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THE RIDGELET TRANSFORM AND QUASIASYMPTOTIC
BEHAVIOR OF DISTRIBUTIONS

SANJA KOSTADINOVA, STEVAN PILIPOVIĆ, KATERINA SANEVA, AND JASSON VINDAS

Abstract. We characterize the quasiasymptotic behavior of distributions in terms
of a Tauberian theorem for ridgelet transforms.

1. Introduction

Ridgelet analysis may be considered as an adaptation of wavelet analysis for dealing
with higher dimensional phenomena [3]. The theory of the continuous ridgelet trans-
form for functions was developed by Candès in [1, 2]. This transform is the composition
of the Radon transform with a one-dimensional continuous wavelet transform. Thus,
ridgelet analysis can be seen as a form of wavelet analysis performed in the Radon
domain. In [10], the authors have extended the theory to include ridgelet transforms
of Lizorkin distributions, that is, elements of S ′0(Rn), the dual of the space of highly
time-frequency localized test functions S0(Rn) [9].

The purpose of this paper is to study the quasiasymptotic behavior of Lizorkin
distributions via ridgelet analysis. The quasiasymptotic behavior was introduced by
Zav’yalov in the context of quantum field theory and it was further studied by him,
Vladimirov and Drozhzhinov in connection with Tauberian theorems for multidimen-
sional Laplace transforms [32]. This concept measures the scaling asymptotic proper-
ties of distributions through asymptotic comparison with Karamata regularly varying
functions. The main result of this article (Theorem 4.3) is a characterization of the
quasiasymptotic behavior in terms of a Tauberian theorem for the ridgelet transform.
We point out that there is an extensive literature in Abelian and Tauberian theorems for
generalized functions; see, e.g., the monographs [13, 14, 15, 32] and references therein
for the analysis of various integral transforms. For studies involving the quasiasymp-
totic behavior and wavelet analysis we refer to [4, 5, 11, 16, 17, 18, 20, 21, 22, 31, 33].
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Most of our arguments in this article rely on the intrinsic connection between the
ridgelet, Radon, and wavelet transforms. For distributions, such a connection must
be carefully handled and involves ideas from the theory of tensor products of topo-
logical vector spaces. Section 2 collects background material from [10] on these three
integral transforms. In Section 3, we present a ridgelet transform characterization of
the bounded subsets of S ′0(Rn); we also show in this section that the Radon transform
on S ′0(Rn) is a topological isomorphism into its range. It is interesting to notice that
the Radon transform may fail to have the latter property even on spaces of test func-
tions; for instance, Hertle has shown [8] that the Radon transform on D(Rn) is not an
isomorphism of topological vector spaces into its range. Finally, Section 4 deals with
Abelian and Tauberian theorems for the ridgelet transform. Theorem 4.3 should be
compared with the Taberian theorems for wavelet transforms from [5, 18, 31].

2. Preliminaries

2.1. Spaces. We denote as H = R×R+ the upper-half plane and Yn+1 = Sn−1×H =
{(u, b, a) : u ∈ Sn−1, b ∈ R, a ∈ R+}, where Sn−1 stands for the unit sphere of Rn. We
always assume that the dimension n ≥ 2.

We provide all distribution spaces with the strong dual topologies. The Schwartz
spaces D(Rn), S(Rn), D′(Rn), S ′(Rn), and D′L1(Rn) are well known [24]. We will also
work with the Lizorkin test function space S0(Rn) of highly time-frequency localized
functions over Rn [9]. It consists of those elements of S(Rn) having all moments
equal to 0, namely, φ ∈ S0(Rn) if

∫
Rn xmφ(x)dx = 0, for all m ∈ Nn

0 . It is a closed
subspace of S(Rn). Its dual space S ′0(Rn), known as the space of Lizorkin distributions,
is canonically isomorphic to the quotient of S ′(Rn) by the space of polynomials. We
denote by D(Sn−1) the space of smooth functions on the sphere. Given a locally convex
space A of smooth test functions on R, we write A(Sn−1×R) for the space of functions
%(u, p) having the properties of A in the variable p ∈ R and being smooth in u ∈ Sn−1.

