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Minireview
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The glucocorticoid receptor in inflammatory 
processes: transrepression is not enough

Abstract: Glucocorticoids (GCs) are the most commonly 
used anti-inflammatory agents to treat inflammatory 
and immune diseases. However, steroid therapies are 
accompanied by severe side-effects during long-term 
treatment. The dogma that transrepression of genes, 
by tethering of the glucocorticoid receptor (GR) to DNA-
bound pro-inflammatory transcription factors, is the 
main anti-inflammatory mechanism, is now challenged. 
Recent discoveries using conditional GR mutant mice and 
genomic approaches reveal that transactivation of anti-
inflammatory acting genes is essential to suppress many 
inflammatory disease models. This novel view radically 
changes the concept to design selective acting GR ligands 
with a reduced side-effect profile.

Keywords: ChIP-Seq; glucocorticoid receptor; inflamma-
tion; transactivation; transgenic mice; transrepression.

DOI 10.1515/hsz-2015-0106
Received January 15, 2015; accepted April 13, 2015

Introduction
Glucocorticoids (GCs) are among the most potent and most 
effective anti-inflammatory drugs. Therefore, synthetic 
GCs, including dexamethasone and prednisolone, are 
widely used for the treatment of numerous inflammatory 
disorders, such as rheumatoid arthritis, ulcerative colitis 

and asthma. In addition to their potent anti-inflammatory 
properties, GCs are critical regulators of a wide variety 
of fundamental processes, including metabolic homeo-
stasis, cell proliferation, development and reproduction. 
Owing to these metabolic actions of GCs, long-term GC 
treatment is unfortunately associated with various unde-
sirable effects, such as diabetes, osteoporosis, glaucoma 
and muscle wasting (Kleiman and Tuckermann, 2007; 
Hübner and Tuckermann, 2012). These unwanted side-
effects, together with the occurrence of unresponsiveness 
to the beneficial effects of GCs, called GC resistance (GCR), 
constrain the therapeutic success of GCs (Vandevyver 
et  al., 2014). Thus, there is a conceivable unmet clinical 
need for safer and more efficacious GCs.

Transactivation and transrepression 
of gene regulation by the GR
GCs are steroid hormones that, owing to their lipophilic 
nature, can freely diffuse across the cell membrane. Intra-
cellular, GCs exert their actions by binding to their cognate 
receptor, the glucocorticoid receptor (GR). GR is a member 
of the nuclear receptor superfamily and is a modular protein 
composed of three major functional domains: the N-ter-
minal transactivation domain, the central DNA-binding 
domain (DBD) and the C-terminal ligand-binding domain 
(LBD). The DBD consists of two zinc fingers, needed for GR 
dimerisation and DNA binding. The LBD comprises another 
dimerisation interface and is involved in the interaction 
with other transcriptional regulators, thus comprising a 
C-terminal transactivation domain. Furthermore, alterna-
tive splicing of the GR generates several splice variants, 
of which the GRα splice form is most widely and highly 
expressed. The GRβ form results from an alternative splice 
acceptor site in exon 9, leading to a smaller LBD, which is 
unable to bind GCs. Nevertheless, GRβ has an intrinsic tran-
scriptional profile, independent of GRα (Kino et al., 2009). 
In addition, at least eight proteins are translated from the 
GRα transcript because of alternative translation initiation 
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of the mRNA. These protein variants all have unique tissue 
distribution patterns and transcriptional regulatory pro-
files (Oakley and Cidlowski, 2011).

