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This PhD research studied the interaction between microbial community 

structure, reactor behaviour and operational conditions in biofilm reactors for 

biological nitrogen removal from wastewater using mathematical modelling. 

Microbial diversity and competition were incorporated in 1-dimensional two-

step nitrification biofilm models. The influence of microbial diversity on 

steady state and dynamic behaviour of nitrifying biofilms and biofilm reactors 

was investigated. Insight was gained on the influence of microbial 

characteristics and process conditions on microbial competition. 

Chapter 1 provides some background on biological nitrogen removal, 

biofilms for nitrogen removal and the microbial diversity associated with the 

nitrifying community, besides the influence of environmental factors on the 

microbial community. Furthermore, an introduction was given on 

mathematical (biofilm) models and the rationale behind the incorporation of 

microbial diversity in nitrifying biofilm models was also addressed. 

A large variety of microbial parameter values for nitrifying microorganisms 

has been reported in literature and was revised in Chapter 2. This variety 

mainly reflects the large biodiversity in nitrifying systems, even though part of 

it can be attributed to the variety of analysis methods applied. In this chapter, 

the microbial diversity of the nitrifying community was incorporated in a 1-

dimensional, multispecies nitrifying biofilm model by taking into account the 

large variety of the maximum growth rate, substrate affinity and yield of 

nitrifiers reported in literature. This model, including the growth and decay of 

60 species of ammonia-oxidizing bacteria (AOB) and 60 species of nitrite-

oxidizing bacteria (NOB), was used to assess the influence of operational 

conditions and microbial characteristics on microbial competition based on 

steady state simulations. The 60 species per functional guild differed in 

maximum growth rate, affinity for electron donor and acceptor and yield and 

they were constructed based on species classes represented by 1 competitive 

advantage, 1 competitive disadvantage and 2 neutral characteristics. 

Operational conditions such as the nitrogen loading rate and the bulk liquid 

oxygen concentration were shown to influence both the bulk liquid 

composition as well as the microbial composition of the biofilm at steady state 
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through the prevailing concentration of substrates throughout the biofilm. Also 

the species present initially in the biofilm were shown to determine the steady 

state microbial biofilm composition and bulk liquid composition at steady 

state. 

Considering oxygen and nitrogen limitation, a maximum of 3 dominant species 

in the nitrifying community coexisting at steady state, with two species of the 

same functional guild, i.e., performing the same function, was observed 

(Chapter 2-4). It was demonstrated that coexisting species of the same 

functional guild are typified by a trade-off between their maximum growth rate 

and their affinity for the most limiting nutrient (nitrogen or oxygen), according 

to the r-K selection theory. Furthermore, the simulated biomass distribution 

profiles in the biofilm were shown to reflect the ecological niches created by 

the diffusional substrate concentration gradients in the biofilms. Besides 

internal mass transfer limitation, also external mass transfer limitation, by 

determining the concentration of the limiting substrates in the biofilm, and 

endogenous respiration were shown to influence the microbial competition 

(Chapter 4). 

In Chapter 3, a flat biofilm model considering the growth and endogenous 

respiration of 10 AOB and 10 NOB species was used in two case studies. Here, 

the species per functional type were constructed based on a bimodal 

distribution of the values for maximum growth rate, affinity constants and 

yield. In a first case study, the change of the microbial composition of a biofilm 

was followed over time until steady state was reached in terms of bulk liquid 

composition, biofilm thickness and microbial biofilm composition. It was 

demonstrated that a constant effluent composition not necessary reflects steady 

state conditions in terms of biofilm thickness and composition. In a second 

case study, the functional redundancy of the nitrifying community, i.e., the 

possibility of a changed nitrifying community to function equally as the 

original one, upon an increased nitrogen loading rate, was verified. Dynamic 

simulations with the 1-dimensional nitrifying biofilm model, including the 

competition between 10 AOB and 10 NOB, demonstrated that the coexistence 

of several species performing the same function assured an almost constant 
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process performance, i.e., conversion of most of the ammonium to nitrate, 

upon an increased nitrogen loading within a period of 8 months following the 

shift of the operational conditions. In Chapter 3, it was therefore concluded, 

based on the simulations, that increased complexity in biofilm models, 

concerning microbial diversity, is likely more useful when the focus is on 

understanding microbial competition and coexistence or biofilm composition, 

but under specific conditions, for example upon environmental or operational 

changes such as an increased nitrogen loading rate, these additional model 

features can be critically informative for bulk reactor behaviour prediction and 

general understanding. 

An example of a case in which inclusion of microbial diversity in a biofilm 

model was informative for the bulk liquid composition and the process 

performance, is given in Chapter 4. Dynamic simulations were used to analyse 

an experimentally observed population shift between two genetically different 

ammonia-oxidizers, accompanied by a different nitrifying performance, in a 

biofilm reactor operated at different loading rates. A model including the 

competition between the two genetically different populations of ammonia-

oxidizers, represented by two different sets of kinetic parameters, and nitrite-

oxidizers was used. The dissolved oxygen concentration in the bulk liquid was 

identified as the key variable governing the experimentally observed 

population shift by the developed 1-dimensional biofilm model. 

For engineers, it is interesting to gain insight in the effect of control strategies 

on microbial communities, on their turn influencing the process behaviour 

and/or its stability. Chapter 5 assesses the influence of process dynamics on 

the microbial community in a biofilm reactor for wastewater treatment, which 

was controlled according to several strategies aiming at nitrite accumulation. 

The process dataset, combining conventional chemical and physical data with 

molecular information, was analysed through a correlation analysis and in a 

simulation study. During nitrate accumulation, an increased nitrogen loading 

rate (NLR) resulted in a drop of the bulk liquid oxygen concentration without 

resulting in nitrite accumulation. A biofilm model, considering the growth and 

decay of 1 AOB, 1 NOB and 1 heterotrophic guild, was able to reproduce the 
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bulk liquid nitrogen concentrations in two periods before and after this 

increased NLR. As the microbial parameters calibrated for AOB and NOB in 

both periods were different, it was concluded that the increased NLR governed 

an AOB and NOB population shift. It was assumed that each period was 

typified by 1 dominant AOB and probably several subdominant NOB 

populations. The control strategies for nitrite accumulation were mainly 

influencing the competition between AOB and NOB, instead of the microbial 

diversity of the nitrifying community. 

Finally, Chapter 7 offers some final considerations and conclusions on the 

modelling of microbial diversity in nitrifying biofilm reactors, the influence of 

microbial diversity on steady state and dynamic reactor behaviour and the 

factors influencing microbial diversity in nitrifying biofilms, next to some 

suggestions for future research. 
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Dit doctoraatsonderzoek bestudeerde de interactie tussen de structuur van de 

microbiële gemeenschap, het reactorgedrag en de operationele condities in 

biofilmreactoren voor biologische stikstofverwijdering uit afvalwater, met 

behulp van wiskundige modellering. Microbiële diversiteit en competitie 

werden verwerkt in 1-dimensionale nitrificerende biofilmmodellen. De 

invloed van microbiële diversiteit op het steady state gedrag, d.i., wanneer de 

uitgangsvariabelen niet meer veranderen, en dynamische gedrag van 

nitrificerende biofilms en biofilmreactoren werd onderzocht. Inzicht werd 

verkregen over de invloed van microbiële eigenschappen en procescondities 

op microbiële competitie. 

Hoofdstuk 1 geeft achtergrondinformatie over biologische stikstofverwijde-

ring, biofilms voor stikstofverwijdering uit afvalwater en de microbiële 

diversiteit van de nitrificerende gemeenschap, naast de invloed van 

omgevingsfactoren op de microbiële gemeenschap. Daarnaast werd ook een 

inleiding gegeven over mathematische (biofilm) modellen en werd de grond-

gedachte achter de integratie van de microbiële diversiteit in nitrificerende 

biofilmmodellen aangehaald. 

Een grote verscheidenheid aan microbiële parameterwaarden voor nitrifice-

rende micro-organismen werd gerapporteerd in de literatuur (Hoofdstuk 2). 

De variatie is voornamelijk te wijten aan de grote biodiversiteit van 

nitrificerende systemen, hoewel een deel ervan ook kan worden toegeschreven 

aan de verschillende toegepaste analysemethoden. In dit hoofdstuk werd de 

microbiële diversiteit van de nitrificerende gemeenschap opgenomen in een 1-

dimensionaal, nitrificerend biofilmmodel door rekening te houden met deze 

grote verscheidenheid van de maximale groeisnelheid, de substraataffiniteit en 

de celopbrengst (yield) van stikstofverwijderende organismen. Dit model, dat 

de groei en de transitie tot inerte componenten en organisch substraat (decay) 

van 60 soorten ammonia-oxiderende bacteriën (AOB) en 60 soorten nitriet 

oxiderende bacteriën (NOB) beschrijft, werd gebruikt om de invloed van 

operationele condities en microbiële eigenschappen op microbiële competitie 

na te gaan via steady state simulaties. De 60 soorten per functioneel type (AOB 

versus NOB) verschilden in maximale groeisnelheid, affiniteit voor elektron-
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donor en -acceptor, en celopbrengst. Ze werden geconstrueerd door gebruik te 

maken van soortenklassen. Deze klassen werden voorgesteld door één 

competitief voordeel, één competitief nadeel en 2 neutrale kenmerken. 

Operationele condities zoals de stikstoflading en de zuurstofconcentratie in de 

reactor bleken zowel de effluentsamenstelling als de microbiële samenstelling 

van de biofilm bij steady state te beïnvloeden via de heersende substraat-

concentratie in de biofilm. Ook de oorspronkelijke soortensamenstelling van 

de biofilm bleek de microbiële biofilmsamenstelling en de 

effluentsamenstelling bij steady state te beïnvloeden. 

Bij zuurstof en stikstoflimitatie konden maximaal 3 dominante soorten, 

waarvan twee soorten die dezelfde functie uitvoeren, in de nitrificerende 

gemeenschap samenleven bij steady state (Hoofdstuk 2-4). Er werd 

aangetoond dat naast elkaar bestaande soorten van dezelfde functionele 

microbiële groep gekenmerkt worden door een compromis (trade-off) tussen 

hun maximale groeisnelheid en hun affiniteit voor het belangrijkste limiterende 

nutriënt (stikstof of zuurstof) volgens de r- en K-selectietheorie. Bovendien 

weerspiegelden de gesimuleerde biomassaprofielen in de biofilm de 

ecologische niches gecreëerd door substraatgradiënten. Naast interne massa-

transferlimitatie, kunnen ook externe massatransferlimitatie, via de invloed op 

de concentratie van de limiterende substraten in de biofilm, en de oxidatie van 

aangelegde reservestoffen of endogene ademhaling (endogenous respiration) 

microbiële competitie beïnvloeden (Hoofdstuk 4). 

In Hoofdstuk 3 werd een vlakke biofilm, die de groei en endogene respiratie 

van 10 AOB soorten en 10 NOB soorten beschrijft, gebruikt in twee 

gevalstudies. Hier werden de 10 soorten per functioneel type (AOB versus 

NOB) voorgesteld door middel van een bimodale distributie voor de waarden 

van maximale groeisnelheid, affiniteit constanten en celopbrengst. In een 

eerste gevalstudie werd de verandering van de microbiële samenstelling van 

een biofilm gevolgd in de tijd tot er steady state werd bereikt op vlak van de 

effluentsamenstelling, biofilmdikte en biofilm soortensamenstelling. Er werd 

aangetoond dat een constant effluentsamenstelling niet noodzakelijk stabiele 

omstandigheden in de biofilm reflecteert. In een tweede gevalstudie werd de 
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functionele redundantie van de nitrificerende gemeenschap, d.i., de 

mogelijkheid van een veranderde nitrificerende gemeenschap om gelijkaardig 

te functioneren als de oorspronkelijke, bij een verhoogde stikstofbelasting 

gecontroleerd. Dynamische simulaties met het 1-dimensionaal biofilmmodel, 

waarin de competitie tussen 10 AOB en 10 NOB bacteriën was opgenomen, 

toonden aan dat de co-existentie van verschillende soorten met dezelfde functie 

een nagenoeg constante procesperformantie kunnen verzekerden. Zowel voor 

als 8 maanden na de verandering van de operationele condities was er immers 

een nagenoeg volledige omzetting van ammonium tot nitraat. In Hoofdstuk 3 

werd er, op basis van de simulaties, geconcludeerd dat opname van microbiële 

diversiteit in biofilm modellen van praktisch nut is als de focus ligt op het 

begrijpen van microbiële competitie, co-existentie of de soortensamenstelling 

van de biofilm. Maar bij specifieke gevallen, bijvoorbeeld als er veranderingen 

optreden in de omgevings- of operationele factoren, kan bijkomende 

modelcomplexiteit ook van groot belang zijn voor het voorspellen en begrijpen 

van de effluent samenstelling. 

Een voorbeeld van een geval waarin opname van microbiële diversiteit in een 

biofilmmodel informatief was voor het begrijpen van de procesperformantie 

en de effluentsamenstelling, wordt gegeven in Hoofdstuk 4. Dynamische 

simulaties werden gebruikt om een experimenteel waargenomen 

populatieverschuiving tussen twee genetisch verschillende ammonia-

oxiderende bacteriën te analyseren. De populatieverschuiving werd 

waargenomen in een biofilmreactor werkend bij verschillende belastingen en 

ging gepaard met een verandering in het nitrificerende gedrag. Een model werd 

gebruikt waarin zowel de competitie tussen de twee genetisch verschillende 

populaties van ammonia-oxiderende bacteriën, voorgesteld door verschillende 

kinetische parameters, als de nitriet-oxiderende bacteriën waren opgenomen. 

De zuurstofconcentratie in de reactor werd met het model geïdentificeerd als 

de variabele die de experimenteel waargenomen populatieverschuiving heeft 

veroorzaakt. 

Voor ingenieurs kan het interessant zijn om inzicht te verkrijgen in het effect 

van controlestrategieën op microbiële gemeenschappen, die op hun beurt het 



xxix  Samenvatting 

 xxix 

procesgedrag en/of -stabiliteit beïnvloeden. In Hoofdstuk 5 wordt de invloed 

van procesdynamica op de microbiële gemeenschap in een biofilmreactor voor 

waterzuivering, gecontroleerd op basis van verschillende controlestrategieën 

voor nitrietaccumulatie, onderzocht. De gebruikte dataset, die conventionele 

chemische en fysische data combineert met moleculaire informatie, werd 

geanalyseerd gebruik makend van een correlatieanalyse en in een 

simulatiestudie. Gedurende nitraataccumulatie veroorzaakte een verhoogde 

stikstoflading een verlaging van de zuurstofconcentratie in de reactor, zonder 

te resulteren in nitrietaccumulatie. Een biofilmmodel, die de groei en 

omzetting van biomassa in inerte componenten en organisch substraat van 1 

ammonia-oxiderend, 1 nitriet oxiderend en 1 heterotroof type beschreef, kon 

de stikstofconcentraties in de reactor simuleren in twee perioden van 

reactoroperatie (voor en na de verhoogde stikstoflading). Aangezien de 

gekalibreerde microbiële parameters voor zowel de AOB als de NOB 

verschillend waren voor beide perioden, werd geconcludeerd dat de verhoogde 

stikstoflading een populatieshift heeft veroorzaakt. Er werd aangenomen dat 

elke periode gekenmerkt werd door 1 dominante AOB populatie en mogelijks 

verschillende subdominante NOB populaties. De controlestrategieën voor 

nitrietaccumulatie beïnvloedden vooral de competitie tussen de twee 

functionele types (AOB en NOB), in plaats van de microbiële diversiteit van 

de nitrificerende gemeenschap. 

Tot slot biedt Hoofdstuk 7 conclusies over het modelleren van microbiële 

diversiteit in nitrificerende biofilmreactoren, de invloed van microbiële 

diversiteit op steady state en dynamisch reactorgedrag en de factoren die van 

invloed zijn op de microbiële diversiteit in nitrificerende biofilms, naast een 

aantal suggesties voor toekomstig onderzoek. 





  

 

1 

Introduction  



Chapter 1   

2 

1.1 Biological nitrogen removal 

Current wastewater treatment deals with (1) the removal of colloidal, 

suspended and floatable material from wastewater, (2) prevention of oxygen 

depletion and the production of malodorous gases in the environment, by 

confining microbial growth in the wastewater to a controlled system, (3) the 

removal of plant macronutrients phosphorus and nitrogen to prevent fish kills 

due to toxic ammonia and eutrophication of aquatic systems, thereby 

preventing algal blooms, and (4) the elimination of pathogenic organisms 

(Tchobanoglous et al. 2003; Madigan & Martinko 2006). In this thesis, the 

focus is on the biological nitrogen removal from wastewater. 

1.1.1 Nitrogen removal pathways 

Conventional biological nitrogen removal is a generally accepted pathway, 

resulting in the oxidation of ammonium to nitrite (nitritation) by the ammonia-

oxidizing bacteria (AOB) and the oxidation of nitrite to nitrate (nitratation) by 

the nitrite-oxidizing bacteria (NOB) during nitrification. The produced nitrate 

is then reduced via nitrite to nitrogen gas during denitrification (Figure 1.1). It 

should be noted that, when nitrate in comparison to organic carbon is limiting, 

dissimilatory nitrate reduction to ammonium (DNRA) is assumed to occur 

(Cole & Brown 1980; Kraft et al. 2011), conserving nitrogen in the system 

(Tiedje et al. 1983).  

Over the last 15 years, innovative processes have been developed that improve 

the sustainability of biological nitrogen removal from wastewater. Many of the 

newly developed processes rely on partial biological oxidation of ammonium 

to nitrite by the AOB, while further oxidation to nitrate by the NOB is 

prevented (Figure 1.1). The produced nitrite can be directly denitrified to 

nitrogen gas; the resulting process is denoted as partial nitrification - 

denitrification or shortcut nitrification - denitrification over nitrite. Another 

possibility lies in the conversion of only half of the ammonium to nitrite 

(partial nitritation), followed by the combination of ammonium and nitrite to 

nitrogen gas in a so-called anaerobic ammonium oxidation (anammox) 

reaction. These innovative processes result in significantly lower aeration 
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energy requirements, lowering or eliminating the need for external carbon 

dosage, while minimizing sludge production and CO2-emission, in comparison 

with traditional nitrification-denitrification over nitrate (Turk & Mavinic 1986; 

Mulder et al. 1995; Verstraete & Philips 1998). To achieve nitrification-

denitrification over nitrite, stable production of nitrite is necessary. Although 

nitrite is an intermediate, not or hardly formed in open-loop (uncontrolled) 

situations, nitrite accumulation can be achieved by selecting the desired 

microbial populations through adequate process operation control. In the case 

of nitrification, this comes down to the selection between two types or 

functional guilds of microorganisms: the ammonia-oxidizing bacteria (AOB) 

need to be favoured over the nitrite-oxidizing bacteria (NOB), by controlling 

pH (Anthonisen et al. 1976), temperature and sludge retention time (Hellinga 

et al. 1998) and/or the bulk liquid oxygen concentration (Bernet et al. 2001). 

 

Figure 1.1 Simplified microbial nitrogen cycle depicting conventional biological 

nitrogen removal (1, 2, 3 and 4), nitrification – denitrification over nitrite (1 and 4), 

anammox following partial nitritation (1 and 5), besides dissimilatory nitrate 

reduction to ammonium (3 and 6).  
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It should be noted that in the overall nitrogen cycle also other processes occur. 

Nitrate is also reduced to nitrite and ammonia by usage of adenosine 

triphosphate (ATP, one of the main energy sources in all living cells) and 

reducing power during assimilatory nitrate reduction. Micro-organisms unable 

to reduce nitrate must find ammonia nitrogen in their environment as nitrogen 

source for incorporation in complex organic compounds (Lawrence 2005; 

Bertrand et al. 2011). During breakdown and mineralization of organic matter 

by both aerobic and anaerobic bacteria, ammonium is released in a process 

called ammonification (Kalff 2002). The process whereby atmospheric 

elemental nitrogen (dinitrogen, N2) is reduced to ammonia and which is carried 

out by some free-living bacteria and cyanobacteria and by a few groups of 

bacteria in the symbiotic association with plants is called nitrogen fixation 

(Lawrence 2005; Bertrand et al. 2011). 

1.1.2 Biofilm reactors for nitrogen removal 

Biofilm reactors are particularly useful for the growth of slow growing 

microorganisms such as nitrifiers, as they are compact, allow high loading rates 

and they realize the dissociation of hydraulic and solids retention time 

(Nicolella et al. 2000). A biofilm can be defined as a structure of adhesive 

materials like extra-cellular polymers, enclosing colonies of microorganisms 

and cellular products (Lawrence 2005; Madigan & Martinko 2006), which 

either form spontaneously as large, dense granules (Lettinga et al. 1980; de 

Kreuk et al. 2005), grow attached on a static solid surface (Pynaert et al. 2003) 

or on a suspended carrier (Bernet et al. 2005; Bougard et al. 2006a). Several 

research groups have already used different types of biofilm reactors for 

establishing nitrification-denitrification over nitrite, e.g., Bougard et al. 

(2006a) and Bougard et al. (2006b) used an Inverse Turbulent Bed Reactor 

(ITBR) and Yilmaz et al. (2008) used granular sludge. Also biofilm reactors 

for partial nitritation in view of coupling with an anammox process were 

already described in literature, e.g., Gilbert et al. (2014) used a moving bed 

biofilm reactor and Lotti et al. (2014) used granules. 

For two chapters of this thesis (Chapter 4 and Chapter 5), previously gathered 

experimental data from the Laboratory of Environmental Biotechnology 
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(LBE), a research unit of the French National Institute for Agricultural 

Research (INRA), were used. During experiments with nitrifying Inverse 

Turbulent Bed Reactors (ITBRs, Figure 1.2) conventional chemical and 

physical data were retrieved in combination with molecular information about 

microbial population dynamics (Bernet et al. 2004; Bougard et al. 2006a; 

Volcke et al. 2008). In ITBRs, floating particles, on which the biofilms grow 

during operation, are expanded by an upward current of gas (Buffiere et al. 

2000). The reactor belongs to the category of inverse three-phase fluidized 

beds as the fluidization can be ensured by an upflow current of gas only, 

through the pseudo-fluidization mechanism (Buffière & Moletta 2000). 

Sánchez et al. (2005a) proved that this reactor type behaves like a two-phase 

reactor, with the liquid and solid phases behaving like a homogenous pseudo-

fluid. According to Buffière and Moletta (1999), this kind of reactor enables in 

the field of biological wastewater treatment to (1) use the gas flow as only 

fluidizing agent, not requiring any extra energy cost in aerobic processes, (2) 

create a calming zone below the gas distributor acting as a settler to separate 

the sludge from the liquid and (3) control the biofilm thickness by friction 

effects. 

 

Figure 1.2 Inverse Turbulent Bed Reactor (ITBR). The black points represent 

biofilm covered low density spherical inert particles, kept afloat by an upward 

current of air (white bubbles). Picture taken from Bougard et al. (2006a).  
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1.2 The nitrifying community 

In this thesis, the focus is on the microbial biodiversity in nitrifying biofilms. 

Key biological processes such as nitritation or nitratation do not result from 

the work of a single bacterial species but can be performed by a wide variety 

of organisms, each with their own characteristics and merits. 

Table 1.1 Overview of possible functions in the nitrogen cycle executed by species 

from different genera. This list is not exhaustive. Table adapted from Tchobanoglous 

et al. (2003). The numbers of the functions correspond to the processes given in 

Figure 1.1. AOB: ammonia-oxidizing bacteria, AOA: ammonia-oxidizing archaea, 

NOB: nitrite-oxidizing bacteria, DEN: denitrifying bacteria, ANAMMOX: 

anaerobic ammonium oxidizing bacteria, DNRA: bacteria performing dissimilatory 

nitrite reduction to ammonium. 

1.2.1 Microbial diversity 

Biological diversity is, according to the United Nations Convention on 

Biological Diversity, the variability among living organisms from all sources, 

including terrestrial, marine and other aquatic ecosystems and the ecological 

complexes of which they are part (Lawrence 2005). This includes diversity 

within species (genes), between species and of ecosystems. Although difficult 

Function Functional guild 
Known genera 

(amongst others) 

1 

 
Nitritation: 

Aerobic 
oxidation of 

NH4
+ to NO2

- 

AOB 

Nitrosomonas, 

Nitrosospira, 
Nitrosococcus 

Nitrification 

AOA Nitrosopumilus 

2 

Nitratation: 

Aerobic 
oxidation of 

NO2
- to NO3

- 

NOB 

Nitrobacter, Nitrospina, 

Nitrococcus , Nitrospira, 

Nitrotoga  

3 

Denitrification 

Anaerobic 
reduction of 

NO3
- to NO2 

DEN 

Acinetobacter, 

Agrobacterium, Bacillus, 
Corynebacterium, 

Flavobacterium, 
Pseudomonas, 

Rhizobium 
4 

Anaerobic 

reduction of 
NO2

- to N2 

5 
Anaerobic oxidation of NH4

+ to N2 

with NO2
- as electron acceptor 

ANAMMOX 
Kuenenia, Brocadia, 
Anammoxoglobus, 

Jettenia, Scalindua 

3+6 
Anaerobic dissimilatory nitrate 
reduction to ammonium 

DNRA 

Escherichia, 

Desulfovibrio, Wolinella, 

Vibrio, Clostridium 
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to measure (Purvis & Hector 2000), diversity of a system can be represented 

by the total number of species (species richness), the relative abundance of 

each species (evenness) or a proportional statistic that combines both 

measures, such as the Shannon-Wiener index and the Simpson index (Hill 

1973; Washington 1984; Stirling & Wilsey 2001; Huber et al. 2007). 

Ecological diversity measures can also be used with bacterial communities 

(Hill et al. 2003). Microbial diversity in the environment can be measured by 

various indices such as phylogenetic diversity, species diversity, genotype 

diversity, and gene diversity (Xu 2006). Above the species level, microbial 

diversity is commonly quantified based on evolutionary distances among 

observed taxonomic groups from a specific environment, e.g., the phylogenetic 

diversity based on the 16S ribosomal RNA subunit. Below the species level, 

microbial diversity is typically described using population genetic parameters 

such as gene diversity and genotype diversity. In Chapter 5, the Simpson 

diversity index (DSCCP) was calculated from the fingerprinting profiles based 

on 16S rRNA and functional genes, determined based on capillary 

electrophoresis single strand conformational polymorphism (CE-SSCP). This 

diversity index, calculated as DSSCP = - ln∑ (peak areas)² (Loisel et al. 2008), 

reflects the underlying diversity from the SSCP profile independently of 

sample size (Rosenzweig 1995). 

1.2.2 Ecological genomics and metagenomics 

In recent years, molecular techniques have been used for the characterization 

of nitrifying microbial communities and allowed the detection of a larger 

diversity of nitrifers than expected based on conventional culture-based 

techniques (Bothe et al. 2000; Otawa et al. 2006). 

A genome refers to the complete set of genes and chromosomes carried by an 

organism (Lawrence 2005). The term genomics is used to describe a specific 

discipline in genetics that deals with mapping, sequencing and analysing of 

genomes, besides functional analytical aspects such as whole genome RNA 

transcripts (transcriptomics), proteins (proteomics), and metabolites 

(metabolomics). Metagenomics, ecological genomics, community genomics 

or environmental genomics is the genomic analysis of microorganisms by 
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direct extraction, cloning and/or sequencing of DNA from an assemblage of 

microorganisms (Handelsman 2004; Riesenfeld et al. 2004; Streit & Schmitz 

2004; Tringe & Rubin 2005; Xu 2006; Schmeisser et al. 2007). A brief 

overview of used techniques in ecological genomics is given in Table 1.2 and 

Table 1.3. 

The demand for cheaper and faster sequencing methods has increased greatly 

and has driven the development of second-generation sequencing or next-

generation sequencing (NGS) methods (Table 1.3). NGS platforms perform 

massively parallel sequencing, during which millions of fragments of DNA 

from a single sample are sequenced in unison. Massively parallel sequencing 

technology facilitates high-throughput sequencing, which allows an entire 

genome to be sequenced in less than one day (Grada & Weinbrecht 2013). The 

advent of next generation sequencing has allowed an explosion in sequencing 

of individual genomes, and started a revolution in metagenomic sequencing 

and analysis (Scholz et al. 2012).  
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Table 1.2 Overview of techniques used in microbial metagenomics to analyse the 

genomic composition of an assemblage of microorganisms. This list is not exhaustive. 

PCR, real-time PCR, DNA cloning and SSCP were used in the datasets described in 

Chapter 4 and 5. 

Method Full name/description 
Reference 

(examples) 

Bioinformatics Post-processing of molecular data 

Chen and Pachter 

(2005); (Hogeweg 

2011) 

DGGE/TGGE 
Denaturating or Temperature Gradient Gel 

Electrophoresis 

Muyzer (1999); 

Boon et al. (2002); 

Xiuheng et al. 

(2009) 

DNA cloning 

systems 

Isolation of multiple copies of specific genes in 
pure form, by moving the desired gene from a 

large, complex genome to a small, simple one 

(Madigan & Martinko 2006) 

Rondon et al. 
(2000); Bernet et al. 

(2004); Bougard et 

al. (2006a) 

FISH Fluorescensce In Situ Hybridization 

Schramm et al. 
(1998); Terada et 

al. (2010); Lydmark 

et al. (2006); 
Almstrand et al. 

(2013) 

Flow cytometry 

Technique for counting and distinguishing 

different types of cells in a mixed cell population 

(Lawrence 2005) 

Hammes et al. 
(2008); Wang et al. 

(2010);  

De Roy et al. 
(2012) 

SSCP 

Single Strand Conformational Polymorphism, 
separation is done for example by Capillary 

Electrophoresis 

Bernet et al. (2004); 

Bougard et al. 

(2006a); Volcke et 
al. (2008) 

Shotgun DNA 

sequencing 

Sequencing of previously cloned small fragments 
of a genome in a random fashion followed by 

computational methods to reconstruct the entire 

genome (Madigan & Martinko 2006) 

Chen and Pachter 

(2005); Eisen 
(2007) 

T-RFLP 
Terminal-Restriction Fragment Length 
Polymorphism 

Osborn et al. (2000) 

Microarray 
technology 

Transcriptomic analysis of messenger RNA on 

supports (gene chips) on which genes or portions 
of genes are affixed and spatially arrayed in a 

known pattern (Madigan & Martinko 2006). A 

chip can contain spots of DNA segments 
corresponding to all of the genes in a genome 

(Griffiths et al. 2008) 

Sebat et al. (2003); 
Gentry et al. (2006) 

PCR and real-

time PCR 

Polymerase Chain Reaction, in which a gene or 
sequence of interest is amplified in a test tube 

rather than by cloning. Real-time PCR involves 

the use of fluorescent-labelled PCR primers. If 
real-time PCR is quantitative, it is denoted as 

qPCR (Lawrence 2005; Madigan & Martinko 

2006; Griffiths et al. 2008) 

Toze (1999); Boon 

et al. (2002) 
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Table 1.3 Overview of the next and third generation sequencing techniques used in 

microbial metagenomics to analyse the genomic composition of an assemblage of 

microorganisms (continuation of Table 1.2). This list is not exhaustive. 

Method Full name/description 
Reference 

(examples) 

Next 
generation 

sequencing  

Illumina 
sequencing 

Based on the concept of sequencing by 

synthesis to produce sequence reads of 
tens of millions of surface-amplified DNA 

fragments simultaneously (Mardis 2008) 

Ye et al. 

(2012b); Wang 

et al. (2014) 

Ion Torrent 

Light independent determination of 

sequence composition by measuring pH 
changes due to hydrogen ion liberation as 

nucleotides are incorporated during strand 

synthesis in picolitre wells (Whiteley et 
al. 2012) 

Whiteley et al. 

(2012) 

Roche (454) 
GS FLX 

sequencer 

This sequencer works on the principle of 

pyrosequencing, which uses the 
pyrophosphate molecule released on 

nucleotide incorporation by DNA 

polymerase to fuel a downstream set of 
reactions that ultimately produces light 

from the cleavage of oxyluciferin by 

luciferase (Mardis 2008) 

Sanapareddy et 

al. (2009); 
Johnson et al. 

(2014); Wang 

et al. (2014) 

SOLiD 
Sequencing by Oligo Ligation and 

Detection (Mardis 2008) 

Kovács et al. 

(2013); Solli et 
al. (2014) 

Third 

generation 
sequencing  

MinION 

New, portable single-molecule sequencer 

developed by Oxford Nanopore 

Technologies. It measures four inches in 

length and is powered from the USB 3.0 
port of a laptop computer. The MinION™ 

measures the change in current resulting 

from DNA strands interacting with a 
charged protein nanopore. These 

measurements can then be used to deduce 

the underlying nucleotide sequence 
(Quick et al. 2014) 

Bohmann et al. 
(2014) 

GridION 
A high-throughput nanopore-based 

sequencer 

Bohmann et al. 

(2014) 
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1.2.3 Microbial diversity in nitrifying systems 

Species from three genera of AOB, i.e., Nitrosomonas, Nitrosococcus and 

Nitrosospira are mostly reported to oxidize ammonia (Bothe et al. 2000). 

Furthermore, it should be noted that in nitrifying bioreactors, also ammonia-

oxidizing archaea (AOA) can be widespread (Park et al. 2006; Brown et al. 

2013). Erguder et al. (2009) proposed that the AOA might be important actors 

within the nitrogen cycle in low-nutrient, low-pH, and sulphide containing 

environments. In this thesis, only the ammonia-oxidizing bacteria are 

considered.  

The guild of NOB comprises bacteria of at least five different genera: 

Nitrobacter, Nitrospina, Nitrococcus, Nitrospira and the recently discovered 

Nitrotoga (Kruse et al. 2013). As the ammonia-oxidizing bacteria, the nitrite-

oxidizers are chemolithotrophic autotrophs. The NOB are able to use nitrite as 

a sole source of energy and carbon dioxide as the main source of carbon 

(Spieck & Bock 2005; Madigan & Martinko 2006). However, some strains are 

obligate litho-autotrophs that are also able to grow mixotrophically, defined in 

this context as the ability to simultaneously incorporate inorganic and organic 

carbon sources (Daims et al. 2001a). Furthermore, species of the genus 

Nitrobacter are also able to grow as chemo-organotrophs in anaerobic 

environments by using organic carbon as sole carbon and energy source, 

resulting in nitrate reduction (Freitag et al. 1987). It should be noted that in the 

models considered in this thesis, the nitrite-oxidizing bacteria are assumed to 

be obligate chemolithotrophic autotrophs, neglecting mixotrophic or 

heterotrophic growth of this functional guild. 

In the nitrifying community, different microbial populations, cells of a particu-

lar bacterial species or strain (Madigan & Martinko 2006), carrying out the 

same metabolic reaction (ammonium oxidation or nitrite oxidation) and there-

fore belonging to the same functional type or guild (Simberloff & Dayan 1991; 

Wilson 1999), can be in competition for one or more common substrates such 

as ammonium, nitrite and oxygen. A higher species richness is expected in 

nitrifying biofilms than in nitrifying suspended cultures, as more niches, which 

is the particular set of resources and environmental conditions that an 
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individual species exploits (Prosser et al. 2007), are created by diffusional 

substrate concentration gradients (Costerton et al. 1994; Stewart 2003). In 

multi-species biofilm systems, this will lead to a biofilm with a layered 

structure, giving species with different ecophysiological characteristics the 

opportunity to survive (Nicolella et al. 2000).  

Indeed, using molecular techniques, the coexistence of two or more species of 

AOB or NOB in biofilms has been detected. Schramm et al. (1998) identified 

two genetically and morphologically different populations of NOB affiliated 

with the nitrite-oxidizer Nitrospira moscoviensis in bacterial aggregates from 

a fluidized bed reactor. Another example of the coexistence of two NOB 

species was given by Downing and Nerenberg (2008), who observed the 

coexistence of Nitrobacter spp. and Nitrospira spp. in a nitrifying membrane-

aerated biofilm reactor. Also Nitrosomonas oligotropha was shown to coexist 

with other AOB species in this reactor type (Terada et al. 2010). Lydmark et 

al. (2006) found four AOB populations in a full-scale nitrifying trickling filter, 

of which two Nitrosomonas oligotropha populations dominated at all depths 

of the trickling filter. These two populations showed different distribution 

patterns within the biofilm, indicating different ecophysiological niches, even 

though they belong to the same AOB lineage. In a recent study the niche 

differentiation between two dominant Nitrosomonas oligotropha populations 

in pilot-scale moving bed biofilm reactors and trickling filters was confirmed 

experimentally based on their different reaction on changes in ammonium 

loading (Almstrand et al. 2013). Bernet et al. (2004) and Volcke et al. (2008) 

reported that upon the lowering of the ammonium loading rate in a heavily 

loaded inverse turbulent bed reactor, nitrate started to accumulate due to the 

presence of Nitrospira, and Nitrosomonas sp. started to grow at the expense of 

N. europaea. Gieseke et al. (2003) detected the coexistence of 3 different AOB 

populations next to NOB of the genera Nitrobacter and Nitrospira with 

heterogeneous distributions in a sequencing batch biofilm reactor. 

1.2.4 Composition of the microbial community 

Influent characteristics, changing environmental conditions, but also the 

design and the operation of the wastewater treatment systems can influence the 
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composition of the microbial community (Yuan & Blackall 2002), depending 

on the resistance, the resilience, i.e., the possibility to recover, and/or the 

functional redundancy of the microbial community, i.e., the possibility of the 

altered community to function equally as the original one (Allison & Martiny 

2008). The composition of the microbial community can have important 

implications from an engineering perspective. For example, the coexistence of 

several species of one functional guild may influence the process stability. 

Siripong and Rittmann (2007) and Wittebolle et al. (2008) have shown that the 

coexistence of different species of 1 functional type can maintain the stability 

of the system for nitrification when operation conditions change, by providing 

functional redundancy. Maintaining microbial diversity in an Inverse 

Turbulent Bed Reactor (ITBR) for partial nitrification was shown to be of 

interest to recover complete nitrification and to increase the robustness of the 

process when facing disturbances (Bougard et al. 2006a). Ramirez et al. (2009) 

demonstrated for an anaerobic digestion reactor, that microbial composition 

may significantly affect the reactor behaviour and performance, e.g., when 

facing toxic loads. 

1.3 Modelling microbial diversity 

As more and more information is gathered through the metagenomic analysis 

of microbial ecosystems, the relations among the structure and functional 

stability of microbial communities, physicochemical parameters and the role 

of functional redundancy should be further investigated (Ramirez et al. 2009; 

Beneduce et al. 2014). As the microbial community structure can influence the 

reactor operation (Ramirez et al. 2009), the engineering of wastewater 

treatment systems would be improved if one could describe and control the 

associated microbial diversity (Yuan & Blackall 2002). Conceptual and 

predictive mathematical models, systematic attempts to translate the 

conceptual understanding of a real-world system into mathematical terms 

(Eberl et al. 2006), provide an adequate tool for understanding phenomena 

involved in biofilm processes, e.g., Wik and Breitholtz (1996) and Picioreanu 

et al. (1997). Extending these models in order to describe microbial community 
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information could greatly increase the understanding of ecosystems and 

possible ways to manipulate them (Nielsen et al. 2010), besides increasing the 

predictive power of process models (Hawkes & Keitt 2015). Mathematical 

models considering microbial diversity can (1) allow to test current ecological 

theories in a straightforward way, (2) be a valuable tool in the construction of 

microbial communities with desirable properties (synthetic ecology) by the 

identification of the key components that influence the stable coexistence of 

microorganisms (Escalante et al. 2015; Fredrickson 2015), (3) allow to 

develop control strategies for microbial population optimization, (4) allow the 

prediction of process performance based on microbial community data and (5) 

help to unravel if changes of the process performance can be linked to 

microbial community changes. 

1.3.1 Model classification 

Considering dynamic models with dependent variables such as time and/or 

space, a distinction should be made between two types of models (Velten 

2009): phenomenological models, also called empirical models, statistical 

models, data-driven models or black box models, are constructed based on 

experimental data only. In contrast, in mechanistic models the model 

statements are based on a priori knowledge of the modelled system. When all 

necessary information about the modelled system is available, these models 

are also called white box models, although many mechanistic models are 

located somewhere between the extreme black and white box cases, and are 

denoted grey box models or semi-empirical models.  

Mechanistic models using ordinary differential equations, i.e., ODE models, 

or a combination of ODE and algebraic equations, i.e., differential-algebraic 

equation (DAE) models, are restricted in the sense that they involve derivatives 

with respect to one variable only, which means that they describe the 

dynamical behaviour of the quantity of interest with respect to this one variable 

only, for example time (Velten 2009). In contrast to ODEs, partial differential 

equation (PDE) models involve derivatives with respect to at least two 

independent variables, and hence they can be used to describe the dynamics of 
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the quantities of interest with respect to several variables at the same time, for 

example space and time. 

To model dynamic processes in biofilms, in which the spatial component is 

considered at least in 1 dimension, PDE models are involved. One-dimensional 

biofilm models are such models that assume that the variation of the state 

variables is restricted to a single direction perpendicular to the surface of the 

solid carrier. This is a valid simplification when vertical gradients are orders 

of magnitude higher than those in the directions parallel to the carrier surface 

(Wanner & Gujer 1986). Since this applies to most biofilm systems, dynamic 

multispecies 1-dimensional biofilm models are sufficient for the majority of 

practical purposes. Higher dimensional descriptions (2D or 3D), making the 

biofilm modelling much more complex, are needed only when the focus is on 

the modelling of biofilm structures with highly irregular surface (Picioreanu et 

al. 2004). 

