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Abstract 

 

In 1979, 16 concrete prisms with dimensions 140x150x4000 mm were casted 

in the Magnel Laboratory for Concrete Research. These prisms differ by the amount 

of passive reinforcement and by the applied loading level. Four reinforcement ratios 

were considered, i.e. 0%, 1.5%, 3% and 6%. For each reinforcement ratio a prism 

was subjected to an axial load corresponding to a concrete stress of 0, 5, 10 or 15 

MPa. The combination of both parameters results in a total of 16 specimens. The 

compressive stress was applied to the prisms by means of post-tensioned unbonded 

strands at an age of 28 days. The stress level was kept constant during the first 12 

years of the experiment by re-adjusting the force in the strands when the deviation 

exceeded 2% of the initial value. Afterwards, no re-adjusting of the strands took 

place. Significant redistribution of the stresses between the concrete and the steel can 

be expected due to the creep and shrinkage of concrete. This redistribution is larger 

for the prisms with a higher reinforcement ratio, resulting in lower creep and 

shrinkage strains. The time-dependent response of these prisms was modelled taking 

into account the prestress losses and stress redistribution between the concrete and the 

steel. For reasons of numerical efficiency, the compliance function was approximated 

by a Dirichtlet series using continuous retardation spectra. A comparison between the 

predicted results and the measurements is given for two prisms. 

 

INTRODUCTION 

 

Creep and shrinkage are important time-dependent phenomena in reinforced concrete 

structures. Although consensus on the details of the different mechanisms responsible 

for the time-dependent behaviour is not yet reached (Koenders et al., 2009; Yue, 

1992), the effects of creep and shrinkage are well known and many reliable material 

models are available in literature. A large part of this research is the result of 

experiments on plain concrete without any reinforcing steel present and under 

constant loading conditions. However, in reality the load on concrete elements is 

rarely constant in function of time and reinforcement steel is mostly present. In order 

to determine the influence of reinforcing steel on the time-dependent deformations of 

concrete a series of 16 prisms with dimensions 140x150x4000 mm³ were 

manufactured at the Magnel Laboratory for Concrete Research (Lambotte et al., 

1986, 1988). These prisms differ by the amount of passive reinforcement - 

respectively 0, 1.5, 3 and 6% of the concrete section - and by the applied level of 
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axial stress - respectively 0, 5, 10 and 15 MPa. One prism for each combination was 

tested. An overview of the experimental programme is given in Figure 1. 

 

 
Figure 1 Reinforcing bars and unbounded strands arrangements for the 16 

combinations of passive reinforcement ratios and applied stress levels. 

Each prism is designated with a prefix “W” followed by the percentage of 

passive reinforcing steel,  a dash and the level of applied stress; e.g. prism W0-0 is 

the prism in the top-left position in Figure 1, containing 0% reinforcing steel and zero 

applied stress.  

 

The compatibility of the longitudinal deformations has as a consequence that 

the creep and shrinkage of the prisms are partly restrained by the reinforcement steel. 

This results in a redistribution between the stress in the concrete, which will decrease, 

and the stress in the reinforcement steel, which will increase in order for the cross-

section to remain in longitudinal equilibrium. In the scope of this paper it is assumed 

that the bond between the concrete and the reinforcement steel is perfect. 

 

TEST PROCEDURE 

 

One day after casting, each prism was placed in a frame on two supports, of which 

one support allows for horizontal movements. The distance between the two supports 

was determined in such a way that the bending moments above the supports and in 

the mid-section due to the self-weight would have the same (minimal) value. 

The prisms are axially prestressed with unbonded strands at 28 days. The 

strands were placed in a prestressing bed 96 hours before anchorage to reduce long-

term relaxation losses. The prestressing force of each strand was measured using a 

load cell placed between the bearing plate attached to the endpoints of the prisms and 

the strand anchorage. An illustration of the test setup for each of the prims is given in 

Figure 2.  
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Figure 2 Test setup of the prisms 

 

The axial force in the strands ܲ is determined in such a way that the resulting stress 

in the concrete is equal to respectively 0, 5, 10 or 15 MPa for the specified cases 

according to 

 ܲ ൌ ܣሺߪ   ௌሻܣߙ

 

where ܣ is the area of the concrete section, ܣ௦ is the area of the passive 

reinforcement, ߪ is the required concrete stress and ߙ is the ratio between the moduli 

of elasticity of concrete and steel respectively. For ߙ a theoretical value of 6 was 

assumed.  

 

Each time the prestress losses reached 2% of the initial prestressing force, the force in 

the tendons was adjusted to 1.02 times the initial value. In this manner the external 

compressive force was kept approximately constant during the experiment. 

 

 

MATERIALS 

 

A traditional concrete with a water-cement ratio equal to 0.46 was used. The 

composition of the mixture in given in Table 1. 

 

Table 1. Concrete mixture. 

Component kg/m
3

Cement CEM I 52.5 N 360 

Gravel 8/16 1060 

Gravel 4/8 190 

Sand 2/5 100 

Sand 0/2 535 

Water 165 

 

The mean compressive strength (cubes with side lengths158mm) at 28 days was 

equal to 47.4 MPa.  