GR predominantly resides in the cytoplasm, seques-
tered in a multimeric chaperone complex (Vandevyver 
et al., 2012a,b). Upon ligand binding, the GR translocates 
to the nucleus where the activated GR positively or nega-
tively regulates gene expression in a coordinated manner, 
referred to as transactivation and transrepression, respec-
tively. In a classical view, transcriptional induction by GR 
is mainly mediated by binding of GR dimers to so-called 
glucocorticoid response elements (GRE), consisting of 
a variant of the inverted, hexameric, palindromic motif 
5′-AGAACAnnnTGTTCT-3′, in which ‘n’ symbolizes any 
nucleotide (Vandevyver et  al., 2013) (Figure 1A). Recent 

genome-wide ChIP-Seq datasets reveal that a fraction of 
GR molecules bind DNA via GRE-related sequences (Reddy 
et al., 2009; Voss et al., 2011). However, not all GRE-like 
sequences are bound by GR and thus these sequences are 
not a predictor for binding (John et al., 2011). GR-binding 
sequences are very versatile, cell-type-specific and are 
often associated with binding sequences of other transcrip-
tion factors in a cell-type-specific manner (Biddie et  al., 
2011; John et  al., 2011; Grontved et  al., 2013; Uhlenhaut 
et al., 2013; Starick et al., 2015). A number of GR-binding 
sites seem to reside in accessible chromatin, as revealed 
by DNAase I hypersensitivity sequencing (Biddie et  al., 
2011; John et  al., 2011). This open chromatin landscape 
varies between cell types due to activity of cell-lineage-
specific pioneering transcription factors (Siersbaek et al., 

Figure 1: Genomic actions of the glucocorticoid receptor (GR).
(A) The GR can act as a dimer, by binding to glucocorticoid response elements (GRE), thereby recruiting coactivators and activating gene 
expression. Transrepression of genes by GR dimerisation and GR monomers occur through binding to negative acting GREs (nGREs) and 
recently discovered inverted repeats (IR) nGREs (fewer than three nucleotides between the GRE half sites) and subsequent recruitment of 
co-repressors NCoR and Smrt. The GR can act as a monomer and interact with pro-inflammatory transcription factors (AP-1, NF-κB, IRF3), 
thereby repressing and/or modulating gene activity with the help of co-integrators. The binding of the GR as a dimer to GREs in close 
proximity to NF-κB and AP-1 binding sites can also occur, and in this way induce or repress target gene expression. Furthermore, the GR 
monomer is also able to bind to half GRE sites that are in the vicinity of motifs of lineage-specific TFs and modulate transcription. (B) In 
addition to transrepression of pro-inflammatory acting transcription factors – such as AP1, CREB, NF-κB, NFAT, IRF3/5, T-bet, GATA3 – GR 
also represses inflammation through transactivation of protein-coding target genes, such as DUSP1 (MKP1), KLF2, TSC22D3 (GILZ), SLPI, 
ANXA1 (annexin A1), TTP, IκBα, IL10, and the lncRNA Lethe.
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2011) that might confer to cell-type-specific regulation of 
genes by the GR.

DNA binding by GR is followed by recruitment of tran-
scriptional coregulators, which enable highly coordinated 
regulation of gene transcription by modifying and remod-
eling the chromatin structure. Coactivators like histone 
acetylases p300 and homologous cAMP-responsive 
element-binding protein (CREB)-binding protein (CBP) 
(p300/CBP), p300/CBP associated factor (p/CAF), ATPase 
BRG1 [an ATP-dependent chromatin remodeling complex 
that is an central unit of switch/sucrose non-fermenting 
(SWI/SNF) proteins] and p160 famliy members (e.g., 
SRC-1, TIF2/GRIP1/SRC-2, SRC-3) lead to chromatin decon-
densation and initiate and promote transcription via 
RNA Polymerase II (Rosenfeld et  al., 2006; Nicolaides 
et  al., 2010). Subsequently, secondary coactivators such 
as methyltransferase CARM1 are then recruited by p160 
family members to enhance the transcription process 
(Chen et  al., 1999; Ma et  al., 2001). The transcriptional 
activity of GR can be modified by posttranslational modi-
fications of the receptor protein, including phosphoryla-
tion, acetylation, ubiquitination and sumoylation and is 
reviewed elsewhere (Vandevyver et al., 2014).