It should further be noted that the models in this study are non-linear biological 

models and are continuous, in contrast to discrete models such as cellular 

automata. Cellular automata are models that are characterized by a discrete 

lattice of cells, homogeneity, discrete states, local interactions and discrete 

dynamics (Ilachinski 2001). 

1.3.2 Rationale behind the inclusion of diversity in models 

Present models considering diversity and competition are generally used to 

find answers to fundamental ecological questions or to assess the impact of 

climate change on global biodiversity and ecosystem services. The focus is 

mainly on the biodiversity of plants and animals, although recently more and 

more mathematical approaches are being developed for simulating and 

understanding microbial community dynamics (Song et al. 2014).  

The question of which forces shape predominantly ecological communities is 

a topic worthwhile investigation using mathematical models. One possibility 

to bridge two theories (Schilthuizen 2008), i.e., the niche theory (Hutchinson 

1957; Holt 2009) attributing a central role to niche differences between 

species, and the neutral theory (Hubbell 2001), attributing a central role to 
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migration processes and demographic stochasticity, is to combine them in a 

common mathematical framework (Haegeman & Loreau 2011). Ofiţeru et al. 

(2010) investigated the combined niche and neutral effects in the economically 

and environmentally important microbial communities of a wastewater 

treatment plant. When environmental factors were incorporated, more of the 

variance in the observations could be explained but immigration and random 

reproduction and deaths (neutral community assembly) remained the dominant 

driver in determining the relative abundance of the common taxa. Another 

example of using models for investigating current ecological theories is given 

by Kalmykov and Kalmykov (2013). An individual based cellular automata 

approach was used to verify and reformulate the competitive exclusion 

principle, postulating that species competing for the same limiting resource in 

one homogeneous habitat cannot coexist, contradicting with the observed 

biodiversity in reality. Furthermore, models including microbial diversity or 

even implementing metagenomics data could possibly be very helpful. The 

potential in identifying new questions, ways of thinking, concepts and theories 

which improve fundamental understanding and quantitative prediction of the 

activity and interactions of microorganisms in ecosystems, based on ecological 

metagenomics and transcriptomics, should be explored (Prosser 2015). 

Understanding how species and ecosystems respond to climate change has 

become a major focus of ecology and conservation biology, in the view of 

global change, and models are being developed to study the importance of 

diversity for sustaining the ecosystem services, e.g. Nelson et al. (2009) and 

McMahon et al. (2011). It should be noted that, despite their importance to the 

functioning of ecosystems, microorganisms are rarely explicitly considered in 

individual ecosystem or global process models (Andrén & Balandreau 1999; 

Allison & Martiny 2008; Reed et al. 2014). 

The focus of this study is on mechanistic models, although phenomenological 

models can be used for the prediction of reactor performance based on 

microbial community information derived from DNA fingerprinting (Seshan 

et al. 2014). However, these black-box mathematical methods cannot produce 

mechanistic models of complex dynamic systems, and thus cannot be used to 
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directly obtain clear mechanistic insights into dynamics of complex systems 

(Kalmykov & Kalmykov 2015). Also, statistical analysis of extensive 

microbial community data retrieved by metagenomics can be inadequate to 

make inferences on the biological relevance (Parks & Beiko 2010 ) and gene-

centric metagenomic studies involving correlation-based approaches are 

unlikely to provide any major advances in understanding (Prosser 2015), as it 

can be very difficult to tear out causation from correlation. 

In mechanistic models, microbial diversity and microbial competition are 

mostly neglected. Some models describing the dynamical reactor behaviour 

with respect to time and implementing the growth of different species 

performing the same function can be found for activated sludge systems (Wett 

et al. 2011), anaerobic digestion (Ramirez et al. 2009) and nitrifying biofilms 

using a 0-dimensional model (Volcke et al. 2008). A recent study used a 1-

dimensional biofilm (PDE) multispecies biofilm model to demonstrate the 

influence of biomass detachment and microbial growth in the bulk liquid on 

the microbial community in a heterotrophic biofilm (Brockmann et al. 2013). 

1.3.3 Nitrifying models including diversity 

In this thesis, the focus is on the modelling of nitrifying biofilms. Regarding 

nitrification models, at the most a distinction is made between ammonia-

oxidizers and nitrite-oxidizers in conventional models (see Sin et al. (2008), 

for an overview), assuming the same properties for all bacteria of each 

functional guild. Only a few nitrifying biofilm models including two or more 

species of the same functional guild (AOB or NOB) have been reported in 

literature. For example, a biofilm model including 1 type of AOB and 2 types 

of NOB was set up by Downing and Nerenberg (2008), to determine the 

importance of both nitrite and oxygen affinity in the selection of Nitrospira 

spp. over Nitrobacter spp. in a membrane-aerated biofilm reactor. However, to 

obtain a deeper understanding of the link between microbial coexistence and 

process stability, a larger number of species per type should be included in the 

model. Furthermore, until now, no mathematical models of nitrifying biofilms 

were developed including multiple species of both nitrifying functional guilds 

(nitritation and nitratation). Therefore, in this PhD research, focussing on 
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biological nitrogen removal in biofilm reactors, dynamic (time-varying) 1-

dimensional (considering spatial gradients perpendicular to the carrier 

material) biofilm models, considering microbial diversity of the nitrifying 

community, will be constructed and implemented in the Aquasim software 

(Reichert 1994). 

1.3.4 Biofilm models in Aquasim 

1.3.4.1 General overview 

The 1-dimensional two-step (nitritation and nitratation) nitrifying biofilm 

models in this study were implemented in Aquasim, a computer program 

designed for the identification and simulation of aquatic systems (Reichert 

1994; Reichert 1998) and since 2013 freely available  

(http://www.eawag.ch/de/abteilung/siam/software/). The model output was 

processed and plots were made in Matlab (Mathworks). 

The use of Aquasim offers a number of features that are advantageous for 

simulations (Eberl et al. 2006), such as: (1) variables and processes can readily 

be activated or inactivated, making it simple to evaluate different model 

formulations, (2) the biochemical and abiotic transformation reactions are 

automatically calculated for all compartments and phases of the system and (3) 

the substratum or carrier can be selected to be flat, spherical, or cylindrical, 

while Aquasim automatically adapts the mass balance equations accordingly. 

Steady state, i.e. equilibrium (constant effluent composition, biofilm thickness, 

species composition and concentrations) simulations with the models 

developed in Aquasim (>5000 days) generally took less than 1 hour of 

simulation time, i.e., the time needed to complete a simulation. 

1.3.4.2 The biofilm compartment 

For biofilm modelling and simulation, Aquasim offers a biofilm reactor 

compartment consisting of three zones (Wanner & Morgenroth 2004): the bulk 

fluid, biofilm solid matrix and biofilm pore water. For all three zones, Aquasim 

calculates the development over time of microbial species and substrates, as 

well as the biofilm thickness. In the biofilm, spatial gradients perpendicular to 
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the substratum are calculated for microbial species and substrates, based on the 

number of grid points set by the user. The number of grid points is used to 

specify by how many discrete points the continuous z-axis, which is 

perpendicular to the carrier, is approximated. If the number of grid points is set 

to n, the depth of the biofilm is resolved into 2 boundary points and n-2 grid 

points located in the middle of n-2 cells of equal thickness. Two additional grid 

points are used to describe the boundary layer between the biofilm and the bulk 

fluid, resulting from external mass transfer limitation, and the bulk volume, 

which is completely mixed. 

1.3.4.3 Equations for flat biofilms 

The equations solved in the biofilm reactor compartment consist of a set of 

partial and ordinary integro-differential equations, which together with their 

boundary conditions, the equations for a completely mixed bulk fluid and a 

liquid boundary layer, have been implemented in Aquasim for the development 

of a one-dimensional mixed-culture biofilm model (Wanner & Gujer 1986; 

Wanner & Reichert 1996; Reichert & Wanner 1997; Reichert 1998). These 

equations are not visible from the Aquasim interface. In the following, a brief 

overview of these equations is given for flat biofilms (see Chapter 2 and 3), as 

presented by Reichert (1998). In Chapter 4 and Chapter 5, biofilms growing 

on spherical particles were considered. Equations in Aquasim for spherical 

particles biofilms take into account that the biofilm surface area is dependent 

on the spatial coordinate (z in Aquasim). 

In order to formulate the 1-dimensional conservation laws, compartment-

specific expressions for the 1-dimensional density ρ̂ (the amount of conserved 

quantity per unit compartment length), for the 1-dimensional flux ĵ (the amount 

of the conserved quantity transported per unit time) and for the 1-dimensional 

source term r̂ (the amount produced per unit compartment length and per unit 

time), must be derived (Eq. 1.1). 

𝜕ρ̂

𝜕𝑡
+

𝜕ĵ

𝜕𝑧
= r̂ Eq. 1.1 
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The three zones distinguished in the biofilm reactor compartment are the solid 

matrix with volume fraction εX (index ‘M’), the pore volume with volume 

fraction which is the biofilm porosity (index ‘P’) and the bulk volume 

(index ‘B’). It should be noted that εX +  = 1.The index F is used for the 

biofilm, when the distinction into solid matrix and pore volume is not relevant. 

The index L is used for the liquid boundary layer above the biofilm 

immediately adjacent to the biofilm surface. Particulate components are 

denoted with X and soluble components with C. 

The spatial dimension perpendicular to the substratum is resolved by the space 

coordinate z, which is zero at the substratum or carrier and has an increasing 

value with increasing distance from the substratum up to the biofilm thickness, 

LF. 

The array of one-dimensional densities of these types of components is given 

in Eq. 1.2. 

ρ̂ = (

𝐴𝑋𝑀,𝑖

𝐴𝑋𝑃,𝑖

𝐴𝜀𝑙,𝐹𝐶𝑃,𝑖
𝐴𝜃

) Eq. 1.2 

The first component of Eq. 1.2 describes particulate species in the biofilm 

matrix, the second component describes the particulate species in the biofilm 

pore water, the third component describes the substances dissolved in the pore 

water of the biofilm and the last component describes the porosity of the 

biofilm. 

The solid matrix is made up by nX particulate components, of which the volume 

fractions εXi and concentrations XFi are related through their respective 

densities Xi (Eq. 1.3). The same density has been assumed for all particulate 

components (both active biomass and inert particulate components). 

𝜀𝑋 = ∑𝜀𝑋𝑖

𝑛𝑋

𝑖=1

= ∑
𝑋𝑀,𝑖

𝜌𝑋𝑖

𝑛𝑋

𝑖=1

 Eq. 1.3 

The liquid phase volume fraction (εl,F) is given by Eq. 1.4. 
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𝜀𝑙,𝐹 = −∑
𝑋𝑃,𝑖

𝜌𝑋𝑖

𝑛𝑋

𝑖=1

 Eq. 1.4 

The 1-dimensional fluxes of the substances with 1-dimensional densities as 

described by Eq. 1.2, are given by Eq. 1.5: the first component gives advective 

and diffusive flow of solids within the biofilm matrix, the second component 

the advection and diffusion of solids suspended in the pore volume, the third 

term the advection and diffusion of dissolved substances (Fick’s law of 

diffusion) in the pore volume of the biofilm and fourth component the flow of 

free volume in the biofilm. 

ĵ =

(

 
 
 
 
 
 
 
 
 

𝐴𝑢𝐹𝑋𝑀,𝑖 − 𝐴𝐷𝑀,𝑋𝑖

𝜕𝑋𝑀,𝑖

𝜕𝑧

−(1 − 𝜃)𝐴𝑢𝐹

𝑋𝑃,𝑖

𝜃
− 𝜃𝐴𝐷𝑃,𝑋𝑖

𝜕
𝑋𝑃,𝑖

𝜃
𝜕𝑧

+ 𝐴∑
𝐷𝑀,𝑋𝑘

𝜌𝑋𝑘

𝜕𝑋𝑀,𝑘

𝜕𝑧

𝑋𝑃,𝑖

𝜃
+ 𝐴∑

𝐷𝑃,𝑋𝑘

𝜌𝑋𝑘

𝜕
𝑋𝑃,𝑘

𝜃
𝜕𝑧

𝑋𝑃,𝑖

𝜃

𝑛𝑋

𝑘=1

𝑛𝑋

𝑘=1

−(1 − 𝜀𝑙,𝐹)𝐴𝑢𝐹𝐶𝑃,𝑖 − 𝜀𝑙,𝐹𝐴𝐷𝑃,𝐶𝑖

𝜕𝐶𝑃,𝑖

𝜕𝑧
+
𝜀𝑙,𝐹
𝜃

𝐴∑
𝐷𝑀,𝑋𝑘

𝜌𝑋𝑘

𝜕𝑋𝑀,𝑘

𝜕𝑧
𝐶𝑃,𝑖 +

𝜀𝑙,𝐹
𝜃

𝐴∑
𝐷𝑃,𝑋𝑘

𝜌𝑋𝑘

𝜕
𝑋𝑃,𝑘

𝜃
𝜕𝑧

𝐶𝑃,𝑖

𝑛𝑋

𝑘=1

𝑛𝑋

𝑘=1

𝜃𝐴𝑢𝐹 + 𝐴∑
𝐷𝑀,𝑋𝑘

𝜌𝑋𝑘

𝜕𝑋𝑀,𝑘

𝜕𝑧

𝑛𝑋

𝑘=1 )

 
 
 
 
 
 
 
 
 

 Eq. 1.5 

The advective velocity uF is given by Eq. 1.6 when the porosity of a biofilm 

remains constant (as assumed in this thesis). 

𝑢𝐹 =
1

𝐴
∫ (

1

1 − 𝜃
∑

𝑟𝑀,𝑋𝑘

𝜌𝑋𝑘

𝑛𝑋

𝑘=1

)𝐴𝑑𝑧′
𝑧

0

 Eq. 1.6 

The set of biofilm equations are completed by the 1-dimensional source terms 

given in Eq. 1.7 with r transformation rates and kde,vol,Xi and kat,vol,Xi substance 

dependent volume detachment and attachment coefficients, respectively. The 

transformation rates can be calculated from the stoichiometric matrices and the 

corresponding reaction kinetics given for each model in the respective chapters 

(Chapter 2-5). 

r̂ =

(

 

𝐴𝑟𝑀,𝑋𝑖 − 𝐴𝑘𝑑𝑒,𝑣𝑜𝑙,𝑋𝑖𝑋𝑚,𝑖 +  𝐴𝑘𝑎𝑡,𝑣𝑜𝑙,𝑋𝑖𝑋𝑝,𝑖

𝐴𝑟𝑃,𝑋𝑖 + 𝐴𝑘𝑑𝑒,𝑣𝑜𝑙,𝑋𝑖𝑋𝑚,𝑖 −  𝐴𝑘𝑎𝑡,𝑣𝑜𝑙,𝑋𝑖𝑋𝑝,𝑖

𝐴𝑟𝐶𝑖
𝐴𝑟𝜃 )

  Eq. 1.7 

In this thesis, no suspended solids are considered in the biofilm pore volume 

(XP,I = 0 g COD.m-3 and DP,Xi = 0 m2.d-1), an adequate choice to describe very 

dense biofilms with very small pores in which there is no relevant motion of 

suspended solids. As a result, the biofilm porosity , defined as the ratio 
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between the volume of the biofilm solid matrix to the total biofilm volume, 

equals the volume fraction of the biofilm liquid phase εl,F. The biofilm porosity 

has also been assumed constant, which means that a same fraction of free 

volume is produced as is of solid matrix volume. As a result, the solid matrix 

fraction of the biofilm (εX) remains constant at the value determined by the 

total initial concentrations of particulate components. Nevertheless, the 

individual concentrations of particulate components will change in time. 

Furthermore, a rigid biofilm was considered, which means that effective 

diffusive mass transport of particulate components in the biofilm was 

neglected (DM,Xi = 0 m2.d-1), which means that particulate components are 

displaced only by the expansion or shrinkage of the biofilm solid matrix. 

Finally, attachment of particulate components from the bulk liquid into the 

biofilm was also ignored (uat = 0 m.d-1 and kat,surf,Xi = 0 m.d-1). Considering 

these assumptions, the application of the general expression for differential 

conservation laws (Eq. 1.1) to the definitions given by the equations Eq. 1.2, 

Eq. 1.5 and Eq. 1.7, leads to the following set of differential equations. 

The first equation (Eq. 1.8) describes the behaviour of the constituents of the 

biofilm solid matrix. 

∂X𝑀,𝑖

∂t
= −𝑢𝐹

𝜕𝑋𝑀,𝑖

𝜕𝑧
+ (𝑟𝑀,𝑋𝑖 −

𝑋𝑀,𝑖

1 − 𝜃
∑

𝑟𝑀,𝑋𝑘

𝜌𝑋𝑘

𝑛𝑋

𝑘=1

) − 𝑘𝑑𝑒,𝑣𝑜𝑙𝑋𝑚,𝑖 Eq. 1.8 

The second equation (Eq. 1.9) describes the behaviour of substances dissolved 

in the pore water. 

∂𝜀𝑙,𝐹
∂t

𝐶𝑃,𝑖 +
∂𝐶𝑃,𝑖

∂t
𝜀𝑙,𝐹 = (1 − 𝜀𝑙,𝐹)𝑢𝐹

∂𝐶𝑃,𝑖

∂z
+∑

𝑟𝑀,𝑋𝑘

𝜌𝑋𝑘

𝜀𝑙,𝐹
𝜃

𝑛𝑋

𝑘=1

𝐶𝑃,𝑖 +
1

𝐴

𝜕

𝜕𝑧
(𝜀𝑙,𝐹𝐴𝐷𝑃,𝐶𝑖

𝜕𝐶𝑃,𝑖

𝜕𝑧
)
𝜕𝐶𝑃,𝑖

𝜕𝑧
+ 𝑟𝐶𝑖 Eq. 1.9 

The next equations, describing the behaviour of solids suspended in the pore 

water of the biofilm and the changes of the porosity, respectively, can be 

ignored, as in this thesis no suspended solids are considered in the pore volume 

and the porosity is assumed constant. 

The above mentioned equations must be combined with Eq. 1.10, which gives 

the temporal change of the biofilm thickness, LF. In this equation uL is the 
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velocity of the interface layer between biofilm and bulk volume and ude the 

detachment velocity. 

dL𝐹
dt

= 𝑢𝐿 = 𝑢𝐹(𝐿𝐹) − 𝑢𝑑𝑒 Eq. 1.10 

A global biofilm detachment (ud) has been implemented in this thesis as a 

function of biofilm thickness and advective velocity at the biofilm surface 

(uF,LF) using Eq. 1.11, in order to let the biofilm grow to the steady state 

thickness (LFss) by setting the detachment rate equal to the biofilm growth at 

the surface (uF,LF) when steady state is reached. 

𝑢𝑑 = {
(

𝐿𝐹
𝐿𝐹,𝑠𝑠

)

10

· 𝑢𝐹,𝐿𝐹  𝑖𝑓 𝑢𝐹,𝐿𝐹 > 0

0 𝑖𝑓 𝑢𝐹,𝐿𝐹 < 0

 Eq. 1.11 

In the case of a rigid biofilm matrix, no boundary condition is required for Eq. 

1.8. at the substratum-biofilm interface. The boundary condition for Eq. 1.8 at 

the biofilm surface is determined by the attachment (neglected in this study) 

and the detachment processes. 

(𝑢𝐹 − 𝑢𝐿)𝑋𝑀,𝑖(𝐿𝐹) =  (𝑢𝑑𝑒 − 𝑢𝑎𝑡)𝑋𝑀,𝑖(𝐿𝐹) for 𝑢𝑑𝑒 > 𝑢𝑎𝑡 Eq. 1.12 

The boundary conditions for Eq. 1.9 that describes the behaviour of substances 

dissolved in the pore water of the biofilm are as follows. At the substratum-

biofilm interface, the boundary condition is given as a continuity equation of 

the flow through the substratum (Eq. 1.13), with Isubstr,Ci = 0, as an impermeable 

substratum was considered in this thesis. 

−𝐴𝜀𝑙,𝐹𝐷𝑃,𝐶𝑖

∂C𝑝,𝑖

∂z
(z = 0) =  I𝑠𝑢𝑏𝑠𝑡𝑟,𝐶𝑖 Eq. 1.13 

The boundary condition at the biofilm surface is a continuity condition for the 

concentration in the bulk liquid Eq. 1.14, with CL,I the concentration of 

dissolved components of type i in the liquid boundary layer above the biofilm 

immediately adjacent to the biofilm surface. 

𝐶𝑃,𝑖(𝐿𝐹) =  𝐶𝐿,𝑖 Eq. 1.14 

The total flows of solids out of the biofilm (negative values for flows into the 

biofilm) are given by Eq. 1.15. This expression is the advective flow from the 
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solid matrix at z = LF and the last term is correcting for the movement of the 

biofilm surface. 

𝐼𝐿,𝑋𝑖
=  A𝑢𝐹𝑋𝑀,𝑖 − 𝐴𝑢𝐿𝑋𝑀,𝑖(𝐿𝐹) Eq. 1.15 

The total flows of dissolved substances out of the biofilm (negative values for 

flows into the biofilm) are given by Eq. 1.16. This expression is the flow at 

z = LF plus a correction that considers the movement of the interface. 

𝐼𝐿,𝐶𝑖 = −(1 − θ)
𝜀𝑙,𝐹
𝜃

𝐴𝑢𝐹𝐶𝑃,𝑖(𝐿𝐹) − 𝜀𝑙,𝐹𝐴𝐷𝑃,𝐶𝑖

𝜕𝐶𝑃,𝑖
𝜕𝑧

(𝐿𝐹) −  𝐴𝑢𝐿𝜀𝑙,𝐹𝐶𝑃,𝑖(𝐿𝐹) Eq. 1.16 

The equations for the biofilm described so far are connected to the bulk volume 

of the biofilm reactor through a liquid boundary layer. In Aquasim the liquid 

boundary layer is only roughly described with the aid of mass transfer 

resistance (Wanner & Reichert 1996), for example for dissolved components 

by Eq. 1.17, with KL,Ci, the diffusive resistance for the dissolved substance Ci 

and CBi, the bulk liquid concentration of the dissolved component i. In this 

thesis, external mass transfer limitation of the dissolved components is 

considered only in Chapter 4. 

𝐶𝐿,𝑖 − 𝐶𝐵,𝑖 = 
𝐾𝐿,𝐶𝑖

𝐴(𝐿𝐹)
𝐼𝐿,𝐶𝑖  Eq. 1.17 

The mass balance for particulate components in the bulk volume is given by 

Eq. 1.18, with VB the bulk volume, and Iin,Xi, the total input of the substance 

described by the concentration Xi. The last term takes into account conversion 

in the bulk liquid. 

𝑑

𝑑𝑡
(𝑉𝐵𝑋𝐵,𝑖) = 𝐼𝑖𝑛,𝑋𝑖

− 𝑋𝐵,𝑖𝑄𝑒𝑓 + 𝐼𝐿,𝑋𝑖
+ 𝑉𝐵𝑟𝑋𝑖

 Eq. 1.18 

The mass balance equation for dissolved substances in the bulk volume is 

given by Eq. 1.19, with CB,I the bulk liquid concentration of dissolved 

component i and εl,B the liquid phase volume fraction in the bulk volume (the 

porosity is equal to unity in the bulk volume). 

𝑑

𝑑𝑡
(𝑉𝐵𝜀𝑙,𝐵𝐶𝐵,𝑖) = 𝐼𝑖𝑛,𝐶𝑖 − 𝜀𝑙,𝐵𝐶𝐵,𝑖𝑄𝑒𝑓 + 𝐼𝐿,𝐶𝑖 + 𝑉𝐵𝑟𝐶𝑖  Eq. 1.19 
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In this thesis, a confined reactor was considered, which has a constant total 

reactor volume VR for the biofilm and the bulk water. The bulk volume is 

calculated by Eq. 1.20. 

𝑉𝐵 = 𝑉𝑅 −∫ 𝐴(𝑧′)𝑑𝑧′
𝐿𝐹

0

 Eq. 1.20 

When the bulk liquid oxygen concentration is to be set to a setpoint value 

(CB,O2
sp

), which can be varied during a simulation, a process active in the bulk 

liquid given by Eq. 1.21 is implemented in Aquasim, with KO2 = 108. 

𝑑(𝑉𝐵 ∙ 𝐶𝐵,𝑖)

𝑑𝑡
=  … 𝐾𝑂2 ∙ (𝐶𝐵,𝑂2

𝑠𝑝
− 𝐶𝐵,𝑂2) + … Eq. 1.21 

Aquasim is based on robust numerical algorithms that, for most situations, 

calculate steady state and dynamic solutions without the need to adjust the 

numerical parameters. The partial differential equations are converted by a 

finite-difference spatial discretization scheme (method of lines) to a system of 

algebraic and ordinary differential equations (Wanner & Gujer 1986; Wanner 

& Reichert 1996), the PDEs are thus discretized in space. For the time 

integration of this equation system (spatially discretized PDEs, ODEs and 

algebraic equations), the fully implicit integration algorithm of Gear (Gear 

1971) is used, which was extended to differential algebraic systems and 

implemented by Petzold (DASSL, Petzold (1982)). 

1.3.4.4 Kinetics for growth and production of inerts 

The growth of the ammonia-oxidizing and nitrite-oxidizing bacteria were 

implemented in the biofilm model based on Koch et al. (2000b) and Hao et al. 

(2002b), using Monod-terms for the electron donor and acceptor, i.e., 

ammonium and oxygen for AOB and nitrite and oxygen for NOB. The Monod 

term (Monod 1949) is an empirical equation, similar to Michaelis-Menten 

equation for enzyme kinetics, and introduces the concept of a growth limiting 

substrate. When multiple substrates are rate limiting, the Monod equation is 

typically extended to include the effects of each substrate influencing the rate 

of microbial synthesis by using the multiplicative Monod expression (Bae & 

Rittmann 1996), see Eq. 1.22, with µ the actual growth rate (d-1), µmax the 
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maximum growth rate (d-1), S1 and S2 the two substrates, and KS1 and KS2, the 

affinity constant or half saturation constant for S1 and S2, respectively. 

µ = µ𝑚𝑎𝑥 ·
𝑆1

𝑆1 + 𝐾𝑆1

∙
𝑆2

𝑆2 + 𝐾𝑆2

 Eq. 1.22 

To reflect the decreasing net biomass production with increasing solids 

retention time, and the formation of ‘inert’ particulate components (XI), i.e., 

non or slowly degradable parts of decaying cells, two different mechanisms 

were applied in this thesis: endogenous respiration and decay. Endogenous 

respiration, a state in which microorganisms oxidize cellular storage 

compounds instead of organic matter from their environment (van Loosdrecht 

& Henze 1999) on oxygen, nitrite and nitrate, converting active biomass into 

inerts, was considered in Chapter 3 and Chapter 4 and was implemented based 

on Volcke et al. (2010). The growth of heterotrophs (Chapter 5), and decay of 

AOB, NOB (Chapter 2), besides heterotrophs (Chapter 5) was implemented 

following Mozumder et al. (2014). During biomass decay, living cells are 

converted to organic substrate (XS) as well as a fraction of inert (XI) material 

(van Loosdrecht & Henze 1999). Decay was assumed to generate soluble 

organic substrate (SS) directly rather than producing particulate organic 

substrate (XS), which is subsequently hydrolysed to SS, it was thus assumed 

that the latter reaction is not rate-limiting. Although both endogenous 

respiration and decay result in the formation of a fraction of inert particulate 

components, decay of AOB and NOB over endogenous respiration was chosen 

in Chapter 2 because the number of equations needed for the implementation 

of decay of 60 species per functional type is more restricted compared to 

equations for endogenous respiration. In Chapter 5, decay of AOB, NOB and 

heterotrophs is implemented, because also heterotrophs, using the organic 

substrate (SS) formed during decay, are modelled. 

1.3.4.5 Inhibition 

In Chapter 6, free ammonia (FA) and free nitrous acid (FNA) inhibition were 

modelled as in Jubany et al. (2009). The AOB inhibition by FA and NOB 

inhibition by FNA, which is substrate inhibition, a special form of 

uncompetitive inhibition (Bisswanger 2008) were described with a Haldane 
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model (Eq. 1.23, see Beltrame et al. (1980)). The Haldane term is essentially 

a combination of a Monod term and a inhibition term (Eq. 1.24 and Eq. 1.25). 

Inhibition of AOB by FNA and NOB inhibition by FA were described with a 

non-competitive model (Eq. 1.26). 

Haldane inhibition term: 
𝑆1

𝐾𝑆1 + 𝑆1 +
𝑆1

2

𝐾𝐼

 
Eq. 1.23 

𝑆1
𝐾𝑆1 + 𝑆1

∙
𝐾𝐼

𝐾𝐼 + 𝑆1
= 

𝑆1
𝐾𝑆1 + 𝑆1

∙
1

1 +
𝑆1
𝐾𝐼

 =
𝑆1

𝐾𝑆1 + 𝑆1 +
𝐾𝑆1 ∙ 𝑆1

𝐾𝐼
+
𝑆1

2

𝐾𝐼

 
Eq. 1.24 

𝐾𝐼
𝐾𝐼 +𝐾𝑆1

𝑆1

𝐾𝐼
𝐾𝐼 + 𝐾𝑆1

∙ 𝐾𝑆1 + 𝑆1 +
𝑆1

2

𝐾𝐼 + 𝐾𝑆1

 =  
µ𝐻 ∙ 𝑆

1

𝐾𝑆1
𝐻 + 𝑆1 +

𝑆1
2

K𝐼
𝐻

  Eq. 1.25 

In Eq. 1.23 - Eq. 1.25, S1 is the concentration of the substrate/inhibitor, KS1 the 

affinity constant for the substrate/inhibitor, KI the inhibition constant, and µH, 

KS1
H , KIH

H  the conversion factors from non-competitive inhibition to Haldane 

inhibition. 

Non-competitive inhibition term: 
𝑆1

𝑆1 + 𝐾𝑆1

∙
𝐾𝐼

𝐾𝐼 + 𝑆2
 Eq. 1.26 

In Eq. 1.26, S1 is the concentration of the substrate, S2 is the concentration of 

the inhibitor, KS1 the affinity constant for the substrate and KI the inhibition 

constant. 

1.3.4.6 Species representation 

For Chapter 2, 3 and 4, nitrifying biofilm models were developed including 

microbial diversity, by using different kinetic parameter sets for different 

species of 1 guild. The different kinetic and stoichiometric parameter values, 

besides the equations for the process rates (growth and decay or endogenous 

respiration) have to be introduced in the Aquasim interface for each considered 

species separately. Three different methods of species representation were 

used in this thesis: the species classes method, the bimodal distribution method 

and parameter estimation based on experimental data. 
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In Chapter 2, the growth and decay of 60 AOB and 60 NOB species were 

implemented, while in Chapter 3, the growth and endogenous respiration of 10 

AOB and 10 NOB species was considered in a nitrifying biofilm model. All 

species of the same functional guild considered in Chapter 2 and 3 differed in 

their maximum growth rate, affinity for the electron donor, i.e., ammonium for 

ammonia-oxidizing bacteria and nitrite for nitrite-oxidizing bacteria, affinity 

for electron acceptor (oxygen), and yield. The effect of these parameters on 

bulk liquid concentrations of ammonium, nitrite and nitrate and microbial 

competition outcome were verified. These parameters were chosen because 

they are related to intrinsic characteristics of ammonia-oxidizing and nitrite-

oxidizing species, however should be carefully interpreted, as these parameters 

are not always the ones for which two-step nitrifying biofilm models 

implemented in Aquasim are the most sensitive, as shown by sensitivity 

analyses already performed in the past (Hao et al. 2002b; Brockmann & 

Morgenroth 2007; Brockmann et al. 2008; Brockmann & Morgenroth 2010). 

In both Chapter 2 and 3, microbial diversity was added to nitrifying biofilm 

models without calibration to experimental data, but the way of implementing 

within-guild diversity was different. Two methods, i.e., the species classes and 

bimodal distribution method were developed in order to increase the chance of 

coexistence of different species of 1 functional guild at steady state, by 

assuming niche differentiation between different species of a guild instead of 

randomly assigning parameter values. 

In Chapter 2, microbial diversity was implemented by constructing 12 species 

classes (Figure 1.3), with 1 competitive advantage, e.g., a high growth rate, 1 

competitive disadvantage, e.g., a low oxygen affinity, and two neutral 

characteristics. For each species per species class, values were randomly taken 

from the ranges from the literature study described in Chapter 2: low values 

from the range between minimum and the first quartile, neutral values from the 

range between the first and third quartile and high values between the third 

quartile and the maximum. This approach was used to reflect trade-offs, and 

thus niche differentiation (Kneitel & Chase 2004) among species of the same 

functional guild by assuming that 1 competitive advantage comes at the cost 
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of 1 competitive disadvantage, as advantageous traits often have side effects 

(Futuyma 2005). Using the method of species classes, the minimum number 

of species that can be implemented in the model is 12, although more than 1 

species per species class can be constructed randomly, as was done in Chapter 

2 (5 species per species class). 

 

Figure 1.3 The two methods (species classes method and bimodal distribution 

method) used in this thesis for the construction of different species per functional 

type when no experimental data are available. Different values for the kinetic 

parameters µmax, KN (affinity for electron donor), KO2 (affinity for electron acceptor) 

and yield were assigned to the different species of a type. Note that a high affinity (+) 

corresponds to a low affinity constant. k is the average or median value of the 

interval considered for a specific microbial parameter.  
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For the model used in Chapter 3, the ranges of values for maximum growth 

rate, affinities for nitrogen and oxygen and yield were also based on the 

literature review described in Chapter 2. However, for each microbial 

parameter, a normal bimodal distribution was now constructed (Figure 1.3) as 

in Ramirez et al. (2009), who based this distribution on a curve fitting process 

using experimental data. The eight bimodal distributions were each typified by 

two means (µ1 = 0.6·k; µ2 = 1.4·k) and standard deviations of σ1,2 = 0.125·k, 

with k the average value of the range of the corresponding parameter reported 

in literature, as revised in Chapter 2. The desired number of species can then 

be constructed by randomly picking values from each bimodal distribution. 

In Chapter 4, a model was used implementing the growth of 2 AOB and 1 NOB 

species. The microbial parameters were taken from Volcke et al. (2008), who 

calibrated a 0-dimensional biofilm model with the same 2 AOB and 1 NOB 

species to experimental data. In Chapter 5, the microbial parameters of AOB 

and NOB guild were calibrated to experimental data on the bulk liquid 

composition. 

1.3.4.7 Model calibration and parameter estimation 

In Chapter 5, a biofilm model considering the growth and decay of 1 AOB, 1 

NOB and 1 heterotroph was calibrated to experimental data using Aquasim. In 

Aquasim, the optimization objective function is to minimize the sum of the 

squares of the weighted difference between actual measurements and 

simulated results within the constraints of parameter ranges (Reichert et al. 

1995; Reichert 1998; Swayne et al. 2010), see Eq. 1.27. 

χ2(p) = ∑(
𝑦𝑚𝑒𝑎𝑠,𝑖 − 𝑦𝑖(𝑝)

𝜎𝑚𝑒𝑎𝑠,𝑖

)

2𝑛

𝑖=1

 Eq. 1.27 

In Eq. 1.27, ymeas,i is the i-th measurement, yi(p) the calculated value of the 

model variable corresponding to the i-th measurement and evaluated at the 

time and location of this measurement, σmeas,i the standard deviation defined 

globally for all measurements listed under the same variable, p (p1,…,pm) are 

the model parameters, and n the number of data points. The sum extends over 

all the data points of all variables specified as fit targets. Simultaneous 
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comparisons of data for measurements corresponding to different variables are 

possible (Reichert 1998). 

Aquasim performs a minimization of the sum of the least squares with the 

constraints (pmin,i≤pi≤pmax,i) where pmin,i and pmax,i are the minimum and 

maximum possible values of the parameter pi whose value is subject to 

optimisation (Montràs Boet 2009). The secant algorithm (Ralston & Jennrich 

1978) combined with the active set technique (Gill et al. 1981) was selected to 

perform the numerical minimisation of the function object (Eq. 1.27). A 

maximum number of iterations equal to 200 was set to keep the computational 

time reasonable. 

1.4 Overall objective 

The overall goal of this PhD research is to study the interaction between 

microbial community structure, process performance and operational 

conditions in biofilm reactors for biological nitrogen removal from 

wastewater. 

The main objectives and at the same time most innovative aspects of this 

research project are: 

 The incorporation of microbial diversity and competition in 1-

dimensional biofilm models. A higher number of species per 

functional guild than in previously reported biofilm models will be 

considered and microbial diversity of both the ammonia-oxidizing 

and nitrite-oxidizing guild will be investigated at the same time. 

 Investigation of the influence of microbial diversity on steady state 

and dynamic behaviour of nitrifying biofilms and biofilm reactors. 

The importance of microbial diversity, more specific functional 

redundancy, for the stability of reactor performance will be studied. 

Possible unnoticed changes in the microbial community will be 

explored. 

 Gain insight in the influence of process conditions and microbial 

characteristics on microbial competition. The factors shaping the 
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microbial community and determining the competition outcome will 

be investigated with special attention for the reasons of coexistence 

of different species of the same functional guild in biofilms. 

1.5 Outline of the thesis 

An extensive literature study on the microbial parameter values is reported in 

Chapter 2. The variety of the values of maximum growth rate, affinity for 

electron donor and acceptor, besides yield for nitrifying microorganisms 

reported in literature is revised. Steady state simulations with a biofilm model 

including the growth and decay of 60 AOB species and 60 NOB species, taking 

into account the large variety of microbial parameter values observed in 

literature, are performed. The factors shaping the nitrifying community, in 

terms of operation conditions and microbial characteristics, will be 

investigated. The 60 species of each functional guild are constructed based on 

the species classes method. 

The critical question of which purposes justify the inclusion of microbial 

diversity in biofilm models is addressed in Chapter 3. In a first case study, the 

change of a nitrifying community in a biofilm is followed over time until the 

bulk liquid as well as the microbial community are at steady state, using a 

biofilm model including the growth and endogenous respiration of 10 AOB 

and 10 NOB species. The diversity is implemented in the model using the 

bimodal distribution method. In a second case study, dynamic simulations will 

be performed with this biofilm model, to verify the functional redundancy of a 

nitrifying community, i.e., the possibility of a changed nitrifying community 

to function equally as the original one, upon an increased nitrogen loading rate. 

In contrast to Chapter 2 and 3, Chapter 4 and 5 are based on mathematical 

modelling of experimental data. For Chapter 4, the data of Bernet et al. (2004) 

and Volcke et al. (2008) are used, who observed a population shift from 

Nitrosomonas europaea to Nitrosomonas sp., besides the shift from nitrite to 

nitrate accumulation, upon a lowering of the nitrogen loading rate in an Inverse 

Turbulent Bed Reactor (ITBR). Using the data set combining conventional 

chemical and physical data and molecular information, the reactor behaviour 
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of the ITBR, both in terms of nitrifying performance and on the scale of the 

microbial community, operated at varying loading rate, will be described with 

a biofilm model including the growth and endogenous respiration of 2 AOB 

and 1 NOB. Microbial parameter values were taken from the calibrated 0-

dimensional model of Volcke et al. (2008). Furthermore, the applicability of 

the 1-dimensional biofilm model will be compared with this 0-dimensional 

biofilm model and a steady state analysis will be performed to verify the 

influence of microbial growth and endogenous respiration parameters as well 

as external mass transfer limitation on microbial competition. 

For Chapter 5, data from Bougard (2004) and Bougard et al. (2006a), besides 

new molecular data, will be used to verify the effect of process dynamics on 

microbial competition based on a correlation analysis and in a simulation 

study. A biofilm model considering the growth and decay of 1 AOB, 1 NOB 

and 1 heterotroph, including free ammonia and free nitrous acid inhibition of 

the AOB and NOB, will be calibrated using the experimental data of the 

process dynamics. 

Chapter 6 offers some final considerations and conclusions, besides 

discussing future perspectives. 

In Table 1.4, the differences between Chapter 2-5 are further elaborated.
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2.1 Abstract 

A large variety of microbial parameter values for nitrifying microorganisms 

has been reported in literature and was revised in this chapter. Part of the 

variety was attributed to the variety of analysis methods applied; it also reflects 

the large biodiversity in nitrifying systems. This diversity is mostly neglected 

in conventional nitrifying biofilm models. In this contribution, a 1-

dimensional, multispecies nitrifying biofilm model was set up, taking into 

account the large variety of the maximum growth rate, the substrate affinity 

and the yield of nitrifiers reported in literature. Microbial diversity was 

implemented in the model by considering 60 species of ammonia-oxidizing 

bacteria (AOB) and 60 species of nitrite-oxidizing bacteria (NOB). A steady 

state analysis showed that operational conditions such as the nitrogen loading 

rate and the bulk liquid oxygen concentration influence both the bulk liquid 

output as well as the microbial composition of the biofilm through the 

prevailing concentration of substrates throughout the biofilm. Considering two 

limiting resources (nitrogen and oxygen), the coexistence of two species of the 

same functional guild (AOB or NOB) was possible at steady state. Their spatial 

distribution in the biofilm could be explained using the r- and K-selection 

theory. 

2.2 Published as 

Vannecke, T.P.W. & Volcke, E.I.P. (2015). Modelling microbial competition 

in nitrifying biofilm reactors. Biotechnology and Bioengineering, 112(12), 

2550-2561. DOI: 10.1002/bit.25680.  
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2.3 Introduction 

Biological nitrogen removal from wastewater can be considered a proven 

technology and has been widely implemented. During nitrification, which is 

the key reaction in biological nitrogen removal processes, ammonia-oxidizing 

bacteria (AOB) convert ammonia to nitrite, which is further oxidized to nitrate 

by nitrite-oxidizing bacteria (NOB). 

