort, dat zowel genetische als 

biochemische informatie bevat, kan toelaten om in de nabije toekomst dopingmisbruik 

een halt toe te roepen. Goede vooruitzichten die de sport enkel maar ten goede kunnen 

komen. 
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 Minisymposium on Metaproteogenomics: Functional analysis of microbial 

communities and consortia without cultivation, BSM, Brussels, Belgium, September 

25, 2012 

 17
th

 Conference on Food Microbiology, BSFM, Brussels, Belgium, 20-21 September 

2012 

 Protozoa Symposium, Belgian Society of Parasitology and Protistology, Brussels, 

Belgium, March 14, 2012 

 16
th

 Conference on Food Microbiology, BSFM, Brussels, Belgium, September 23, 

2011 

 2
nd

 Workshop on Bacterial and Fungal Biofilms, FWO Research Community Biology 

& Ecology of Bacterial & Fungal Human Biofilms, Ghent, belgium, September 22, 

2011 

 2
nd

  International ISEKI FOOD Conference, Milan, Italy, August 31 - September 2, 

2011  
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Scientific publications 

 

A1 Decloedt A.I., Van Landschoot A., Vanhaecke  L. (2015) Validated UHPLC-

MS/MS method for the extraction and detection of phytosterols in food, feed and 

beverages. Analytical Bioanalytical Biochemistry (submitted) 

A1 Decloedt A.I., Damen S., Vanhaecke L. (2015) Effect of glucocorticoid treatment 

on the excretion of anabolic-androgenic steroids in equine urine. Equine 

Veterinary Journal (submitted) 

A1 Decloedt A.I., Bailly-Chouriberry L., Vanden Bussche J., Garcia P., Popot M.A., 

Bonnaire Y., Vanhaecke L. (2015) Moldy feed, a possible explanation for the 

detection of anabolic-androgenic steroids in horses? Drug Testing and Analysis 

(special issue, submitted) 

C3 Decloedt A.I., Van Landschoot A. and Vanhaecke L. (2015) Development and 

validation of a new extraction and UHPLC-MS/MS detection method to quantify 

phytosterols in food and feed samples. XVIII Euro Food Chem, Madrid, October 

13-16 

C3 Decloedt A.I., Vanhaecke L. (2015) Optimization of phytosterol extraction and 

analysis from animal feeds by D-Optimal design and UHPLC-MS/MS. KVCV 

mass spectrometry in food and feed II, Ghent, September 15 

C3 Decloedt A.I., Watson H., Van Landschoot A., Vanderputten D. (2015) 

Technology for the production of gluten-free malt beer. 15th International Belgian 

Brewing Conference Chair J. De Clerck XV, Leuven, September 6-8 

A1 Hemeryck L.Y., Decloedt A.I., Vanden Bussche J., Geboes K.P., Vanhaecke L. 

(2015) High Resolution Mass Spectrometry Based Profiling of Diet-Related 

DeoxyriboNucleic Acid Adducts. Analytica Chemica Acta 

doi:10.1016/j.aca.2015.08.019 

 

A1 Decloedt A.I., Bailly-Chouriberry L., Vanden Bussche J., Garcia P., Popot M.A., 

Bonnaire Y., Vanhaecke L. (2015) In vitro simulation of the equine hindgut as a 

tool to study the influence of phytosterol consumption on the excretion of 

anabolic-androgenic steroids in horses. The Journal of steroid biochemistry and 

molecular biology 152:180-192. doi:10.1016/j.jsbmb.2015.06.001 

 

P3 Van Hoorde K., Decloedt A.I., Koek J., Vandamme P., Van Landschoot A. 

(2015) The microbiology of 37 different Belgian beers of more than 25 years old 

unravelled with MALDI-TOF MS. Proceedings of the 35
th

 European Brewery 

Convention, Porto, May 24-28 

P3 Decloedt A.I., Bailly-Chouriberry L., Bonnaire Y. and Vanhaecke L. (2015) Does 

the consumption of moulded feed affect the excretion of anabolic-androgenic 

steroids in horses? Proceedings of the 7
th

 European Equine Health and Nutrition 

Congress, Bruges, March 26-27 
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A1 Decloedt A.I., Bailly-Chouriberry L, Vanden Bussche J, Garcia P, Popot MA, 

Bonnaire Y, Vanhaecke L (2015) A validated UHPLC-MS/MS method to 

quantify low levels of anabolic-androgenic steroids naturally present in urine of 

untreated horses. Analytical and bioanalytical chemistry, 407 (15):4385-4396. 

