
978-1-4673-9406-2/15/$31.00 c©2015 European Union

Power Measurements and Analysis for Dynamic

Circuit Specialization

Amit Kulkarni

ELIS department, Computer Systems Lab,

Ghent University,

Sint-Pietersnieuwstraat 41,

Ghent B-9000, Belgium

Email:Amit.Kulkarni@UGent.be

Robin Bonamy

LEAT, CNRS UMR 7248,

University of Nice-Sophia Antipolis,

BP 145 - 930 Route des Colles,

06903 Sophia Antipolis Cedex, France

Email: Robin.Bonamy@unice.fr

Dirk Stroobandt

ELIS department, Computer Systems Lab,

Ghent University,

Sint-Pietersnieuwstraat 41,

Ghent B-9000, Belgium

Email: Dirk.Stroobandt@UGent.be

Abstract—Dynamic Circuit Specialization (DCS) is a tech-
nique for optimized FPGA implementation and is built on top of
Partial Reconfiguration (PR). Dynamic Partial Reconfiguration
(DPR) provides an opportunity to share the silicon area between
different Partially Reconfigurable Modules (PRMs) and therefore
results in smaller and faster designs that potentially also reduce
the power consumption. In this paper, we show that energy
consumption is an important factor that has to be considered
while implementing a parameterized design using DCS. In or-
der to make a good choice for implementing a parameterized
design with the goal of power optimized implementation, it
is important to have a good power consumption estimate of
the Dynamic Circuit Specialization. In this context, our paper
presents a detailed investigation of the power consumption of
a parameterized design implemented using DCS on the Xilinx
Zynq-SoC FPGA. We propose an energy analysis of DCS and
investigate the benefits of the use of DCS in comparison with
a classic static FPGA implementation. We see that the power
needed for the reconfiguration is much higher than the gain in
power using the reconfiguration over the static implementation.
An important reason is because of the CPU involved during
the reconfiguration and the interface between the AXI bus and
the HWICAP. To reduce the reconfiguration power, we include
a clock gating technique to the reconfiguration interface AXI-
HWICAP that makes DCS more power efficient. We also relate
the power gain to the size of the implementation and to the
allowed time to reconfigure versus the useful run time. We
conclude that for an implementation with 10 FIR filters, the
reconfiguration time should not take more than 30.3% of the total
time in order to remain energy efficient. Considering a specific
use case with 10 FIR filters at a reconfiguration rate of 0.01, the
energy consumption using DCS implementation is 20.5% lower
than using the static FIR.

I. INTRODUCTION

Dynamic Partial Reconfiguration (DPR) is a technology
that provides the flexibility on Programmable Logic Devices
to modify some logic blocks while the rest of the logic remains
active. Xilinx provides commercial tools for Partial Reconfig-
uration (PR) technology that have been in the market for quite
a while. However, due to the reconfiguration overhead, the
use of PR has not really taken off in the industry. Dynamic
Circuit Specialization (DCS) is a form of DPR that is tailored
to implement parameterized applications [1].

In the classical DPR approach, it is necessary to synthesize
Partially Reconfigurable Module (PRM) bitstreams and store
them in the memory such as BRAM or SD card beforehand.

If the given situation meets a set of predefined conditions,
the reconfiguration manager in the FPGA triggers the recon-
figuration process and the FPGA is reconfigured with the
PRM bitstreams [2]. This adds the required flexibility to reuse
hardware (silicon) area and results in a reduction of power
cost.

In the DCS approach, specialized bitstreams are generated
on the fly depending on the values of the infrequently changing
inputs (parameter values) and the FPGA is reconfigured with
the specialized bitstreams. Therefore, for every change in
parameterized input values, the FPGA is reconfigured via a
configuration interface: the Hardware Internal Configuration
Access Port (HWICAP). A detailed implementation of the
DCS tool flow is described in [3].