Transrepression of genes may occur by a couple of 
mechanisms involving GR dimerisation and GR monomer 
molecules. GR suppresses genes by binding to nega-
tive acting GREs (nGREs) and to recently discovered 
inverted repeats (IR) nGREs with fewer than three nucle-
otides between the GRE half sites, followed by recruit-
ment of co-repressors NCoR and Smrt (Surjit et al., 2011) 
(Figure  1A). A prominent mechanism of transrepression 
of genes encoding pro-inflammatory mediators such as 
major cytokines, matrix metalloproteases and others is 
attributed to the monomer form of the GR, independent of 
direct DNA contact. A tethering of the monomer GR to reg-
ulatory transcription factors (TFs) of inflammatory genes, 
such as AP1, NF-κB, IRF3, STAT5, CREB, NFAT, T-bet and 
GATA3 (Ratman et al., 2013) leads to a repression of their 
activity and subsequently reduction of gene expression 
(Figure 1A and B). Here, the GR co-activator GRIP1 can 
act as a corepressor to mediate inhibition of NF-κB, AP1 
and STAT1 activity by GR (Flammer et al., 2010) through 
chromatin modification (Uhlenhaut et al., 2013). Genome-
wide studies discovered indeed co-occupancies of DNA by 
GR and p65/NF-κB (Rao et al., 2011). Whether the major-
ity are tethered sites is not yet clear, as Uhlenhaut and 
colleagues also observed GREs presumably bound by GR 
dimers in the vicinity of p65 binding sites in the region of 
GC repressed genes in macophages (Figure 1A).

Conversely, direct binding of GR monomers to DNA 
seems to occur more often than previously anticipated. 

Recent genome-wide ChIP-Seq analysis and ChIP exo Seq 
analysis demonstrated that the GR monomer binds to half 
GRE-like sites (Schiller et al., 2014; Lim et al., 2015; Starick 
et al., 2015). The half site motifs are in vicinity of binding to 
motifs of lineage-specific TFs observed in distinct cell lines 
and in liver and macrophages (Lim et  al., 2015; Starick 
et al., 2015) (Figure 1A). These half sites are also occupied 
by a GR with attenuated dimerisation from GRdim mice (dis-
cussed in detail below) that fail to occupy classical GREs in 
liver in vivo (Lim et al., 2015). Intriguingly, pharmacological 
GC treatment of mice leads to an increase of dimeric 
binding of the GR on the genome at least in the liver (Lim 
et al. 2015). This complex binding pattern of GR dimers and 
monomers in the genome together with functional studies 
of animals with an attenuated GR dimerisation interface 
lead to a challenge of a long standing strategy to develop 
GR selective ligands to alleviate side-effects.

The generation of GR selective 
ligands to avoid GR dimerisation
For decades, it was generally believed that the unwanted 
metabolic side-effects, associated with GC therapy, were 
attributed to the GR dimer-dependent transactivation 
effects, as this leads to the induction of several enzymes 
involved in carbohydrate, glucose and lipid metabolism, 
such as fatty acid synthase, PEPCK (phosphoenolpyruvate 
carboxykinase), TAT (tyrosine aminotransferase) and G6P 
(glucose-6-phosphatase). On the contrary, it was thought 
that the beneficial anti-inflammatory effects were mainly 
mediated by the GR monomer through transrepression of 
pro-inflammatory TFs (Schacke et  al., 2007). Therefore, 
research was directed towards the development of disso-
ciated ligands that favour the GR monomer activities of 
GR, but without inducing the dysmetabolic effects. Multi-
ple selective GR agonists (SEGRAs), such as RU24858 and 
RU24782, were screened for their anti-inflammatory power 
and reduced side-effects. Later, the focus shifted from ste-
roidal scaffolds to non-steroidal ligands, such as LDG552, 
ZK216348 and Compound A, with the advantage that these 
do not bind other steroid receptors, i.e., the mineralocor-
ticoid receptor and the progesterone receptor, thereby 
preventing side-effects derived from activation of other 
hormonal receptors (De Bosscher et al., 2010). However, so 
far, only a few compounds have made it to clinical trials for 
topical application (Vandevyver et al., 2013). The limited 
success of translation to the in vivo situation can be, in 
part, attributed to the oversimplified transactivation/
transrepression model, which is commonly used. The 
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ability to dissociate between transrepression and gene 
activation (transactivation) was tested on a limited number 
of simple promoter constructs in vitro, e.g., transactivation 
of TAT promoter vs. transrepression of IL8 (interleukin 8) 
promoter. However, with the current notion of the role of 
the endogenous more complex GRE sequences as allos-
teric GR ligands, determining the transcriptional outcome 
(Meijsing et al., 2009), simple assays based on the consen-
sus GRE sequence, likely do not suffice. Moreover, most 
were selected for their capacity to inhibit the pro-inflam-
matory TFs NF-κB and AP1 (Schacke et al., 2007), despite 
the growing list of immune-regulating TFs that are inhib-
ited by GR, including NFAT, IRF3, CREB, T-bet and GATA3 
(Hübner and Tuckermann, 2012).