In recent years, molecular techniques have been used for the characterization 

of nitrifying microbial communities and allowed the detection of a larger 

diversity of nitrifiers than expected based on conventional culture-based 

techniques (Bothe et al. 2000; Otawa et al. 2006). With molecular techniques, 

the coexistence of two or more species of AOB or NOB in biofilms has been 

detected. Schramm et al. (1998) identified two genetically and 

morphologically different populations of NOB affiliated with the nitrite-

oxidizer Nitrospira moscoviensis in bacterial aggregates from a fluidized bed 

reactor. Another example of the coexistence of two NOB species was given by 

Downing and Nerenberg (2008), who observed the coexistence of Nitrobacter 

spp. and Nitrospira spp. in a nitrifying membrane-aerated biofilm reactor. Also 

Nitrosomonas oligotropha was shown to coexist with other AOB species in 

this reactor type (Terada et al. 2010). Lydmark et al. (2006) found four AOB 

populations in a full-scale nitrifying trickling filter, of which two 

Nitrosomonas oligotropha populations dominated at all depths of the trickling 

filter. These two populations showed different distribution patterns within the 

biofilm, indicating different ecophysiological niches, even though they belong 

to the same AOB lineage. In a recent study the niche differentiation between 

two dominant Nitrosomonas oligotropha populations in pilot-scale moving 

bed biofilm reactors and trickling filters was confirmed experimentally based 

on their different reaction on changes in ammonium loading (Almstrand et al. 

2013). Bernet et al. (2004) and Volcke et al. (2008) reported that upon the 

lowering of the ammonium loading rate in a heavily loaded Inverse Turbulent 

Bed reactor (ITBR), nitrate started to accumulate due to the presence of 

Nitrospira, and Nitrosomonas sp. started to grow at the expense of N. 

europaea. Gieseke et al. (2003) detected the coexistence of 3 different AOB 
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populations next to NOB of the genera Nitrobacter and Nitrospira with 

heterogeneous distributions in a sequencing batch biofilm reactor. 

The coexistence of several species of one functional guild can maintain the 

stability of the system for nitrification when operational conditions change 

(Siripong & Rittmann 2007; Wittebolle et al. 2008). Maintaining microbial 

diversity in an ITBR for partial nitrification was shown to be of interest to 

recover complete nitrification and to increase the robustness of the process 

when facing disturbances (Bougard et al. 2006a). Ramirez et al. (2009) 

demonstrated for an anaerobic digestion reactor, that microbial composition 

may significantly affect the reactor behaviour and process performance, e.g., 

when facing toxic loads. As the microbial community structure can influence 

the reactor operation (Ramirez et al. 2009), the engineering of wastewater 

treatment systems would be improved if one could describe and control the 

associated microbial diversity (Yuan & Blackall 2002). Also, the relations 

among the structure and functional stability of nitrifying communities, 

physicochemical parameters and the role of functional redundancy need to be 

further investigated (Beneduce et al. 2014). Mathematical models including 

molecular diversity are a useful tool in this respect. 

However, in present nitrifying biofilm models, there is mostly only a 

distinction between the functional guilds, i.e., ammonium oxidation by AOB 

and nitrite oxidation by NOB. Conceptual and predictive mathematical models 

describing microbial diversity should be developed to obtain a deeper 

understanding of ecosystems and possible ways to manipulate them (Nielsen 

et al. 2010). Recently, mathematical models have been developed including 

microbial diversity, e.g., a recent study used a multi-species biofilm model to 

demonstrate the influence of biomass detachment and microbial growth in the 

bulk liquid on the microbial community in a heterotrophic biofilm (Brockmann 

et al. 2013). A few nitrifying biofilm models including two or more species of 

the same functional guild (AOB or NOB) have been presented. A biofilm 

model including 1 type of AOB and 2 types of NOB was set up by Downing 

and Nerenberg (2008), to determine the importance of both nitrite and oxygen 

affinity in the selection of Nitrospira spp. over Nitrobacter spp. in a 
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membrane-aerated biofilm reactor. The observed microbial population shifts 

upon the lowering of the loading rate in an inverse turbulent bed reactor were 

successfully described considering the growth of 2 types of AOB and 1 type 

of NOB in 0-dimensional (neglecting spatial variations) and 1-dimensional 

(considering vertical gradients perpendicular to the surface) biofilm models, 

by Volcke et al. (2008) and Vannecke et al. (2014), as presented in Chapter 4, 

respectively. However, to obtain a deeper understanding of the link between 

microbial coexistence and process stability, a larger number of species per type 

should be included in the model. Furthermore, until now, no mathematical 

models of nitrifying biofilms were developed including multiple species of 

both nitrifying functional guilds (nitritation and nitratation). 

In order to intertwine the factors influencing microbial competition and 

coexistence in nitrifying biofilms, a 1-dimensional two-step nitrification 

biofilm model including the growth and decay of 60 species of AOB and 60 

species of NOB was set up in this study. Microbial diversity in nitrifying 

biofilms was implemented in the model based on an extensive literature study 

on the reported range of parameter values for the maximum growth rate, 

substrate affinity and yield of nitrifiers. The developed multispecies model was 

used to investigate the influence on the community structure of both the 

operational conditions, in terms of bulk liquid oxygen concentration and 

ammonium loading rate, and the considered microbial characteristics. 

Furthermore, aspects of the local biofilm environment and microbial 

characteristics were related to the spatial organization of the coexisting nitrifier 

populations under typical process conditions. 

2.4 Materials and methods 

2.4.1 Literature review on microbial characteristics of nitrifiers 

The parameter values reported in literature for the maximum growth rate (µ
max
AOB 

and µ
max
NOB), the affinity constants for the electron donor (KNH

AOB and KNO2
NOB) and 

electron acceptor (KO2
AOB and KO2

NOB), besides yield (YAOB and YNOB) of AOB 

and NOB were reviewed. 
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A subdivision was made based on the growth type, i.e., suspended versus 

attached, and based on the way the parameter values were retrieved. As the 

determination of microbial parameters on pure (axenic) cultures or enriched 

cultures are limited, these reports were combined with studies using mixed 

cultures. Reported parameters determined using batch experiments and/or 

respirometry or based on model calibration with experimental data were 

preferred. However, parameter values from older literature were taken up as 

well, in case they were frequently used in mathematical models. 

The reported parameter values for AOB and NOB were converted to be valid 

at a temperature of 30 °C and a pH of 7.5 based on the equations detailed in 

the Appendix 2A (Table A.2.1). 

The reported values for each investigated microbial parameter were 

summarized graphically as boxplots, plotting the minimum value, the first 

quartile (Q1), the median (M), the third quartile (Q3), and the maximum value 

of the observed ranges. The median was chosen above the mean to describe 

the range of microbial parameters, as it reduces the importance of outliers. 

Statistical analysis of the results was performed with SPSS Statistics for 

Windows, Version 20 (2011, IBM Corp., Armonk, NY, USA), using non-

parametric tests due to the relatively low number and/or non-normal 

distribution of parameter values found for some microbial characteristics. Two 

or more unpaired groups, e.g., maximum growth rates for AOB growing 

suspended versus attached, were compared with the Mann-Whitney U test, 

which was developed for this purpose (Landau & Everitt 2004). The 

significance level was set at p=0.05. 

2.4.2 Development of the multispecies biofilm model 

2.4.2.1 Two-step nitrification biofilm model 

A 1-dimensional two-step nitrification biofilm model, including biomass 

variations perpendicular to the substratum on which the considered 

microorganisms grow, was implemented in the Aquasim software (Reichert 

1994). The model described growth and decay of 60 AOB and 60 NOB species. 

To simulate the production of organic materials during biomass decay, the 
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death-regeneration concept was used, which comprises the transition of living 

cells to substrate (XS) as well as a fraction of inert (XI) material (van 

Loosdrecht & Henze 1999). Decay is assumed to generate soluble organic 

substrate (SS) directly rather than producing particulate organic substrate (XS), 

which is subsequently hydrolysed to SS - it is thus assumed that the latter 

reaction is not rate-limiting. 

To simplify the interpretation of the results, external mass transfer limitation 

was not considered. Also the inhibition of AOB and NOB by NH3 and HNO2 

was neglected. Considering the variety of inhibition constants for NH3 and 

HNO2 of different AOB and NOB species or populations would greatly 

increase the complexity of the model. As the influent did not contain organic 

carbon and heterotrophic growth on biomass decay products can be neglected 

(Mozumder et al. 2014), heterotrophic growth was neglected as well in this 

study. 

The overall model stoichiometry of the model used in this chapter are given in 

Table 2.1. The corresponding kinetics and parameters are given in Table 2.2 

and Table 2.3, respectively. More information on the conversion of the 

parameter values to a temperature of 30 °C and a pH of 7.5 is given in 

Appendix 2A. 

An autotrophic, flat biofilm with an initial thickness of 1·10-6 m and a typical 

steady state thickness of 350·10-6 m (Gieseke et al. 2003) was considered in a 

reactor of 0.001 m³. The number of grid points was set to 100 to ensure 

adequate resolution of predicted substrate and biomass gradients over the depth 

of the biofilm even at biofilm thicknesses of 350·10-6 m. The biofilm was 

assumed to be rigid, meaning that particulate components are displaced only 

by the expansion or shrinkage of the biofilm solid matrix. The biofilm porosity 

was assumed constant at 80%.  
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Table 2.2 Reaction kinetics for growth and decay corresponding to the processes 

from Table 2.1 with AOBi the ammonia-oxidizing species, NOBi the nitrite-oxidizing 

species and i = 1 – 60. 

j process ↓  

1. growth of XAOBi ρG,AOBi = µmax
AOBi ∙

SO2

KO2
AOBi + SO2

∙
SNH

KNH
AOBi + SNH

∙ XAOBi 

2. growth of XNOBi ρG,NOBi = µmax
NOBi ∙

SO2

KO2
NOBi + SO2

∙
SNO2

KNO2
NOBi + SNO2

∙
SNH

KNH
NOBi + SNH

∙ XNOBi 

3. decay of XAOBi ρD,AOBi  =  dAOBi ∙ XAOBi

4. decay of XNOBi ρD,NOBi  =  dNOBi ∙ XNOBi

Table 2.3 Stoichiometric, kinetic and mass transfer parameter values of the 

multispecies biofilm model with AOBi the ammonia-oxidizing species, NOBi the 

nitrite-oxidizing species and i = 1 – 60. 

Parameter Description Value Unit Reference 

Stoichiometric parameters 

iNXB Nitrogen fraction in biomass 0.07 g N.(g COD)-1 Mozumder et al. (2014) 

iNXI Nitrogen fraction in inerts 0.07 g N.(g COD)-1 Mozumder et al. (2014) 

iNSS 
Nitrogen fraction in soluble organic 

substrate 
0.03 g N.(g COD)-1 ASM3 (Henze et al. 2000) 

fXI 
Fraction of inert COD generated in 

biomass decay 
0.08 g COD.(g COD) -1 ASM2 (Henze et al. 2000) 

YAOBi Yield coefficient of AOBi 0.09 – 0.41  g COD.(g N)-1 See Table 2.5 

YNOBi Yield coefficient of NOBi 0.02 – 0.20 g COD.(g N)-1 See Table 2.5 

Kinetic parameters (pH 7.5 and T=30 °C) 

dAOBi Decay rate of AOBi 0.017 – 0.17 d-1 Set to 0.05 µ𝑚𝑎𝑥
𝐴𝑂𝐵𝑖   

dNOBi Decay rate of NOBi 0.012 – 0.18 d-1 Set to 0.05 µmax
NOBi  

KNH
AOBi Affinity of AOBi for ammonium 0.07 – 51.30 g TNH-N.m-3 See Table 2.5 

KO2
AOBi Affinity of AOBi for oxygen 0.07 – 3.00 g O2.m-3 See Table 2.5 

KNO2
NOBi Affinity of NOBi for nitrite 0.05 – 38.69 g TNO2-N.m-3 See Table 2.5 

KO2
NOBi Affinity of NOBi for oxygen 0.04 – 4.01 g O2.m-3 See Table 2.5 

KNH
NOBi 

Affinity of NOBi for ammonium 

(nitrogen source) 
0.02 g TNH-N.m-3 Mozumder et al. (2014) 

µmax
AOBi Maximum growth rate AOBi 0.33 – 3.40 d-1 See Table 2.5 

µmax
NOBi Maximum growth rate NOBi 0.24 – 3.54 d-1 See Table 2.5 

Mass transfer parameters 

DNH4 Diffusion coefficient NH4 1.6e-4 m2.d-1 Picioreanu et al. (1997) 

DNO2 Diffusion coefficient NO2 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DNO3 Diffusion coefficient NO3 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DO2 Diffusion coefficient O2 1.7e-4 m2.d-1 Picioreanu et al. (1997) 

DSS Diffusion coefficient SS 1.0e-4 m2.d-1 Hao and van Loosdrecht (2004) 
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The effect of nitrogen loading rate (NLR) and bulk liquid oxygen concentration 

(DO) on the effluent composition and the microbial composition of the biofilm 

were verified in the current chapter, as these disturbance variables were 

assumed to play an important role based on previous experimental 

observations and simulation results (Bernet et al. 2004; Volcke et al. 2008; 

Vannecke et al. 2014). Constant bulk liquid oxygen concentrations between 

0.4 and 2 g O2.m-3, corresponding with the range of dissolved oxygen needed 

for optimal nitrification at high solids retention time (Stenstrom & Poduska 

1980), were considered. The biofilm reactor was considered to be fed with 

synthetic wastewater containing exclusively 320 g TNH-N.m-3 but no carbon 

source nor any microorganisms. In order to obtain nitrogen loading rates 

between 120 and 5300 g N.m-3.d-1, similar to the ones used by Bougard et al. 

(2006a), the influent flow rate was varied from Qin = 0.375∙10-3 m3.d-1 to Qin = 

0.0166 m³.d-1. The temperature of the reactor was assumed to be constant at 

30 °C and the pH at 7.5. 

The total biomass in the biofilm at steady state was 20.60 g COD, which 

corresponds to 15450 g VSS.(m3 reactor)-1. Considering a biofilm porosity of 

80%, the density of autotrophic (XAOB and XNOB) and particulate inert materials 

(XI) in the biofilm was set to 70000/0.2 g VSS.m-3 (Picioreanu et al. 1997; 

Volcke et al. 2010) which corresponds to 93333/0.2 g COD.m-3 = 466665 

g COD.m-3 (for a typical conversion factor of 0.75 g VSS.(g COD)-1, see 

Henze et al. (2000)). An initial active biomass fractioning of 75% AOB and 

25% NOB was assumed, according to the number of electrons exchanged by 

the oxidation of NH4
+ to NO2

- and from NO2
- to NO3

-, respectively. In order to 

verify which species would become dominant without favouring one of the 

species, all species per type (AOB and NOB) had an equal initial concentration 

(ammonia-oxidizing bacteria: 466665 g COD.m-3·(0.2·0.75)/60 = 1167 

g COD.m-3 and nitrite-oxidizing bacteria: 466665 g COD.m-3·(0.2·0.25)/60 = 

389 g COD.m-3). Although for non-linear models, as the ones used in this 

thesis, the initial conditions can influence the steady state outcome, the 

influence of the initial concentrations of the species was verified not to 
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influence the steady state competition outcome, based on preliminary 

simulations with different realistic (non-uniform) initial species distributions. 

2.4.2.2 Species representation 

The 60 species of each type (AOB or NOB) differed in the parameter values 

for their maximum growth rate, affinity for the electron donor, affinity for 

oxygen and yield. These were the microbial characteristics of which the effect 

on microbial competition was tested. 

Each species was assumed to possess 1 competitive advantage (high growth 

rate, high affinity or high yield), 1 competitive disadvantage (low growth rate, 

low affinity or low yield) and 2 average characteristics, resulting in 12 species 

classes (Table 2.4). This approach was used to reflect trade-offs, and thus niche 

differentiation (Kneitel & Chase 2004) among species of the same functional 

guild by assuming that 1 competitive advantage comes at the cost of 1 

competitive disadvantage, as advantageous traits often have side effects 

(Futuyma 2005). To construct 5 species per species class, parameter values for 

maximum growth rate, affinity for substrates and yield, were randomly 

selected, using the rand function in Matlab (Mathworks), from three ranges 

obtained from the literature review of this contribution: (1) values between the 

minimum and Q1 of the reported range were considered as low, (2) the values 

between Q1 and Q3 as neutral and (3) the values between Q3 and the maximum 

as high. Note that a high affinity corresponds with a low affinity constant. The 

rand function can be used to generate uniformly distributed random numbers 

with an accuracy of 1·10-4 in the interval (0-1). Therefore, in this thesis Eq. 2.1 

was used to generate random numbers for microbial parameters between the 

intervals for high, neutral and low values. The resulting numbers were rounded 

to two decimal digits to the right of the decimal point. 

HIGH =  Q3 +  (MAX −  Q3) ∗ rand(1,5)
NEUTRAL = Q1 + (Q3 −  Q1) ∗ rand(1,5)

LOW = MIN + (Q1 −  MIN) ∗ rand(1,5)
 Eq. 2.1 
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Table 2.4 Representation of the 12 species classes modelled in the multispecies model. 

Each species has 1 competitive advantage (+), 1 competitive disadvantage (-) and two 

average characteristics (0). Note that a high affinity (+) corresponds with a low 

affinity constant. For each species class, 5 species were randomly constructed per 

type. 

Class 
Species 

(AOBi or NOBi) 
µmax KN KO2 Y 

1 i = 1-5 + - 0 0 

2 i = 6-10 - + 0 0 

3 i = 11-15 + 0 - 0 

4 i = 16-20 - 0 + 0 

5 i = 21-25 + 0 0 - 

6 i = 26-30 - 0 0 + 

7 i = 31-35 0 - 0 + 

8 i = 36-40 0 + 0 - 

9 i = 41-45 0 + - 0 

10 i = 46-50 0 - + 0 

11 i = 51-55 0 0 - + 

12 i = 56-60 0 0 + - 

It should be noted that testing such a high number of parameter values (60 per 

functional guild) for maximum growth rate, affinity for electron acceptor and 

donor and yield can be seen as a kind of sensitivity analysis, as it allows one 

to verify which parameters are mainly influencing bulk liquid nitrogen 

concentrations and microbial competition outcome.  
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Table 2.5 Characteristics all AOB and NOB species considered. The species 

surviving at steady state in the discussed simulations are indicated in bold. The 

characteristics of the corresponding classes are given in Table 2.4. 

Species 

classes 

Species 

number 

AOB NOB 

µ𝐦𝐚𝐱
𝐀𝐎𝐁 K𝐍𝐇

𝐀𝐎𝐁 K𝐎𝟐
𝐀𝐎𝐁 YAOB µ𝐦𝐚𝐱

𝐍𝐎𝐁 K𝐍𝐎𝟐
𝐍𝐎𝐁 K𝐎𝟐

𝐍𝐎𝐁 YNOB 

d-1 g N.m-3 g O2.m
-3 g COD.(g N)-1 d-1 g N.m-3 g O2.m

-3 g COD.(g N)-1 

1 

1 3.12 36.94 0.66 0.21 2.86 30.32 0.65 0.17 

2 2.47 43.38 0.55 0.20 3.11 20.29 0.73 0.17 

3 2.07 51.15 0.34 0.21 3.03 25.71 0.37 0.21 

4 2.81 50.08 0.51 0.19 2.14 31.71 0.31 0.15 

5 3.27 36.17 0.52 0.17 3.14 29.62 0.36 0.19 

2 

6 0.90 0.38 0.77 0.18 0.43 0.11 0.37 0.21 

7 0.62 0.76 0.30 0.20 0.84 0.73 0.75 0.15 

8 0.47 1.27 0.27 0.18 0.43 1.24 0.62 0.19 

9 0.57 0.13 0.41 0.18 0.64 1.32 0.77 0.20 

10 0.76 1.58 0.56 0.18 0.94 0.66 0.48 0.16 

3 

11 2.99 6.06 2.78 0.17 3.30 7.29 2.43 0.16 

12 1.98 7.98 2.34 0.16 3.06 5.49 2.46 0.20 

13 3.11 12.98 1.62 0.21 3.15 7.01 1.65 0.19 

14 2.17 4.57 2.41 0.17 2.79 11.66 1.74 0.16 

15 2.65 6.43 2.90 0.20 3.10 15.85 2.90 0.18 

4 

16 0.71 15.58 0.10 0.18 0.57 16.04 0.12 0.18 

17 0.56 17.02 0.10 0.18 0.70 7.73 0.14 0.20 

18 0.87 9.01 0.13 0.17 0.82 9.02 0.22 0.17 

19 0.81 7.38 0.22 0.15 0.39 11.45 0.17 0.19 

20 0.61 11.87 0.15 0.16 0.83 13.65 0.24 0.19 

5 

21 2.09 1.69 0.24 0.12 3.35 17.13 0.58 0.11 

22 2.63 2.19 0.64 0.09 2.08 16.78 0.38 0.12 

23 1.97 5.23 0.43 0.09 2.68 9.17 0.49 0.11 

24 3.28 9.45 0.67 0.10 2.71 15.03 0.70 0.14 

25 2.89 3.84 0.48 0.13 2.09 4.21 0.35 0.15 

6 

26 0.48 5.44 0.49 0.33 0.43 18.29 0.78 0.34 

27 0.84 5.54 0.59 0.30 0.47 12.67 0.55 0.39 

28 0.85 10.84 0.74 0.39 0.76 16.37 0.75 0.25 

29 0.92 14.69 0.33 0.29 0.56 8.54 0.64 0.29 

30 0.63 7.61 0.63 0.25 0.92 12.47 0.51 0.41 

7 

31 1.59 23.11 0.30 0.25 1.35 26.19 0.65 0.32 

32 1.58 41.06 0.46 0.30 1.61 39.98 0.60 0.22 

33 1.27 48.35 0.73 0.40 1.86 20.91 0.53 0.35 

34 1.76 38.64 0.54 0.23 1.96 27.72 0.38 0.31 

35 1.96 48.05 0.44 0.30 1.61 27.93 0.77 0.22 

8 

36 1.81 1.64 0.35 0.14 1.85 0.24 0.72 0.10 

37 0.98 0.27 0.65 0.13 1.28 0.13 0.48 0.15 

38 1.65 0.44 0.43 0.13 1.17 1.06 0.66 0.14 

39 1.94 0.11 0.47 0.14 1.06 0.98 0.57 0.09 

40 1.23 1.04 0.33 0.09 1.26 1.61 0.67 0.12 

9 

41 1.91 0.72 1.00 0.20 1.27 1.26 2.45 0.19 

42 1.45 0.69 1.50 0.17 1.58 0.88 1.60 0.20 

43 1.71 1.05 2.49 0.15 1.17 0.39 2.87 0.15 

44 1.70 0.34 1.31 0.19 1.53 0.75 0.83 0.16 

45 1.79 0.37 2.43 0.16 1.56 0.34 2.62 0.18 

10 

46 1.09 23.85 0.22 0.19 1.92 38.28 0.09 0.19 

47 1.56 33.64 0.17 0.20 1.75 33.35 0.15 0.18 

48 1.20 38.87 0.17 0.20 1.40 19.91 0.15 0.19 

49 1.27 49.09 0.22 0.17 1.28 35.48 0.16 0.19 

50 1.35 45.93 0.08 0.17 1.00 32.03 0.21 0.16 

11 

51 1.47 6.16 2.44 0.32 1.84 2.84 2.50 0.32 

52 1.27 13.30 1.99 0.22 0.95 11.60 2.81 0.35 

53 1.79 5.66 1.54 0.36 1.24 12.56 2.52 0.40 

54 1.77 9.47 2.63 0.33 1.12 12.80 1.44 0.30 

55 1.51 8.24 2.01 0.38 1.88 16.45 1.13 0.23 

12 

56 1.95 5.22 0.16 0.15 1.00 17.85 0.08 0.14 

57 1.89 5.42 0.24 0.14 1.58 10.56 0.21 0.14 

58 1.36 7.24 0.20 0.11 1.75 17.97 0.16 0.11 

59 0.94 3.31 0.24 0.12 1.65 2.93 0.19 0.10 

60 1.49 14.45 0.11 0.11 1.29 5.21 0.11 0.11 
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Recent records on the experimental determination of the decay rate of AOB 

and NOB species in biofilm reactors are limited, e.g., Ye et al. (2012a) 

investigated the decay of AOB and NOB in a two-stage moving bed biofilm 

reactor. In the current study, the decay rate of each species was considered to 

be 5% of its corresponding maximum growth rate, similar as Mozumder et al. 

(2014). As a consequence, the assumed higher turnover rate of microbial r-

strategists versus K-strategists (Andrews & Harris 1986) was also reflected in 

this model. 

2.4.2.3 Scenario analysis 

To investigate the influence of operational conditions on microbial 

competition, simulations were run at different values for the bulk liquid oxygen 

concentration (DO) and nitrogen loading rate (NLR). For each individual 

simulation, the DO and NLR were kept constant. 

Steady state simulations were performed in order to allow straightforward 

analysis of the effect of operational conditions and microbial characteristics on 

microbial competition and coexistence. The simulations were performed long 

enough (100000 days) to ensure steady state conditions in the bulk liquid (in 

terms of effluent composition) and in the biofilm (in terms of microbial 

community composition). These simulations took generally less than 1 hour of 

simulation time. Although the steady state effluent composition was reached 

within a few days, in some cases the steady state microbial community 

composition was only reached after about 25000 days. 

2.5 Results and discussion 

2.5.1 Literature review on microbial characteristics of nitrifiers 

A wide range of parameter values for maximum growth rate, affinity and yield 

was found in literature. The boxplots of the considered microbial 

characteristics are represented in Figure 2.1 (AOB) and Figure 2.2 (NOB) and 

the raw data are available in Appendix 2B (Table A.2.2: AOB and Table A.2.3: 

NOB).  
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Microbial parameters cited in literature are mostly determined on suspended 

growth systems. No statistical differences were found between parameters for 

suspended and attached growth, possibly due to the low number of parameter 

values valid for attached systems available in literature. Although the lack of a 

significant difference could also indicate that there is no selection for 

specialized species growing in biofilms versus flocs, this is not expected as a 

clear differentiation in microbial ecology between suspended and attached 

bacteria was observed by Park et al. (2015) using molecular data. 

In this thesis, apparent affinity constants were used. This is also the case for 

modelling of activated sludge processes. Diffusion has a larger impact on the 

process (the apparent affinity constant increases and thus the apparent affinity 

of an organism for its substrate decreases) when biomass density of the flocs 

increases. However, in biofilm modelling, diffusion is included separately in 

the equations used. The kinetic parameters that should be selected for biofilms 

are therefore the “true” coefficients corresponding to the kinetics of suspended 

cells (Pérez et al. 2005). In other words, the used apparent affinity constants in 

this thesis could be lumping different resistances to substrate transport and 

conversion (Arnaldos et al. 2015). The relative magnitude of each of these 

resistances will depend on the type of system under study. Furthermore, when 

using apparent affinity constants, it is very difficult to distinguish transport and 

biology related factors influencing the process. For example, Manser et al. 

(2005) reported lower affinity constants for flocs in membrane bioreactors 

compared to flocs of conventional activated sludge systems as the flocs in the 

former are generally smaller than in the latter. In contrast, other studies have 

claimed that membrane bioreactors select for bacterial groups with low half-

saturation indices (K-strategists) as compared to conventional activated sludge 

systems due to the high solids retention times (and thus low substrate levels) 

commonly employed in these types of systems (Munz et al. 2010).  

However, the differences between the values of the affinity constants for 

suspended and attached growth found in literature during the current study 

(Table A.2.2 and Table A.2.3) are small as the determination of affinity 

constants on pure (axenic) cultures of suspended cells is limited, and the range 
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of affinity constants found in literature (Figure 2.1 and Figure 2.2) was very 

large. Furthermore, currently, affinity constants for flocs and biofilms are 

mostly determined in a similar way, as biofilms are typically crushed for the 

determination of parameters (Riefler & Smets 2003), resulting in pseudo-

suspended growth (flocs), and respirometry on biofilm particles should 

minimize the effect of external mass transfer (Carvallo et al. 2002; Carrera et 

al. 2004). 

As no significant difference was found between the parameter values for 

suspended and attached growth, data from publications on both growth types 

were combined in the boxplots. As apparent affinity constants were used, the 

affinity constants were possibly too high (affinity of the organisms estimated 

too low) in the simulation study, mainly affecting the bulk liquid 

concentrations of oxygen, ammonium, nitrite and nitrate. 

No significant difference was found between the maximum growth rate or the 

affinity for oxygen of AOB and NOB. Apparently, the large range of observed 

values for each microbial parameter prevents statistically sound conclusions. 

However, some interesting trends could be observed from the median of the 

observed ranges (reducing the influence of outliers): (1) AOB tend to have a 

higher maximum growth rate than NOB at 30 °C (µ𝑚𝑎𝑥
𝐴𝑂𝐵 = 1.34 d-1 and µ𝑚𝑎𝑥

𝑁𝑂𝐵 = 

1.00 d-1), and (2) AOB tend to have a higher oxygen affinity than NOB 

(𝐾𝑂2
𝐴𝑂𝐵 = 0.40 g O2.m-3 and 𝐾𝑂2

𝑁𝑂𝐵 = 0.97 g O2.m-3 at 30 °C). This is in line 

with common knowledge, applied to achieve nitrite accumulation for 

innovative nitrogen removal by outcompeting the NOB at high temperature, 

e.g., in the SHARON process (Hellinga et al. 1998), or low oxygen 

concentration, e.g., as elaborated by Bernet et al. (2001). 

The affinity for the electron donor (ammonium for AOB and nitrite for NOB) 

was found to be significantly (p<0.05) lower for AOB than for NOB (KNH
AOB = 

9.12 g TNH.m-3 and KNO2
NOB = 1.66 g TNO2.m-3). This allows NOB to grow 

deeper in the biofilm than AOB, where they are dependent on the nitrite 

produced by the AOB. The median yield coefficient of AOB was about two 
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times larger than the one for NOB (YAOB = 0.19 g COD.g N-1 and YNOB = 0.08 

g COD.g N-1 ), as theoretically expected (Winkler et al. 2012). 

The large variety in parameter values observed in literature could be a 

consequence of the different conditions under which the parameters are 

determined and the large number of different analysis techniques used. A large 

range of different techniques is used for the determination of maximum growth 

rate and yield (Blackburne et al. 2007a) and substrate affinity constants 

(Riefler et al. 1998; Carvallo et al. 2002; Guisasola et al. 2005), whether or not 

combined with the calibration of a mathematical model (Munz et al. 2012). 

For aerobic systems, many of the applied methods for determination of kinetic 

parameters are based on the indirect determination of the substrate uptake 

profile by the associated oxygen uptake profile (Riefler et al. 1998). However, 

the operational conditions for parameter determination, for example reactor 

configuration, pH and temperature can differ substantially. Some incentives 

were given to standardize the determination of parameters, e.g., Spanjers and 

Vanrolleghem (1995) and Vanrolleghem et al. (1999). In order to make the 

comparison of parameter values more straightforward and to attribute observed 

parameter value differences to the applied determination techniques versus the 

intrinsic microbial characteristics, the use of these standardized analysis 

techniques is advised. 

Furthermore, also a large microbial diversity of the nitrifying community gives 

rise to a large variety of parameter values. The use of different mixed-culture 

inocula (Terada et al. 2010) versus pure cultures (Hunik et al. 1992, 1993; 

Hunik et al. 1994) can have a major influence on the microbial species 

composition of the investigated system and thus the resulting parameter values. 

Determination of parameter values in combination with culture-independent 

molecular techniques such as denaturing gradient gel electrophoresis (DGGE) 

and terminal restriction fragment length polymorphism (T-RFLP) on PCR 

(polymerase chain reaction) amplified target genes, besides real-time PCR and 

fluorescence in situ hybridization (FISH), could allow the association of the 

determined parameter values with specific species. If parameter values differ 

for the same species, operational conditions may have influenced the microbial 
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characteristics, e.g., one similar microbial community was acclimated to new 

operational conditions (Kim 2013) or different strains of a species had different 

metabolic characteristics (Lydmark et al. 2006). The interaction between 

modellers and microbiologists is therefore encouraged in order to keep track 

of microbial diversity in mathematical modelling, allowing for example 

model-based population optimisation (Yuan & Blackall 2002). 

2.5.2 Scenario analysis 

2.5.2.1 Influence of operational conditions 

The percentage of influent total ammonium converted to ammonium, nitrite, 

nitrate and biomass (organic) nitrogen depends on the combination of bulk 

liquid oxygen concentration and nitrogen loading rate (Figure 2.3). When the 

oxygen limitation is severe and consequently the oxygen penetration is very 

low, ammonium and nitrite are not completely converted and are present in the 

effluent, up to maximum 205 g N.m-3 (64% of incoming nitrogen) and 57.6 

g N.m-3 (18% of incoming nitrogen), respectively, for a DO of 0.4 g O2.m-3 and 

a NLR of 5300 g N.m-3.d-1. However, when nitrogen is the main limiting 

substrate, more than 99% of the incoming ammonium is converted to nitrate. 

As apparent affinity constants were used in a biofilm model, considering 

diffusion with separate equations, it is possible that affinity was estimated too 

low and the bulk liquid nitrogen concentrations were therefore not estimated 

correctly. However, as the focus in this chapter is on the influence of 

operational conditions and microbial characteristics on steady state 

competition outcome, the exact prediction of bulk liquid concentrations was 

not deemed necessary. 
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Figure 2.3 Steady state bulk liquid composition in terms of bulk oxygen 

concentration and nitrogen loading rate, represented as the percentage of incoming 

total ammonium (320 g TNH-N.m-3) converted to ammonium (NH4
+-N), nitrite (NO2

-

-N), nitrate (NO3
--N) or organic nitrogen in biomass (Organic-N). The simulations 

discussed in the section on the influence of operational conditions and on coexistence 

are marked with a circle and a square, respectively. It should be noted that in the 

upper left corner of the graph mainly oxygen is limiting, while in the lower right 

corner mainly nitrogen is limiting. 

In all simulations, the active layer was located within maximum 150·10-6 m of 

the surface of the biofilm, on top of a thick layer of inert particulates 

originating from biomass decay. The steady state microbial composition of the 

active layer (Figure 2.4) could differ significantly even if the bulk liquid output 

was very similar. For example, when a NLR of 2192 g N.m-3.d-1 was combined 

with a DO of 0.8 or 1.2 g O2.m-3, at least 96% of the incoming ammonium was 

converted to nitrate, although the steady state microbial composition in the 

biofilm was totally different in these simulations, i.e., AOB56 and NOB60 

versus AOB39 and NOB6, respectively. For a DO of 0.8 g O2.m-3, the biofilm 

was typified by an oxygen limited nitrifying community having a high affinity 

for oxygen (KO2
AOB56 = 0.16 g O2.m-3 and KO2

NOB60 = 0.11 g O2.m-3, Table 2.6) 

while for a DO of 1.2 g O2.m-3, the nitrifying community was nitrogen limited 

and characterized by a high affinity for nitrogen (KNH
AOB39 = 0.11 g N.m-3 and 

KNO2
NOB6 = 0.11 g N.m-3, Table 2.6). This shows the importance of the affinity 
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for the limiting nutrient(s) on the steady state microbial composition of the 

biofilm. It is also clear that the operational conditions affect the microbial 

composition by influencing the limiting nutrient concentration in the biofilm. 

The selection for a slow growing AOB (K-strategist, Nitrosospira spp.) and 

for a fast growing AOB (r-strategist, Nitrosomonas spp.), based on the 

prevailing concentrations of ammonia in the reactor, was experimentally 

demonstrated by Terada et al. (2013). 

 

Figure 2.4 Steady state microbial composition of the biofilm in terms of bulk oxygen 

concentration and nitrogen loading rate, represented as the percentage of the active 

biomass made up by the species constituting a fraction higher than 0.01%. The 

simulations discussed in the section on the influence of operational conditions and 

on coexistence are marked with a circle and a square, respectively. It should be noted 

that in the upper left corner of the graph mainly oxygen is limiting, while in the lower 

right corner mainly nitrogen is limiting.  
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Table 2.6 Maximum growth rate (µmax), affinity for electron donor (KN) and affinity 

for electron acceptor (KO2) for the species surviving at steady state (Figure 2.4), 

besides the range of bulk liquid oxygen:ammonium ratios at which a species survives 

in the biofilm at steady state and its main strategy. The highest maximum growth 

rate and lowest affinity constants observed per functional type are underlined. 

  

Range  

O2:NH4
+ ratio 

µmax 

(d-1
) 

KN 

(g N.m-3) 

KO2 

(g O2.m-3) 
Strategy 

AOB 

AOB16 0.002 - 0.026 0.71 15.58 0.10 K-strategist for oxygen 

AOB21 0.113 - 0.457 2.09 1.69 0.24 r-strategist 

AOB39 0.019 - 151.63 1.94 0.11 0.47 

K-strategist for 

nitrogen with rather 

high growth rate 

(generalist) 

AOB56 0.002 - 0.141 1.95 5.22 0.16 

K-strategist for oxygen 

with rather high growth 

rate (generalist) 

AOB60 0.003 - 0.006 1.49 14.45 0.11 K-strategist for oxygen  

NOB 

NOB6 0.019 - 151.63 0.43 0.11 0.37 
K-strategist for 

nitrogen 

NOB46 0.002 1.92 38.28 0.09 

K-strategist for oxygen 

with high growth rate 

(generalist) 

NOB56 0.002-0.006 1.00 17.85 0.08 K-strategist for oxygen 

NOB59 0.457 - 0.678 1.65 2.93 0.19 r-strategist 

NOB60 0.011 - 0.141 1.29 5.21 0.11 

K-strategist for oxygen 

with rather high growth 

rate (generalist) 

As can be seen from Table 2.6, the species surviving at steady state are able to 

survive due to the value for their maximum growth rate and/or affinity constant 

for the main limiting substrate, as determined by the ratio of bulk liquid 

oxygen:ammonium concentrations. Oxygen limitation occurs if the O2:NH4
+ 

ratio is smaller than 0.15, and nitrogen limitation occurs if the ratio is higher 

than 0.15. For both types, two extremes of specificity, defined as a measure for 

the unevenness with which a taxon occurs in different habitats in a spatial 

setting (Hawkes & Keitt 2015; Mariadassou et al. 2015), could be 

distinguished, i.e., taxa found with equal abundances in many habitats 

(generalists) and taxa always and only found in one habitat (specialists). A 

species dominant at steady state was either a specialist with 1 strong 

competitive advantage or a generalist, found in a broad range of O2:NH4
+ 

ratios. The specialists in this study were either r-strategists with a high growth 

rate but low affinity or K-strategists with a low growth rate but high affinity 
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for the most limiting substrate. The generalists have a rather high growth rate 

besides a high affinity for the limiting substrate. However, these strategies 

should be carefully interpreted and only considered on a case by case basis. A 

generalist with a rather high affinity for oxygen can be for example denoted as 

an r-strategist and coexist with a K-strategist with a lower growth rate but 

higher affinity for oxygen when oxygen is limiting, as is observed for AOB16 

(K-strategist) and AOB56 (r-strategist/generalist), see in the example given 

below in Section 2.5.2.2. It should also be noted that NOB46 has a high growth 

rate (µmax
NOB46 = 1.92 d-1) and high affinity for oxygen (KO2

NOB46 = 0.09 

g O2.m-3), but a very low affinity for nitrite (KNO2
NOB46 = 38.28 g N.m-3). 

Therefore, this species, although being a generalist concerning oxygen, can 

only survive if the nitrite concentration is high enough (NLR = 5300 

g N.m-3.d-1). 

2.5.2.2 Coexistence of species from the same functional guild at steady 

state 

In some of the investigated scenarios, two AOB (Scenario A) or two NOB 

(Scenario B) were able to coexist in a biofilm at steady state. 

A constant DO and NLR of 0.8 g O2.m-3 and 3228 g N.m-3.d-1 (Scenario A) 

resulted in only partial conversion (80%) of the incoming ammonium (Figure 

2.3) to nitrite (4%) and nitrate (76%) and the coexistence of three nitrifying 

species at steady state, i.e., AOB16, AOB56 and NOB60 (Figure 2.4). The 

active layer was situated within 40·10-6 m from the biofilm surface (Figure 

2.5A). The oxygen concentration in the biofilm (Figure 2.5D) dropped from 

0.8 g O2.m-3 (bulk DO) to 0.01 g O2.m-3 within about 30·10-6 m from the 

biofilm surface. The ammonium concentration (Figure 2.5B: 59 g N.m-3) and 

nitrite concentration (Figure 2.5C: 13 g N.m-3) were in the active layer clearly 

higher than the corresponding affinity constants of the surviving species (Table 

2.6) and only a negligible nitrogen concentration gradient was observed. 

Therefore, the community was mainly oxygen limited, resulting in only partial 

conversion of the incoming ammonium (Figure 2.3). Consequently, all 

selected species had a relatively high affinity for oxygen (KO2
AOB16 = 0.10 
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g O2.m-3, KO2
AOB56 = 0.16 g O2.m-3 and KO2

NOB60 = 0.11 g O2.m-3, Table 2.6). 

