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ABSTRACT

With the advent of ribosome profiling, a next gen-
eration sequencing technique providing a “snap-
shot” of translated mRNA in a cell, many short
open reading frames (sORFs) with ribosomal activity
were identified. Follow-up studies revealed the ex-
istence of functional peptides, so-called micropep-
tides, translated from these ‘sORFs’, indicating a new
class of bio-active peptides. Over the last few years,
several micropeptides exhibiting important cellular
functions were discovered. However, ribosome oc-
cupancy does not necessarily imply an actual func-
tion of the translated peptide, leading to the de-
velopment of various tools assessing the coding
potential of sORFs. Here, we introduce sORFs.org
(http://www.sorfs.org), a novel database for sORFs
identified using ribosome profiling. Starting from ri-
bosome profiling, sORFs.org identifies sORFs, in-
corporates state-of-the-art tools and metrics and
stores results in a public database. Two query in-
terfaces are provided, a default one enabling quick
lookup of sORFs and a BioMart interface providing
advanced query and export possibilities. At present,
sORFs.org harbors 263 354 sORFs that demonstrate
ribosome occupancy, originating from three different
cell lines: HCT116 (human), E14 mESC (mouse) and
S2 (fruit fly). sORFs.org aims to provide an extensive
sORFs database accessible to researchers with lim-
ited bioinformatics knowledge, thus enabling easy
integration into personal projects.

INTRODUCTION

Small open reading frames (sORFs) can be defined as
open reading frames smaller than or equal to 300 nu-
cleotides (100 amino acids). These ‘sORFs’, while inher-
ent to all genomes, were historically ignored in gene an-
notation studies, stating that these lack any coding poten-
tial (1). Mainly due to their small size they were thought
to occur by chance, however, some longer sORFs resem-
ble protein-coding ORFs and thus simplify their annota-
tion. Exclusion of these sORFs has emerged during the de-
velopment of different (gene prediction) tools in the field
of bioinformatics/genomics/proteomics trying to reduce
noise, imposed by technological limitations. For in silico
prediction sORFs are excluded because these can easily
occur by chance due to their small size. RNAseq driven
transcriptomics is ignorant to ORF delineation and thus
mainly focuses on the longest available ORF in the tran-
script sequence. As for MS-based proteomics studies, the
small protein products are often lost in sample prepara-
tion steps and furthermore micropeptides are thought to
be low abundant and can have tissue/time specific expres-
sion, further impeding their identification. The search for
micropeptides, defined as translation products from sORFs,
was nourished with the advent of ribosome profiling (2,3), a
next generation sequencing technique. Ribosome profiling
(RIBO-seq) recovers and subsequently sequences the ±30
nt RNA fragments captured within translating ribosomes.
This technique differs from a regular RNA-seq setup, as
a ‘snap-shot’ is provided of what is being translated in a
cell, rather than what is expressed in a cell. In this con-
text, it allows to detect translated sORFs, possibly encod-
ing functional peptides or small proteins. Standard RNA se-
quencing techniques are unable to detect translated sORFs.
Mass spectrometry is routinely used to detect and measure
translation products. Although this technique is rapidly im-
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proving in sensitivity, detection of translating sORFs re-
mains very difficult, making RIBO-seq (4) the preferred tool
for sORF discovery. Also, RIBO-seq enables translation
initiation site (TIS) detection through specific antibiotics
treatment using harringtonine (HARR) or lactimidomycin
(LTM). These drugs make that initiating ribosomes are
stalled at the translation initiation site as opposed to the
normal procedure where all translating ribosomes are ob-
tained after cycloheximide (CHX) treatment. While RIBO-
seq provides data on many putatively functional translated
sORFs, ribosome occupancy does not automatically imply
true coding and function at the peptide level. Consequently
several tools/metrics have been published in order to as-
sess the coding potential (i.e. the potential to encode func-
tional peptides) of RIBO-seq/sORFs/micropeptide related
data. Analytical methods measuring the coding potential
can be either sequence based: multiple sequence alignment-
based phylogenetic analysis, sequence variation or based
on RIBO-seq: sequence similarity analysis ribosome pro-
tected fragment (RPF) length analysis, RPF reading frame
analysis. Despite the onerous proteomic identification of
micropeptides, it is still the best methodology to truly (at
amino acid level) identify micropeptides. Since the advent of
RIBO-seq, the biological functions of several micropeptides
were unraveled. Toddler, for example, is an embryonic signal
that promotes cell movement (5), Pri-peptides regulate var-
ious development steps across many insect species (6), Sar-
colipin regulates muscle-based thermogenesis in mammals
(7) and Myoregulin regulates Ca (2+) handling in muscle
cells (8). These examples highlight the uprising importance
of micropeptides (9–11). The creation of a public reposi-
tory for sORFs, holding a growing number of RIBO-seq
studies and providing information resulting from various
tools and metrics, seems a necessity in aiding the neces-
sary functional research in the micropeptide field. Here,
we present www.sorfs.org, a comprehensive repository of
sORFs identified by RIBO-seq, currently harboring 263
354 sORFs originating from three different species (human,
mouse, fruit fly).