doi:10.1007/s00216-014-8428-x 

C3 Vandoorne S., Decloedt A.I., Vanderputten
 
D., Van Landschoot A. (2014) 

Technology to produce gluten-free barley malt beers. Proceedings of the 2nd 

International Congress on Food Technology, Kusadasi, 05-07 November 

 

C3 Decloedt A.I., Jonas Schoelynck J., Eric Struyf E., Van Landschoot A. (2014) 

Dissolved Silicon Content in Belgian Beers. Proceedings of the 4th International 

Young Scientists Symposium on Malting, Brewing and Distilling 2014, Ghent, 

28-30 October 

 

A1 Vanden Bussche J, Decloedt A.I., Van Meulebroek L, De Clercq N, Lock S, 

Stahl-Zeng J, Vanhaecke L (2014) A novel approach to the quantitative detection 

of anabolic steroids in bovine muscle tissue by means of a hybrid quadrupole 

time-of-flight-mass spectrometry instrument. Journal of chromatography A, 

1360:229-239. doi:10.1016/j.chroma.2014.07.087 

 

C3 Decloedt A.I., Bailly-Chouriberry L., Bonnaire Y., Vanhaecke L. (2014) 

Unraveling the anabolic-androgenic steroid profile of untreated horses by 

UHPLC-MS/MS. 7th International Symposium Hormone and Veterinary Drug 

Residue Analysis, Ghent,  2 June, oral presentation Anneleen Decloedt and 

abstract in proceedings 

C3 Van Landschoot A., Decloedt A.I., Schoelynck J., Struyf E.  (2014) Elements and 

beers and effect of some metals ions on colloidal stability of beer. 17th School of 

Fermentation Technology, Krakau, 20-23 Mars, abstract in proceedings 

C3 Van Landschoot A., Schoelynck J., Decloedt A.I., Struyf E.  (2013) Factors 

related with dissolved silicon content in Belgian beers. EuroFood Chem XVII: 

Food for the future – the contribution of chemistry to improvement of food quality, 

Istanbul, 7-10 May, abstract in Proceedings, Hacettepe University, Food 

Engineering Department, ISBN 978-605-63935-0-1, 317 

 

 

 

 

 

 

 

 

 

 

 

 

https://biblio.ugent.be/publication/4423357
https://biblio.ugent.be/publication/4423357


CURRICULUM VITAE 

244 

 

Awards 

 

 Winner of the “7th EEHNC free communication award” for the best abstract, poster 

and oral presentation at the 7
th

 European Equine Health and Nutrition Congress 

(March 2015) 

 Team Manager of the Beer4Dreams team that won both the first price and the price 

of the audience at the Belgian Ecoptrophelia competition, organized by FEVIA 

(Fédération de l’Industry Alimentaire) (29
th

 April 2014) 

 The same team represented Belgium at the European Ecotrophelia Competition in 

SIAL (The World’s Largest Food Innovation Marketplace) in Paris (October 19-23, 

2014) and obtained a honourable 4
th

 place 

 

Publications in popular media 

 

Radio 2: radio-interview April 29, 2014, on air April 30, 2014: “Nieuw bier” 

Kanaal Z: interview April 30, 2014:  “Studenten innoveren in voeding” 

Ecotrophélia Europe 2014 book “The future of food, European Food Innovation” Student 

Awards, Genther: new beer, p 18-19 

 

www.versele-laga.com/en/Landingspages/Feeding-the-equine-athlete 

http://horsetalk.co.nz/2015/04/04/equine-athletes-horse-nutrition-congress/ 

http://www.anky.com/en/news/anky-shared-feeding-practices-at-7th-european-equine-

health-nutrition-congress 

Students 

 

Bachelor and master projects 

 Maxim Backaert: “Validation of a UHPLC-MS/MS method for the detection of 

phytosterols in beer/ the brewing process and other solid- and liquid feed and food 

samples”, February – June 2015, Bachelor (Bio)Chemistry, HoGent 

 Sander Damen: “Effect of glucocorticoid treatment on the hormonal profile of 

horses”, summer 2014, 3th bachelor Veterinary Medicine (Honours Program for 

promising students) 