AOB16 and AOB56 belonged to a different species class, AOB16 being a K-

strategist with a higher affinity for oxygen and a lower growth rate than r-

strategist AOB56 (µmax
AOB16 = 0.71 d-1 and µmax

AOB56 = 1.95 d-1, Table 2.6). The r-

strategist AOB56 is located at the outside of the biofilm, while the K-strategist 

AOB16 is located underneath (Figure 2.5A), forming two distinct zones along 

the oxygen concentration gradient (Figure 2.5D). It should be noted that 

AOB16 is still able to grow up to 40·10-6 m from the surface at a small fraction 

of its maximum growth rate, due to its low affinity constant for oxygen and the 

fact that the oxygen concentration in these regions is very low, but non-zero 

(>0.0067 g O2.m-3). In the regions below, decay becomes more and more 

important and the formation of inerts pushes the active zone upwards. 

Lydmark et al. (2006) observed a similar vertical distribution of two 

genetically different Nitrosomonas oligotropha populations, with the K-

strategist more or less equally distributed over the complete active layer, while 

the r-strategist was only present at the surface of the biofilm. 
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Figure 2.5 Steady state biomass (A; XI = inert particulate components) and the 

corresponding concentration profiles of the substrates (ammonium: B, nitrite: C and 

oxygen: D) in the active biofilm layer (upper 100 µm) for the simulation with a 

nitrogen loading rate of 3228 g N.m-3.d-1 and a bulk liquid oxygen concentration of 

0.8 g O2.m-3 (Scenario A). 

For a constant DO and NLR of 1.2 g O2.m-3 and 3228 g N.m-3.d-1 (Scenario B), 

97% on the incoming ammonium was converted to nitrate (Figure 2.3) and two 

NOB coexisted at steady state, namely NOB6 and NOB59 (Figure 2.4). The 

active layer was situated within 70·10-6 m from the biofilm surface (Figure 

2.6A). The oxygen concentration (Figure 2.6D) dropped from 1.2 g O2.m-3 

(bulk DO) to 0.02 g O2.m-3 within about 60·10-6 m of the biofilm surface. 

Although the oxygen penetration depth delimited the active layer, the biofilm 

concentration of nitrite (Figure 2.6C: 2.96 to 2.80 g N.m-3) was close to the 

affinity constant of NOB59 (KNO2
NOB59 = 2.93 g N.m-3, Table 2.6), indicating that 

nitrite was limiting for this species. Also the affinity constant for ammonium 

of the only surviving AOB, AOB21 (KNH
AOB21 = 1.69 g N.m-3, Table 2.6) was 

close to the ammonium concentration prevailing in the biofilm (Figure 2.6B: 

2.62 to 2.37 g N.m-3). Furthermore, the nitrogen concentration showed a 

somewhat steeper slope compared to scenario A. Another indication for 

nitrogen limitation instead of oxygen limitation is the 97% conversion of the 
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incoming ammonium to nitrate (Figure 2.3). Considering nitrite as the main 

limiting substrate, the spatial distribution of the two coexisting NOB of 

Scenario B (Figure 2.6A) follows the r-K selection theory: NOB6, the K-

strategist with a high affinity for nitrogen but low growth rate (KNO2
NOB6 = 0.11 

g N.m-3 and µmax
NOB6 = 0.43 d-1, Table 2.6), lives beneath the r-strategist NOB59 

with a low affinity for nitrite but a high growth rate (KNO2
NOB59 = 2.93 g N.m-3 

and µmax
NOB59 = 1.65 d-1, Table 2.6). It should be noted that NOB6 is still able to 

grow up to 70·10-6 m from the surface at a small fraction of its maximum 

growth rate, due the fact that the oxygen concentration (>0.02 g O2.m-3) and 

nitrite concentration (>2.79 g N.m-3) in these regions are low, but non-zero. 

Schramm et al. (1998) described a similar spatial distribution for a nitrogen 

limited fluidized bed reactor at a temperature of 30 °C. Two genetically 

different populations coexisted, with a K-strategist distantly related to 

Nitrospira moscoviensis also occurring deep in the biofilm and a second 

smaller population of an r-strategist closely related to Nitrospira moscoviensis, 

surviving only at the surface of the biofilm. The r-strategist and the K-strategist 

observed in Scenario B could also belong to different genera of NOB, for 

example Nitrobacter sp. versus Nitrospira sp., respectively, as observed by 

Downing and Nerenberg (2008). 
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Figure 2.6 Steady state biomass (A; XI = inert particulate components) and the 

corresponding concentration profiles of the substrates (ammonium: B, nitrite: C and 

oxygen: D) in the active biofilm layer (upper 100 µm) for the simulation with a 

nitrogen loading rate of 3228 g N.m-3.d-1 and a bulk liquid oxygen concentration of 

1.2 g O2.m-3 (Scenario B). 

The influence of the initial community composition on the steady state bulk 

liquid composition and microbial composition of the biofilm was examined for 

both scenarios, firstly by replacing the whole functional guild (AOB or NOB) 

by one of the two coexisting species of the corresponding scenario and 

secondly by removing one of the coexisting species of the corresponding 

scenario from the whole functional guild (Table 2.7). For Scenario A, the initial 

removal of 1 of the dominant AOB (AOB16 or AOB56) or the replacement of 

the whole AOB community by 1 of the dominant AOB drastically changed the 

steady state effluent composition, besides the steady state microbial 

composition. For example, when AOB16 was the only AOB in the AOB 

community, about 39% of the incoming ammonium remained unconverted in 

the effluent, compared to 19% when the initial AOB community was made up 

of 60 species. For Scenario B, an initial NOB community of 60 species resulted 

in complete conversion of the incoming ammonium to nitrate, while an initial 

NOB community made up solely of NOB6 resulted in a substantial nitrite 



 Factors influencing microbial competition in nitrifying biofilms 

63 

accumulation (55% of the incoming ammonium). These observations confirm 

the suggestion of Terada et al. (2010), that the AOB and NOB population 

compositions of the inoculum may determine the dominant species in the 

biofilm, which in turn affects the nitrification performance. The inoculum 

effect on the AOB communities of parallel sequential batch reactors was also 

demonstrated experimentally by Wittebolle et al. (2009). However, it should 

be noted that this observation holds only for systems operated with synthetic 

wastewater lacking microorganisms in the feed, as the system under study. The 

result may be different for reactors operated with real wastewater, where 

microorganisms are continuously fed to the reactor and microorganisms from 

the bulk liquid could attach to the biofilm.  
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Table 2.7 Influence of initial community composition on the steady state effluent 

composition in terms of percentage of incoming total ammonium (320 g TNH-N.m-3) 

converted to ammonium (NH4
+-N), nitrite (NO2

--N), nitrate (NO3
--N) or organic 

nitrogen (Organic-N) and on the steady state microbial biofilm composition as the 

percentage of the active biomass made up by the species constituting a fraction 

higher than 0.01% for both Scenario A (oxygen limitation) and Scenario B (nitrogen 

limitation). 

SCENARIO A (OXYGEN LIMITATION) 

initial  

composition 

60 AOB 

60 NOB 

AOB16 

60 NOB 

AOB56 

60 NOB 

59 AOB (no AOB16) 

60 NOB  

59 AOB (no AOB56) 

60 NOB  

Bulk liquid composition (%) 

NH4
+-N 18.5 38.6 15.8 18.6 14.1 

NO2
--N 4.2 5.7 7.7 10.2 5.4 

NO3
--N 75.9 54.7 75.0 70.1 79.4 

Org-N 1.4 1.1 1.5 1.2 1.2 

Microbial composition of the biofilm (%) 

AOB16 50.0 82.3     - 

AOB56 15.0   18.5 -   

AOB60 -     22.3 40.2 

NOB56 - - 81.5 77.7 - 

NOB60 35.0 17.7 - - 59.8 

SCENARIO B (NITROGEN LIMITATION) 

Bulk liquid composition (%) 

initial  

composition 

60 AOB 

60 NOB 

60 AOB 

NOB6  

60 AOB 

NOB59  

60 AOB 

59 NOB (no NOB6) 

60 AOB 

59 NOB (no NOB59) 

NH4
+-N 0.8 0.7 0.4 0.4 1.3 

NO2
--N 0.9 54.6 0.7 0.7 0.9 

NO3
--N 96.9 43.3 97.4 97.4 96.4 

Org-N 1.4 1.3 1.5 1.5 1.4 

Microbial composition of the biofilm (%) 

AOB9 - - - - - 

AOB21 27.0 12.6 - - 18.1 

AOB39 - - 31.4 31.4 - 

NOB6 29.6 87.4     - 

NOB59 43.4   68.6 68.6   

NOB60 -     - 81.9 
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2.5.2.3 Outlook 

In this chapter, the incorporation of microbial diversity in mathematical models 

was proven useful to analyse microbial competition in biofilms and interpret 

observed spatial distributions of coexisting species. Using the developed 

mathematical model reflecting the growth and decay of 60 AOB and 60 NOB, 

considering oxygen and nitrogen limitation, a maximum of 3 dominant species 

in the nitrifying community, with two species performing the same function 

(ammonium oxidation or nitrite oxidation) coexisting at steady state was 

observed. This contrasts with the behaviour of continuous cultures of 

microorganisms competing for 1 limiting nutrient, in which only 1 species is 

able to survive at steady state (Hsu et al. 1977; Hsu 1980). Similarly, when 

describing microbial competition in biofilms using 0-dimensional models, 

only 1 species will survive at steady state (Volcke et al. 2008). 

While the current contribution focuses on steady state behaviour, it is clear that 

there is an even higher chance of coexistence of species of the same functional 

guild during dynamic reactor operation. Gieseke et al. (2003) detected the 

coexistence of 3 different AOB populations next to NOB of the genera 

Nitrobacter and Nitrospira with heterogeneous distributions in a sequencing 

batch biofilm reactor (SBBR). They concluded that the spatial heterogeneity 

resulted from the continuously changing microenvironments during the SBBR 

cycle. 

The one-dimensional model developed in this study assumes that the variation 

of the state variables is restricted to a single direction perpendicular to the 

surface of the solid carrier. When modelling biofilm structures with highly 

irregular surface, it is expected that the substrate concentration gradients will 

differ spatially due to different biofilm thicknesses. Therefore, a higher steady 

state microbial diversity is expected when considering 2- or 3-dimensional 

biofilm models instead of a 1-dimensional one. A higher steady state diversity 

is also expected when taking into account inhibition by free ammonia (FA) or 

nitric acid (FNA) and/or a different affinity for additional limiting nutrients 

(besides oxygen and nitrogen) such as carbon dioxide. Furthermore, also 

predation by eukaryotic microorganisms is expected to shape the microbial 
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community in biofilms (Saur et al. 2014), e.g., selective predation pressure can 

favour or suppress particular bacterial species (Pernthaler 2005). 

As the use of 60 species per type can be seen as an inherent sensitivity analysis 

for the varied microbial parameters, i.e., maximum growth rate, affinity for 

electron donor and acceptor and yield, it can be concluded that maximum 

growth rate and affinity for the main limiting nutrient, in this study oxygen or 

nitrogen, are very important for the steady state bulk liquid concentration and 

competition outcome. Even species from the same species class (for example 

AOB56 and AOB60: class 12) were able to coexist in a biofilm, as long as they 

differed in their strategy: here AOB56 is an r-strategist with a higher growth 

rate (µmax
AOB56 = 1.95 d-1) and AOB60 was a K-strategist for oxygen (KO2

AOB60 = 

0.11 g O2.m-3). In contrast, yield was shown not to be important for the 

competition outcome and small changes of yield within the reported range 

(Figure 2.1 and Figure 2.2) did not influence the substrate removal nor the 

competition outcome or biomass concentration gradients. This indicates that in 

the considered model, kinetic parameters were more important than 

stoichiometric ones for the steady state results. In this study, this is most likely 

due to the fact that the ranges of considered values for maximum growth rate 

and affinity constants were larger than the ones considered for yield (Figure 

2.1 and Figure 2.2), resulting from the fact that yield is determined mainly on 

the basis of the energy yielded from catabolic reactions. Also Hsu et al. (1977), 

who developed a mathematical model based on Monod kinetics, for one 

substrate and n competing species concluded that the species will survive 

whose affinity constant is smallest in comparison with its intrinsic rate of 

natural increase and that it is irrelevant how efficiently the species convert the 

nutrient into cell growth (yield). However, in reality, due to the trade-off 

between growth rate and yield (Pfeiffer & Bonhoeffer 2002), species with a 

high yield but lower growth rate, using their resources economically, could 

promote altruism in spatially structured environments, such as biofilms (Kreft 

2004). This indicates that yield besides kinetic parameters as growth rate could 

indeed play an important role in biofilm competition, for example when yet 

another limiting substrate for the autotrophs, carbon dioxide (Guisasola et al. 
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2007), their carbon source for biomass production, would be considered in 

mathematical models. 

2.6 Conclusions 

The large variety of microbial parameter values for nitrifiers reported in 

literature reflects the large biodiversity in microbial systems, even though part 

of it can also be explained by the variety in determination techniques. The use 

of standardized determination methods is recommended to exclude the latter. 

The interaction between modellers and microbiologists is greatly encouraged 

in order to keep track of microbial diversity in mathematical modelling. 

The presented 1-dimensional biofilm multispecies model was able to simulate 

steady state microbial coexistence of species performing the same function 

(ammonium oxidation or nitrite oxidation) and is a useful tool in the 

interpretation of microbial competition and of the observed spatial 

distributions of coexisting species. 

The steady state microbial composition of the biofilm could differ significantly 

even if the effluent composition was very similar. It was shown that the 

nitrogen loading rate and the bulk liquid oxygen concentration influence both 

the macroscopic output as well as the microbial composition of the biofilm by 

influencing the concentration of the limiting nutrients in the biofilm. Besides, 

the steady state reactor performance and microbial distribution was also 

influenced by the initial community composition. 

Considering two limiting resources (nitrogen and oxygen), the steady state 

coexistence of maximum two species of the same functional group (two AOB 

or two NOB) in the nitrifying community was observed. Their spatial 

distribution in the biofilm could be explained using the r- and K-selection 

theory.  
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2.7 Appendix 2A: Conversion of microbial characteristics to 

30 °C and pH = 7.5 

Published maximum growth rates of AOB and NOB were converted to a rate 

at 30 °C using Eq. 2A.1 and Eq. 2A.2 with Ea
AOB = 68 kJ.mol-1; Ea

NOB = 44 

kJ.mol-1 and R = 8.31 J. (mol.K)-1. 

µmax
AOB(T) =  µmax

AOB(Tref) ∙ exp (
Ea
AOB ∙ (T −  Tref)

R ∙ T ∙ Tref
) Eq. 2A.1 

µmax
NOB(T) =  µmax

NOB(Tref) ∙ exp (
Ea
NOB ∙ (T − Tref)

R ∙ T ∙ Tref
) Eq. 2A.2 

All affinity constants for ammonium (AOB) and the affinity constants for 

nitrite (NOB) were converted to g TNH-N.m-3 and g TNO2-N.m-3, 

respectively, unless the published affinity constant was expressed as g N.m-3. 

Affinity constants for nitrogen expressed as g NH3-N.m-3 or g NH4
+-N.m-3 

(AOB) and as g HNO2-N.m-3 or g NO2
--N.m-3 (NOB) were converted to 

g TNH-N.m-3 and g TNO2-N.m-3, respectively (Table A.2.1). 

Yield coefficients expressed in g organic dry matter.(g N)-1 or g odm.(g N)-1 

were converted to yield coefficients expressed as g COD.(g N)-1 by using the 

conversion factor of 1.3659 g COD.g odm-1, based on the typical biomass 

composition CH1.8O0.5N0.2. 
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2.8 Appendix 2B: Literature review on microbial 

characteristics of nitrifiers 

The results of the literature review on the microbial characteristics of AOB and 

NOB are summarized in Table A.2.2 and Table A.2.2, respectively.  
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Table A.2.2 Values of the maximum growth rate (µ𝐦𝐚𝐱
𝐀𝐎𝐁, average: 1.49±0.76), affinity 

for ammonium (𝐊𝐍𝐇
𝐀𝐎𝐁, average: 12.31±12.55), affinity for oxygen (𝐊𝐎𝟐

𝐀𝐎𝐁, average: 

0.61±0.61) and yield (YAOB, average: 0.20±0.09) for ammonia-oxidizers (AOB) at 

30 °C and pH 7.5 found in literature. Growth type: S = suspended growth and A = 

attached growth. Publication type: E = experimental determination, C = calibration 

of model based on experimental results and L = other literature values. 

 µ𝐦𝐚𝐱
𝐀𝐎𝐁  𝐊𝐍𝐇

𝐀𝐎𝐁 𝐊𝐎𝟐
𝐀𝐎𝐁 YAOB Growth  

type 

Publication 

type 
Publication 

 d-1 g TNH-N.m-3 g O2.m
-3 g COD.(g N)-1 

1 0.93   0.19 S E Blackburne et al. (2007a) 

2  28.39 1.45 0.14 S E Brouwer (1995) 

3 0.97 11.28   S E/C Carrera et al. (2004) 

4 0.34 28.72   A E/C Carrera et al. (2004) 

5  11.28   A E Carvallo et al. (2002) 

6  11.93 0.99  S E Ciudad et al. (2006) 

7 1.00 0.92 0.24 0.41 A L Downing and Nerenberg (2008) 

8 3.40 9.33  0.21 A E/C Fang et al. (2009) 

9  0.72  0.41 S C Gee et al. (1990) 

10 1.08    S E Glover (1985) 

11 0.84    S E Glover (1985) 

12   0.74  S E Guisasola et al. (2005) 

13 2.01    A L Hao et al. (2002a) 

14  18.29   S E Hellinga et al. (1999) 

15 1.37 17.95 0.16 0.16 A L Hunik et al. (1994) 

16  19.21   S E Hunik et al. (1992) 

17 0.58 0.72 0.25 0.15 S L Jones et al. (2007) 

18 1.90 7.86 0.74 0.18 S E Jubany et al. (2008) 

19  11.13   S E Jubany (2007) 

20 2.34    S C Kaelin et al. (2009) 

21 1.26 1.03 0.5  S L Kampschreur et al. (2007) 

22 0.84 3.74  0.086 S E Keen and Prosser (1987) 

23 2.51 35.90 1 0.21 A L Koch et al. (2000a) 

24  23.06 0.18  S E Laanbroek and Gerards (1993) 

25 1.2  0.43  A E Lackner et al. (2010) 

26   0.68  A E Lackner et al. (2010) 

27 1.36 18.61  0.15 S E Lochtman (1995) 

28  6.15   S E Lopez-Fiuza et al. (2002) 

29  0.13 0.18  S E Manser et al. (2005) 

30  0.14 0.79  S E Manser et al. (2005) 

31    0.21 S L Manser et al. (2006) 

32  5.13 1  S C Moussa et al. (2005) 

33   3  S C Moussa et al. (2005) 

34 3.08    S E/C Munz et al. (2011a) 

35 1.32    S C Munz et al. (2011b) 

36 1.79 1.92   S C Munz et al. (2012) 

37 1.95  0.3  S E Nowak et al. (1995) 

38 1.96 19.88   S C Pambrun et al. (2006) 

39 2.04 0.065   S E Poduska and Andrews (1975) 

40  42.15 0.334  S E Rongsayamanont et al. (2010) 

41  11.09 0.325  S E Rongsayamanont et al. (2010) 

42  51.30   A E Rongsayamanont et al. (2010) 

43  14.99   A E Rongsayamanont et al. (2010) 

44   1.66  S E Sánchez et al. (2001) 

45  0.26   A E Sánchez et al. (2003) 

46  4.37   S E Sánchez et al. (2005b) 

47  0.57   A E Schramm et al. (1999) 

48 1.26    S E Shaw et al. (2006) 

49 0.33 1.68  0.19 S C Sheintuch et al. (1995) 

50  2.71   A C Shi and Tao (2013) 

51  1.62 0.20  S E Sliekers et al. (2005) 

52  8.90 0.074  S E Sliekers et al. (2005) 

53  16.15   S E Suzuki et al. (1974) 

54 0.92 29.65 0.17  S E Terada et al. (2013) 

55 0.42 3.56 0.10  S E Terada et al. (2013) 

56  14.32   S E Vadivelu et al. (2006a) 

57 1.03    S E Vadivelu et al. (2006c) 

58 0.65 29.82 0.94  S E Van Hulle et al. (2007) 

59 2.51 3.30 0.40  S L Wett and Rauch (2003) 

60 1.93 1.11 0.30 0.20 S L Wiesmann (1994) 

61  28.23   S E/L Wiesmann (1994) 

62 1.91 1.03 0.4 0.15 A L Wik and Breitholtz (1996) 

63 2.02 27.84 0.24  S C Wyffels et al. (2004) 

64 1.46 2.87   S E Yoshioka et al. (1982) 
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Table A.2.2 Values of the maximum growth rate (µ𝐦𝐚𝐱
𝐍𝐎𝐁, average: 1.23±0.79), affinity 

for nitrite (𝐊𝐍𝐎𝟐
𝐍𝐎𝐁, average: 3.64±6.25), affinity for oxygen (𝐊𝐎𝟐

𝐍𝐎𝐁, average: 1.24±1.13) 

and yield (YAOB, average: 0.08±0.05) for nitrite-oxidizers (NOB) at 30 °C and pH 7.5 

found in literature. Growth type: S = suspended growth and A = attached growth. 

Publication type: E = experimental determination, C = calibration of model based 

on experimental results and L = other literature values. 

 µ𝐦𝐚𝐱
𝐍𝐎𝐁 𝐊𝐍𝐎𝟐

𝐍𝐎𝐁 𝐊𝐎𝟐
𝐍𝐎𝐁 YNOB Growth  

type 

Publication 

type 
Publication 

d-1 g TNO2-N.m-3 g O2.m
-3 g COD.(g N)-1 

1 0.90   0.098 S E Blackburne et al. (2007a) 

2  1 0.54 0.20 S E Blackburne et al. (2007b) 

3  1.25 0.43  S E Blackburne et al. (2007b) 

4 0.24 1.60   S E/C Carrera et al. (2004) 

5 0.24 4.10   A E/C Carrera et al. (2004) 

6  4.10   A E Carvallo et al. (2002) 

7  3.53 1.40  S E Ciudad et al. (2006) 

8 0.60 2.80  0.020 S E Copp and Murphy (1995) 

9 0.50 0.39 0.51 0.11 A C/L Downing and Nerenberg (2008) 

10 0.45 0.27 0.4  A C Downing and Nerenberg (2008) 

11 3.54 4.85  0.05 A E/C Fang et al. (2009) 

12  1.00  0.11 S C Gee et al. (1990) 

13 1.44    S E Glover (1985) 

14   1.75  S E Guisasola et al. (2005) 

15 1.43    A L Hao et al. (2002a) 

16 0.86 5.04 0.54 0.057 A L Hunik et al. (1994) 

17  5.55   S E Hunik et al. (1993) 

18 0.53 0.05 0.50 0.09 S L Jones et al. (2007) 

19 0.72 12.60  0.08 S C Jubany et al. (2005) 

20 1.37 1.91 1.75 0.08 S E Jubany et al. (2008) 

21  38.69   S E Jubany (2007) 

22 1.31    S C Kaelin et al. (2009) 

23 1.02 3.00 1.00  S L Kampschreur et al. (2007) 

24 0.94 2.80  0.076 S E Keen and Prosser (1987) 

25 2.36 5.00 0.20 0.03 A L Koch et al. (2000a) 

26  5.42 2.65  S E Laanbroek and Gerards (1993) 

27 1.00  4.01  A C Lackner et al. (2010) 

28   1.78  A C Lackner et al. (2010) 

29 0.79   0.04 S E Lochtman (1995) 

30  1.7   S E Lopez-Fiuza et al. (2002) 

31  0.17 0.13  S E Manser et al. (2005) 

32  0.28 0.47  S E Manser et al. (2005) 

33    0.03 S L Manser et al. (2006) 

34  2 1  S C Moussa et al. (2005) 

35 2.01    S E/C Munz et al. (2011a) 

36 1.88  0.6  S E Nowak et al. (1995) 

37 0.67 1.62   S C Pambrun et al. (2006) 

38 2.18 0.16   S E Poduska and Andrews (1975) 

39  9.59 0.357  S E Rongsayamanont et al. (2010) 

40  5.66 0.967  S E Rongsayamanont et al. (2010) 

41  8.82 3.53  A E Rongsayamanont et al. (2010) 

42  6.45 3.38  A E Rongsayamanont et al. (2010) 

43   3  S E Sanchez et al. (2001) 

44  1.60   A E Sánchez et al. (2003) 

45  0.14   A E Schramm et al. (1999) 

46 0.26 0.52  0.15 S C Sheintuch et al. (1995) 

47  5.11   A C Shi and Tao (2013) 

48  0.21 0.042  S E Sliekers et al. (2005) 

49 0.77 1.49   S E Vadivelu et al. (2006b) 

50 2.40 0.30 1.00  S L Wett and Rauch (2003) 

51 1.96 0.51 1.10 0.057 S E/L Wiesmann (1994) 

52  0.63   S E Wiesmann (1994) 

53 1.89 0.80 0.40 0.04 A L Wik and Breitholtz (1996) 

54 1.47 0.21   S E Yoshioka et al. (1982) 
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3.1 Abstract 

A model describing a given system should be as simple as possible – but not 

simpler. The appropriate level of complexity depends both on the type of 

system and on the intended use of the model. This chapter addresses the critical 

question of which purposes justify increased complexity of biofilm (reactor) 

models. The additional model feature compared to conventional models 

considered is the inclusion of microbial diversity, distinguishing between 

different species performing the same function. With a multispecies model 

considering interspecies diversity, by implementing the growth and 

endogenous respiration of 10 ammonia-oxidizing and 10 nitrite-oxidizing 

species, it was demonstrated that a given reactor performance in terms of bulk 

liquid concentrations does not necessarily reflect microbial steady state 

conditions. In a second case study, the functional redundancy of the nitrifying 

community, i.e., the possibility of a changed nitrifying community to function 

equally as the original one, upon an increased nitrogen loading rate, was 

verified. It was concluded that increased complexity in biofilm models, 

concerning microbial diversity, is likely more useful when the focus is on 

understanding microbial competition and coexistence, but under specific 

conditions, these additional model features can be critically informative for 

bulk reactor behaviour prediction and general understanding. 

3.2 Publications on which the chapter is based 

Vannecke, T.P.W., Wells, G., Hubaux, N., Morgenroth, E. & Volcke, E.I.P. 

(2015). Considering microbial and aggregate heterogeneity in biofilm reactor 

models: How far do we need to go? Water Science and Technology, 72(10), 

1692-1699. DOI: 10.2166/wst.2015.389. 

Vannecke, T.P.W. & Volcke, E.I.P. (2014). Modelling microbial community 

dynamics in a nitrifying biofilm: effect of the nitrogen loading rate. 

Communications in Agricultural and Applied Biological Sciences 79, 21–26. 

In: 19th National symposium on Applied Biological Sciences, Proceedings, 

Gembloux, Belgium, 7 February 2014.  
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3.3 Introduction 

Mathematical biofilm (reactor) models are excellent tools for predicting 

overall process performance as well as for understanding underlying 

phenomena such as microbial interactions, segregation, or competition. 

Deciding which features to include in biofilm (reactor) models is a critical 

component of model structure selection. Eberl et al. (2006) emphasize the 

value of identifying model features that can be omitted without decreasing the 

utility of the model for its intended purpose, as summarized in their “golden 

rule” of modelling: “a model should be as simple as possible, and only as 

complex as needed.” In essence, decreasing model complexity via simplifying 

assumptions can greatly ease computational requirements and interpretation of 

model outputs. The level of complexity to include in a model depends in large 

part on its intended use, but determining this level is not always 

straightforward. 

One example of the utility of increasing biofilm model complexity in certain 

circumstances is the use of multidimensional (2D, 3D) simulations instead of 

the simpler, and more common, 1-dimensional biofilm models. Even within 

numerical 1-dimensional biofilm models, a range of complexity exists. In this 

contribution, the focus is on numerical 1-dimensional biofilm models with 

stratification of biomass, multiple substrates, and multiple functional guilds. A 

common simplifying assumption in such biofilm models is to neglect microbial 

diversity and resulting internal microbial competition within function guilds. 

However, experimental observations have demonstrated diverse assemblages 

of microbial populations within individual functional guilds in, for example, 

nitrifying biofilm reactors, where several genetically different populations of 

ammonia-oxidizers (Schramm et al. 2000; Bernet et al. 2004; Lydmark et al. 

2006; Volcke et al. 2008; Terada et al. 2010; Almstrand et al. 2013) or nitrite-

oxidizers (Schramm et al. 1998; Schramm et al. 2000; Downing & Nerenberg 

2008) coexisted in the biofilm. 

Moreover, and of critical importance to this chapter, diversity within functional 

guilds has been proposed to influence process performance and stability 
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(Wittebolle et al. 2005; Siripong & Rittmann 2007; Wittebolle et al. 2008; 

Ramirez et al. 2009). Indeed, mathematical models including microbial 

community information have proven useful in investigating the link between 

the microbial community and the process performance, e.g., Chapter 2 

(Vannecke & Volcke 2015) and Chapter 4 (Vannecke et al. 2014). 

In this chapter, the focus is on the critical question of what modelling questions 

justify an increase in complexity in biofilm (reactor) models. The discussion is 

based on two examples with increased complexity that provide new insights 

on microbial competition and its effect on the overall reactor behaviour. The 

two examples deal with 1) the influence of microbial diversity on biofilm 

development and microbial population dynamics in a nitrifying biofilm, and 2) 

the modelling of functional redundancy in a nitrifying biofilm upon an 

increased nitrogen loading rate. 

3.4 Materials and methods 

3.4.1 Modelling microbial diversity 

To model microbial competition in a flat nitrifying biofilm, a two-step 

nitrification biofilm model including the growth and endogenous respiration, 

a state in which microorganisms oxidize cellular storage compounds instead of 

organic matter from their environment (van Loosdrecht & Henze 1999), of 10 

ammonia-oxidizing bacteria (AOB) and 10 nitrite-oxidizing species (NOB) 

was set up and implemented in Aquasim (Reichert 1994). 

The grid point number was set to 20, allowing capture of the required level of 

detail and at the same time keeping a reasonable computation time. 

Temperature and pH were kept constant at 30 °C and pH = 7.5, respectively. 

The general stoichiometric matrix (Table 3.1) and reaction kinetics (Table 3.2) 

were based on the model described in Chapter 4 (Vannecke et al. 2014). The 

corresponding parameter values are given in Table 3.3.  
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Table 3.2 Reaction kinetics corresponding to the processes from Table 3.1 with AOBi 

the ammonia-oxidizing species and NOBi the nitrite-oxidizing species with i = 1 – 10. 

ER: endogenous respiration. 

j process ↓  

1. Growth AOBi ρG,AOBi = µmax
AOBi ∙

SO2

KO2
AOBi + SO2

∙
SNH

KNH
AOBi + SNH

∙  XAOBi 

2. Growth NOBi ρG,NOBi = µmax
NOBi ∙

SO2

KO2
NOBi + SO2

∙
SNO2

KNO2
NOBi + SNO2

∙  XNOBi

 
3. Aerobic ER AOBi ρER,AOBi,O2 = bAOBi ∙

SO2

KO2
AOBi + SO2

∙  XAOBi

 
4. Anoxic (NO2

-) ER AOBi ρER,AOBi,NO2 = bAOBi ∙ η ∙
KO2
AOBi

KO2
AOBi + SO2

∙
SNO2

KNO2 + SNO2

∙  
SNO2

SNO2 + SNO3

∙ XAOBi

5. Anoxic (NO3
-) ER AOBi ρER,AOBi,NO3 = bAOBi ∙ η ∙

KO2
AOBi

KO2
AOBi + SO2

∙
SNO3

KNO3 + SNO3

∙  
SNO3

SNO2 + SNO3

∙ XAOBi

 
6. Aerobic ER NOBi ρER,NOBi,O2 = bNOBi ∙

SO2

KO2
NOBi + SO2

∙  XNOBi 

7. Anoxic (NO2
-) ER NOBi ρER,NOBi,NO2 = bNOBi ∙ η ∙

KO2
NOBi

KO2
NOBi + SO2

∙
SNO2

KNO2 + SNO2

∙  
SNO2

SNO2 + SNO3

∙ XNOBi

 
8. Anoxic (NO3

-) ER NOBi ρER,NOBi,NO3 = bNOBi ∙ η ∙
KO2
NOBi

KO2
NOBi + SO2

∙
SNO3

KNO3 + SNO3

∙  
SNO3

SNO2 + SNO3

∙ XNOBi
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Table 3.3 Stoichiometric, kinetic and mass transfer parameter values with AOBi the 

ammonia-oxidizing species, NOBi the nitrite-oxidizing species and i = 1-10. ER: 

Endogenous Respiration. 

Parameter Description Value Unit Reference 

Stoichiometric parameters 

iNXB Nitrogen fraction in biomass 0.086 g N.(g COD)-1 ASM1 (Henze et al. 2000) 

iNXI Nitrogen fraction in inerts 0.06 g N.(g COD)-1 ASM1 (Henze et al. 2000) 

fXI Inert fraction in biomass 0.20 g COD.(g COD) -1 ASM3 (Henze et al. 2000) 

YAOBi Yield coefficient of AOBi  g COD.(g N)-1 See Table 3.4 

YNOBi Yield coefficient of NOBi  g COD.(g N)-1 See Table 3.4 

Kinetic parameters (pH 7.5 and T=30 °C) 

bAOBi ER rate of AOBi 0.05·µmax
AOBi d-1 Assumed  

bNOBi ER rate of NOBi 0.05·µmax
NOBi d-1 Assumed  

KNH
AOBi Affinity of AOBi for ammonium 0.25  g N.m-3 Table 3.4 

KO2
AOBi Affinity of AOBi for oxygen 0.3  g O2.m-3 Table 3.4 

KNO2
NOBi Affinity of NOBi for nitrite 1.6  g N.m-3 Table 3.4 

KO2
NOBi Affinity of NOBi for oxygen 2.2 g O2.m-3 Table 3.4 

KNO3 Affinity for nitrate of ER 1 g N.m-3 de Kreuk et al. (2007) 

KNO2 Affinity for nitrite of ER 1 g N.m-3 Assumed equal to KNO3 

η Anoxic reduction factor 0.5 - Koch et al. (2000b) 

µmax
AOBi Maximum growth rate AOBi  d-1 See Table 3.4 

µmax
NOBi Maximum growth rate NOBi  d-1 See Table 3.4 

Mass transfer parameters 

DNH4 Diffusion coefficient NH4 1.6e-4 m2.d-1 Picioreanu et al. (1997) 

DNO2 Diffusion coefficient NO2 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DNO3 Diffusion coefficient NO3 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DO2 Diffusion coefficient O2 1.7e-4 m2.d-1 Picioreanu et al. (1997) 
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Possible ranges of values for maximum growth rate (µmax), yield (Y), affinity 

for the electron donor (KNH
AOB and KNO2

NOB) and the affinity for the electron 

acceptor (KO2) were determined based on the extensive literature review 

described in Chapter 2 (Vannecke & Volcke 2015). For each microbial 

parameter, a normal bimodal distribution was constructed in Matlab based on 

experimental findings of Ramirez et al. (2009), see Appendix 3A for the 

Matlab code. The eight bimodal distributions were each typified by two means 

(µ1 = 0.6·k; µ2 = 1.4·k) and standard deviations of σ1,2 = 0.125·k, with k the 

average value of the range of values found in literature for the corresponding 

parameter. It should be noted that using this strategy, the constructed bimodal 

distributions depend on the order of magnitude of the respective average 

parameter value (k), in other words, parameters with a smaller average value 

such as yield will differ less between different constructed species than the 

parameter values such as the maximum growth rate and the affinity constants 

with a larger average value. However, as shown in Chapter 2, the maximum 

growth rate and affinity constants are the most important parameters that 

should differ enough in order to determine the competition outcome. 

Furthermore, a stoichiometric relationship exists between the amount of 

electron donor removed and biomass yield, therefore, yield should not differ 

too much between different species of 1 functional type. 

Ten species per type were then constructed by picking 10 random numbers 

from each bimodal distribution using the Matlab function randsample, which 

gives similarly to the rand function uniformly distributed random numbers 

with an accuracy of 1·10-4 from a defined distribution. Parameter values were 

rounded to two digits to the right of the decimal point and the ones taken up in 

the final model are given in Table 3.4. The endogenous respiration rate for each 

species was assumed to be 5% of its corresponding maximum growth rate. The 

biomass density, including active and inert particulate components and 

considering a biofilm porosity of 80% was set to 93333/0.2 g COD.m-3 = 

466665 g COD.m-3 (Picioreanu et al. 1997; Volcke et al. 2010). The initial 

concentration of each AOB and NOB species was equal for all species of the 

same type (AOB: 7000 g COD.m-3 and NOB: 2333 g COD.m-3). As 
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heterotrophic growth on biomass decay products can be neglected (Mozumder 

et al. 2014), and the influent did not contain an organic carbon source, 

heterotrophic growth was not considered in this model. To simplify the 

interpretation of the results, inhibition of AOB and NOB by NH3 and HNO2 as 

well as external mass transfer limitation, was neglected. 

Table 3.4. Microbial parameters characterizing the AOB and NOB species in the 

multispecies nitrification biofilm model. 

 
µ

max
AOB 

[d-1] 

KNH
AOB 

[g N.m-3] 

KO2
AOB 

[g O2.m
-3] 

Y
AOB 

[
g COD

g N
] 

AOB1 1.10 2.84 0.95 0.23 

AOB2 2.41 6.51 0.37 0.11 

AOB3 1.91 12.97 0.35 0.07 

AOB4 0.79 4.82 0.47 0.08 

AOB5 2.08 10.54 0.33 0.24 

AOB6 2.22 5.96 0.36 0.10 

AOB7 0.71 4.62 0.82 0.25 

AOB8 1.77 4.71 0.83 0.21 

AOB9 0.59 12.10 0.91 0.08 

AOB10 0.68 12.27 0.27 0.13 

 
µ

max
NOB 

[d-1] 

KNO2
NOB  

[g N.m-3] 
KO2

NOB 
[g O2.m

-3] 

Y
NOB

 

[
𝑔 𝐶𝑂𝐷

𝑔 𝑁
] 

NOB1 1.77 4.31 0.99 0.10 

NOB2 0.74 1.91 1.69 0.11 

NOB3 0.74 4.45 0.84 0.10 

NOB4 0.87 3.84 0.66 0.09 

NOB5 0.66 1.98 1.75 0.04 

NOB6 1.67 2.73 1.58 0.09 

NOB7 0.71 5.07 0.67 0.04 

NOB8 0.50 5.16 0.99 0.08 

NOB9 1.54 4.45 2.05 0.06 

NOB10 0.63 4.26 0.73 0.10 
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3.4.2 Case study 1: Biofilm development 

In Case study 1, the development of a biofilm was followed in time until the 

bulk liquid concentrations of ammonium, nitrite and nitrate, besides the 

microbial populations were at steady state. Therefore, simulations were run 

during a sufficient period of time (5000 days) to ensure overall steady state 

reactor conditions. These simulations took generally less than 30 minutes of 

simulation time. The influent contained only ammonium (250 g N.m-3), 

resulting in a nitrogen loading rate of 900 g N.m-3.d-1. The total biomass in the 

reactor was assumed to be 100 g COD.m-3. The initial biofilm thickness was 

1·10-6 m. At the steady state biofilm thickness of 1·10-3 m, it was assumed that 

the biofilm growth rate and the detachment rate kept each other in balance. The 

initial concentration of ammonium in the bulk liquid was set equal to the 

influent ammonium concentration (250 g N.m-3) while the initial 

concentrations of nitrite and nitrate were negligible (1 g N.m-3). The bulk liquid 

oxygen concentration was kept constant at 3 g O2.m-3 during the simulations. 

3.4.3 Case study 2: Functional redundancy 

In Case study 2, the effect of a changed nitrogen loading rate on both the bulk 

liquid composition and the nitrifying community in a flat nitrifying biofilm 

were investigated. A total period of 3 years was simulated and the nitrogen 

loading rate was increased after 1 year from 1325 g N.m-3.d-1 (Qin = 0.0053 

m3.d-1) to 1800 g N.m-3.d-1 (Qin = 0.0072 m3.d-1). This operation shift was 

assumed to be accompanied by a drop of the bulk liquid oxygen concentration 

from 2 to 0.5 g O2.m-3. The total biomass in the reactor was assumed to be 

10 g COD.m-3. The initial and steady state biofilm thickness were assumed to 

be 100·10-6 m. The initial concentration of ammonium in the bulk liquid was 

set equal to the influent ammonium concentration (250 g N.m-3) while the 

initial concentrations of nitrite and nitrate were negligible (1 g N.m-3). 
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3.5 Results and discussion 

3.5.1 Case study 1: Biofilm development 

Using the two-step nitrification biofilm model implementing the growth and 

endogenous respiration of 10 AOB and 10 NOB species, it was observed that 

the reactor behaviour, in terms of nitrifying performance, was already at steady 

state within 10 days after start-up (Figure 3.1A). At first, nitrite accumulated 

to a maximum concentration of 185 g NO2
--N.m-3 on day 1, but was completely 

converted after four days. At steady state, ammonium was almost completely 

converted to nitrate, resulting in a nitrate effluent concentration of 241 

g NO3
--N.m-3. 

 

Figure 3.1 Bulk liquid concentration of nitrogen components (A) and the biofilm 

thickness (B) in function of time. Note the different scale and units (days versus 

years) of the x-axis in both figures. 