MATERIALS AND METHODS

Database development

The current sORF identification pipeline requires RIBO-
seq data after both CHX-treatment, capturing elongating
ribosomes, and HARR- or LTM-treatment, resulting in
initiating ribosomes (12). The RIBO-seq sequence reads are
first aligned using the STAR splice site aware mapper (13),
as described by the PROTEO-FORMER pipeline (14).
Reference genome indexes and gene annotation informa-
tion are retrieved from the iGenomes repository (based on
Ensembl annotation version 75, https://support.illumina.
com/sequencing/sequencing software/igenome.html) and
are updated on every new release. A summary of pa-
rameters, mapping statistics as well as quality control files
(FastQC (15)) can be found on the sorfs.org ‘data sets’ page.
Secondly, the translation initiation sites are determined
using criteria defined by Lee et al. (16). A full description
of the TIS-calling implementation can be found in the
PROTEOFORMER pipeline (14). Subsequently, sORFs
are assembled starting from the detected TIS positions

extending the sequence to the next stop codon situated 10–
100 amino acids further upstream and in-frame relative to
the TIS. Here, existing gene annotation information can op-
tionally be taken into account (either or not splice-aware).
Alongside the genomic positions a number of general
sORF related characteristics are calculated. These include
the mass of the resulting peptide, the mRNA and peptide
sequence, a categorization based on the Ensembl mRNA
annotation (5′ UTR, exonic, intronic, 3′ UTR, ncRNA
or intergenic). For intergenic sORFs the distance to the
nearest up- and downstream gene is calculated and for each
5′ UTR, exonic or intronic sORF the percentage of overlap
with exonic regions is retrieved and a possible frameshift is
determined relative to the overlapping Ensembl transcript.
The RPF and RPF-fragments per kilobase of coding
region per million aligning reads (RPKM) are computed as
described in Ingolia et al. (2). A unique ID is provided to
all identified sORFs, constructed from the corresponding
cell line and an auto-incremental number as follows: [cell
line]:[auto-incremental number]. All data are generated
using in-house Perl (version 5.16.3) and Python (version
2.7.10) scripts and stored in a MySQL database (version
5.5.42). Currently sORFs.org holds three RIBO-seq data
sets from three different cell-lines: HCT116 (human colon
cancer cell line), E14 mESC (Mouse embryonic stem cells,
14 days old) and S2 (20–24 h old Drosophila melanogaster
embryos). A detailed overview of the cell lines can be found
at http:/www.sorfs.org/dataset information. With every
iGenomes update, data will be reprocessed and updated
within the next month. New data sets are actively searched
for and will be included if permitted by the owners, after a
manual inspection of the data (quality control) and should
be expected to be included within the next month. Same
holds for data submitted by users.

The sorfs.org web interface was build using the laravel
PHP-framework (version 4.2), applying the model-view-
controller (MVC) architectural paradigm. The web inter-
face was developed using HTML, PHP, CSS, SQL and
JavaScript. Two different query interfaces are provided to
the user. The default query interface (see Figure 1A) pro-
vides real-time lookup of sORFs with limited query pos-
sibilities, excelling in the quick lookup of specific sORFs.
Secondly a BioMart (17) (version 0.9.0) query interface (see
Figure 1B) was developed enabling advanced query and ex-
port options. A comprehensive guide for both query inter-
faces is provided on sORFs.org.

Coding potential assessment

Based on sequence conservation. Several algorithms are
implemented providing coding evidence of the identi-
fied sORFs. A PhyloCSF conservation analysis (18) uses
species-specific multiple alignment files from UCSC (19) in
order to obtain a score representing the phylogenetic con-
servation of a sORF. PhyloCSF examines evolutionary sig-
natures characteristic to alignments of conserved coding
regions in order to determine whether a multi-species nu-
cleotide sequence alignment is likely to represent a protein-
coding region.
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Figure 1. (A) sorfs.org default query interface. (B) sorfs.org BioMart query interface.

Based on ribosome profiling data . (i) The fragment length
organization similarity score (FLOSS), described by Ingo-
lia et al. (20), measures the magnitude of disagreement be-
tween the RPF-length distribution of Ensembl annotated
protein coding sequences and the RPF-length distribution
of a sORF. This fragment length metric enables to iden-
tify true ribosome footprints bioinformatically. Addition-
ally a classification is formalized by defining a threshold
FLOSS value. (ii) The ORFscore, a novel metric described
by Bazinni et al. (21), quantifies the preference of RPFs to
accumulate in the first frame of the coding sequence, as an
indication for true coding sequences. The ORFscore, specif-
ically designed for small ORFs, is calculated by counting
RPFs in each frame and subsequently comparing this dis-
tribution to an equally sized uniform distribution using a
modified chi-squared statistic. Only RPFs with length cor-
responding to the most abundant, in-frame RPF found in
the Ensembl canonical protein coding transcripts, are used.
For example if the annotated Ensembl CDS contains mostly
29-bp long footprints, only these 29 bp footprints will be
used for the ORFscore analysis within this region.