Due to the lack of power estimation tools for the Partial
Reconfiguration technique, authors in [4] proposed power con-
sumption models for DPR. Similarly, we analyze the energy
needed for Dynamic Circuit Specialization and compare this
to the energy required to run the parameterized design. We
also consider the static FPGA implementation of the same
parameterized application and compare the power consumption
by performing a power analysis. Defining the energy models
for DCS and comparing the power behavior between the
static and the DCS FPGA implementations, are the main
contributions of this paper.

We describe the state of the art in Section II. The exper-
imental setup to measure the FPGA core power consump-
tion for the DCS technique is described in Section III. In
Section IV, we characterize the power consumption of the
parameterized FIR filter design implemented using DCS. The
results of our experiments and the comparison of the power
consumptions are discussed in Section V. In Section VI we
further discuss results and compare the power consumptions
between the conventional static implementation and the DCS
implementation for a FIR filter. Finally we conclude our work
in Section VII.

II. STATE OF THE ART

Dynamic Circuit Specialization enables us to use less
FPGA resources (LUTs) than the conventional FPGA im-
plementation. The reduction in the number of LUTs for a
parameterized FIR filter design is about 42%. This gain also

helps to shorten the critical path of the design and thereby
improves the design performance [1].

The reduction in the number of LUTs indirectly contributes
to less Programmable Logic (PL) power consumption because
of reduced idle power of the LUTs. However, since DCS
is a tailored version of DPR for parameterized applications,
it uses reconfiguration technology and therefore we need
to account for the power consumed by the reconfiguration
technology, specifically the CPU and the HWICAP used during
the reconfiguration.

The DCS tool flow consists of two main stages: the generic
stage and the specialization stage. In the generic stage, the
parameterized design, described in a Hardware Description
Language (HDL), is processed to yield a Partial Parameterized
Configuration (PPC). The PPC contains bitstreams expressed
in the form of Boolean functions of infrequently changing
parameters. In [5] it is explained how a parameterized design is
mapped on to the virtual Look Up Tables called Tunable Look
Up Tables (TLUTs). TLUTs are intermediate representations
of conventional FPGA physical LUTs that contain truth table
entries expressed as Boolean functions of the parameters.

In the specialization stage, the Boolean functions are
evaluated for every change in parameter values to produce
the specialized bitstreams. The evaluation is performed by
the Specialized Configuration Generator (SCG) and can be
implemented on an embedded processor such as ARM Cortex
- A9 in the Zynq-SoC. The SCG reconfigures the FPGA
by swapping the specialized bitstreams into the configuration
memory via the HWICAP. The bitstreams are accessed in
the form of frames and a frame is defined as a minimum
addressable element of an FPGA configuration.

The reconfiguration is performed using a HWICAP driver
“XHwIcap_SetClbBits” function [6]. The two crucial ar-
guments of this function are:

1) Location co-ordinates of a TLUT: using this infor-
mation, the frame address is generated that is used
to point to the frame which contains the truth table
entries of the TLUT.

2) Truth table entries: these are the specialized truth
table bits that are generated after the specialization
stage of the DCS.

The reconfiguration takes place in three major steps:

1) Read frames: using the frame address, the current
truth table entries of the TLUT are read by fetch-
ing four consecutive frames from the configuration
memory.

2) Modify frames: The current truth table entries of the
TLUT are replaced by the specialized truth table bits.
Therefore the modified frames contain the specialized
bitstreams.

3) Write-back frames: the frames containing specialized
bitstreams are written back to the configuration mem-
ory using the same frame address thus accomplishing
DCS reconfiguration.

The DCS reconfiguration is a fine grained form of dynamic
reconfiguration and incurs three major costs:

ARM ARM

PL

ZYNQ
1V

Shunt

5 mΩ

1V
5 mΩ

ZC702

+

-
×200

+

-
×200

Fig. 1. Current measurement schematics on ZC702 board.

1) The PPC memory required to store all the Boolean
functions.

