
Speeding Up Architectural Simulation
through High-Level Core Abstractions and Sampling

Versnellen van architecturale simulatie
via abstracte prestatiemodellen en bemonstering

Trevor Carlson

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2013 - 2014

ISBN 978-90-8578-698-6
NUR 958
Wettelijk depot: D/2014/10.500/44

Acknowledgements

Over the years, I have always been very interested in discovering new
things. When I was a child, I assumed that I could build electronics that
did fancy things just by drawing a schematic on paper. I enjoyed think-
ing about devices that I could build that would change the way that things
worked. Throughout my career, I found that discovering new and inter-
esting ideas and directions was my true passion. I am thankful that both
my mother and father have always been supportive of me, allowed me to
be creative, and allowed me to make mistakes. During my younger years
at school, my Junior High Technology teacher, David Rockett, gave me the
freedom to experiment with new ideas, program robots and build trains
that used magnetic levitation. Later on, when working for IBM, I realized
that I still have this passion and I worked to file four patents as a side-
project to my normal work, not even dreaming at the time that it would
allow me to start a path towards completing a Ph.D. Solving difficult prob-
lems allowed me to think in new ways and better understand my personal
limitations. Of course, I wanted to move past these limitations at each
chance that I could get, but I also understood that hard-work was required.
I will never be done proving myself, and I will always be challenged to
accomplish something that others might feel is too difficult to solve.

My Ph.D. would not have been possible if it was not for my original
manager at IMEC, Bjorn De Sutter, who saw that I could make the tran-
sition from industry to academia. My advisor, Lieven Eeckhout was in-
strumental in helping me better understand how to become a better re-
searcher. Lieven’s advice, support and constant encouragement to do even
better have helped me learn how to conduct research in an academic setting
while learning from experts in the field. Without his guidance and insight,
I would not be where I am today.

Looking back at the time that I spent at the university, I was very happy
that two things occurred at just the right time. First, the founding of the
ExaScience Lab gave my Ph.D. a new direction. The focus of the lab al-
lowed me to zero in on the needs of High Performance Computing, both
from a hardware and software perspective. To accomplish this, we felt that
faster simulation methodologies could help us improve the state of the art.

ii

At the same time, Wim Heirman joined our group to help us realize our
goal of faster simulation. From one of our very first meetings, I saw that
our collaboration had great promise. We sat down to sketch out the ideas
for what would become general-purpose time-based multi-threaded sam-
pling, published two years and tens of thousands of simulations later. At
the time, I did not realize that it was going to be both an enjoyable and
fruitful period, both professionally and personally. Together with Wim’s
help and guidance, we have been able to accomplish much more than I had
envisioned.

My wife, Stephanie, took a chance on me as I moved back into academia
and I started my Ph.D.; I had already been working for more than 6 years
in industry. While difficult, she saw that it could be a rewarding experience
if I could stay focused, complete all tasks early, and above all, enjoy the
work that I was doing. She has been there every step of the way, making
delicious baked goods, helping to proof-read articles, and supporting me
through the many difficult times where it appeared that no hope was in
sight. Thankfully, I have enjoyed every minute of my Ph.D., and only hope
I will continue to be challenged throughout life. I might not have been the
one who accomplished everything early, but I do feel that I have been able
to accomplish everything, if not more, that I set out to do.

Trevor E. Carlson
Ghent, June 11th, 2014

Examination Committee

Prof. Jan Van Campenhout, voorzitter
Vakgroup ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Stijn Eyerman, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Ayose Falcon
Intel Barcelona Research Center
Spain

Prof. Jan Fostier
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Wim Heirman
Intel ExaScience Lab
Leuven

Prof. Thomas Wenisch
University of Michigan, Advanced Computer Architecture Lab
USA

iv

Reading Committee

Dr. Stijn Eyerman
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Ayose Falcon
Intel Barcelona Research Center
Spain

Prof. Jan Fostier
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Wim Heirman
Intel ExaScience Lab
Leuven

Prof. Thomas Wenisch
University of Michigan, Advanced Computer Architecture Lab
USA

vi

Summary

Both Moore’s Law and Dennard Scaling have allowed us to make large
improvements in chip density, energy efficiency and performance over the
last 20 to 30 years of microprocessor design. Moore’s Law predicts that the
number of transistors in a processor will double every two years, and Den-
nard Scaling states that power density remains constant because of tran-
sistor scaling. While Dennard Scaling is seen as now coming to an end,
Moore’s Law, by predicting the continued growth in the number of avail-
able transistors, continues to provide us with opportunities to enhance the
speed and efficiency of future microprocessors.

Through Pollack’s Rule, we see that a single, large processor will not al-
low us to improve performance without a large increase in the complexity
of current CPU core designs. Pollack’s Rule states that the performance due
to microarchitectural advancements improves with the square root of the
complexity, or area used. This means that using a larger and larger area for
a single, monolithic processor results in diminishing returns with respect
to improved processor performance. The multi- and many-core era has al-
lowed us to continue to scale the performance of our platforms through
the use of many efficient cores instead of a single, less efficient one. On
the horizon, we expect this trend to continue with systems utilizing larger
numbers of cores. Higher processing requirements go hand-in-hand with
larger on-chip caches that are required to sustain processor bandwidth re-
quirements. Processor pin density limitations make it very difficult to in-
crease the bandwidth to the processor, requiring larger caches to reduce
bandwidth requirements, maintaining high performance.

These processor trends directly affect the ability to simulate improved
architecture designs on today’s hardware. As core complexity, core count
and on-chip cache size increase, so do the simulation requirements needed
to evaluate the performance of these microarchitectures. This is because
both greater numbers of cores and more complex cores require additional
modeling steps (and therefore additional simulation time) to evaluate. Larger
caches tend to translate into longer simulation times as well, because they
can require higher instruction counts to exercise the entire cache. Unfor-
tunately, while Pollack’s Rule has shown us a path to improve applica-
tion performance through multi-core microarchitectures, simulation design

viii SUMMARY

technologies have not adapted to the changing environment. Typical mi-
croarchitecture simulators are single-threaded and therefore will not con-
tinue to improve their performance with newer microarchitectures. This
situation presents an increasing simulation gap, where simulators will not
be able to continue to scale with microarchitectural improvements while
the requirements for simulation will continue to grow.

These growing simulation requirements and the simulation gap require
unique solutions to allow architects and designers to continue to advance
the state of the art in microarchitectural design. In this work, we propose a
number of approaches to directly counter these trends by reducing the sim-
ulation time required for design exploration. We do this through two or-
thogonal approaches. First, we improve the speed of the simulator directly,
allowing for the same amount of work to be done in a shorter time. We
do this by using high-level abstraction models to provide faster simulation
speeds. Second, through application sampling, we reduce the application
into a smaller, representative sample, reducing the amount of work that the
simulator needs to perform.

Speeding-up Simulation While detailed cycle-accurate simulation meth-
odologies have been used for both discovering and validating microarchi-
tectural improvements, changing the simulator to use higher abstraction
levels for microprocessor simulation is one way to alleviate the increasing
simulation demands resulting from Moore’s Law. In this work, we devel-
oped a new microarchitectural simulator, the Sniper Multi-Core Simulator,
to show that higher abstraction levels, with respect to core, cache and mem-
ory hierarchy and simulation infrastructure models, can provide good ac-
curacy with higher simulation speeds. As we demonstrate, naive, simple
core models can produce inaccurate results, both from an absolute and rel-
ative perspective. But using more intelligent, mechanistic high-level mod-
els can result in high accuracy at very high speeds. More specifically, we
demonstrate that high-level abstractions can accurately predict both per-
formance and trends, with average errors starting at 11.1% with aggregate
speeds of up to 2.0 MIPS. In addition, we show that while very simple
models, such as the one-IPC core simulation models, provide faster sim-
ulator performance, they do not necessarily allow one to draw the same
conclusions as both the original hardware and more accurate models pro-
vide. We find core models that honor both instruction-level parallelism
(ILP) and memory-level parallelism (MLP), such as those used in interval
simulation, allow for more accurate simulation results.

In addition to interval simulation, we want to allow architects to have
access to additional points in the accuracy vs. simulation speed trade-off
curve where improved accuracy can help for additional refinement as nec-
essary for late-phase validation. We first enhance the original interval sim-

ix

ulation model with features such as issue contention modeling to enable
higher accuracy with minimal slowdown. We show that these features can
get us closer to a more accurate simulation compared to hardware. In ad-
dition to interval simulation improvements, we present a novel processor
core model called the instruction-window centric model, that allows for
fine-grained analysis and timing control with a modest slowdown in sim-
ulation speed. The instruction-window centric processor core models im-
prove average error from 24.3% to 11.1% for single-core models. Finally,
we demonstrate the speed-versus-accuracy trade-offs across a number of
benchmarks to provide a detailed overview of how these different models
can provide the architect with different options for exploration or detailed
analysis.

Application Reduction through Sampling There are two orthogonal ap-
proaches to speeding up simulation. The first approach, discussed in the
previous paragraph, speeds up the simulator itself, providing a faster re-
sult given a fixed amount of work. Sampling is a well-known technique
that is orthogonal to speeding up the simulator itself, and is used to reduce
the amount of work to be the simulated. This is done by taking advan-
tage of inherent application similarity that occurs naturally in most appli-
cations because of looping and other common programming constructs.
Single-threaded application sampling has been studied extensively and is
considered to be mature. Nevertheless, multi-threaded application sam-
pling poses new challenges. Now, thread interaction and timing needs
to be taken into account, either in shared microarchitectural structures,
like shared caches, or when looking at thread ordering and other concerns
caused by dynamic scheduling, such as through work-stealing.

In this thesis, we present two advances in the field of multi-threaded
application sampling. First, we present a generic time-based sampling ap-
proach that solves many of the issues inherent to multi-threaded applica-
tion sampling for synchronizing threads. We show that taking into account
per-thread IPCs as well as properly handling inter-thread interactions dur-
ing fast-forwarding significantly increases sampling accuracy. In addition,
we show that application phase behavior needs to be taken into account
when selecting appropriate regions. With our methodology, we simulate
less than 10% of the application in detail, while maintaining a low average
error of 3.5%.

In addition to the general case of multi-threaded sampled simulation,
we improve sampled simulation for an important subset of multi-threaded
applications, namely, barrier-based applications. We propose new meth-
ods for the identification and characterization of inter-barrier regions for
the purpose of application similarity analysis and reduction. Using these
new similarity methods, we propose a methodology for clustering regions

x SUMMARY

to allow one to select corresponding representative regions of interest. Fi-
nally, we evaluate this methodology on simulated 8- and 32-core machines
and find an average reduction of resources by 78⇥. We demonstrate low
average errors, of 0.9%, with a speedup factor of 24.7⇥ on average and a
maximum of 866.6⇥.

Samenvatting

Dankzij de wet van Moore en Dennards schalingswet zijn we erin geslaagd
grote verbeteringen in de chipdichtheid, energie-efficiëntie en prestatie te
bereiken. Volgens de wet van Moore verdubbelt het aantal transistors op
een chip elke twee jaar; Dennards schalingswet stelt dat de vermogendicht-
heid constant blijft vanwege transistorschaling. Terwijl Dennards scha-
lingswet ten einde loopt, blijft de wet van Moore geldig, wat tot een bij-
zonder grote uitdaging leidt teneinde de prestatie en efficiëntie van toe-
komstige processors blijvend te verbeteren.

Op basis van de wet van Pollack, die stelt dat de complexiteit kwa-
dratisch toeneemt als functie van de beoogde prestatieverbetering, zien we
dat een grotere processor ons niet zal toelaten de prestatie verder te verbe-
teren zonder een aanzienlijke toename in complexiteit. De wet van Pollack,
in combinatie met de wet van Moore en het einde van de schaling vol-
gens Dennards schalingswet, heeft geleid tot het multi-core tijdperk waar-
bij meerdere processorkernen samen geı̈ntegreerd worden op één chip, en
waarbij software geparallelliseerd dient te worden teneinde prestatiever-
betering te bereiken. Er wordt algemeen verwacht dat het aantal process-
orkernen per chip zal blijven toenemen in de nabije toekomst. Een stijgend
aantal processorkernen in combinatie met een beperkt aantal externe pin-
nen, leidt tot steeds grotere caches teneinde de processorkernen tijdig van
data te kunnen voorzien gezien de beperkte geheugenbandbreedte.

Deze trends in processorontwerp hebben een grote invloed op het ont-
werpproces en meer specifiek de simulatie van toekomstige processors.
Een stijgend aantal processorkernen en steeds grotere caches verhogen de
complexiteit van de simulator, en hebben derhalve een negatieve impact
op de simulatietijd. Bovendien zijn de meeste hedendaagse simulators en-
keldradig waardoor de simulatiesnelheid niet aanzienlijk zal toenemen in
de komende jaren. Dit leidt tot een simulatiekloof: simulators schalen niet
mee met de architecturen die zij dienen te simuleren.

In dit werk stellen we een aantal oplossingen voor voor het versnellen
van de architecturale simulatie van multicore processors. We doen dit op
twee manieren. Eerst verbeteren we de simulatiesnelheid door het abstrac-
tieniveau van modellering te verhogen. Ten tweede reduceren we de te
simuleren werklast m.b.v. bemonstering.

xii SAMENVATTING

Simulatieversnelling. In dit werk beschrijven we Sniper, een parallelle
architecturale simulator die de simulatie aanzienlijk versnelt door het mo-
delleren van de processorkernen op een hoger abstractieniveau, zonder
aan al te veel nauwkeurigheid in te boeten. We gebruiken hiertoe een
analytisch, mechanistisch prestatiemodel van de processorkern, dat leidt
tot een hoge nauwkeurigheid en hoge simulatiesnelheden. Onze experi-
mentele resultaten geven aan dat hoog-niveau prestatiemodellen een ge-
middelde afwijking kunnen behalen van 11% ten opzichte van echte hard-
ware, en dit aan een simulatiesnelheid tot 2 MIPS (miljoen instructies per
seconde)—2 tot 3 grootteordes sneller dan gedetailleerde architecturale si-
mulatie. Bovendien tonen wij aan dat ofschoon heel eenvoudige model-
len, zoals het veel gebruikte ‘one-IPC’ processorkernsimulatiemodel, snel-
ler zijn, zij niet de benodigde nauwkeurigheid behalen. Nauwkeurige si-
mulatie vereist de modellering van instructie-niveauparallellisme (ILP) en
geheugen-niveauparallellisme (MLP), zoals aangeleverd in het intervalmo-
del. Naast verbeteringen tot het intervalmodel teneinde de structurele ha-
zards nauwkeuriger te modelleren, presenteren we eveneens een nieuw
processorkernmodel, namelijk het instructievenstersimulatiemodel, dat de
prestatie van de processorkern modelleert door enkel te focussen op de
werking van het instructievenster, de centrale eenheid van een hedendaagse
superscalaire processor. Het eindresultaat van deze studie is een aantal
hoog-niveau simulatiemodellen met een waaier aan mogelijkheden qua
nauwkeurigheid versus simulatiesnelheid.

Werklast Reductie door Bemonstering. Bemonstering is een gekende tech-
niek om de te simuleren werklast te reduceren, teneinde op die manier de
simulatietijd in te korten. Terwijl bemonstering van enkeldradige applica-
ties een mature en veelvuldig gebruikte techniek is, is de bemonstering van
meerdradige applicaties een openstaand onderzoeksvraagstuk. Bemonste-
ring van meerdradige applicaties wordt bemoeilijkt door de onderlinge in-
teracties tussen de draden via synchronisatie en gedeelde hulpbronnen in
de hardware.

In dit werk presenteren we twee technieken voor het bemonsteren van
meerdradige applicaties. Tijdsgebaseerde bemonstering lost een aantal pro-
blemen op die inherent zijn aan bemonstering van meerdradige applicaties.
We tonen aan dat rekening houden met de prestatie per draad alsook de
inter-draadinteracties tijdens de bemonstering, de nauwkeurigheid sterk
ten goede komt. Bovendien tonen we aan er bij de bemonstering reke-
ning gehouden dient te worden met het tijdsvariërend uitvoeringsgedrag.
Tijdsgebaseerde bemonstering laat toe minder dan 10% van de applicatie
in detail te simuleren met een gemiddelde afwijking van 3,5% t.o.v. gede-
tailleerde simulatie.

De tweede bemonsteringstechniek spitst zich toe op applicaties die ‘bar-

xiii

riers’ gebruiken als synchronisatieprimitieve. Deze techniek laat toe repre-
sentatieve inter-barrierregio’s te identificeren met behulp van een microar-
chitectuuronafhankelijke karakterisatie van de code, gevolgd door cluste-
ring. De experimentele resultaten tonen aan de techniek leidt tot een ge-
middelde afwijking t.o.v. gedetailleerde simulatie van slechts 0,9% en een
gemiddelde simulatieversnelling van 24,7⇥ (maximaal 866,6⇥); bovendien
daalt het vereiste aantal simulatiemachines met een factor van gemiddeld
78⇥.

xiv SAMENVATTING

Contents

English Summary vii

Nederlandse samenvatting xi

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 1
1.3 Future Simulation Requirements 2
1.4 Contributions . 3

1.4.1 Architectural Simulation 3
1.4.2 Application Sampling 4

1.5 Structure and Overview . 5

2 Exploring the Level of Abstraction for Scalable and Accurate Par-
allel Multi-Core Simulations 7
2.1 Introduction . 7
2.2 Processor Core Modeling . 10

2.2.1 One-IPC model . 11
2.2.2 One-IPC models in Graphite 11
2.2.3 Sniper: Interval simulation 12
2.2.4 Interval simulation versus one-IPC 13

2.3 Parallel Simulation . 14
2.4 Simulator Improvements . 15

2.4.1 Simulator choice . 15
2.4.2 Timing model improvements 16
2.4.3 OS modeling . 16

2.5 Experimental Setup . 18
2.6 Results . 19

2.6.1 Core model accuracy 20
2.6.2 Application scalability 21
2.6.3 CPI stacks . 23
2.6.4 Heterogeneous workloads 24
2.6.5 Simulator trade-offs 25

xvi CONTENTS

2.6.6 Synchronization variability 26
2.6.7 Simulation speed and complexity 27

2.7 Other Related Work . 28
2.7.1 Cycle-level and cycle-accurate simulation 28
2.7.2 Sampled simulation 29
2.7.3 FPGA-accelerated simulation 29
2.7.4 High-abstraction modeling 30

2.8 Conclusions . 30

3 An Evaluation of High-Level Mechanistic Core Models 33
3.1 Introduction . 33
3.2 Core-level Abstractions . 35

3.2.1 One-IPC Models . 36
3.2.2 Interval Modeling . 37
3.2.3 Interval Simulation . 38

3.3 Interval Simulation Improvements 41
3.3.1 Functional Unit Contention Modeling 41
3.3.2 Refilling the window after front-end miss events . . . 44
3.3.3 Modeling of overlapped memory accesses 45

3.4 Instruction-Window Centric Simulation 46
3.4.1 Overview . 47
3.4.2 Implementation Details 47

3.5 Evaluation and Methodology 49
3.5.1 Simulation infrastructure 49
3.5.2 Hardware validation 50
3.5.3 Benchmarks . 51

3.6 Simulation Accuracy Comparison 52
3.6.1 Absolute Accuracy Comparison 52
3.6.2 Multi-core scaling comparison 53

3.7 Simulation Speed Comparison 55
3.8 Core model resolution affects microarchitecture conclusions 57
3.9 Conclusion . 60

4 Sampled Simulation of Multi-threaded Applications 61
4.1 Introduction . 61
4.2 Fast-Forwarding Parallel Applications 63

4.2.1 Requirements for Accurate Parallel Fast-Forwarding 63
4.2.2 Accurate Multi-Threaded Fast-Forwarding 64
4.2.3 Comparison of Fast-Forwarding Techniques 65

4.3 Sample Selection in Parallel Applications 66
4.3.1 The Effect of Periodicity on Sampling 67
4.3.2 Determining Application Periodicity 69
4.3.3 Detecting Large Application Variability over Long Pe-

riods . 71

CONTENTS xvii

4.3.4 Deriving Optimal Sampling Parameters 72
4.4 Experimental Setup . 74

4.4.1 Simulation Configuration 74
4.4.2 Implementing Sampled Simulation in Sniper 74
4.4.3 Selecting Sampling Parameters 75

4.5 Results . 76
4.5.1 Sampling Parameter Space 77
4.5.2 Predicting Optimal Sampling Parameters 77
4.5.3 Random Sampling . 81
4.5.4 Detailed Warmup . 82
4.5.5 Potential for Simulator Speedup 82

4.6 Application: Architectural Exploration 83
4.7 Related Work . 84

4.7.1 Single-Threaded Sampling 84
4.7.2 Multi-threaded Sampling 85

4.8 Conclusions . 86

5 BarrierPoint: Sampled Simulation of Multi-Threaded Applications 87
5.1 Introduction . 87
5.2 Key Idea . 90
5.3 BarrierPoint Methodology . 91

5.3.1 Barrier Region Similarity Metrics 92
5.3.2 Region Clustering . 94
5.3.3 Detailed Region Execution 94
5.3.4 Whole-Program Runtime Reconstruction 95

5.4 Micro-architectural State Reconstruction 96
5.5 Experimental Setup . 97
5.6 Results . 102

5.6.1 Barrierpoint selection 102
5.6.2 Warmup . 106
5.6.3 Relative accuracy . 106
5.6.4 Simulation speedup 106

5.7 Related Work . 107
5.7.1 Single-Threaded Sampling 107
5.7.2 Multi-Threaded Sampling 107
5.7.3 Simulation parallelism 108
5.7.4 Warmup . 108
5.7.5 Similarity analysis . 109

5.8 Conclusion . 109

6 Conclusion 111
6.1 Overview . 111

6.1.1 Simulator Speedup with High-Level Core Models . . 112

xviii CONTENTS

6.1.2 Workload Reduction through Multi-Threaded Sam-
pling . 112

6.2 Future Work . 113

A Additional Research 115
A.1 Hardware/Software Co-Design 115
A.2 Workload Analysis . 116
A.3 Undersubscription . 117

List of Tables

2.1 Simulated system characteristics for the Intel Xeon X7460. . 19
2.2 Benchmarks and input sets. 20

3.1 Micro-architectural configuration 49
3.2 Simulator configuration options 50
3.3 Benchmarks and input sets 51
3.4 Single-core average absolute runtime errors and average ab-

solute differences for each simulation model 52
3.5 Errors across the simulation models for different core counts. 55
3.6 Micro-architectural configuration for private and shared L2

cache configurations used for one-IPC vs. detailed core model
comparisons. 58

4.1 Simulated system characteristics. 74
4.2 Overview of all benchmarks, their periodicities, the chosen

sampling parameters and their speed and accuracy. 78

5.1 Simulated system characteristics. 97
5.2 SimPoint parameters. Default values used for those options

not specified. 97
5.3 Detailed BarrierPoint information for a variety of applica-

tions an input sizes. 98

xx LIST OF TABLES

List of Figures

2.1 Measured per-thread CPI for a range of SPLASH-2 bench-
marks, when running on 16 cores. 8

2.2 Measured performance of SPLASH-2 on the Intel X7460 us-
ing large and small input sets. 9

2.3 Resulting application runtime from an increasing reschedul-
ing cost for fft, lu.ncont and raytrace, with 4 or 16
threads. 17

2.4 Application runtime for raytrace on hardware, and sim-
ulated before and after adding basic kernel spinlock con-
tention modeling. 18

2.5 Relative accuracy for the one-IPC and interval models for a
single core and 16 cores. 21

2.6 Absolute accuracy across all core models for a select number
of benchmarks: fft and raytrace. 22

2.7 Application scalability for the one-IPC and interval models
when scaling the number of cores. 22

2.8 Detailed CPI stacks generated through interval simulation. 23
2.9 Speedup and CPI stacks for raytrace, before and after op-

timizing its locking implementation. 24
2.10 CPI stack for each of the four thread types spawned by dedup. 25
2.11 Accuracy vs. speed trade-off graphs comparing both syn-

chronization mechanisms for parallel simulation. 26
2.12 Maximum absolute error by synchronization method in par-

allel simulation for simulating a 16-core system. 26
2.13 Simulation speed of 1–16 simulated cores on an eight-core

host machine. 27

3.1 Interval modeling and simulation technique taxonomy. . . . 35
3.2 A diagram of the main components of a functionally-directed

simulator with 4 processor core models. 36
3.3 A comparison between the estimation of IPC with interval

modeling and interval simulation. 37
3.4 A diagram of the different core performance models. 39

xxii LIST OF FIGURES

3.5 An example of port-based issue contention in the updated
interval simulation model. 43

3.6 Single-core IPC on real hardware and simulated using a va-
riety of core models and benchmarks. 52

3.7 Relative performance speedup predictions for the SPLASH-
2 applications from 1 to 8 cores. 54

3.8 Average simulator speed, in KIPS, for a variety of simulation
models. 56

3.9 Simulation speed versus modeling error of all core models
for single-core runs. 57

3.10 A comparison of L2 miss rates and application runtime of
shared versus private caches, as predicted by the one-IPC,
interval and instruction-window centric core models. 59

4.1 Proposed mechanism of fast-forwarding during multi-threaded
sampled simulation. 64

4.2 Accuracy of sampled IPC and estimated runtime for simula-
tions using different fast-forwarding mechanisms. 65

4.3 IPC trace of N-ft with several visible application periodicities. 67
4.4 Sampling with intervals of exactly one period yields a correct

IPC average; when application period and detailed length
do not match, sampling errors occur. 68

4.5 When sampling inside of an application’s period, a sufficient
number of intervals need to be collected to ensure that fast-
forwarding IPC accurately tracks actual IPC. 68

4.6 BBV autocorrelation for N-ft. 70
4.7 Loop structure and node instruction counts for the N-lu ap-

plication. 72
4.8 Sampling error versus application periodicity for N-bt. . . . 73
4.9 Simulation speedup versus accuracy for all valid sampling

parameters for O-aspi. 77
4.10 Overview of sampling accuracy and speedup using the pre-

dicted most-accurate parameter set, for both inside and outside
sampling when available. 79

4.11 Overview of sampling accuracy and speedup using the pre-
dicted fastest parameter set, for both inside and outside sam-
pling when available. 80

4.12 Sampling error versus application periodicity for N-bt, class
A input set with 8 threads, and random placement of the
detailed interval within each D+F region. 81

4.13 Results of the architectural exploration study with speedup
over the baseline architecture for all benchmarks 83

5.1 Total number of dynamically executed barriers. 90

LIST OF FIGURES xxiii

5.2 The BarrierPoint methodology flow diagram. 92
5.3 Aggregate application IPC, reconstructed IPC and the se-

lected barrierpoints for npb-ft. 96
5.4 Percent absolute error for predicting application execution

time and absolute DRAM APKI difference, assuming perfect
warmup . 99

5.5 Average absolute error for application execution time pre-
diction for different maxK and clustering methods. 100

5.6 Barrierpoint selection cross-validation. 101
5.7 Percent absolute error for predicting application execution

time and absolute DRAM APKI difference, assuming unique
warmup. 102

5.8 Relative scaling results. 103
5.9 Achieved speedups for each benchmark with the Barrier-

Point methodology. 104

xxiv LIST OF FIGURES

List of Abbreviations

API Application Programming Interface
APKI Accesses per One Thousand Instructions
BBV Basic Block Vector
CMP Chip Multi-Processor
CPI Cycles per Instruction
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
FPGA Field-Programmable Gate Array
GCC GNU Compiler Collection (formerly the GNU C Compiler)
GHz Gigahertz (Processor Frequency)
GNU GNU is not Unix
HPC High-Performance Computing
ILP Instruction-Level Parallelism
IOCOOM In-Order Core, Out-of-Order Memory (Graphite Core Model)
IPC Instructions per Cycle
ISA Instruction Set Architecture
kB Kilobytes (1024 bytes)
KIPS One Thousand Instructions per Second
LDV LRU stack Distance Vector
L1 Level 1 (Cache)
L2 Level 2 (Cache)
L3 Level 3 (Cache)
LLC Last Level Cache
MB Megabyte (1024 kB)
MHS Memory Hierarchy State
MIC Many Integrated Cores
MIPS Million Instructions per Second
MLP Memory-Level Parallelism
MPKI Misses per One Thousand Instructions
MRRL Memory Reference Reuse Latency
MSI (Modified, Shared, Invalid) Cache Coherency Protocol
MTR Memory Timestamp Record
NAS NASA Advanced Supercomputing

xxvi LIST OF ABBREVIATIONS

NASA National Aeronautics and Space Administration
NPB NAS Parallel Benchmarks
NSL No-State-Loss
OMP OpenMP, Open Multi-Processing
OS Operating System
QPI Quick-Path Interconnect
ROB Reorder Buffer
SIMD Single Instruction, Multiple Data (Instruction Type)
SMARTS Sampling Microarchitecture Simulation
SMP Symmetric Multi-Processing
SMT Symmetric Multi-Threading
SSE Streaming SIMD Extensions
SSE2 Streaming SIMD Extensions 2
SSE3 Streaming SIMD Extensions 3
SSSE3 Supplemental Streaming SIMD Extensions 3
SV Signature Vector
TLB Translation Lookaside Buffer
µPC Micro-ops per Cycle

Chapter 1

Introduction

1.1 Context

Designs of the first digital electronics components were easy to understand
and reason about. These designs could be drawn on paper, and evaluated
through manual inspection or by building a system prototype. But, as de-
signs became increasingly complicated, building the next generation of dig-
ital computers became much more difficult to do without automated veri-
fication. Additionally, as the costs to manufacture these complex machines
increased, so did the requirement to produce a machine that performed as
expected.