We introduce S(Yn+1) as the space of functions Φ ∈ C∞(Yn+1) satisfying the decay
conditions

(2.1) ρl,m,ks,r (Φ) = sup
(u,b,a)∈Yn+1

(
a+

1

a

)s
(1+|b|)r

∣∣∣∣ ∂l∂al ∂m∂bm4k
uΦ (u, b, a)

∣∣∣∣ <∞

for all l,m, k, s, r ∈ N0, where 4u is the Laplace-Beltrami operator on the unit sphere
Sn−1. The functions from S(Yn+1) thus have fast decay for large and small values of
the scale variable a. The topology of this space is defined by means of the seminorms
(2.1). Its dual is denoted by S ′(Yn+1).

A related space is S(H), the space of highly localized test functions on the upper
half-plane [9]. Its elements are smooth functions Ψ on H that satisfy

sup
(b,a)∈H

(
a+

1

a

)s
(1 + |b|)r

∣∣∣∣ ∂l∂al ∂m∂bmΨ (b, a)

∣∣∣∣ <∞,
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for all l,m, s, r ∈ N0; its topology being defined in the canonical way [9].
Observe that the nuclearity of the Schwartz spaces [27] immediately yields the equal-

ities S(Yn+1) = D(Sn−1)⊗̂S(H) and S0(Sn−1 × R) = D(Sn−1)⊗̂S0(R), where X⊗̂Y is
the topological tensor product space obtained as the completion of X ⊗ Y in, say, the
π-topology or, equivalently in these cases, the ε-topology [27]. We therefore have the
following isomorphisms S ′(Yn+1) ∼= S ′(H,D′(Sn−1)) ∼= D′(Sn−1,S ′(H)), the very last
two spaces being spaces of vector-valued distributions [23, 25, 27]. We shall identify
these three spaces and write

(2.2) S ′(Yn+1) = S ′(H,D′(Sn−1)) = D′(Sn−1,S ′(H)).

The equality (2.2) being realized via the standard identification

(2.3) 〈F, ϕ⊗Ψ〉 = 〈〈F,Ψ〉 , ϕ〉 = 〈〈F, ϕ〉 ,Ψ〉 , Ψ ∈ S(H), ϕ ∈ D(Sn−1).
Likewise, we have the right to write

S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1)) = D′(Sn−1,S ′0(R)).

We shall say that F ∈ S ′(Yn+1) is a function of slow growth in the variables (b, a) ∈ H
if 〈F (u, b, a), ϕ(u)〉u is such for every ϕ ∈ D(Sn−1), namely, it is a function that satisfies
the bound

| 〈F (u, b, a), ϕ(u)〉u | ≤ C

(
a+

1

a

)s
(1 + |b|)s, (b, a) ∈ H,

for some positive constants C = Cϕ and s = sϕ.

2.2. The ridgelet transform. Let ψ ∈ S(R). For (u, b, a) ∈ Yn+1, where u is the
orientation parameter, b is the location parameter, and a is the scale parameter, we
define the function ψu,b,a : Rn → C, called ridgelet, as

ψu,b,a (x) =
1

a
ψ

(
x · u− b

a

)
, x ∈ Rn.

This function is constant along hyperplanes x · u = const., called “ridges”. In the
orthogonal direction it is a wavelet, hence the name ridgelet. The ridgelet transform
Rψ of an integrable function f ∈ L1(Rn) (or an integrable distribution f ∈ D′L1(Rn))
is defined by

(2.4) Rψf (u, b, a) =

∫
Rn

f(x)ψu,b,a(x)dx =
〈
f(x), ψu,b,a(x)

〉
x
,

where (u, b, a) ∈ Yn+1.