2) The evaluation time taken to evaluate the Boolean
functions upon change in parameter values.

3) The reconfiguration time needed to update the truth
table entries of all the TLUTs.

In [7] and [8], the authors proposed various methods to
reduce the major costs of DCS. However, the power consump-
tion wasn’t included as an overhead factor. In this paper, we
consider power consumption as one part of the overhead of
DCS and we investigate the detailed power variations of DCS.

III. EXPERIMENTAL SETUP

A. Power Measurement

The Xilinx ZC702 board is used for the power measure-
ments and the DCS approach is implemented on the XC7Z020
Zynq-SoC. Ten power rails are present on this platform. Each
rail is equipped with a shunt resistor on which current con-
sumption can be monitored. Two channels are more interesting
for the experiment. They separately supply the ARM cores and
the Programmable Logic core. An external board is designed
for this purpose and two high-precision amplifiers are used to
enhance the signal levels. The amplified signals are then sent to
a digital oscilloscope for visualization and power trace analysis
as shown in Figure 1. With this procedure, it is possible to
measure power consumption variations as low as 0.1 mW .
This accuracy is good enough for our energy analysis.

B. Zynq-SoC configuration setup

To obtain the energy models for DCS we used a clock
frequency of 100MHz to drive the Programmable Logic (PL)
and the same clock frequency of 100MHz for the HWICAP.
The HWICAP is configured to be of the FIFO type with read
and write buffer depth of 128 bytes. We used these parameters
as a default project configuration in our following experiments.

The Specialized Configuration Generator (SCG) is im-
plemented on the ARM Cortex-A9 dual core processor that
operates at a clock frequency of 667 MHz. Therefore the
evaluation of Boolean functions is expected to be faster than
any of the tasks in the DCS.

C. Parameterized Design

We use a FIR filter with 8-bit data width and 16-taps,
as a parameterized design implemented using DCS [8]. The
benefits of this are discussed in [9]. The filter taps of the
FIR filter are parameterized, therefore all the coefficient inputs

are the parameters and hence for each infrequent change in
coefficient values, a specialized bitstream is generated and the
filter taps containing constants multiplications are reconfigured
accordingly.

IV. POWER CHARACTERIZATION FOR DYNAMIC CIRCUIT

SPECIALIZATION

Using the power measurement setup we were able to mea-
sure the average power values on the Zynq ZC702 Platform
with the default project configuration explained in Section III-
B. There are three different power consumption parts that we
need to consider:

1) The FPGA Idle Power is the power consumed by the
silicon area of the FPGA even if it is unused and this
state of the FPGA is called the idle state.

2) The FPGA Run Power is the power consumed by the
silicon area of the FPGA when the FIR filter was
triggered to execute the filter function and this state
of the FPGA is called the run state.

3) The FPGA Reconfiguration Power is the power con-
sumed by the silicon area of the FPGA during DCS
reconfiguration and this state of the FPGA is called
the reconfiguration state.

It is to be noted that both the CPU and the PL part of the
Zynq-SoC consume power in all of the above three states.

We propose an energy analysis that is based on the energy
required for reconfiguring one TLUT. For this, we need to
consider the time τtlut needed to reconfigure one TLUT. We
measure τtlut = 230µs.

A. Energy consumed by the reconfiguration state on top of the
idle state energy:

If Etlut
reconf denotes the energy consumed during the recon-

figuration of a TLUT, on top of the idle state energy then,

Etlut
reconf = (PCPU

reconf−PCPU
idle +PFPGA

reconf −PFPGA
idle)×τtlut (1)

where, PCPU
reconf is the average power consumed by the CPU

during DCS reconfiguration to perform the read, modify and
write-back cycles of the frames. PCPU

idle is the power consumed
by the CPU during its idle state. PFPGA

reconf is the average

FPGA reconfiguration power and PFPGA
idle is the FPGA idle

power. The idle power is defined as the power used when no
reconfiguration, nor application execution is performed.