In contrast to the overall reactor performance (effluent composition), the 

steady state biofilm thickness of 1 mm was only reached after about 2.5 years 

(Figure 3.1B), indicating that constant reactor performance does not 

necessarily imply that the steady state biofilm thickness is already reached. The 

biofilm thickness increased linearly due to the formation of active biomass by 

microbial growth and the formation of inert particulate components by 

endogenous respiration. Inert particulate components made up more than 90% 

of the total particulate mass in the biofilm at steady state. 

The steady state conditions of the microbial community were only reached 

after 140 months (Table 3.5). A major microbial community shift was even 

observed after 100 months of operation. Initially, all AOB species made up 
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7.5% and all NOB species 2.5% of the total particulate matter mass (100 

g COD) in the biofilm. Due to microbial competition, the initial fraction of 

each species changed in time to its steady state value.  

In the AOB community, species AOB1 became dominant. In the NOB 

community, NOB6 remained dominant for 90 months (7.5 years). However, 

after 60 months, species NOB2, which was virtually absent in the biofilm for 

40 months, reappeared in the biofilm. This species became dominant after 100 

months and remained the dominant NOB species at steady state. At steady 

state, 3 dominant species coexisted in the biofilm: AOB1, NOB6 and NOB2. 

All the non-dominant species could be considered absent and not contributing 

to the microbial conversions. However, it is assumed that when the operation 

conditions change, these species could re-emerge when the new conditions are 

favourable for them, as their concentrations were negligible, but non-zero. 

The AOB:NOB decreased from 3.3 at month 30, when the biofilm thickness 

reached steady state, to 1.38 at month 140. Both for marine (Foesel et al. 2008) 

and freshwater systems (Schramm et al. 1999; Gieseke et al. 2001; Altmann et 

al. 2003), dominance of the NOB over AOB has been observed. Foesel et al. 

(2008) concluded that the numerical dominance of various Nitrospira spp. over 

AOB might be a general characteristic of ammonium-limited systems, 

although the abundance of Nitrospira spp. was observed by Gieseke et al. 

(2001) to be 30 times higher than the abundance of the AOB in the upper 

1·10-4 m of an oxygen limited biofilm. Therefore, possibly other mechanisms 

play a role in the dominance of NOB over AOB. An elevated NOB:AOB ratio 

in aerobic granular sludge was observed by Winkler et al. (2012) and attributed 

by Winkler et al. (2015) to the nitrite-loop pathway, i.e., the availability of 

additional nitrite for the NOB from partial denitrification (nitrite-loop). 

However, in the model of this chapter, no denitrification was included. 

Therefore, it is assumed that the elevated NOB:AOB ratio at steady state was 

due to (1) the lower endogenous respiration of nitrite-oxidizers on oxygen due 

to the lower oxygen availability in deeper layers of the biofilm, where the NOB 

live, (2) the lower endogenous respiration rate of NOB compared to AOB 

because it is defined as a fraction (5%) of the maximum growth rate, which is 
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lower for the NOB at 30 °C and (2) the higher detachment of AOB species 

dominant at the surface, as the surface detachment is equal to the growth rate 

of the biofilm at the surface. In the aerobic regions, oxygen is the main electron 

acceptor for endogenous respiration, as endogenous respiration on nitrite and 

nitrate is inhibited by oxygen (Table 3.2). As the nitrite-oxidizers live in a zone 

with a lower oxygen concentration than the ammonia-oxidizers, their 

endogenous respiration rate is assumed to be lower, due to the considered 

Monod term for oxygen (
SO2

SO2+KO2
), resulting in an elevated NOB:AOB ratio. 

Although endogenous respiration using oxygen as electron acceptor can be 

considered here as the main reason for the elevated NOB:AOB ratio, also the 

higher detachment of the AOB and the higher turn-over of the AOB, are 

important, as in Chapter 2, where decay is considered instead of endogenous 

respiration, an elevated NOB:AOB ratio was also observed for some of the 

simulations. 

The steady state substrate and biomass concentration gradients are displayed 

in Figure 3.2. One could note that the number of species coexisting at steady 

state might be influenced by the number of grid points, an effect which may be 

more pronounced as more species are taken up in the model. This was not 

investigated in detail; the number of grid points applied in this study was found 

sufficient to capture the required level of detail concerning microbial 

coexistence at steady state.  
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In this study, ammonium and nitrite were limiting, as the concentrations of 

these substrates prevailing in the biofilm, 0.28 g NH4
+-N.m-3 and 0.26 

g NO2
--N.m-3 respectively, were much lower than the affinity constants 

considered (Figure 3.2A-B). Indeed, species with a rather high affinity for 

ammonium (AOB1: KNH
AOB1 = 2.84 NH4

+-N.m-3) and nitrite (NOB2: KNO2
NOB2 = 

1.91 g NO2
--N.m-3 and NOB6: KNO2

NOB6 = 2.73 g NO2
--N.m-3) were selected for. 

Oxygen was not as limiting, since its concentration (Figure 3.2C) prevailing in 

the biofilm was much closer to the considered oxygen affinity constants. 

From the biomass concentration profile (Figure 3.2D), it is observed that at 

steady state, NOB6 was present in a small concentration at the surface of the 

biofilm while NOB2 had the highest concentration 83·10-6 m below the surface 

of the biofilm. The coexistence of two genetically and morphologically 

different populations of NOB with different distribution patterns in a biofilm 

was observed experimentally by Schramm et al. (1998). When coexistence of 

species performing the same function is observed, a distinction is typically 

made between slow growing species with a high substrate affinity (K-

strategists) and fast growing species with a low substrate affinity (r-strategists). 

The r- and K-selection strategy (Andrews & Harris 1986) could explain 

experimentally observed population shifts and microbial coexistence in 

nitrifying biofilms, e.g., by Schramm et al. (2000) and Almstrand et al. (2013). 

In the NOB community considered in this study, NOB6 was an r-strategist with 

a relatively high growth rate (µmax
NOB6 = 1.67 d-1) and NOB2 was a K-strategist 

with a relatively high affinity for nitrite, corresponding with a low affinity 

constant (KNO2
NOB2 = 1.91 g NO2

--N.m-3). The r-strategist NOB6 was able to 

survive close to the surface due to the higher substrate concentrations 

prevailing there, in combination with its high maximum growth rate. As a K-

strategist, NOB2 was able to cope with the limiting substrate concentrations 

deeper in the biofilm. 

Considering the development of the NOB community in time, it was observed 

that the r-strategist NOB6 was able to cope rapidly with the prevailing 

conditions and grew at a high rate due to its relatively high maximum growth 

rate. After 100 months, the slow growing K-strategist NOB2 became dominant 
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over NOB6 due to its higher affinity for nitrite. It can thus be concluded that 

the r- and K-selection strategy not only can be used here to explain the steady 

state microbial distribution profile but also the development of the microbial 

community composition over time. 

 

Figure 3.2. Steady state concentration profiles for ammonium (A), nitrite (B), oxygen 

(C) and particulate matter (D; XI = inert particulate components) in function of the 

position of the biofilm (0 µm = bottom, 1000 µm = surface of the biofilm). Note the 

different scale of the y-axis of the substrate concentration profiles. 

3.5.2 Case study 2: Functional redundancy 

Simulations were performed to determine the effect of a changing nitrogen 

loading on the process performance, considering both the ammonium 

elimination efficiency and the possible nitrite accumulation as well as changes 

in the microbial community. The effect of the operation shift after 365 days on 

the effluent composition is given in Figure 3.3. In phase I, an effluent nitrate 

concentration of 242 g N.m-3 and an ammonium elimination efficiency of 

99.8% were observed. After the operation shift, the ammonium elimination 

efficiency suddenly dropped for a period of 1 month, reaching a minimum of 
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82.6% after 6 days. However, significant nitrite accumulation (up to 140 

g N.m-3) was observed 8 months after the operation shift. The latter was 

attributed to the lower average affinity for oxygen of the NOB compared to the 

AOB. After this period, by providing functional redundancy, the presence of 

different species of 1 functional type allowed the process performance to return 

almost completely to its original state, with an effluent nitrate concentration of 

238 g N.m-3 and a total ammonium elimination efficiency of 99%. 

 

Figure 3.3 Bulk liquid concentration of nitrogen components in function of time. The 

dashed line at 12 months denotes the operation shift. Arrows indicate sample times 

for biomass and concentration profiles (Figure 3.4). 

The operation shift also had a clear effect on the composition of the microbial 

community. The evolution in time of the particulate species is given in Table 

3.6. During phase I, AOB1, NOB2 and NOB5 were the dominant species, each 

making up more than 4% of the total particulate mass in the biofilm. Just after 

the operation shift, 4 species were dominant: AOB1, AOB6, NOB2 and NOB4. 

Finally, two species survived: AOB6 and NOB4. In phase I, AOB (about 35%) 

were relatively more dominant than NOB (about 20%). In phase II the fraction 

of NOB was similar as in phase I while the AOB fraction decreased to about 
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7%. The fraction of inert particles (XI) increased from about 40% in phase I to 

70% in phase II. The AOB:NOB ratio also decreased during this simulation, 

similar to the observation made for Case study 1. Here the fractions of AOB 

and NOB are relatively higher, as the fraction of inert biomass (XI) is smaller. 

Table 3.6 Evolution of the fraction (%) of the total particulate matter (10 g COD) 

made up by each species in the biofilm through time. Fractions of individual AOB 

and NOB species are visualized by colour codes from 0% (white) to 37% (black). 

Time 

[months] → 
0 3 6 9 12 15 18 21 24 27 30 33 36 

Fraction (%) 

↓ 

Phase I Phase II 

NH4 limitation O2 limitation 

AOB1 7.5 18.4 29.2 34.4 36.7 13.9 2.9 0.9 0.3 0.1 0.1 0.0 0.0 

AOB2 7.5 0.6 0.0 0.0 0.0 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 

AOB3 7.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AOB4 7.5 4.5 2.9 1.6 0.8 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.0 

AOB5 7.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AOB6 7.5 1.4 0.2 0.0 0.0 8.4 8.5 7.5 7.2 7.1 7.0 7.0 7.0 

AOB7 7.5 3.8 1.9 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AOB8 7.5 2.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AOB9 7.5 1.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AOB10 7.5 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total AOB 75.0 34.1 35.4 37.0 37.8 23.3 11.8 8.6 7.7 7.3 7.2 7.1 7.0 

NOB1 2.5 1.0 0.2 0.1 0.0 1.5 1.0 0.3 0.1 0.0 0.0 0.0 0.0 

NOB2 2.5 5.6 7.7 10.3 12.9 4.2 1.3 0.5 0.3 0.1 0.1 0.0 0.0 

NOB3 2.5 1.5 0.7 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

NOB4 2.5 2.6 2.2 1.9 1.5 12.1 18.5 20.5 21.6 22.3 22.8 23.2 23.5 

NOB5 2.5 4.3 4.8 5.3 5.5 1.8 0.6 0.3 0.1 0.1 0.0 0.0 0.0 

NOB6 2.5 4.1 2.7 1.8 1.2 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

NOB7 2.5 1.3 0.6 0.3 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 

NOB8 2.5 1.3 0.6 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NOB9 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NOB10 2.5 1.8 1.1 0.7 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1 

Total NOB 25.0 24.0 20.7 20.9 21.8 21.5 22.2 22.0 22.4 22.8 23.1 23.4 23.6 

Total XI 
0.0 42.0 43.9 42.1 40.4 55.2 66.0 69.3 69.9 69.9 69.7 69.5 69.3 

Ratio 

AOB:NOB 
3.00 1.42 1.71 1.77 1.73 1.08 0.53 0.39 0.34 0.32 0.31 0.30 0.30 
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A clear advantage of using 1-dimensional biofilm models is the possibility to 

investigate the biomass distribution profiles in the biofilm. Biofilm profiles 

were plotted after 6 months (phase I), 15 months (i.e., 3 months after the 

operation shift) and 33 months (phase II) of operation (Figure 3.4A-C) and 

compared with the ammonium (Figure 3.4D-F), nitrite (Figure 3.4G-I) and 

oxygen (Figure 3.4J-L) substrate concentration profiles in the biofilm. 

 

Figure 3.4 Biomass concentration profiles (A, B, C) and concentration profiles of 

ammonium (D, E, F), nitrite (G, H, I) and oxygen (J, K, L) in function of the position 

in the biofilm (0 μm = bottom, 100 μm = surface of biofilm). Profiles at 6 months (A, 

D, G, J), 15 months (B, E, H, K) and 33 months (C, F, I, L) after start-up of the 

simulation are given. Only species with a fraction higher than 4% and the inert 

particulate components (𝐗𝐈) are indicated on the biomass concentration profiles. 

Mind the different scale of the y-axis of the substrate concentration profiles. 

During phase I, the concentration of ammonium (Figure 3.4D) and nitrite 

(Figure 3.4G), was much lower than the lowest affinity constants for these 

substrates considered in this study, indicating that these substrates were 
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relatively more limiting than oxygen. The dominant species of this phase, 

AOB1, NOB2 and NOB5 (Figure 3.4A) were characterized by a high affinity 

for their nitrogen source (KNH
AOB1 = 2.84 g N.m−3, KNO2

NOB2 = 1.91 g N.m−3 

and KNO2
NOB5 = 1.98 g N.m−3). The prevalence of NOB2 over NOB5 at the end 

of phase I was due to its higher growth rate and slightly higher affinities for 

electron donor and acceptor. In phase I, the concentration of AOB1 was the 

highest at the outside of the biofilm, while NOB2 and NOB5 showed a 

relatively constant concentration through the whole biofilm, as they were 

dependent on the nitrite, produced by the AOB, for their growth. In all phases, 

the oxygen concentration showed a clear gradient (Figure 3.4J-L) through the 

biofilm, but oxygen limitation determined the competition outcome 

particularly in phase II, as at almost all depths, the oxygen concentration was 

considerably lower than the lowest affinity constants for oxygen considered in 

this study. 

Ammonium (Figure 3.4F) was more limiting than oxygen only for the 

dominant AOB species in phase II (AOB6) within 14·10-6 m from the surface 

of the biofilm, where the oxygen concentration was still higher than 0.13 

g O2. m
−3. The new species (AOB6 and NOB4) becoming dominant three 

months after the operation shift and growing at the expense of the remaining 

populations of AOB1 and NOB2 (Figure 3.4B) were typified by a relatively 

high affinity for oxygen (KO2
AOB6 = 0.36 g O2.m-3 and KO2

NOB4 = 0.66 g O2.m-3. At 

that time, also other NOB species such as NOB1 (KO2
NOB1 = 0.99 g O2.m-3) were 

present in the biofilm, albeit in smaller fractions (< 4%). Both NOB1 and 

NOB4 were typified by a rather high affinity for oxygen, but NOB1 had a 

higher growth rate and a lower affinity for nitrite (KNO2
NOB1 = 4.31 g N.m-3 and 

KNO2
NOB4 = 3.84 g N.m-3) than NOB4. Therefore, NOB1 was able to respond 

rapidly on the changing conditions after the operation shift. However, it was 

outcompeted by NOB4 once the bulk liquid concentration of nitrite dropped 

down 8 months after the operation shift. About 2 years after the operation shift, 

only two species remained in the biofilm: AOB6 and NOB4, both having a 

high affinity for oxygen. In phase II, a typical nitrifying biofilm could be 

observed (Figure 3.4C) with inert particulate components (XI), NOB4 and 
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AOB6 having the highest concentration at the bottom, in the middle and at the 

surface of the biofilm, respectively. 

3.6 Conclusions 

Two case studies were highlighted in which additional model complexity was 

included beyond the conventional formulation for numerical 1-dimensional 

biofilm models. In case study 1, it was demonstrated, using a biofilm model 

including the growth of several species performing the same function, that a 

constant reactor behaviour, in terms of bulk liquid concentrations of 

ammonium, nitrite and nitrate, may be hiding major microbial community 

shifts. In case study 2, it was shown that the coexistence of several species 

performing the same function assured an almost complete conversion of 

ammonium to nitrate and a total ammonium elimination efficiency of 99% 

upon an increased nitrogen loading within a period of 8 months following the 

operation shift, by providing functional redundancy. Nitrifying biofilm models 

including microbial diversity can furthermore be used to investigate 

experimentally observed, major microbial population shifts resulting in a 

different nitrifying performance, see Chapter 4 (Vannecke et al. 2014).  

The additional model complexity considered in this study had a substantial 

impact on bulk liquid outputs in some specific conditions, and on the spatial 

distribution of dissolved and particulate components under all conditions. It is 

likely a general rule that increased complexity concerning microbial diversity 

will be more useful when the focus is on understanding microbial competition 

and coexistence. When the focus is on substrate removal rates, and optimal 

bulk conditions, this complexity is clearly not always necessary. However, 

under some conditions, for example upon environmental or operational 

changes such as an increased nitrogen loading rate, such additional model 

features can be critically informative for bulk reactor behaviour prediction or 

understanding.  
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3.7 Appendix 3A: Matlab code for the construction of a 

bimodal distribution 

clear all  

close all  

clc 

 

%%%%%% Characteristics of the bimodal distribution %%%%%% 

q = [0.5 0.5];  

m = [k*0.6 5*1.4];  %% With k the average or median of the interval of  

parameter values considered  

s = [k*0.125 k*0.125];  

distrib = struct('mu', m, 'sigma', s, 'weight', q);  

nb = 1e006; 

%% Construction of two scaled and translated gaussians 

X = randn(nb,length(q)).*repmat(s,nb,1)+repmat(m,nb,1); 

%% Selection of one gaussian or the other 

rsel = rand(nb,1); 

idx1 = (repmat(rsel,1,length(q))>repmat(cumsum(q),nb,1)); 

idx2 = (repmat(rsel,1,length(q))<repmat(cumsum(q),nb,1)); 

idx1(:,2:end) = idx1(:,1:end-1).*idx2(:,2:end); 

idx1(:,1) = idx2(:,1); 

X = sum(X.*idx1,2); 

%% Plot result 

Numbers=ksdensity(X); 

[y,x]=ksdensity(X); 

figure(1); 

plot(x,y,'linewidth',2) 

Title('Bimodal distribution of microbial parameter') 

%% Pick 10 random numbers 

Random_values_parameter = randsample(X,10); 



 

 

4 

Modelling ammonia-oxidizing 
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4.1 Abstract 

The dynamic reactor behaviour of a nitrifying inverse turbulent bed reactor, 

operated at varying loading rate, was described with a 1-dimensional two-step 

nitrification biofilm model. In contrast with conventional biofilm models, this 

model includes the competition between two genetically different populations 

of ammonia-oxidizers (AOB), besides nitrite-oxidizers (NOB). Previously 

gathered experimental evidence showed that different loading rates in the 

reactor resulted in a change in the composition of the AOB community, besides 

a different nitrifying performance. The dissolved oxygen concentration in the 

bulk liquid was put forward as the key variable governing the experimentally 

observed shift from Nitrosomonas europaea (AOB1) to Nitrosomonas sp. 

(AOB2), which was confirmed by the developed 1-dimensional biofilm model. 

Both steady state and dynamic analysis showed that the influence of microbial 

growth and endogenous respiration parameters as well as external mass 

transfer limitation have a clear effect on the competition dynamics. 

4.2 Published as 

Vannecke, T.P.W., Bernet, N., Steyer, J.-P. & Volcke, E.I.P. (2014). 

Modelling ammonium oxidizing population shifts in a biofilm reactor. Water 

Science and Technology, 69(1), 208-215. DOI: 10.2166/wst.2013.701.  



 Modelling ammonia-oxidizing population shifts 

97 

4.3 Introduction 

Biological nitrogen removal from wastewater can be considered as a proven 

technology and has been widely implemented. The most common pathway is 

the combination of two sequential processes: autotrophic nitrification and 

heterotrophic denitrification. During nitrification, ammonia-oxidizing bacteria 

(AOB) convert ammonia to nitrite, which is further oxidized to nitrate by 

nitrite-oxidizing bacteria (NOB). 

While in the conventional treatment systems bacteria are grown in flocs which 

are more prone to washout events, biofilm reactors display distinct advantages 

for the cultivation of slow growing nitrifiers, due to their specific biomass 

retention characteristics (Nicolella et al. 2000). Within biofilms, diffusional 

substrate concentration gradients result in a growth rate gradient. In multi-

species biofilm systems, this will lead to a biofilm with a layered structure, 

giving species with different ecophysiological characteristics the opportunity 

to survive. Besides different functional types as AOB or NOB, also different 

species of the same functional type can coexist. Schramm et al. (1998) 

identified in bacterial aggregates from a fluidized bed two genetically and 

morphologically different populations of NOB affiliated with the nitrite 

oxidizer Nitrospira moscoviensis. Another example of the coexistence of two 

NOB species is given by Downing and Nerenberg (2008). In a nitrifying, 

membrane-aerated biofilm reactor (MABR), they observed a shift in NOB 

species with decreasing oxygen concentrations. Also different types of AOB 

have been reported to coexist in this reactor type (Terada et al. 2010). Lydmark 

et al. (2006) found in a full-scale nitrifying trickling filter four AOB 

populations, of which two Nitrosomonas oligotropha populations dominated 

at all depths. These two populations showed different distribution patterns 

within the biofilm, indicating different ecophysiological niches, even though 

they belong to the same AOB lineage. In a recent study the niche differentiation 

between two dominant Nitrosomonas oligotropha populations in pilotscale 

moving bed biofilm reactors and trickling filters was confirmed experimentally 

based on their different reaction on changes in ammonium loading (Almstrand 

et al. 2013). Bernet et al. (2004) reported that, for a nitrifying Inverse 
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Turbulent Bed Reactor (ITBR), the amount of carrier material affects the 

reactor behaviour, not only in terms of the bulk liquid composition, but also in 

terms of the biofilm composition (different AOB types). Different solid hold-

ups of the reactors resulted in different liquid volumes, leading to different 

hydraulic retention times (HRT) and consequently different ammonium 

loading rates. Upon lowering the ammonium loading rate in the most heavily 

loaded reactor by lowering its feeding rate, nitrate started to accumulate due to 

the presence of Nitrospira. Furthermore, nitrate accumulation was 

accompanied by the appearance of a different ammonia-oxidizer population, 

Nitrosomonas sp. (AOB2), growing at the expense of N. europaea (AOB1) 

(Volcke et al. 2008). It was postulated that this population shift was due to a 

selection pressure driven by the different dissolved oxygen concentration in 

both reactors after the change in ammonium loading rate. 

Models provide an adequate tool for understanding phenomena involved in 

biofilm processes, e.g., Wik and Breitholtz (1996) and Picioreanu et al. (1997). 

However, present mathematical models mostly neglect microbial diversity. 

Conceptual and predictive mathematical models describing microbial 

community information should be developed to obtain a deeper understanding 

of ecosystems and possible ways to manipulate them (Nielsen et al. 2010). 

From an engineering perspective, it is of interest to include microbial 

community structure information in mathematical models. Extending an 

activated sludge model using two AOB populations (Wett et al. 2011) and the 

Anaerobic Digestion Model No. 1 to describe microbial diversity within 

functional groups (Ramirez et al. 2009) allowed a more accurate prediction of 

nitrification and aerobic digestion, respectively, upon changing process 

conditions. A recent study showed the influence of biomass detachment and 

microbial growth in the bulk liquid on the microbial community distribution in 

a heterotrophic biofilm using a multi-species biofilm model (Brockmann et al. 

2013). The biofilm was discretized into 50 layers to ensure adequate resolution 

of predicted substrate and biomass gradients over the depth of the biofilm even 

at biofilm thicknesses as high as 1·10-3 m. 
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In present nitrifying biofilm models, there is mostly only a distinction between 

ammonia-oxidizers and nitrite-oxidizers. Nevertheless, a biofilm model 

including 1 type of AOB and 2 types of NOB was set up by Downing and 

Nerenberg (2008), to determine the importance of both nitrite and oxygen 

affinity in the selection of Nitrospira spp. over Nitrobacter spp. in a MABR. 

Volcke et al. (2008) successfully described the observed microbial population 

shifts upon the lowering of the loading rate in an ITBR reactor through a 0-

dimensional (neglecting spatial variations) nitrification model considering the 

growth of 2 types of AOB and 1 type of NOB. Even though this simplified 

model was useful in predicting the simulation outcome, it clearly neglects 

substrate gradients and biomass distribution profiles within the biofilm. To 

overcome this limitation, in this contribution a 1-dimensional biofilm model 

was developed as an alternative to describe the experimental data of Volcke et 

al. (2008). As the biofilm structures under study were not characterized by a 

highly irregular surface, higher dimensional descriptions (2D or 3D, see e.g., 

Picioreanu et al. (2004)), making the biofilm modelling much more complex, 

were judged unnecessary. The advantages of this 1-dimensional model 

compared to the 0-dimensional model for accurately describing the 

experimental data of Volcke et al. (2008), in terms of the nitrifying 

performance of the ITBR as well as the underlying microbial dynamics, were 

evaluated. Particular attention was paid to the influence of microbial growth 

and endogenous respiration parameters as well as external mass transfer 

limitation on the competition outcome, through both steady state and dynamic 

analysis. 

4.4 Material and methods 

4.4.1 Experimental data 

In the ITBR (Vreactor = 1.35·10-3 m3), biomass was grown on low density inert 

particles (dp = 147·10-6 m) which are fluidized by an upward current of gas 

(Bernet et al. 2004). The solid hold-up ratio, i.e., the ratio of static to expanded 

bed height, of the ITBR considered in this study was 0.3. The porosity of the 

bed was 0.41, which resulted in an active reactor volume fixed at 1.11·10-3 m3. 
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The total amount of particulate material (viable biomass and inerts) was 10 

g COD, corresponding to a biofilm thickness of 9.6·10-6 m, if a uniform 

distribution of all the biomass is considered over the bed. The synthetic influent 

was supplied at a constant flow rate of 0.0072 m3.d-1 and contained 250 

g NH4
+-N.m-3 as ammonium sulphate. After 4 months, the ammonium loading 

rate of the reactor was lowered from 1622 g NH4
+-N.m-3.d-1 to 1164 g NH4

+-

N.m-3.d-1, by decreasing the influent flow rate to 0.0053 m3.d-1 and thus 

increasing the HRT (from 3.66 h to 5 h). Oxygen measurements were 

occasionally performed (no on-line measurements) but it has been verified that 

the initial oxygen level in the reactor was limiting (<1 g O2.m-3) for nitrite 

oxidation and that this was no longer the case after lowering the influent flow 

rate. After lowering the influent flow rate, the dissolved oxygen concentration 

of the bulk liquid was observed to be sufficiently high to allow complete nitrite 

oxidation by Nitrospira (NOB). The operation shift was further characterised 

by the growth of Nitrosomonas sp. (AOB2) at the expense of Nitrosomonas 

europaea (AOB1). Temperature was maintained at 30 °C by a water jacket and 

pH was controlled at 7.5 by base addition. The airflow rate was kept constant 

at 0.72 m3.d-1. A detailed description of the reactor set-up and operation, 

besides the analytical and microbiological methods applied, is given by Bernet 

et al. (2004) and Volcke et al. (2008). 

4.4.2 Reactor model 

A 1-dimensional two-step nitrification biofilm model, including the 

competition between two different species of AOB, besides NOB, was 

implemented in the Aquasim software (Reichert 1994). As during the 

experiments nitrite or nitrate accumulated, and the ammonium was oxidized 

for at least 95% (Volcke et al. 2008), free ammonia inhibition will have been 

low. The highest nitrite concentration observed, 225 g NO2-N.m-3, corresponds 

in combination with a pH of 7.5 and a temperature of 30 °C to a FNA 

concentration of 0.014 g HNO2-N.m-3. This makes also FNA inhibition very 

unlikely for both AOB and NOB (see Chapter 5 for a literature study on 

inhibition constants). Furthermore, if a difference in inhibition would have 

been the reason for the population shift, Nitrosomonas europaea (AOB1) 
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would have been the species acclimated to a higher free ammonia and/or free 

nitrous acid concentration and would have probably remained dominant when 

the inhibiting conditions were relaxed by lowering the nitrogen loading rate. 

Therefore, as Volcke et al. (2008) was able to simulate the observed population 

shift by means of a 0-dimensional biofilm model implementing the growth of 

2 AOB, an r-strategist and a K-strategist concerning oxygen, it was assumed 

that the increase of the bulk liquid oxygen concentration after the lowering of 

the nitrogen loading rate was the reason for the population shift. In this chapter, 

Nitrosomonas europaea (AOB1) is represented as a K-strategist, with a 

relatively low growth rate but a high affinity for oxygen and Nitrosomonas sp. 

(AOB2) as an r-strategist, with a relatively high growth rate and low affinity 

for oxygen, according to the r- and K-selection theory (Andrews & Harris 

1986). The parameter values from the calibrated 0-dimensional biofilm model 

of Volcke et al. (2008) were applied. Growth of AOB and NOB was described 

based on Hao et al. (2002b). Inhibition of AOB and NOB by NH3 and HNO2 

was not considered to simplify interpretation of the results. As the influent did 

not contain organic carbon, heterotrophic growth was neglected as well. This 

was shown to be a valid assumption for co-diffusion systems (Lackner et al. 

2008). Mozumder et al. (2014) also reported that heterotrophic growth on 

biomass decay products could be neglected. To describe biomass decay, 

endogenous respiration, a state in which microorganisms oxidize cellular 

storage compounds instead of organic matter from their environment (van 

Loosdrecht & Henze 1999), was implemented in the model, considering 

oxygen, nitrite and nitrate as possible electron acceptors. The overall model 

stoichiometry, kinetics and the corresponding parameter values for the 1-

dimensional biofilm model are summarized in Table 4.1, Table 4.2 and Table 

4.3, respectively. Note that the parameter values were based on those from the 

calibrated and validated model of Volcke et al. (2008). A detailed sensitivity 

analysis was beyond the scope of this study.  
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Table 4.2 Reaction kinetics corresponding to the processes from Table 4.1. AOBi: 

AOB1 or AOB2. ER: endogenous respiration. 

j process ↓  

1. Growth AOBi 
ρG,AOBi = µmax

AOBi ∙
SO2

KO2
AOBi + SO2

∙
SNH

KNH
AOBi + SNH

∙  XAOBi 

2. Growth NOB
ρG,NOB = µmax

NOB ∙
SO2

KO2
NOB + SO2

∙
SNO2

KNO2
NOB + SNO2

∙  XNOB

 
3. Aerobic ER AOBi

ρER,AOBi,O2 = bAOBi ∙
SO2

KO2
AOBi + SO2

∙  XAOBi

 
4. Anoxic (NO2

-) ER AOBi 
ρER,AOBi,NO2 = bAOBi ∙ η ∙

KO2
AOBi

KO2
AOBi + SO2

∙
SNO2

KNO2 + SNO2

∙  
SNO2

SNO2 + SNO3

∙ XAOBi

5. Anoxic (NO3
-) ER AOBi

ρER,AOBi,NO3 = bAOBi ∙ η ∙
KO2
AOBi

KO2
AOBi + SO2

∙
SNO3

KNO3 + SNO3

∙  
SNO3

SNO2 + SNO3

∙ XAOBi

 
6. Aerobic ER NOB 

ρER,NOB,O2 = bNOB ∙
SO2

KO2
NOB + SO2

∙  XNOB 

7. Anoxic (NO2
-) ER NOB

ρER,NOB,NO2 = bNOB ∙ η ∙
KO2
NOB

KO2
NOB + SO2

∙
SNO2

KNO2 + SNO2

∙  
SNO2

SNO2 + SNO3

∙ XNOB

 
8. Anoxic (NO3

-) ER NOB
ρER,NOB,NO3 = bNOB ∙ η ∙

KO2
NOB

KO2
NOB + SO2

∙
SNO3

KNO3 + SNO3

∙  
SNO3

SNO2 + SNO3

∙ XNOB
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Table 4.3 Stoichiometric, kinetic and mass transfer parameter values. ER: 

endogenous respiration. 

Parameter Description Value Unit Reference 

Stoichiometric parameters 

iNXB Nitrogen fraction in biomass 0.086 g N.(g COD)-1 ASM1 (Henze et al. 2000) 

iNXI Nitrogen fraction in inerts 0.06 g N.(g COD)-1 ASM1 (Henze et al. 2000) 

fXI Inert fraction in biomass 0.20 g COD.(g COD) -1 ASM3 (Henze et al. 2000) 

YAOB1 Yield coefficient of AOB1 0.20  g COD.(g N)-1 Wiesmann (1994) (1) 

YAOB2 Yield coefficient of AOB2 = YAOB1 g COD.(g N)-1 Volcke et al. (2008)  

YNOB Yield coefficient of NOB 0.057  g COD.(g N)-1 Wiesmann (1994) (1) 

Kinetic parameters (pH 7.5 and T=30 °C) 

bAOB1 ER rate of AOB1 0.068 or 0.1 d-1 Set to 0.05 µmax
AOB1 / 0.1 d-1 

bAOB2 ER rate of AOB2 0.121 or 0.1 d-1 Set to 0.05 µmax
AOB2 / 0.1 d-1 

bNOB ER rate of NOB 0.040 d-1 Set to 0.05 µmax
NOB 

KNH
AOB1  

Affinity of AOB1 for 

ammonium 
0.25  g N.m-3 Sánchez et al. (2003) 

KNH
AOB2 

Affinity of AOB2 for 

ammonium 
= KNH

AOB1 g N.m-3 Volcke et al. (2008) 

KO2
AOB1 Affinity of AOB1 for oxygen 0.3  g O2.m-3 Wiesmann (1994) 

KO2
AOB2 Affinity of AOB2 for oxygen 1 g O2.m-3 Volcke et al. (2008) 

KNO2
NOB Affinity of NOB for nitrite 1.6  g N.m-3 Sánchez et al. (2003) 

KO2
NOB Affinity of NOB for oxygen 2.2 g O2.m-3 Hao et al. (2002b) 

KNO3 Affinity for nitrate of ER 1 g N.m-3 de Kreuk et al. (2007) 

KNO2 Affinity for nitrite of ER 1 g N.m-3 Assumed equal to KNO3 

η Anoxic reduction factor 0.5 - Koch et al. (2000b) 

µmax
AOB1 Maximum growth rate AOB1 1.36  d-1 Hellinga et al. (1999) (2) 

µmax
AOB1 Maximum growth rate AOB2 2.42  d-1 Volcke et al. (2008) 

µmax
NOB Maximum growth rate NOB 0.79  d-1 Hellinga et al. (1999) (2) 

Mass transfer parameters 

DNH4 Diffusion coefficient NH4 1.6e-4 m2.d-1 Picioreanu et al. (1997) 

DNO2 Diffusion coefficient NO2 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DNO3 Diffusion coefficient NO3 1.5e-4 m2.d-1 Picioreanu et al. (1997) 

DO2 Diffusion coefficient O2 1.7e-4 m2.d-1 Picioreanu et al. (1997) 

KL 

External mass transfer 

coefficient of NH4
+, NO2, 

NO3 and O2 

0.91 m.d-1 Bernet et al. (2005) 

(1) Yield coefficients expressed in grams organic dry matter (ODM) per gram nitrogen were 

converted to grams chemical oxygen demand (COD) per gram nitrogen using a typical biomass 

composition of CH1.8O0.5N0.2, corresponding to 1.3659 g COD.g−1 ODM. 

(2) The maximum growth rate was converted to be valid for a temperature of 30 °C based on values 

given in Hellinga et al. (1999) at 35 °C through Eq. 4.1 and Eq. 4.2: 

µmax
AOB(T) =  µmax

AOB(Tref) ∙ exp(
Ea
AOB ∙ (T −  Tref)

R ∙ T ∙ Tref
) Eq. 4.1 

µmax
NOB(T) =  µmax

NOB(Tref) ∙ exp(
Ea
NOB ∙ (T − Tref)

R ∙ T ∙ Tref
) Eq. 4.2 

with Ea
AOB= 68 kJ.(mol)-1; Ea

NOB= 44 kJ.(mol)-1 (Hao et al. 2002a); R = 8.31 J.(mol.K)-1.  
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The 1-dimensional model developed in this study assumes that the variation of 

the state variables is restricted to a single direction perpendicular to the surface 

of the solid carrier. This is a valid simplification when vertical gradients are 

orders of magnitude higher than those in the directions parallel to the carrier 

surface (Wanner & Gujer 1986). Since this applies to most biofilm systems, 

dynamic multispecies 1-dimensional biofilm models are sufficient for the 

majority of practical purposes. As the modelling of biofilm structures with 

highly irregular surface was not the focus of this study, higher dimensional 

descriptions (2D or 3D), making the biofilm modelling much more complex, 

were judged unnecessary. The biofilm, which is autotrophic, was assumed to 

be quite dense with very small pores, in which no relevant motion of suspended 

solids takes place. The biofilm was moreover assumed to be rigid, meaning 

that particulate components are displaced only by the expansion or shrinkage 

of the biofilm solid matrix. In addition, the biofilm porosity has been assumed 

constant ( = 0.8) and the biomass density (viable biomass and inerts) in the 

biofilm was set to 93333/0.2 g COD.m-3 = 466665 g COD.m-3 (Picioreanu et 

al. 1997; Volcke et al. 2010). An initial active biomass fractioning of 75% 

AOB and 25% NOB was assumed, according to the number of electrons 

exchanged by the oxidation of NH4
+ to NO2

- and from NO2
- to NO3

-, 

respectively.  

As the reactor type was considered confined, biofilm growth on the spherical 

particles was associated with a decrease in bulk liquid volume, to 1·10-3 m3 

following Eq. 4.5, with nsp the number of particles, rsp the radius of 1 particle 

and LF(t) the biofilm thickness at time t. 

 𝑉𝑏𝑢𝑙𝑘 (t) = 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 − 𝑛𝑠𝑝 ∙
4

3
∙ 𝜋 ∙ (𝑟𝑠𝑝 + 𝐿𝐹(𝑡))

3 Eq. 4.3 

The biofilm growth has been limited by detachment. The equilibrium biofilm 

thickness (LFSS) was set at 9.6·10-6 m, corresponding with the experimentally 

determined total particulate matter mass of 10 g COD. It was assumed that all 

the biomass was distributed evenly over all the particles present in the reactor. 

The reactor temperature (30 °C) and pH (7.5) were assumed constant. The 

oxygen level in the bulk liquid was controlled to a fixed value. Constant bulk 
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liquid oxygen concentrations within a range of 0-7 g O2.m-3 were considered 

for steady state simulation. For the dynamic simulations, the bulk liquid 

oxygen concentration was assumed to be 0.5 g O2.m-3 before the reduction in 

ammonium loading rate and 2 g O2.m-3 after. During the experiments, the 

measured oxygen concentration was checked to be in accordance with these 

values, although the exact values were not recorded on-line. The bulk liquid 

was assumed to be homogenous (Sánchez et al. 2005a). At first, external mass 

transfer limitation has been neglected to allow straightforward evaluation of 

the simulation results. Next, a boundary layer, resulting from external mass 

transfer limitation, was considered in this 1-dimensional model, using an 

external mass transfer coefficient of 0.91 m.d-1 (Bernet et al. 2005). 

The initial concentration of ammonium in the bulk liquid has been assumed to 

be equal to the influent concentration (250 g NH4
+-N.m-3). Negligible amounts 

of nitrite and nitrate (1 g N.m-3 each) were assumed to be present in the bulk 

liquid initially, to avoid numerical errors arising from zero concentrations in 

the kinetic expressions for endogenous respiration on nitrite and nitrate. 

4.4.3 Simulation set-up 

The simulation set-up is summarised in Table 4.4. Firstly, steady state 

simulations were performed to assess the influence of microbial growth and 

endogenous respiration parameters on microbial competition dynamics. All 

steady state simulations have been performed over several years of operation 

to ensure that steady state conditions were achieved. These simulations took 

generally less than 1 hour of simulation time. In a first series of steady state 

simulations (Model 1), endogenous respiration was neglected to allow direct 

comparison with the 0-dimensional model. Secondly, the endogenous 

respiration rate of AOB1, AOB2 and NOB was defined as 5% of the maximum 

growth rate of the species (Model 2). The resulting values for the respiration 

rates (bAOB1 = 0.068 d-1, bAOB2 = 0.121 d-1; bNOB = 0.040 d-1) are in the same 

range as those considered by Hao et al. (2002b). 

To be able to describe the experimental data from Volcke et al. (2008), some 

modifications of the model were necessary (Model 3). The endogenous 
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respiration rate of both AOBs was set equal to 0.1 d-1, while keeping the 

endogenous respiration rate of NOB at bNOB = 0.040 d-1. External mass transfer 

was also included. Firstly, some steady state simulations were performed with 

Model 3. The influent flow rate amounted to Qin = 0.0072 m3.d-1. Next, 

dynamic simulations were run for 123 days, preceded by a start-up period of 

23 days, at a loading rate of Qin = 0.0072 m3.d-1, and followed by a decrease in 

loading rate (63 days, Qin = 0.0053 m3.d-1), according to the experimental 

conditions. 

Using the available experimental data of Volcke et al. (2008), Model 3 was 

validated. The model accuracy of Model 3 was verified by calculating the Nash 

Sutcliffe criterion (model efficiency E, see Nash and Sutcliffe (1970)) as given 

in Eq. 4.4, with yi
m the ith observed value, yi the corresponding calculated value 

and 𝑦̅𝑚 the mean value of the observations. 