Definition 2.1. Let ψ ∈ S(R) \ {0}. A test function η ∈ S(R) is said to be a
reconstruction neuronal activation function for ψ if the constant

Kψ,η := (2π)n−1
∫ ∞
−∞

ψ̂(ω)η̂(ω)
dω

|ω|n
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is non-zero and finite.

It is not hard to see that every ψ ∈ S(R) \ {0} has a reconstruction neuronal
activation function η which may be chosen from S0(R).

If ψ and η are as in Definition 2.1 and if f ∈ L1(Rn) is such that f̂ ∈ L1(Rn), then
the following reconstruction formula holds pointwisely [10, Prop. 3.2],

(2.5) f (x) =
1

Kψ,η

∫
Sn−1

∫ ∞
0

∫ ∞
−∞
Rψf (u, b, a) ηu,b,a(x)

dbdadu

an
.

Given ψ ∈ S(R), we introduce the ridgelet synthesis operator as

(2.6) Rt
ψΦ(x) :=

∫
Sn−1

∫ ∞
0

∫ ∞
−∞

Φ(u, b, a)ψu,b,a(x)
dbdadu

an
, x ∈ Rn.

The integral (2.6) is absolutely convergent, for instance, if Φ ∈ S(Yn+1). Observe that
the reconstruction formula (2.5) can be rewritten as Kψ,ηf(x) = (Rt

η(Rψf))(x).

We have shown in [10] that the two ridgelet mappings Rψ : S0(Rn)→ S(Yn+1) and
Rt
ψ : S(Yn+1) → S0(Rn) are continuous, provided that ψ ∈ S0(R). These continuity

results allow us to define the ridgelet transform of f ∈ S ′0(Rn) with respect to ψ ∈ S0(R)
as the element Rψf ∈ S ′(Yn+1) whose action on test functions is given by

〈Rψf,Φ〉 := 〈f,Rt
ψ
Φ〉, Φ ∈ S(Yn+1).

Moreover, we define the ridgelet synthesis operator Rt
ψ : S ′(Yn+1)→ S ′0(Rn) as

〈Rt
ψF, φ〉 := 〈F,Rψφ〉, F ∈ S ′(Yn+1), φ ∈ S(Rn).

We immediately obtain that the ridgelet transform Rψ : S ′0(Rn) → S ′(Yn+1) and the
ridgelet synthesis operator Rt

ψ : S ′(Yn+1) → S ′0(Rn) are continuous linear mappings.
In addition [10, Thrm 5.4], the following inversion formula holds

(2.7) idS′0(Rn) =
1

Kψ,η

(Rt
η ◦ Rψ),

where η ∈ S0(R) is a reconstruction neuronal activation function for ψ ∈ S0(R) \ {0}.
It is very important to point out that the definition of the distributional ridgelet

transform is consistent with (2.4) for test functions in the following sense. If f ∈
L1(Rn), or more generally f ∈ D′L1(Rn), the function (2.4) is continuous and bounded
on Yn+1; one can then show [10, Thrm 5.5] that

(2.8) 〈Rψf,Φ〉 =

∫ ∞
0

∫ ∞
−∞

∫
Sn−1

Rψf(u, b, a)Φ(u, b, a)
dudbda

an
, Φ ∈ S(Yn+1).
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2.3. The Radon transform. Let f be a function that is integrable on hyperplanes
of Rn. For u ∈ Sn−1 and p ∈ R, the equation x · u = p specifies a hyperplane of Rn.
Then, the Radon transform of f is defined as

Rf(u, p) = Rfu(p) :=

∫
x·u=p

f(x)dx.

The dual Radon transform (or back-projection) R∗% of the function % ∈ L∞(Sn−1×R)
is defined as

R∗%(x) =

∫
Sn−1

%(u,x · u)du.