B. Relative power consumed by the reconfiguration state com-
pared to the run state:

We also propose a relative power ratio between the recon-
figuration state and the run state. If Rp denotes the relative
power ratio then,

Rp =
(PCPU

reconf − PCPU
idle) + (PFPGA

reconf − PFPGA
idle)

(PCPU
run − PCPU

idle) + (PFPGA
run − PFPGA

idle)

Rp =
Preconf

Prun

(2)

where Prun is the power consumed by the run state on
top of the idle state power and depends on the size of the
parameterized application. Indeed for a large parameterized

TABLE I. AVERAGE POWER CONSUMED BY THE CPU AND THE PL
FABRIC

Power Model Average Power (mW)

CPU idle PCPU
idle 291

CPU run PCPU
run 384.1

CPU reconfiguration PCPU
reconf 390.3

FPGA idle PFPGA
idle 73.3 (45.6)

FPGA run PFPGA
run 74.7 (46.8)

FPGA reconfiguration PFPGA
reconf 68.7

Note: Power values after gating the HWICAP clock are mentioned between brackets.

design the value of Prun is much larger than Preconf where,
Preconf is the power consumed by the reconfiguration state on
top of the idle state.

V. EXPERIMENTS AND RESULTS

From our measurements, we were able to extract the
average power consumption of the Programmable Logic (PL)
and the ARM Processor (CPU) of the Zynq-SoC. The average
power values are tabulated in Table I.

From equation 1 the estimated average energy Etlut
idle is

21.8 mJ. And the relative power ratio Rp (equation 2) is 4.1.
Since the relative power ratio is greater than 1, the power
consumption during the reconfiguration is higher than the
power consumption during the execution of the FIR filter
function. This is not a desired situation and we will further
investigate this ratio later.

A. FPGA PL power drop during reconfiguration:

Interestingly, in Table I, the FPGA reconfiguration power
is smaller than the FPGA idle power. In order to understand
this phenomenon, the power curve is extracted and is shown
in Figure 2. The reconfiguration happens between time units 0
and 90. Before and after that time, the system is running the
FIR filter application. Clearly, the CPU power increases during
the reconfiguration phase because the CPU has to perform the
Boolean evaluation and the reconfiguration by swapping the
specialized frames into the FPGA configuration memory via
the HWICAP.

However, for the FPGA PL power we notice a significant
power drop during the DCS reconfiguration phase compared
to the FIR run state. An average power drop of 6.2 mW
was observed. Further investigation revealed that there is a
power drop only during frame read activity of the DCS
reconfiguration as shown in Figure 3.

During the frame read activity, the configuration data
(bitstream) is fetched from the FPGA configuration memory.
The fetched bitstreams are first stored in the HWICAP read
FIFO buffer. The maximum data that the read FIFO buffer can
hold is a user configurable parameter and in our experiment it
is set to 128 bytes. Once the read FIFO buffer is full, the
ICAP has to wait until all the data in the FIFO buffer is
received by the CPU via the AXI bus. This waiting state is
established by turning off the ICAP’s clock. Once the ICAP
clock is turned off there will be no transaction of data between
the ICAP port and the FPGA’s configuration memory. Turning

��� ��� ��� � �� �� �� �� ��� ��� ���

�	�

���

�
�

���

���

���

���

��

�

��

��

���

���

���

�������� ��������

���������

�

�
��
�
�
�
��
��
�
�

�
�
��
�
�
�
��
��
�
�

Fig. 2. Average power consumption of CPU and FPGA during run and
reconfiguration state.

���� ���� ���� � ��� ��� ��� ��� � ���

��

�

�

�

	
������

�������
��	�
�������

���� ���� ���� � ��� ��� ��� ��� � ���

���

���

���

���

���

���

���

	
������

��� !"������

���� ���� ���� � ��� ��� ��� ��� � ���

��

��

��

��

��

��

��

	
������

 # !"������

���� ��
�� ��
������

 �!$���
%� �!$���
%�

Fig. 3. Average power consumption of CPU and FPGA during Frame read
and Frame write activities.