𝐸 = 1 −
∑ (𝑦𝑖

𝑚 − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖
𝑚 − 𝑦̅𝑚)2𝑛

𝑖=1

 Eq. 4.4 

If the model efficiency is lower than zero, the observed mean is a better 

predictor than the model, therefore, the model efficiency should be preferably 

larger than 0 with a maximum of 1 (perfect fit between simulation and 

observations).  
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Table 4.4 Overview of the simulation set-up in terms of parameter values (b: decay 

rate; KL: external mass transfer coefficient) and type of simulations (SS: steady 

state; D: dynamic) performed. 

 b (d-1) KL (m.d-1) SS D Comments 

Model 1 

bAOB1 = 0 

bAOB2 = 0 

bNOB = 0 

-  - 

Based on 0-

dimensional 

model (Volcke 

et al. 2008) 

      

Model 2 

bAOB1 = 0.068 

bAOB2 = 0.121 

bNOB = 0.040 

-  - 

Endogenous 

respiration rate 

is 5% of 

maximum 

growth rate 

      

Model 3 

bAOB1 = 0.1 

bAOB2 = 0.1 

bNOB = 0.040 

0.91   

Model used for 

reproduction of 

experimental 

data 

4.4.4 Definition of criteria to determine the competition outcome 

For 0-dimensional models, straightforward criteria for the outcome of 

microbial competition can be defined and applied to AOB based on Eq. 4.5 

(Volcke et al. 2008): 

S*AOBi = KNH
AOBi∙

1

μ
max
AOBi∙ SO2 (KO2

AOBi+SO2)⁄ ∙SRT-1
for i =  1, 2 

Eq. 4.5 

The species with the smallest non-zero value of S*AOBi will win the 

competition, while the other species will be washed out of the reactor. In this 

study, it was examined whether this criterion can also be applied to determine 

the competition outcome of 1-dimensional models. For the calculation of 

S*AOBi with Eq. 4.5, the solid retention time (SRT) needs to be known. The 

definition of SRT in biofilms is ambiguous. Either an overall SRT for all 

species in the biofilm can be used, or a species-specific SRT. The overall SRT 

was calculated as the ratio between the biofilm thickness, LF (m) and the 

detachment rate, ud (m.d-1) based on Eq. 4.6. 

SRToverall = 
LF

ud
  Eq. 4.6 
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The SRT of an individual species depends on its position in the biofilm and 

was calculated using Eq. 4.7. 

SRTAOBi = 
mAOBi

tot

Qin ∙ XAOBi
eff =

m
AOBi
particle

∙ np

Qin ∙ XAOBi
eff for i =  1, 2  Eq. 4.7 

In Eq. 4.7, mAOBi
tot  represents total biomass of AOBi (g COD) in the reactor, 

mAOBi

particle
 total biomass of AOBi (g COD) on 1 particle, np total number of 

spherical particles, Qin flow rate (m3.d-1) and  XAOBi
eff  biomass concentration 

(g COD.m-3) present in the effluent due to detachment. 

The criteria to determine the competition outcome, as obtained by steady state 

simulations, were applied to the 1-dimensional biofilm model in which both 

endogenous respiration and external mass transfer were neglected (Model 1). 

Firstly, the S*AOBi was determined using the overall SRT (Eq. 4.6). Next, the 

S*AOBi was also determined using the mean SRT of each AOB separately (Eq. 

4.7). 

4.5 Results and discussion 

4.5.1 Steady state analysis – without endogenous respiration 

(Model 1) 

To compare the 1-dimensional model with the 0-dimensional model, both 

endogenous respiration and external mass transfer were neglected in Model 1. 

For bulk liquid oxygen concentrations higher than 0.1 g O2.m-3, 98% of the 

influent ammonium was converted (Figure 4.1A). Nitrite accumulated in the 

reactor for bulk liquid oxygen concentrations lower than 0.2 g O2.m-3. For 

higher oxygen concentrations, almost all ammonium was converted to nitrate, 

nitrite accumulation being very low (less than 1.5% of the influent 

ammonium). 

With respect to the AOB population, a microbial population shift occurred 

around a bulk liquid oxygen concentration of 0.62 g O2.m-3 (Figure 4.1B). For 

bulk liquid oxygen concentrations lower than 0.616 g O2.m-3, K-strategist 

AOB1 won the competition, and for bulk liquid oxygen concentrations higher 

than 0.622 g O2.m-3, r-strategist AOB2 completely outcompeted AOB1. In the 
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very narrow oxygen concentration range between these values, AOB1 and 

AOB2 coexisted at steady state (detail plot in Figure 4.1B). It is important to 

stress that coexistence of AOB1 and AOB2 was not obtained with the 0-

dimensional model of Volcke et al. (2008). In general, coexistence of species 

performing the same function cannot be obtained with 0-dimensional models. 

On the other hand, the oxygen concentration at which the population shift 

between AOB1 and AOB2 occurred was about the same (0.6 g O2.m-3) as for 

the 0-dimensional model. This could have been expected, since the considered 

biofilm was very thin (9.6·10-6 m) and the same microbial parameters were 

used in both studies.  
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Figure 4.1 Influence of dissolved oxygen concentration in the bulk liquid on steady 

state bulk liquid concentrations of nitrogen components (left) and on steady state 

biomass and particulate fractions (XI = inert particulate components) in the biofilm 

(right). Simulation results are plotted for the model without endogenous respiration 

(top, A-B), defining endogenous respiration rate as 0.05 µmax (middle, C-D) and 

defining bAOB1 = bAOB2 = 0.1 d-1 with inclusion of a boundary layer (bottom, E-F). 

Note the different scale of the x-axis for Figure 4.1D.  
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It is important to note that the microbial population shift was not reflected in 

the reactor performance. It seems that, at high oxygen concentrations, AOB2 

took over completely the function of AOB1, converting ammonium to nitrite 

at the same rate. This is in agreement with the observations of Siripong and 

Rittmann (2007) and Wittebolle et al. (2008), based on the diversity data of 

nitrifying bacterial communities. They concluded that by providing functional 

redundancy, coexistence of different species of 1 functional type can maintain 

the stability of the system for nitrification when operation conditions change. 

Subsequently, the criterion given by Eq. 4.5 was applied to determine the 

competition outcome. The overall SRT (Eq. 4.6) amounted to 25 days for 

oxygen concentrations higher than 0.2 g O2.m-3. The calculated S*AOBi (Eq. 4.5) 

of the AOBs predicted which species was dominant (smallest nonzero value of 

S*AOBi) in a same way as the simulation results for Model 1 (Figure 4.1B). 

Furthermore, the bulk liquid oxygen concentration at which the ‘competition 

switch’ occurred was predicted correctly. However, coexistence of both AOB 

(Figure 4.1B) could not be predicted. In general, coexistence can never be 

predicted with a criterion as given by Eq. 4.5, considering 1-dimensional 

biofilm models, since one S*AOBi will always be smaller than the other, 

implying one species is dominant and the other one is washed out the biofilm. 

Next, the criterion for the outcome of interspecies competition (Eq. 4.5) was 

applied based on the mean SRT for each AOB separately (Eq. 4.7). In the 

oxygen concentration range in which a species was dominant, its SRT was 

about 21 days. However, the concentration of the outcompeted species in the 

biofilm was near zero and the effluent concentration of the outcompeted 

species was consequently very low (<1·10-30 g COD.m-3). Therefore, as in Eq. 

4.7 the effluent concentration of the species is in the denominator, the SRT of 

the outcompeted species increased to very large numbers. This implied that the 

value of S*AOBi was the smallest for the outcompeted species (Eq. 4.5), as the 

SRT is in the denominator, leading to a wrong prediction of the competition 

outcome. Furthermore, it should be noted that the simulations with the 1-

dimensional model first need to be performed to calculate the SRT regardless 
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of the SRT value applied. It can thus be concluded that the criteria are not very 

useful to be used in combination with 1-dimensional models. 

4.5.2 Steady state analysis – endogenous respiration rate as a 

fraction of maximum growth rate (Model 2) 

Taking into account the endogenous respiration at a rate equal to 5% of the 

maximum growth rate, the steady state effluent composition did not show large 

differences with the case in which endogenous respiration was neglected 

(Figure 4.1C versus A). However, the microbial population shift occurred at a 

higher oxygen concentration and coexistence was observed in a larger range 

of oxygen concentrations (4.18 – 5.5 g O2.m-3) considering endogenous 

respiration (Figure 4.1D versus B). Besides, AOB1 outcompetes AOB2 up to 

higher oxygen concentrations compared to the case in which endogenous 

respiration was not considered (up to about 5 g O2.m-3). The reason for this lies 

in the fact that the endogenous respiration rate of the species with the lowest 

growth rate (AOB1) has a significantly lower absolute value than the species 

with the highest growth rate (b
AOB1

= 0.068 d-1 versus b
AOB2

= 0.121 d-1), which 

provides an additional competitive advantage for AOB1, on top of its high 

affinity for oxygen. After adjusting the endogenous respiration of both AOBs 

to b
AOB1 = b

AOB2
 = 0.1 d-1 (data not shown), coexistence of both AOBs at an 

oxygen concentration of 0.36 g O2.m-3 was observed at steady state in a small 

range comparable to the simulation series in which no endogenous respiration 

was considered. 

A clear advantage of using 1-dimensional biofilm models instead of 0-

dimensional ones is the possibility to study both biomass and substrate 

concentration profiles in the biofilm. Figure 4.2 displays the biomass profiles 

and substrate profiles at steady state for a bulk liquid oxygen concentration of 

4.84 g O2.m-3. This bulk liquid oxygen concentration was chosen because it 

corresponds with the coexistence of AOB1 and AOB2 in about equal fractions 

(making up 17% and 15% of the particulate matter, respectively, see Figure 

4.1D). However, due to the thin steady state thickness, biomass and substrate 

concentration gradients were as good as lacking in this case. The biofilm 
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thickness considered in the model (9.6·10-6 m) is lower than the large ball-

shaped clusters formed by Nitrosomonas cells of more than 10·10-6 m diameter 

(Schramm et al. 1996; Okabe et al. 2004). Furthermore, up to 70% of the flocs 

in an activated sludge process can be in the range of 2·10-6 m to 16·10-6 m (Li 

& Ganczarczyk 1991), corresponding to the thin steady state thickness of the 

biofilm observed in the ITBR under study. This is the main reason why a 0-

dimensional biofilm model was also able to simulate the experimental data 

(Volcke et al. 2008). When such flat substrate and biomass profiles are 

observed (Figure 4.2) and when internal mass transfer limitation (diffusion) is 

thus negligible, choosing a simple and straightforward 0-dimensional model, 

as proposed by Volcke et al. (2008), is advisable. An advantage of the latter 

models is that they allow straightforward prediction of the competition 

outcome (Volcke et al. 2008). However, the added value of applying 1-

dimensional models will become larger for thicker biofilms, showing more 

pronounced concentration gradients and thus comprising more ecological 

niches. 

 

Figure 4.2 Steady state concentration profile of particulate matter (left, XI = 

particulate inert components) and the substrates of the AOB (right) in the biofilm 

for a bulk liquid oxygen concentration of 4.84 g O2.m-3. Simulation results for a 

model with endogenous respiration as a fraction of maximum growth rate.  
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4.5.3 Simulation of experimental data (Model 3) 

The insights gained from the steady state analysis were used to describe the 

experimental data of Bernet et al. (2004) and Volcke et al. (2008). Using 

Model 2, dynamic simulation of the observed microbial population shift from 

AOB1 to AOB2 was not possible, as the chosen endogenous respiration rate 

resulted in a clear competitive advantage for AOB1 (Figure 4.1D). Therefore, 

the endogenous respiration rate of AOB1 and AOB2 was changed to a fixed 

value of 0.1 d-1, resulting in the dominance of AOB2 for dissolved oxygen 

concentrations higher than 1.04 g O2.m-3 at steady state (Figure 4.1F). 

However, the resulting model still did not reflect the observed reactor 

behaviour, namely nitrite accumulation before the operation shift. This was 

remedied by considering external mass transfer (KL = 0.91 m.d-1 from Bernet 

et al. (2005)). Steady state analysis of the resulting model (Figure 4.1E) 

showed that nitrite accumulation took place up to oxygen concentrations of 1 

g O2.m-3 and nitrate was formed only if the oxygen concentration was larger 

than 0.6 g O2.m-3. 

When Model 3 was used for dynamic simulations, the dynamic simulation 

results showed a good resemblance (ENO2 = 0.53; ENO3 = 0.44; 

EAOB2:AOB1 = 0.90) with the available experimental data (Figure 4.3), as all 

calculated model efficiencies (Nash Sutcliffe criterion) were well above zero. 

The model efficiency for the ratio of AOB2:AOB1 was even close to 1. The 

results supported the hypothesis that the higher oxygen concentration in phase 

II allowed complete nitrite oxidation to nitrate (Figure 4.3A) and gave AOB2 

the possibility to grow at the expense of AOB1 (Figure 4.3B). The difference 

in maximum growth rate and affinity for oxygen of the two AOBs thus 

explained the population shift after lowering the loading rate in the ITBR 

observed during the experiments. 
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Figure 4.3 Dynamic simulation results, using a 1-dimensional model with 

endogenous respiration (bAOB1 = bAOB2 = 0.1 d-1) and a boundary layer. The nitrite 

and nitrate bulk liquid concentrations (left) and microbial community dynamics 

(ratio of AOB2 over AOB1, right) of the ITBR are given in function of time. The 

vertical line denotes the operation shift at day 124. 

4.6 Conclusions 

Microbial competition in a nitrifying biofilm (ITBR) reactor, operated at a 

varying loading rate, was described through a 1-dimensional nitrification 

biofilm model, which includes the competition between two genetically 

different populations of ammonia-oxidizing bacteria (AOB) and one 

population of nitrite-oxidizing bacteria (NOB). 

Microbial competition between different types of AOB is affected by the 

endogenous respiration rate, while external mass transfer limitations affect the 

competition between AOB and NOB and thus the reactor behaviour in terms 

of nitrite and/or nitrate production. 

Straightforward criteria for the competition outcome predicted by 0-

dimensional models (neglecting spatial variations) are not applicable to 1-

dimensional biofilm models. 
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Influence of process dynamics on 

the nitrifying community  
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5.1 Abstract 

For engineers, it is interesting to gain insight in the effect of control strategies 

on microbial communities, on their turn influencing the process behaviour 

and/or its stability. This chapter assesses the influence of process dynamics on 

the microbial community in a biofilm reactor for wastewater treatment, which 

was controlled according to several strategies aiming at nitrite accumulation. 

The process dataset, combining conventional chemical and physical data with 

molecular information, was analysed through a correlation analysis and in a 

simulation study. During nitrate (NO3
-) accumulation, an increased nitrogen 

loading rate (NLR) resulted in a drop of the bulk liquid oxygen concentration 

without resulting in nitrite accumulation (NO2
-). A biofilm model was able to 

reproduce the bulk liquid nitrogen concentrations in two periods before and 

after this increased NLR. As the microbial parameters calibrated for the 

ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in 

both periods were different, it was concluded that the increased NLR governed 

an AOB and NOB population shift. Based on the available molecular data, it 

was assumed that each period was typified by 1 dominant AOB and probably 

several subdominant NOB populations. The control strategies for nitrite 

accumulation influenced the bulk liquid composition by controlling the 

competition between AOB and NOB. 

5.2 Submitted as 

Vannecke, T.P.W., Bernet, N., Winkler, M.K.H., Santa-Catalina, G., J.-P. 

Steyer & Volcke, E.I.P. (Submitted). Influence of process dynamics on the 

microbial diversity in a nitrifying biofilm reactor. Biotechnology and 

Bioengineering.  
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5.3 Introduction 

The microbial community composition in a reactor does not only influence its 

performance, but also its stability (Siripong & Rittmann 2007; Wittebolle et al. 

2008; Ramirez et al. 2009). Indeed, more diverse systems imply a greater pool 

of physiological and genetic traits, which provide them with the capacity to 

interchange and sustain functions under varying environmental conditions 

(Bellucci et al. 2015). From an engineering point of view, it is interesting to 

correlate microbial shifts to system performance (Winkler et al. 2013). 

Moreover, the engineering of wastewater treatment systems would be greatly 

improved if one also could control the associated microbial diversity (Yuan & 

Blackall 2002). To achieve this goal, it is required to gain insight in the effect 

of control strategies on the microbial communities which on their turn 

influence the process behaviour and/or its stability. 

Techniques for biological nitrogen removal from wastewater based on 

ammonium oxidation to nitrite (nitritation) while preventing further oxidation 

to nitrate results in significant cost savings over conventional nitrification-

denitrification over nitrite (Turk & Mavinic 1986; Verstraete & Philips 1998; 

Peng & Zhu 2006). Various control strategies have been proposed to promote 

nitrite accumulation, by favouring the ammonia-oxidizing bacteria (AOB) and 

inhibiting the nitrite-oxidizing bacteria (NOB): (1) pH control causing 

inhibition by free ammonia (FA) and free nitrous acid (FNA) of NOB, which 

is stronger than for AOB (Anthonisen et al. 1976), (2) temperature control in 

combination with short sludge retention times to washout NOB (Lochtman 

1995), as at elevated temperatures, AOB have a higher growth rate than NOB 

(Wiesmann 1994), and (3) control of the dissolved oxygen (DO) concentration 

(Garrido et al. 1997; Bernet et al. 2001), as NOB have a lower affinity for 

oxygen and are hence more sensitive to DO limitation than AOB (Jayamohan 

et al. 1988). Moreover, biofilm reactors display distinct advantages for the 

cultivation of the slow growing nitrifiers, due to their specific biomass 

retention characteristics (Nicolella et al. 2000; Ras et al. 2011; Xu et al. 2015). 
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In this contribution, the influence of process dynamics on the microbial 

diversity in a nitrifying biofilm reactor, subjected to different control strategies 

for nitrite accumulation, is investigated. A unique data set combining both 

conventional chemical and physical data with molecular information for the 

nitrification process, and including both new and previously gathered 

experimental data (Bougard et al. 2006a), is analysed. Through a correlation 

analysis and a simulation study insight is gained on the influence of the process 

dynamics and the control strategies on the microbial diversity and competition 

in a nitrifying biofilm reactor. Furthermore, the hypothesis that an observed 

population shift between Nitrosomonas halophila and Nitrosomonas 

europaea, before the control strategies for nitrite accumulation were 

implemented, was induced by an increased nitrogen loading rate, was tested. 

5.4 Materials and methods 

5.4.1 Experimental set-up and operational conditions 

Bougard et al. (2006a) investigated the impact of two control strategies to 

obtain nitrite accumulation (nitritation) in an inverse turbulent bed reactor or 

ITBR (Buffiere et al. 2000): (1) high temperature (35 °C) control, in order to 

increase the free ammonia (FA) concentration and (2) adjustment of the 

nitrogen loading rate (NLR) through fuzzy-logic control of the liquid flow (Qin) 

rate, in order to keep both bulk liquid oxygen concentration (DO) as well the 

effluent concentration of ammonium low. It should be noted that the objective 

of the latter control strategy was not an exact regulation of oxygen and/or 

ammonia concentration around a precise set point, but to stimulate the 

microbial activity while achieving the control design objectives (Bougard et 

al. 2006a). Four membership functions were defined on the oxygen, three for 

the ammonia concentration and six membership functions were set on the 

liquid feed flow (Figure 5.1).  
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Membership functions Fuzzy-logic rules 

 

1. If (O2 is VL) and (NH4 is S) then (ΔQin is +++) 

2. If (O2 is VL) and (NH4 is M) then (ΔQin is ++) 

3. If (O2 is VL) and (NH4 is L) then (ΔQin is -) 

4. If (O2 is L) and (NH4 is S) then (ΔQin is ++) 

5. If (O2 is L) and (NH4 is M) then (ΔQin is ++) 

6. If (O2 is L) and (NH4 is L) then (ΔQin is -) 

7. If (O2 is M) and (NH4 is S) then (ΔQin is +) 

8. If (O2 is M) and (NH4 is M) then (ΔQin is n) 

9. If (O2 is M) and (NH4 is L) then (ΔQin is -) 

10. If (O2 is S) and (NH4 is S) then (ΔQin is n) 

11. If (O2 is S) and (NH4 is M) then (ΔQin is -) 

12. If (O2 is S) and (NH4 is L) then (ΔQin is --) 

 

 

S: small, M: medium, L: large:, VL: very large 

+++: very high increase, ++: high increase, +: increase, n: neutral, -: decrease, --: strong decrease 

O2 and NH4: bulk liquid ammonium and oxygen concentration, ΔQin: change of inflow rate 

Figure 5.1 Membership functions and fuzzy-logic rules of the fuzzy-logic control of 

the inflow rate (Qin) to adjust the nitrogen loading rate used by Bougard et al. 

(2006a). Figure based on Bougard (2004). 

Both control strategies led to nitrite accumulation, but the fuzzy logic 

controller of the inflow rate adjusting the NLR did not affect the composition 

of the microbial community, while temperature control did. Besides, a major 

shift in the nitrifying community of the biofilm reactor took place during 

nitrate (NO3
-) accumulation in the period before the control strategies for nitrite 

accumulation were implemented: Nitrosomonas halophila (AOB1) was 

completely replaced in the biofilm by Nitrosomonas europaea (AOB2) 

(Bougard et al. 2006a). 

The reactor was filled for 20% of its active volume with solid biocarriers, on 

which the biomass grew, kept afloat by an upward current of air. The aeration 
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was fixed at a flowrate of 2.88 m3.d-1. The reactor temperature was maintained 

at 30 °C or 35 °C and the pH around 7.2. 

The experiment ran for 592 days. During continuous operation mode, the 

reactor was fed with synthetic wastewater, containing around 2000 g TNH.m-3 

and 2.82·103 g Viandox.m-3 or 583 g COD.m-3 as a carbon source (meat juice), 

using a conversion factor of 0.207 g COD.(g Viandox)-1 (Bougard 2004). 

Viandox is composed of components difficult to degrade and was added to the 

synthetic wastewater to simulate reject water of anaerobic digesters. 

During reactor operation, the nitrogen loading rate (NLR) and the influent 

ammonium concentration, as well as the bulk liquid ammonium, nitrite and 

nitrate concentrations were monitored about every two days. Reactor 

temperature, pH and bulk liquid oxygen concentration (DO) were monitored 

online, every two minutes. 

Further details on the experimental set-up, operational conditions and 

analytical methods can be found in Bougard et al. (2006a) and Bougard et al. 

(2006b). 

5.4.2 Microbiological and molecular methods 

Molecular information on the bacterial community and ammonia-oxidizing 

guild published by Bougard et al. (2006a), based on Polymerase Chain 

Reaction – Single Strand Conformational Polymorphism (PCR-SSCP) 

combined with the cloning-sequencing technique, were complemented with 

new, unpublished data on the quantity and microbial diversity of the total 

bacterial and nitrifying community, based on quantitative PCR (qPCR) and 

Capillary Electrophoresis-Single Strand Conformation Polymorphism (CE-

SSCP), respectively. Samples (n=30) were taken over the experimental period 

of 592 days during reactor operation. Preparation and storage of the samples, 

besides DNA extraction was done as reported in Braun et al. (2015). 

5.4.2.1 qPCR of the nitrifying community 

The quantity of total Bacteria, AOB and NOB was measured in samples of 5 

µL diluted DNA taken from the nitrifying ITBR using qPCR-analysis. For the 
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qPCR-analysis of the total bacterial community, the V3 variable region of 16S 

rRNA genes was amplified from total genomic DNA with the bacterial primers 

taken from Braun et al. (2015). For the AOB, the gene coding for the enzyme 

ammonia monooxygenase (amoA), the functional gene for oxidation of 

ammonia to nitrite, was amplified using the forward primer from Kowalchuk 

et al. (1997), the reverse primer from Hermansson and Lindgren (2001) and 

the probe from Graham et al. (2007). For the NOB, the gene coding for the 

enzyme nitrite oxidoreductase (nxrA), the functional gene for oxidation of 

nitrite to nitrate, was amplified using the primers from Wertz et al. (2008). The 

fluorophores used were Yakima Yellow, FAM and SybrGreen for the total 

community, the AOB and the NOB, respectively. 

For the total bacterial community, AOB and NOB, two CT-values (cycle 

threshold), defined as the number of cycles required for the fluorescent signal 

to cross the threshold, were obtained per sample. CT-levels are inversely 

proportional to the amount of target nucleic acid in the sample. A standard 

curve, corresponding to the used fluorophore (Table 5.1), was generated at 

each assay, using dilutions of PCR products from known environmental clones 

(Braun et al. 2015). The amount of total bacterial, AOB and NOB DNA was 

then calculated based on the standard equation following Eq. 5.1, and was used 

to calculate the fraction of AOB and NOB in the total bacterial community. 

log10(amount) =  
(Ct − Yintercept)

slope
 Eq. 5.1 

Although a small fraction of heterotrophs, possessing multiple (>3) gene 

copies of the 16S rRNA gene could be present, we can assume that due to the 

low C:N ratio of the influent (0.3) and the low biodegradability of the C-source 

(Viandox) the biofilm was mainly composed of nitrifiers, as the growth of 

heterotrophs on decay products can be neglected (Mozumder et al. 2014). 

Nitrifiers possess 1 copy of the 16S rRNA gene (Stoddard et al. 2015). As the 

focus was mainly on the relative fractions of AOB and NOB in the biofilm, the 

correction for gene copy number was not deemed necessary, because both 
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amoA (Norton et al. 2002) and nxrA (Poly et al. 2008; Lücker et al. 2010) can 

be present in equal (2-3) amounts of gene copies per cell. 

Table 5.1 Standard curve parameters for the qPCR-analysis. 

 
Total bacterial 

community 
AOB NOB 

Fluorophore Yakima Yellow FAM SybrGreen 

Slope -3.342 -3.369 -3.310 

Y-intercept 42.93 43.16 35.27 

Efficiency 0.99 0.98 1.00 

R2 0.970 0.998 0.993 

5.4.2.2 CE-SSCP of the nitrifying community 

The total bacterial community in the biofilm was monitored by CE-SSCP as 

described by Braun et al. (2015). For specific CE-SSCP of the AOB of the β-

subdivision, the total genomic DNA was first amplified with a PCR using 

specific primers (forward primers CTO189fA/B, CTO189fC and reverse 

CTO654R) taken from Kowalchuk et al. (1997). Next, the V3 variable region 

of 16S rRNA genes was amplified from the PCR product using the same 

procedure as for the total bacterial community. For the specific CE-SSCP of 

the NOB, nitrite oxydoreductase (nxrA) was amplified (Wertz et al. 2008). The 

same primers as in Wertz et al. (2008) were used with an additional 

fluorophore (6-FAM) at the 3’ end of the reverse primer. 

The obtained SSCP profiles, with the number of peaks corresponding to the 

number of detected bacterial species/strains, were analysed statistically using 

the StatFingerprints package in R (Michelland et al. 2009; Braun et al. 2015). 

The Simpson diversity index (DSSCP) was calculated for each fingerprinting 

profile as DSSCP = -ln∑(peak areas)2 (Loisel et al. 2008). This diversity index 

reflects the underlying diversity from the SSCP profile independently of 

sample size (Rosenzweig 1995): a low and high DSSCP depicts a low and high 

diversity, respectively. 
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5.4.3 Correlation analysis 

To analyse the large amount of data on the process dynamics and the effect on 

the microbial dynamics, a correlation analysis was performed in IBM SPSS 

statistics 22 (Armonk, New York, U.S.). The correlation was expressed using 

the Pearson product-moment correlation coefficient r; r = 1 indicates total 

positive correlation, r = 0 no correlation, and r = −1 total negative correlation. 

Only correlations with a p-value smaller than 0.05 were considered significant. 

The correlation analysis of the physical and chemical data was based on 291 

datapoints (290 for DO); the correlation analysis of the microbial community 

was based on 28 datapoints, as for 2 samples on which molecular data were 

retrieved, the corresponding physical and chemical data were unavailable. 

5.4.4 Modelling the dynamic reactor behaviour 

5.4.4.1 Reactor model 

A 1-dimensional two-step nitrification biofilm model, including biomass 

variations perpendicular to the carrier on which the considered microorganisms 

grow, was set up to describe the experimental set-up of Bougard et al. (2006a) 

and was implemented in the Aquasim software (Reichert 1994). The model 

describing growth and decay of the AOB, NOB and heterotrophs is based on 

the model developed by Mozumder et al. (2014). The difference lies in the fact 

that anammox was not included and only 1 state variable is used to describe 

heterotrophic biomass while the model of Mozumder et al. (2014) 

distinguishes 3 state variables for heterotrophic biomass, based on the type of 

electron acceptor used. The model of Mozumder et al. (2014) was extended 

with inhibition of AOB and NOB by FA and FNA (Jubany et al. 2009), 

temperature dependency of growth and decay rates (Henze et al. 2000; Hao et 

al. 2002a), temperature dependency of diffusion (Bernet et al. 2005) and 

temperature and pH dependency of the FA:TNH and FNA:TNO2 fractions 

(Anthonisen et al. 1976). 

The overall model stoichiometry and kinetics, besides the corresponding 

parameter values of the developed biofilm model are given in Table 5.2, Table 

5.3 and Table 5.4, respectively. 
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Table 5.3 Reaction kinetics for growth and decay corresponding to the processes 

from Table 5.2. Adapted from Mozumder et al. (2014). FA and FNA inhibition were 

included for AOB and NOB following Jubany et al. (2009). AOBi: AOB population 

Period A or Period B (Approach 1-2) / AOB population A and B (Approach 3); 

NOBi: NOB population Period A or Period B (Approach 1-2) / NOB population A 

and B (Approach 3) 

j process ↓ 
 

1. growth of 

AOBi 
ρG,AOBi =  µmax

AOBi ∙
SO2

KO2
AOBi + SO2

∙
KI,FNA

AOBi

KI,FNA
AOBi + SFNA

∙
SFA

KFA
AOBi + SFA + SFA

2 /KI,FA
AOBi

∙  XAOBi 

2. growth of 

NOBi 
ρG,NOBi =  µmax

NOBi ∙
SO2

KO2
NOBi + SO2

∙
KI,FA

NOBi

KI,FA
NOBi + SFA

∙
SFNA

KFNA
NOBi + SFNA + SFNA

2 /KI,FNA
NOBi

∙
STNH

KTNH
NOBi + STNH

∙  XNOBi 

3. growth of 

aerobic 

heterotrophs 

ρG,H,O2 = µmax
H ∙

SS

KS
H + SS

∙
SO2

KO2
H + SO2

∙
STNH

KTNH
H + STNH

∙  XH 

4. anoxic growth 

(on NO2
-) of 

heterotrophs 

ρG,H,NO2 = µmax
H ∙ ηNO2 ∙

KO2
H

KO2
H + SO2

∙
SNO2

KNO2
H + SNO2

∙
SNO2

SNO2 + SNO3

∙
SS

KS
H + SS

∙
STNH

KTNH
H + STNH

∙  XH 

5. anoxic growth 

(on NO3
-) of 

heterotrophs 

ρG,H,NO3 = µmax
H ∙ ηNO3 ∙

KO2
H

KO2
H + SO2

∙
SNO3

KNO3
H + SNO3

∙
SNO3

SNO2 + SNO3

∙
SS

KS
H + SS

∙
STNH

KTNH
H + STNH

∙  XH 

6. decay of AOBi ρD,AOBi = dAOBi ∙  XAOBi

7. decay of NOBi ρD,NOBi = dNOBi ∙  XNOBi

8. decay of 

heterotrophs  
ρD,H =  dH ∙  XH 

It should be noted that AOB inhibition by FA and NOB inhibition by FNA 

(substrate inhibition, i.e., a special form of uncompetitive inhibition 

(Bisswanger 2008)) were described with a Haldane model (Beltrame et al. 

1980) while AOB inhibition by FNA and NOB inhibition by FA were 

described with a non-competitive model. The Haldane model is essentially the 

combination of a Monod term and a non-competitive inhibition term.  
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Table 5.4 Biofilm characteristics and stoichiometric, kinetic and mass transfer 

parameter values of the multispecies biofilm model valid for 30 °C and pH 7.5; note 

that temperature and pH dependency were included in the model. HET: 

heterotrophs. 

Parameter Value Unit Comments 

Biofilm characteristics 

Autotrophic biomass (viable + inert) concentration 80000 g COD.m–3 van Benthum et al. (1995) (1) 

Heterotrophic biomass (viable + inert) concentration 26667 g COD.m–3 van Benthum et al. (1995) (1) 

LFSS Steady state biofilm thickness 20e-006 m Calculated 

Stoichiometric parameters 

YAOBi Yield (AOBi) 0.19 g COD.(g N)-1 Median value in Figure 2.1 

YNOBi Yield (NOBi) 0.08 g COD.(g N)-1 Median value in Figure 2.2 

YH Yield of HET on O2 0.67 g COD.(g COD)-1 Henze et al. (2000) 

YH,NO2 Yield of HET on NO2
- 0.53 g COD.(g COD)-1 Muller et al. (2003) 

YH,NO3 Yield of HET on NO3
- 0.53 g COD.(g COD)-1 Muller et al. (2003) 

iNXB Biomass nitrogen fraction 0.07 g N.(g COD)-1 Mozumder et al. (2014) 

iNXI Inert nitrogen fraction 0.07 g N.(g COD)-1 Mozumder et al. (2014) 

iNSS Organic substrate nitrogen fraction 0.03 g N.(g COD)-1 Henze et al. (2000) 

fI

 
Inert fraction in biomass 0.08 g COD.(g COD)-1 Henze et al. (2000) 

Kinetic (at 30 °C and pH 7.5) 

µmax
AOBi Maximum growth rate (AOBi) 0.65 / 0.71 d-1 This study (2) 

µmax
NOBi Maximum growth rate (NOBi) 1.43 / 0.30 d-1 This study (2) 

µmax
HET Maximum growth rate HET 12 d-1 Henze et al. (2000) (3) 

KFA
AOBi  Affinity of AOBi for FA 1.25 / 1.29 g FA-N.m-3 This study (4) 

KFNA
NOBi Affinity of NOBi for FNA 0.0015 / 0.0024 g FNA-N.m-3 This study (4)

 

KTNH
NOBi 

Affinity of NOBi for ammonium 

(nitrogen source) 0.02 g TNH-N.m-3 Mozumder et al. (2014) 

KTNO2
H  Affinity of HET for total nitrite 0.3 g N.m-3 Alpkvist et al. (2006) 

KNO3
H  Affinity of HET for total nitrate 0.3 g N.m-3 Alpkvist et al. (2006) 

KO2
AOBi Affinity of AOBi for O2 0.078 / 0.71 g O2.m-3 This study 

KO2
NOBi Affinity of NOBi for O2 0.049 / 0.06 g O2.m-3 This study 

KTNH
H  

Affinity of HET for ammonium 

(nitrogen source) 
0.02 g TNH-N.m-3 Mozumder et al. (2014) 

KO2
H  Affinity of HET for O2 0.2 g O2.m-3 Henze et al. (2000) 

KS
H Affinity of HET for organic substrate 20 g COD.m-3 Henze et al. (2000) 

KI,FA
AOBi FA inhibition (AOBi)  490.51 / 489.05 g FA-N.m-3 This study (4) 

KI,FA
NOBi FA inhibition (NOBi) 12.93 / 10.06 g FA-N.m-3 This study (4) 

KI,FNA
AOBi  FNA inhibition (AOBi) 0.42 / 0.21 g FNA-N.m-3 This study (4) 

KI,FNA
NOBi  FNA inhibition (NOBi) 0.27 / 0.13 g FNA-N.m-3 This study (4) 

dAOBi Decay rate (AOBi) 0.073 / 0.061 d-1 This study (4) 

dNOBi Decay rate (NOBi) 0.13 / 0.051 d-1 This study (4) 

dH Decay rate (HET) 0.6 d-1 Defined as 0.05 ∙ µmax
HET 

ηNO2=ηNO3 Anoxic reduction factor 0.8 - Henze et al. (2000) 

Mass transfer parameters 

DNH4 Diffusion coefficient NH4
+ 1.60x10-4 m2.d-1 Bernet et al. (2005) (5) 

DNO2 Diffusion coefficient NO2
- 1.61x10-4 m2.d-1 Bernet et al. (2005) (5) 

DNO3 Diffusion coefficient NO3
- 1.79x10-4 m2.d-1 Bernet et al. (2005) (5) 

DO2 Diffusion coefficient O2 1.52x10-4 m2.d-1 Bernet et al. (2005) (5) 

DN2 Diffusion coefficient N2 2.2x10-4 m2.d-1 
Williamson and McCarty 

(1976) 

DS Diffusion coefficient organic substrate 1x10-4 m2.d-1 Hao and van Loosdrecht 
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(2004) 

(1) Calculated from a autotrophic and heterotrophic biomass concentration of 60000 g VSS.m–3 and 

20000 g VSS.m-3 van Benthum et al. (1995), respectively, using a conversion factor of 0.75 g 

VSS.(g COD)-1 (Henze et al. 2000). 

(2) Temperature dependency of the maximum growth rate of AOB and NOB was modelled using 

and Eq. 5.2 and Eq. 5.3, respectively, with Ea
AOB = 68 kJ.mol-1; Ea

NOB = 44 kJ.mol-1 and R = 8.31 

J.(mol.K)-1 (Hao et al. 2002a). 

µmax
AOB(T) =  µmax

AOB(Tref) ∙ exp(
Ea
AOB ∙ (T −  Tref)

R ∙ T ∙ Tref
) Eq. 5.2 

µmax
NOB(T) =  µmax

NOB(Tref) ∙ exp(
Ea
NOB ∙ (T − Tref)

R ∙ T ∙ Tref
) Eq. 5.3 

(3) The temperature dependency of the maximum growth rate of heterotrophs was implemented 

using the temperature relationship of ASM3 (Henze et al. 2000), as described by Eq. 5.4. 

µ
max
HET(T)= µ

max
HET(Tref)∙exp(0.0693(T-Tref)) Eq. 5.4 

(4) The fraction of FA:TNH and the fraction of FNA:TNO2 are dependent on pH and temperature 

and were calculated for a certain combination of reactor temperature and pH using Eq. 5.5 and Eq. 

5.6, respectively, taken from Anthonisen et al. (1976). 

FA

TNH
=  

1

1 + 10pKaNH4−pH
, with pKaNH4 = −log(exp

−
6344
T(K)) Eq. 5.5 

FNA

TNO2

=  
1

1 + 10pH−pKaNO2
, with pKaNO2 = −log(exp

−
2300
T(K)) Eq. 5.6 

(5) Diffusion of ammonium, nitrite, nitrate and oxygen (m2.d-1) and its temperature dependency 

were modelled as described by Bernet et al. (2005). The temperature dependency of oxygen 

diffusion was calculated using Eq. 5.7 (Wijffels et al. 1995) and the temperature dependency of 

ammonium, nitrite and nitrate diffusion was calculated using Eq. 5.8 (Hunik et al. 1994). 

DO2= 0.85∙1.91∙10−6∙e
-
17200
R∙T  ∙86400  Eq. 5.7 

Dn= fdn∙Dwn∙
η

25

η
T

∙
T

298.15
  Eq. 5.8 

In Eq. 5.8, Dwn stands for the diffusion coefficients of ammonium, nitrite or nitrate in water, i.e., 

DNH4 = 1.69e-004 m2.d-1, DNO2 =1.65e-004 m2.d-1 and DNO3 = 1.64e-004 m2.d-1, taken from Flora et 

al. (1999), fdn for 0.835 (ammonium), 0.86 (nitrite) or 0.96 (nitrate), taken from Williamson and 

McCarty (1976) and η25 and ηT the viscosity of water at 25°C and at temperature T.  
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The model in the current contribution describes biofilm growth on spherical 

particles with a radius of 73.5·10-6 m in an ITBR (V = 2.84·10-3 m3). The total 

number of particles (2·108 particles) was calculated based on the total volume 

of particles (5.68·10-4 m3) in the reactor and the volume of 1 particle 

(1.7·10-12 m3). During the experiments about 80% (1.6·108) of the particles 

were occupied (Bougard 2004). The total amount of biomass of 17 g VSS or 

23 g COD, using a conversion factor of 0.75 g VSS.(g COD)-1 (Henze et al. 

2000), was assumed to be divided homogenously over the colonized particles, 

resulting in a steady state thickness of LFSS = 20·10-6 m. It was assumed that 

steady state thickness had already been reached at the start of the simulations, 

as the experiment was preceded by a start-up period of 22 days. 

The biofilm was assumed to be rigid, meaning that particulate components are 

displaced only by the expansion or shrinkage of the biofilm solid matrix. The 

biofilm porosity was assumed constant at 80%. An initial active biomass 

fractioning at the start of Period I of the heterotrophs was set as 0.01%. The 

remaining active biomass was assumed to be made up by 75% AOB and 25% 

NOB, according to the number of electrons exchanged by the oxidation of 

NH4
+ to NO2

- and from NO2
- to NO3

-, respectively. 

The flow rate, influent ammonium and COD concentration, the temperature of 

the reactor, pH, and DO were implemented in the model, using the offline and 

online monitored data. So, rather than implementing the control strategies as 

such, the variation of both the controlled, i.e. temperature for temperature 

control, and liquid flow rate (Qin) for the controller adjusting the NLR, and the 

manipulated variables (controller output) was considered. For temperature 

control, the controller output is related to all variables for which temperature 

dependency is implemented in the model, i.e., the ratio of free ammonia (FA) 

and total ammonium, the ratio of nitrous acid (FNA) and total nitrite, diffusity 

of ammonium, nitrite, nitrate and oxygen, besides the growth and decay rates 

of the microorganisms. For fuzzy-logic control of the inflow rate, the controller 

output is the bulk liquid ammonium and oxygen concentration corresponding 

to the NLR. 
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5.4.4.2 Model calibration 

As the focus of this contribution is on the effect of process dynamics on the 

nitrifying community, no sensitivity analysis was performed but instead it was 

verified by trial and error whether the simplest model possible was able to 

simulate the overall reactor behaviour (nitrite versus nitrate accumulation, 

besides residual ammonium concentration) when only selected microbial 

parameters were calibrated. The selection of microbial parameters was based 

on the results of Chapter 2 (importance of maximum growth rate and affinity 

for electron donor and acceptor) and Chapter 4 (importance of endogenous 

respiration, in Chapter 5 replaced by decay). 