The unbonded tendons have a nominal diameter of 12.7 mm and have a very 

low relaxation. There are respectively 0, 1, 2 and 3 tendons used for the considered 

stress levels in the prisms 

High-bond reinforcement bars with diameters 10, 14 and 20 mm were used 

for the passive reinforcement.  
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MEASUREMENT RESULTS 

 

Nearly all reinforced prisms developed small cracks with a maximum crack width of 

0.02 mm during the first 28 days of the experiment (when no axial loading was 

applied). These cracks can be attributed to the restrained shrinkage of the concrete. 

 

 
Figure 3 Measurement results of the axial deformation of the prisms. 

 

The strain measurements of the prisms are given in Figure 3 up to 4500 days (12 

years). It is observed that the measured concrete strain is proportional to the applied 

stress for the different reinforcement ratios. 

Comparing W0-0 till W6-0, it is noted that the strain for the prisms with passive 

reinforcement steel is significantly less than the strain measured in the prism where 

no steel is present. This difference is attributed to the passive reinforcing steel, which 

limits the free shrinkage of the concrete. 

It is noted that the strain of prism W6-0 shows a constant value starting from 

approximately 200 days. The concrete shrinkage continues but the total deformation 

does not increase any further. Due to the high percentage of passive reinforcement, 

tensile stresses are introduced in the concrete and the concrete cracked. This is 

visually confirmed by the many cracks in this particular prism. 

 

 

 

NUMERICAL PROCEDURE 

 

Creep strain 

The uniaxial constitutive relation defining concrete as an ageing viscoelastic material 

is given by (Bažant, 1988): 
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ሻݐሺߝ ൌ  න ǡݐሺܬ Ԣሻ௧ݐ
 Ԣሻݐሺߪ݀   ሻݐ௦ሺߝ

 

in which ݐ is the time of interest, ݐǯ is the time of application of the concrete stress, ߪ is the concrete stress , ߝሺݐሻ is the total concrete strain, ߝ௦ሺݐሻ is the concrete 

shrinkage strain. ܬሺݐǡ  Ԣሻ is the creep compliance function. This integral is known as a Stieltjesݐ

integral. There is no compliance function ܬሺݐǡ  Ԣሻ which is sufficiently accurate forݐ

this integral to be solvable in an analytically closed form. A numerical solution of this 

integral is possible, but this requires that the complete stress history is kept in 

memory for each new time-step (Gilbert & Ranzi, 2010). This is only feasible for 

simple problems. 

 

In order to make the calculation of the Stieltjes integral more feasible, the creep 

compliance function can be approximated by a series of exponential functions with 

real exponents, so called Dirichlet series (Bažant, 1975, 1988). Hence, the 

compliance function ܬሺݐǡ  :Ԣሻ can be rewritten asݐ

ǡݐሺܬ   Ԣሻݐ ൌ ͳܧሺݐԢሻ   ͳܧఓ ൫ͳ െ ݁ି൫௧ି௧ᇲ൯Ȁఛഋ൯
ఓୀଵ  

 

in which ߬ఓ are the chosen retardation times, ܧሺݐԢሻ is the modulus of elasticity of the 

concrete at time ݐԢ and ܧఓ are coefficients which depend on the age of load 

application ݐǯ. The coefficients ܧఓ have the same dimension as the modulus of 

elasticity and  must be determined in such a way that the error between the theoretical 

creep compliance function and the series approximation is minimal. Notice that the 

Dirichtlet series is written in function of the time lag ݐ െ  ǯ for a given applicationݐ

time ݐǯ. To determine the coefficients ܧఓ it is most convenient to first select a number 

of ݐǯ values and fit ܬሺݐǡ ݐ Ԣሻ as a function of the lag timeݐ െ  ǯ. Sinceݐ ǯ for each fixedݐ

the concrete stress gradually decreases, a Dirichtlet series was defined for each time 

step in the analysis. A uniform distribution of the time-step in log-time recommended 

choice (Jendele & Phillips, 1992).  

 

Fitting a Dirichlet series on a function is not as straightforward as a Fourier series 

(Bažant, 1973). The coefficients ܧఓ should be regarded as a discrete spectrum of the 

Dirichtlet series for given retardation times ߬ఓ. If the Dirichlet series is composed out 

of an infinite number of terms, each with a coefficient ܧఓ and a retardation time ߬ఓ, a 

continuous function ܮሺ߬ሻ is created. This function ܮሺ߬ሻ can be regarded as the 

continuous spectrum of a Dirichtlet series with an infinite number of terms (Jirásek & 

Havlásek, 2014). 

 

Jirásek & Havlásek (2014) showed that an approximation of ܮሺ߬ሻ can be obtained 

analytically be using the Post-Widdler formula  
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ሺ߬ሻሺሻܮ ൌ  െ ሺെ݇߬ሻሺ݇ െ ͳሻǨ ߮ሺሻሺ݇߬ሻ 

 

It was shown that a sequence of approximations converges to the continuous 

spectrum ܮሺ߬ሻ, in which ߮ሺήሻ is the creep function, ߮ ሺሻሺήሻ is the ݇th
 derivative of  

the creep function and ݇ is the order of approximation. 

