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Abstract — This paper presents the practical
implementation of a fractional-order (FO) PID
controller on a poorly damped system. The FOPID
is tuned using a new reduced parameter model-
based design method. Instead of the standard 5
tuning parameters used in the FOPID controller,
the new tuning method reduces the number of
tuning parameters to three based on practical
tuning rules. The underlying idea is to simplify
the tuning process of FOPID controllers to make
them more suitable for industrial implementation.
The designed controller is implemented on the real
system and the performance is compared to an
integer-order PID controller. The results show an
improved performance for the FOPID controller.
The improved performance indicates the possibility
of FOPID controllers to reduce general costs in an
industrial environment which will be analyzed in
future research. Comparing the performance of
the controllers tuned with the 3-parameter design
method to those tuned with the full 5-parameter
tuning method will be the next step in this research
path.
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FOPID design, mass-spring-damper

I – Introduction

To this day, over 95% of industrial applications are
predominantly controlled by Proportional-Integral-
Derivative (PID) controllers [1]. It has been stated
in literature before that this PID controller while
’limited’ and ’primitive’ is still the preferred controller
in industry due to its simplicity, ease of implementation
and ample tuning rules [2].

However, as industrial applications are constantly
evolving, more complex systems are introduced daily.
As complexity in the control processes in unavoidable,
the simple linear integer-order PID controller will
not be able to cope with complex phenomenons such
as non-linearities, dead bands, etc. resulting in many
efforts to improve the performance of the classical
linear PID controller. [3]

A controller which is similar to the integer-order
PID controller but has a better performance in complex
situations is the fractional-order PID controller
(FOPID) [4]. This controller has in standard situations
not three tuning parameters such as the classical

integer-order PID, but five tuning parameters: Kp, Ti,
Td and two fractional order coefficients λ and µ . Even
though, this FOPID has an improved performance
compared to the integer-order PID, it is still not
accepted in industry due to its increased difficulty in
tuning and implementation [5, 6].

This paper presents a simplified tuning method
which reduces the number of tuning parameters of
the FOPID controller, making the controller easier
to tune and therefore more accessible to industry. To
show the performance of the controller tuned using
the new design method, the FOPID is implemented
on a fast but poorly damped mechatronic system:
the mass-spring-damper. The mass-spring-damper
system can be characterized as a classical example
of an electromechanical system. Possible applications
include active suspensions[7] and drives [8]. However
this system is also suitable for biomedical applications
such as modeling the human body [9] and applications
in sound [10].

Each mass-spring construction in the mass-spring-
damper system introduces a resonance peak in the
frequency response of the system making this a
challenging system from control point-of-view. The
classical integer-order PID controller has traditionally
difficulty to control these types of systems as it has
only one pair of zeros to compensate the dynamics
of the system. Therefore, a controller of higher order
would be more suitable to control systems such as
the mass-spring-damper. Advanced controllers such
as fractional-order controllers can be approximated by
such a high order transfer function.

The structure of the paper is as follows: the next
section presents the new tuning method with a reduced
number of parameters. Section three discusses the
mass-spring-damper system used in this research.
Section four discusses the performed measurements
and the results. A conclusion is formed in the final
section.

II – Proposed tuning method

Literature shows that a prominent setting for
integer-order PID design is using identical zeros in the
controller [11]. This idea is the starting point of the
proposed 3-parameter design method.

The general structure of a fractional-order PID con-
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troller is given by

PIλ Dµ(s) = Kp

(
1+

1
Tisλ

+Tdsµ

)
. (1)

Assuming two identical zeros z simplifies this expres-
sion as

PIλ Dµ(s) = K
(sλ − z)2

sλ
(2)

with K = KpTd and z = −1
2Td

, if

λ = µ (3)

and
Ti = 4Td . (4)

The main advantage of (2) compared to (1) is the
reduced number of parameters in the fractional-order
controller. The resulting expression for the FOPID
expression in (2) has only three remaining tuning
parameters: K, z and λ , from which the traditional
parameters Kp, Ti, Td and µ can be calculated.

Tuning of the three design parameters is done using
three loop shape specifications which need to be met
by the FOPID controller. These specifications are based
on the definition of gain crossover frequency (ωgc) and
phase margin (PM).

• Phase margin specification

arg[C( jωgc)G( jωgc)] =−π +PM, (5)

• Robustness to process gain variation

d(arg(C( jω)G( jω)))

dω

∣∣∣∣
ω=ωgc

= 0, (6)

• Gain crossover frequency specification∣∣C( jωgc)G( jωgc)
∣∣
dB = 0. (7)

Selecting suitable values for PM and ωgc will define the
final parameters of the FOPID controller. Imposing a
robustness to gain variation should theoretically result
in a controller which has the capability of handling
modeling errors without a decrease in performance.