 Toon Babylon: “Studying the interaction of food-borne pathogens with free-living 

protozoa”, 2012, 1
th  

master Biochemistry and Biotechnology, Ghent University 

 Jolien Van Hecke: “Association of Acanthamoeba with the food-born pathogen 

Salmonella“, 2012, 1
th

 master Biochemistry and biotechnology, Ghent University 
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Master thesis 

 Anneleen Michielsen: “Biotransformation of phytosterols in feed to AAS in horses”, 

July 2014 – June 2015, 3th master Veterinary Medicine, Ghent University 

 Marieke Logghe: “Quantification of phytosterols in grains and feed”, September - 

December 2014, master Industrial Sciences: biochemistry, Ghent University 

 Lindsy Marin: “Biotransformation of phytosterols and the possible link with the 

endogenous formation of anabolic steroids in horses”, February - June 2014, master 

Industrial Sciences: Biochemistry, Ghent University 

 Tijs Vanhevel: “In vitro digestion simulations as a tool to study the endogenous 

formation of steroids in horses”, February - June 2013, master Industrial Sciences: 

chemistry, KaHo Sint-Lieven-KULeuven 

Promotor of two literature studies in the light of the master thesis (Emilie Callaghan and 

Carolien Schmitt, 2
nd

 master Veterinary Medicine, 2015) and member of the reading and 

examination committee of different bachelor and master theses. 

Resources 

September 2011 – December 2011   

DeHousse-scholarship (Faculty of Veterinary Medicine, Department of Veterinary Public 

Health and Food Safety, Laboratory of Hygiene and Technology,  prof. K. Houf) 

January 2012 – Augustus 2012   

FCWO scholarship:  "Association of the food-borne pathogens Salmonella and E. coli 

with free-living protozoa, impact on control and virulence” (Faculty of Veterinary 

Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of 

Hygiene and Technology,  prof. dr. K. Houf) 

September 2012 – Augustus 2014 

Scholarship funded by the Fédération Nationale des Courses Françaises (FNCF): 

“biotransformation of phytosterols” (under the supervision of the Laboratoire des Courses 

Hippiques) and executed at the Laboratory of Chemical Analysis, Department of 

Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent 

University (Prof. dr. L. Vanhaecke) 

September 2014 – December 2014 

Scholarship funded by the Laboratory of Chemical Analysis, Department of Veterinary 

Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University (Prof. 

dr. L. Vanhaecke) 

January 2015 – December 2016   

Hogent PWO research project (75%, “Technology for the production of gluten-free malt 

beer”) and Ghent University (25%, teaching assistant) (Faculty of Bioscience Engineering) 
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Ja, een dankwoord… hoe begin je daaraan? 

Bij het begin dan maar… een dikke 4 jaar geleden zette ik mijn eerste 

schuchtere stapjes in de wereld van “het onderzoek”, met een masterthesis aan 

de vakgroep Veterinaire Volksgezondheid en Voedselveiligheid, bij prof. Kurt 

Houf. Daar kwam ik onder de vleugels van Julie B terecht die mij gezwind over, 

door en tussen de eerste onderzoeksobstakels heen loodste. Tijdens deze thesis 

kwam ik al snel tot de vaststelling dat onderzoek weliswaar geen “9 to 5 job” is 

(en soms zelfs geen 9 to 9), maar wel de ideale aanvulling op mijn aangeboren 

nieuwsgierigheid. Uren konden we discussiëren over de resultaten en mogelijke 

theorieën om deze te verklaren. Julie B, bedankt voor je enthousiasme!  

Tijdens deze periode maakte ik ook reeds kennis met de andere collega’s binnen 

het Labo voor Hygiëne en Technologie, met centraal Soetkin, Martine en 

Sandra, Laid, het manusje-van-alles, Inge, Tomasz en later ook Glynnis, Ellen 

en Natascha. Het was altijd fijn om over de middag eens een andere wind door 

mijn hoofd te laten waaien! 

De goesting om verder te gaan in onderzoek zette mij ertoe aan om mee te doen 

aan de, voor sommigen welgekende en alom gevreesde, IWT selectie. Hiervoor 

bleek ik een metgezel binnen het labo te hebben: Gerty. Na één week braaf rug 

aan rug in het “studentenbureautje” werd het ijs alsnog gebroken. Lijstjes en 

zelfs volledige webconstructies en tijdlijnen werden opgesteld. Het mocht niet 

baten… ;-) Het IWT bleek helaas net niet voor ons weggelegd, maar gelukkig 

kon ik alsnog verder onderzoek doen, met dank aan  een FCWO mandaat. 