GR induced anti-inflammatory 
acting genes
An even more important reason to nuance the dissocia-
tion hypothesis is that GR dimers, in addition to metabolic 
genes, also induce the expression of anti-inflammatory 
genes, such as DUSP1 (coding for MKP1, a regulator of 
MAPK signalling), TSC22D3 (coding for GILZ), and ANXA1 
(Figure  1B). Endogenous GCs protect mice from TNF-
induced lethal shock in a GR dimerisation-dependent 
manner by enhancing MKP1 expression (Vandevyver 
et  al., 2012a,b). Furthermore, the GR in macrophages 
is essential for limiting mortality and cytokine produc-
tion via MKP1-mediated p38 inhibition (Bhattacharyya 
et  al., 2007, 2010). Mice lacking MKP1 were more sensi-
tive to sepsis owing to the inability to reduce inflamma-
tory cytokines (Salojin et  al., 2006; Zhao et  al., 2006; 
Hammer et  al., 2010). In conclusion, GC-induced MKP1 
gene expression was shown to be an essential anti-inflam-
matory mechanism in vitro and in vivo (Abraham et  al., 
2006; Vandevyver et  al., 2013). Furthermore, some GC 
mediated anti-inflammatory effects are shown to be medi-
ated by GILZ via modulation of MAPK pathways result-
ing in repression of inflammation (Clark and Lasa, 2003; 
Ayroldi and Riccardi, 2009). In detail, in macrophages 
and T-cells GILZ inhibits NF-κB function by binding to 
the p65 subunit and thereby preventing transcription of 
NF-κB dependent genes (Ayroldi et  al., 2001; Pinheiro 
et al., 2013). Another GR dimer-dependent anti-inflamma-
tory acting gene is ANXA1, coding for Annexin1 (Hannon 
et  al., 2003; Clark, 2007). Inflammation induced by LPS 
in Annexin1-deficient mice resulted in an impaired reduc-
tion of pro-inflammatory cytokines based on the failed 
up-regulation of GC-induced GILZ (Yang et al., 2009).

In addition to the well-known GC-induced anti-
inflammatory genes, such as TSC22D3 and DUSP1, many 
others are positively regulated by GR and play a putative, 
yet undiscovered, role in the defence against inflamma-
tion. Also, long non-coding RNAs (lncRNAs), induced by 
GCs, might be involved in the anti-inflammatory actions 
of GCs, as it was recently documented that the lncRNA 
Lethe as a GC-induced gene represses NF-κB (Rapicavoli 
et al., 2013). As the identification of these genes and their 
functionality is still in its infancy, it is clear that the full 
complexity of the anti-inflammatory nature of the GR is 
far from fully understood. This indicates that not only 
interference of pro-inflammatory TFs is of importance for 
the beneficial effects of GCs.