See Helgason’s book [7] for properties of the Radon transform. It can be shown [10]
that the mappings R : S0(Rn) → S0(Sn−1 × R) and R∗ : S0(Sn−1 × R) → S0(Rn) are
continuous. The first of this mappings is injective, while R∗ is surjective. Therefore,
one can also extend the definition of the Radon transform to S ′0(Rn) via the formula

〈Rf, %〉 = 〈f,R∗%〉 .

Clearly, R : S ′0(Rn)→ S ′0(Sn−1 × R) is continuous and injective.

2.4. The wavelet transform. Given f ∈ S ′(R) and ψ ∈ S(R) (or f ∈ S ′0(R) and
ψ ∈ S0(R)), the wavelet transform Wψf(b, a) of f is defined by

Wψf(b, a) =

∫
R
f(x)

1

a
ψ
(x− b

a

)
dx =

〈
f(x),

1

a
ψ
(x− b

a

)〉
x

, (b, a) ∈ H.

We refer to Holschneider’s book [9] for a distributional wavelet transform theory based
on the spaces S0(R), S(H), S ′0(R), and S ′(H). We shall need here the wavelet transform
of vector-valued distributions, as explained in [18, Sect. 5 and 8].

We deal here with wavelet analysis on S0(Sn−1 × R) and S ′0(Sn−1 × R). Given
ψ ∈ S0(R), we let Wψ act on the real variable p of functions (or distributions) g(u, p),
that is,

(2.9) Wψg(u, b, a) :=

∫ ∞
−∞

1

a
ψ

(
p− b
a

)
g(u, p)dp =

〈
g(u, p),

1

a
ψ
(p− b

a

)〉
p

,

(u, b, a) ∈ Yn+1. Similarly, we define the wavelet synthesis operator on S(Yn+1) as

MψΦ(u, p) =

∫ ∞
0

∫ ∞
−∞

1

a
ψ

(
p− b
a

)
Φ(u, b, a)

dbda

a
.

The mappings, [10, Cor. 4.3], Wψ : S0(Sn−1 × R) → S(Yn+1) and Mψ : S(Yn+1) →
S0(Sn−1 × R) are continuous. As remarked in Subsection 2.1, we have S ′0(Sn−1 ×
R) = S ′0(R,D′(Sn−1)) and S ′(Yn+1) = S ′(H,D′(Sn−1)). This allows us to interpret the
wavelet transform (2.9),

Wψ : S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1))→ S ′(H,D′(Sn−1)) = S ′(Yn+1),
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as a wavelet transform with values in the DFS space D′(Sn−1). Actually, if g ∈
S ′0(Sn−1 × R), then Wψg : H → D′(Sn−1) is a smooth vector-valued function of slow
growth on H, whose action on test functions Φ ∈ S(Yn+1) is specified by

(2.10) 〈Wψg,Φ〉 :=

∫ ∞
0

∫ ∞
−∞
〈Wψg(u, b, a),Φ(u, b, a)〉u

dbda

a
.

Implicit in (2.10) is the fact that we are using the measure a−1dbda as the standard
measure on H for the identification of functions of slow growth with distributions on
H. This choice is the natural one for wavelet analysis, in the sense that one can check
that the following duality relation holds:

〈Wψg,Φ〉 =
〈
g,MψΦ

〉
,

for all for g ∈ S ′0(Sn−1 × R) and Φ ∈ S(Yn+1). (See [18, Sect. 5 and 8] for additional
comments on the vector-valued wavelet transform.)

2.5. Relation between the ridgelet, Radon and wavelet transforms. The ridgelet
transform is intimately connected with the Radon and wavelet transforms. Changing
variables in (2.4) to x = pu + y, where p ∈ R and y runs over the hyperplane perpen-
dicular to u, one readily obtains

(2.11) Rψf (u, b, a) =Wψ(Rfu)(b, a),

where Wψ is a one-dimensional wavelet transform. The relation (2.11) holds if f ∈
L1(Rn) (or more generally if f ∈ D′L1(Rn)). Thus, ridgelet analysis can be seen as a
form of wavelet analysis in the Radon domain, i.e., the ridgelet transform is precisely
the application of a one dimensional wavelet transform to the slices of the Radon
transform where u remains fixed and p varies.