Een jaartje later begon mijn “oude liefde” biochemie toch terug te kriebelen. 

Lynn (prof. Vanhaecke), bedankt dat je mij in september 2012 de kans gaf om op 

dit doctoraatsproject aan de slag te gaan. Anneleen, biochemie en paardjes: 

een veel betere match bestaat er niet. Dit was om verschillende redenen echter 

geen vanzelfsprekende keuze. We zeggen het misschien niet vaak genoeg, maar, 

Lynn je bent echt de spil van het labo, waar we (de eerste keren weliswaar met 

knikkende knietjes) altijd bij terecht kunnen met alle wetenschappelijke en 

minder wetenschappelijke problemen. Bedankt!! Zonder uw hulp was dit 

doctoraat nooit in drie jaar afgewerkt geraakt. 

Er waren echter ook vele anderen binnen het Labo voor Chemische Analyse die 

elk op hun eigen wijze hun steentje bijgedragen hebben aan dit werk. Julie VDB 
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(dit wordt vooral niet complex met alle Julie’s), jij was degene die mij in dit 

project op gang zette en de eerste uurtjes aan de TSQ met mij doorbracht. 

Bedankt! Jella, statistisch talent en altijd te vinden voor een praatje en 

goudeerlijk advies. Dat apprecieer ik in je!  

Maar ook de vaste kern (Dirk, Mieke, Lucie, Beata, Vicky, Johan, Joke en Ine) en 

de mede-doctoraatstudenten/lotgenoten mogen niet ontbreken. Karen, mijn 

eerste bureaugenote, die mij de basis van die soms wel eens vervloekte, massa 

spectrometers bijbracht. Lieven, uw doctoraat heeft mij de laatste paar 

maanden verdacht veel gezelschap gehouden als “voorbeeld” (soms tot 

frustratie van Lynn, als ik bijgevolg teveel bladzijden schreef…). Julie K, die 

tweede bron van decibels, die samen met Lieselot af en toe wel eens de oorzaak 

was dat wij met zijn drieën, net iets te gezellig, overuren maakten. Nathalie, 

zonder uw methode had hoofdstuk VI er toch wel anders uitgezien. Kaat, het 

bureaugenootje bij wie ik in de laatste maanden regelmatig eens kon 

ventileren over mijn doctoraatsstress. Veel succes met jouw doctoraat! Gabriel, 

you might not be the most outgoing person of us all, but you are always there 

when we need you. We still want to come to Chili, so once you start the ranch, let 

us know! Carolien, wij brachten niet veel tijd samen door op het labo, maar veel 

succes met het IWT, zet hem op! 

Daarnaast wil ik hier ook even kort de verschillende (thesis)studenten die 

tijdens de afgelopen drie jaar meegewerkt hebben aan dit project de revue laten 

passeren: Tijs, Lindsy, Marieke, Sander, Carolien, Emily, Anneleen en Maxim. Het 

was fijn om met jullie samen te werken! Ik hoop dat ik jullie toch een beetje heb 

kunnen besmetten met de liefde voor onderzoek. 

Ook mijn “nieuwe” collega’s van de brouwerij (Dana, Sylvie, Veerle en André) 

mogen niet ontbreken, omdat ze in de afgelopen maanden altijd oprecht 

geïnteresseerd waren in de vorderingen van mijn doctoraat, en mij waar 

mogelijk ook geholpen hebben zodat ik de ruimte had om dit werk tot een goed 

einde te brengen. Hellen, vanaf nu ben ik jou volwaardige glutensidekick. Ik 

ben er zeker van dat ook jij dit binnen een paar jaar tot een goed einde zal 

brengen. Sven, bij deze ook nog eens bedankt voor het uitwerken van de cover! 
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Dit doctoraat was echter ook nooit tot stand gekomen zonder de lieftallige 

ondersteuning van een aantal uitlaatkleppen, die bereid waren om mij te 

ondersteunen als het eens wat minder ging of waar nodig te temperen in mijn 

enthousiasme…  

Eerst en vooral was er “de paarden” en alle mensen die ik zo door de jaren heen 

leren kennen heb. Sommige daarvan gaan ondertussen al heel wat jaren mee. 