TABLE II. FPGA PL POWER GRADIENT

PL fabric

AXI bus clock (MHz)

HWICAP

clock (MHz)

FIFO

depth

Average Power

gradient (mW)

100 100 128 - 6.2

100 20 128 + 0.07

100 100 256 - 3

100 20 256 + 1
Note: a “+" indicates an increase in power consumption and a “-" indicates a decrease in power

consumption.

off the ICAP’s clock causes the significant drop in the FPGA
PL power and therefore it proves to be the main reason for the
power fluctuations as depicted in Figure 3. The power drop is
hence due to a mismatch between the computation bandwidth
and the communication bandwidth (communication bandwidth
limited design).

As a communication limited design (with wait cycles
for data movement) increases the total time needed for the
reconfiguration, the power drop does not necessarily result in
a lower energy usage as well. Indeed, the increased time in
fact results in a higher energy usage.

The best solution to avoid the HWICAP to stall is to
increase the FIFO depth and clock the AXI bus much faster
than the HWICAP. To simulate this situation, we performed
the experiments with the HWICAP clock of 20 MHz. The
average power gradient for the different configurations of the
HWICAP clock, FIFO depth and the PL fabric is tabulated
in Table II. We observe that the AXI bus (with 100 MHz)
is fast enough to receive the data from the HWICAP so the
read FIFO is less likely full, therefore the HWICAP fetches
the data as fast as possible. Also, the average power gradient
values are halved for the experiments with the FIFO depth
256. This confirms the reason for the PL power drop during
the frame read activity.

During the frame write activity, the HWICAP does not stop
the ICAP’s clock because the HWICAP constantly expects the
ICAP’s attention and makes it receive the data from the write

Fig. 4. Clock gating for the AXI-HWICAP.

Fig. 5. Relative Power ratio as a function of the number of FIR filter IP
instances.

FIFO buffer irrespective of whether the write FIFO buffer is
full or not.

The Xilinx AXI-HWICAP IP consumes a huge idle power
of 31.2 mW because the IP lacks clock gating and is active
even if the reconfiguration process is unused. Therefore, to
make DCS functional an extra power of 31.2 mW is required
irrespective of whether or not the HWICAP is used for
reconfiguration during the operation of the FIR filter. In order
to make DCS more power efficient, we include the clock gating
technique to the AXI-HWICAP IP and reduce the HWICAP
idle power. The HWICAP can be replaced by a custom
reconfiguration controller: MiCAP [10]. It is a lite-weight
controller and consumes less FPGA resources compared to
the HWICAP and therefore, the power consumption by the
controller can be reduced.

B. Xilinx HWICAP with Clock gating

The clock of the AXI-HWICAP IP is gated with the help
of a user AXI-lite peripheral. The required clock gating for
the AXI-HWICAP is depicted in Figure 4. The CE line is
controlled by a user accessible AXI slave register. The slave
register is software controlled and hence we can turn ON/OFF
the HWICAP clock during the power measurements. After
gating the AXI-HWICAP clock, we were able to reduce the
idle power of the AXI-HWICAP with 27.9 mW (31.2 - 3.3
= 27.9) (≈ 90%). The HWICAP still consumes a power of
3.3 mW during its idle state as tabulated in Table IV. The
corresponding FPGA idle power was reduced to 45.6 mW.

The relative power ratio of equation 2 changes after intro-
ducing the clock gating for the HWICAP, and can be expressed
as a function of the number of FIR filter instances NFIR.

Rp =
Preconf + PHWICAP

idle

Prun ×NFIR

(3)

As shown in Figure 5, an increase in the number of FIR
IP instances decreases the magnitude of the ratio Rp.