There is also an analog of (2.11) for f ∈ S ′0(Rn). One can show [10, Thm. 7.1] that
if f ∈ S ′0(Rn) and ψ ∈ S0(R), then

(2.12) 〈Rψf,Φ〉 =

∫ ∞
0

∫ ∞
−∞
〈Wψ(Rf)(u, b, a),Φ(u, b, a)〉u

dbda

an
, Φ ∈ S(Yn+1).

Furthermore, Rψf ∈ C∞(H,D′(Sn−1)) and is of slow growth on H, and, if ψ 6= 0, the
following desingularization formula holds [10, Thrm 7.2].

(2.13) 〈f, φ〉 =
1

Kψ,η

∫ ∞
0

∫
R
〈Wψ(Rf)(u, b, a),Rη φ(u, b, a)〉u

dbda

an
,

for all φ ∈ S0(Rn), where η ∈ S0(R) is a reconstruction neuronal activation function
for ψ.

It is interesting to compare (2.10) with (2.12). Define first the multiplier operators

Js : S ′(Yn+1)→ S ′(Yn+1), (JsF )(u, b, a) = asF (u, b, a), s ∈ R.
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According to (2.10), the relation (2.12) for distributions might be rewritten as

(2.14) Rψ = J1−n ◦Wψ ◦R.
Observe that (2.14) is not in contradiction with (2.11). Indeed, if f ∈ L1(Rn) (or more
generally f ∈ D′L1(Rn)), then (2.11) expresses an equality between functions, (2.12) is
then in agreement with (2.8), whereas (2.14) simply responds to our convention (2.10)
of using the measure a−1dbda for identifying wavelet transforms with vector-valued
distributions on H. We also have to warn the reader that under this convention, the
smooth function Fϕ(b, a) = 〈Rψf(u, b, a), ϕ(u)〉u from the standard identification (2.3),
where ϕ ∈ D(Sn−1), is the one that satisfies

(2.15) 〈Rψf(u, b, a), ϕ(u)Ψ(b, a)〉u =

∫ ∞
0

∫ ∞
−∞

Fϕ(b, a)Ψ(b, a)
dbda

a
, Ψ ∈ S(H);

so that if f ∈ D′L1(Rn), we have, as pointwise equality between functions,

(2.16) 〈Rψf(u, b, a), ϕ(u)〉u = a−(n−1)
∫
Sn−1

Rψf(u, b, a)ϕ(u)du.

3. Ridgelet characterization of bounded subsets of S ′0(Rn)

This section is dedicated to prove a characterization of bounded subsets of S ′0(Rn)
via the ridgelet transform. We begin the ensuing useful proposition. Note that [7]
R(S0(Rn)) is a closed subspace of S0(Sn−1 × R). The open mapping theorem implies
that R : S0(Rn) → R(S0(Rn)) is an isomorphism of topological vector spaces. We
prove a similar result for the distributional Radon transform.

Proposition 3.1. The Radon transform R : S ′0(Rn)→ R(S ′0(Rn)) is an isomorphism
of topological vector spaces.

Proof. Since R∗ : S0(Sn−1 × R) → S0(Rn) is a continuous surjection between Fréchet
spaces, its transpose R : S ′0(Rn) → S ′0(Sn−1 × R) must be continuous, injective, and
must have weakly closed range [27, Chap. 37]. The subspace R(S ′0(Rn)) is thus strongly
closed because S ′0(Sn−1 × R) is reflexive. Pták’s theory [12, 19] applies to show that
R : S ′0(Rn)→ R(S ′0(Rn)) is open if we verify that S ′0(Rn) is fully complete (B-complete
in the sense of Pták) and that R(S ′0(Rn)) is barrelled. It is well known [19, p. 123]
that the strong dual of a reflexive Fréchet space is fully complete, so S ′0(Rn), as a DFS
space, is fully complete. Now, a closed subspace of a DFS space must itself be a DFS
space. Since S ′0(Sn−1 × R) is a DFS space, we obtain that R(S ′0(Rn)) is a DFS space
and hence barrelled. �

We then have,

Theorem 3.2. Let ψ ∈ S0(R)\{0} and let B ⊂ S ′0(Rn). The following three statements
are equivalent:

(i) B is bounded in S ′0(Rn).
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(ii) There are positive constants l = lB and m = mB such that for every ϕ ∈
D(Sn−1) one can find C = Cϕ,B > 0 with

(3.1) |〈Rψf(u, b, a), ϕ(u)〉u| ≤ C

(
a+

1

a

)l
(1 + |b|)m, for all (b, a) ∈ H and f ∈ B.

(iii) Rψ(B) is bounded in S ′(Yn+1).

Proof. By Proposition 3.1, B is bounded if and only if B1 := R(B) is bounded in
S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1)). On the other hand, in view of (2.14), the estimate
(3.1) is equivalent to one of the form

(3.2) |〈Wψh(u, b, a), ϕ(u)〉u| ≤ C

(
a+

1

a

)s
(1 + |b|)m, for all h ∈ B1.

(i) ⇒ (ii). Assume that B1 is bounded. As a DFS space, D′(Sn−1) is the regular
inductive limit of an inductive sequence of Banach spaces, [18, Prop. 3.2] then implies
the existence of s = sB and m = mB such that (a + 1/a)−s(1 + |b|)−mWψ(B1) is
bounded in D′(Sn−1), which implies (3.2).

(ii) ⇒ (iii). If the estimates (3.1) hold, we clearly have that for fixed ϕ ∈ D(S)
and Ψ ∈ S(H) the quantity 〈Rψf(u, b, a), ϕ(u)Ψ(b, a)〉 (see (2.15)) remains uniformly
bounded for f ∈ B. A double application of the Banach-Steinhaus theorem shows that
Rψ(B) is a bounded subset of Lb(S(H),D′(Sn−1)) =: S ′(H,D′(Sn−1)) (= S ′(Yn+1)).

(iii)⇒ (i). Let η ∈ S0(R). Since Rt
η is continuous, it maps Rψ(B) into a bounded

subset of S ′0(Rn). That B is bounded follows at once from the inversion formula (2.7).
�

4. Abelian and Tauberian theorems

In this last section we characterize the quasiasymptotic behavior of elements of
S ′0(Rn) in terms of Abelian and Tauberian theorems for the ridgelet transform.

4.1. Quasiasymptotics. We briefly explain in this subsection the notion of quasi-
asymptotics of distributions. For more detailed accounts, see the books [6, 14, 15, 32]
(see also [28, 29, 30]). This notion measures the asymptotic behavior of a distribution
by comparison with Karamata regularly varying functions [26]. A measurable real-
valued function, defined and positive on an interval of the form (0,A] (resp. [A,∞)), is
called slowly varying at the origin (resp. at infinity) if

lim
λ→0+

L(aλ)

L(λ)
= 1

(
resp. lim

λ→∞

)
for each a > 0.

Throughout the rest of the article L stands for a slowly varying function at the origin
(resp. at infinity). We say that the distribution f ∈ S ′0(Rn) has quasiasymptotic
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behavior of degree α ∈ R at the origin (resp. at infinity) with respect to L if there
exists g ∈ S ′0(Rn) such that for each φ ∈ S0(Rn)

lim
λ→0+

〈
f (λx)

λαL (λ)
, φ (x)

〉
= 〈g (x) , φ (x)〉

(
resp. lim

λ→∞

)
.

We employ the following notation for the quasiasymptotic behavior:

(4.1) f (λx)∼λαL(λ)g(x) as λ→ 0+ (resp. λ→∞) in S ′0(Rn),

which should always be interpreted in the weak topology of S ′0(Rn). One can prove
[15] that g must be homogeneous of degree α, namely, g (ax) =aαg (x), for each a > 0.