Lisa, we zien elkaar niet zo vaak meer, maar ik heb onze gesprekken altijd ten 

zeerste geapprecieerd. Moeten we misschien toch eens terug verandering in 

brengen! Karen, sinds jaar en dag (ik ben de tel al lang kwijt...) mijn 

knotsgekke gezel voor allerhande feestjes, ritjes, crossen en wat je ook maar kan 

bedenken. Bedankt! Stijn, jij die me altijd terug dat duwtje gaf als ik mezelf 

weer eens onderschatte. Bedankt, voor alles wat ik van je geleerd heb… Je komt 

er wel! En Robin, wanneer kom jij nog eens “de Pieter” temmen? 

Iza, veel uitleg hoeft er bij jou niet bij. Om het met 

iemand zijn legendarische woorden te zeggen 

“Jullie zijn soms echt twee dezelfde!!!”. Bedankt voor 

de talrijke hobbelrondjes met Limit en Pieter en de 

steun de laatste tijd (je weet het zelf wel). Als het 

gesprek begon met “We nemen de grote toer...”, dan 

wisten/weten we alletwee hoe laat het is.  

Anderzijds was er ook de “Lifetime fitness” bende., met dank aan Karen om mij 

daar te introduceren. Nieuwe vriendschappen werden gesmeed, en elke vorm 

van (doctoraats)frustratie kon er met een lach en een extra portie zweet direct 

weggetraind of gesauna’t worden. Justine, Sam, Katinka, Tijl, Maarten, Lotte, 

Jochen, Arno, en zovele anderen. Bedankt! Naast al het gesport en inhoudsloos 

gezwans was er ook plaats voor serieuze gesprekken, ritjes met de kever/mustang 

en fanatieke uitspattingen in de vorm van loopwedstrijden, merci daarvoor 

Joey! Bram, ook wij maalden vele kilometers af door de bossen. We waren soms 

een beetje verdwaald, maar ook dat komt wel weer goed ;-)  

Conny, Sandra en Elien, ook onze vriendschap ontstond initieel via “de fitness”. 

Maar intussen is er maar eentje meer actief en horen we elkaar niet altijd even 

regelmatig, maar binnenkort gaan we zeker nog eens op zwier en drinken we 

er eentje extra op dit doctoraat! Davy, ook jou leerde ik eigenlijk via de fitness 
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kennen, maar ondertussen hoor je eigenlijk al lang niet meer enkel in dat rijtje 

thuis. Iemand op wie ik altijd kan rekenen. Topper! Matthias, ons connectie rijkt 

intussen ook al zo ver terug in de tijd dat het wat moeilijk is om je aan een 

specifieke paragraaf toe te wijzen :-), maar weet dat jij voor mij het levende 

bewijs bent dat onmogelijk niet bestaat, als je er maar voor gaat.  

Dit brengt mij dan ook (genadeloos) bij de finale smeltkroes van deze 

verschillende uitlaatkleppen: het beruchte “Dreamteam”… Ik vorm, met enige 

trots, de connectie tussen jullie allen. Vanaf het eerste “dreamteam” avondje 

was het al direct duidelijk dat, om in de context van mijn doctoraat te blijven, 

de chemie tussen ons onovertroffen is... Ik hoop dan ook dat we nog vele 

gezellige avonden, feestjes en weekendjes mogen meemaken! #ohohvossemeren  

#onesieparty   

Annelies. Mijn grote zus en grote voorbeeld. Mensen halen ons vaak door elkaar 

(met dank aan de naamsverwarring en uiterlijke gelijkenissen), maar we 

verschillen toch ook op veel vlakken van elkaar, en dat botst(e) ook wel eens. 

Desondanks had ik mij geen betere zus kunnen wensen. Ik wens Xavier en jou 

alle geluk toe met jullie kleine wondertje in spe. De tante (ahum meter!) zal 

met alle plezier babysitten, de pony wordt ook alvast klaargestoomd!  

Tenslotte zou ik ook heel graag mijn ouders willen bedanken voor alle steun die 

ik van hen doorheen de jaren mocht ontvangen. Het is niet altijd gemakkelijk 

geweest, met enkele behoorlijke up’s en down’s along the way. Ik ben heel blij 

dat jullie er vandaag alsnog beiden bij kunnen en mogen zijn, en deze 

verdediging, hopelijk met trots, kunnen bijwonen. Nooit was er iets te veel 

gevraagd, en die onvoorwaardelijkheid is iets om te koesteren.    

 

 

Anneleen 
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“There is nothing like a dream to create the future, 

So if you think adventure is too dangerous, 

try routine… 

it’s lethal “ 

 

 (Adapted from Paulo Coelho and Victor Hugo, Les Miserables) 

 