TABLE III. FIR POWER CONSUMPTION COMPARISON STATIC VS DCS

Row no. Project
PCPU
run

(mW)

PCPU
reconf

(mW)

PFPGA
run

(mW)

PFPGA
reconf

(mW)

1
No FIR,

No HWICAP
382.8 Nil 39.5 Nil

2
Static FIR,

No HWICAP
383.1 Nil 45.4 Nil

3
DCS FIR,

No HWICAP
383.4 Nil 43.3 Nil

4
DCS FIR,

HWICAP
384.1 390.3 74.5 68.5

5

DCS FIR,

HWICAP with

clock gating

(Clock OFF)

384.1 390.3 46.6 68.5

TABLE IV. DIFFERENTIAL POWER RESULTS.

Extracted Power Results
CPU

(mW)

PL fabric

(mW)

Total Energy

(µJ)

Static FIR, idle + run power

(without HWICAP)

(row no. 2 - row no. 1)

0.3 6.1 0.06 (1.86)

DCS FIR without HWICAP,

idle + run power

(row no. 3 - row no. 1)

0.6 3.8 0.044

HWICAP idle power,

with Clock OFF

(row no. 5 - row no. 3)

0.7 3.3 NA

HWICAP idle power,

with Clock ON

(row no. 4 - row no. 3)

0.7 31.2 NA

HWICAP

reconf power
7.5 25.2 2838.3

DCS FIR (run)

with HWICAP idle

(row no. 5 - row no. 1)

1.3 7.1 0.08 (1.72)

DCS FIR with HWICAP,

reconf power
7.5 29 3175.7

Note 1: The energy values for 3 FIR filter instances are mentioned between brackets.

Note 2: The row numbers mentioned in the table are the row numbers of Table III .

VI. POWER ANALYSIS

A. DCS versus static power comparison

In this section, we investigate how DCS affects the global
power consumption of the system. The main objective of this
experiment is to compare the global power consumption of the
FIR using two different implementations:

1) FIR with static implementation: the FIR was imple-
mented without using the reconfiguration technology.
Instead, the coefficient inputs of the FIR are con-
nected directly to the slave registers of the AXI bus
and with the help of the CPU, the user can change
the coefficient values at the software level. Therefore
we do not make use of the HWICAP and the DCS
reconfiguration technology.

2) FIR with DCS implementation: the FIR (of one IP
instance) was implemented using the reconfiguration
technology. As explained in Section II and Sec-
tion III, we use the DCS reconfiguration technology
to change the FIR coefficients by reconfiguring the
multiplications of the filter taps. Therefore, the user
can change the coefficient values of the FIR filter
using the CPU at the hardware level.

To get a clear picture of the comparison, we measured
the power consumption of the CPU and the PL for projects
with different configurations given in Table III. The differential
power and the energy consumption of the idle and run power
combined together are tabulated in Table IV. These values
are the difference in power values between different rows of
Table III. For example, the static FIR (idle + run) power is
obtained by the difference in corresponding power values of
row no.2 and row no.1 of Table III.

The power consumed by the HWICAP during the re-
configuration process is obtained by the difference between
PFPGA
reconf of row no.4 and PFPGA

run of row no.3 of Table III
i.e. (68.5 - 43.3 = 25.2 mW). The CPU power consumption
during interaction with HWICAP is obtained by the difference
between PCPU

reconf of row no.4 and PCPU
run of row no.1 i.e. (390.3

- 382.8 = 7.5 mW). Therefore total HWICAP reconfiguration
power consumption is 32.7 mW (25.2 + 7.5 = 32.7). The DCS
FIR power together with HWICAP reconfiguration power is
obtained by the difference PFPGA

reconf of row no.5 and PFPGA
run

of row no.1 of Table III i.e. (68.5 - 39.5 = 29 mW). The CPU
power is obtained by the difference between PCPU

reconf of row

no.5 and PCPU
run of row no.1 i.e (390.3 - 382.8 = 7.5 mW).