III – Mass-spring-damper system

Figure 1 depicts the mass-spring-damper (MSD)
system used in this research. It consists of 3 movable
masses from which the third mass is fixed for the
performed experiments. The masses m1 and m2 are
interconnected using three springs with spring constants
k1, k2 and k3. A damper with a damping constant c1
is used to damp the oscillations in the system while
a DC-motor gives the driving force. The input of the
system is the voltage to the motor u(t) while the two
outputs of the system are the mass displacements y1

and y2 expressed in cm. The dynamics of the motor
are neglected as they are much faster than those of the
mass-spring-damper system resulting in a motor which
can be represented by a pure static gain F(t) = K ·u(t),
with F(t) the force on the first mass. The following
parameters are used in the current setup: m1 = 1.85
kg, m2 = 1.35 kg, k1 = k2 = 800 N/m, k3 = 450 N/m,
c1 = 9 N/(m/s) and K = 3.5 N/V.
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Figure 1: Mass-spring damper system and its schematic rep-
resentation.

A complete model of the electromechanical plant
describes the dynamics from u(t) to y1(t) and from u(t)
to y2(t). The two differential equations describing the
dynamics of the system are:

m1ÿ1(t)+(k1 + k2)y1(t) = F(t)+ k2y2(t) (8)

m2ÿ2(t)+ c1ẏ2(t)+(k2 + k3)y2(t) = k2y1(t) (9)

After taking the Laplace transforms of equations (8) and
(9), the resulting transfer functions are:

G1(s) =
Y1(s)
U(s)

=
K(m2s2 + c1s+(k2 + k3))

den
(10)

G2(s) =
Y2(s)
U(s)

=
Kk2

den
(11)

with

den = m1m2s4 +m1c1s3 +[m1(k2 + k3)+m2(k1 + k2)]
s2 + c1(k1 + k2)s+ k1k2 + k1k3 + k2k3.

(12)
Both transfer functions are expressed in m/V.
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Figure 2: Step response for the transfer function describing
the displacement of the second mass.

The goal in this experiment is to control the
displacement of the second mass. Therefore, the second
transfer function G2 will be used as a model in the 3-
parameter FOPID design method. Using the parameter
values mentioned previously, the step response of
the second transfer function is shown in Fig. 2 but
expressed now in cm/V. Observe the long settling time
and very high overshoot due to the low damping factor
of the mass-spring-damper system.

The Bode plot of the second transfer function is
plotted in Fig. 3.
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Figure 3: Bode plot of the system describing the displacement
of the second mass.

IV – Results and Discussion

A. Controller design

Using the 3-parameter designing method presented
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Figure 4: Combined solution for phase margin specification
and robustness specification.

in Section II and the model derived in Section III, a
FOPID controller can be designed for the mass-spring-
damper system.

As design parameters a PM of 65◦ and a gain
crossover frequency of 1.25 rad/s are chosen. The model
of the process with the used parameter values is

G(s) =
Y2(s)
U(s)

=
2800

2.498s4 +16.65s3 +4473s2 +1440s+1.36 ·106 .

(13)

To tune the fractional exponent λ in the FOPID con-
troller, (5) and (6) are combined. The resulting value for
λ will fulfill simultaneously both specifications. Both
equations are analytically solved to obtain an expression
of z in function of λ . Plotting both resulting expressions
provides a cross-section which defines the value of λ

and z which can be seen in Figure 4. Note that this is
a zoom of the figure to visualize the cross-section and
that the robustness to gain variation is not a constant.
The value for K can be calculated after substituting the
obtained values for z and λ in (7).
The resulting FOPID parameters are:

λ = 1.28, z =−234 and K = 0.00018. (14)

These values correspond with the standard FOPID
parameters Kp = 0.082, Td = 0.0021, Ti = 0.0084 and
λ = µ = 1.28. Figure 5 shows the open loop Bode plot
for the controlled system where we can clearly see that
the given PM and ωgc are fulfilled. At a frequency of
1.25 rad/s Figure 5 shows that the magnitude of the
Bode diagram is 0 dB while the phase is -115◦ which
corresponds to a phase margin of 65◦. Also notice that
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Figure 5: Bode plot of the open loop controlled system.

the phase around the gain cross-over frequency of 1.25
rad/s is flat which is the result of the robustness to gain
variation specification.

For comparison an integer-order PID controller is
also designed for the MSD system using a computer
aided design tool called FRTool [12]. The FRTool is a
model-based design technique which uses information
from the system’s frequency response. It is a graphical
design method which shapes the Nichols plot by
changing the place of the poles and zeros of the
controller. The specification on phase margin has been
used to obtain a PID controller which has the same
specifications as the FOPID controller in order to
compare the performance of both. The resulting PID
parameters are: Kp=0.88, Td=0.0227 and Ti=0.0909.