In order to meet these increasing demands, the investigation into simu-
lation of designs before manufacturing took hold. Today, all microproces-
sors are simulated prior to manufacturing to validate many of their charac-
teristics, such as performance, power and energy consumption, as well as
reliability.

The primary concern of microarchitects today is the evaluation of po-
tential performance characteristics of a new microarchitectural feature or
enhancement. In this work, we provide a number of solutions for microar-
chitects who evaluate software on simulated hardware involving modern
microarchitecture enhancements. These solutions provide faster, yet still
accurate, ways to evaluate representative workloads with reduced system
simulation resources.

1.2 Challenges

We observe two major trends in contemporary high-performance proces-
sors as a result of the continuous progress in chip technology through
Moore’s Law. First, processor manufacturers integrate multiple processor

2 Introduction

cores on a single chip — multi-core processors. Twelve to sixteen cores per
chip are commercially available today (in, for example, Intel’s E7-8800 v2
Series, IBM’s POWER8 and AMD’s Opteron 6300 Series). In addition, spe-
cialized processors, such as Intel’s Xeon Phi tailored for high-performance
computing (HPC) applications, have more than 60 cores, while Tilera’s
TILE-Gx72 processor, targeted to networking applications, has up to 72.
Second, we observe increasingly larger on-chip caches. Multi-megabyte
caches are becoming commonplace, exemplified by the 37.5 MB L3 cache
in Intel’s Xeon E7-8890 v2.

These trends pose significant challenges for the tools in the computer
architect’s toolbox. Current practice employs detailed cycle-accurate simu-
lation throughout the entire design cycle. While this has been (and still is)
a successful approach for designing individual processor cores as well as
multi-core processors with a limited number of cores, cycle-accurate simu-
lation is not a scalable approach for simulating large-scale multi-cores with
tens or hundreds of cores, for two key reasons. First, current cycle-accurate
simulation infrastructures are typically single-threaded. Given that clock
frequency and single-core performance are plateauing while the number of
cores increases, the (simulation) gap between the performance of the tar-
get system being simulated versus simulation speed is rapidly increasing.
Second, the increasingly larger caches observed in today’s processors im-
ply that increasingly larger units of work need to be simulated in order
to stress the target system in a meaningful way. Finally, overall processor
complexity has continued to increase as well, with the memory-hierarchy
becoming a dominant factor in the simulation time of these large many-core
processors.

1.3 Future Simulation Requirements

These observations impose at least three requirements for architectural sim-
ulation in the multi-core and many-core era. First, the simulation infras-
tructure needs to be parallel: the simulator itself needs to be a parallel
application so that it can take advantage of the increasing core counts ob-
served in current and future processor chips. A key problem in parallel
simulation is to accurately model timing at high speed [56]. Advancing all
the simulated cores in lock-step yields high accuracy; however, it also limits
simulation speed. Relaxing timing synchronization among the simulated
cores improves simulation speed at the cost of introducing modeling inac-
curacies. Second, we need to raise the level of abstraction in architectural
simulation. Detailed cycle-accurate simulation is too slow for multi-core
systems with large core counts and large caches. Moreover, many practi-
cal design studies and research questions do not need cycle accuracy be-

1.4 Contributions 3

cause these studies deal with system-level design issues for which cycle
accuracy only gets in the way (i.e., cycle accuracy adds too much detail
and is too slow, especially during the early stages of the design cycle).
These first two requirements result in a direct simulation speedup allow-
ing for higher turn-around times for early design-space exploration. After
this design-space exploration has refined our target direction, a more com-
prehensive and detailed evaluation of the solution is needed. Therefore,
the third, parallel requirement is to reduce parallel multi-threaded work-
loads into smaller representatives. At the late stage of an investigation, the
focus changes from a latency-driven discovery phase into a throughput-
limited validation where compute resources face a bottleneck. In order to
improve the overall throughput in a typically resource-constrained envi-
ronment (where the number of experiments to run is larger than the num-
ber of resources available), intelligent and accurate application reduction
becomes critical to delivering timely results.

1.4 Contributions

In this thesis, we will detail a number of solutions to tackle the require-
ments needed for next-generation microarchitectural simulation.

1.4.1 Architectural Simulation

The Sniper Multi-Core Simulator brings together a number of technologies
to allow for faster simulation. One of these technologies is an improved
interval core model which improves performance by 10⇥ on average com-
pared to detailed simulation [31]. In addition to faster core models, we
integrate these models into a parallel simulator infrastructure which can
lead to improved simulation performance when simulating multi-threaded
targets on a multi-threaded host machine. We implemented this for the 64-
bit x86 architecture and validated the models against the Intel Nehalem
microarchitecture. We demonstrate how simple core models can be mis-
leading for early design space exploration while showing how faster, more
accurate simulation infrastructure can lead to predictive results for future
design-space explorations.

The Sniper Multi-Core simulator was released publicly in November
2011 and has seen more than 700 downloads by researchers across the
globe. Since its release, we have also presented a number of tutorials on
the simulator. We presented Sniper tutorials at ISPASS 2012, ISCA 2012,
HiPEAC 2013, HPCA 2013 and at IISWC 2013.

This work is published in:

4 Introduction

T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-
core simulations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), pages 52:1–52:12, November 2011

In addition to showing that sufficient detail is necessary for accurate
simulation, we developed a new core model that provides a new trade-
off point for simulation speed and accuracy. This new core model, the
instruction-window centric model, provides additional options for the ar-
chitect to use when evaluating next-generation microarchitectural options,
allowing for modeling of simple in-order, and potentially even SMT cores.
Using the insights from interval simulation, these models continue to pro-
vide relatively fast simulation speeds while improving accuracy compared
to hardware. In addition, we discuss an extension to the interval model,
functional-unit contention, or issue contention, that provides additional ac-
curacy with a negligible speed penalty.

This work will appear in:
T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout.
An evaluation of high-level mechanistic core models. ACM
Transactions on Architecture and Code Optimization (TACO), 2014

1.4.2 Application Sampling

Sampling of multi-threaded applications can speed up simulation of general-
purpose multi-threaded applications by reducing the amount of an appli-
cation that needs to be simulated in detail. We detail a general-purpose
solution of multi-threaded application sampling that allows for a reduction
in the amount of work necessary to evaluate microarchitectural enhance-
ments.

This work is published in:
T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simula-
tion of multi-threaded applications. In International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
2–12, April 2013

In addition to this work, we have also shown that for an important
subset of applications, namely barrier-based multi-threaded applications,
it is possible to show an even larger reduction in the amount of resources
needed to accurately simulate these applications. Application barriers pro-
vide a safe point for parallelization and application comparison, where a
unit of work is clearly defined. By comparing microarchitecturally inde-
pendent parameters of an application, we can evaluate application similar-
ity and select representative regions to take the place of running an entire

1.5 Structure and Overview 5

application.
This work is published in:

T. E. Carlson, W. Heirman, K. V. Craeynest, and L. Eeckhout.
BarrierPoint: Sampled simulation of multi-threaded applica-
tions. In Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pages 2–12,
March 2014

1.5 Structure and Overview

In this thesis, we discuss a number of solutions to improve simulation per-
formance while maintaining high accuracy.

In Chapter 2 we discuss the Sniper Multi-Core Simulator as a faster, but
still accurate alternative to cycle-level simulation.

Chapter 3 provides a new direction for processor core simulation, in-
creasing the accuracy of high-level core models themselves with respect to
hardware while maintaining high performance.

In Chapter 4 and Chapter 5 we move to an orthogonal topic compared
to speeding up the simulator itself. By reducing the amount of work that
needs to be done in multi-threaded applications, we can reduce the amount
of an application that we need to simulate to validate our new microarchi-
tectural ideas while still maintaining accuracy.

More specifically, Chapter 4 provides details on our sampling method-
ology for general purpose applications.

In Chapter 5, we discuss additional sampling methodology that pro-
vides larger application reductions for a specific class of applications,
namely, barrier-based applications.

Finally, in Chapter 6, we summarize this work and describe a number
of avenues for future research.

6 Introduction

Chapter 2

Exploring the Level of
Abstraction for Scalable and
Accurate Parallel Multi-Core

Simulations

This chapter presents the Sniper Multi-Core Simulator. Through the use of high-
level core and memory models and parallel simulation, Sniper is able to simulate
applications at up to an aggregate of 2.0 MIPS. Sniper was validated against a real
hardware platform and it maintains good accuracy across a number of benchmarks.
By using Sniper and the interval simulation core models, one can more accurately
model hardware platforms than compared to using One-IPC core models, while
maintaining good simulation performance.

2.1 Introduction

Because of the trends in computer design, namely larger core counts and
cache sizes, simulation runtime has become a primary issue for determin-
ing accurate results in a relatively short timeframe. Detailed cycle-accurate
simulation is too slow for multi-core systems with large core counts and
large caches. Moreover, many practical design studies and research ques-
tions do not need cycle accuracy because these studies deal with system-
level design issues for which cycle accuracy only gets in the way (i.e., cycle
accuracy adds too much detail and is too slow, especially during the early
stages of the design cycle).

This chapter deals with exactly this problem. Some of the fundamen-
tal questions we want to address are: What is a good level of abstraction
for simulating future multi-core systems with large core counts and large

8
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b
a

rn
e

s

ch
o

le
sk

y ff
t

fm
m

lu
.c

o
n

t

lu
.n

co
n

t

o
ce

a
n

.c
o

n
t

o
ce

a
n

.n
co

n
t

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

vo
lr
e

n
d

w
a

te
r.

n
sq

w
a

te
r.

sp

C
yc

le
s

p
e

r
in

st
ru

ct
io

n

4.1 16.5

compute communicate synchronize

Figure 2.1: Measured per-thread CPI (average clock ticks per instruction) for a
range of SPLASH-2 benchmarks, when running on 16 cores. (Given the homo-
geneity of these workloads, all threads achieve comparable performance.)

caches? Can we determine a level of abstraction that offers both good accu-
racy and high simulation speed? Clearly, cycle-accurate simulation yields
very high accuracy, but unfortunately, it is too slow. At the other end of the
spectrum lies the one-IPC model, which assumes that a core’s performance
equals one Instruction Per Cycle (IPC) apart from memory accesses. While
both approaches are popular today, they are inadequate for many research
and development projects because they are either too slow or have too little
accuracy.

Figure 2.1 clearly illustrates that a one-IPC core model is not accurate
enough. This graph shows CPI (Cycles Per Instruction) stacks that illustrate
where time is spent for the SPLASH-2 benchmarks. We observe a wide di-
versity in the performance of these multi-threaded workloads. For exam-
ple, the compute CPI component of radix is above 2 cycles per instruction,
while radiosity and cholesky perform near the 0.5 CPI mark. Not tak-
ing these performance differences into account changes the timing behavior
of the application and can result in widely varying accuracy. Additionally,
as can be seen in Figure 2.2, simulated input sizes need to be large enough
to effectively stress the memory hierarchy. Studies performed using short
simulation runs (using the small input set) will reach different conclusions
concerning the scalability of applications, and the effect on scaling of pro-
posed hardware modifications, than studies using the more realistic large
input sets.

The goal of this chapter is to explore the middle ground between the

2.1 Introduction 9

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Cores

fft

large small

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Cores

ocean.cont

large small

Figure 2.2: Measured performance of SPLASH-2 on the Intel X7460 using large
and small input sets.

two extremes of detailed cycle-accurate simulation versus one-IPC simu-
lation, and to determine a good level of abstraction for simulating future
multi-core systems. To this end, we consider the Graphite parallel simu-
lation infrastructure [51], and we implement and evaluate various high-
abstraction processor performance models, ranging from a variety of one-
IPC models to interval simulation [31], which is a recently proposed high-
abstraction simulation approach based on mechanistic analytical model-
ing. In this process, we validate against real hardware using a set of scien-
tific parallel workloads, and have named this fast and accurate simulator
Sniper. We conclude that interval simulation is far more accurate than one-
IPC simulation when it comes to predicting overall chip performance. For
predicting relative performance differences across processor design points,
we find that one-IPC simulation may be fairly accurate for specific design
studies with specific workloads under specific conditions. In particular,
we find that one-IPC simulation may be accurate for understanding scal-
ing behavior for homogeneous multi-cores running homogeneous work-
loads. The reason is that all the threads execute the same code and make
equal progress, hence, one-IPC simulation accurately models the relative
progress among the threads, and more accurate performance models may
not be needed. However, for some homogeneous workloads, we find that
one-IPC simulation is too simplistic and does not yield accurate perfor-
mance scaling estimates. Further, for simulating heterogeneous multi-core
systems and/or heterogeneous workloads, one-IPC simulation falls short
because it does not capture relative performance differences among the
threads and cores.

More specifically, this chapter makes the following contributions:

1. We evaluate various high-abstraction simulation approaches for

10
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

multi-core systems in terms of accuracy and speed. We debunk the
prevalent one-IPC core simulation model and we demonstrate that
interval simulation is more than twice as accurate as one-IPC mod-
eling, while incurring a limited simulation slowdown. We provide
several case studies illustrating the limitations of the one-IPC model.

2. In the process of doing so, we validate this parallel and scalable multi-
core simulator, named Sniper, against real hardware. Interval simu-
lation, our most advanced high-abstraction simulation approach, is
within 25% accuracy compared to hardware, while running at a sim-
ulation speed of 2.0 MIPS when simulating a 16-core system on an
8-core SMP machine.

3. We determine when to use which abstraction model, and we explore
their relative speed and accuracy in a number of case studies. We
find that the added accuracy of the interval model, more than twice
as much, provides a very good trade-off between accuracy and sim-
ulation performance. Although we found the one-IPC model to be
accurate enough for some performance scalability studies, this is not
generally true; hence, caution is needed when using one-IPC model-
ing as it may lead to misleading or incorrect design decisions.

This chapter is organized as follows. We first review high-abstraction
processor core performance models and parallel simulation methodologies,
presenting their advantages and limitations. Next, we detail the simulator
improvements that were critical to increasing the accuracy of multi-core
simulation. Our experimental setup is specified next, followed by a de-
scription of the results we were able to obtain, an overview of related work
and finally the conclusions.

2.2 Processor Core Modeling

As indicated in the introduction, raising the level of abstraction is crucial
for architectural simulation to be scalable enough to be able to model multi-
core architectures with a large number of processor cores. The key question
that arises though is: What is the right level of abstraction for simulating
large multi-core systems? And when are these high-abstraction models ap-
propriate to use?

This section discusses higher abstraction processor core models, namely,
the one-IPC model (and a number of variants on the one-IPC model) as well
as interval simulation, that are more appropriate for simulating multi-core
systems with large core counts.

2.2 Processor Core Modeling 11

2.2.1 One-IPC model

A widely used and simple-to-implement level of abstraction is the so-called
‘one-IPC’ model. Many research studies assume a one-IPC model when
studying for example memory hierarchy optimizations, the interconnec-
tion network and cache coherency protocols in large-scale multi-processor
and multi-core systems [33; 52; 40]. We make the following assumptions
and define a one-IPC model, which we believe is the most sensible defi-
nition within the confines of its simplicity. Note that due to the limited
description of the one-IPC models in the cited research papers, it is not
always clear what exact definition was used, and whether it contains the
same optimizations we included in our definition.

The one-IPC model, as it is defined in this chapter, assumes in-order
single-issue at a rate of one instruction per cycle, hence the name one-IPC
or ‘one instruction per cycle’. The one-IPC model does not simulate the
branch predictor, i.e., branch prediction is assumed to be perfect. However,
it simulates the cache hierarchy, including multiple levels of caches. We as-
sume that the processor being modeled can hide L1 data cache hit latencies,
i.e., an L1 data cache hit due to a load or a store does not incur any penalty
and is modeled to have an execution latency of one cycle. All other cache
misses do incur a penalty. In particular, an L1 instruction cache miss incurs
a penalty equal to the L2 cache data access latency; an L2 cache miss incurs
a penalty equal to the L3 cache data access latency, or main memory access
time in the absence of an L3 cache.

2.2.2 One-IPC models in Graphite

Graphite [51], which forms the basis of the simulator used in this work
and which we describe in more detail later, offers three CPU performance
models that could be classified as one-IPC models. We will evaluate these
one-IPC model variants in the evaluation section of this chapter.

The ‘magic’ model assumes that all instructions take one cycle to ex-
ecute (i.e., unit cycle execution latency). Further, it is assumed that L1
data cache accesses cannot be hidden by superscalar out-of-order execu-
tion, so they incur the L1 data access cost (which is 3 cycles in this study).
L1 misses incur a penalty equal to the L2 cache access time, i.e., L2 data
cache misses are assumed not to be hidden. This CPU timing model sim-
ulates the branch predictor and assumes a fixed 15-cycle penalty on each
mispredicted branch.

The ‘simple’ model is the same as ‘magic’ except that it assumes a non-
unit instruction execution latency, i.e., some instructions such as multiply,
divide, and floating-point operations incur a longer (non-unit) execution
latency. Similar to ‘magic’, it assumes all cache access latencies and a fixed

12
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

branch misprediction penalty.
Finally, the ‘iocoom’ model stands for ‘in-order core, out-of-order mem-

ory’, and extends upon the ‘simple’ model by assuming that the timing
model does not stall on loads or stores. More specifically, the timing model
does not stall on stores, but it waits for loads to complete (stall-on-use).
Additionally, register dependencies are tracked and instruction issue is as-
sumed to take place when all of the instruction’s dependencies have been
satisfied.

2.2.3 Sniper: Interval simulation

Interval simulation is a recently proposed simulation approach for simu-
lating multi-core and multiprocessor systems at a higher level of abstrac-
tion compared to current practice of detailed cycle-accurate simulation [31].
Interval simulation leverages a mechanistic analytical model to abstract
core performance by driving the timing simulation of an individual core
without the detailed tracking of individual instructions through the core’s
pipeline stages. The foundation of the model is that miss events (branch
mispredictions, cache and TLB misses) divide the smooth streaming of in-
structions through the pipeline into so called intervals [25]. Branch pre-
dictor, memory hierarchy, cache coherence and interconnection network
simulators determine the miss events; the analytical model derives the tim-
ing for each interval. The cooperation between the mechanistic analytical
model and the miss event simulators enables the modeling of the tight per-
formance entanglement between co-executing threads on multi-core pro-
cessors.

The multi-core interval simulator models the timing for the individual
cores. The simulator maintains a ‘window’ of instructions for each simu-
lated core. This window of instructions corresponds to the reorder buffer of
a superscalar out-of-order processor, and is used to determine miss events
that are overlapped by long-latency load misses. The functional simulator
feeds instructions into this window at the window tail. Core-level progress
(i.e., timing simulation) is derived by considering the instruction at the win-
dow head. In case of an I-cache miss, the core simulated time is increased
by the miss latency. In case of a branch misprediction, the branch resolu-
tion time plus the front-end pipeline depth is added to the core simulated
time, i.e., this is to model the penalty for executing the chain of dependent
instructions leading to the mispredicted branch plus the number of cycles
needed to refill the front-end pipeline. In case of a long-latency load (i.e.,
a last-level cache miss or cache coherence miss), we add the miss latency
to the core simulated time, and we scan the window for independent miss
events (cache misses and branch mispredictions) that are overlapped by the
long-latency load — second-order effects. For a serializing instruction, we

2.2 Processor Core Modeling 13

add the window drain time to the simulated core time. If none of the above
cases applies, we dispatch instructions at the effective dispatch rate, which
takes into account inter-instruction dependencies as well as their execution
latencies. We refer to [31] for a more elaborate description of the interval
simulation paradigm.

We added interval simulation into Graphite and named our version,
with the interval model implementation, Sniper1, a fast and accurate mul-
ticore simulator.

2.2.4 Interval simulation versus one-IPC

There are a number of key differences between interval simulation and one-
IPC modeling.

• Interval simulation models superscalar out-of-order execution, where-
as one-IPC modeling assumes in-order issue, scalar instruction exe-
cution. More specifically, this implies that interval simulation models
how non-unit instruction execution latencies due to long-latency in-
structions such as multiplies, divides and floating-point operations
as well as L1 data cache misses, are (partially) hidden by out-of-order
execution.

• Interval simulation includes the notion of instruction-level paral-
lelism (ILP) in a program, i.e., it models inter-instruction dependen-
cies and how chains of dependent instructions affect performance.
This is reflected in the effective dispatch rate in the absence of miss
events, and the branch resolution time, or the number of cycles it
takes to execute a chain of dependent instructions leading to the
mispredicted branch.

• Interval simulation models overlap effects due to memory accesses,
which a one-IPC model does not. In particular, interval simulation
models overlapping long-latency load misses, i.e., it models memory-
level parallelism (MLP), or independent long-latency load misses go-
ing off to memory simultaneously, thereby hiding memory access
time.

• Interval simulation also models other second-order effects, or miss
events hidden under other miss events. For example, a branch mis-
prediction that is independent of a prior long-latency load miss is
completely hidden. A one-IPC model serializes miss events and
therefore overestimates their performance impact.

1The simulator is named after a type of bird called a snipe. This bird moves quickly and
hunts accurately.

14
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

Because interval simulation adds a number of complexities compared
to one-IPC modeling, it is slightly more complex to implement, hence, de-
velopment time takes longer. However, we found the added complexity to
be limited: the interval model contains only about 1000 lines of code.

2.3 Parallel Simulation

Next to increasing the level of abstraction, another key challenge for archi-
tectural simulation in the multi/many-core era is to parallelize the simu-
lation infrastructure in order to take advantage of increasing core counts.
One of the key issues in parallel simulation though is the balance of accu-
racy versus speed. Cycle-by-cycle simulation advances one cycle at a time,
and thus the simulator threads simulating the target threads need to syn-
chronize every cycle. Whereas this is a very accurate approach, its perfor-
mance may be reduced because it requires barrier synchronization between
all simulation threads at every simulated cycle. If the number of simulator
instructions per simulated cycle is low, parallel cycle-by-cycle simulation is
not going to yield substantial simulation speed benefits and scalability will
be poor.

There exist a number of approaches to relax the synchronization im-
posed by cycle-by-cycle simulation [30]. A popular and effective approach
is based on barrier synchronization. The entire simulation is divided into
quanta, and each quantum comprises multiple simulated cycles. Quanta
are separated through barrier synchronization. Simulation threads can
advance independently from each other between barriers, and simulated
events become visible to all threads at each barrier. The size of a quantum
is determined such that it is smaller than the critical latency, or the time it
takes to propagate data values between cores. Barrier-based synchroniza-
tion is a well-researched approach, see for example [56].

More recently, researchers have been trying to relax even further, be-
yond the critical latency. When taken to the extreme, no synchronization is
performed at all, and all simulated cores progress at a rate determined by
their relative simulation speed. This will introduce skew, or a cycle count
difference between two target cores in the simulation. This in turn can
cause causality errors when a core sees the effects of something that — ac-
cording to its own simulated time — did not yet happen. These causality er-
rors can either be corrected through techniques such as checkpoint/restart,
but usually they are just allowed to occur and are accepted as a source of
simulator inaccuracy. Chen et al. [16] study both unbounded slack and
bounded slack schemes; Miller et al. [51] study similar approaches. Un-
bounded slack implies that the skew can be as large as the entire simulated
execution time. Bounded slack limits the slack to a preset number of cycles,

2.4 Simulator Improvements 15

without incurring barrier synchronization.
In the Graphite simulator, a number of different synchronization strate-

gies are available by default. The ‘barrier’ method provides the most basic
synchronization, requiring cores to synchronize after a specific time inter-
val, as in quantum-based synchronization. The most loose synchronization
method in Graphite is not to incur synchronization at all, hence it is called
‘none’ and corresponds to unbounded slack. The ‘random-pairs’ synchro-
nization method is somewhat in the middle between these two extremes
and randomly picks two simulated target cores that it synchronizes, i.e., if
the two target cores are out of sync, the simulator stalls the core that runs
ahead waiting for the slowest core to catch up. We evaluate these synchro-
nization schemes in terms of accuracy and simulation speed in the evalua-
tion section of this chapter. Unless noted otherwise, the multithreaded syn-
chronization method used in this chapter is barrier synchronization with a
quantum of 100 cycles.

2.4 Simulator Improvements

As mentioned before, Graphite [51] is the simulation infrastructure used for
building Sniper. During the course of this work, we extended Sniper sub-
stantially over the original Graphite simulator. Not only did we integrate
the interval simulation approach, we also made a number of extensions
that improved the overall functionality of the simulator, which we describe
in the next few sections. But before doing so, we first detail our choice for
Graphite.

2.4.1 Simulator choice

There are three main reasons for choosing Graphite as our simulation in-
frastructure for building Sniper. First, it runs x86 binaries, hence we can
run existing workloads without having to deal with porting issues across
instruction-set architectures (ISAs). Graphite does so by building upon
Pin [48], which is a dynamic binary instrumentation tool. Pin dynamically
adds instrumentation code to a running x86 binary to extract instruction
pointers, memory addresses, register content, etc. This information is then
forwarded to a Pin-tool, Sniper in our case, which estimates timing for the
simulated target architecture. Second, a key benefit of Graphite is that it
is a parallel simulator by construction. A multi-threaded program running
in Graphite leads to a parallel simulator. Graphite thus has the potential
to be scalable as more and more cores are being integrated in future multi-
core processor chips. Third, Graphite is a user-level simulator, and there-
fore only simulates user-space code. This is appropriate for our purpose

16
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

of simulating (primarily) scientific codes which spend most of their time in
user-space code; very limited time is spent in system-space code [50].

2.4.2 Timing model improvements

We started with the Graphite simulator as obtained from GitHub.2 Graphite-
Lite, an optimized mode for single-host execution, was back-ported into
this version. From this base we added a number of components that im-
prove the accuracy and functionality of the simulator, which eventually led
to our current version of the simulator called Sniper.

The interval core model was added to allow for the simulation of the
Intel Xeon X7460 processor core; in fact, we validated Sniper against real
hardware, as we will explain in the evaluation section. Instruction latencies
were determined through experimentation and other sources [27].