 

Values for the coefficients ܧఓ can  be determined by integration of ܮሺ߬ሻ. With these 

coefficient an approximated compliance function ܬሺݐǡ  Ԣሻ is constructed which allowsݐ

for an analytical solution of the Stieltjes integral. 

 

Stress redistribution 

the strain of the steel and the strain of the concrete should be equal at each time ݐ: 

ሻݐሺߝ   ൌ ሻݐ௦ሺߝ ൌ  ሻݐሺߝ

 

The steel stress can be written as: 

ሻݐ௦ሺߪ  ൌ  ሻݐሺߝ௦ܧ

 

where ܧ௦ is the modulus of elasticity of the reinforcement steel. The longitudinal 

equilibrium of the prisms can be written as: 

 ܲሺݐሻ ൌ ሻݐ௦ሺߪ௦ܣ   ሻݐሺߪܣ

 

The concrete stress which would induce by a strain οߝ is given by: 

ߪ  ൌ  οܧߝ 

 

The corresponding force on the concrete area ܣ is given by: 

ܨ  ൌ ܣߪ ൌ  οܧߝܣ 

 

If the same force is exerted on a concrete section that contains passive reinforcement  

the following equality can be written: 

 οܧߝܣ ൌ οߝሺܧܣ    ௦ሻܣ௦ܧ
 

with ܣ௦ the area of the steel section and οߝ the strain of the section containing 

both concrete and reinforcement steel. 

 The ratio between the corrected strain οߝ and the assumed free strain of οߝ is given by: 

 οߝοߝ ൌ ܣܧܣܧ   ௦ܣ௦ܧ
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The same reasoning can be applied to shrinkage strains as well as creep strains, with 

the difference that the creep strain will depend on the concrete stress in the 

considered time-step, while the shrinkage strain is independent of the stresses in the 

concrete.  

 

Prestress losses 

Due to the concrete creep and shrinkage the unbonded tendons will lose part of their 

prestressing force. The equivalent lost prestress force for a given strain οߝ is 

given by: 

 οܲ ൌ οߝܣܧ 

 

where ܣ is the area of the prestressing tendons and ܧ is the modulus of elasticity of 

the prestressing steel. 

 

General procedure 

 

As in (Taerwe, 1990), also in this paper the creep and shrinkage models suggested by 

Model Code 90 are applied (fib, 1993). 

A series of times ݐଵǡ ଶ ǡݐ ǥ ǡ ݐ ǡ ǥ ǡ  ଶ is chosen, distributed uniformly on aݐ

log-scale. A total of 200 calculation steps were considered in the analysis. Since the 

nature of this problem results in a continuous decreasing concrete stress, the Dirichlet 

series to approximate the compliance function needs to be determined for each time ݐ in the time series.  

During the first 28 days no prestressing is applied on the prisms. The prisms 

will shrink during this period, introducing tensile stresses in the concrete due to the 

restraining effect. After 28 days the prestressing force is applied. Starting from this 

point the prisms will start to creep. To avoid erroneous predictions of the 

instantaneous response of the prisms, the instantaneous response is calculated by 

considering a very short time step after 28 days. In each time step the creep and 

shrinkage strains of the concrete are corrected as mentioned above taking into 

account the restraining effect of the reinforcement steel. With this correction, the 

stresses in the reinforcing steel and in the concrete are adjusted so that an equilibrium 

is reached with the prestressing force ܲሺݐሻ. 

 

RESULTS 

 

The procedure described above is applied for prism W1.5-10 of  the experimental test 

programme. The results of the calculation is given in Figure 4. 
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Figure 4 Results of the calculation for prism W1.5-10. (a) The prestressing force 

(b) The stress in the reinforcement (c) The stress in the concrete (d) The 

predicted and measured deformation of the prism 

In the period before the application of the load the model shows a build-up of tensile 

stress in the concrete, as shown in Figure 4 (c). This is due to the restrained 

shrinkage. The load is applied at 28 days. The predicted deformation shows good 

agreement with the  measurements. The concrete stress decreases over time starting 

from a pre-defined stress equal to 10 MPa and drops to 7.5 MPa. The stress in the 

reinforcement steel is almost doubled compared to the stress immediately after the 

application of the load. 

 

 

CONCLUSIONS 

 

From the available experiments and the numerical analysis the following conclusions 

can be drawn. 

 

• Measurements of axial deformations of concrete prisms subjected to a quasi-

sustained load during 12 years are presented. The experiments show that the 

time-dependent deformations of reinforced prisms are strongly affected by the 

presence of passive reinforcement steel. This is due to the significant 

redistribution of the stresses in the concrete section. 

• An approximation of the creep compliance function by a Dirichtlet series 

allows for the Stieltjes integral to be solvable in an analytically closed form. 

Additionally, the load history does not need to be stored in order to calculate 

the deformation in a next time-step. 

• The predicted axial deformations taking into account the stress redistribution 

and the prestress losses show good agreement with the measurements. 
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