First, only the microbial parameters of AOB known to have an important effect 

on bulk liquid composition, i.e., maximum growth rate and affinity for 

ammonium and oxygen, see Chapter 2 and previously performed sensitivity 

analyses (Brockmann & Morgenroth 2007; Brockmann et al. 2008; 

Brockmann & Morgenroth 2010; Brockmann et al. 2013), were calibrated to 

the experimentally recorded bulk liquid concentrations of total ammonium 

(TNH), total nitrite (TNO2) and nitrate (NO3
-). By checking the fit of the 

simulation results with the observed overall process performance, it was found 

that besides the calibration of these microbial parameters for the AOB, these 

parameters also needed to be calibrated for the NOB guild. Also FA and FNA 

inhibition of AOB and NOB needed to be implemented in the model and the 

decay rate and inhibition constants for FA and FNA of both the AOB and the 

NOB guild needed to be calibrated. 

The values for decay rate, maximum growth rate, the affinity constants and 

inhibition constants of both the AOB and NOB were estimated using Aquasim 

by minimizing the sum of the squares of the weighted deviations (χ2) between 

the measurements and the simulation results of the bulk liquid ammonium, 

nitrite and nitrate concentrations (Reichert et al. 1995). The sum (χ2) extends 

over all the data points of all variables specified as fit targets (TNH, TNO2 and 

NO3
-), which were given equal weights (χ2

tot = χ2
TNH + χ2

TNO2 + χ2
NO3). 
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The sum was minimized numerically using the secant algorithm (Ralston & 

Jennrich 1978) and the maximum number of interactions was set at 200, in 

order to keep the computational time reasonable. The initial bulk liquid and 

biofilm concentrations of dissolved substances were assumed to be 0.01 

g N.m-3 and the initial biomass concentrations in the biofilm were calculated 

from the biomass (viable + inerts) density, considering a volume fraction of 

0.01 of heterotrophs, 0.1425 of AOB and 0.0475 NOB. The biofilm thickness 

was assumed to be at steady state and the concentration of particulate inert 

components in the biofilm was assumed to be 0 g COD.m-3. When the whole 

period of reactor operation was calibrated in two separate periods, the initial 

values of the biofilm thickness, the dissolved (bulk and biofilm) and particulate 

(biofilm) components of the second period were the last simulation values of 

the previous period. 

The parameter space or constraints concerning the microbial characteristics of 

AOB and NOB were based on the minimum and maximum values of the range 

reported in literature. The minimum and maximum values of the ranges for 

maximum growth rate and affinity constants were taken from Chapter 2 (see 

Vannecke and Volcke (2015)). The minimum and maximum values for decay 

rates were based on the ranges for maximum growth rate (Chapter 2) by 

defining the decay rate as 5% of the value for maximum growth rate. A review 

of inhibition constant values reported in literature was given in this chapter, 

providing the constraints for the parameter values of the inhibition constants. 

The starting (uncalibrated) value of all considered microbial parameters was 

the median value of the corresponding range. 

For each simulation, the model accuracy was verified by calculating the Nash-

Sutcliffe criterion (model efficiency E, see Nash and Sutcliffe (1970)) as given 

in Eq. 5.9, with yi
m the ith observed value, yi the corresponding calculated value 

and 𝑦̅𝑚 the mean value of the observations. 

𝐸 = 1 −
∑ (𝑦𝑖

𝑚 − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖
𝑚 − 𝑦̅𝑚)2𝑛

𝑖=1

 Eq. 5.9 

Model efficiencies for the fit with bulk liquid concentrations of TNH (ETNH), 

TNO2 (ETNO2) and nitrate (ENO3) were calculated. If the model efficiency is 
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lower than zero, the observed mean is a better predictor than the model, 

therefore, the model efficiency should be preferably larger than 0 with a 

maximum of 1 (perfect fit between simulation and observations). 

5.4.4.3 Simulation set-up 

As the inclusion of diversity within functional guilds is only necessary when 

the reactor behaviour is clearly influenced by changes in the microbial 

community, see Chapter 3 (Vannecke et al. 2015), it was attempted to simulate 

the dynamics of the bulk liquid observed by Bougard et al. (2006a) with the 

simplest model possible. Therefore, the model described above considering the 

growth of 1 AOB population, 1 NOB population and 1 heterotrophic 

population was used for three different simulations (Table 5.5). Firstly, this 

model neglecting diversity, was calibrated over the whole experimental period. 

As the simulation results of Approach 1 were not in correspondence with the 

overall reactor behaviour, it was decided to calibrate the model over two 

separate periods: Period A (day 0 – 100) and Period B (day 100 – 592), 

distinguished by the dominance of Nitrosomonas halophila and Nitrosomonas 

europaea, respectively (Bougard et al. 2006a). As the simulation results of 

Approach 2 better reflected the overall behaviour, the calibrated microbial 

parameters of both periods were used to construct two AOB and two NOB 

species. The growth and decay of these species were implemented 

simultaneously in a model, hereby considering within-guild diversity. This 

model was used in Approach 3, to try to reflect the overall reactor behaviour 

of the whole experimental period. 

Table 5.5 Overview of the simulation set-up. In Approach 3, the two AOB and NOB 

populations are based on the calibrated values for period A and B from Approach 

2. 

Approach 
Period calibrated 

(days) 

Nitrifying community 

(calibrated) 

1 0-592 1 AOB + 1 NOB 

2 
Period A: 0-100 

Period B: 100-592 
1 AOB + 1 NOB 

3 0-592 2 AOB + 2 NOB 

  



Chapter 5 

134 

5.5 Results and discussion 

5.5.1 Correlation analysis 

5.5.1.1 Chemical and physical data 

During operation, four periods could be distinguished (Table 5.6). Period I 

(day 0 - 113) was typified with a temperature of 30°C and nitrate accumulation, 

period II (day 114 - 230) with temperature control to 35°C and nitrite 

accumulation, period III (day 231 - 491) with a temperature of 30°C and 

recovery to full nitrification by lowering the NLR and period IV (day 492-592) 

with a temperature of 30°C and fuzzy-logic control of the inflow rate with 

resulting nitrite accumulation. The reactor was brought back to full nitrification 

in period III to allow to test the ability of the fuzzy-logic controller to achieve 

partial nitrification in the next experimental period. 

Table 5.6 Periods distinguished during continuous operation (592 days) of the 

nitrifying reactor (Bougard et al. 2006a). NLR: nitrogen loading rate and Qin: liquid 

flow rate. 

Period Days 
Dominant 

AOB  

Temperature 

(°C) 

Control 

strategies 

Process 

performance 

I 

0-50 N. halophila 

30  - 
NO3

- 

accumulation 51-113 
N. halophila 

N. europaea 

II 114-230 N. europaea 30  35 
Temperature 

control 

NO2
- 

accumulation 

III 231-491 N. europaea 30 Lowering Qin 

Shift from 

NO2
- to NO3

- 

accumulation 

IV 492-592 N. europaea 30 

Fuzzy-logic 
control of Qin 

for adjusting 

NLR 

NO2
- 

accumulation 

An overview of the operational conditions during reactor operation is given in 

Figure 5.2. 
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Figure 5.2 Overview of the operational conditions during reactor operation 

(Bougard et al. 2006a). (A) temperature, (B) bulk liquid oxygen concentration (DO), 

(C) pH, (D) nitrogen loading rate (NLR), (E) flow rate Qin and (F) C/N-ratio. 

Temperature, DO and pH were monitored online every 2 minutes, the other 

variables were measured offline every 2 days. The roman numbers denote the 

different periods distinguished (Table 5.6).  
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Figure 5.3 displays the bulk liquid total ammonium (TNH), total nitrite (TNO2) 

and nitrate concentrations (Figure 5.3A) and the corresponding bulk liquid FA 

and FNA concentrations (Figure 5.3B), calculated from the total ammonium 

and total nitrite concentrations, considering the reactor temperature and pH 

(Anthonisen et al. 1976). Table 5.7 summarizes the results of the correlation 

analysis of the physical and chemical data. 

 

Figure 5.3 Bulk liquid concentrations of total ammonium (TNH), total nitrite (TNO2) 

and nitrate during the experiment (plot A), taken from Bougard et al. (2006a) and 

the corresponding free ammonia (FA) and free nitrous acid (FNA) concentrations 

(plot B), calculated based on reactor temperature and pH (Anthonisen et al. 1976). 

The roman numbers denote the different periods of the experiment (Table 5.6). Note 

the different scales of the y-axes in plot B.  
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The strongest significant correlation observed for temperature, was the 

negative correlation with nitrate (r = -0.39, p<0.05, Table 5.7), confirming the 

lower production of nitrate at higher temperature, which was the basis for the 

temperature control strategy applied in Period II (Table 5.7). 

The oxygen concentration in the bulk liquid was negatively correlated with the 

total ammonium in the bulk liquid (r = -0.21, p<0.05, Table 5.7) and with the 

nitrogen loading rate (r = -0.45, p<0.05, Table 5.7). An increasing NLR and 

bulk liquid concentration of total ammonium thus result in a decreasing bulk 

liquid oxygen concentration for the prevailing fixed aeration flow rate, due to 

the increasing biological activity and oxygen consumption of the nitrifiers. 

The FA concentration increased (r = 0.74, p<0.05) and the FNA concentration 

decreased (r = -0.29, p<0.05) with increasing pH (Table 5.7), following the 

expected patterns (Anthonisen et al. 1976). The strong correlation indicates 

that small deviations from the pH set-point (see Figure 5.2) could have large 

effects on the FA and FNA concentration. The concentrations of FA and FNA 

observed in the bulk liquid were equal to or even higher than the median value 

of the reported FA inhibition constants for NOB and FNA inhibition constants 

for AOB and NOB (Figure 5.4), indicating possible inhibition of the NOB by 

FA and the AOB and NOB by FNA. 

Overall, from the correlation analysis of the physical and chemical data, it can 

be concluded that temperature, DO and nitrogen loading rate, besides pH had 

a large influence on the bulk liquid concentration of the different nitrogen 

compounds and thus constituted suitable control handles for process operation.  
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Figure 5.4 Boxplots representing the reported ranges for inhibition constants for FA 

(KI,FA, left) and FNA (KI,FNA, right) of AOB (top) and NOB (bottom) found in 

literature. Max = maximum value found in literature, Q3= third quartile, M = 

median, Q1= first quartile and min = minimum value. The raw data of the literature 

review can be found in Appendix 5A. It should be noted that FA inhibition of AOB 

and FNA inhibition of NOB is generally described by a Haldane term, while FNA 

inhibition of AOB and FA inhibition of NOB is described with a non-competitive 

inhibition term. 

5.5.1.2 Microbial community information 

The fraction of AOB and NOB in the biofilm (qPCR) and the diversity of the 

total and nitrifying community (CE-SSCP) are summarised in Figure 5.5A and 

Figure 5.5B, respectively. In Table 5.8, the correlation analysis considering the 

microbial community related to the physical and chemical data is given.  
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Figure 5.5 Information on the microbial composition of the biofilm: (A) the 

percentage of AOB and NOB in the microbial community (n=30), based on qPCR-

analysis and (B) the diversity of the microbial community (n=30), analysed using 

CE-SSCP and expressed as the negative logarithm of the Simpson index, DSSCP. The 

roman numbers denote the different periods distinguished (Table 5.6). Note the 

difference scales of the y-axes in plot A.  
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Table 5.8 Correlation matrix between data on the process conditions and the 

microbial community (n=28). Correlation coefficient r and p-value are given. Bold 

values refer to significant correlations (p-value<0.05). 

  
Fraction AOB Fraction NOB 

Diversity total 

community 
AOB diversity NOB diversity 

(%) (%) (D') (D') (D') 

TNH 

(g TNH-N.m-3) 
0.07 (0.71) -0.34 (0.07) -0.12 (0.53) 0.1 (0.6) -0.16 (0.39) 

TNO2 

(g TNO2-N.m-3) 
0.63 (p<0.01) -0.78 (p<0.01) -0.45 (0.01) -0.22 (0.24) 0.04 (0.83) 

NO3 

(g NO3-N.m-3) 
-0.57 (p<0.01) 0.72 (p<0.01) 0.24 (0.19) 0.27 (0.16) 0.2 (0.29) 

FA 

(g NH3-N.m-3) 
-0.07 (0.7) -0.2 (0.3) 0.07 (0.72) -0.01 (0.96) -0.27 (0.14) 

FNA 

(g HNO2-N.m-3) 
0.64 (p<0.01) -0.73 (p<0.01) -0.48 (0.01) -0.26 (0.16) -0.02 (0.91) 

Temperature 

(°C) 
0.28 (0.13) -0.34 (0.07) 0.06 (0.77) -0.14 (0.45) -0.36 (0.05) 

DO 

(g O2.m
-3) 

0.04 (0.85) -0.02 (0.9) 0.13 (0.48) -0.29 (0.11) 0.18 (0.34) 

pH -0.09 (0.64) -0.1 (0.6) 0.2 (0.3) 0.13 (0.49) -0.27 (0.15) 

NLR 

(g N.m-3.d-1) 
0.14 (0.45) 0.1 (0.59) 0.07 (0.71) 0.42 (0.02) -0.02 (0.93) 

C/N-ratio 

(g COD.g N-1) 
-0.19 (0.31) 0.3 (0.1) 0.33 (0.07) -0.06 (0.76) 0.22 (0.25) 

Fraction AOB 

(%) 
  -0.47 (0.01) -0.39 (0.04) -0.41 (0.02) -0.09 (0.65) 

Fraction NOB 

(%) 
   0.53 (p<0.01) 0.22 (0.25) -0.07 (0.71) 

Diversity total 

community 

(DSSCP) 

    0.28 (0.14) 0.03 (0.88) 

AOB diversity 

(DSSCP) 
     0.18 (0.35) 

NOB diversity 

(DSSCP) 
      

The fraction of AOB was positively correlated (r = 0.63, p<0.05) with the total 

nitrite concentrations and the fraction of NOB was correlated negatively 

(r = -0.78, p<0.05) with the nitrite concentration and positively (r = 0.72, 

p<0.05) with the nitrate concentration (Table 5.8). This indicates that the qPCR 

analysis based on the amoA and nxrA genes correctly targeted the AOB and 

the NOB, respectively. 

The overall fraction of AOB (28 ± 21.86%) was higher than the fraction of 

NOB (0.84 ± 0.82%) in the biofilm (Figure 5.5A), as expected from the yield 

differences in AOB and NOB (Winkler et al. 2012). 

Logically, the fraction of NOB decreased in the periods of nitrite accumulation 

(Table 5.6), reaching a minimum of 0.04% during period III (Figure 5.5A). 

This low biomass content explains why it took so long before the system could 

reach again complete conversion of ammonium to nitrate in period III (Table 

5.6). The nitrogen loading rate had to be reduced several times (Figure 5.2) to 
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relax the inhibitory conditions and oxygen limitation, in order to allow NOB 

growth in the biofilm and get the system back to full nitrification, which was 

necessary to test an alternative control for nitrite accumulation in Period IV. 

Elawwad et al. (2013) shows that NOB are indeed more sensitive than AOB 

to starvation and require longer periods for complete recovery. 

Although diversity was calculated from SSCP profiles and only strong 

tendencies can be significant, some trends were visible (Figure 5.5B). The 

diversity of the total community was maximal at day 4 (DSSCP = 4.18), declined 

to its minimum (DSSCP = 2.34) during Period III (Figure 5.5B) and was 

negatively correlated with total nitrite (r = -0.45, p<0.05) and FNA (r = -0.48, 

p<0.05) concentrations, which shows total diversity decreased when nitrite ac-

cumulated. The diversity of the total community (DSSCP = 3.29 ± 0.45) 

resembled the diversity of the NOB (DSSCP = 3.17 ± 0.66), while the AOB 

diversity (DSSCP = 1.30 ± 0.35) was clearly lower (Figure 5.5B). The fraction 

of AOB and NOB were indeed negatively (r = -0.39, p<0.05) and positively 

(r = 0.53, p<0.05) correlated with the total diversity, respectively (Table 5.8). 

These observations indicate that the NOB diversity was higher than the AOB 

diversity. 

The highest AOB diversity (DSSCP ≈ 2) was observed in period I around day 77 

(Figure 5.5B), which corresponds with the coexistence of Nitrosomonas 

halophila and Nitrosomonas europaea in the biofilm reported by Bougard et 

al. (2006a). When Nitrosomonas europaea was the only AOB in the biofilm 

from day 100, the DSSCP value declined to 1. 

The NOB diversity reached its lowest value (DSSCP = 1.90) during Period II 

(Figure 5.5B), when the reactor was submitted to temperature control (Table 

5.6). Surprisingly, high NOB diversity (up to DSSCP = 4.21) was observed 

during Period IV, when fuzzy-logic control of the inflow rate was used to 

adjust the NLR (Table 5.6). This could confirm the conclusion of Bougard et 

al. (2006a) that, although both control strategies resulted in nitrite 

accumulation, the fuzzy-logic controller of the inflow rate in Period IV 

maintained the microbial diversity better than temperature control. It was 

indeed an objective to design the controller of Period IV, adjusting the NLR, 



 Influence of process dynamics on the nitrifying community 

143 

(1) good enough to accumulate steadily nitrite within the reactor but (2) bad 

enough to maintain the microbial diversity (Bougard et al. 2006a). The 

maintenance of overall microbial diversity is important to ensure reactor 

performance and process stability on the long term, e.g., when facing 

disturbances (Daims et al. 2001b; Egli et al. 2003; Ramirez et al. 2009) or 

when the decision is taken to go back to complete nitrification after nitrite 

accumulation (Bougard et al. 2006a). 

5.5.2 Modelling the dynamic reactor behaviour 

5.5.2.1 Approach 1: Conventional model (1 AOB and 1 NOB) for whole 

period 

Preliminary simulations had shown that, in order to be able to reflect the overall 

dynamic reactor behaviour, i.e., nitrite or nitrate accumulation besides residual 

ammonium bulk liquid concentration, the microbial parameters of both AOB 

and NOB needed to be calibrated. Furthermore, based on the literature study 

on FA and FNA inhibition of AOB and NOB, it was concluded that the 

observed FA and FNA concentrations were high enough to be possibly 

inhibiting for both AOB and NOB. Therefore, FA and FNA inhibition were 

added to the model following Jubany et al. (2009). Therefore, by minimizing 

the sum of the squares of the weighted difference (χ²) between experimental 

measurements and simulation results of bulk liquid total ammonium (TNH), 

total nitrite (TNO2) and nitrate concentration, the maximum growth rate, decay 

rate, affinity for electron donor and acceptor and inhibition constants for FA 

and FNA inhibition were estimated for AOB and NOB. 

First, it was attempted to simulate the macroscale dynamics (Approach 1) by 

calibrating a single AOB and a single NOB population, each characterized by 

lumped parameter values reflecting the mean behaviour of their functional 

guild, as is common practice in nitrification process models. Even for the best 

possible fit (χ²tot: 2197; χ²TNH: 1291; χ²TNO2: 419; χ²NO3: 487, see Figure 5.6), the 

overall dynamics were not simulated correctly: nitrite accumulated during the 

simulation of Period III (Table 5.6), while in this period the system was 

brought back from nitrite to nitrate accumulation by lowering the NLR (Table 
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5.6). Furthermore, the model efficiencies considering total ammonium 

(ETNH = -2.98), total nitrite (ETNO2 = -0.29) and nitrate (ENO3 = -0.50) were all 

below zero. In conclusion, it was not possible to simulate the whole 

experimental period with a single AOB and a single NOB population. This 

indicates that one or more significant population shifts had taken place during 

the whole experimental period. 

 

Figure 5.6 Simulation of the bulk output of the reactor using the calibrated 1-

dimensional biofilm model considering the growth and decay of 1 AOB and 1 NOB 

population (Approach 1), besides heterotrophs. Exp: experimental data and sim: 

simulated data. The roman numbers denote the different periods distinguished 

(Table 5.6).  
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5.5.2.2 Approach 2: Conventional model (1 AOB and 1 NOB) 

distinguishing two periods 

As it was not possible to simulate the whole experimental period with a single 

AOB and a single NOB population, it was decided to split up the experimental 

dataset into the two periods i.e. Period A (0 – 100 days) and Period B (100 – 

592 days), shown by Bougard et al. (2006a) to be dominated by two different 

AOB species: Nitrosomonas halophila and Nitrosomonas europaea, 

respectively. The model was then calibrated individually for these periods and 

the relative changes of the parameter values over these two periods were 

verified. 

The process performance (χ² tot = 1334) was better reflected when the model 

was calibrated for Period A (χ²tot_A: 254; χ²TNH: 63; χ²TNO2: 109; χ²NO3: 82) and 

Period B (χ²tot_B: 1080; χ²TNH: 693; χ²TNO2: 168; χ²NO3: 219) separately 

(Approach 2, Figure 5.7). Although the Nash Sutcliffe criterion was negative 

for total ammonium (ETNH = -0.11), total nitrite (ETNO2 = -0.91) and nitrate 

(ENO3 = -0.43) in Period A and for total ammonium (ETNH = -1.61) in Period B, 

the model efficiencies obtained were generally larger than in Simulation 1. 

Moreover, the model efficiencies for total nitrite (ETNO2 = 0.37) and nitrate in 

Period B (ENO3 = 0.18) were higher than zero. Even now, the model 

efficiencies (Nash Sutcliffe criterion) were quite low, due to the large 

variability of the dataset. However, using Approach 2, the model was shown 

to reflect the overall reactor behaviour better, also by visual inspection (Figure 

5.7). This led to the conclusion that, in order to be able to reflect the 

experimental observations, the model had to be calibrated during two periods: 

Period A (0-100 days) and Period B (100-592 days). These periods were based 

on the AOB population shift observed by Bougard et al. (2006a): in Period A, 

Nitrosomonas halophila was a dominant AOB, while in Period B, this species 

was completely replaced by Nitrosomonas europaea. The CE-SSCP data 

described in this study indicated that the AOB diversity was indeed highest 

when both AOB coexisted around day 50.  

The calibrated microbial parameters of both AOB and NOB were different for 

both periods (Table 5.9). This indicates that besides the AOB shift, also 
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changes in the NOB guild were taking place around day 100. Although 

identification of the dominant bacterial peaks of the SSCP profiles using the 

cloning-sequencing technique revealed no NOB nor a NOB shift (Bougard et 

al. 2006a), it is possible that besides the visible AOB shift, also undetected 

microbial community changes were occurring in the NOB guild.  

 

Figure 5.7 Simulation of bulk output of the reactor of Period A (top) and Period B 

(bottom) using the calibrated 1-dimensional biofilm model (exp: experimental data 

and sim: simulated data). The roman numbers denote the different periods 

distinguished (Table 5.6).  
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The oxygen affinity constant of AOB differed clearly between Period A and 

Period B (Table 5.9). In Period A, the AOB guild is typified by a high affinity 

for oxygen (KO2
AOB = 0.078 g O2.m-3) but a low maximum growth rate (µ

max
AOB = 

0.65 d-1) and in Period B by a low affinity for oxygen (KO2
AOB = 0.71 g O2.m-3) 

but a higher maximum growth rate (µ
max
AOB = 0.71 d-1). This indicates that the 

drop of DO concentrations to very low values (between 0.3 – 0.7 g O2.m-3) at 

the end of period I (Table 5.6), following an increase of the NLR (Figure 5.2), 

was governing the observed AOB population shift from Nitrosomonas 

halophila to Nitrosomonas europaea, following the K- and r-strategy 

concerning oxygen (Andrews & Harris 1986), respectively. The observed 

diversity of AOB (Figure 5.5B) was very low and declined even more after 

Nitrosomonas halophila was washed out of the biofilm. It can thus be 

concluded that the calibrated microbial parameters for the AOB probably 

correspond with the observed species, i.e. Nitrosomonas halophila, dominant 

during the most of Period A and Nitrosomonas europaea, dominant during 

Period B.  

Also the NOB community changed between the two periods. As for the AOB, 

the oxygen affinity of the NOB decreased from Period A (KO2
NOB = 0.049 

g O2.m-3) to Period B (KO2
NOB = 0.06 g O2.m-3), further identifying the drop of 

bulk liquid oxygen concentrations following an NLR increase in Period I 

(Table 5.6) as the main reason for the population shift. However, for the NOB, 

the maximum growth rate decreased from µmax
NOB = 1.43 d-1 in Period A to µmax

NOB 

= 0.30 d-1 in Period B, in contrast to the maximum growth rate of the AOB. 

Furthermore, in Period A, the NOB guild was typified by a high growth rate 

(1.43 d-1) and a high affinity for oxygen (0.049 g O2.m-3). However, this does 

not exclude that several subdominant species of NOB, both r-strategists (high 

growth rate) and K-strategists (high oxygen affinity) were present in very low 

concentrations. The coexistence of several subdominant NOB species was 

judged likely as a high diversity of NOB was expected based on the similarity 

of the NOB and total bacterial community diversity revealed by the CE-SSCP 

analysis of the current contribution (Figure 5.5B) and the decrease of the total 

bacterial community diversity when NOB were washed out during nitrite 
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accumulation (Table 5.8). Furthermore, the coexistence of different NOB 

species was already observed in biofilms (Schramm et al. 1998; Gieseke et al. 

2003; Downing & Nerenberg 2008). Therefore, it can be concluded that the 

calibrated microbial parameters for Period A and Period B probably represent 

lumped parameters for different NOB populations and represent two different 

NOB guilds rather than two different NOB species. 

The possibility to simulate the bulk output of the reactor in Period B (Figure 

5.7B), using a model considering the growth of 1 AOB and 1 NOB, indicates 

that in this case no diversity needed to be included in the model to explain the 

bulk liquid nitrogen concentrations and that the implemented control strategies 

for nitrite accumulation, i.e., temperature control and fuzzy-logic control of the 

liquid flow rate to adjust the NLR, were influencing the microbial community 

mainly on the level of guilds (AOB and NOB), as shown by the qPCR analysis. 

This indicates that, although changes in microbial diversity or population shifts 

in Period B were possible, e.g., low NOB diversity during temperature control 

and higher NOB diversity during fuzzy-logic control of the inflow rate, as 

indicated by the CE-SSCP analysis, these changes did not influence the reactor 

behaviour instantaneously. The extension of biofilm models with within-guild 

diversity is only necessary when the reactor behaviour is clearly influenced by 

changes in the microbial community, see Chapter 3 (Vannecke et al. 2015). 

However, these unnoticed changes in microbial composition and diversity of 

the (nitrifying) community may have important effects on the reactor 

performance and process stability on the long term, e.g., when facing 

disturbances (Daims et al. 2001b; Egli et al. 2003; Ramirez et al. 2009) or 

when the decision is taken to go back to complete nitrification after nitrite 

accumulation (Bougard et al. 2006a). 

For both periods, no concentration profiles could be observed in the biofilm. 

The steady state biofilm thickness was indeed very small, reducing the effect 

of internal mass transfer limitation, similar to the observations in Chapter 4 for 

the same biofilm reactor type. Although CE-SSCP indicates a rather high NOB 

diversity, this diversity will probably not have resulted from the presence of 

different niches in the biofilm due to diffusional substrate gradients. Therefore, 
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the assumption of a uniform distribution of all biomass over 80% of all the 

particles is unlikely to be true: some particles will be covered with a very thin 

biofilm while others are covered with a thicker biofilm, allowing different 

species to occupy different niches. 

5.5.2.3 Approach 3: Model including within-guild diversity (2 AOB and 

2 NOB) for whole period 

As Period A and Period B could be described individually by a single AOB 

and a single NOB species (see Table 5.9 for their characteristics), these two 

AOB and two NOB populations were integrated in one model to simulate the 

bulk output of the reactor of the whole experimental period (592 days). 

It was not possible to calibrate the model including 2 AOB and 2 NOB 

populations, besides 1 heterotrophic population, to describe bulk liquid 

concentrations of ammonium, nitrite and nitrate over the complete 

experimental period (Approach 3, Figure 5.8). The model predicted nitrate 

accumulation for the whole experimental period, therefore, the overall fit of 

the simulation results for bulk liquid nitrogen concentrations was very low (χ²tot 

= 3204). Also the model efficiencies for total ammonium (ETNH = -0.44), total 

nitrite (ETNO2 = -1.26) and especially for nitrate (ENO3 = -5.19) were shown to 

be lower than zero. 

The AOB and NOB species of Period A remained dominant during Period B, 

while the AOB and NOB species of Period B should become dominant after 

100 days. The species of Period B were not able to survive the severe drop in 

DO starting around day 50, due to their lower affinity for oxygen than the 

species from Period A. In the real system, the species of Period B could have 

invaded the system by attachment from the bulk liquid, while in the model 

attachment was neglected and the influent was assumed to contain no bacterial 

species. Alternatively, the populations of Period A could have been acclimated 

to the conditions in Period B, which also can result in changed parameter 

values. Furthermore, as calibrated parameters such as the affinity constants 

may describe apparent features, lumping other phenomena such as diffusion 

(Arnaldos et al. 2015), these phenomena may have been changing over the 

experimental period.  



 Influence of process dynamics on the nitrifying community 

151 

 

Figure 5.8 Simulation of the bulk output of the reactor using the calibrated 1-

dimensional biofilm model considering the growth and decay of 2 AOB and 2 NOB 

species (Approach 3), besides heterotrophs. Exp: experimental data and sim: 

simulated data. The roman numbers denote the different periods distinguished 

(Table 5.6). 

5.6 Conclusions 

Using a correlation analysis and a simulation study, the influence of process 

dynamics on the nitrifying microbial community in a nitrifying inverse 

turbulent bed reactor, controlled for nitrite accumulation, was analysed. 

From the correlation analysis of the physical and chemical data, it can be 

concluded that temperature, bulk liquid oxygen concentration and nitrogen 

loading rate, besides pH had a large influence on the bulk liquid concentration 

of the different nitrogen compounds and thus constituted suitable control 

handles for process operation. 

In order to be able to reflect the experimental observations, a 1-dimensional 

biofilm model with FA and FNA inhibition, considering growth and decay of 

1 AOB population, 1 NOB population and 1 heterotrophic population, each 

characterized by lumped parameter values reflecting the mean behaviour of 

their functional guild, had to be calibrated during two periods. These periods 

corresponded with a previously observed AOB population shift. The difference 

of calibrated microbial parameters of the AOB and NOB in the two calibrated 

periods indicates that besides a previously observed AOB population shift, also 
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the NOB guild was changed due to an increased nitrogen loading rate resulting 

in a drop of the bulk liquid oxygen concentration. 

The diversity of the total bacterial community resembled the diversity of the 

NOB, while the diversity of the AOB was much lower. A large number of 

small, subdominant NOB populations was presumably present in the biofilm. 

The calibrated AOB parameter values for the two different periods correspond 

probably with two different AOB species (Nitrosomonas halophila and 

Nitrosomonas europaea), while the NOB parameters represent two different 

NOB guilds. 

Although CE-SSCP analysis indicated that the two considered control 

strategies for nitrite accumulation (temperature control and fuzzy-logic control 

of the liquid flow rate) may have influenced the microbial diversity, the bulk 

liquid ammonium, nitrite and nitrate concentration was shown not to be 

influenced by these control strategies using the developed biofilm model. 

However, it should be noted that unnoticed changes in diversity can influence 

the reactor performance and process stability in the long term.  
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5.7 Appendix 5A: Literature review on FA and FNA 

inhibition of nitrifiers 

The results of the literature review on the FA and FNA inhibition of AOB and 

NOB are summarized in Table A.5.1. 

Table A.5.1 Values of the FA and FNA inhibition constants for AOB and NOB found 

in literature. Growth type: S = suspended growth and A = attached growth. 

Publication type: E = experimental determination, C = calibration of model based 

on experimental results and L = other literature values. It should be noted that FA 

inhibition of AOB and FNA inhibition of NOB is generally described by a Haldane 

term, while FNA inhibition of AOB and FA inhibition of NOB is described with a 

non-competitive inhibition term. 

 
AOB NOB 

Growth  

type 

Publication 

type 
Publication 𝐊𝐈,𝐅𝐀

𝐀𝐎𝐁 𝐊𝐈,𝐅𝐍𝐀
𝐀𝐎𝐁  𝐊𝐈,𝐅𝐀

𝐍𝐎𝐁 𝐊𝐈,𝐅𝐍𝐀
𝐍𝐎𝐁  

 
g FA-N.m-3 g FNA-N.m-3 g FA-N.m-3 g FNA-N.m-3 

1 95.53 0.18 0.43 0.019 S L Baquerizo et al. (2005) 

2    0.19 S E 
Boon and Laudelout 

(1962) 

3  0.245   S E Brouwer (1995) 

4 11.4   0.018 S E/C Carrera et al. (2004) 

5 48.09   0.105 A E/C Carrera et al. (2004) 

6 51.9   0.1 A E Carvallo et al. (2002) 

7   1.13  S E/C 
Chandran and Smets 

(2000) 

8 605.48 0.49   S E Ganigue et al. (2007) 

9  0.2   S E Hellinga et al. (1998) 

10  0.21  0.27 S L Hellinga et al. (1999) 

11    0.13 S E/C Jubany et al. (2005) 

12 5.8 0.16 0.78 0.018 S E Jubany et al. (2008) 

13 76.6 0.16   S E Jubany et al. (2009) 

14  0.203   S E Lochtman (1995) 

15 24.9 0.44 14.18 2.31 S E/C Magri et al. (2007) 

16 241 0.053 3.9 or 11.1  S E/C Pambrun et al. (2006) 

17 13.23 0.168 0.644 0.0595 S E/C Park and Bae (2009) 

18  0.57   S E/C Vadivelu et al. (2006a) 

19  2.04   S E Van Hulle et al. (2007) 

20 3000 2.8 20 2.8 S L Wett and Rauch (2003) 

21 540   0.26 S E Wiesmann (1994) 

µ±SD 392.83±846.68 0.57±0.81 6.19±8.64 0.52±0.96    
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The overall goal of this PhD research was to study the interaction between 

microbial community structure, process performance and operational 

conditions in biofilm reactors for biological nitrogen removal from 

wastewater. 

Conclusions on the incorporation of microbial diversity and competition in 1-

dimensional biofilm models, the influence of microbial diversity on steady 

state and dynamic behaviour of nitrifying biofilms and biofilm reactors and the 

influence of process conditions and microbial characteristics on microbial 

competition are given below. These conclusions are supplemented with 

perspectives and suggestions for future research. 

6.1 Modelling microbial diversity in nitrifying biofilms 

6.1.1 Rationale behind the inclusion of microbial diversity 

Conventional nitrifying biofilms models only make a distinction between the 

functional guilds, i.e., ammonium oxidation by AOB and nitrite oxidation by 

NOB, although a large variety of microbial parameter values for nitrifiers 

(maximum growth rate, affinity and yield) is reported in literature (Chapter 2). 

This variety is especially a consequence of the large microbial biodiversity 

detected in nitrifying biofilm systems. Depending on the aims of a study, it can 

be important to implement this observed nitrifying diversity in mathematical 

biofilm models. 

In this thesis, it was shown that multispecies models including microbial 

diversity are useful tools to investigate the individual influence of various 

microbial characteristics on microbial population dynamics (Chapter 2). 

Nitrifying biofilm models including the growth of several species performing 

the same function not only demonstrate that a constant effluent composition 

may be hiding major microbial community shifts (Chapter 3), but can also be 

used to investigate experimentally observed microbial population shifts 

resulting in a different nitrifying performance (Chapter 4). 

It is likely a general rule that the inclusion of microbial diversity in models, 

which results in an increased model complexity, will be more useful when the 
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focus is on understanding microbial competition and coexistence or for 

research addressing fundamental ecological questions on microbial 

competition and niche partitioning, see for example Chapter 2 and 3. In 

Chapter 2, the factors influencing microbial competition and coexistence at 

steady state were analysed. In Chapter 3, the change of a nitrifying community 

in a biofilm was modelled over time until steady state on both the bulk and the 

microbial composition of the biofilm were at steady state. In Chapter 3, the 

functional redundancy of a nitrifying community, i.e., the possibility of a 

changed nitrifying community to function equally as the original one, upon an 

increased nitrogen loading rate, was also verified. Moreover, in Chapter 2 and 

3, the hypothesis that in biofilms ecophysiologically different species, both 

from the same or a different functional guild, can coexist due to the creation of 

different niches by diffusional substrate gradients, was tested. 

When the focus is on substrate removal rates and optimal bulk conditions, the 

consideration of microbial diversity is clearly not always necessary. Eberl et 

al. (2006) emphasize the value of identifying model features that can be 

omitted without decreasing the utility of the model for its intended purpose, as 

summarized in their “golden rule” of modelling: “a model should be as simple 

as possible, and only as complex as needed.” However, additional model 

features such as within-guild diversity can be critically informative for bulk 

reactor behaviour prediction or understanding, for example if molecular data 

indicates changes in the species composition of the biofilm and these shifts are 

correlated with changes in the process performance, as demonstrated in 

Chapter 4. Also under specific conditions, for example upon environmental or 

operational changes such as an increased nitrogen loading rate, gaining insights 

on how the microbial community is affected, based on models including 

diversity, can be very informative (see Chapter 3). Furthermore, if the bulk 

liquid output of the reactor has changed, but no molecular data is available, 

models considering different guilds and different species per guild could help 

to identify possible microbial population shifts governing the changes in 

process performance. 
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Mathematical models considering within-guild diversity have important roles 

to play in the view of synthetic ecology, which is the design and construction 

of microbial communities with desirable properties (Fredrickson 2015) and the 

management of available microbial resources in open systems where the 

dynamics of microbial ecology are dominant, e.g., for research on wastewater 

treatment population optimization (Yuan & Blackall 2002) and on microbial 

resource management (Verstraete et al. 2007). These models could help in 

finding the answers on the questions of who is there, who is doing what with 

whom and how can one adjust, control and/or steer these mixed cultures and 

communities. 

In conclusion, one should consider to implement diversity in models when the 

research topic is microbial ecology and competition. Also, when bulk 

composition is shown to be influenced by microbial community dynamics and 

microbial community information (such as fingerprinting information and/or 

metagenomics) is available, implementation of within-guild diversity in 

models could be very rewarding, especially if the aim is to develop control 

strategies for microbial population optimization. 

6.1.2 Strategies to implement microbial diversity 

In this thesis, different species performing the same function were represented 

by different kinetic parameter sets. As microbial properties cannot be defined 

with certainty, two different stochastic methods were used in this thesis to 

implement the reported diversity of microbial characteristics in mathematical 

models. Both methods were based on the extensive literature review on 

reported ranges for maximum growth rate, affinity for electron donor and 

acceptor and yield from Chapter 2. The different species in the model can be 

given similar initial concentrations or, if the aim is to investigate the inoculum 

effect, the initial concentrations of each species can be given different values. 

Although the models used in this thesis were non-linear and initial conditions 

can influence the steady state outcome, the initial concentrations of the species 

did not determine the competition outcome at steady state unless the dominant 

species were removed from the biofilm (Chapter 2). 
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6.1.2.1 The species classes method 

In Chapter 2, the growth and decay of 60 species of AOB and NOB were 

implemented in a biofilm model. The ranges of maximum growth rate, affinity 

for electron donor and oxygen, besides yield, reported in literature (Chapter 2) 

were represented as boxplots. Twelve species classes, with 1 competitive 

advantage, e.g., a high growth rate, 1 competitive disadvantage, e.g., a low 

oxygen affinity, and two neutral characteristics were proposed. For each 

species per species class, values were taken from the following ranges: low 

values from the range between minimum and the first quartile of the respective 

boxplot, neutral values from the range between the first and third quartile and 

high values between the third quartile and the maximum. This approach was 

used to reflect trade-offs, and thus niche differentiation (Kneitel & Chase 

2004) among species of the same functional guild by assuming that 1 

competitive advantage comes at the cost of 1 competitive disadvantage, as 

advantageous traits often have side effects (Futuyma 2005). It should be noted 

that (1) niche differentiation is a priori supposed using this method and (2) that 

minimum 1 species per species class should be constructed, resulting in 12 

different species. In this thesis, 5 species per class were constructed using the 

rand function in Matlab. Although the obtained numbers were rounded to two 

digits to the right of the decimal point, the rand function provides uniformly 

distributed random numbers with an accuracy of 1·10-4. It could be possible to 

test whether closeness of parameter values results in more species coexisting 

at steady state by constructing many species that are only different in 1 

microbial parameter such as the maximum growth rate and varying its value 

between randomly generated numbers with an accuracy of 1·10-4. 

6.1.2.2 The bimodal distribution method 

For the models used in Chapter 3, the ranges of values for maximum growth 

rate, affinities for electron donor and oxygen and yield were also based on the 

literature review described in Chapter 2. However, for each microbial 

parameter, a normal bimodal distribution was now constructed as in Ramirez 

et al. (2009), who based this distribution on a curve fitting process using 

experimental data. The eight bimodal distributions were each typified by two 
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means (µ1 = 0.6·k; µ2 = 1.4·k) and standard deviations of σ1,2 = 0.125·k, with 

k the average value of the range of the corresponding parameter reported in 

literature (Chapter 2). Alternatively, k could also be the median value of this 

range, which could be a better choice, as the median is less influenced by 

outliers. A certain number of species (>2) can then be constructed by randomly 

picking values from each bimodal distribution. In this thesis, 10 species per 

type were constructed, by randomly selecting 10 values for maximum growth 

rate, affinity for electron donor and acceptor, besides yield for AOB and NOB 

using the Matlab function randsample. Considering this method, one should 

note that, based on the definition of the bimodal distribution, parameters with 

a larger average or median value (k), such as the maximum growth rate and 

affinity constants, will differ more between species of the same functional type 

than parameters such as yield with a smaller average or median value. 