To investigate the power consumption by the DCS FIR
(LUTs) compared to the static FIR (LUTs), we have removed
the HWICAP from the DCS implementation and measured
the power consumption. The FIR with DCS implementation
consumes less FPGA idle and run power without HWICAP
compared to the static FIR implementation. We observe a
difference of 2.3 mW (6.1 - 3.8 = 2.3) (≈ 36%). This
difference is because of the reduction in FPGA resources
(LUTs) utilized by the FIR filter. However, there is a huge
FPGA reconfiguration (PL + CPU) power difference of 30.1
mW (29-6.1 + 7.5-0.3) between the static FIR (without any
reconfiguration) and the FIR with DCS which proves to be
an unavoidable overhead. During the reconfiguration process,
the CPU consumes a maximum of 7.5 mW and this power is
considered to be an overhead.

The corresponding average energy consumption (CPU +
PL) is also listed. For one FIR IP instance the DCS implemen-
tation consumes more energy (0.02µJ) than the static FIR filter
implementation. The HWICAP consumes extra energy in the
DCS implementation (plus 0.036µJ) and this energy is constant
irrespective of the number of FIR IP instances. Therefore, we
need bigger designs (more FIR filter implementations) before
the energy calculations start to be in favor of reconfiguration.
We investigated that DCS becomes energy efficient for 3 or
more FIR IP instances and the corresponding energy values are
shown within the brackets in Table IV. We observe an energy
gain of 0.14µJ. More details are discussed in SubSection VI-B.

B. Power efficient DCS implementation and its reconfiguration
rate

The results from the previous section show that the re-
configuration process using the HWICAP is power-hungry.
However, the reconfiguration process is triggered only if the
parameters (coefficients of the FIR filter) change. It is inter-
esting to investigate the reconfiguration rate (expressed as the
reconfiguration time over the total execution time), allowed
under the constraint that the DCS energy is less than or equal

to the static energy as a function of number of the FIR filter
IPs. On the one hand only 950 LUTs are used to implement
the FIR filter with DCS, and on the other hand 2525 LUTs
are used for the static FIR filter implementation.

There are two important parameters that need to be consid-
ered to evaluate the global average energy (Estatic and EDCS):
the number of FIR filter IPs (NFIR) and the relative amount of
time spent for reconfiguration (the reconfiguration rate Rrate)

which is Rrate =
Treconf

Treconf+Trun
, where Treconf is the time

taken to reconfigure all the TLUTs of the FIR filter and Trun is
the time taken to execute the FIR filter function. Accordingly,
we deduce equation 4 and equation 5 for the energy needed
for the execution of the implementation for a single round of
constant coefficient values.

Estatic = NFIR × P static
FIR × T static

run + Pcoef × Tcoef (4)

EDCS = NFIR × PDCS
FIR × TDCS

run + Preconf × Treconf

+PHWICAP
idle × (Treconf + Trun)

(5)

where, Preconf and Pcoef are the power consumption during
the change of coefficient values for the DCS and static imple-
mentation of the FIR respectively. Tstatic

run and TDCS
run are the

time taken to execute the filter functions for the FIR with static
and DCS implementations respectively.

Assuming Pcoef is negligible, we can solve for the variable
Rrate for a worst case scenario 1 where Tstatic

run = TDCS
run .

Rrate =
(P static

FIR − PDCS
FIR)− (

PHWICAP
idle

NFIR
)

(P static
FIR − PDCS

FIR) + (
Preconf

NFIR
)

(6)

This ratio provides the reconfiguration rate as a function of
the number of FIR IP instances (reconfigured) for the condition
that the average energy of DCS and static implementations are
equal. Accordingly, we can plot a graph shown in Figure 6.
Clearly, for less than 3 FIR IP instances DCS is inefficient in
energy since the reconfiguration rate is negative. The DCS
reconfiguration is energy efficient for 3 or more FIR IP
instances if it has reconfiguration rate within the shaded region.
For example, suppose if the reconfiguration rate is 0.3, then
we need to run at least 10 FIR filter IPs before the DCS
reconfiguration becomes energy efficient. Vice versa, if we
have 10 FIR filters, the reconfiguration time should not take
more than 30% of the total time in order to remain energy
efficient.