In addition to an improved core model, there have also been numerous
enhancements made to the uncore components of Graphite. The most im-
portant improvement was the addition of a shared multi-level cache hier-
archy supporting write-back first-level caches and an MSI snooping cache
coherency protocol. In addition to the cache hierarchy improvements, we
modeled the branch predictor for the modeled Intel X7460 (Dunnington)
as the Pentium-M branch predictor [64]. This model was the most recent
branch predictor model publicly available but differs only slightly from the
branch predictor in the Dunnington (Penryn) core.

2.4.3 OS modeling

As mentioned before, Graphite only simulates an application’s user-space
code. In many cases, this is sufficient, and basic system-call latencies can
be modeled as simple costs. In some cases, however, the operating sys-
tem plays a vital role in determining application performance. One exam-
ple is how the application and kernel together handle pthread locking. In
the uncontended case, pthread locking uses futexes, or fast userspace mu-
texes [29]. The observation here is that for uncontended locks, entering the
kernel would be unnecessary as the application can check for lock availabil-
ity and acquire the lock using atomic instructions. In practice, futexes pro-
vide an efficient way to acquire and release relatively uncontended locks in
multithreaded code.

Performance problems can arise, unfortunately, when locks are heavily
contended. When a lock cannot be acquired immediately, the pthread *
synchronization calls invoke the futex wait and futex wake system

2Version dated August 11, 2010 with git commit id
7c43a9f9a9aa9f16347bb1d5350c93d00e0a1fd6

2.4 Simulator Improvements 17

 1
 2
 3
 4
 5
 6
 7
 8
 9

 100 1000

Sp
ee

du
p

Rescheduling cost (cycles)
raytrace-4

raytrace-16
fft-16

lu.ncont-16

Figure 2.3: Resulting application runtime from an increasing rescheduling cost.
For fft (very few synchronization calls), lu.ncont (moderate synchronization)
and raytrace (heavy synchronization), with 4 or 16 threads.

calls to put waiting threads to sleep. These system calls again compete
for spinlocks inside the kernel. When the pthread synchronization primi-
tives are heavily contended, these kernel spinlocks also become contended
which can result in the application spending a significant amount of time
inside the kernel. In these (rare) cases, our model, which assumes that
kernel calls have a low fixed cost, breaks down.

Modeling kernel spinlock behavior is in itself a research topic of inter-
est [22]. In our current implementation, we employ a fairly simple kernel
lock contention model. To this end we introduce the concept of a reschedul-
ing cost. This cost advances simulated time each time a thread enters the
kernel to go into a wait state, and later needs to be rescheduled once it
is woken up. Figure 2.3 explores the resulting execution time when vary-
ing this parameter. For applications with little (fft), or even a moderate
amount of synchronization (lu.ncont), increasing the rescheduling cost
does not significantly affect the application’s runtime. Yet for raytrace,
which contains a very high amount of synchronization calls, the reschedul-
ing costs quickly compound. This is because, when one thread incurs this
rescheduling cost, it is still holding the lock. This delay therefore multiplies
as many other threads are also kept waiting.

Figure 2.4 shows the run-times measured on raytrace. The hardware
set shows that on real hardware, raytrace suffers from severe contention
when running on more than four cores. Our initial simulations (center, base-
line) however predicted near-perfect scaling. After taking a rescheduling
cost into account (right, reschedule-cost), the run-times are predicted much
more accurately. Note that the rescheduling cost is a very rough approxi-
mation, and its value is dependent on the number of simulated cores. This

18
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

0.0

0.2

0.4

0.6

0.8

hardware baseline reschedule-cost

Ex
ec

ut
io

n
tim

e
(s

)

1 2 4 8 16

Figure 2.4: Application runtime for raytrace on hardware (left), and simulated
before (center) and after (right) adding basic kernel spinlock contention modeling.

is because it models operating system penalties for a specific core count. We
used a value of 1000 cycles for simulations with up to four cores, 3000 cy-
cles for 8 cores, and 4000 cycles for 16 cores. Only raytrace is affected by
this; all other application run-times did not change significantly from the
baseline runs with a zero-cycle rescheduling cost.

2.5 Experimental Setup

The hardware that we validate against is a 4-socket Intel Xeon X7460 Dun-
nington shared-memory machine, see Table 2.1 for details. Each X7460 pro-
cessor chip integrates six cores, hence, we effectively have a 24-core SMP
machine to validate against. Each core is a 45 nm Penryn microarchitec-
ture, and has private L1 instruction and data caches. Two cores share the
L2 cache, hence, there are three L2 caches per chip. The L3 cache is shared
among the six cores on the chip. As Graphite did not contain any models
of a cache prefetcher, all runs were done with the hardware prefetchers dis-
abled. Although we recognize that most modern processors contain data
prefetchers, we currently do not model their effects in our simulator. Nev-
ertheless, there is no fundamental reason why data prefetching cannot be
added to the simulator. Intel Speedstep technology was disabled, and we
set each processor to the high-performance mode, running all processors
at their full speed of 2.66 GHz. Benchmarks were run on the Linux kernel
version 2.6.32. Each thread is pinned to its own core. The simulator was
configured to use barrier synchronization with a time quantum of 100ns.

The benchmarks that we use for validation and evaluation are the
SPLASH-2 benchmarks [70]. SPLASH-2 is a well-known benchmark suite
that represents high-performance, scientific codes. See Table 2.2 for more
details on these benchmarks and the inputs that we have used. The bench-
marks were compiled in 64-bit mode with –O3 optimization and with the

2.6 Results 19

Parameter value
Sockets per system 4
Cores per socket 6
Dispatch width 4 micro-operations
Reorder buffer 96 entries
Branch predictor Pentium M [64]
Cache line size 64 B
L1-I cache size 32 KB
L1-I associativity 8 way set associative
L1-I latency 3 cycle data, 1 cycle tag access
L1-D cache size 32 KB
L1-D associativity 8 way set associative
L1-D latency 3 cycle data, 1 cycle tag access
L2 cache size 3 MB per 2 cores
L2 associativity 12 way set associative
L2 latency 14 cycle data, 3 cycle tag access
L3 cache size 16 MB per 6 cores
L3 associativity 16 way set associative
L3 latency 96 cycle data, 10 cycle tag access
Coherence protocol MSI
Main memory 200 ns access time
Memory Bandwidth 4 GB/s

Table 2.1: Simulated system characteristics for the Intel Xeon X7460.

SSE, SSE2, SSE3 and SSSE3 instruction set extensions enabled. We mea-
sure the length of time that each benchmark took to run its parallel section
through the use of the Read Time-Stamp Counter (rdtsc) instruction. A
total of 30 runs on hardware were completed, and the average was used
for comparisons against the simulator. All results with error-bars report
the confidence interval using a confidence level of 95% over results from
30 hardware runs and 5 simulated runs.

2.6 Results

We now evaluate interval simulation as well as the one-IPC model in terms
of accuracy and speed. We first compare the absolute accuracy of the simu-
lation models and then compare scaling of the benchmarks as predicted by
the models and hardware. Additionally, we show a collection of CPI-stacks
as provided by interval simulation. Finally, we compare the performance
of the two core models with respect to accuracy, and we provide a perfor-
mance and accuracy trade-off when we assume a number of components
provide perfect predictions. Because the interval model is more complex
than a one-IPC model, it also runs slower, however, the slowdown is lim-
ited as we will detail later in this section.

20
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

Benchmark ‘small’ input size ‘large’ input size
barnes 16384 particles 32768 particles
cholesky tk25.O tk29.O
fmm 16384 particles 32768 particles
fft 256K points 4M points
lu.cont 512⇥512 matrix 1024⇥1024 matrix
lu.ncont 512⇥512 matrix 1024⇥1024 matrix
ocean.cont 258⇥258 ocean 1026⇥1026 ocean
ocean.ncont 258⇥258 ocean 1026⇥1026 ocean
radiosity –room –ae 5000.0 –room

–en 0.050 –bf 0.10
radix 256K integers 1M integers
raytrace car –m64 car –m64 –a4
volrend head-scaleddown2 head
water.nsq 512 molecules 2197 molecules
water.sp 512 molecules 2197 molecules

Table 2.2: Benchmarks and input sets.

2.6.1 Core model accuracy

Reliable and accurate microarchitecture comparisons are one of the most
important tools in a computer architect’s tool-chest. After varying a num-
ber of microarchitecture parameters, such as branch predictor configura-
tion or cache size and hierarchy, the architect then needs to accurately eval-
uate and trade-off performance with other factors, such as energy usage,
chip area, cost and design time. Additionally, the architect needs to be able
to understand these factors in order to make the best decisions possible
with a limited simulation time budget.

Figure 2.5 shows accuracy results of interval simulation compared with
the one-IPC model given the same memory hierarchy modeled after the In-
tel X7460 Dunnington machine. We find that the average absolute error is
substantially lower for interval simulation than for the one-IPC model in a
significant majority of the cases. The average absolute error for the one-IPC
model using the large input size of the SPLASH-2 benchmark suite is 114%
and 59.3% for single and 16-threaded workloads, respectively. In contrast,
the interval model compared to the X7460 machine has an average absolute
error of 19.8% for one core, and 23.8% for 16 cores. Clearly, interval simula-
tion is substantially more accurate for predicting overall chip performance
than the one-IPC model; in fact, it is more than twice as accurate.

Figure 2.6 shows a more elaborate evaluation with a variety of one-IPC
models for a select number of benchmarks. These graphs show how exe-
cution time changes with increasing core counts on real hardware and in
simulation. We consider five simulators, the interval simulation approach
along with four variants of the one-IPC model. These graphs reinforce our

2.6 Results 21

 0

 1

 2

 3

 4

b
a

rn
e

s

ch
o

le
sk

y ff
t

fm
m

lu
.c

o
n

t

lu
.n

co
n

t

o
ce

a
n

.c
o

n
t

o
ce

a
n

.n
co

n
t

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

vo
lr
e

n
d

w
a

te
r.

n
sq

w
a

te
r.

sp

E
xe

cu
tio

n
 t

im
e

(r
e

la
tiv

e
 t

o
 h

a
rd

w
a

re
)

Single core

oneIPC interval

 0

 1

 2

 3

b
a

rn
e

s

ch
o

le
sk

y ff
t

fm
m

lu
.c

o
n

t

lu
.n

co
n

t

o
ce

a
n

.c
o

n
t

o
ce

a
n

.n
co

n
t

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

vo
lr
e

n
d

w
a

te
r.

n
sq

w
a

te
r.

sp

E
xe

cu
tio

n
 t

im
e

(r
e

la
tiv

e
 t

o
 h

a
rd

w
a

re
)

16 cores

oneIPC interval

Figure 2.5: Relative accuracy for the one-IPC and interval models for a single core
(top graph) and 16 cores (bottom graph).

earlier finding, namely, interval simulation is more accurate than one-IPC
modeling, and different variants of the one-IPC model do not significantly
improve accuracy. Note that performance improves substantially for fft
as the number of cores increases, whereas for raytrace this is not the case.
The reason why raytrace does not scale is due to heavy lock contention,
as mentioned earlier. Our OS modeling improvements to the Graphite sim-
ulator, much like the updated memory hierarchy, benefit both the interval
and one-IPC models.

2.6.2 Application scalability

So far, we focused on absolute accuracy, i.e., we evaluated accuracy for
predicting chip performance or how long it takes for a given application
to execute on the target hardware. However, in many practical research
and development studies, a computer architect is more interested in rela-

22
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

 0

 1

 2

 3

 4

 5

hardware interval oneIPC iocoom simple magic

E
xe

cu
tio

n
 t

im
e

 (
s)

fft

1 2 4 8 16

 0

 1

 2

hardware interval oneIPC iocoom simple magic

E
xe

cu
tio

n
 t

im
e

 (
s)

raytrace

1 2 4 8 16

Figure 2.6: Absolute accuracy across all core models for a select number of bench-
marks: fft (top graph) and raytrace (bottom graph).

 0

 4

 8

 12

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Cores

barnes

oneIPC
interval

hardware

 0

 4

 8

 12

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Cores

water.nsq

oneIPC
interval

hardware

Figure 2.7: Application scalability for the one-IPC and interval models when scal-
ing the number of cores.

tive performance trends in order to make design decisions, i.e., a computer
architect is interested in whether and by how much one design point out-
performs another design point. Similarly, a software developer may be
interested in understanding an application’s performance scalability rather
than its absolute performance. Figure 2.7 shows such scalability results for
a select number of benchmarks. A general observation is that both inter-
val and one-IPC modeling is accurate for most benchmarks, as exempli-
fied by barnes (left graph). However, for a number of benchmarks, see

2.6 Results 23

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b
a

rn
e

s

ch
o

le
sk

y ff
t

fm
m

lu
.c

o
n

t

lu
.n

co
n

t

o
ce

a
n

.c
o

n
t

o
ce

a
n

.n
co

n
t

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

vo
lr
e

n
d

w
a

te
r.

n
sq

w
a

te
r.

sp

C
yc

le
s

p
e

r
in

st
ru

ct
io

n
4.1 16.5

issue
depend
branch

ifetch
mem-l3
mem-remote

mem-dram
sync-mutex
sync-cond

Figure 2.8: Detailed CPI stacks generated through interval simulation.

the right graph for water.nsq, the interval model accurately predicts the
scalability trend, which the one-IPC model is unable to capture. It is partic-
ularly encouraging to note that, in spite of the limited absolute accuracy for
water.nsq, interval simulation is able to accurately predict performance
scalability.

2.6.3 CPI stacks

A unique asset of interval simulation is that it enables building CPI stacks
which summarize where time is spent. A CPI stack is a stacked bar show-
ing the different components contributing to overall performance. The base
CPI component typically appears at the bottom and represents useful work
being done. The other CPI components represent ‘lost’ cycle opportunities
due to instruction interdependencies, and miss events such as branch mis-
predictions, cache misses, etc., as well as waiting time for contended locks.
A CPI stack is particularly useful for gaining insight in application perfor-
mance. It enables a computer architect and software developer to focus
on where to optimize in order to improve overall application performance.
Figure 2.8 shows CPI stacks for all of our benchmarks.

As one example of how a CPI stack can be used, we analyzed the one for
raytrace and noted that this application spends a huge fraction of its time
in synchronization. This prompted us to look at this application’s source
code to try and optimize it. It turned out that a pthread mutex lock was
being used to protect a shared integer value (a counter keeping track of
global ray identifiers). In a 16-thread run, each thread increments this value

24
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

 1

 2

 4

 8

 16

 1 2 4 8 16

Sp
ee

du
p

hardware
interval

hardware-opt
interval-opt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1
base

16
base

1
opt

16
opt

C
yc

le
s

pe
r i

ns
tru

ct
io

n

15.9

issue
depend
branch
mem-l3

mem-remote
mem-dram
sync-mutex

Figure 2.9: Speedup (left) and CPI stacks (right) for raytrace, before and after
optimizing its locking implementation.

over 20,000 times in under one second of run time. This results in a huge
contention of the lock and its associated kernel structures (see also Sec-
tion 2.4.3). By replacing the heavy-weight pthread locking with an atomic
lock inc instruction, we were able to avoid this overhead. Figure 2.9
shows the parallel speedup (left) and CPI stacks (right) for raytrace be-
fore and after applying this optimization.

2.6.4 Heterogeneous workloads

So far, we considered the SPLASH-2 benchmarks, which are all homoge-
neous, i.e., all threads execute the same code and hence they have roughly
the same execution characteristics. This may explain in part why one-IPC
modeling is fairly accurate for predicting performance scalability for most
of the benchmarks, as discussed in Section 2.6.2. However, heterogeneous
workloads in which different threads execute different codes and hence ex-
hibit different execution characteristics, are unlikely to be accurately mod-
eled through one-IPC modeling. Interval simulation on the other hand is
likely to be able to more accurately model relative performance differences
among threads in heterogeneous workloads.

To illustrate the case for heterogeneous workloads, we consider the
dedup benchmark from the PARSEC benchmark suite [7]. Figure 2.10 dis-
plays the CPI stacks obtained by the interval model for each of the threads
in a four-threaded execution. The first thread is a manager thread, and sim-
ply waits for the worker threads to complete. The performance of the three
worker threads, according to the CPI stack, is delimited by, respectively, the
latency of accesses to other cores’ caches, main memory, and branch mis-
prediction. A one-IPC model, which has no concept of overlap between

2.6 Results 25

0.0

0.5

1.0

1.5

2.0

0 1 2 3

C
yc

le
s

p
e

r
in

st
ru

ct
io

n

Thread ID

364.6

issue
depend
branch
mem-remote
mem-dram
sync

Figure 2.10: CPI stack for each of the four thread types spawned by dedup. (Core
0’s very high CPI is because it only spawns and then waits for threads.)

these latencies and useful computation, cannot accurately predict the effect
on thread performance when changing any of the system characteristics
that affect these latencies. In contrast to a homogeneous application, where
all threads are mispredicted in the same way, here the different threads
will be mispredicted to different extents. The one-IPC model will there-
fore fail to have an accurate view on the threads’ progress rates relative to
each other, and of the load imbalance between cores executing the different
thread types.

2.6.5 Simulator trade-offs

As mentioned earlier in the chapter, relaxing synchronization improves
parallel simulation speed. However, it comes at the cost of accuracy. Fig-
ure 2.11 illustrates this trade-off for a 16-core fft application. It shows the
three synchronization mechanisms in Graphite, barrier, random-pairs and
none, and plots simulation time, measured in hours on the vertical axis,
versus average absolute error on the horizontal axis. No synchronization
yields the highest simulation speed, followed by random-pairs and bar-
rier synchronization. For accuracy, this trend is reversed: barrier synchro-
nization is the most accurate approach, while the relaxed synchronization
models can lead to significant errors.

In addition, we explore the effect of various architectural options. Fig-
ure 2.11 also shows data points in which the branch predictor or the instruc-
tion caches were not modeled. Turning off these components (i.e. assum-
ing perfect branch prediction or a perfect I-cache, respectively) brings the
simulation time down significantly, very near to that of the one-IPC model
(which includes neither branch prediction or I-cache models).

26
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

 0

 1

 2

 3

-50 0 50 100 150 200 250 300 350

S
im

u
la

tio
n

 t
im

e
 (

h
)

Error (%)

fft

interval-none

oneIPC-none

oneIPC-barrier

interval-barrier
interval-no-branch

oneIPC-random-pairs

interval-no-icache

interval-random-pairs

 2

 3

-5 0 5 10 15 20 25 30

S
im

u
la

tio
n

 t
im

e
 (

h
)

Error (%)

fft [zoomed]

interval-no-icache

interval-random-pairs

interval-barrier

interval-none

interval-no-branch

Figure 2.11: Accuracy vs. speed trade-off graphs comparing both synchronization
mechanisms for parallel simulation.

0%

50%

100%

150%

ra
yt

ra
ce fft

ba
rn

es

vo
lre

nd

ra
di

os
ity

oc
ea

n.
nc

on
t

w
at

er
.s

p

lu
.c

on
t

ch
ol

es
ky

oc
ea

n.
co

nt

fm
m

lu
.n

co
nt

ra
di

x

w
at

er
.n

sq

M
ax

im
um

 e
rro

r

Execution time variability

barrier random-pairs none

Figure 2.12: Maximum absolute error by synchronization method in parallel sim-
ulation for simulating a 16-core system.

2.6.6 Synchronization variability

It is well-known that multi-threaded workloads incur non-determinism
and performance variability [1], i.e., small timing variations can cause ex-
ecutions that start from the same initial state to follow different execution
paths. Multiple simulations of the same benchmark can therefore yield dif-
ferent performance predictions, as evidenced by the error bars plotted on
Figure 2.5. Increasing the number of threads generally increases variabil-
ity. Different applications are susceptible to this phenomenon to different

2.6 Results 27

 0

 1

 2

 3

interval oneIPCS
im

u
la

tio
n

 s
p

e
e

d
 (

M
IP

S
)

fmm

1 2 4 8 16

 0

 1

 2

interval oneIPCS
im

u
la

tio
n

 s
p

e
e

d
 (

M
IP

S
)

fft

1 2 4 8 16

Figure 2.13: Simulation speed of 1–16 simulated cores on an eight-core host ma-
chine.

extents, based on the amount of internal synchronization and their pro-
gramming style — applications employing task queues or work rebalanc-
ing often take severely different execution paths in response to only slight
variations in thread interleaving. On the other hand, applications that ex-
plicitly and frequently synchronize, via pthreads for example, will main-
tain consistent execution paths.

An interesting observation that we made during our experiments is
that performance variability generally is higher for no synchronization and
random-pairs synchronization compared to barrier synchronization. This
is illustrated in Figure 2.12 which shows the maximum error observed
across five simulation runs. The benchmarks are sorted on the horizontal
axis by increasing max error for barrier synchronization. The observation
from this graph is that, although sufficient for some applications, no syn-
chronization can lead to very high errors for others, as evidenced by the
cholesky and water.nsq benchmarks. Whereas prior work by Miller
et al. [51] and Chen et al. [16] conclude that relaxed synchronization is ac-
curate for most performance studies, we conclude that caution is required
because it may lead to misleading performance results.

2.6.7 Simulation speed and complexity

As mentioned earlier, the interval simulation code base is quite small; con-
sisting of about 1000 lines of code. Compared to a cycle-accurate simulator
core, the amount of code necessary to implement this core model is several
orders of magnitude less, a significant development savings.

A comparison of the simulation speed between the interval and one-
IPC models can be found in Figure 2.13. Here we plot the aggregate sim-
ulation speed, for 1–16 core simulations with no synchronization and per-
fect branch predictors and instruction cache models. As can be seen on

28
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

Figure 2.11, adding I-cache modeling or using barrier synchronization in-
creases simulation time by about 50% each, which corresponds to a 33%
lower MIPS number. These runs were performed on dual socket Intel Xeon
L5520 (Nehalem) machines with a total of eight cores per machine. When
simulating a single thread, the interval model is about 2–3⇥ slower than
the one-IPC model. But when scaling up the number of simulated cores,
parallelism can be exploited and aggregate simulation speed goes up sig-
nificantly — until we have saturated the eight cores of our test machines.
Also, the relative computational cost of the core model quickly decreases,
as the memory hierarchy becomes more stressed and requires more sim-
ulation time. From eight simulated cores onwards, on an eight-core host
machine, the simulation becomes communication-bound and the interval
core model does not require any more simulation time than the one-IPC
model — while still being about twice as accurate.

Note that the simulation speed and scaling reported for the original
version of Graphite [51] are higher than the numbers we show for Sniper
in Figure 2.13. The main difference lies in the fact that Graphite, by de-
fault, only simulates private cache hierarchies. This greatly reduces the
need for communication between simulator threads, which enables good
scaling. For this study, however, we model a realistic, modern CMP with
large shared caches. This requires additional synchronization, which af-
fects simulation speed.

2.7 Other Related Work

This section discusses other related work not previously covered.

2.7.1 Cycle-level and cycle-accurate simulation

Architects in industry and academia heavily rely on detailed cycle-level
simulation. In some cases, especially in industry, architects rely on true
cycle-accurate simulation. The key benefit of cycle-accurate simulation
obviously is accuracy, however, its slow speed is a significant limitation.
Industry simulators typically run at a speed of 1 to 10 kHz. Academic
simulators, such as gem5 [8] and PTLSim [72] are not truly cycle-accurate
compared to real hardware, and therefore they are typically faster, with
simulation speeds in the tens to hundreds of KIPS (kilo simulated instruc-
tions per second) range. Cycle-accurate simulators face a number of chal-
lenges in the multi-core era. First, these simulators are typically single-
threaded, hence, simulation performance does not increase with increas-
ing core counts. Second, given its slow speed, simulating processors with
large caches becomes increasingly challenging because the slow simulation

2.7 Other Related Work 29

speed does not allow for simulating huge dynamic instruction counts in
a reasonable amount of time. Since the original publication of this work,
follow-on work has been able to improve simulation speeds using a num-
ber of new techniques, such as one that localizes cache behavior to speed
simulation of the common case, and then check for potential timing viola-
tions and interactions in a follow-on step [58].

2.7.2 Sampled simulation

Increasing simulation speed is not a new research topic. One popular so-
lution is to employ sampling, or simulate only a few simulation points.
These simulation points are chosen either randomly [20], periodically [71]
or through phase analysis [61]. Ekman and Stenström [24] apply sampling
to multi-processor simulation and make the observation that fewer sam-
pling units need to be taken to estimate overall performance for larger
multi-processor systems than for smaller multi-processor systems in case
one is interested in aggregate performance only. Barr et al. [6] propose the
Memory Timestamp Record (MTR) to store microarchitecture state (cache
and directory state) at the beginning of a sampling unit as a checkpoint.
Sampled simulation typically assumes detailed cycle-accurate simulation
of the simulation points, and simulation speed is achieved by limiting the
number of instructions that need to be simulated in detail.

While the vast majority of prior work in sampled simulation deals with
single-threaded applications running on single-core processors, sampling
of multi-threaded applications poses some unique challenges that have not
been addressed in prior work. See Chapter 4 and Chapter 5 for two novel
methods to apply sampling to multi-threaded applications.

Higher abstraction simulation methods use a different, and orthogonal,
method for speeding up simulation: they model the processor at a higher
level of abstraction. By doing so, higher abstraction models not only speed
up simulation, they also reduce simulator complexity and development
time.

2.7.3 FPGA-accelerated simulation

Another approach that has gained interest recently is to accelerate sim-
ulation by mapping timing models on FPGAs [18; 67; 54]. The timing
models in FPGA-accelerated simulators are typically cycle-accurate, with
the speedup coming from the fine-grained parallelism in the FPGA. A key
challenge for FPGA-accelerated simulation is to manage simulation devel-
opment complexity and time because FPGAs require the simulator to be
synthesized to hardware. Higher abstraction models on the other hand are
easier to develop, and could be used in conjunction with FPGA-accelerated

30
Exploring the Level of Abstraction for Scalable and Accurate Parallel

Multi-Core Simulations

simulation, i.e., the cycle-accurate timing models could be replaced by ana-
lytical timing models. This would not only speed up FPGA-based simula-
tion, it would also shorten FPGA-model development time and in addition
it would also enable simulating larger computer systems on a single FPGA.

2.7.4 High-abstraction modeling

Jaleel et al. [39] present the CMP$im simulator for simulating multi-core
systems. Like Graphite, CMP$im is built on top of Pin. The initial versions
of the simulator assumed a one-IPC model, however, a more recent version,
such as the one used in a cache replacement championship3, models an out-
of-order core architecture. It is unclear how detailed the core models are
because the simulator internals are not publicly available through source
code.

Analytical modeling is one method used to predict workload perfor-
mance without the need for simulation. Sorin et al. [62] present an analyt-
ical model using mean value analysis for shared-memory multi-processor
systems. Lee et al. [45] present composable multi-core performance mod-
els through regression. Additionally, the interval model [25] is a model
used to estimate the performance of a balanced, out-of-order core. While
interval modeling successfully models single-core performance, multi-core
performance is not modeled by this method.

2.8 Conclusions

Exploration of a variety of system parameters in a short amount of time is
critical to determining successful future architecture designs. With the ever
growing number of processors per system and cores per socket, there are
challenges when trying to simulate these growing system sizes in reason-
able amounts of time. Compound the growing number of cores with larger
cache sizes, and one can see that longer, accurate simulations are needed to
effectively evaluate next generation system designs. But, because of com-
plex core-uncore interactions and multi-core effects due to heterogeneous
workloads, realistic models that represent modern processor architectures
become even more important. In this work, we present the combination
of a highly accurate, yet easy to develop core model, the interval model,
with a fast, parallel simulation infrastructure. This combination provides
accurate simulation of modern computer systems with high performance,
up to 2.0 MIPS.

Even when comparing a one-IPC model that is able to take into account
attributes of many superscalar, out-of-order processors, the benefits of the

3JWAC-1 cache replacement championship. http://www.jilp.org/jwac-1.