Likewise, one can introduce quasiasymptotic boundedness [29]. We write

(4.2) f (λx) = O(λαL(λ)) as λ→ 0+ (resp. λ→∞) in S ′0(Rn),

if the corresponding growth order bound holds after evaluation at each test function
from S0(Rn). All these notions admit obvious generalizations to vector-valued dis-
tributions (see e.g. [4, 5, 18]). For example, we might consider quasiasymptotics of
distributions from S ′0(R,D′(Sn−1)) = S ′0(Sn−1 × R) with respect to the radial variable
p.

4.2. An Abelian result. We provide here an Abelian proposition for the ridgelet
transform. The following simple but useful lemma connects the quasiasymptotic prop-
erties of a distribution with those of its Radon transform.

Lemma 4.1. f ∈ S ′0(R).

(i) f has the quasiasymptotic behavior (4.1) if and only if its Radon transform has
the quasiasymptotic behavior

Rf (u, λp)∼λα+n−1L(λ) Rg (u, p) as λ→ 0+ (resp. λ→∞) in S ′0(R,D′(Sn−1)).
(ii) f satisfies (4.2) if and only if its Radon transform satisfies

Rf (u, λp) = O(λα+n−1L(λ)) as λ→ 0+ (resp. λ→∞) in S ′0(R,D′(Sn−1)).

Proof. Set fλ(x) = f(λx). If % ∈ S0(Sn−1 × R), we have,

〈Rfλ(u, p), %(u, p)〉 =
1

λn
〈f(x), R∗%(x/λ)〉

=
1

λn−1

〈
f(x),

1

λ

∫
Sn−1

%
(
u,

x · u
λ

)
du

〉
=

1

λn−1
〈Rf(u, λp), %(u, p)〉,

namely, Rfλ(u, p) = λ−(n−1)Rf(u, λp). The result is then a consequence of Proposition
3.1.

�
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Proposition 4.2. Suppose that f ∈ S ′0(R) has the quasiasymptotic behavior (4.1).
Then, given any ϕ ∈ D(Sn−1) and (b, a) ∈ H, we have

(4.3) lim
λ→0+

〈Rψf (u, λb, λa) , ϕ(u)〉u
λαL(λ)

= 〈Rψg (u, b, a) , ϕ(u)〉u
(

resp. lim
λ→∞

)
.

Proof. This proposition follows by combining Lemma 4.1 and the relation (2.14) with
the DFS-space-valued version of [18, Prop. 3.1] for the wavelet transform (see com-
ments in [18, Sect. 8]). �

Remark 1. The limit (4.3) holds uniformly for (b, a) in compact subsets of H.

Remark 2. If f ∈ D′L1(Rn), then (4.3) reads∫
Sn−1

Rψf(u, λb, λa)ϕ(u)du ∼ λα+n−1L(λ)

∫
Sn−1

Rψg(u, b, a)ϕ(u)du,

as follows from (2.16)

4.3. Tauberian theorem. Our next goal is to provide a Tauberian converse for
Proposition 4.2. The next theorem characterizes the quasiasymtotic behavior in terms
of the ridgelet transform.

Theorem 4.3. Let ψ ∈ S0(R) \ {0} and f ∈ S ′0(Rn). The following two conditions:

(4.4) lim
λ→0+

1

λαL(λ)
〈Rψf (u, λb, λa) , ϕ(u)〉 = Mb,a(ϕ)

(
resp. lim

λ→∞

)
exists (and is finite) for every ϕ ∈ D(Sn−1) and (b, a) ∈ H∩S , and there exist m, l > 0
such that for every ϕ ∈ D(Sn−1)

(4.5) |〈Rψf (u, λb, λa) , ϕ(u)〉u| ≤ Cϕλ
αL(λ)

(
a+

1

a

)l
(1 + |b|)m

for all (b, a) ∈ H ∩ S and 0 < λ < 1 (resp. λ > 1) are necessary and sufficient for the
existence of a distribution g such that f has the quasiasymptotic behavior (4.1).