Lessons from GRdim mice
The importance of the GR-mediated transactivation actions 
for the anti-inflammatory functions of GCs became evident 
by in vivo studies with so-called GRdim mice. These mice 
express a point mutant version of GR, where Alanine 
465 is changed to a Threonine (A465T and in human GR 
A458T), located in the second zinc finger motif of the DBD, 
leading to reduced homodimerisation of the GR and sub-
sequent reduced binding to GRE elements (Heck et  al., 
1994; Reichardt et  al., 1998; Lim et  al., 2015). Interfering 
with the dimerisation interface strongly abrogates the anti-
inflammatory actions of endogenous GCs, as GRdim mice 
are highly susceptible for several inflammatory disease 
models (Nixon et  al., 2013; Vandevyver et  al., 2013), such 
as TNF-and LPS-induced acute inflammation (Kleiman and 
Tuckermann, 2007; Tuckermann et  al., 2007; Hübner and 
Tuckermann, 2012; Kleiman et al., 2012; Vandevyver et al., 
2012a,b; Silverman et al., 2013) and CLP (cecal ligation and 
puncture)-induced sepsis (Kleiman and Tuckermann, 2007; 
Kleiman et al., 2012) (Table 1). In addition, GR dimerisation-
dependent actions are also indispensable in the protection by 
exogenous GCs during rheumatoid arthritis (Baschant et al., 
2011; Baschant et al., 2012) and allergic contact dermatitis 
(Kleiman and Tuckermann 2007; Tuckermann et al., 2007) 
(Table 1). Only a few types of inflammation can be reduced 
by GCs in GRdim mice, such as skin irritation (Reichardt et al., 
2001) and experimental autoimmune encephalomyelitis, a 
mouse model for multiple sclerosis (Schweingruber et  al., 
2014) (Table 1). Therefore, most of inflammatory paradigms 
tested are refractory to GCs in these mice. Furthermore, 
GRdim mice still suffer from GC-induced osteoporosis (Rauch 
et al., 2010) and muscle atrophy (Waddell et al., 2008), indi-
cating that GR monomers also contribute to the adverse 
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side-effects. In addition, not all metabolic genes that are 
positively regulated by GR, are affected by the GRdim muta-
tion, for example, genes activated by composite elements 
bound by GR-STAT5 heterodimers, such as the growth 
hormone and IGF1 (Tronche et al., 2004).

Of note, in transient transfection studies it was shown 
that by the GRdim mutation, dimerisation is not entirely 
absent (Jewell et  al., 2012; Watson et  al., 2013; Presman 
et al., 2014). The residual dimerisation of the GRdim mutant 
is due to the fact that promoters may engage several dimeri-
sation interfaces of the GR that are still present in the GRdim 
mutation (e.g., in the LBD) (Savory et  al., 2001; Bledsoe 
et al., 2002; Jewell et al., 2012; Presman et al., 2014). Indeed, 
single-cell measurements revealed that transfected GRdim 
mutant, bound to the GRE type response elements with 
reduced residence time on the DNA (Gebhardt et al., 2013). 
Eventually the reduced stability of GR-DNA binding of the 
GRdim mutant is the result of reduced allosteric communica-
tion between the DNA and the GR, in which the particular 
Alanine 458 (A465 in mouse) is involved (Watson et  al., 
2013). Accordingly, reduced transcriptional activity of gene 
expression was observed in liver in a genome-wide manner 
(Frijters et al., 2010) and recent ChIP Exonuclease Sequenc-
ing from the livers of GRdim mice show a strongly diminished 
occupancy by GR dimers, whereas GR binding to GRE half 
sites was not affected (Lim et al., 2015). This indicates that 
despite certain limitations GRdim mice are a useful tool to dis-
cover GR target genes that require a full dimerisation com-
petent GR and transactivation essential for suppression of 
inflammation. In particular, GRdim mice have contributed to 
the knowledge that future development of GC-based thera-
peutic strategies should also rely on GR transcriptional 
induction of downstream anti-inflammatory molecules.