2.8 Conclusions 31

interval model provide a key simulation trade-off point for architects. We
have shown a 23.8% average absolute error when simulating a 16-core In-
tel X7460-based system; more than half that of our one-IPC model’s 59.3%
accuracy. By providing a detailed understanding of both the hardware and
software, and allowing for a number of accuracy and simulation perfor-
mance trade-offs, we conclude that interval simulation and Sniper is a use-
ful complement in the architect’s toolbox for simulating high-performance
multi-core and many-core systems.

Chapter 3

An Evaluation of High-Level
Mechanistic Core Models

In the previous chapter, we provide an introduction to the Sniper Multi-Core Sim-
ulator and compare it to the one-IPC core model. We show that the interval sim-
ulation models used in Sniper provide higher accuracy while maintaining good
performance.

In this chapter, we explore, analyze and compare the accuracy and simulation
speed of a new high-abstraction core model. We introduce the instruction-window
centric core model, a mechanistic core model that bridges the gap between inter-
val simulation and cycle-accurate simulation by enabling high-speed simulations
with higher levels of detail. In addition, we describe a number of enhancements to
interval simulation to improve its accuracy while maintaining simulation speed.

3.1 Introduction

In this chapter, we provide an overview of interval simulation, and present
improvements that both build on interval simulation as well as extend it
in a new direction for higher simulation accuracy. We extend the origi-
nal interval simulation model to take into account limited execution units,
and improve its handling of overlapping memory accesses through a more
detailed dependency analysis of memory accesses. These modifications
improve accuracy for a range of workloads at a minimal increase in com-
plexity. In addition, we present a new core model that uses the insights
from interval modeling, and combines them with the detailed model of
the instruction window, or reorder buffer (ROB). We call this methodol-
ogy instruction-window centric (IW-centric) simulation, where the reorder
buffer of an application is at the center of the amount of core-level perfor-
mance that we can extract. While the original interval simulation method-

34 An Evaluation of High-Level Mechanistic Core Models

ology calculates the ILP of an application analytically, IW-centric simula-
tion models micro-op dependency and issue timing in detail, providing
additional accuracy with respect to fine-grained events. The cost of this ad-
ditional level of detail is a somewhat lower simulation speed. IW-centric
simulation therefore represents a different point on the speed versus accu-
racy trade-off, and can be a good middle ground between interval simula-
tion (as described in Chapter 2) and cycle-accurate modeling.

More specifically, we make the following contributions in this work:

• We present issue contention for interval simulation. Issue contention
takes into account core-level instruction execution limitations (e.g., a
limited number of functional units) to more accurately predict core
performance.

• We present an improvement to the interval model whereby we im-
prove dependency analysis tracking by differentiating between in-
structions or micro-ops that are dependent on long-latency loads, to
those that are not.

• We introduce the instruction-window centric core model, which is a
new speed-vs.-accuracy trade-off point between interval simulation
and traditional detailed cycle-level core model simulations.

• We present a detailed analysis of the trade-offs between the one-IPC,
interval-core and the instruction-window centric simulation models,
and provide both single-core and multi-core analysis across a num-
ber of simulated hardware configurations to demonstrate the effects
that each of the core models have on the scaling and accuracy of the
simulations.

• We validate these core models against real hardware and show single-
core average errors of 11% for the instruction-window centric model
and 24% for interval simulation.

This chapter is organized as follows. We first discuss high-level core
models that are used to provide a speed versus accuracy trade-off for mi-
croprocessor simulation. Next, we present improvements to interval sim-
ulation, and introduce a new core model, instruction-window centric sim-
ulation, that improves accuracy with respect to hardware. Finally, we pro-
vide an evaluation of these core models for both speed and for accuracy,
and discuss how core model resolution affects microarchitecture conclu-
sions.

3.2 Core-level Abstractions 35

Interval)Modeling)

Ac
cu
ra
cy
)

Sp
ee
d)

Instruc6on7Window)
Centric)

Simula6on)

Detailed)Modeling) Insigh>ul)Modeling)

Interval)Simula6on) Cri6cal)
Path)Accoun6ng)

Issue)Conten6on)+)
Cri6cal)Path)
Accoun6ng)

Issue)
Conten6on)

Figure 3.1: Interval modeling and simulation technique taxonomy. Interval mod-
eling uses mechanistic performance modeling techniques to provide application
performance estimates. Interval simulation and instruction-window centric sim-
ulation build on these insights to provide a more accurate representation of core
timing, including timing for multi-core simulation.

3.2 Core-level Abstractions

There are a variety of high-level core abstractions, from a simple one-IPC
model to the instruction-window centric core model introduced in this
work. See Figure 3.1 for a taxonomy breakdown of the interval model-
derived simulation techniques. Below we provide an overview of one-IPC,
interval modeling, interval simulation and instruction-window centric
simulation. Typically these core models are integrated in a functional-first
simulator, where the functional model executes instructions and generates
a dynamic instruction stream, potentially broken up into micro-ops. The
core model receives this instruction stream and computes the time required
to execute these instructions, querying branch prediction and memory hi-
erarchy simulators to discover miss events; see Figure 3.2 for a schematic
overview.

36 An Evaluation of High-Level Mechanistic Core Models

func%onal)
instruc%on)
simulator)

memory)hierarchy)
simulator)

branch)predictor)
simulator)

processor)cores)

uop)
decoder)

Figure 3.2: A diagram of the main components of a functionally-directed simula-
tor with 4 processor core models.

3.2.1 One-IPC Models

A one-IPC core model is a cycle-by-cycle simulation technique where the
core model is set to report a performance of a single instruction per cycle
in the absence of long-latency miss events, like long-latency loads or front-
end cache misses and branch mispredictions.

A one-IPC model attempts to simulate the performance of a typical out-
of-order, multi-issue processor, but at a much higher level of abstraction,
and therefore can simulate a core’s performance with very little overhead.
The absolute performance of the processor (ILP) is not modeled, and the fo-
cus is placed on the memory hierarchy of the microprocessor. These mod-
els, therefore, provide a faster way to simulate large, multi- and many-core
systems that would otherwise not be feasible when using cycle-level core
detail.

Unfortunately, there are a number of limitations that occur because of
the use of one-IPC core models. one-IPC models do not faithfully model
out-of-order memory-level parallelism (MLP) [32; 19] effects where multi-
ple outstanding memory accesses are sent to the memory subsystem. Ad-
ditionally, these models do not evaluate the amount of exposed ILP dur-
ing the execution of the application itself. Issuing independent memory
accesses in advance is very important to attempt to hide the effects of long-
latency memory requests that would normally stall an out-of-order proces-
sor’s performance. Also, a processor’s ILP will dictate the request rate that
the memory subsystem sees from the core.

Because of these limitations, there has been an effort to develop both
modeling techniques for single-core processors (the interval model) as well
as more advanced multi-core simulation techniques that use the insight
from interval modeling to provide fast, but accurate simulation.

3.2 Core-level Abstractions 37

IPC$

W$

an$interval$

base$ penalty$

IPC$

W$

an$interval$

base$ penalty$ 2me$2me$

Figure 3.3: A comparison between the estimation of IPC with interval modeling
(left) and interval simulation (right). The simulation-based models take a dynamic
sequence of micro-ops and adjust the core IPC over time.

3.2.2 Interval Modeling

The interval model [25] is an analytical core modeling technique designed
to estimate the performance of applications using the most important fac-
tors of a balanced out-of-order core. The interval model exposes the effects
of both instruction-level parallelism (ILP) and memory-level parallelism
(MLP), and has shown good accuracy as compared to simulated program
execution.

The interval model models core performance as a collection of intervals,
composed of a period of executing instructions followed by a stalling event
that causes the normal flow of execution to halt. In addition, it models
the microprocessor as seen from the dispatch stage, providing a model that
looks at this point in time, instead of at the issue stage which previous work
had focused on [42]. For each miss event, the interval model estimates the
resulting penalty to apply to the intervals (See Figure 3.3 for an example).
By combining a number of microarchitectural parameters with application
characteristics, such as miss rates and the interval lengths between them,
and the average window drain time after a branch misprediction, a perfor-
mance prediction can be made. Using these parameters, the interval model
was shown to have low error, around 7% for a 4-issue machine, compared
to cycle-level simulation of a single core in SimpleScalar [25].

Interval modeling is a good way to understand application perfor-
mance of single-core, single-threaded applications on out-of-order ma-
chines. Nevertheless, interval modeling does not allow for modeling multi-
program and multi-threaded workloads running on multi- and many-core
processors.

38 An Evaluation of High-Level Mechanistic Core Models

3.2.3 Interval Simulation

Interval simulation is an extension of the interval model to allow for the
simulation of multi-core processors using the insights of the interval model.

The insight gained from interval modeling is that modern processors
tend to be balanced with respect to their dispatch and commit widths,
their ROB sizes and other supporting structures such as issue buffers and
load/store queues. The major way to extract core performance in out-of-
order processors is to improve the ability of the core to extract ILP and
MLP from the running application. The main limiting factor in extracting
ILP and MLP is the ROB size of the processor itself. When engineering an
optimized, balanced processor, its components are sized appropriately to
allow most of the ILP to be extracted by the ROB. For example, in the Ne-
halem microarchitecture from Intel, the processor balances out the dispatch
rate of 4 micro-ops per cycle with a large number of load and store queue
entries, reservation station entries and other supporting structures.

The major advantage of interval simulation over interval modeling is
the ability to simulate multi-core platforms. There is a tight entanglement
between core performance and the performance of shared resources as the
core performance affects the rate at which requests are sent to shared re-
sources which in turn affects core performance. This can be difficult to cap-
ture in a stand-alone offline analytical model. Interval simulation bridges
this gap. Multi-processor interval simulation is enabled by combining the
insights from interval simulation for core performance with a detailed per-
formance model of shared resources. An additional advantage of interval
simulation is that the instructions (or micro-ops) are held and processed
just one time and in program order. This simulation technique allows for
speedups of more than 10⇥ when compared to M5 [31].

New and Old Windows

In Figure 3.4, middle, we show a graphical representation of the core for the
interval simulation model. On the right side of the figure, micro-ops enter
the new window which holds upcoming micro-ops (the number equal to
the size of the ROB) that are to be dispatched. On the left hand side is the
old window. The old window holds the micro-ops that have previously
been dispatched. The dispatch width of the processor determines the max-
imum rate at which instructions are moved into the old window from the
new window. Using both of these windows, it is possible to both deter-
mine the ILP of an application, and extract available MLP to the memory
hierarchy. In the absence of miss events, such as long-latency loads, the ILP
exposed by the ROB of an out-of-order processor will determine the current
performance of the core. In interval simulation, the application ILP is de-

3.2 Core-level Abstractions 39

new$window$old$window$

dispatched$micro1ops$ upcoming$micro1ops$

One1IPC$

Interval$

IW1Centric$

instruc:on$
counter$

Figure 3.4: A diagram of the different core performance models. The one-IPC
model (top) is the simplest model that only keeps track of instruction count.
More advanced models, such as interval simulation (middle) and the instruction-
window centric model (bottom) provide accuracy at the cost of simulation speed.

termined using the old window, while MLP and other overlap effects (e.g.,
a branch miss hidden under long-latency load miss) are extracted from the
new window. The new window, representing the upcoming micro-ops, re-
mains full at all times to allow for the identification of MLP. Each window
contains the number of micro-ops that would exist in an ROB of an out-
of-order processor. For the Nehalem microarchitecture, with an ROB size
of 128 micro-ops, we would model this as a window with 128 micro-op
entries, and an old window also with 128 micro-op entries.

To determine how much progress the ROB has been able to make on
the most recent ROB-sized collection of micro-ops, we approximate instan-
taneous ILP of the upcoming micro-ops in the ROB with Little’s Law [47].
The instantaneous IPC is calculated as the number of instructions in the
entire old window divided by the latency of the instructions on the critical
path [31]. By repeating this process for each micro-op (and accumulating
the left-over non-integer amounts of work for future micro-ops) we can ac-
curately estimate the application’s ILP during the non-penalty portion of
an interval.

In addition to baseline application ILP, the performance impact of miss
events needs to be calculated. The interval model distinguishes between
front-end and back-end miss events and in the following sections we will
discuss how to account for each type of event.

40 An Evaluation of High-Level Mechanistic Core Models

Front-end Stalls

Front-end stalls, according to the original interval model, can be approxi-
mated by adding a penalty equal to the time it takes to resolve an I-TLB,
or I-cache miss. Therefore, if a level-1 and level-2 miss occurs, resulting in
an N cycle L3 hit penalty, we estimate the penalty of the miss on the core
as stalling dispatch for N cycles. This resulting delay occurs because the
processor is unable to dispatch additional useful micro-ops while waiting
for the next instruction stream to be fetched and decoded.

For branch mispredictions, we can estimate the performance penalty as
the sum of two components. The first is the latency from dispatch up to
the execution of the branch to detect the wrong prediction, and the second
component is the time it takes to refill the front-end with instructions from
the correct path. In interval simulation, we approximate the latency to de-
termine the correct branch target as the critical path in the old window at
the time that we dispatch the branch instruction. The front-end refill time
is a constant defined by the microarchitecture itself.

Back-end Stalls

Back-end stalls, such as serialization and long-latency loads (LLC misses
and D-TLB misses, etc.) are modeled by interval simulation using the in-
sights from the interval model. A long-latency load instruction is one that
causes the processor to stall because the core is not able to commit the
load that has not yet received a result from memory. When this occurs,
the core experiences a penalty that is equivalent to the load instruction’s
access penalty [25]. MLP, or memory-level parallelism, is an important ef-
fect of out-of-order processors [32; 19]. In order to extract MLP in interval
simulation, we scan the new window after dispatching each long-latency
load to determine if there are upcoming independent loads that could be
issued, representing application MLP. Any dependent load in the window
(e.g., in pointer chasing applications) would not be issued until the result-
ing load has completed. Nevertheless, the out-of-order core can expose
additional loads, issuing those loads whose inputs do not depend on the
result of the issuing load. By iterating over the new window we can issue
independent loads, exposing application MLP. The processor penalty for
multiple independent overlapping long-latency loads exposed as MLP is
treated as the penalty of a single long-latency load. Serialization instruc-
tions incur a penalty equal to the processor window drain time. Other
second-order effects, such as overlapping I-cache/I-TLB and independent
branch mispredictions with long-latency loads are also taken into account
by interval simulation. Additionally, serialization instructions that are en-
countered while handling MLP halt the detection of additional overlapped

3.3 Interval Simulation Improvements 41

long-latency loads and drains the old window.

3.3 Interval Simulation Improvements

Through the mechanistic modeling of modern out-of-order microproces-
sors, we are able to both better understand how they operate, and use those
assumptions to improve microprocessor simulation. In the next sections we
introduce a number of interval simulation enhancements, above what was
introduced in Chapter 2, to improve simulation accuracy.

3.3.1 Functional Unit Contention Modeling

Interval simulation [31] assumes that a microprocessor is balanced with re-
spect to its ROB size and dispatch width. What this means is that the front-
end, back-end and supporting structures, such as execution units and load
and store buffers have been sized to be large enough for a typical applica-
tion.

Unfortunately, there exist classes of applications that fall outside of this
realm. For example, on Intel’s Nehalem architecture, there is only a sin-
gle issue port for 64-bit floating-point multiply instructions. With a micro-
benchmark tailored to use only 64-bit multiplications, the maximum num-
ber of independent multiplies that can be maintained will be just 1 per cy-
cle, and not the 4 micro-ops that the processor was designed to dispatch.
Therefore, when using interval simulation to model the performance of this
micro-benchmark, the result will not be what is expected. Interval simula-
tion will report that the performance is 4 times higher (corresponding to
the dispatch width of 4 micro-ops per cycle) than the machine can actually
perform.

Although this effect applies to floating-point applications, there are
other instructions that, when dominating the dynamic application instruc-
tion mix, can also affect performance in the same way. Large numbers of
branches, or load and store micro-ops also behave similarly because each
of these micro-ops can only be issued to a single issue port. Addition-
ally, generic micro-ops can only be issued at a rate of 3 per cycle, and not
a maximum of 4, which is the maximum micro-op dispatch rate of the
processor.

To be able to account for the discrepancy between dispatch width and
issue capabilities, and therefore reduce simulation error, we propose re-
source contention modeling for interval simulation to improve the result-
ing accuracy with a negligible reduction in simulation performance.

Issue contention is modeled in the interval simulation model by extend-
ing the old window analysis in a new direction. Instead of only using Lit-

42 An Evaluation of High-Level Mechanistic Core Models

tle’s law to determine the current IPC of the application, we also take into
account the utilization of other resource-sensitive units, such as pipelined
and non-pipelined execution units and issue ports. By updating the effec-
tive dispatch rate calculation to take into account these additional restric-
tions, one can determine if we are using more execution units or ports than
are available. Although out-of-order processors are able to schedule events
whenever there is a time slot available, if one uses too many resources, on
average, this can limit the speed of the processor.

The dispatch rate of a processor in the absence of miss events is esti-
mated with interval simulation using Little’s law. The dispatch rate of the
processor is therefore the number of instructions in the reorder buffer (typ-
ically the entire ROB in the absence of miss events) divided by the critical
path length.

R

dispatch

= N/L

criticalpath

We model this in interval simulation as the number of micro-ops in the
old window divided by the critical path length. This provides us with our
instantaneous micro-ops/cycle with an infinite dispatch width. Taking into
account the dispatch width allows us to model a realistic architecture. To
maintain higher accuracy, leftover non-integer portions of the dispatch rate
are collected and used for dispatch at a later time.

R

dispatch

= min(W
dispatch

, N/L

criticalpath

)

Finally, to take into account resource contention in a processor, we also keep
track of the resource utilization of each micro-op. We extend interval sim-
ulation by keeping track of the number of resources (issue slots, etc.) that
are used in the old window. The number of resources used in the old win-
dow puts a limit to the number of micro-ops that can be issued along the
critical path. Each S

n

is equal to the minimum number of cycles required
to simulate the number of instructions for each contention component. For
example, if we would like to model an issue port for 64-bit multiplies for
the Nehalem microarchitecture, then for an ROB with 32 64-bit multiply
operations, the minimum execution time for those operations will be 32 cy-
cles, or one cycle per instruction per issue port. By collecting a number of
different microarchitectural restrictions, we can build a minimum execu-
tion time that would be necessary to execute the instructions. The effective
critical path is then extended by the number of resources required by the
processor for that time.

L

criticalpathcontention

= max(L
criticalpath

, S1, S2, . . . , Sn

)

R

dispatch

= min(W
dispatch

, N/L

criticalpathcontention

)

In Figure 3.5, we provide a more detailed example of issue port con-
tention in the interval simulation model. In this example, the ROB window

3.3 Interval Simulation Improvements 43

PG# PG# PG# P2# PG# P3# P2# P2# P2# PG# PG# PG#PG#P2#PG#

Figure 3.5: An example of port-based issue contention in the updated interval
simulation model. The window above represents the interval simulation’s old
window for a ROB size of 20. The old window contains 15 micro-ops, with the
port number that this micro-op can issue from is shown as Pn where n is the port
number and G represents ports 0, 1 and 5. Micro-ops are inserted from the right.

size (W) of the system is 20, and the number of micro-ops in the old win-
dow (N) is 15. Let’s start with a precomputed value for the critical path
(L

criticalpath

) of 4. Additionally, we have a number of micro-ops that issue
to a number of different ports. Five issue to port 2 (P2), one issues to port 3
(P3), and there are nine generic instructions (P

G

) that can issue to ports 0, 1
or 5. These three ports can process a large number of generic micro-ops

W = 20

N = 15

W

dispatch

= 4

L

criticalpath

= 4

N

G

= 9

N2 = 5

N3 = 1

First, we calculate the effective dispatch rate (instantaneous micro-ops per
cycle, or µPC) using the original method provided by interval simulation.
We then redo the calculation taking into account issue contention.

R

dispatch

= min(W
dispatch

, N/L

criticalpath

)

R

dispatch

= min(4, 15/4)

R

dispatch

= min(4, 3.75)

R

dispatch

= 3.75

44 An Evaluation of High-Level Mechanistic Core Models

L

criticalpathcontention

= max(L
criticalpath

, S1, S2, S3, . . .)

L

criticalpathcontention

= max(4, ceil(N
G

/3), N1, N2)

L

criticalpathcontention

= max(4, 3, 5, 1)

L

criticalpathcontention

= 5

R

dispatch

= min(W
dispatch

, N/L

criticalpathcontention

)

R

dispatch

= min(4, 15/5)

R

dispatch

= 15/5 = 3

The resulting improvement in accuracy is apparent. In this small exam-
ple, the instantaneous performance with issue contention is 3 µPC, while
without issue contention we would see a core performance of 3.75 µPC,
a 25% faster result. In interval simulation [31], a very low error of 4.6%
compared to the M5 simulator was shown compared for a 4-wide Alpha
processor. This processor contains a sufficient number of execution units
to prevent the issue stage from becoming a bottleneck, and is therefore a
balanced microarchitectural design. In recent microarchitectures such as
Intel’s Nehalem, however, trade-offs are made in the number of execution
units which prevents some combinations of micro-ops from being executed
in a single clock cycle. When comparing simulation results to real hard-
ware, simulation models must be able to take these microarchitectural im-
balances into account if good absolute accuracy is to be expected.

3.3.2 Refilling the window after front-end miss events

In steady state, according to Little’s law, the rate at which instructions en-
ter the ROB (dispatch) equals the rate at which they leave the ROB. The
interval model computes the latter by analyzing the critical path which de-
termines the rate of execution, and applies Little’s law to state that the ef-
fective execution rate equals the effective dispatch rate. After a miss event,
the old window is flushed to denote the fact that the ROB no longer has in-
dependent instructions to operate on. As instructions are dispatched into
the ROB, the parallelism exposed by it increases, and the effective execution
rate picks up.

For applications where miss events are few, or spaced many instruc-
tions apart, this assumption holds and core performance can be estimated
with good accuracy. However, in some applications miss events and the as-
sociated start-up effects start to dominate. This especially becomes a prob-
lem when miss events are spaced so closely that the ROB did not have a
chance to be refilled, a situation that caused relatively high errors in the
original interval model.

3.3 Interval Simulation Improvements 45

The solution to this problem is to recognize that after front-end miss
events, Little’s law is not applicable and dispatch can occur at the maxi-
mum rate, until the ROB (at this point represented by the contents of the old
window) is filled up. We therefore modify the interval simulation model
to dispatch at the machine width, rather than the effective dispatch rate
computed through analysis of the critical path, as long as the old window
is not full. This change proved most helpful for the fft benchmark, where
it reduces error by 25.3% (to a remaining error of 34.8%, caused mostly by
the store buffer filling up which is not taken into account by the interval
model).

3.3.3 Modeling of overlapped memory accesses

One drawback of using the interval model is that all memory accesses are
sent to the memory hierarchy in program order, which may not represent
the actual ordering seen by the memory hierarchy when out-of-order ex-
ecution re-orders loads and stores with respect to each other. In addition,
many higher-abstraction level simulators such as Sniper or M5’s atomic
memory access mode complete the simulation of each memory access in a
single function call, updating all structures (e.g., cache tags) immediately.
Both make it impossible for the memory hierarchy to see exact time stamps,
which in turn makes it difficult to properly detect overlapping memory ac-
cesses in the memory subsystem itself.

We update the interval simulation model to improve modeling of over-
lapping accesses in two ways. Both changes affect the marking of over-
lapped accesses and occur when scanning the window of upcoming micro-
ops, when the model searches for independent loads that can be hidden
under an initial long-latency load.

Pending hits

A first case arises when two independent loads access the same cache line,
which was initially not present in the cache. The first access will be a long-
latency event as the data has to be fetched from DRAM. The second access,
if made in short succession, will be a pending hit; i.e., the cache line in ques-
tion has already been requested from the next-level cache but the request
has not yet completed. An atomic memory hierarchy, however, will return
this second access as a hit (simulation of the first access was already com-
pleted, leaving the cache line allocated in the L1 cache). A similar problem
was addressed by adding support for pending hits in an off-line analytical
performance model [17]. To properly delay the second load, when marking
micro-ops in the window looking for overlapping accesses, we check for in-
dependent loads that access the same cache line and mark the second load

46 An Evaluation of High-Level Mechanistic Core Models

as dependent. This way, keeping the second load’s latency as the L1 hit la-
tency, it will complete a few cycles after completion of the first long-latency
load.

Dependents of independent long-latency loads

The second case occurs when a chain of dependent loads, that is in itself
independent of the initial long-latency load, contains a long-latency load
inside of it. Consider the situation where a long-latency load A stalls the
processor. The new window contains two additional loads B and C, where
C depends on B but both are independent of A. In the original interval sim-
ulation model, both B and C would be marked as independent loads and
would hence have been allowed to be fully hidden underneath resolution
of the original load A.

However, if load B is itself also long-latency, it will not complete un-
til after A completes. Load C, and all instructions depending on it, could
therefore also not be assumed to be hidden under the long-latency event
caused by A. The required modification made to the interval model here is
to, when walking the window looking for overlapping loads, stop marking
loads as overlapped once they depend on a newly found long-latency load.

3.4 Instruction-Window Centric Simulation

Interval simulation has been shown to be both a fast and accurate way
to simulate the effects of microarchitectural changes on performance [11].
Nevertheless, there are some limitations that make extending the inter-
val simulation model difficult. For example, extending interval simula-
tion to support functional unit contention (Section 3.3.1) required the de-
velopment of a new core modeling methodology to accurately estimate
the timing of the microprocessor. Evaluating a system that consists of a
variety of core configurations would become much more difficult if new
modeling advances were needed for each core type. Therefore, a new core
model that provides both higher fidelity with respect to core and cache
hierarchy models would benefit the community if it was able to more accu-
rately model a microarchitecture while still providing performance speed-
ups compared to detailed cycle-level processor models. We therefore in-
troduce instruction-window centric simulation as this middle ground that
provides more detail to allow for future core microarchitectural changes
without modeling updates, while continuing to provide faster simulation
speeds than traditional cycle-level simulators.

3.4 Instruction-Window Centric Simulation 47

3.4.1 Overview

Instruction-window centric simulation builds on many of the insights of
interval simulation [31]. While the cache hierarchy and branch predictors
continue to be simulated in detail (as is done in interval simulation), many
structures such as the fetch and decode logic, additional hardware struc-
tures for issuing instructions such as the issue queue, and register renam-
ing, as well as the commit stage are not simulated in detail because of the
assumption of a balanced processor microarchitecture. The key change re-
quired to go from interval simulation to IW-centic simulation (which en-
ables higher accuracy) is how we model the ability of the hardware to ex-
tract application ILP. Instead of approximating the ILP based on Little’s
Law, where the out-of-order performance is estimated by processing in-
structions in order, the instruction-window centric model estimates perfor-
mance by processing micro-ops out of order, in a way similar to how a real
processor would issue them. (See Figure 3.4).

The instruction-window centric model replaces the new and old win-
dows of the interval simulation methodology with a new structure that is
sized as large as the ROB. Each dispatched micro-op is contained in this
structure and is awaiting the results of the operations that they depend
on. As the results are completed, additional micro-ops are issued to each
functional unit, potentially out-of-order. A major difference between the
IW-centric model and the interval model is that the complexity of the issue
logic increases as the size of a processor’s ROB grows. Additionally, the
IW-centric model needs to monitor all input dependencies of each micro-
op, with the cost of potentially checking micro-ops multiple times during
their lifetime, increasing simulation costs over that of the interval simu-
lation model. Because of this added complexity, the simulation time for
IW-centric simulation increases, but at the same time accuracy is also im-
proved.