Proof. Assume first that f has the quasiasymptotic behavior (4.1). Proposition 4.2
implies that (4.4) holds with Mb,a(ϕ) = 〈Rψg (u, b, a) , ϕ(u)〉u. Set fλ(x) = f(λx).
Using (2.12), one readily verifies the relation

(4.6) Rψfλ(u, b, a) = Rψf(u, λb, λa).

On the other hand, f satisfies (4.2). That (4.5) must necessarily hold follows from
Theorem 3.2.

Conversely, assume (4.4) and (4.5). Applying the same argument as in the proof of
[18, Lem. 6.1], one may assume that they hold for all (b, a) ∈ H (in the case of (4.5),
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one may need to replace l and m by bigger exponents). We will show that there is
G ∈ S ′(Yn+1) such that

(4.7) lim
λ→0+

〈
Rψf (u, λb, λa)

λαL(λ)
,Φ(u, b, a)

〉
= 〈G (u, b, a) ,Φ(u, b, a)〉

(
resp. lim

λ→∞

)
for each Φ ∈ S(Yn+1). Once (4.7) had been established, the inversion formula (2.7)
would imply that (4.1) holds with g = (1/Kψ,η)Rt

ηG. Using Theorem 3.2 and (4.6)
again, the estimates (4.5) are equivalent to the quasiasymptotic boundedness (4.2), but
also to the boundedness in S ′(Yn+1) of the set

(4.8)

{
Rψf (u, λb, λa)

λαL(λ)
: 0 < λ < 1

}
(resp. λ > 1) .

By the Banach-Steinhaus theorem, the set (4.8) is equicontinuous. It is thus enough
to show that the limit in the left-hand side of (4.7) exists for Φ in the dense subspace
D(Sn−1) ⊗ S(H) of S(Yn+1). So, we check this for Φ(u, b, a) = ϕ(u)Ψ(b, a) with ϕ ∈
D(Sn−1) and Ψ ∈ S(H). The function Mb,a(ϕ) occurring in (4.4) is measurable in
(b, a) ∈ H and, in view of (4.5), is of slow growth, i.e., it satisfies

|Mb,a(ϕ)| ≤ Cϕ

(
a+

1

a

)l
(1 + |b|)m, for all (b, a) ∈ H.

So, employing (2.15) and the Lebesgue dominated convergence theorem, we obtain

lim
λ→0+

〈
Rψf (u, λb, λa)

λαL(λ)
, ϕ(u)Ψ(b, a)

〉
= lim

λ→0+

∫ ∞
0

∫ ∞
−∞

〈
Rψf (u, λb, λa)

λαL(λ)
, ϕ(u)

〉
Ψ(b, a)

dbda

a

=

∫ ∞
0

∫ ∞
−∞

Mb,a(ϕ)Ψ(b, a)
dbda

a

(resp. limλ→∞). This completes the proof. �

The following fact was already shown within the proof of Theorem 4.3.

Corollary 4.4. Let ψ ∈ S0(R) \ {0} and f ∈ S ′0(Rn). Then, f satisfies (4.2) if and
only if there are m, l > 0 such that for every ϕ ∈ D(Sn−1) the estimate (4.5) holds for
all 0 < λ < 1 (resp. λ > 1) and (b, a) ∈ H ∩ S (or, equivalently, (b, a) ∈ H).
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[10] S. Kostadinova, S. Pilipović, K. Saneva and J. Vindas, The ridgelet transform of distributions,
Integral Transforms Spec. Funct. 25 (2014), 344–358.

[11] S. Kostadinova and J. Vindas, Multiresolution expansions of distributions: Pointwise convergence
and quasiasymptotic behavior, Acta Appl. Math., in press.
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