B. Measurements

Designing FOPID controllers is only one side of
the dual problem in the theory of fractional-order
controllers. Implementation is the second obstacle to
tackle. Although some references discuss hardware
devices for fractional-order integrators [5, 13],
these devices are restricted and difficult to tune.
Alternatively, literature shows methods to implement
the FOPID controllers by approximating them using a
finite-dimensional integer-order transfer function. The
relative merits of the approximation method depend on
the differentiation order and on whether an accurate
frequency behavior is important.

The approximation method used in this research is
the Modified Oustaloup Filter [14]. It fits the frequency
response over a frequency range of interest (ωb, ωh).
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Figure 6: Bode plots of the FOPID controller and its integer-
order approximation.

The filter is expressed by:

sλ ≈(
dωh

b

)λ ( ds2 +bωhs
d(1−λ )s2 +bωhs+dλ

)
∏

N
k=−N

s+ω ′k
s+ωk

(15)
where the filter is stable for λ ∈ (0,1),
ω ′k = ωbω

(2k−1−λ )/N
u and ωk = ωbω

(2k−1+λ )/N
u .

The parameters used for the approximation are:
N = 6, ωb = 10−1, ωh = 101, b = 10 and d = 9. The
Bode plots of the FOPID controller and its integer-
order approximation are shown in Fig. 6. Notice that
in the frequency range of interest (10−1,101) the
approximation is very good. Note that only the region
of interest is plotted and that the magnitude of the
FOPID is indeed a curve and not a straight line.

For the implementation of the approximated con-
troller on the real system, this controller needs to be dis-
cretized. The sampling time used for this MSD system
is 10 ms. The resulting discrete time transfer function
of the FOPID controller is given by

C(z−1) =
0.88−7.47z−1 +27.91z−2−60.77z−3+

1−7.5z−1 +24.62z−2−46.05z−3+
84.94z−4−79.03z−5 +48.93z−6−19.43z−7+

53.72z−4−40.01z−5 +18.58z−6−
4.48z−8−0.46z−9

4.92z−7 +0.57z−8 .

(16)
Notice that the result of the approximation of the
FOPID controller is indeed a higher order integer-
order transfer function. Also the integer-order PID
controller which is used for performance comparison
is implemented in discrete time on the system with a
sampling time of 10 ms.

For both controllers a measurement is performed
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using a constant reference signal with amplitude of 1
cm. The resulting dynamic behavior is plotted in Figure
7. The corresponding control effort of both controllers
is given in Figure 8.

Notice that both controllers are able to control this
poorly damped MSD system. However, from Figure 7
it is clear that the FOPID controller takes the second
mass to the desired position with less oscillations
than the integer-order PID controller. Also the settling
time is clearly less for the FOPID controller than for
the integer-order PID controller resulting in a better
performance of the FOPID in comparison to the integer-
order PID controller. When comparing the control effort
of both controllers, it can be concluded that the FOPID
controller has a similar control effort compared to the
PID controller. Note that the performance of the FOPID
controller can still be improved by using the full ability
of fractional controllers, i.e. using 5 tuning parameters
in the controller. This will give the controller more
possibilities to compensate the dynamic behavior of
the system. The downside is that tuning becomes more
difficult and less attractive to industry. The results in

Figure 7 show a clear increase in performance for the
FOPID controller tuned with the 3-parameter tuning
method while still maintaining simplicity in tuning.
As the mass spring damper is a benchmark problem
for robust controller design, future work includes a
comparison between the obtained results and those of
Hinf and H2 robust controllers.

V – Conclusion

This research presented a simplified 3-parameter
tuning method for FOPID controllers. Reducing the
number of tuning parameters for FOPID controllers
combines the possibilities of increased performance
characteristic in fractional controllers with the simple
tuning of integer-order controllers. This new reduced
tuning method may make fractional controllers more
accessible to industry. The new tuning method is tested
on a fast but poorly damped electromechanical system:
the mass-spring-damper system. The performance of
the controllers obtained using the new tuning method
is compared to the performance of a classical integer-
order PID controller. The results show that the 3-
parameter tuning method provides a FOPID controller
with an increased performance compared to the integer-
order PID controller. The controlled system using the
FOPID controller behaves less oscillatory and has a
faster response than the system controlled with the
classical PID. The presented method results in a FOPID
controller with a clearly increased performance com-
bined with a simplification in tuning. Future work will
compare the performance of FOPID controllers tuned
with the 3-parameter method with the FOPID con-
trollers resulting from full 5-parameter tuning methods
for several types of processes.
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