3.4.2 Implementation Details

Many of the assumptions in the instruction-window centric core model use
or extend those that have been established by interval simulation, but al-
low for a more detailed simulation of application ILP. IW-centric modeling
continues to be a dispatch-oriented model, where the dispatch stage of the
processor is modeled in detail, and all penalties relate to this stage in the
pipeline. Front-end events are handled in a similar way to interval simu-
lation. When there is a branch misprediction or an I-cache or I-TLB miss,
the processor waits for the front-end refill to complete before dispatching
additional instructions. Interval simulation estimates the branch penalty
as the sum of the branch resolution time and the front-end refill penalty. In

48 An Evaluation of High-Level Mechanistic Core Models

instruction-window centric simulation, the branch resolution time is mod-
eled naturally by issuing the branch at the correct time, and only the front-
end refill penalty needs to be added. Instruction decode is not modeled
directly, but is assumed to be able to keep up with the maximum dispatch
rate in the absence of front-end miss events. The maximum number of
micro-ops to dispatch per cycle is properly handled and is defined by the
core microarchitecture. Loads and stores are executed at issue time, and
no special handling needs to take place for long-latency loads. Because the
time of the next event can be easily tracked, the core can fast-forward time
when there are no events to be processed. All overlapping miss events are
handled directly through register and memory dependency analysis. Fi-
nally, the commit rate of the processor is fixed to a maximum number of
micro-ops per cycle as defined by the microarchitecture.

Issue port contention is modeled directly in the instruction-window
centric model. Issue port occupancies are monitored and instruction issue
is delayed until a free issue slot is available.

CPI stacks [73] are a first-order method for understanding the causes
of performance loss in an out-of-order processor without requiring addi-
tional simulation runs. Interval simulation allows for the computation of
CPI stacks through the insights of interval modeling. Nevertheless, while
instruction-window centric simulation borrows many insights from inter-
val simulation, the method for CPI stack computation needs to be modified
because it is no longer possible to attribute the causes of all miss events (es-
pecially back-end events) directly. We therefore calculate CPI stacks in a
similar way to a model that is suited to performance analysis on real hard-
ware [26]. If the microarchitected dispatch width is limiting the forward
progress of the core, we attribute the loss of cycles to this CPI stack com-
ponent. For front-end miss events, such as a branch misprediction, we also
attribute the number of cycles that it takes to restart the core directly to
the component that caused the delay. This occurs because the out-of-order
processor can no longer make forward progress and the reason for the de-
lay is clear. For back-end miss events, the true cause of the delay is not as
straight forward to determine. Therefore, we approximate the cause of the
stall to the type of instruction present at the head of the window (serializa-
tion, load/store, floating-point, etc.). The rationale for this choice is that the
most likely cause of the delay is the instruction at the head of the window.

In addition to timing model details, there are other factors that can con-
tribute to the results of the simulation. The multi-core simulation takes
place by first functionally executing the instructions for each core and then
by feeding the instructions into each individual core model. This results
in a timing model that is slightly behind the natively executed instructions
by a maximum of the number of instructions in the ROB of the target mi-
croarchitecture. Additionally, because of this direct functional execution,

3.5 Evaluation and Methodology 49

Component Configuration
Processor 1 and 2 sockets, 4 cores per socket
Core 2.66 GHz, 4-way issue and commit, 128-entry ROB
Branch predictor Dothan [64], 8 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 4 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket
Inter-processor bus QPI, 12.8 GB/s per direction

Table 3.1: Micro-architectural configuration

cache and branch predictor pollution that normally occur in out-of-order
processors because of wrong-path instruction execution is not present in
this model.

3.5 Evaluation and Methodology

3.5.1 Simulation infrastructure

We implemented the three core models described above, one-IPC, inter-
val simulation and the instruction-window centric core model, as well as
the enhanced interval model with issue contention, in the Sniper multi-
core simulator [11]. Sniper is an execution-driven, user-level simulator that
uses functional-first simulation with timing feedback. It implements paral-
lel simulation to improve simulation speed, keeping threads synchronized
using a quantum-based barrier synchronization approach which allows for
some level of causality violations in exchange for much greater simulation
speed (similar to SlackSim [16]).

We then use these core models to simulate the execution of a variety
of benchmarks. All core models connect to the same branch predictor and
cache models, making a direct comparison between them possible. We also
compare simulated results to running the same application on real hard-
ware, which allows us to evaluate the accuracy of each core model in addi-
tion to its simulation performance.

We model a dual-socket, quad-core configuration that approximates an
Intel Nehalem based server machine. Processor cores are 4-wide and have
a 128-entry ROB, and run at 2.66 GHz. Each core has private L1 instruction
and data caches in addition to a unified private L2 cache, while all four
cores in a package share a L3 cache and DRAM controller. Two quad-core
processors are connected using a coherent QPI connection and make up a

50 An Evaluation of High-Level Mechanistic Core Models

Component Configuration
core models Instruction-Window Centric,

Interval and One-IPC
core issue contention models enabled, disabled
bus contention model history-list
DRAM contention model history-list
synchronization method time-based barrier
synchronization interval 100 ns
OS emulation futex replacement
Reschedule cost (cycles) 1k @ 1 core, 10k @ 2 cores

15k @ 4 cores, 25k @ 8 cores

Table 3.2: Simulator configuration options

single shared-memory machine. Other microarchitectural parameters can
be found in Table 3.1. When modeling issue contention, we assume the
architecture has a given number of issue ports that each accept a subset of
all micro-ops. Each issue port can accept a single micro-op for execution
per clock cycle. In the Nehalem microarchitecture, there are five issue ports
in total. One is dedicated to loads, a second one can be used only by stores.
The other three ports are specialized for branches, floating-point additions
and floating-point multiplications, respectively; and in addition accept all
types of integer instructions. The complete mapping of micro-ops to issue
ports is configured according to prior work [28].

The core processor models are configured as either the one-IPC core
model, interval simulation core model, or the instruction-window centric
core model. Both the interval and instruction-window centric models sup-
port optionally enabling functional-unit issue-contention, by enabling the
modeling described in Section 3.3.1 for the interval model or by directly
accounting for execution unit occupancy on a cycle-by-cycle basis in the
instruction-window centric model. By comparing simulations with and
without this option we will be able to gauge the increase in accuracy of
this additional modeling step. Both the bus and DRAM contention mod-
els are configured to use history-list based contention [51]. The simulation
models and model-specific parameters are configured as listed in Table 3.2.

3.5.2 Hardware validation

Hardware validation of Sniper with its respective core models was per-
formed on a dual-socket server based on the Intel Xeon X5550 processor. In
contrast to Chapter 2, this study uses a more modern processor configura-
tion and therefore the results are not directly comparable. We configure the
software and hardware as follows. Benchmark threads are each pinned to

3.5 Evaluation and Methodology 51

Benchmark Input set
barnes 32768 particles
cholesky tk29.O
fmm 32768 particles
fft 4M points
lu.cont 1024⇥1024 matrix
lu.ncont 1024⇥1024 matrix
ocean.cont 1026⇥1026 ocean
ocean.ncont 1026⇥1026 ocean
radiosity –room
radix 1M integers
raytrace car –m64 –a4
volrend head
water.nsq 2197 molecules
water.sp 2197 molecules

Table 3.3: Benchmarks and input sets

their own core using the pthread setaffinity np() API. SpeedStep and Turbo
Boost are disabled to ensure the processor cores always run at the intended
2.66 GHz frequency. Finally, we disable both Hyperthreading (SMT) and
hardware prefetchers as these are also not modeled in Sniper.

3.5.3 Benchmarks

The benchmarks that we use for validation and evaluation are the SPLASH-
2 benchmarks [70]. SPLASH-2 is a well-known benchmark suite that rep-
resents high-performance, scientific codes. See Table 3.3 for more details
on these benchmarks and the inputs that we have used. The benchmarks
were compiled with GCC 4.3.2 in 64-bit mode with –O3 optimization and
with the SSE, and SSE2 instruction set extensions enabled. On real hard-
ware, we measure the length of time that each benchmark took to run its
parallel section (region of interest, ROI) through the use of the Read Time-
Stamp Counter (rdtsc) instruction. A total of 30 runs on hardware were
completed, and the average was used for comparisons against the simu-
lator. In addition, performance counter information was collected using
the perf stat infrastructure. This allowed us to validate micro-architectural
characteristics such as branch misprediction and cache miss rates.

52 An Evaluation of High-Level Mechanistic Core Models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

barnes

cholesky

fft fm
m

lu.cont

lu.ncont

ocean.cont

ocean.ncont

radiosity

radix
raytrace

raytrace_opt

volrend

w
ater.nsq

w
ater.sp

IP
C

Hardware
IW-Centric

IW-Centric (nc)
Interval

Interval (nc)
One-IPC

Figure 3.6: Single-core IPC on real hardware and simulated using a variety of core
models and benchmarks. Models without issue-contention enabled are labeled
(nc) for no issue contention.

runtime
MPKI avg abs.

difference
core model avg abs err max abs err bp l3
IW-Centric 11.11 18.76 0.17 0.09
IW-Centric (nc) 21.83 33.62 0.17 0.09
Interval 24.29 41.61 0.17 0.09
Interval (nc) 31.76 42.89 0.17 0.09
One-IPC 92.05 182.04 0.19 0.09

Table 3.4: Single-core average absolute runtime errors and average absolute dif-
ferences for each simulation model

3.6 Simulation Accuracy Comparison

In this section, we characterize Sniper’s simulation accuracy when com-
pared to our real dual-socket Intel Nehalem server. We will vary the
core model, comparing one-IPC modeling to interval simulation and the
instruction-window centric core model while keeping the memory hierar-
chy and branch predictor constant. This comparison allows us to keep all
of our infrastructure the same to isolate the differences between the core
models.

3.6.1 Absolute Accuracy Comparison

Starting with single-core results, Figure 3.6 compares the IPC obtained by
real hardware with that predicted by the different core models. The (nc)
variants of IW-centric and Interval disable modeling of issue contention.

3.6 Simulation Accuracy Comparison 53

Unsurprisingly, the one-IPC core model incurs large errors (92.0% on av-
erage with a maximum of 182.0%, see Table 3.4) and generally underesti-
mates performance on benchmarks where instruction-level parallelism can
be exploited to obtain an execution speed of more than one instruction
per cycle. On applications with memory-level parallelism such as ocean,
the one-IPC model does not allow for multiple simultaneous outstanding
memory requests and serializes their latency. Alternatively, performance of
the radix benchmark suffers because of dependency chains through instruc-
tions with non-unit latency, here the one-IPC model overestimates execution
speed. In contrast, the more advanced IW-centric and interval simulation
models can provide a much more accurate estimation of execution speed
(24.3% for interval simulation and just 11.1% for IW-centric on average,
with maximum errors of 41.6% and 18.8%, respectively).

For some benchmarks, including lu.cont and lu.ncont, pressure on exe-
cution units is quite high so taking issue-contention modeling into account
significantly improves accuracy for these applications. This is especially
important for benchmarks with high IPC which are unrestricted by other
hardware components such as memory latency. On average, enabling is-
sue contention modeling improves average accuracy of interval simulation
from 31.8% to 24.3%.

In addition to IPC error, Table 3.4 shows a comparison of simulated
branch misprediction and cache miss rates as compared to real hardware.
These do not depend on the core model used, and are in any case quite low.

3.6.2 Multi-core scaling comparison

Moving on to multi-core results, Figure 3.7 plots the speedup obtained for
different core counts; both on real hardware and as predicted using the dif-
ferent core models. Most benchmarks, including for instance the barnes and
fmm applications, exhibit good scaling on real hardware, as an increase in
core count leads to an almost linear increase in performance. This behavior
is predicted correctly by all core models.

Notable exceptions are the two variants of ocean. This application has
a large data set and is DRAM bandwidth bound, running this benchmark
with more than two threads does not provide an additional benefit in per-
formance. This fact is predicted correctly by the IW-centric and interval
simulation core models. In contrast, the one-IPC model does not take
memory-level parallelism into account but stalls the core on each DRAM
access, underestimating effective DRAM bandwidth pressure and hence
overestimating the application’s scalability.

Other benchmarks, such as lu.ncont, scale well up to four cores, while
the eight-core version sees only limited gains. This is because beyond four

54 An Evaluation of High-Level Mechanistic Core Models

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

barnes

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

cholesky

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

fft

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

fmm

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8
S

p
e

e
d

u
p

lu.cont

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

lu.ncont

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

ocean.cont

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

ocean.ncont

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

radiosity

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

radix

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

raytrace

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

raytrace_opt

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

volrend

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

water.nsq

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p

e
e

d
u

p

water.sp

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8

S
p
e
e
d
u
p

fmm - large

IW-Centric
IW-Centric (nc)

Interval
Interval (nc)

One-IPC
Hardware

Figure 3.7: Relative performance speedup predictions for the SPLASH-2 applica-
tions from 1 to 8 cores.

cores the second processor chip is being used, which incurs inter-socket
communication over the QPI links. On real hardware, contention on these
links limits performance. The interval and IW-centric core model predict
this correctly. However, the one-IPC core model predicts perfect scaling.
This is again because the one-IPC model predicts per-core performance too
low (by a factor of 2.5⇥, see Figure 3.6), which in turn leads to the simulated
cores generating a request rate made to the QPI that is too low. The QPI bus
is therefore not saturated when being driven by the one-IPC model, which
incorrectly leads to the prediction of favorable scaling on the dual-socket
run of lu.ncont.

3.7 Simulation Speed Comparison 55

IW-Centric IW-Centric (nc) Interval Interval (nc) One-IPC
num cores avg max avg max avg max avg max avg max
1 11.11 18.76 21.83 33.62 24.29 41.61 31.76 42.89 92.05 182.04
2 9.68 18.79 20.56 34.64 22.15 41.50 29.52 42.57 90.26 162.78
4 14.77 39.19 22.38 39.96 21.76 40.72 28.32 42.37 78.40 150.06
8 20.79 40.32 27.06 43.89 25.91 41.56 31.11 45.08 54.58 100.26

Table 3.5: Average and maximum absolute errors across the simulation models
for different core counts (n).

This difference in relative (scaling) accuracy can in fact be correlated
with each core model’s absolute accuracy. Even though architects usually
claim to require only relative simulation accuracy, scaling is often largely
dependent on contention of shared resources such as DRAM and QPI band-
width, which in turn requires request rates and thus core performance to
have a certain level of absolute accuracy. Analyzing the summary of abso-
lute accuracy provided in Table 3.5, we can see that the IW-centric core
model has very good accuracy (11.1% on average, with a maximum of
18.8%) for single-core results. Error goes up with increasing core count,
mostly because of modeling errors in Sniper’s memory hierarchy which
dominates performance for four- and eight-core results; leading to a 20.8%
average error with a maximum of 40% for the radix benchmark, where large
numbers of TLB misses and queueing delays caused by the write-back of
evicted dirty cache lines push the limits of the level of detail provided in the
memory hierarchy. Looking at the other core models, interval simulation
starts off at an average 24.3% error for single-core results. With increasing
core count the memory subsystem again starts to dominate results, reduc-
ing the contribution of the core model somewhat and leading to an eight-
core error of 25.9% with a maximum, again for the radix benchmark, of
41.6%. Finally, the one-IPC core model starts of with a 92.0% average error
(up to 182.0%) for single-core results; while the eight-core error is slightly
lower, but due the one-IPC model’s inaccurate pressure on the memory
subsystem average error is still high at 54.6%.

3.7 Simulation Speed Comparison

In Figure 3.8, we show the average simulation speed (in 1,000 simulated
instructions per second of wall-time, or KIPS, aggregated over all simulated
cores) across a number of different core models, while changing the size
of the simulated system from single-core to dual-socket quad-core (eight
cores in total). All simulations were done on an Intel Xeon E5-2650L (Sandy
Bridge) based system running at 1.80 GHz. This machine has 16 cores so
parallelism in the simulator can optimally be exploited as each simulator

56 An Evaluation of High-Level Mechanistic Core Models

0

500

1000

1500

2000

2500

3000

 1 2 4 8

A
g

g
re

g
a

te
 K

IP
S

Number of cores

Average Simulator Speed

IW-Centric
IW-Centric (nc)

Interval

Interval (nc)
One-IPC

Figure 3.8: Average simulator speed, in KIPS, for a variety of simulation models.
Models without issue-contention enabled are labeled (nc) for no issue contention.
Core-level issue contention adds very little simulation overhead, yet can greatly
improve accuracy.

thread (running the timing model for one simulated core) can run on its
own private host core.

Keeping in mind the accuracy of each core model, we can see a clear
trade-off of simulation speed versus accuracy. Concentrating on single-core
simulations first, the one-IPC core model runs the fastest at over 2.5 MIPS
on average, and up to 5.5 MIPS for the fmm benchmark. The interval
model’s much greater accuracy comes at a cost in simulation speed, but
still reaches 680 KIPS on average; while the yet more detailed IW-centric
core model reaches a single-core simulation speed of around 450 KIPS.
An interesting observation is that issue contention, when implemented as
described in Section 3.3.1, does not affect simulation speed much, yet can
significantly improve accuracy on several benchmarks. This can be clearly
seen in Figure 3.9 which plots simulation speed against accuracy (average
absolute error to real hardware, for all single-threaded workloads): dis-
abling issue contention modeling (the (nc) variants) adds around 10% in
additional modeling error, yet does not significantly improve simulation
speed. Going from IW-centric over interval to one-IPC modeling does pro-
vide the simulator user with a clear choice of core models with different
simulation speed over accuracy trade-offs.

Moving to multi-core simulations, the memory hierarchy and synchro-
nization bottlenecks inside the simulator start to become important — both
for modeling shared resources such as LLC and DRAM components, and
for keeping local clocks of each simulated core synchronized. Using the in-

3.8 Core model resolution affects microarchitecture conclusions 57

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000 2500 3000 3500

A
cc

u
ra

cy
 (

a
vg

.
a

b
s.

 e
rr

o
r)

Simulation speed (KIPS)

IW-Centric
IW-Centric (nc)

Interval
Interval (nc)

One-IPC

Figure 3.9: Simulation speed versus modeling error of all core models for single-
core runs.

terval simulation core model, a speedup of over 2⇥ can be achieved when
simulating an eight-core system where the simulation model of each core
can run on its own host core. When using the one-IPC model, the core
model itself is too simple to have any effect on runtime; here simulation
speed is limited by the memory subsystem, which is shared between the
simulated cores and therefore can provide only limited parallel speedup.
Finally, the IW-centric core model shows limited speedup because of bottle-
necks in memory allocation. Whereas the one-IPC and interval simulation
core models do not dynamically allocate memory, the IW-centric model —
as currently implemented in Sniper — relies heavily on dynamic memory
allocation which, in combination with Pin’s memory allocator, leads to poor
scalability on multiple host cores. Using better allocation techniques such
as circular buffers or pool allocation should be able to alleviate this prob-
lem.

3.8 Core model resolution affects microarchitecture
conclusions

While one-IPC core models are often used to reduce simulation time during
micro-architectural evaluations, this increase in performance comes with a
trade-off. The one-IPC models do not model a number of key core prop-
erties that can be crucial to being able to make accurate design decisions
when comparing a number of different microarchitectural design choices.
The key differences of a one-IPC model and a modern out-of-order core
model are the ability to model both application ILP, and therefore the mem-
ory request rate appropriately, as well as the MLP, or the amount of mem-
ory parallelism of an application.

To demonstrate some of the limitations of using one-IPC models to eval-

58 An Evaluation of High-Level Mechanistic Core Models

Component L2 configuration
private shared

Size 256 KB per core 1 MB per 4 cores
Associativity 8-way 16-way
Access latency 8 cycles 30 cycles

Table 3.6: Micro-architectural configuration for private and shared L2 cache con-
figurations used for one-IPC vs. detailed core model comparisons.

uate processor performance, we show that even when modifying only the
caches of a system (a memory hierarchy study), we still need the resolution
in ILP and MLP to be able to accurately predict micro-architectural perfor-
mance trends (relative accuracy).

Our experimental configuration is based on the original configuration
in Table 3.1, but with slight modifications. For our baseline configuration,
we assume four cores, with two levels of cache using a private hierarchy,
with the L2 of each core at 256 kB (Table 3.6). We compare the configuration
with a shared L2 cache across all 4 cores (Table 3.6). In this configuration,
the total cache capacity remains the same, at 256 kB per core, but the latency
to access the shared L2 cache goes up to 30 cycles from 8.

Figure 3.10(a) shows the percentage change in miss rates between the
private and shared cache systems, where negative (lower) changes show
fewer misses in the shared L2 configuration. We see that across all bench-
marks, a shared L2 cache configuration reduces the number of L2 misses
significantly when compared to the private L2 cache configuration, up to
a 75% reduction in some cases. This is caused by the fact that the shared
configuration can avoid the data duplication that is present in the private
caches, and therefore has a higher effective capacity. More importantly, we
see that the cache miss rate changes are stable across all of the core models
considered.

When taking application runtime into account, however, the core mod-
els no longer agree. Moving from private to shared caches, a reduction in
cache miss rate avoids expensive DRAM accesses, but this comes at the
cost of a significant increase in latency of (much more common) L2 hits.
How this trade-off affects total application runtime, will depend on the rel-
ative occurrence of both events, and on how much of the corresponding la-
tency can be overlapped by the core. In Figure 3.10(b), the relative runtime
changes are presented between the private L2 and shared L2 cache config-
urations. A negative value represents a runtime decrease (or improved ap-
plication performance). According to both the interval and IW-centric core
models, most applications prefer the shared L2 cache configuration which
reduces their runtime by over 5% on average, with a maximum of around
20%. This indicates that most of the latency increase incurred in the com-

3.8 Core model resolution affects microarchitecture conclusions 59

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

barnes

cholesky

fft fm
m

lu.cont

lu.ncont

ocean.cont

ocean.ncont

radiosity

radix
raytrace

raytrace_opt

volrend

w
ater.nsq

w
ater.sp

Average

L
2
 m

is
s

ra
te

 d
iff

e
re

n
ce

 o

ve
r

p
ri
va

te

IW-Centric Interval One-IPC

(a) L2 miss rate

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

barnes

cholesky

fft fm
m

lu.cont

lu.ncont

ocean.cont

ocean.ncont

radiosity

radix
raytrace

raytrace_opt

volrend

w
ater.nsq

w
ater.sp

Average

R
u
n
tim

e
 d

iff
e
re

n
ce

 o

ve
r

p
ri
va

te

IW-Centric Interval One-IPC

(b) Runtime

Figure 3.10: A comparison of L2 miss rates and application runtime of shared ver-
sus private caches, as predicted by the one-IPC, interval and instruction-window
centric core models.

mon case (i.e., shared L2 hits) is overlapped by the out-of-order core, while
the reduction in DRAM misses (which are too long to be fully overlapped
with useful work) directly corresponds to improved application perfor-
mance. However, the one-IPC model predicts a very different scenario,
with only a few applications showing slight performance improvements.
On average, the results show that applications will run longer when using
a shared L2 cache, a completely different conclusion. This is because the
one-IPC model cannot determine correctly how much of the L2 latency can
be overlapped, and overestimates its impact on application runtime.

In other words, the one-IPC core model concludes private caches are
best, as the increase in L2 hit latency for shared caches cancels out the re-
duction in latency caused by avoiding DRAM accesses. In contrast, the
more detailed models show that shared caches are the better option since
the increased L2 hit latency can be hidden almost completely by out-of-

60 An Evaluation of High-Level Mechanistic Core Models

order execution. This experiment clearly shows that, even when perform-
ing experiments that seem to affect the memory subsystem only, certain
aspects of the core cannot be ignored but need to be modeled faithfully. As
indicated by the results of Figure 3.10, interval simulation poses the right
balance for this type of research, as it is able to make the same conclusions
yet eschews modeling the more intricate but less important details of the
core that are included in the IW-centric core model.

3.9 Conclusion

The micro-architectural trends in modern computer architecture continue
to push the limit for simulation technology. With larger caches, larger num-
bers of cores, and increasingly complex memory hierarchies, the complex-
ity and therefore simulation time required to accurately simulate these ar-
chitectures has increased. There is a desire for faster simulation through-
put, and therefore, faster core models are one way to move closer to these
goals.

Nevertheless, the accuracy of the core model is important, even when
conducting memory hierarchy studies. Out-of-order cores are able to ex-
tract ILP and MLP, which for some applications results in high memory
request rates from the individual cores. Accurately simulating an out-of-
order core means taking into account each one of its characteristics as seen
by the memory hierarchy.

To meet ever-demanding time constraints, there could be a push to
move toward faster core models, such as one-IPC models, to determine the
best next-generation microarchitectural configurations. Even though cache
miss rates tend to be modeled accurately with simple core models, our re-
sults show that one-IPC models can be misleading. These simple models
do not properly take into account individual core ILP or MLP, which in turn
leads to large discrepancies both from an absolute accuracy and a relative
accuracy perspective.

Through the use of interval simulation and instruction-window centric
core models, one can speed up microarchitectural simulation while main-
taining accuracy of the resulting architectural performance evaluation.
Both core models provide good absolute accuracy (11.1% for IW-centric
and 24.3% for interval simulation) and provide fast simulation speeds
(with IW-centric performing just 1.5⇥ slower than interval simulation),
even when combined with parallel simulation techniques.

Chapter 4

Sampled Simulation of
Multi-threaded Applications

In the two previous chapters, we provide an overview of two simulator core models
(and a parallel simulator infrastructure) that allow for faster simulation of work-
loads in general. In this chapter, we describe an orthogonal technique to allow
for the reduction of the amount of an application that we need to simulate in de-
tail. This technique is called sampling, and it is a well-known workload reduction
technique that allows one to speed up architectural simulation while accurately
predicting performance.

Previous sampling methods have been shown to accurately predict single-
threaded application runtime based on its overall IPC. However, these previous
approaches are unsuitable for general multi-threaded applications, for which IPC
is not a good proxy for runtime. In this chapter, we propose a time-based sam-
pling approach that takes into account application periodicity and inter-thread
synchronization as they play a significant role in determining how best to sample
these applications. Through the use of the proposed methodology, we can simulate
less than 10% of the total application runtime in detail, significantly speeding up
multi-threaded application simulation.

4.1 Introduction

There has been extensive research done with respect to application work-
load reduction. The reduction of workloads to their relevant components
allows for large, realistic input sets to be used both for future architecture
exploration as well as application evaluation. Through sampling, architects
can perform detailed simulation on a small percentage of the application,
covering its most relevant portions [20; 61; 71]. Compared to simulating a
complete application with hundreds of billions of instructions, being able

62 Sampled Simulation of Multi-threaded Applications

to simulate just a few hundred million instructions in a detailed fashion,
while keeping accuracy high, allows architects to explore new architectures
with different core and un-core components in much shorter time.

Recent sampling algorithms assume that a number of restrictions are
placed on the applications to study. For single-threaded applications, the
most important limitation to using sampling to predict application run-
time is the assumption that the sampled IPC can act as a proxy for an
entire application’s runtime [61; 71]. In recent multi-threaded sampling
techniques [24; 69], each thread needs to be treated as independent, where
they do not explicitly affect the progress of other threads’ execution. In
other words, per-thread behaviors must be uncorrelated. But for multi-
threaded applications that use synchronization primitives, such as locks or
barriers, IPC is no longer sufficient and the threads can now directly af-
fect the progress of one another. Threads in these applications can be idle
or spinning, unable to make any additional forward progress until one or
more other threads reach a synchronization point. During this time, other
threads will continue to advance, introducing a gap that represents this
thread’s idle time. Because of these gaps, it is not possible to solely use IPC
and instruction counts to approximate runtime for general multi-threaded
applications [2].

In addition to issues involving a large class of multi-threaded applica-
tions, program phase behavior is also an important aspect for application
sampling. In existing work, the SMARTS methodology [71] is able to accu-
rately predict application IPC by simulating a large number of very small
intervals, whereas others [15; 61] use phase behavior to guide sample selec-
tion. Without an understanding of an application’s phase behavior during
sample creation, the result could end up containing periods that alias the
original application. Predicting runtime behavior with a sample that aliases
the original application has the potential to provide inaccurate results.