Future directions
Despite our increasing knowledge on the mechanisms 
of action of GCs by using conditional mouse mutants 

and genome-wide analysis, the precise mechanisms on 
the full anti-inflammatory profile of the GR are only just 
unfolding.

One additional complexity is certainly provided by 
cell-type-specific effects of gene regulation by the GR and 
the distinct requirement of certain cell types to mediate 
anti-inflammatory effects. Analysis of conditional knock-
out mice revealed that for models in septic shock myeloid 
cells are decisive mediators of the protective function of 
endogenous released GCs (Bhattacharyya et  al., 2007; 
Kleiman and Tuckermann, 2007; Kleiman et  al., 2012), 
whereas in antigen-induced arthritis the GR in T-cells is 
decisive (Baschant et al., 2011). In some types of inflam-
mation not only one, but also several cell types might 
contribute to protective effects of encapsulated GCs, such 
as myeloid cells and T-cells in experimental autoimmune 
encephalomyelitis (EAE) (Schweingruber et  al., 2011). 
Given the plethora of cell types that contribute to inflam-
matory processes including immune cells, but also cells of 
the inflamed tissue, for a comprehensive understanding of 
regulatory actions of the GR, the genome-wide analysis of 
GR actions has to be expanded to various cell types in the 
future. In combination with functional studies, by knock-
ing out cooperating factors of GR or GR-binding sites using 
CRISPR/Cas9 system a biological picture of GR action will 
emerge and aid in shaping anti-inflammatory responses.

Thus, the previous approach to screen for selec-
tive ligands to transactivate one promoter and to repress 
another promoter to obtain GR ligands with reduced 
side-effects has to be revised. The induction of potent 
anti-inflammatory acting genes cannot be ignored and 
readouts should be developed that represent the entire 
response of a certain cell as the sum of gene regulation. 
This will be certainly a challenge, but recent progress in 
high content screening using automatic microscopes to 
determine the adaption of anti-inflammatory phenotypes 
of immune cells vs. ‘side-effect’-like effects, could be 
exploited for novel GR ligands with reduced side-effects. 
Once such ligands are isolated, their gene regulatory 

Table 1: Disease models in which the dimerisation of GR is either required or dispensable for anti-inflammatory effects of GCs.

Disease model   Intact GR dimerisation 
interface required in vivo

  References

TNF-induced inflammation   Yes   Vandevyver et al. (2012b)
LPS-induced inflammation   Yes   Kleiman et al. (2012), Silverman et al. (2013)
CLP-induced septic shock   Yes   Kleiman et al. (2012)
Rheumatoid arthritis   Yes   Baschant et al. (2011)
Allergic contact dermatitis   Yes   Tuckermann et al. (2007)
Experimental autoimmune encephalomyolitis  No   Schweingruber et al. (2014)
Osteoporosis   No   Rauch et al. (2010)
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actions should be validated including ChIP- and RNA-seq 
analyses to determine their impact on GR-DNA binding 
and transcriptional induction of GR-dependent genes.

Therapeutic advancement can also be achieved by 
targeted therapy to the diseased tissue, thereby limiting 
the systemic side-effects. For example, an anti-CD163 anti-
body drug conjugate that specifically targets Dex to the 
haemoglobin scavenger receptor CD163 in macrophages 
allows using lower doses, leading to reduced metabolic 
side-effects, while maintaining the therapeutic potential 
(Granfeldt et  al., 2013). Another possibility for tissue-
specific delivery is linkage of glucocorticoids to tissue-
selective peptide-ligands as it was demonstrated for the 
delivery for oestrogens linked to glucagon-like peptide-1 
(Finan et  al., 2012). Future research on a cell-specific 
genome-wide understanding of transcriptional regula-
tion by the GR and decisive protein interactions will give 
rationales for novel readouts in drug screenings to favour 
certain GR-protein-protein interactions. The identifica-
tion of factor and tissue-specific GR agonists will benefit 
healthcare, directly by reducing patient suffering, and 
indirectly by decreasing economical costs.
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