Based on sequence variation. Sequence variation (i.e. mu-
tations, insertions or deletions) associated with distinct
phenotypes provides information on the function of that
genomic/mRNA region. Associating sequence variation
with sORFs provides evidence for functionally important
sORFs. The Ensembl variation database (22,23) (includ-
ing dbSNP, ClinVar, Cosmic . . . ) is used as the source for
sequence variation. Important to note: no filters were ap-
plied on these variation sources; caution is advised as some
sources contain machine-annotated variations.

Based on sequence homology. Sequence similarity between
sORFs and known proteins can discover false positives
sORF annotations (e.g. a 5′ UTR sORF matching an
unannotated protein isoform). The ‘Basic Local Alignment
Search Tool protein’ (BLASTp) (24,25) was used to calcu-
late AA-sequence similarity between sORFs and the Non-
redundant (NR) protein sequence database (NCBI) (26).
An expected value (E-value) of 10 holds as an upper thresh-
old to define adequate similar sequences.

In order to provide some insight into various sORF at-
tributes (TIS distribution, Ensembl annotation, PhyloCSF,

FLOSS, variation analysis) as well as the data, overview
plots were generated summarizing the outcome of these in
silico analyses (Supporting Material S1).

Based on mass spectrometry fragmentation spectra identifi-
cation. An automated pipeline was developed to repro-
cess the PRIDE (27,28) repository to identify micropep-
tides. The sequence searching pipeline consisted of pride-
asap (29) to extract and infer the correct search parameters,
SearchGUI (30) version 2.0.4 for the search engine man-
agement and finally PeptideShaker (31) version 1.0.1 for the
post-processing of the algorithms output and the filtration
for validated spectra.

To minimalize the chances of erroneously assigning a
spectrum to a sORF instead of an known human protein,
a two stage search approach was used: a filtering search
identifying all spectra at a 1% FDR rate at the PSM level
against human UniProt-KB (32,33) including isoforms, re-
lease 10 2015 and the cRAP library (34) (i), and a follow
up search of the non-validated spectra against a sequence
database containing the hypothetical sequences of sORF
translation products (ii).

The PRIDE ReSpin results are represented on the sORF
detail page and can be queried from the BioMart query in-
terface. More information can be found in Supporting Ma-
terial S2.

sORFs.org access

sORFs.org is publicly available through a web interface
located at (http://www.sorfs.org). sORFs.org has two dif-
ferent query interfaces, the default query interface (http://
www.sorfs.org/database) allows to query on basic sORF at-
tributes (ID, species, cell line, genomic position, length, an-
notation, biotype, sequence). Additionally a BioMart query
interface (http://www.sorfs.org/BioMart) allows to query
on all possible features and export the filtered data. A man-
ual is provided for both query interfaces next to the corre-
sponding query interface page. All sORFs can be individu-
ally inspected on a detail page (Figure 2), displaying all the
sORF attributes. This detail page also contains a RIBO-seq
visualization tool, permitting manual inspection of RIBO-
seq data. The visualization tool enables selection of RPFs
based on length or reading frame (Figure 3). Furthermore
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Figure 2. sORF detail page.

the detail page contains a hyperlink through the ‘gene loca-
tion’ attribute, where the mapped RIBO-seq data are avail-
able for inspection in the UCSC browser (35,36). Researches
can submit data and papers through the ‘submit’ (http:
//www.sorfs.org/submit) page and sORFs.org can be con-
tacted through the ‘contact’ (http://www.sorfs.org/contact)
page.

CONCLUSION AND FUTURE DIRECTION

Although the micropeptide research field has grown signif-
icantly, it still remains in its infancy. The existence of mi-
cropeptides has been long neglected, but refusing to accept
their significance could impair our scientific knowledge.
Since the advent of RIBO-seq, various tools and metrics
have been developed to discover sORFs. sORFs.org aims
to perform these tools and metrics, integrate these various
data sources, and furthermore use visualization tools and
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Figure 3. RIBO-SEQ visualization tool with options.

intuitive querying interfaces to enable wet lab researchers
to question this pool of information. Consequently the mi-
cropeptide research field will become more accessible. This
sORFs.org resource can also significantly facilitate other
follow-up analyses. A sORFs sequence database can be con-
structed to use in MS-based identification. Also, certain
(disease) phenotype related variations could be explained
because they reside within a sORF, encoding a functional
micropeptide.

As RIBO-seq becomes more appreciated, sORFs.org is
expected to elaborate on the number of data sets and sup-
ported species. Simultaneously new tools and metrics will be
incorporated following new developments in the field. For
instance, a pipeline is being developed to allow sORF iden-
tification from RIBO-seq data lacking HARR/LTM treat-
ment. sORFs.org contains the potential to become a com-
munity resource for sORFs and micropeptide research.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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