To overcome these issues, we propose a multi-threaded application
sampling methodology with the following key features: (i) it performs de-
tailed application synchronization during fast-forwarding while keeping
track of per-thread performance, and (ii) it uses application phase behavior
to select appropriate sampling parameters. We demonstrate that accurately
estimating per-thread performance and simulating thread interactions dur-
ing fast-forwarding is required to maintain high runtime accuracy in tightly
synchronized multi-threaded applications. Additionally, through the use
of fast pre-simulation application analysis, we take into account applica-
tion periodicity to allow for accurate multi-threaded application sampling.
To the best of our knowledge, this proposal is the first to offer a method-
ology for performing sampled simulation of multi-threaded applications
while maintaining high predicted runtime accuracy.

In this chapter we detail the following contributions:

4.2 Fast-Forwarding Parallel Applications 63

• We provide a methodology for sampling multi-threaded workloads
that provides up to a 5.8⇥ simulation time reduction with an average
absolute error of 3.5% while simulating less than 10% of the applica-
tion in detail.

• We show that both computing per-thread IPC as well as handling
inter-thread interactions even during fast-forwarding increases accu-
racy significantly.

• We demonstrate that application phase behavior needs to be un-
derstood and properly taken into account when sampling multi-
threaded applications where threads can not be assumed to run in-
dependently. To accomplish this, we propose a microarchitecture-
independent methodology to determine application phases and how
to select the appropriate options for the required speed and accuracy
trade-offs.

• We show that large, realistic input sets are needed to make correct de-
sign decisions, which in its turn requires accurate sampling for mak-
ing the simulation of these inputs feasible.

4.2 Fast-Forwarding Parallel Applications

4.2.1 Requirements for Accurate Parallel Fast-Forwarding

Existing techniques for sampled simulation of single-threaded applica-
tions, or those treating each thread of a multi-threaded program inde-
pendently, use purely functional simulation to fast-forward through non-
sampled regions [61; 71], or use checkpoints to avoid simulating them at
all [65].

These techniques do not directly apply to multi-threaded applications
where synchronization or explicit interactions occur. In parallel applica-
tions, threads interact through shared memory and synchronization events,
influencing the timing of neighboring threads. The use of tracing, or other
forms of checkpointing of microarchitectural state, such as used in Pin-
Play [53] or Flex Points [69], further constrains the absolute ordering of
threads in an application. This in turn limits the ability of an architect to
view new thread orderings — and their resulting load (im)balance or abil-
ity of overlapping communication and computation — that would other-
wise occur in an execution on different micro-architectural configurations.
Therefore, functional and timing simulation cannot be completely sepa-
rated during fast-forwarding, but instead, one must take care to preserve
the timing of synchronization events. Additionally, the different threads of

64 Sampled Simulation of Multi-threaded Applications















 

Figure 4.1: Proposed mechanism of fast-forwarding during multi-threaded sam-
pled simulation.

parallel applications can make progress at different speeds — either be-
cause they run different code, or they exhibit data-dependent behavior
where distinct memory access patterns cause threads to experience dif-
ferent cache miss rates and thus have unequal performance. Considering
these effects on a per-thread basis is therefore necessary.

4.2.2 Accurate Multi-Threaded Fast-Forwarding

In our proposed technique, we employ functional simulation of the com-
plete benchmark to capture a sufficient level of accuracy for multi-threaded
applications. Sampling is done by periodically simulating detailed perfor-
mance models during intervals of a predetermined length (the detailed inter-
val length D), separated by periods of non-detailed simulation (fast-forward
intervals of length F). In contrast to single-threaded simulation, we keep
track of simulated time, and maintain inter-thread dependencies through
shared memory and synchronization events, even while fast-forwarding.
We also base sample selection on time, not instruction count, as the latter
— due to differences in performance and idle periods among threads — is
not comparable across cores.

Figure 4.1 illustrates our fast-forwarding mechanism. Intervals of a
fixed length of simulated time are simulated in detail. For each thread, we
record the number of instructions executed, and the time this thread did
not sleep waiting for synchronization events (locks, barriers, etc.) or spin-
locks. This allows each thread’s execution speed, in instructions per cycle
(IPC) to be calculated for the non-idle periods. This non-idle IPC value
summarizes the hardware’s performance for the section of code executed
during the detailed period. Although it is possible to automatically detect
and account for spin-locks [46], we chose to use the OpenMP passive wait
policy in this work.

While fast-forwarding, the non-idle IPC, along with the current instruc-

4.2 Fast-Forwarding Parallel Applications 65

0%

1%

2%

3%

4%

5%
O

-a
p

p
lu

O
-a

p
si

O
-e

q
u

a
ke

O
-f

m
a

3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

a
ve

ra
g

e

IP
C

 e
rr

o
r

10%

one-ipc proposed

0%

2%

4%

6%

8%

10%

12%

O
-a

p
p

lu

O
-a

p
si

O
-e

q
u

a
ke

O
-f

m
a

3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

a
ve

ra
g

e

R
u

n
tim

e
 e

rr
o

r

154% 171%21% 49% 42% 16% 40%136% 53%

oracle-global
oracle-perthread

no-sync
proposed

(a) Non-idle IPC error (b) Runtime error

Figure 4.2: Accuracy of sampled IPC (left graph) and estimated runtime (right
graph) for simulations using different fast-forwarding mechanisms.

tion count is used to keep track of each thread’s elapsed time. Most impor-
tantly, synchronization events are simulated as normal; i.e., when a thread
goes to sleep, functional execution is halted for that thread, and once the
thread wakes up it is provided with the current time and functional simu-
lation continues.

In this work, we keep functional cache simulation enabled at all times,
and focus on the sampling methodology itself. The use of more efficient
warmup techniques, such as Barr et al.’s memory timestamp record [6],
would allow for additional speedups and could be a potential direction for
future work.

4.2.3 Comparison of Fast-Forwarding Techniques

The key aspects of our proposed fast-forwarding mechanism are to show
how one can best preserve inter-thread synchronization and its effect on
simulated time, and how accurate knowledge of per-thread IPC variations
through time improves accuracy. In this section, we will evaluate the im-
portance of each of these aspects.

Prior work [4; 57] ignored synchronization events during fast-for-
warding periods (we call this no-sync fast-forwarding). In addition to
using synchronization during fast-forwarding, we evaluated a number of
alternatives for determining the IPC to use during each fast-forwarding
interval. The approaches evaluated either account for time very simply
(one-ipc), or require up-front knowledge about an application’s perfor-
mance on the architecture before the sampled run commences (oracle-global
and oracle-perthread).

The one-ipc mechanism fast-forwards each thread at a fixed IPC of one,
so — except when threads are idle — each thread is fast-forwarded by
the same number of instructions. The oracle-global and oracle-perthread fast-

66 Sampled Simulation of Multi-threaded Applications

forward mechanisms use IPC information from a fully-detailed simulation,
rather than from the previous detailed interval. This allows for a compar-
ison with a theoretical situation where the IPC error caused by sampling
is removed, but through-time IPC variations are not taken into account.
The oracle-global mechanism uses a single fast-forward IPC (the harmonic
mean of the IPC for the complete application over all threads), whereas
oracle-perthread uses the per-thread average. Additionally, both oracle-global
and oracle-perthread use non-idle periods to determine fast-forwarding IPC
in the same way that the proposed method does. Finally, the no-sync fast-
forwarding method does not model the timing of synchronization events
during fast-forwarding. Instead, it uses the fast-forward IPC as measured
during the preceding detailed interval, similarly to the proposed method,
but now the fast-forward IPC lumps together idle and non-idle periods.

In Figure 4.2, we contrast different fast-forwarding mechanisms on a
simulated 8-core, shared memory machine. (See Section 4.4 for additional
micro-architectural details.) The non-idle IPC, the IPC that occurs when
the core is not blocked, waiting for other threads, of the one-ipc mechanism
and our proposed approach is shown in Figure 4.2(a). Here we see that
for most cases, and on average, the proposed fast-forwarding method is
more accurate at predicting IPC than the one-ipc model. Graph (b) of Fig-
ure 4.2, shows how the prediction of total application runtime is affected
by different modeling components. Our proposed fast-forwarding tech-
nique predicts a simulated runtime with under a 3% average absolute error
compared to an average absolute error of 53% for no-sync. This shows that
taking synchronization into account during fast-forwarding is essential for
high accuracy. In addition, the proposed technique’s average absolute run-
time prediction error is slightly better than both oracle mechanisms, show-
ing that through-time IPC variations are important as well.

4.3 Sample Selection in Parallel Applications

In addition to being able to fast-forward a multi-threaded application while
accurately keeping track of the threads’ relative progress, there is a crit-
ical concern about appropriate sample selection. We make the case that
an understanding of application periodicity is crucial for effective sample
selection. First, we will show how application periodicity leads to sam-
pling errors, and how this problem applies to our multi-threaded sampling
methodology. We then show how one can determine application periodic-
ity in microarchitecture-independent ways, and go on to use this informa-
tion to build a methodology that constructs reliable sampling parameters
based on these application characteristics.

4.3 Sample Selection in Parallel Applications 67

 0

 1

 2

 3

 4

800M 801M 802M 803M 804M 805M 806M 807M

IP
C

Time (cycles)

 0

 1

 2

 3

 4

0M 200M 400M 600M 800M 1000M 1200M 1400M 1600M

IP
C

Time (cycles)

Figure 4.3: IPC trace of N-ft (thread 0 out of 8, class A input set): full run (top)
and zoomed in (bottom). Several periodicities are visible.

4.3.1 The Effect of Periodicity on Sampling

Many applications exhibit inherent periodicity or phase behavior [55; 61].
Figure 4.3 plots the IPC variation through time of one of the eight threads
for the class A input set of the N-ft benchmark from the NAS Parallel
Benchmarks (NPB) suite. At the macro scale, seven iterations can be seen
of a single main period, which has a length of approximately 220M clock
cycles. In Figure 4.3 (bottom), the periodicities can be observed at a dif-
ferent scale, with two phases, each with their own iteration length (at 230k
and 550k cycles).

Previous work has shown that these inherent application periods can
be used to guide sampling. For instance, Casas et al. [15] sample hardware
performance counters for exactly an integer number of periods. In this
situation, it is feasible to measure the length of one period exactly, since
the application runs on actual hardware at native speed. In simulation,
however, the application’s performance on a given architecture, and hence
its periodicity, is a priori unknown.

Casas et al. also note that if the sampling period does not exactly match
the size of the periodicity of an application (or an integer multiple), alias-
ing can occur which can significantly increase the error and variability. In
our framework, the IPC sample from the collection of detailed intervals

68 Sampled Simulation of Multi-threaded Applications

0.0

0.5

1.0

1.5

2.0

t t+1 t+2.5

IP
C

Time

Sample A Sample B

Figure 4.4: Sampling with intervals of exactly one period yields a correct IPC av-
erage; when application period and detailed length do not match, sampling errors
occur.

0.0

0.5

1.0

1.5

2.0

t t+.5

IP
C

Time

Figure 4.5: When sampling inside of an application’s period, a sufficient num-
ber of intervals need to be collected to ensure that fast-forwarding IPC accurately
tracks actual IPC.

needs to have a high degree of accuracy, as the detailed application per-
formance is used to determine the progress each thread makes during fast-
forwarding. Consider for instance the example IPC trace of Figure 4.4. In-
terval A contains exactly one period; its IPC is therefore equal to the global
average. However, interval B, which has a length close to but not exactly
equal to the periodicity, has a measured IPC that can be incorrect.

A related problem occurs when sampling intervals are taken inside
one (much larger) application period, see Figure 4.5. Here, solid squares
represent detailed regions, their average IPC is projected forward during
fast-forward phases (horizontal lines). Taking a small number of intervals
within each iteration can yield inaccurate results, as the instantaneous IPC

4.3 Sample Selection in Parallel Applications 69

will change too much in-between intervals. We therefore want to maxi-
mize the number of intervals taken inside one period, so the shape of its
IPC curve can be accurately described.

In other sampling methodologies, this type of aliasing is not an issue
since the IPC of many small intervals inside a sample is averaged, which
because of the central limit theorem yields an accurate estimate of the IPC
of the whole application. In our run-time prediction methodology, how-
ever, we rely on the detailed regions to be an accurate representation of
that region and extrapolate it during fast-forwarding, in order to compute
the total program run-time. In contrast to the IPC of single-threaded ap-
plications, where positive and negative errors can cancel out during aver-
aging, run-time of parallel applications with inter-thread synchronization
behaves differently: positive errors (overestimation of run-time) are often
propagated when other threads wait on the slow thread; whereas negative
errors (underestimation) are masked for non-critical threads. Therefore, for
parallel applications with a substantial amount of synchronization, total
run-time is not simply the mean or sum of run-times of the detailed peri-
ods, and the central limit theorem does not directly apply to it.

To avoid these aliasing problems, we determine the sampling param-
eters on a per-application basis, given the application’s periodicities. By
taking application periodicity into account, one can avoid introducing sam-
pling errors that are caused by the aliasing of the application’s periodicities
with the detailed sampling period. The next step in our proposed method-
ology determines the periodicities which allows one to generate the neces-
sary sampling parameters to avoid aliasing.

4.3.2 Determining Application Periodicity

While there are multiple methods to determine application periodicity, we
chose to look at those that are micro-architecture independent to allow for
up-front calculation of application periodicities regardless of the simulated
architecture or the simulation infrastructure used. We use signal analysis
techniques in a similar fashion compared to prior work [23; 38] to allow us
to capture micro-architecture independent application characteristics.

Our primary method to determine application periodicity is through
the collection of basic-block vectors (BBVs) as outlined in [61]. We then per-
form a windowed auto-correlation on these BBVs. We have created a paral-
lel Pin [48] tool that both generates BBVs and performs the auto-correlation
step with minimal application slowdown (around 10⇥ vs. native execu-
tion).

An auto-correlation A(d) of the time series of BBVs B(t) is the compar-
ison of a vector of BBVs (a call history) with a version of itself that is at a

70 Sampled Simulation of Multi-threaded Applications

100k

1M

0M 500M 1000M 1500M 2000M 2500M 3000M

D
is

ta
n
ce

 (
in

st
ru

ct
io

n
s)

Instructions

Figure 4.6: BBV autocorrelation for N-ft (thread 0 out of 8, class A input set).
Strong correlations (dark bands), pointing to periodic behavior, are visible at 550k
and 1.14M instructions and their harmonics.

given offset in time d:

A(d) =
X

t

kB(t)�B(t+ d)k

By comparing the vector with itself, the sum A(0) is zero which denotes
a perfect match. As the offset d between the two vectors is increased, one is
able to measure the similarity of the BBVs seen with those at a later point
in time. By detecting the points of highest correlation between the two
shifted vectors, we can obtain the periodicities of the application. Typically,
an auto-correlation is done with the entire vector against itself; by using a
windowed auto-correlation in which the summation runs over a localized
window around t, rather than over the length of application, changes in
periodicity throughout the application’s run can be made visible.

An example of the output can be seen in Figure 4.6. Application run-
time, measured in instructions, is on the horizontal axis; the vertical axis
represents the offset d. Light colors denote a low similarity between the
BBVs at a given point in the program with those a distance d away, whereas
dark colors denote strong correlation — which implies similar execution
behavior [44]. In this case, we can see that the N-ft benchmark, running
the class A input set with 8 threads, has one periodicity at 550k instruc-
tions that occurs for a part of the application runtime, and another which
occurs at 1.14M instructions and exists during the entire application exe-
cution. These periodicities correspond directly to the 230k and 550k cycle
periodicities, respectively, in Figure 4.3.

4.3 Sample Selection in Parallel Applications 71

4.3.3 Detecting Large Application Variability over Long Periods

The proposed sampling methodology for multi-threaded workloads makes
the assumption that we can detect, and therefore avoid aliasing of the pe-
riodicities in an application. Some applications, however, have irregular
behavior which can be difficult to determine using the BBV autocorrelation
technique alone. This behavior affects the quality of the detailed sample,
potentially causing aliasing which can lead to large errors. We therefore
augment the BBV-based analysis with a second technique which allows de-
tection of irregular behavior early; this analysis will indicate which appli-
cations are not amenable to be sampled reliably.

This technique works by detecting loops in the application’s call graph,
and comparing the instruction counts of each iteration. For example, by
using the OpenMP runtime library, we can monitor the high-level appli-
cation periodicity. The OpenMP functions are usually called as the result
of #pragma omp directives in the source code and are therefore closely re-
lated to the high-level structure of the application. Using different sets of
marker functions, this technique can be applied to most parallel program-
ming models.

The call structure of each thread is derived using a separate Pin tool,
which at near-native execution time records a call graph of the application
limited to the set of marker functions. This call graph is annotated with
both a per-thread and per-loop instruction count. We then use Tarjan’s al-
gorithm [63] to determine nested loops inside of the graph. This makes
the high-level structure of the application apparent; comparing instruction
counts for different iterations provides insight into the application’s level of
irregularity. For regular applications, the instruction counts thus obtained
can be used to verify or augment those obtained through BBV-based anal-
ysis.

From this analysis, irregular behavior that can potentially alias the de-
tailed sampling of applications can be detected early. In the case of N-lu,
the instruction count variability as observed in Figure 4.7 are such (>10%)
that we can a priori say that sampled simulation will not provide accurate
runtime predictions; we have experimentally verified that errors for this
application are indeed as high as 20 to 30%, while the maximum error for
applications that show regular behavior is around 8%, with an average ab-
solute error just below 3%. The same holds for O-ammp which shows high
variability both in the BBV and OMP analysis methods. We therefore leave
generalizing the proposed sampling method to irregular applications for
future work.

72 Sampled Simulation of Multi-threaded Applications

 
   





Node Avg �/µ
1 37.14 M 12.0%
2 38.97 M 16.1%
3 1.96 M 36.6%
4 17.45 M <1%
5 9.83 M <1%

Figure 4.7: Loop structure (top) with application call points as edges for the N-lu
application (thread 3 of 8, class A input set). Node instruction counts (below) with
relative spread �/µ, defined as i

max

�i
min

i
count

.

4.3.4 Deriving Optimal Sampling Parameters

As noted in Section 4.3.1, using a detailed interval length that is close to an
application’s periodicity can lead to large sampling errors. For short peri-
ods, we will therefore want to sample using a detailed interval length D

that is significantly larger than the periodicity P . Similarly, for long appli-
cation periods we want to take a sufficient number of intervals to accurately
describe the IPC changes during this period. Note that in this case, the pe-
riod at which intervals are taken is of size D+F , so the number of intervals
taken within a period P equals P/(D + F).

Figure 4.8 shows the results of a complete set of runs across all sampling
parameters for the N-bt benchmark, showing the runtime error compared
to a full-detailed simulation at each (D,F) combination. The graph also
shows, for the three different periodicities that occur in this application,
the iso-lines where D = P (vertical lines) and D + F = P (diagonal lines).
On the right side of the graph, for D > 50 ms, the detailed region length is
longer than all of the application’s periodicities, here sampling works well
as the error is low (<3%). Moving from the middle towards the lower left
corner also increases accuracy, as this moves D + F farther away from the
two larger periodicities and thus increases the number of intervals taken in-
side each period. On the other hand, sampling parameters close to D = P

or D + F = P yield much higher errors, up to 15% even for conservative
amounts of fast-forwarding. Additionally, the area in between the P = D

and P = D + F region also does poorly. Here, an interval is measured that
represents part of the application’s main period, but this interval is sub-
sequently used in fast-forwarding across multiple iterations of this period.
This can introduce large errors when the IPC of the collected interval is not
representative of the IPC of the whole period. It therefore makes sense that

4.3 Sample Selection in Parallel Applications 73

10 µs 100 µs 1 ms 10 ms 100 ms

D (seconds)

 10

 100

 1000

F
/D

 0

 5

 10

 15

 20

Figure 4.8: Sampling error versus application periodicity for N-bt, class A input
set with 8 threads. Also shown are the periodicities of the application (solid lines).

we would not want to collect intervals using parameters in this region.

Converting Instruction Periodicities to Time

Although both methods for determining instruction periodicity described
in the previous section yield a (micro-architecture independent) result ex-
pressed in instructions, our method of multi-threaded sampling requires
its parameters to be expressed in time. Since we will only use these pe-
riodicities to define forbidden zones for these parameters, we do not need
the periodicity’s exact length in cycles. Instead, we assume the benchmark
will be executed at an IPC of between 0.5 and 2.0, which are typical long-
term average IPC values for the benchmarks used. Each periodicity P thus
becomes a range of [0.5P . . . 2.0P]. Note that the four-way issue out-of-
order processor core we model regularly achieves an IPC close to four; this
is usually only for short periods whereas the long-term averages can be
much lower, see also Figure 4.3.

74 Sampled Simulation of Multi-threaded Applications

Table 4.1: Simulated system characteristics.
Component Parameters
Processor 2 sockets, 4 cores per socket
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M [64], 17 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 4 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket

4.4 Experimental Setup

4.4.1 Simulation Configuration

For the results shown in this chapter, we used the Sniper multi-core simula-
tion infrastructure [11]. We configured it to model a multi-core out-of-order
processor resembling the Intel Nehalem processor, see Table 5.1 for its main
characteristics. The benchmark suites used in this chapter are the SPEC
OpenMP (medium) suite (train inputs) [5], the NAS Parallel Benchmarks
version 3 with OpenMP parallelization (class A inputs) [41], and the PAR-
SEC 2.1 benchmark suite (simlarge inputs) [7]. We refer to the benchmarks
from these suites using the O-*, N-* and P-* notations, respectively. Only
the parallel Region of Interest (ROI) of each application is included in our
measurements; fast-forwarding (with functional modeling of caches and
branch predictors enabled) was used to skip over the (sequential) initial-
ization and cleanup phases. The passive OpenMP wait policy was used for
thread synchronization. All benchmarks were compiled with GCC 4.3 for
x86 64 with SSE2 extensions enabled.

4.4.2 Implementing Sampled Simulation in Sniper

We implemented multi-threaded sampling as detailed in Section 4.2 in
Sniper, building on its existing detailed and cache-only simulation modes.
Sniper uses the Pin dynamic instrumentation framework [48] as its func-
tional simulation front-end. Pin is instructed to add analysis routines,
which send detailed instruction information to Sniper’s timing models. By
changing which analysis routines are enabled, one can efficiently switch
into a functional simulation-only mode which runs at near-native execu-
tion speed (by adding no analysis routines), or simulate just caches and
branch predictors for functional warming (by instrumenting only memory
operations and branch instructions). The latter mode is used in this chapter
during the fast-forward phases between detailed intervals.

4.4 Experimental Setup 75

A sampling director, which we added to Sniper, takes the length of the
detailed and fast-forward intervals as input. Once the region of interest
begins, it starts out in detailed mode and runs the simulation for the re-
quired amount of simulated time to complete one detailed interval. Note
again that all intervals are expressed in absolute time (seconds), which is re-
quired to keep track of simulation modes consistently across threads when
they execute instructions at different speeds, or even run at different clock
frequencies. When the detailed interval completes, the simulation direc-
tor computes the non-idle IPC over the preceding interval for each thread
based on the instructions it executed and the time it did not sleep waiting
for synchronization events.

The simulator is then switched into functional warming mode. Only a
small amount of instrumentation is needed here (one analysis function per
basic block) to be able to keep track of instruction counts; these are used to
increment each thread’s time (using its current fast-forward IPC). Synchro-
nization events (pthread mutex, futex system calls, etc.) still happen as
before, i.e., threads waiting on them do not execute instructions and do not
advance time, but inherit the time of the thread which later wakes them
up. Once all (non-sleeping) threads have advanced in this way to the end
of the fast-forward interval, a new detailed interval starts.

During fast-forwarding, as in detailed mode, barrier synchronization is
used periodically to ensure threads make forward progress at roughly the
same pace. This is especially important when keeping cache simulation en-
abled, to make sure the ordering of memory references — and their result-
ing performance impact due to for instance associativity conflicts among
threads sharing a last-level cache — are simulated accurately.

At the end of the simulation, since every thread has kept track of time,
the time of the last thread to finish will be equal to the application’s total
runtime; no further computation or extrapolation on the results is needed.
In addition, per-thread idle times can be kept and the application’s syn-
chronization overhead or load imbalance can be derived without extra ef-
fort.

4.4.3 Selecting Sampling Parameters

Sample selection during simulation is done periodically using fixed param-
eters for the detailed (D) and fast-forward interval lengths (F), both are
expressed in seconds. These parameters are determined up-front based on
application periodicity obtained from BBV and call structure information.

The methodology described in Section 4.3 defines forbidden ranges (D
and D + F close to one of the application’s periods or its end). We start by
converting all periods P

i

that were found, and the application length L (in-

76 Sampled Simulation of Multi-threaded Applications

struction count for the longest thread), into a range of cycle counts in which
we expect these values to lie using an expected IPC range of [0.5 . . . 2.0].
Multiplying this range with the clock frequency of the simulated processor
yields a lower • and an upper bound • expressed in seconds for each of
these application characteristics. We then enumerate all possible D and F

combinations, and remove those which do not satisfy the following condi-
tions:

D > ↵ · P
i

_ (D + F) · � < P

i

, 8P
i

(D + F) · � < L

(4.1)

The constants ↵, � and � used were ↵ = 2 (for outside sampling, where
the detailed interval is larger than one period: at least two iterations per
detailed interval), � = 25 (for inside sampling, where multiple intervals lie
inside one application period: at least 25 intervals per iteration) and � = 10
(at least 10 intervals in total).

We rank all of the remaining options, maximizing their distance from
the closest periodicity or the end of the application, since a maximum dis-
tance yields the lowest potential for error as discussed in Section 4.3.4. We
then select two points: predicted fastest which is the one with the highest
ratio of F/D, and predicted most-accurate which is the point with the largest
minimum distance and a fast-forward interval of at least F � 5 ·D.

Since the potentials for error of inside and outside sampling are not eas-
ily comparable, we select a set of parameters for each of them. For results
in Section 4.6, where only one parameter set is used, we prefer outside sam-
pling for those benchmarks where a valid point is available, and use inside
sampling otherwise. Outside sampling is preferred because it increases an
individual sample’s accuracy by averaging the IPC over a number of appli-
cation periods.

It can be the case that appropriate sampling parameters cannot be found
for a particular combination of benchmark, input size and core count. In
these cases, the resulting configuration options would provide either min-
imal speedup or too high of an expected error. We consider these configu-
rations not able to be sampled with the proposed methodology.

4.5 Results

In this section, we will evaluate the proposed sampling methodology with
respect to fully-detailed (non-sampled) runs. We first review the entire
sampling space for a single application. Next, we review the accuracy and
performance trade-offs for all applications that have valid sampling pa-
rameters and compare the parameter sets selected by the predicted fastest
and predicted most-accurate methods.

4.5 Results 77

1×

2×

3×

4×

5×

0% 5% 10% 15%

S
im

u
la

tio
n
 s

p
e
e
d
u
p

Runtime error

All Best

Figure 4.9: Simulation speedup versus accuracy for all valid sampling parame-
ters, with those selected by the methodology marked. O-apsi, train input set, 8
threads.

4.5.1 Sampling Parameter Space

Figure 4.9 compares the simulated runtime error and simulation speedup,
both compared to a fully-detailed simulation of the O-apsi application,
for a wide range of sampling parameters. The O-apsi benchmark was
chosen here because it has a large number of sampling opportunities avail-
able. In this graph, the methodology selected two points as the predicted
fastest and predicted most-accurate options. The fastest option, as defined
above, resulted in a 3.74⇥ speedup with a 5.59% error. The most accurate
result was chosen to be conservative and achieved a 1.15⇥ speedup with an
error of 0.32%. For this application, our selection comes close to predicting
Pareto-optimal results.