VII. CONCLUSION

Power consumption is one of the overhead factors of a
DCS reconfiguration. At the same time, DCS can save power
in running implementations more efficiently. Based on a set
of experiments, this paper presents the FPGA core power
consumption during the DCS reconfiguration and correspond-
ing energy analysis for DCS. The dependency on the AXI-
HWICAP clocking along with the FIFO read buffer depth
influences the global average power consumption. The AXI-
HWICAP lacks a clock gating solution and therefore it con-
sumes a significant amount of power compared to all other

1the DCS implementation usually runs about 20% faster than the static
implementation.

Fig. 6. Reconfiguration rate as function of number of FIR filter instances.

components during its idle state. We have shown that providing
a clock gating technique to AXI-HWICAP will reduce the
idle power consumption by ≈ 90%. We have expressed the
reconfiguration rate of DCS as a function of the number of FIR
IP instances to investigate a case that contains multiple FIR
IP instances in which the DCS is energy efficient compared to
the static FIR implementation.

REFERENCES

[1] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic Data Folding
with Parameterizable Configurations,” ACM Transactions on Design

Automation of Electronic Systems, vol. 16, no. 4, 2011.

[2] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford,
“Invited paper: Enhanced Architectures, Design Methodologies and
CAD Tools for Dynamic Reconfiguration of Xilinx FPGAS,” in Field

Programmable Logic and Applications, 2006. FPL ’06. International

Conference on, Aug 2006, pp. 1–6.

[3] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping
applications to a self-reconfiguring platform,” in Design, Automation

Test in Europe Conference Exhibition, 2009. DATE ’09., April 2009,
pp. 964–969.

[4] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power Consump-
tion Model for Partial and Dynamic Reconfiguration,” in Reconfigurable

Computing and FPGAs (ReConFig), 2012 International Conference on,
Dec 2012, pp. 1–8.

[5] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt,
“Efficient implementation of Virtual Coarse Grained Reconfigurable
Arrays on FPGAs,” in Proceedings of the 23rd International Conference

on Field Programmable Logic and Applications. Piscataway, NJ, USA:
IEEE, 2013, pp. 1–8.

[6] A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt, “Performance
Evaluation of Dynamic Circuit Specialization on Xilinx FPGAs,” in
Proceedings of the 11th FPGAworld Conference, ser. FPGAworld ’14,
2014.

[7] F. Mostafa Mohamed Ahmed Abouelella, K. Bruneel, and
D. Stroobandt, “Efficiently generating FPGA configurations through a
stack machine,” in Field Programmable Logic and Applications, 20th

International conference, Abstracts, Milano, Italy, 2010.

[8] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt, “Improving Re-
configuration speed for Dynamic Circuit Specialization using Placement
Constraints,” in ReConFigurable Computing and FPGAs (ReConFig),

2014 International Conference on, Dec 2014, pp. 1–6.

[9] F. Mostafa Mohamed Ahmed Abouelella, T. Davidson, W. Meeus,
K. Bruneel, and D. Stroobandt, “How to efficiently implement Dynamic
Circuit Specialization systems,” ACM TRANSACTIONS ON DESIGN

AUTOMATION OF ELECTRONIC SYSTEMS, p. 38, 2013.

[10] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, “MiCAP: A custom
Reconfiguration Controller for Dynamic Circuit Specialization,” in Re-

ConFigurable Computing and FPGAs (ReConFig), 2015 International

Conference on, Dec 2015, pp. 1–6.