However, as shown in Chapter 2, the maximum growth rate and affinity 

constants are the most important parameters influencing the competition 

outcome. Furthermore, a stoichiometric relationship exists between the amount 

of electron donor removed and biomass yield, therefore, yield should not differ 

too much between different species of 1 functional type. Similarly as for the 

species classes method, the bimodal distribution method could be used to 

generate a larger number of species to verify if more species can coexist at 

steady state when their parameter values become closer. 

6.1.2.3 Parameter estimation 

The microbial parameters representing different species can also be estimated 

by calibration of the model using experimental information on the bulk liquid 

composition. In Chapter 4, the microbial parameter values for the two 

considered AOB species were already calibrated in a previous study based on 

a 0-dimensional biofilm model (Volcke et al. 2008). 

By calibrating the (lumped) microbial parameters of the (nitrifying) 

community over different time periods, using experimental data on the bulk 

liquid composition, it can be verified whether or not the community changed 

over these periods. For example, in Chapter 5, the total experimental period 

was split in two periods based on an observed AOB population shift (detected 
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by the combination of SSCP and DNA cloning). The nitrifying community was 

calibrated for these two periods by numerical minimizing the sum of the 

squares of the weighted difference between actual measurements of the bulk 

liquid composition and the corresponding simulated results (χ2) using the 

secant method in Aquasim. The parameters were calibrated within the 

constraints of the parameter ranges given in Chapter 2 (maximum growth rate, 

decay rate and affinity constants) and Chapter 5 (inhibition constants for free 

ammonia and free nitrous acid). As the parameter values of both the AOB and 

the NOB changed over the two calibrated periods, it was concluded that 

besides the observed AOB population shift, also a shift in the NOB guild had 

taken place. 

A model without inclusion of within-guild diversity, can thus be calibrated to 

get a snapshot in time of the microbial community. It should be noted that in 

this thesis, the focus was on the microbial diversity in nitrifying biofilms. 

Therefore, in Chapter 5, no sensitivity analysis was performed but instead it 

was verified whether or not the simplest model possible was able to simulate 

the overall reactor behaviour (nitrite versus nitrate accumulation) when only 

the microbial parameters were calibrated. By checking the total χ2-value and 

visual verification of the fit of the simulation results with the observed overall 

reactor behaviour, it was found that maximum growth rate, affinity constants 

for electron donor and acceptor, decay rate and inhibition constants for FA and 

FNA of both the AOB and the NOB guild needed to be calibrated for two 

different periods in order to be able to simulate the overall reactor behaviour 

using a model including 1 AOB population, 1 NOB population and 1 

heterotrophic population. 

6.1.3 Biological interpretation of the taxa 

The rise of next-generation sequencing (NGS) techniques provides us with 

large datasets on microbial community composition of different ecosystems 

(Jansson & Prosser 2013; Prosser 2015). However, this large volumes of 

nucleotide sequences from a variety of strains, species, genera, etc., should be 

classified and ranked with maximum biological sense (Bertrand et al. 2011), 

although among the different microbiological disciplines there is an important 



Chapter 6 

162 

degree of disagreement on the definition of a microbial species (Rossello-Mora 

& Amann 2015). Microbes are currently assigned to a common species if their 

reciprocal, pairwise DNA re-association values are greater than or equal to 

70% in DNA–DNA hybridization experiments under standardized conditions 

and their melting temperature ΔTm, i.e., the temperature at which half of the 

DNA in a solution is dissociated into single strands (Lawrence 2005), is less 

than or equal to 5°C (Stackebrandt et al. 2002). Alternatively, strains that are 

more than 3% divergent in 16S rRNA are nearly always members of different 

species, as determined by DNA-DNA hybridization (Cohan 2002; Achtman & 

Wagner 2008; Rossello-Mora & Amann 2015). These definitions lack a true 

biological basis, in contrast to the biological species concept for eukaryotes, 

given by Mayr (1942). 

The taxa in the models of this study, represented by a specific set of microbial 

parameters, may correspond to different species by the definition handled by 

microbial taxonomists. For example, in Chapter 4, the two considered AOB 

species are representing Nitrosomonas europaea (K-strategist) and 

Nitrosomonas sp. (r-strategist) observed by Volcke et al. (2008) using 

molecular data (SSCP in combination with DNA cloning). Coexisting species 

could also belong to different genera. For example, the NOB species shown to 

coexist in Chapter 2 and 3 could belong to the genera Nitrobacter and 

Nitrospira, similar to the coexisting NOB experimentally observed by 

(Downing & Nerenberg 2008). 

The taxa implemented in the models in this thesis can also represent genetically 

different populations (strains) of 1 species detected by molecular data or even 

1 species acclimated to new conditions. Lydmark et al. (2006) observed the 

coexistence of two genetically different populations of Nitrosomonas 

oligotropha with niche differentiation in a biofilm. The kinetic parameters 

describing microbial growth and substrate utilization of a species depend also 

on the adaptation to different operational conditions (Grady et al. 1996; Kim 

2013). In other words, 1 species can, depending on the environmental 

conditions, be represented by different microbial parameters in mathematical 

models. 
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It is assumed that including a larger (>100) number of species in mathematical 

models could increase the total number of coexisting species at steady state as 

the differences in values for maximum growth rate and affinity constants 

would become smaller. If the total number of species included in mathematical 

models increases, it is important to consider the biological meaning of the 

species included in the model. If more and more species would be included per 

functional guild in mathematical models, the discussion of what is a microbial 

species could extend to the field of mathematical modelling and environmental 

engineering. 

Furthermore, as discussed in Chapter 5, a set of microbial parameters can also 

represent a whole guild, made up by 1 or more species performing the same 

function, if within-guild diversity is not included in the model. In Chapter 5, it 

was demonstrated that the calibrated microbial parameters of the AOB guild, 

typified by a very low diversity, for two periods of reactor operation corres-

ponded probably to two AOB species: Nitrosomonas europaea (Period A) and 

Nitrosomonas halophila (Period B). Using molecular data, it was shown that 

the NOB diversity was much higher than the AOB diversity, probably due to 

the presence of a high number of subdominant NOB species. Therefore, the 

calibrated microbial parameters of the NOB guild per period were most likely 

lumped values representing more than 1 NOB species. 

6.1.4 Determination of microbial parameters 

The large variety in parameter values observed in literature could not only be 

a consequence of microbial diversity, but also of the different conditions under 

which the parameters are determined and the large number of different analysis 

techniques used (Chapter 2). 

A large range of different techniques is used for the determination of maximum 

growth rate and yield (Blackburne et al. 2007a) and substrate affinity constants 

(Riefler et al. 1998; Carvallo et al. 2002; Guisasola et al. 2005), whether or not 

combined with the calibration of a mathematical model (Munz et al. 2012). 

For aerobic systems, many of the applied methods for determination of kinetic 

parameters are based on the indirect determination of the substrate uptake 
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profile by the associated oxygen uptake profile (Riefler et al. 1998). However, 

the operational conditions for parameter determination, for example reactor 

configuration, pH and temperature can differ substantially. Some incentives 

were given to standardize the determination of parameters, e.g., Spanjers and 

Vanrolleghem (1995) and Vanrolleghem et al. (1999). In order to make the 

comparison of parameter values more straightforward and to attribute observed 

parameter value differences to the applied determination techniques versus the 

intrinsic microbial characteristics, the use of these standardized analysis 

techniques is advised. 

Also a large microbial diversity of the nitrifying community can give rise to a 

large variety of parameter values. Therefore, microbial community 

information should be monitored together with the determination of parameter 

values. For example, the use of different mixed-culture inocula (Terada et al. 

2010) versus pure (axenic) cultures (Hunik et al. 1992, 1993; Hunik et al. 

1994) can have a major influence on the microbial species composition of the 

investigated system and thus the resulting parameter values. Determination of 

parameter values in combination with culture-independent molecular 

techniques (Table 1.2) and the next generation sequencing techniques (Table 

1.3), could allow the association of the determined parameter values with 

specific species or even genes and enzymes. The latter would allow the 

development of trait based models, as done by Allison (2012), who developed 

a model that links microbial community composition with physiological and 

enzymatic traits to predict litter decomposition rates. If parameter values differ 

for the same species, operational conditions may have influenced the microbial 

characteristics, e.g., one similar microbial community was acclimated to new 

operational conditions (Kim 2013) or different strains of a species had different 

metabolic characteristics (Lydmark et al. 2006). The combination with 

genomics and transcriptomics would allow to test whether the acclimatized 

community for example expresses different genes, and which enzymes are 

active in populations under stress. The interaction between modellers and 

microbiologists is therefore encouraged in order to keep track of microbial 

diversity in mathematical modelling. 
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This interaction is further encouraged by the fact that mathematical models 

implementing metagenomic data could allow testing central theories in 

microbial ecology associated with growth rates and other kinetic microbial 

parameters (Vieira-Silva & Rocha 2010). In metagenomics, attention is often 

paid on genes that are involved in the conversion of substrates into products, 

but metagenomics provides little information on quantitative physiological 

characteristics such as maximum specific growth rate and affinity constants 

(Prosser 2015). Attempts to determine the genetic and/or genomic basis of 

these characteristics are in their infancy, although it was shown already that 

the maximum growth rate can be predicted from sequence alone (Vieira-Silva 

& Rocha 2010) and in combination with biochemical models the actual growth 

rate could be predicted (Ibarra et al. 2002).  

Synthetic microbial ecology has gained a lot of interest in the last few years. 

Because of their reduced complexity and increased controllability, synthetic 

communities are often preferred over complex communities to examine 

ecological theories. Synthetic microbial communities limit the factors that 

influence the microbial community to a minimum, allowing their management 

and identifying specific community responses (De Roy et al. 2014). These 

synthetic communities would be of great interest to determine microbial 

parameter values for modelling, as their microbial composition is known a 

priori. This would, in combination with metagenomics, proteomics and 

transcriptomics allow researchers to check gene expression and metabolic 

pathways of the community under different environmental conditions. 

Furthermore, further research could be done on the linking of microbial 

parameters such as affinity constants with certain genes or even enzymes. 

In this thesis apparent affinity constants were used, which consider the effect 

of mixing (advection), substrate limitation (biological limitation) and diffusion 

(floc characteristics) in flocs (Arnaldos et al. 2015) although in biofilm models, 

the true coefficients corresponding to the kinetics of suspended cells should be 

used (Pérez et al. 2005). This choice was made as the determination of affinity 

constants on axenic cultures of suspended cells is limited. Furthermore, the 

focus of this thesis was on the modelling of microbial diversity and its effect 
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on the overall reactor behaviour, not on the exact prediction of bulk liquid 

concentrations. Novel modelling strategies that could be followed to alleviate 

the limitations of the half-saturation index have been presented by Arnaldos et 

al. (2015). One approach could be the integration of models describing 

transport phenomena with biokinetic models. Although in the models of this 

thesis, perfect mixing of the bulk liquid is assumed, diffusion and advection of 

dissolved substances are considered in the biofilm. Therefore, models 

presented in this thesis could provide a valuable tool for distinguishing 

diffusion and substrate limitation effects if affinity constants determined on 

axenic cultures of suspended cells are applied. 

6.1.5 Alternative approaches for the modelling of diversity 

The modelling in this thesis was performed using the Aquasim software 

(Reichert 1994), supplemented with Matlab (MathWorks) for data analysis and 

the construction of plots. The Aquasim software allowed the construction of 1-

dimensional biofilm models, considering microbial diversity, in a 

straightforward way. However, the implementation of a large number of 

species (> 60 species per type) can be tricky. Furthermore, the interface is quite 

robust and does not allow to change the underlying differential equations. 

Possible alternative computational tools for Aquasim are Matlab and Comsol. 

Comsol Multiphysics (Stockholm, Sweden) gives the users more freedom in 

the development of the multispecies biofilm model and presents the advantage 

of a total flexibility in choosing model structure, model equations and domain 

meshing, a modern graphical user interface and state-of-the-art numerical 

methods for the model solution (Sierra et al. 2014). 

It should be noted that, when models including diversity would be used for the 

prediction of reactor behaviour based on experimental data different form the 

calibration data set, which was beyond the scope of the current study, 

uncertainty analysis (Klepper 1997) should be performed in order to assess the 

uncertainty of the model predictions and output, originating from the 

uncertainties of the modelling process: (1) epistemic uncertainty, i.e., 

uncertainty coming from lacking knowledge and (2) stochastic uncertainty, 

i.e., inherent variability (Oberkampf et al. 2004). Some possible 
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methodologies for uncertainty assessment are (1) Monte Carlo analysis, which 

traces out the structure of the distributions of the model output based on the 

probability functions of all the inputs and parameters and (2) error propagation 

equations (Refsgaard et al. 2007). 

Concerning microbial diversity, further simulation studies based on 

multispecies nitrification biofilm models are required to investigate the 

individual role of various microbial characteristics and operation conditions on 

microbial competition. Besides, there is increasing interest in explicitly 

incorporating our rapidly expanding understanding of microbial community 

structure and dynamics via molecular tools into predictive process models. 

Seshan et al. (2014) present an example of this via a support vector regression 

model using microbial community diversity indices derived from DNA 

fingerprinting (T-RFLP) to predict reactor removal performance for COD, 

ammonia, nitrate, and 3-chloroaniline. Wastewater treatment modellers would 

also be well served by adapting emerging techniques in this direction in 

biogeochemical modelling. For example, Reed et al. (2014) provide a gene-

based framework for incorporating environmental genomics data into a model 

of nitrogen cycling in the Arabian Sea oxygen minimum zone. A similar 

approach may be possible in bioprocess modelling to refine our understanding 

of the role of microbial diversity and community dynamics on the bulk 

composition and microbial biofilm composition in biofilm reactors. 

Furthermore, in the view of the development of genomics, proteomics and 

transcriptomics, metabolic pathway models, e.g., Heijnen and Verheijen 

(2013) and Baroukh et al. (2014) could be linked to models including diversity, 

for example to connect biochemical processes to certain metabolic pathways 

(Larsen et al. 2012; Song et al. 2014). 

The modelling of microbial diversity and analysis of microbial competition 

could also be introduced in individual based biofilm models, allowing 

simulations based on the global consequences of local interactions of members 

of a population, e.g., single cells. Individual based 2- or 3-dimensional biofilm 

models were already developed (Picioreanu et al. 1998; Kreft et al. 2001; 

Picioreanu et al. 2004). These models could be used to verify if a higher steady 
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state microbial diversity is observed than in 1-dimensional models as substrate 

concentration gradients are expected to differ spatially due to different biofilm 

thicknesses. Such a model was already used by Lardon et al. (2011), to 

investigate the metabolic switching of denitrifying bacteria triggered by 

external oxygen concentrations in chemostats and biofilms. It was found that 

chemostats show competitive exclusion but biofilms maintain a diverse 

community, and that this diversity is highest under fluctuating conditions. 

Insights in microbial competition may also be achieved by using an individual-

based cellular automata approach. Cellular automata models are characterized 

by a discrete lattice of cells, homogeneity, as all cells are equivalent, discrete 

states, local interactions and discrete dynamics (Ilachinski 2001). For example, 

cellular automata were used to verify and reformulate the competitive 

exclusion principle, postulating that species competing for the same limiting 

resource in one homogeneous habitat cannot coexist, contradicting with the 

observed biodiversity in reality (Kalmykov & Kalmykov 2013). Although 

mostly used for modelling events that occur at discrete time points, cellular 

automata models are also used to model biological processes that take place 

continuously, for example to predict interspecific competition outcome 

(Mancy et al. 2013) and to analyze the impact of initial eveness, i.e., the 

relative distribution of the species present in the microbial community, on the 

preservation of biodiversity (Daly et al. 2015). 

In some cases it can be interesting to analyse models of observed population 

shifts as such without the need for simulation. Volcke et al. (2008) demon-

strated the applicability of the criteria developed by Hsu et al. (1977) and Hsu 

(1980) for continuous cultures to predict steady state interspecies outcome for 

0-dimensional biofilm models, in which a homogenous distribution of solubles 

and overall biomass throughout the biofilm is assumed. As elaborated in 

Chapter 4, this strategy is not applicable with 1-dimensional biofilm models. 

Steady state coexistence of two species performing the same function, as 

observed in 1-dimensional biofilm models (Chapter 2, Chapter 3 and Chapter 

4) is not possible in 0-dimensional models (Tilman 1994) and can thus not be 

predicted. Furthermore, the criterion used by Volcke et al. (2008), to predict 
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the competition outcome between two AOB species, following the r- and K- 

strategy related to oxygen, could not be used for 1-dimensional biofilm models 

when the mean SRT for the coexisting species, instead of the overall SRT, was 

used. Furthermore, it should also be noted that the simulations with the 1-

dimensional model first need to be performed to calculate the SRT regardless 

of the SRT definition applied. Therefore, when the focus is on biomass 

distribution in the biofilm and/or microbial coexistence at steady state, 1-

dimensional biofilm models should be chosen over 0-dimensional biofilm 

models, while the latter provide a less computational intensive solution for 

determining competition outcome when the biofilm thickness is very thin and 

diffusional substrate gradients can be neglected, as for example observed for 

the biofilms considered in Chapter 4 (LFSS = 9.6·10-6 m). 

6.2 Influence of microbial diversity on steady state and 

dynamic reactor behaviour 

In this thesis, the influence of microbial diversity on the overall process 

performance (in terms of bulk liquid composition) was verified. The models 

developed were used to verify the microbial dynamics and the effects on the 

overall process performance and bulk liquid composition, not to predict bulk 

liquid composition based on microbial community information, as done by 

Seshan et al. (2014) or to predict reactor behaviour based on experimental data 

different from the calibration dataset. Therefore, uncertainty analysis of the 

simulation results (Klepper 1997) was assumed to be beyond the scope of this 

study. 

Furthermore, apparent affinity constants, considering both diffusion and 

substrate limitation, were used in biofilm models, resulting in possible too low 

estimation of the affinity of the considered organisms. This may result in small 

changes of the bulk liquid composition compared to what in reality can be 

expected. In Chapter 4 and Chapter 5, the microbial parameters were estimated 

to experimental data, but there again, the main purpose was to intertwine the 

microbial community dynamics and not the to predict the bulk liquid 

composition in future experiments with the same reactor type (ITBR). 
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Furthermore, in Chapter 2 and 3, the bulk liquid oxygen concentration and 

temperature were set at a fixed value. As became clear from the dataset used 

in Chapter 5, this could be seen as an oversimplification. Indeed, more 

temporal variability in operational conditions (pH, bulk liquid oxygen 

concentration, temperature) could increase the diversity in reactors, see for 

example also Hsu (1980), who proposed the coexistence of two species in a 

chemostat due to seasonal variation in a numerical study. 

In this thesis, the mathematical modelling of microbial diversity revealed 

possible unnoticed, i.e., without effect on the effluent composition, changes in 

the biofilm microbial composition. For example, in Chapter 2, the influence of 

nitrogen loading rate and bulk liquid oxygen concentration on the microbial 

community was verified, using a biofilm model including the growth and 

decay of 60 AOB and 60 NOB species. It was shown that for different 

combinations of nitrogen loading rate and bulk liquid oxygen concentration, 

the steady state microbial composition of biofilms could differ significantly 

even if the bulk liquid output was very similar. Furthermore, in Chapter 3, it 

was shown that a steady state effluent composition not necessarily reflects 

steady state conditions in the biofilm (in terms of biofilm thickness and 

microbial composition). In Chapter 5, the possibility to simulate the bulk liquid 

composition of a biofilm reactor in a period with two different control 

strategies for nitrite accumulation, using a model considering the growth of 1 

AOB population and 1 NOB population, besides heterotrophs, indicates that in 

this case no diversity needed to be included in the model to explain the bulk 

output of the reactor and that the control strategies for nitrite accumulation 

were influencing the microbial community mainly on the level of guilds (AOB 

and NOB). This implies that, although changes in microbial diversity or 

population shifts in were possible, they did not influence the reactor behaviour. 

Although all this may indicate that one could neglect microbial diversity easily, 

as it seems that process performance is not influenced by the microbial 

diversity, it should be noted that these unnoticed changes in microbial 

composition and diversity of the (nitrifying) community may have important 

effects on the reactor performance and process stability on the long term, e.g., 
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when facing disturbances (Daims et al. 2001b; Egli et al. 2003; Ramirez et al. 

2009) or when the decision is taken to go back from nitrite accumulation to 

complete nitrification (Bougard et al. 2006a). Indeed, diverse systems have a 

greater pool of physiological and genetic traits, which provide them the 

capacity to change and sustain function under varying environmental 

conditions (Bellucci et al. 2015). This was confirmed in Chapter 3, where the 

functional redundancy of a nitrifying biofilm upon an increased nitrogen 

loading rate assured almost complete ammonium conversion to nitrate within 

8 months after the shift of operational conditions. The constant nitrifying 

performance was possible due to a population shift in the NOB guild; without 

the changes of the biofilm composition, the increased nitrogen loading rate 

would have resulted in nitrite accumulation. 

In this thesis, also cases in which observed population shifts do influence the 

bulk liquid composition were described. In Chapter 4, the influence of an 

experimentally observed AOB population shift on the nitrifying performance 

was investigated. In a nitrite accumulating inverse turbulent bed reactor 

(ITBR), a lowered nitrogen loading rate resulted in nitrate accumulation due to 

the appearance of NOB, while Nitrosomonas sp. started to grow at the expense 

of Nitrosomonas europaea (Bernet et al. 2004; Volcke et al. 2008). Dynamic 

simulations with a biofilm model, including the growth and endogenous 

respiration of 2 AOB and 1 NOB species, confirmed the influence of the 

increase in bulk liquid oxygen concentration, following the lowering of the 

nitrogen loading rate, on the changes observed in bulk liquid and biofilm 

composition. 

In Chapter 2, the suggestion of Terada et al. (2010), that the AOB and NOB 

population compositions of the inoculum may determine the dominant species 

in the biofilm, which in turn affects the nitrifying performance, was confirmed. 

Steady state simulations with a different initial species composition of the 

biofilm were shown to result in a different steady state composition of effluent 

and biofilm. 
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6.3 Factors influencing microbial competition and 

coexistence 

In this thesis, both biofilm and microbial characteristics as well as operation 

parameters and variables were shown to influence the microbial biofilm 

composition. These factors are described in detail below. 

As the focus of this study was on the microbial diversity, no sensitivity analysis 

was performed, as this is beyond the scope of the study. In models for the 

prediction of bulk liquid composition, not all the parameters considered in this 

thesis would be equally important determinants of bulk liquid composition, see 

for example Brockmann and Morgenroth (2007), Brockmann and Morgenroth 

(2010), and Brockmann et al. (2008). However, considering 60 AOB species 

and 60 NOB species varying maximum growth rate, affinity constants and 

yield (Chapter 2) could actually been seen as an inherent sensitivity analysis. 

In further studies, it is recommended to specifically determine the sensitivity 

of the models for the different microbial parameters, especially if it is the aim 

to calibrate and validate the model to experimental data and use the model for 

bulk liquid composition prediction. 

6.3.1 Biofilm characteristics 

6.3.1.1 Internal and external mass transfer limitation 

Biofilms increase the possibility of coexistence of species due to spatial 

heterogeneity, i.e., different niches are created by the diffusional substrate 

concentration gradients (Costerton et al. 1994; Nicolella et al. 2000; Stewart 

2003). In this thesis, the simulated biomass distribution profiles in the biofilm 

were indeed shown to reflect the ecological niches created by substrate 

gradients in the biofilms (Chapter 2 and 3). 

The 1-dimensional biofilm multispecies models including microbial diversity 

in this thesis were able to simulate steady state microbial coexistence of species 

performing the same function (Chapter 2-4). Considering oxygen and nitrogen 

limitation, a maximum of 3 dominant species in the nitrifying community, with 

two species performing the same function (ammonium oxidation or nitrite 
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oxidation) coexisting at steady state was observed. This contrasts with the 

behaviour of continuous cultures of microorganisms competing for 1 limiting 

nutrient, in which only 1 species is able to survive at steady state (Hsu et al. 

1977; Tilman 1977; Hsu 1980). Similarly, when describing microbial 

competition in biofilms using 0-dimensional model or other non-spatial 

models, no more consumer species can coexist at steady state than there are 

limiting resources (Tilman 1994).  

Internal mass transfer limitation was also shown to determine the thickness of 

the active layer (Chapter 2). In this thesis, most modelled biofilms showed the 

typical structure of a nitrifying biofilm with inert particles at the bottom, NOB 

dominant in the middle and AOB dominant at the surface of the biofilm. The 

active layer (active, viable biomass of AOB and NOB) corresponded to the 

oxygen penetration depth (oxygen limited biofilm), or, if oxygen was available 

in sufficient concentrations, the penetration of ammonium and nitrite (nitrogen 

limited biofilm), as only the aerobic AOB and NOB guild were considered. If 

also other guilds, such as denitrifying heterotrophs or anammox would be 

considered, the active layer would be much thicker. 

The 1-dimensional models developed in this thesis assume that the variation 

of the state variables is restricted to a single direction perpendicular to the 

surface of the solid carrier and spatial heterogeneity parallel to the carrier 

surface was neglected. When modelling biofilm structures with highly 

irregular surface, it is expected that the substrate concentration gradients will 

differ spatially due to different biofilm thicknesses. Therefore, a higher steady 

state microbial diversity is expected when considering 2- or 3-dimensional 

biofilm models instead of 1-dimensional ones. As proposed by Vannecke et al. 

(2015), spatial heterogeneity could also be considered when mathematical 

models would be developed including both within-guild diversity and 

mesoscale heterogeneity (flocs and granules): granular biomass could be 

modelled considering mass transfer limitations for soluble substrate and 

stratified biomass corresponding to local growth conditions, while flocs could 

be assumed as not mass transport limited (Hubaux et al. 2015). 
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In this thesis, it was shown that besides internal mass transfer limitation, 

creating diffusional substrate concentration gradients in the biofilm, also 

external mass transfer limitations (boundary layer) affects the competition 

between AOB and NOB and the bulk liquid composition in terms of nitrite 

and/or nitrate accumulation (Chapter 4), by determining the concentration of 

(limiting) substrates such as ammonium, nitrite and oxygen in the biofilm. 

6.3.1.2 Initial species composition of the biofilm 

Simulations from Chapter 2 confirm the suggestion of Terada et al. (2010), 

that the AOB and NOB population compositions of the inoculum may 

determine the dominant species in the biofilm, which in turn affects the overall 

reactor behaviour. The inoculum effect on the AOB communities of parallel 

sequential batch reactors was also demonstrated experimentally by Wittebolle 

et al. (2009). However, it should be noted that the observation on initial species 

composition in Chapter 2 only holds for systems operated with synthetic 

wastewater lacking microorganisms in the feed, as the systems in this thesis. 

The result may be different for reactors operated with real wastewater, where 

microorganisms are continuously fed to the reactor and microorganisms from 

the bulk liquid could attach to the biofilm. 

6.3.1.3 Biofilm detachment 

In the models of this thesis, biofilm detachment was considered to take place 

at the surface, with a velocity equalling the advective velocity of the biofilm at 

the surface when the steady state biofilm thickness is reached. Species growing 

at the surface, mainly the AOB, need to cope more with detachment than 

species growing deeper into the biofilm. This is one of the possible reasons 

why in Chapter 2 and Chapter 3, the NOB:AOB ratio was elevated. 

6.3.2 Microbial characteristics 

6.3.2.1 Maximum growth rate and affinity 

Species coexisting in a biofilm are mostly assumed to have a different niche 

(Schilthuizen 2008), even if they belong to the same functional guild. 

Therefore, they must have interspecific trade-offs (Tilman 1994; Escalante et 
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al. 2015). Without niche differentiation or specialization and concomitant 

fitness trade-offs, as advantageous traits often have side effects (Futuyma 

2005), stable coexistence of genotypes is generally not possible (Rainey et al. 

2000). Furthermore, the specialist-generalist paradigm predicts that specialists 

should have a local advantage over generalists and thus be more abundant, as 

confirmed by Mariadassou et al. (2015). 

In this thesis, it was demonstrated (Chapter 2) that coexisting species of the 

same functional guild are typified by a trade-off between their maximum 

growth rate and their affinity for the most limiting nutrient (nitrogen or 

oxygen). If two species performing the same function coexisted in a biofilm, 

they were likely to be an r-strategist with a high growth rate but relatively low 

affinity for the most limiting nutrient and a K-strategist, characterized by a low 

growth rate but a higher affinity, according to the r-K selection theory 

(Andrews & Harris 1986). The most limiting nutrient can be determined by 

calculating the ratio of the bulk liquid oxygen and ammonium concentrations 

(O2:NH4
+), as was done in Chapter 2 or by checking the ammonium conversion 

in the bulk liquid and the substrate concentration profiles in the biofilm. 

Typically, the r-strategist was dominant at the outside of the biofilm while the 

K-strategist was dominant deeper in the biofilm (Chapter 2). However, this 

cannot be seen as a proof that confirms the niche theory in contrast to the 

neutral theory. First of all, the species were constructed by considering niche 

differentiation a priori, as trade-offs between maximum growth rate, affinity 

and yield were implemented in the models. Furthermore, the considered 

biofilm systems were small scale, i.e., the focus was on a biofilm in a reactor 

on 1 point in 1 dimension (perpendicular on the substratum), and immigration 

was not considered in the models, as attachment of biomass from the bulk 

liquid was neglected in this thesis. As neutral community models were 

proposed to be the foundation of any description of open biological systems 

(Ofiţeru et al. 2010), it could be interesting to use 1-dimensional biofilm 

models in Aquasim, considering within-guild diversity, that also consider 

attachment of biomass from the bulk into a diffusive biofilm (considering 

diffusion of particulate components) and particulate components in the pores 
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of the biofilm (Wanner & Reichert 1996). There models could be used to test 

the niche versus neutral theory in biofilm systems. 

Although it can be certainly concluded that both maximum growth rate and 

affinity determine competition outcome and position in the biofilm, it should 

be noted that in this study apparent affinity constants were used (Pérez et al. 

2005; Arnaldos et al. 2015). Therefore, the affinity of the organisms could be 

estimated too low. However, the species were given a value for the affinity 

constants based on a broad range from literature (Chapter 2) and it is especially 

the difference in their values instead of the exact values that determine whether 

or not a species survives in the biofilm at steady state. In future studies, the 

contribution of different resistances to the affinity constants should be 

considered carefully. 

In Chapter 3, it was shown that the r-K selection theory also can be used to 

explain major population shifts in time, due to temporal heterogeneity: r-

strategists can grow rapidly on the prevailing conditions but get replaced by 

K-strategists as soon as a substrate becomes limiting. 

While this thesis focusses mainly on steady state behaviour, it is clear that there 

is an even higher chance of coexistence of species from the same functional 

guild during dynamic reactor operation (Gieseke et al. 2003), as temporal 

heterogeneity can result in stable coexistence of two genotypes on a single 

resource (Rainey et al. 2000). A higher steady state diversity is also expected 

when taking into account the diversity of affinity for additional limiting 

nutrients (besides oxygen and nitrogen) such as carbon dioxide. 

6.3.2.2 Endogenous respiration or decay rate 

In this study, endogenous respiration (Chapter 3 and 4) or decay (Chapter 2 

and 5) was used to simulate the formation of inerts from active biomass. 

Endogenous respiration is the use of stored reserve polymers in absence of 

external substrate for growth and maintenance processes while decay depicts 

the transition of living cells in organic substrate for heterotrophs and inerts 

(van Loosdrecht & Henze 1999). It should be noted that decay could be 

included in biofilm models instead of endogenous respiration when (1) a lot of 
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species per functional guild are included in the models (Chapter 2), to reduce 

the number of necessary equations and (2) when the growth of heterotrophs is 

included in the model, as these can use the organic substrate originating from 

biomass decay. The latter can be important to verify if the growth of 

heterotrophs on decayed biomass is significant or not (Mozumder et al. 2014). 

As little is known on the diversity of the values of the endogenous respiration 

or decay rates, three methods were applied to determine the endogenous 

respiration or decay rate: (1) species were given a fixed value (Chapter 4), (2) 

the values were calculated from the maximum growth rate, assuming the 

endogenous respiration rate or decay rate was 5% of the maximum growth rate 

(Chapter 2-4) and (3) the decay rates were calibrated to reflect the 

experimentally observed reactor behaviour (Chapter 5). The chosen value for 

endogenous or decay rate has important consequences for the microbial 

competition outcome, as pointed out in Chapter 4. Species with a low growth 

rate, and thus a lower endogenous respiration rate, were shown to win the 

competition from faster growing species (high endogenous respiration rate) in 

a larger range of bulk liquid oxygen concentrations than when endogenous 

respiration was neglected (Chapter 4). This is also a possible reason why in 

Chapter 2 and 3 an elevated NOB:AOB ratio was found, as the AOB have a 

higher growth rate and thus a higher endogenous respiration rate than NOB. 

Furthermore, as NOB live deeper in the biofilm, endogenous respiration using 

oxygen as electron acceptor (described with a Monod term for oxygen: 

SO2

SO2+KO2
) is lower for the NOB than the AOB, also resulting in an elevated 

NOB:AOB ratio. 

6.3.2.3 Inhibition constants for FA and FNA 

In Chapter 5, free ammonia and free nitrous acid inhibition of AOB and NOB 

were implemented. Without implementation of inhibition, the model was not 

able to reflect the bulk liquid composition observed experimentally. The 

observed bulk liquid concentrations of FA and FNA were equal to, or even 

higher than the median value of the reported FA inhibition constants for NOB 

and FNA inhibition constants for AOB and NOB in literature, indicating 
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possible inhibition of the NOB by FA and the AOB and NOB by FNA. By 

calibrating the microbial characteristics of AOB and NOB to the available 

experimental data this was further confirmed. 

In this thesis, the diversity observed in inhibition constants, originating from 

differences between species but also acclimation of species to operational 

conditions (Grady et al. 1996), was not included in the used mathematical 

models. A higher steady state diversity is expected when taking into account 

the diversity of inhibition constants for free ammonia (FA), nitric acid (FNA) 

or even other inhibitors. 

6.3.2.4 Yield 

Although the diversity of the yield was implemented in the models used in this 

thesis, no clear influence on reactor behaviour was observed (Chapter 2-3). 

This indicates that in the considered model, kinetic parameters were more 

important than stoichiometric ones for the steady state results. In this study, 

this is most likely due to the fact that the ranges of considered values for yield 

were rather small compared to the ranges considered for maximum growth rate 

and affinity constants: YAOB: 0.09-0.41 g COD.(g N)-1 and YNOB: 0.02-0.20 

g COD.(g N)-1. This results from the fact that yield is determined mainly on 

the basis of the energy yielded from catabolic reactions. Also Hsu et al. (1977), 

who developed a mathematical model, based on Michaelis-Menten kinetics, 

for one substrate and n competing species concluded that the species will 

survive whose Michaelis-Menten constant (affinity constant) is smallest in 

comparison with its intrinsic rate of natural increase and that it is irrelevant 

how abundant the competitors are at the start, or how efficiently the species 

convert the nutrient into cell growth (yield). In real systems, due to the trade-

off between growth rate and yield (Pfeiffer & Bonhoeffer 2002), yield besides 

kinetic parameters as growth rate could indeed play an important role in 

biofilm competition, for example when yet another limiting substrate for the 

autotrophs, carbon dioxide (Guisasola et al. 2007), their carbon source for 

biomass production, would be considered in mathematical models. For 

example, species with a high yield but lower growth rate, using their resources 
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economically, could promote altruism in spatially structured environments, 

such as biofilms (Kreft 2004). 

Furthermore, considering competition between different guilds, yield can play 

an important role, i.e., AOB obtain more energy from the oxidation of 

ammonium to nitrite than NOB from the oxidation of nitrite to nitrate. 

6.3.2.5 Considered microbial guilds 

It should be noted that in this thesis the focus was on the diversity within the 

nitrifying community, i.e., ammonia-oxidizing bacteria and nitrite-oxidizing 

bacteria. Future research could be directed on the influence of diversity in other 

microbial guilds than AOB and NOB, for example heterotrophs and anammox. 

Furthermore, also predation by eukaryotic microorganisms could be 

considered, as it is expected to shape the microbial community in biofilms 

(Saur et al. 2014), e.g., selective predation pressure can favour or suppress 

particular bacterial species (Pernthaler 2005). 

6.3.3 Operational parameters and variables 

6.3.3.1 NLR and DO 

In Chapter 2, it was shown that the nitrogen loading rate and the bulk liquid 

oxygen concentration influence the microbial composition of the biofilm, 

besides the effluent composition. The nitrogen loading rate determines the 

concentration of major nitrogen substrates and inhibitors in the bulk liquid, i.e., 

total ammonium and free ammonia, and after biological conversion also total 

nitrite and free nitrous acid. Furthermore, as the nitrogen loading rate 

determines the concentration of these substrates, it also affects the bulk liquid 

oxygen concentration by its effect on the biological activity of the AOB and 

NOB when the aeration is fixed, i.e., when the flow rate of air to the reactor is 

constant (Chapter 5). 

In Chapter 4 and Chapter 5, based on experimental data, and Chapter 3, based 

on dynamic simulations, it was shown that changes in the nitrogen loading rate 

of nitrifying biofilm reactors can govern major population shifts in the 

nitrifying community besides possible changes in the nitrifying performance. 
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In Chapter 4 and 5, the change in bulk liquid oxygen concentration following 

an increase of the nitrogen loading rate (the aeration was assumed to be fixed), 

was identified as the key variable governing the population shifts. 

6.3.3.2 Temperature and pH 

Temperature and pH were shown in this thesis to be important factors 

influencing microbial competition and the resulting effluent composition 

(Chapter 5). 

Temperature influences the maximum growth rate of microorganisms: the 

maximum growth rate increases with increasing temperatures, until an 

optimum is reached (Madigan & Martinko 2006), and at temperatures higher 

than 30 °C, the maximum growth rate of AOB is higher than the one of NOB 

(Wiesmann 1994). 

The fraction of FA:TNH and FNA:TNO2 depends on temperature and pH. The 

fraction of FA increases with increasing temperature and pH, while the fraction 

of FNA decreases with increasing temperature and pH (Anthonisen et al. 

1976). Therefore, both pH and temperature can have an influence on the 

inhibition of AOB and NOB by FA and FNA (Chapter 5). Even small changes 

in reactor pH, for example small deviations from the control set-point, can 

influence FA and FNA inhibition. 

Finally, temperature also influences the diffusion of oxygen, ammonium, 

nitrite and nitrate in the biofilm, determining the concentration of limiting 

nutrients in the biofilm, besides the thickness of the active layer.  
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6.4 Outlook 

In this work, 1-dimensional nitrifying biofilm models including microbial 

diversity were shown to be useful tools to investigate microbial competition 

and coexistence in nitrifying biofilms and allowed the study of the influence 

of the microbial community on steady state and dynamic biofilm reactor 

behaviour. It is hoped that this thesis will stimulate further research in the field 

of mathematical modelling of microbial diversity. The concepts developed in 

this thesis could be easily extended to other processes important in wastewater 

treatment such as denitrification, anammox and biological phosphorus re-

moval. The developed models could be seen as a bridge for the collaboration 

of microbiologists, wastewater engineers and modellers to transform 

knowledge from microbial ecology into optimized or novel technical 

implementations for sustainable wastewater treatment. Indeed, wastewater 

treatment engineering and ecology have complementary goals and need to 

interact much more closely. Wastewater engineers should use the 

fundamentals of ecological theory to help guide future system design and 

ecologists should view engineered biosystems as valuable new platforms for 

ecological research (Graham & Smith 2004; Daims et al. 2006). Mathematical 

models including diversity could be an excellent platform for this. 

Possible use of these models in combination with information from 

metagenomics in hypothesis generation, testing, experimental design and data 

mining is summarized in Figure 6.1. Rapid DNA sequencing and other 

molecular analysis technologies can provide large-scale data on the combined 

genomes of a microbial community, potentially revealing unanticipated 

community members or activities (Jansson & Prosser 2013). However, 

hypotheses generated by descriptive studies should be tested by experiments. 

In combination with experiments using pure (axenic) cultures and/or synthetic 

microbial ecosystems (De Roy et al. 2014), mechanistic models can be of great 

interest for (1) the testing or proposal of ecological hypotheses, (2) the 

development of control strategies for microbial population optimization and 

(3) the prediction of reactor performance based on microbial community data. 
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Synthetic communities are of utmost importance for the calibration and 

validation of models including diversity, because their microbial composition 

is known a priori. The models can help in the design of new experiments with 

synthetic microbial ecosystems and can benefit from the determination of 

microbial parameters from cultures with well-known microbial community 

composition. In this way, using microbial community information provided by 

metagenomics, bacterial diversity could be modelled at both the very large and 

the very small scales at which microbial systems interact with their 

environments and the models could help to connect biogeochemical processes 

to specific microbial metabolic pathways (Larsen et al. 2012; Song et al. 2014). 
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Figure 6.1 Possible use of mathematical models including within-guild diversity and 

information from metagenomics in hypothesis generation, testing, experimental 

design and data mining. Loosely based on Jansson and Prosser (2013).  
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