4.5.2 Predicting Optimal Sampling Parameters

In Figures 4.10 and 4.11, we detail the results when selecting the best
options as predicted by the methodology for both inside and outside sam-
pling for the predicted most-accurate and predicted fastest parameter sets re-
spectively. Note that not all of the benchmarks have valid sampling op-
tions either because of their internal periodicities or a short application
runtime. The average absolute error for applications with valid sampling
periodicities using the predicted most-accurate method is just 3.5% with an
average speedup of 2.9⇥. The maximum speedup achieved is 5.8⇥ faster
than full-detailed simulation for an 8-core architecture. The predicted fastest

78 Sampled Simulation of Multi-threaded Applications
Table

4.2:O
verview

ofallbenchm
arks,their

periodicities,the
chosen

sam
pling

param
eters

and
their

speed
and

accuracy.

A
pplication

periodicities
(ins)

length
(ins)

in/outside
D

F/D
error

speedup
sam

pled
sim

ulation
tim

e
O

-am
m

p
non-periodic

behavior
O

-applu
603k,104M

38.1B
outside

500
m

s
5⇥

-2.75%
3.37⇥

21.96
h

O
-apsi

676M
48.8B

inside
10

µs
5⇥

-0.32%
1.15⇥

69.89
h

O
-art

1.40M
110M

no
valid

range
O

-equake
3.66M

,9.00M
17.3B

outside
200

m
s

5⇥
-8.61%

1.63⇥
19.88

h
O

-fm
a3d

354k,99.8M
36.2B

outside
500

m
s

5⇥
-0.26%

3.49⇥
35.27

h
O

-gafort
17.0k,34.3M

10.2B
outside

100
m

s
5⇥

11.15%
2.80⇥

4.85
h

O
-galgel

3.36M
,5.60M

,548M
64.4B

no
valid

range
O

-m
grid

60.5M
61.8B

outside
500

m
s

10⇥
-3.90%

3.83⇥
41.28

h
O

-sw
im

26.4M
21.8B

outside
200

m
s

5⇥
0.94%

2.18⇥
72.19

h
N

-bt
140k,180M

,241M
52.7B

outside
500

m
s

5⇥
-0.36%

2.38⇥
26.81

h
N

-cg
2.20M

,56.8M
860M

no
valid

range
N

-ep
420k,14.2M

7.04B
outside

100
m

s
5⇥

0.06%
4.37⇥

2.13
h

N
-ft

550k,1.14M
,449M

3.11B
no

valid
range

N
-is

25.0M
333M

inside
10

µs
5⇥

0.49%
1.88⇥

0.33
h

N
-lu

non-periodic
behavior

N
-m

g
95.0k,146M

,292M
1.26B

no
valid

range
N

-sp
60.4M

27.0B
outside

200
m

s
10⇥

-1.61%
1.98⇥

27.91
h

N
-ua

1.89M
30.0B

outside
200

m
s

10⇥
-6.02%

4.39⇥
11.13

h
P-blackscholes

4.08M
,4.56M

,5.60M
,6.36M

712M
outside

10
m

s
5⇥

0.56%
2.58⇥

0.30
h

P-bodytrack
138k

2.74B
outside

20
m

s
10⇥

-11.52%
3.22⇥

0.70
h

P-canneal
200k

250M
outside

2
m

s
10⇥

-1.31%
1.61⇥

0.38
h

P-dedup
—

17.5B
outside

200
m

s
5⇥

3.29%
2.79⇥

4.10
h

P-facesim
6.36M

,19.2M
,32.0M

3.44B
outside

50
m

s
5⇥

-8.52%
1.78⇥

2.75
h

P-ferret
13.2M

12.7B
outside

100
m

s
10⇥

-0.07%
3.08⇥

2.66
h

P-fluidanim
ate

584M
3.03B

inside
10

µs
5⇥

0.71%
1.02⇥

2.40
h

P-freqm
ine

—
6.01B

outside
50

m
s

10⇥
1.83%

4.59⇥
1.52

h
P-raytrace

50.0k
1.22B

outside
10

m
s

10⇥
-5.45%

5.76⇥
0.23

h
P-stream

cluster
—

2.93B
outside

20
m

s
10⇥

7.47%
2.96⇥

1.00
h

P-sw
aptions

200k
2.47B

outside
20

m
s

10⇥
3.82%

3.73⇥
0.93

h

4.5 Results 79

-15%

-10%

-5%

0%

5%

10%

15%

O
-a

p
p
lu

O
-a

p
si

O
-e

q
u
a
ke

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
ck

sc
h
o
le

s

P
-b

o
d
yt

ra
ck

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
ce

si
m

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
yt

ra
ce

P
-s

tr
e
a
m

cl
u
st

e
r

P
-s

w
a
p
tio

n
s

a
ve

ra
g
e

R
u
n
tim

e
 e

rr
o
r

inside outside

× × × × × × × × × × × × × × × × × × × ×

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

O
-a

p
p
lu

O
-a

p
si

O
-e

q
u
a
ke

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
ck

sc
h
o
le

s

P
-b

o
d
yt

ra
ck

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
ce

si
m

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
yt

ra
ce

P
-s

tr
e
a
m

cl
u
st

e
r

P
-s

w
a
p
tio

n
s

a
ve

ra
g
e

S
p
e
e
d
u
p

inside outside

× × × × × × × × × × × × × × × × × × × ×

Figure 4.10: Overview of sampling accuracy and speedup using the predicted most-
accurate parameter set, for both inside and outside sampling when available.

method achieves a maximum speedup of 8.4⇥ with an average speedup
across applications with valid sampling parameters of 3.8⇥ and an aver-
age absolute error of 5.1%. With many applications seeing a 10⇥ F/D

fast-forwarding ratio, we are therefore simulating just 9.1% of the appli-
cation in detail (one detailed period followed by 10 fast-forwarding peri-
ods). While other single-threaded sampling techniques can achieve a much
larger speedup, the speedup in our methodology is limited by two factors:
the complexity of the multi-core memory hierarchy models, which is en-
abled both during fast-forwarding and detailed intervals, and the relatively

80 Sampled Simulation of Multi-threaded Applications

-15%

-10%

-5%

0%

5%

10%

15%

O
-a

p
p
lu

O
-a

p
si

O
-e

q
u
a
ke

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
ck

sc
h
o
le

s

P
-b

o
d
yt

ra
ck

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
ce

si
m

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
yt

ra
ce

P
-s

tr
e
a
m

cl
u
st

e
r

P
-s

w
a
p
tio

n
s

a
ve

ra
g
e

R
u
n
tim

e
 e

rr
o
r

-25% -17%

inside outside

× × × × × × × × × × × × × × × × × × × ×

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

O
-a

p
p
lu

O
-a

p
si

O
-e

q
u
a
ke

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
ck

sc
h
o
le

s

P
-b

o
d
yt

ra
ck

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
ce

si
m

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
yt

ra
ce

P
-s

tr
e
a
m

cl
u
st

e
r

P
-s

w
a
p
tio

n
s

a
ve

ra
g
e

S
p
e
e
d
u
p

inside outside

× × × × × × × × × × × × × × × × × × × ×

Figure 4.11: Overview of sampling accuracy and speedup using the predicted fastest
parameter set, for both inside and outside sampling when available.

high speed of our core model. See Section 4.5.5 for a detailed discussion on
speedup potential.

Table 4.2 lists application periodicities found for each benchmark, and
the parameters that were used when sampling them for the predicted most-
accurate case. Two benchmarks, O-ammp and N-lu were excluded a pri-
ori according to the analysis made in Section 4.3.3, while for five more
benchmarks their periodicities were such that no valid sampling param-
eters could be found that satisfied the constraints of Equation 4.1.

4.5 Results 81

10 µs 100 µs 1 ms 10 ms 100 ms

D (seconds)

 10

 100

 1000

F
/D

 0

 5

 10

 15

 20

Figure 4.12: Sampling error versus application periodicity for N-bt, class A input
set with 8 threads, and random placement of the detailed interval within each D+F
region.

4.5.3 Random Sampling

When sampling periodic signals, random sampling is often used to avoid
aliasing. The underlying idea is that each sampling interval covers just
part of the period, but collectively, the average of all intervals approaches
the average of the signal. In our methodology, however, we require each
single detailed interval to be representative for the current IPC as this IPC
is used during the subsequent fast-forwarding phase. When the applica-
tion synchronizes, it is the slowest thread which determines progress —
application runtime is therefore not determined by the sum of all intervals
(allowing high and low estimates to cancel each other out), but has a more
complex relationship in which at several points the maximum value of a
set of intervals determines progress. The central limit theorem is therefore
not applicable, as discussed in Section 4.3.1.

Figure 4.12 revisits the experiment of Figure 4.8, but implements ran-
dom sampling. The execution is divided into intervals of size D + F , the
detailed intervals (again of size D) are placed at a random position within
this interval. This randomizes the sampling period, while making sure that
no fast-forward interval becomes larger than 2F (larger effective F lengths
would extrapolate the detailed IPC for too long, causing additional error).

82 Sampled Simulation of Multi-threaded Applications

Although some regions in the (D,F) design space have become slightly
more accurate when compared to periodical sampling in Figure 4.8, accu-
racy is still largely dependent on the relation between the sampling param-
eters and application periodicity. Random sampling can therefore be used
as an extra component to increase overall accuracy, but it does not relieve
one from knowing about application periodicities and designing the sam-
pling parameters accordingly.

4.5.4 Detailed Warmup

In the SMARTS methodology [71], in addition to continuous functional
warming of caches and branch predictors, a detailed core warmup step was
required to minimize the cold-start bias of the core model. Following their
analysis, the maximum life-time of stale state inside the core could be com-
puted as the product of store-buffer depth, memory latency in cycles, and
the maximum IPC. For our configuration, this upper bound is 25,600 (32
⇥ 200 ⇥ 4) instructions. In our methodology for sampling multi-threaded
applications, however, detailed intervals much longer than SMART’s 1,000
instructions are favored. This makes the detailed region (very) long in com-
parison to the potential cold-start effects, negating the need for a separate
detailed warming phase. Simulation results confirmed this: even for sce-
narios with a 10 µs detailed period, the shortest considered, adding a de-
tailed warmup period of as much as 10 µs (approximately 10k-100k instruc-
tions) did not cause a change in run-time predictions beyond the expected
run-time variability.

4.5.5 Potential for Simulator Speedup

Simulation results presented in this study use Sniper’s interval core model,
which is significantly faster to simulate than detailed core models found in
other academic simulators [31]. In addition, its memory model is relatively
complex as it supports shared caches in a parallelized simulation platform.
This makes the ratio of execution speed in detailed mode versus that of
functional warmup rather low, around 5–10⇥ depending on the applica-
tion. In SMARTS, this ratio was much higher (around 50–100⇥), due to its
complex (8- and 16-way issue) core models and a simpler, single-core mem-
ory hierarchy. This ratio directly affects the potential speedup that can be
obtained from sampled simulation: as the fraction of the application simu-
lated in detail is reduced, the simulation speed asymptotically reaches that
of functional warming. Any additional gains in simulation speed will have
to be made by relaxing the continuous functional warmup requirement,
which is an open research problem [6].

4.6 Application: Architectural Exploration 83

0

1

2

3
b

t

e
p sp u
a

S
p

e
e

d
u

p
 v

s.
 8

-c
o

re

Full-detailed

16-full 16-half

0

1

2

3

e
p is sp u
a

S
p

e
e

d
u

p
 v

s.
 8

-c
o

re

Full-detailed

16-full 16-half

0

1

2

3

b
t

e
p sp u
a

S
p

e
e

d
u

p
 v

s.
 8

-c
o

re

Sampled

16-full 16-half

0

1

2

3

e
p is sp u
a

S
p

e
e

d
u

p
 v

s.
 8

-c
o

re
Sampled

16-full 16-half

(a) Class A input set (b) Class B input set

Figure 4.13: Results of the architectural exploration study: speedup over the base-
line architecture for all benchmarks, A (top) and B (bottom) input sets, comparing
full-detailed (left) with sampled (right) simulation.

4.6 Application: Architectural Exploration

In architectural exploration, a simulator needs to have high fidelity with re-
spect to architectural changes, whereas absolute accuracy against any given
architecture is less important. Figure 4.13 shows the results of an experi-
ment where we compare our baseline, 8-core architecture with two 16-core
architectures: one is a straightforward doubling of cores and cache sizes
(16-full), whereas the alternative architecture keeps cache sizes constant but
splits each core into two dual-issue out-of-order cores (16-half). For those
applications in the NPB benchmark suite that had valid sampling param-
eters, we simulated the class A and B input sets on all architectures using
both full-detailed and sampled simulation and plot the simulated speedup
achieved over the baseline architecture.

Comparing the full-detailed (top) with the sampled (bottom) graphs, it
is clear that our sampling methodology has a good fidelity with respect to

84 Sampled Simulation of Multi-threaded Applications

architectural changes, as it preserves the performance differences between
the architectures for all benchmarks and input sets shown.

On the other hand, attempting to speed up simulation by using smaller
input sets does not have the same fidelity. For instance, using the A in-
put set, the N-sp benchmark achieves a superlinear speedup of around
2.5⇥ when going from the baseline 8-core architecture to the 16-full archi-
tecture — whereas the N-ua benchmark sees a normal 2⇥ speedup. How-
ever, on the larger class B input set, this trend is reversed: here N-ua has a
(slightly) superlinear speedup whereas N-sp achieves less than linear scal-
ing. Clearly, reducing input set size is not an accurate method when doing
architecture exploration studies. However, running the larger class B in-
put sets in full-detailed mode takes several weeks, whereas our sampling
methodology can bring down this simulation time by a factor of 2.6⇥ while
still allowing the correct conclusions to be made.

4.7 Related Work

Below we discuss prior work that is most closely related to this work.

4.7.1 Single-Threaded Sampling

The SMARTS [71] methodology constructs a sample consisting of a large
number of intervals (10,000) of a relatively small number of instructions
(1000) per detailed region. They are able to estimate IPC very well because
with large numbers of intervals per sample, the average IPC error for the
application as a whole decreases — even when each individual interval
may suffer from aliasing and is therefore by itself not reliable (the central
limit theorem applies here). In our sampling methodology, we require each
detailed region to be an accurate representative of its D + F time slice,
and extrapolate run-time from it. Because of thread synchronization, we
cannot rely on averaging to counter aliasing and the central limit theorem
is not applicable, see Section 4.3.1.

SimPoint [61] clusters large intervals, on the order of 100M instruc-
tions, using BBVs to represent common chunks of an application in a
microarchitecture-independent way. Although SimPoint allows one to
accurately predict overall application IPC, it does not allow for the predic-
tion of multi-threaded application run-time, nor does it take application
synchronization into account during fast-forwarding.

COTSon [4] uses dynamic sampling to speed up simulation. It uses
feedback from the JIT engine of the SimNow simulator to react to changes
in the executed code and to switch out of fast-forwarding back into detailed
simulation when necessary. Their implementation was used and evaluated

4.7 Related Work 85

on single-threaded applications, and is similar to the SimPoint methodol-
ogy with respect to running long intervals (100 million instructions) with-
out functional-warming during fast-forward phases.

4.7.2 Multi-threaded Sampling

Ekman et al. [24], propose matched-pair comparison as a way to reduce the
number of simulation points required to gain an accurate understanding
of multi-threaded workloads. Matched-pair comparison relies on the as-
sumption that threads are independent and not synchronized to be able to
reduce the sample size. Ekman et al. showed that for their methodology,
synchronized applications, such as those in the Splash-2 suite, do not see a
significant sample size reduction.

Wenisch et al. [69] propose Flex Points as a way to increase simulator
performance for multi-threaded commercial workloads. Van Biesbrouck et
al. [66] propose the Co-Phase Matrix as a reduction technique for multi-
program workloads. Both of these techniques depend on the fact that each
thread is independent, and therefore over time, a sample will contain a
number of thread interleavings that can act as a representation for the over-
all system execution. Explicit thread synchronization through OS or ar-
chitected instructions prevents these thread interleavings from occurring,
which violates their assumptions. Additional details are discussed in Sec-
tion 4.2.3.

Perelman et al. [55] cluster multi-threaded applications by looking at
each thread in isolation. They predict the IPC and cache hit rates of clus-
tered application phases, but do not evaluate runtime error.

Ryckbosch et al. [57] use interval simulation as a core model in the
COTSon [4] simulator and compare their sampled simulation results di-
rectly to hardware. COTSon’s sampling mechanism throttles functional
simulation during fast-forwarding to ensure that relative thread progress,
at a ratio corresponding to each thread’s IPC, is observed during detailed
simulation. The timing of synchronization events is considered to be part
of the fast-forward IPC and is not considered independently during fast-
forwarding. In Figure 4.2 we show that not taking into account the de-
tailed interactions between threads during fast-forwarding can lead to sig-
nificant runtime estimation errors. Our proposed implementation provides
for thread-to-thread synchronization and shared cache hierarchy interac-
tions that should be represented to obtain accurate runtime results. Addi-
tionally, COTSon does not perform functional-warming of caches, meaning
that detailed NUMA behavior, for example, or other interactions through
shared caches will be lost during fast-forwarding.

Concurrently with our work, Ardestani and Renau [3] propose time-

86 Sampled Simulation of Multi-threaded Applications

based sampling with integrated power and temperature evaluation, result-
ing in the development of the ESESC simulator. They establish fixed sam-
pling parameters to minimize the coefficient of variation of IPC across a
number of benchmarks. In contrast, our work demonstrates that applica-
tion periodicity needs to be taken into account when selecting parameters
for multi-threaded time-based application sampling.

4.8 Conclusions

Previous sampling work has primarily focused on either single-threaded,
IPC-based runtime prediction methods or multi-threaded workloads where
per-thread behavior is uncorrelated. Synchronizing multi-threaded appli-
cations, where threads affect each other’s behavior directly, pose a chal-
lenge when it comes to accurately predicting runtime as the traditional
sampling methods do not apply to these workloads.

To address these limitations we propose a general-purpose multi-
threaded application sampling methodology. We show that taking into
account application synchronization during fast-forwarding while deter-
mining progress in a per-thread manner significantly improves the predic-
tion of application run-time. In addition to synchronization, application
periodicity needs to be taken into account to prevent detailed sampling
intervals from aliasing with the application’s periodic behavior, affecting
both the fast-forwarding IPC and overall runtime prediction. Through the
use of micro-architecture independent methods of detecting periodicity
we derive sampling parameters up-front to allow for accurate run-time
prediction.

Using our sampling method inside Sniper, we are able to achieve a max-
imum speedup of 5.8⇥ and an average speedup of 2.9⇥ when simulating
parallel applications running on 8-core processors while being able to pre-
dict application runtime with an average absolute error of 3.5%.

Chapter 5

BarrierPoint: Sampled
Simulation of Multi-Threaded

Applications

In the previous chapter, we describe a general-purpose sampling methodology that
combines time-based sampling with application knowledge to reduce the amount of
an application that needs to be simulated in detail. While this technique can help to
speed up applications in the general case, the maximum speedup of the simulation
is ultimately limited by the speed of the memory subsystem during non-detailed
fast-forwarding phases.

In this chapter we take a look at how we can use application-specific behavior
to improve sampling even further. We propose BarrierPoint, a sampling method-
ology to accelerate simulation by leveraging globally synchronizing barriers in
multi-threaded applications. BarrierPoint collects microarchitecture-independent
code and data signatures to determine the most representative inter-barrier regions.
BarrierPoint then estimates the total application execution time (and other perfor-
mance metrics of interest) through detailed simulation of the representative regions
alone, leading to substantial simulation speedups.

5.1 Introduction

Sampling is a widely used technique to dramatically reduce simulation
time by simulating a select number of sampling units in detail and extrapo-
lating the results for the entire workload execution. Sampled simulation is
a mature technology for single-threaded workloads running on individual
cores, and different approaches have been proposed for determining rep-
resentative sampling units: random [20], periodic [71], and through pro-
gram analysis [61]. Sampled simulation for multi-threaded workloads on

88 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

the other hand is much less mature and substantially more complicated.
The fundamental problem in sampled simulation for multi-threaded

workloads is to make sure all threads are aligned (i.e., all threads are at
the same point in their execution) at the beginning of each sampling unit
as if we were to simulate the entire execution up until the sampling unit.
This is non-trivial because of how slight timing variations during the execu-
tion may affect per-thread progress either through synchronization behav-
ior (e.g., locking) or resource sharing (e.g., shared caches, off-chip band-
width, interconnection network, etc.). Moreover, making sure the same
thread alignment occurs across microarchitectures is even more problem-
atic.

Some classes of multi-threaded workloads do not pose this fundamen-
tal problem. For example, commercial server throughput workloads can be
accurately sampled by randomly selecting sampling units [69]. This prin-
ciple more generally applies to multi-threaded workloads in which the in-
dividual threads do not synchronize [24]. However, synchronizing multi-
threaded applications are more challenging to sample for the reason men-
tioned above. Time-based sampling has been proposed for synchronizing
multi-threaded workloads (Chapter 4 and [3; 12]), which simulates X units
of time in detail every Y units of time, and estimates per-thread progress
in-between sampling units. The fundamental limitation of time-based sam-
pling is twofold. It requires functional simulation of the entire program
execution to determine the sampling units, which limits the amount of
speedup that can be achieved through sampling. In addition, it leads to
different sampling units being selected across different simulated proces-
sor architectures, which complicates performance analysis.

Barrier-synchronized multi-threaded applications are an important
subset of synchronizing parallel workloads, especially in the high-perfor-
mance scientific computing and data-parallel workload domains, for which
this fundamental problem in sampling can be overcome by selecting sam-
pling units using barrier semantics. Barriers denote points of global syn-
chronization in the applications at which all threads are naturally ‘aligned’,
i.e., all threads re-start the execution at the same time once the barrier is
reached by all threads. Bryan et al. [9] leverage this observation to speed
up simulation of barrier-synchronized applications by simulating multi-
ple inter-barrier regions in parallel on a cluster of simulation machines.
This approach requires massive simulation resources to achieve substan-
tial simulation latency reductions. Additionally, because the number of
simulations to be performed inevitably outstrips the supply of available
machines, maximizing overall simulation throughput becomes the overall
goal. The only way to make faster progress is to improve the total simula-
tion throughput across the entire parameter and benchmark space. Bryan
et al. does not solve this critical issue: it only reduces latency of an isolated

5.1 Introduction 89

simulation run, but it does not reduce the number of resources required
nor overall simulation throughput when many simulations need to be run.

In this chapter, we propose BarrierPoint, a methodology for sampled
simulation of barrier-synchronized multi-threaded machines that simu-
lates a select number of representative inter-barrier regions, called barrier-
points, and predicts total application execution time (and other metrics of
interest) from these barrierpoints. BarrierPoint computes code and mem-
ory access signatures for all inter-barrier regions, clusters regions based on
these signatures, and then selects a single representative region, called a
barrierpoint, per cluster. Barrierpoints are selected in a microarchitecture-
independent way, and can therefore be used across processor architec-
tures. BarrierPoint overcomes several major limitations in prior work. (i) It
does not require functional simulation of the entire application as in time-
based sampling; barrierpoints can be simulated in parallel. (ii) It leads to
well-defined and fixed units of work — unlike time-based sampling —
which facilitate comparisons across microarchitectures. (iii) It requires far
less (one to three orders of magnitude fewer) simulation resources while
achieving similar simulation speedups compared to the approach by Bryan
et al. [9].

Specifically, we make the following contributions in this chapter:

• We propose a methodology for selecting representative, microar-
chitecture-independent inter-barrier regions in barrier-synchronized
multi-threaded applications for sampled simulation. Barrierpoints
enable microarchitectures and processor architectures (including dif-
ferent core counts) to be compared through sampled simulation using
well-defined and fixed units of work.

• We propose a method to extrapolate and estimate total application
execution time, and other performance metrics of interest, from this
select set of barrierpoints.

• We explore different methods for characterizing inter-barrier regions
and find that signatures that incorporate both code and data behavior
are most accurate at identifying representative barrierpoints.

• We evaluate the BarrierPoint methodology using a set of NPB and
Parsec benchmarks on 8 and 32-core machines, and report average
speedups of 24.7⇥ (maximum speedup of 866.6⇥) while maintaining
an average error of 0.6% and maximum error of 2.8%. BarrierPoint
reduces the number of simulation machine resources needed by 78⇥
on average, compared to simulating all inter-barrier regions.

• We propose an easy-to-implement, fast and accurate cache warmup
technique for multi-threaded sampling that incurs a combined sam-
pling and warmup error of 0.9% on average and 2.9% at most.

90 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

1

10

100

1000

10000

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

b
a
rr

ie
r

co
u
n
t

8 threads 32 threads

Figure 5.1: Total number of dynamically executed barriers.

5.2 Key Idea

Multi-threaded applications have been developed as a way to take ad-
vantage of the growing numbers of cores available in current machines.
Prior work [3; 12] has shown that, as in single-threaded workloads, re-
dundancy exists in the behavior of multi-threaded applications which al-
lows detailed simulation of only part of the workload to be extrapolated
to accurately predict execution time of the complete application. How-
ever, the only available techniques for accurate sampled simulation of syn-
chronizing multi-threaded applications required functional simulation of
the complete application, which limits the simulation speedup that can be
obtained through sampling. In contrast, implementations of the popular
SimPoint [61] and SMARTS [71] methodologies for sampled simulation of
single-threaded applications are able to load the application’s architected
state at the start of each sampling unit from a checkpoint [65; 68]. This
makes simulation of each sampling unit completely independent and po-
tentially parallelizable, and negates the need for functional simulation of
the complete application.

In synchronizing multi-threaded applications, however, it is not known
a priori at what rate the execution of each individual thread will progress.
Therefore, a checkpoint of architected state taken at a random time during
execution of the application does not necessarily represent a valid situation
that would occur when executing the same application on a different mi-

5.3 BarrierPoint Methodology 91

croarchitecture. Global synchronization barriers, on the other hand, repre-
sent points in each thread’s instruction stream that denote a common point
in time, and are therefore safe points at which a checkpoint can be taken.
Figure 5.1 counts the number of barriers encountered during the execution
of a number of applications in the NPB and Parsec benchmark suites. As is
common for many data-parallel workloads, which are typically written in a
structured manner using fork-join parallelism or other paradigms that lead
to bulk-synchronous behavior, the absolute number of barriers is large, up
to several 1000s in this case. Moreover, the number of barriers present re-
mains constant even when changing the number of threads. This suggests
that sections of code in between global barriers can be used as independent
units of work.

By simulating an application separated into a number of inter-barrier
regions in parallel, it is now possible to speed up simulation of an entire
program. Assuming that a large enough amount of simulation resources
are available, one can reduce the latency of executing a single applica-
tion [9].

Taking this one step further, if we are able to classify — and therefore
merge — similar inter-barrier regions into a single representative region, we
could further reduce the number of computing resources required to ob-
tain these speedups. We will call these representative regions barrierpoints,
akin to simpoints, their single-threaded, instruction-delineated counterparts
following the SimPoint [61] methodology. The final step that is required
is to provide the warmup data for each barrierpoint. The end result is a
complete simulation methodology that takes advantage of the ability to
parallelize multi-threaded applications at a barrier-by-barrier granularity.
With BarrierPoint, we have developed a methodology that allows for ex-
isting applications, without modification, to be simulated in parallel, using
fewer simulation resources. Using global instruction count as a proxy for
the amount of work in a simulation, we demonstrate a minimum, harmonic
mean, and maximum speedup of 10.0⇥, 24.7⇥ and 866.6⇥, respectively.

5.3 BarrierPoint Methodology

The BarrierPoint methodology (See Figure 5.2) provides a practical flow
from a barrier-synchronized application to an estimation of performance
metrics such as execution time or cache miss rates with a significant re-
duction in simulation time. The steps in the methodology include a one-
time step where characteristics that represent inter-barrier regions of the
application are collected, and clustering of the representative regions into
barrierpoints for simulation occurs. These barrierpoints, together with the
warmup data for each simulation is used to simulate each barrierpoint in

92 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

Region'
Clustering'

Detailed'
Simula3on'

Barrier'
Applica3on'

Barrier'
Similarity'
Data'

Analysis'

Simula3on'
Results'

Applica3on'
Run3me'

One:3me'costs'

Per:simula3on'costs'

One:3me'or'
per:simula3on'costs'

Barrier'
Points'

Warmup'
Data'

Func3onal'
Simula3on'

Run3me'
Reconstruc3on'

Figure 5.2: The BarrierPoint methodology flow diagram.

parallel. The final step is to reconstruct the performance metrics based
on the representative barrierpoint simulation results. In the following sec-
tions, we will provide a detailed overview of each step in the methodology.

5.3.1 Barrier Region Similarity Metrics

Through the use of barriers, we have the ability to compare the instructions
executed inside of inter-barrier regions for similarity. There are a number
of different ways to classify the similarity between regions.

Basic Block Vectors

Traditionally, Basic Block Vectors (BBVs) [61] from fixed-instruction-length
regions have been used as a way to easily classify or cluster regions of
single-threaded applications. A basic block vector is a vector with an entry
for the dynamic instruction count for each basic block in an application.
During program execution, the number of instructions executed from each
basic block is counted. After the completion of this region, the basic block
vector is saved and a new vector is started for the following region. These
BBVs form its fingerprint, or summary of the instructions that have exe-
cuted during that region. Prior work has shown that BBVs relate strongly
to region performance [44]. Therefore, by comparing the BBVs across inter-
barrier regions, we can match the different regions to determine perfor-
mance similarities for each application region.

LRU stack distance

LRU stack distance histograms [49] are another metric that can be used
to classify program behavior. The LRU stack distance is the number of

5.3 BarrierPoint Methodology 93

unique address accesses that occur between two accesses to the same ad-
dress. A histogram of these distance numbers represents a memory history
footprint of a particular region of an application, and have been previously
used to automatically detect phases in an application [60], as changes in
the LRU stack distance profile is a way to evaluate the changing data reuse
patterns of an application. LRU stack distances can therefore also be used
for region classification. The intuition behind using LRU stack distances is
that dynamic instruction regions, even though they are executing the same
code and have the same BBV footprint, could experience different cache
access latencies because of micro-architectural state. One example of this
is the well-known cold-start effect, where the first few iterations of an ap-
plication exhibit different progress than later, but BBV-similar, phases. Our
goal, therefore, is to improve the accuracy of BBVs by combining them with
LRU stack distance information when performing BarrierPoint clustering.
To collect LRU stack distance information for the BarrierPoint methodol-
ogy, we keep track of the reuse distances for each region of the application
as it runs. The LRU stack distance data is stored in a power-of-two his-
togram, where we keep track of the frequency of each of the LRU stack
distance accesses for each inter-barrier region. We will further refer to this
histogram as the LRU stack distance vector (LDV).

Signature Vectors

To make an abstraction of the exact metric that is used, we define the Sig-
nature Vector (SV) as a representation of a region’s phase behavior. Func-
tionally, the Signature Vector consists of indices representing application
characteristics, and the value of a vector element is the quantity or weight
of that characteristic. In Section 5.6, we explore the clustering obtained by
SVs consisting of BBV information only, LRU stack distance vectors (LDVs)
only, and SVs that contain a combination of both. When both types of met-
rics are used, the BBV and LDV are normalized individually and then con-
catenated into a single, longer vector.

In addition, we evaluate the use of a weighing function to the LRU stack
distance counters. Conceptually, longer stack distances will correspond to
memory accesses that hit further away in the memory hierarchy and there-
fore have a larger impact on application performance. When comparing
two regions with the aim of clustering them by having similar performance,
we therefore want to give more importance to long-latency accesses. We
will show results for unweighted distances, and variants where those ele-
ments corresponding to a distance of 2n . . . 2(n+1) � 1 are weighted by 2n/v,
for different values of v.

94 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

Multi-threaded SVs

Both BBVs and LDVs are initially collected for each inter-barrier region on
a per-thread basis. To combine these per-thread metrics into a single SV,
two options are possible. One option is to sum the vectors, aggregating
data from different threads into the same vector element. A second option
is to concatenate vectors for each thread into a longer vector. This second
option separates the behavior for each of the threads.

When threads behave in a homogeneous manner, both options will be
equivalent. But, if threads have different behavior, a concatenated vector
will expose these differences to the clustering phase which allows the rele-
vant regions to be separated into different clusters. We therefore choose to
use concatenation for combining SVs of different threads.

5.3.2 Region Clustering

To automatically determine the similarity among regions, we employ clus-
tering. The first step is to normalize the SVs to allow the clustering phase
to ignore each region’s length, and to cluster regions based on their intrin-
sic characteristics. To reduce the computational demands of the clustering
process, the dimensionality of the SVs is then reduced through random lin-
ear projection into 15 dimensions. In addition to the normalized SV, the
region clustering process will use the region lengths, in aggregate number
of instructions across cores, to weigh different regions such that more em-
phasis can be placed on those regions that represent a large fraction of total
execution time. We then perform weighted k-means clustering on the ran-
domly projected SVs to determine a reduced set of representative regions.
When within a cluster multiple regions of similar characteristics but differ-
ent length occur, weighing by instruction count will favor longer-running
regions both in determining the cluster center, and in choosing the repre-
sentative region.

Signature vector normalization, random projection and k-means clus-
tering are compatible with the implementation of SimPoint [43] for variable-
length regions. We are therefore able to leverage the existing SimPoint
infrastructure when implementing BarrierPoint.

5.3.3 Detailed Region Execution

After we have defined the representative regions of the application, de-
tailed simulation of each barrierpoint will provide the necessary informa-
tion required to rebuild the application’s execution time. Before detailed
simulation can be started, both architected and microarchitectural state
must be properly initialized. As the region starts with a barrier, it is possi-

5.3 BarrierPoint Methodology 95

ble to store the program’s architected state in a checkpoint in a consistent
manner across threads. Alternatively, functional simulation or direct ex-
ecution can be used to fast-forward an application up to the barrier that
marks the start of the region.

With respect to microarchitectural state, care must be taken to ensure
caches are warmed sufficiently before the start of the detailed simulation.
Several warmup options are possible and are compatible with the Barrier-
Point methodology, see Section 5.4 for an overview of existing techniques,
and the method used in our evaluation of BarrierPoint. Since barrierpoints
are usually long (in the order of millions of instructions), detailed core or
branch predictor warmup is not normally required.

5.3.4 Whole-Program Runtime Reconstruction

As variable-length barrierpoints are used as the basis for the identification
of common regions, we need to add an additional step to properly map
these representatives to each region to compute overall application execu-
tion time. This step is not required for the original SimPoint methodology
as they are using fixed-length representative regions to determine applica-
tion CPI, which in turn, can be used as a proxy for single-threaded appli-
cation execution time. In contrast, the BarrierPoint methodology may clus-
ter inter-barrier regions of differing lengths. Yet, as the clustering phase
guaranteed that these regions have the same behavior, we can assume that
their performance characteristics (when expressed as per-instruction met-
rics, e.g., cycles per instruction (CPI), cache misses per 1000 instructions
(MPKI), etc.) are constant. We can therefore rebuild the original applica-
tion by concatenating scaled (by relative global instruction count) versions
of each barrier’s representative region. We call the sum of scaling factors
from each barrierpoint its multiplier. Put another way, the sum of the in-
struction counts from all of the inter-barrier regions that are represented by
the barrierpoint is equal to the instruction count of the barrierpoint times
the multiplier. This can be written as

P
m

i=1 insncounti = insncount

j

·mult

j

,
where m is the number of regions that are represented by the jth barrier-
point. To calculate a metric of interest, we sum, over each barrierpoint,
the metric weighted by the multiplier, metric

app

=
P

n

j=1metric

j

· mult

j

,
where metric

j

and mult

j

are the metric and multiplier, respectively, for the
jth barrierpoint out of a total of n barrierpoints.

An example is provided in Figure 5.3 for npb-ft. The top graph plots
aggregate IPC over time for the original, unsampled application. The bot-
tom graph shows the different phases, and the result of the clustering step.
The representatives for each region are marked in dark gray. The middle
graph shows IPC as rebuilt by concatenating each region’s representative.
Aside from small differences, the representative is almost identical to the

96 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

 0

 4

 8

 12

 16

 20

 24

IP
C

 0

 4

 8

 12

 16

 20

 24

R
e

co
n

st
ru

ct
e

d
 I

P
C

 0
 1
 2
 3
 4
 5
 6

0.0 0.1 0.2 0.3 0.4 0.5 0.6

B
a

rr
ie

rP
o

in
t

Time (s)

Figure 5.3: Aggregate application IPC (above), reconstructed IPC (middle) and the
selected barrierpoints (below) for npb-ft using the class A input set on 32-cores.
(Non-significant barrierpoints are omitted for clarity.)

original.

5.4 Micro-architectural State Reconstruction

There are a large number of micro-architectural warmup options available
today [6; 21; 34; 65; 68]. Nevertheless, selecting a warmup strategy that is
flexible, non-intrusive to the simulator and has a high speedup can be dif-
ficult. We propose a middle-ground for multi-threaded simulation cache
warmup that maintains its speed and flexibility, while maintaining accu-
racy and being non-intrusive.

The two main micro-architectural warmup strategies are checkpointing
and functional cache replay. Checkpointing tends to be the fastest warmup
strategy as one only needs to load the amount of data that represents the
state of the machine. But it tends to either be the least flexible, as naive
checkpoints require a state snapshot for each micro-architecture and appli-
cation combination, or require coherency-specific knowledge for accurately
rebuilding the cache state. A more flexible but slower method is to run
a functional simulation while updating microarchitecture state (e.g., issue
memory requests to the cache hierarchy using a simple core timing model).
This has the disadvantage that the execution time overhead is proportional

5.5 Experimental Setup 97

Component Parameters
Processor 1 and 4 sockets, 8 cores per socket
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M (Dothan) [64], 8 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 8 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket

Table 5.1: Simulated system characteristics.

Parameter Value
-dim (number of projected dimensions) 15
-maxK (maximum number of clusters) 20
-fixedLength (clusters are not normalized) off
-coveragePct (percent coverage) 1 (100%)

Table 5.2: SimPoint parameters. Default values used for those options not speci-
fied.

to the number of instructions during the warmup period.
Instead of either of these extremes, we extended prior work [21; 68]

that saves and then replays only the most recent unique address access
requests. We first dynamically instrument an application and run them
at near-native speeds (using a Pintool with only a 20⇥ to 30⇥ slowdown
compared to native execution) to capture the most recently used data on a
per-core basis. Each core keeps track of its most-recently used cache lines
with a total capacity equal to the size of the shared LLC. Next, each thread
replays their most recent access data in execution order to restore the state
of the caches. The result is a significant reduction in simulated warmup
replay time, as the size of the replayed cache state is on the order of the
total LLC cache size and not based on the number of dynamically executed
instructions up to this point.

5.5 Experimental Setup

In this chapter, we are using a modified version of the Sniper multi-core
simulator [11], version 5.0, updated with the IW-Centric core model as
described in Chapter 3. Each processor socket that we model is an octo-
core processor with a three-level cache hierarchy, in which the L1 and L2
caches are private per core, and the last-level L3 cache is shared among all
cores. Each core is 4-wide superscalar running at 2.66 GHz. We simulate
both single-socket and four-socket shared-memory machines; we assume

98 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

num
insignificant

barrierpoints,
input

num
totalnum

significant
com

bined
m

ultiplier,
A

pplication
size

cores
barriers

barrierpoints
and

totalw
eight

barrierpointnum
ber

and
m

ultiplier
npb-bt

A
8

1001
11

3
/

12.0
/

8.9e-04
3

(1.0)
144

(190.0)
172

(100.0)
407

(46.0)
448

(98.0)
463

(48.0)
521

(200.0)
537

(54.0)
595

(10.0)
980

(189.0)
993

(53.0)
32

1001
11

4
/

13.0
/

9.2e-04
195

(10.0)
196

(100.0)
199

(189.0)
220

(189.0)
327

(46.0)
408

(100.0)
552

(65.0)
733

(100.0)
771

(100.0)
787

(54.0)
802

(35.0)
npb-cg

A
8

46
3

7
/

29.1
/

4.4e-04
0

(1.0)
15

(12.0)
21

(2.0)
32

46
3

5
/

28.3
/

5.0e-04
3

(4.0)
6

(7.0)
30

(4.0)
npb-ft

A
8

34
9

3
/

7.0
/

1.5e-05
0

(1.0)
1

(1.0)
2

(1.0)
3

(1.0)
11

(3.0)
15

(6.0)
19

(6.0)
26

(3.0)
28

(5.0)
32

34
9

3
/

7.0
/

1.7e-05
0

(1.0)
1

(1.0)
2

(1.0)
3

(1.0)
16

(3.0)
25

(6.0)
28

(5.0)
29

(6.0)
31

(3.0)
npb-is

A
8

11
10

1
/

1.0
/

5.9e-07
0

(1.0)
1

(1.0)
2

(1.0)
3

(1.0)
4

(1.0)
5

(1.0)
6

(1.0)
7

(1.0)
8

(1.0)
9

(1.0)
32

11
10

1
/

1.0
/

7.0e-07
0

(1.0)
1

(1.0)
2

(1.0)
3

(1.0)
4

(1.0)
5

(1.0)
6

(1.0)
7

(1.0)
8

(1.0)
9

(1.0)
npb-lu

A
8

503
7

1
/

2.0
/

8.8e-05
60

(10.0)
98

(68.0)
122

(53.0)
195

(250.0)
222

(16.0)
282

(56.0)
332

(47.0)
32

503
2

0
/

0.0
/

0.0e+00
11

(250.1)
276

(250.0)
npb-m

g
A

8
245

8
0

/
0.0

/
0.0e+00

2
(2.0)

52
(4.6)

57
(9.0)

116
(4.6)

123
(4.6)

179
(4.6)

182
(17.6)

230
(4.7)

32
245

10
5

/
112.2

/
9.8e-04

2
(2.0)

50
(4.8)

51
(4.6)

63
(4.0)

112
(4.6)

116
(4.0)

117
(9.0)

179
(4.6)

185
(4.6)

238
(13.0)

npb-sp
A

8
3601

16
2

/
2.0

/
3.5e-04

0
(1.0)

159
(400.0)

238
(137.0)

607
(91.0)

1111
(56.0)

1478
(399.0)

1813
(51.0)

1948
(65.0)

1970
(20.0)

1976
(399.9)

2169
(399.0)

2465
(379.9)

2595
(399.9)

2746
(399.9)

3004
(202.0)

3319
(198.0)

32
3601

12
0

/
0.0

/
0.0e+00

502
(400.0)

784
(94.0)

850
(400.0)

955
(200.0)

964
(106.0)

2069
(400.0)

2157
(21.0)

2643
(379.0)

3360
(400.0)

3456
(400.0)

3497
(400.0)

3584
(400.0)

parsec-bodytrack
large

8
89

13
1

/
1.0

/
5.4e-04

12
(1.0)

21
(3.0)

25
(7.0)

29
(16.0)

39
(16.0)

40
(5.0)

60
(2.0)

62
(8.0)

72
(9.0)

74
(12.0)

77
(4.0)

80
(4.1)

87
(1.0)

32
89

7
1

/
1.0

/
5.4e-04

6
(16.0)

30
(12.0)

32
(16.0)

39
(16.0)

65
(4.0)

77
(4.0)

86
(19.5)

Table
5.3:

A
pplications,

input
sizes

used,
total

num
ber

of
dynam

ically
executed

barriers,
significant

and
insignificant

barrierpoint
inform

ation
and

the
selected

barrierpoints
and

their
m

ultipliers.N
ote

thatbecause
ofscaling

a
barrierpointcan

representa
fraction

of
another

inter-barrier
region

and
therefore

m
ultipliers

do
notnecessarily

sum
to

the
totalnum

ber
ofregions.

5.5 Experimental Setup 99

0.0

0.5

1.0

1.5

2.0

2.5

3.0

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

a
b

s
ru

n
tim

e
 %

 e
rr

o
r

8 cores 32 cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

a
b

s
D

R
A

M
 A

P
K

I
d

iff
e

re
n

ce

8 cores 32 cores

Figure 5.4: Percent absolute error for predicting application execution time (top)
and absolute DRAM APKI difference (bottom) across all benchmarks using the
BarrierPoint methodology, assuming perfect warmup.

an MSI directory cache coherency protocol. See Table 5.1 for the main char-
acteristics of the simulated machines.

The benchmark suites used in this chapter are the NAS Parallel Bench-

100 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

0

10

20

30

40

50

60

70

80

90

bbv
reuse_dist

reuse_dist 1/2

reuse_dist 1/5

com
bine

com
bine 1/2

com
bine 1/5

a
vg

 a
b
s

%
 e

rr
o
r

maxK

1 5 10 20

Figure 5.5: Average absolute error for application execution time prediction for
different maxK and clustering methods. This data is averaged across 8 and 32-core
runs assuming perfect warmup. The LDV vectors are weighted equally (1/v =
1/1) or according to the value indicated.

marks (NPB) version 3.3 with OpenMP parallelization (class A inputs) [41],
and the PARSEC 2.1 benchmark suite (simlarge inputs) [7]. Of the 10 NAS
Parallel Benchmarks, three were not used. We are unable to run the npb-dc
(data cube) benchmark in our simulator because it produces a lot of output
data that needs to be written to a hard drive; Sniper is a user-level sim-
ulator and does not model HDDs, for which reason it cannot accurately
run the npb-dc benchmark. The npb-ua (unstructured adaptive mesh)
benchmark generates a very large number of barriers which makes it dif-
ficult to analyze. Our current BarrierPoint implementation cannot handle
that many inter-barrier regions. There is no fundamental reason to believe
that BarrierPoint cannot be applied to this benchmark, however, it might
need an extension to filter or combine regions before processing by the Bar-
rierPoint methodology; we leave this for future work. Finally, npb-ep is
an embarrassingly parallel benchmark, that only contains a single region
between barriers. This type of workload does not apply to the Barrier-
Point methodology. From Parsec, we use the parsec-bodytrack bench-
mark, as it is one of the three barrier-synchronized benchmarks that uses
the OpenMP infrastructure. The other two benchmarks use pthread-based
barrier synchronization. The current BarrierPoint implementation works
with OpenMP-parallelized applications only, however, this is not a funda-
mental limitation to the methodology, and it should therefore be applicable

5.5 Experimental Setup 101

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

a
vg

 a
b

s
%

 e
rr

o
r

8 cores using 8-core SV data
8 cores using 32-core SV data
32 cores using 8-core SV data

32 cores using 32-core SV data

Figure 5.6: Barrierpoint selection cross-validation. Results for 8 and 32-core runs
are interchangeable, and therefore we can use the same regions as representative
regions.

for pthread barrier-synchronized applications as well.
Only the parallel Region of Interest (ROI) of each application is included

in our timing measurements. We do not consider the serial fractions of
these benchmarks; sampled simulation of sequential code running on indi-
vidual cores has been studied extensively in prior work and is considered
mature.

Other methodological settings are as follows. We use the passive
OpenMP wait policy for thread synchronization, which specifies that
waiting threads do not consume CPU resources. All benchmarks were
compiled with GCC 4.3 for x86-64 with SSE and SSE2 extensions enabled.
BBV and LRU stack distance profiles of inter-barrier regions are collected
using a custom Pintool [48]. We use the SimPoint clustering software ver-
sion 3.2 for identifying representative inter-barrier regions. Non-default
parameters used for SimPoint are listed in Table 5.2.

102 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

a
b

s
ru

n
tim

e
 %

 e
rr

o
r

8 cores 32 cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

a
b

s
D

R
A

M
 A

P
K

I
d

iff
e

re
n

ce

8 cores 32 cores

Figure 5.7: Percent absolute error for predicting application execution time (left)
and absolute DRAM APKI difference (right) across all benchmarks using the Bar-
rierPoint methodology, with unique warmup.

5.6 Results

5.6.1 Barrierpoint selection

We start by evaluating the barrierpoints selection first. We do this by as-
suming perfect warmup in order to isolate the error due to barrierpoint

5.6 Results 103

0

5

10

15

20

25

parsec-bodytrack

npb-bt

npb-cg

npb-ft

npb-is

npb-lu

npb-m
g

npb-sp

S
p
e
e
d
u
p
 v

s.
 8

-c
o
re

actual predicted

Figure 5.8: Relative scaling results: estimating 8-core versus 32-core speedup.

selection. (We will evaluate the error due to warmup in Section 5.6.2.) This
is done by running the simulation of the entire benchmark once and by
recording performance metrics on an inter-barrier region granularity. We
determine the barrierpoints as described before using microarchitecture-
independent signatures, and pick the performance metrics for the barrier-
points from the full benchmark simulations to reconstruct total application
execution time. Because all of the inter-barrier regions have a perfectly
warmed up microarchitecture state, this approach thus evaluates barrier-
points selection in isolation. Comparing the estimated application execu-
tion time against the measured execution time for the full benchmark exe-
cution yields a metric for the accuracy of the barrierpoints selection.

Figure 5.4 quantifies the error of the BarrierPoint methodology assum-
ing perfect warmup for (top graph) estimating total application execution
time, and (bottom graph) LLC miss rate, or the number of memory accesses
per thousand instructions (APKI). Accuracy is high for both metrics with
an average absolute error of 0.6% (max error of 2.8%) for predicting appli-
cation execution time, and an average absolute error of 0.1% (max error of
0.6%) for predicting the number of memory accesses per kilo instructions.
Without barrierpoint scaling (where inter-barrier code regions are similar,
but instruction counts differ; see Section 5.3.4 for details), the average error
increases significantly from 0.6% to 19.4%. Overall, these results demon-
strate the high accuracy of the barrierpoints selection strategy as well as the
reconstruction mechanism for estimating total application execution time

104 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

0

1

10

100

1000

parsec-bodytrack-8

parsec-bodytrack-32

npb-bt-8

npb-bt-32

npb-cg-8

npb-cg-32

npb-ft-8

npb-ft-32

npb-is-8

npb-is-32

npb-lu-8

npb-lu-32

npb-m
g-8

npb-m
g-32

npb-sp-8

npb-sp-32

S
p

e
e

d
u

p

serial speedup parallel speedup

Figure 5.9: Achieved speedups for each benchmark with the BarrierPoint method-
ology. The serial speedup results from back-to-back execution of barrierpoints and
represents the reduction of required simulation resources. The parallel speedup re-
sults from a parallel simulation of barrierpoints and shows the simulation latency
reduction assuming sufficient server resources.

and performance metrics from a select number of barrierpoints.

Similarity and clustering metrics

We now explore the effect of a number of BarrierPoint parameters on ac-
curacy. Figure 5.5 quantifies average error rates for predicting application
execution time for different similarity methods and clustering parameters.
We evaluate the impact of the maximum number of barrierpoints selected
(maxK) on overall accuracy. We also consider signature vectors consisting
of BBVs only, LDVs only, and combined BBV-LDVs. In addition, we also
consider weighted LDVs, as previously described in Section 5.3.1, where
1/v is 1/1, 1/2 and 1/5 as indicated in the figure. There are several in-
teresting observations to be made here. First, a single barrierpoint yields
poor accuracy but accuracy generally improves with an increasing num-
ber of barrierpoints. This makes intuitive sense as more regions are being
simulated in detail and used to predict overall performance. It also illus-
trates the widely varying execution characteristics of inter-barriers regions
in these workloads. Second, combined signature vectors that characterize
both code and data memory access behavior yield the highest possible ac-

5.6 Results 105

curacy, especially with larger numbers of barrierpoints. Weighted LDVs
improve accuracy only slightly when used in combined signature vectors;
hence, we consider unweighted LDVs (1/v = 1) in our default setting. The
highest accuracy is achieved with combined signature vectors and a maxK
of 20, which is the default setting used throughout the chapter unless men-
tioned otherwise.

Barrierpoints

A key feature of the BarrierPoint methodology is to provide an easy to use
model for sampled simulation. The output of the methodology is a number
of select, representative barrierpoints used for detailed simulation along
with their multipliers which enables estimating total application execution
time. Table 5.3 lists the significant barrierpoints for each of the benchmarks
used in this study. The summary details for insignificant barrierpoints are
defined as barrierpoints with a contribution of less than 0.1%. Across the
benchmarks used, the number of selected barrierpoints is quite small, rang-
ing between 2 and 16, and two to three orders of magnitude smaller than
the total number of dynamically executed barriers. Note that because of
instruction scaling as described in Section 5.3.4, inter-barrier regions can
be larger or smaller than similar ones, meaning that the multipliers do not
necessarily sum to the total number of regions.

Barrierpoints across architectures

In Figure 5.6 we present the core cross-validation results. Here we can see
that results from an 8-core BarrierPoint run produce similar accuracy num-
bers compared to the results from the 32-core BarrierPoint similarity gen-
eration. This demonstrates that for the OpenMP barrier runtime, the unit
of work remains the same across core counts.

Note that the BarrierPoint methodology requires taking a default thread
(or core) count to collect the statistics that serve as input to the analysis.
This is why Table 5.3 lists different barrierpoints for different core counts.
However, barrierpoints can be reliably used across core counts (as long as
the number of executed barriers does not depend on thread count). This
is quantified in Figure 5.6 which shows accuracy results for using the bar-
rierpoints determined with 8 threads on a 32-core system, and, vice versa,
barrierpoints determined with 32 threads on an 8-core system. The key
conclusion from this graph is that barrierpoints can be transferred across
processor architectures, and hence form well-defined, fixed units of work
that can be reliably used to compare processor architectures.

106 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

5.6.2 Warmup

In our evaluation up to this point, we have assumed perfect state warmup,
which is an idealized situation. Typically when using BarrierPoint, one will
need to warm up the microarchitectural state prior to detailed simulation
of a barrierpoint. Figure 5.7 quantifies prediction error for application exe-
cution time (left graph) and the number of memory accesses per instruction
(right graph). In spite of the simplicity of the proposed warmup technique,
we find it to be quite accurate for determining application performance
metrics. The execution time prediction error increases only slightly to 0.9%
on average and 2.9% at most. The error due to incorrect warming is higher
for 32 cores than for 8 cores (compare Figure 5.7 to Figure 5.4 which as-
sumed perfect warmup): this is due to the larger total cache capacity (32MB
versus 8MB) and performance prediction being more sensitive to accurate
warmup for larger caches.

5.6.3 Relative accuracy

Up to this point, we have been concerned with estimating performance in
a single processor architecture design point. However, architects are of-
ten more interested in predicting relative performance between two de-
sign points. Figure 5.8 quantifies the accuracy of BarrierPoint for predict-
ing the relative performance difference between two design points, namely
the 8-core versus the 32-core system. BarrierPoint’s accuracy is very high
for relative performance trends. Three of the benchmarks exhibit superlin-
ear speedups, with npb-cg as the most notable example, the reason being
cache effects (32MB LLC in the 32-core system versus 8MB in the 8-core
system).

5.6.4 Simulation speedup

Figure 5.9 quantifies the simulation speedups for the BarrierPoint method-
ology across different core counts for the NPB and Parsec benchmark
suites. Speedups are defined as the reduction in aggregate instruction
count. The serial speedup is the reduction in required resources, and can
be thought of as the speedup when running each barrierpoint back-to-back
in serial. The parallel speedup results when all barrierpoints are run in
parallel with sufficient machine resources. Using the BarrierPoint method-
ology, our results show a (harmonic) mean parallel speedup of 24.7⇥ and
a maximum parallel speedup of 866.6⇥. Along with application perfor-
mance improvements, we see an average reduction of 78⇥ in the number
of machine resources required for simulation.

5.7 Related Work 107

5.7 Related Work

5.7.1 Single-Threaded Sampling

The SimPoint [61] methodology clusters large intervals, on the order of
100M instructions, using BBVs and machine learning (cluster analysis) to
identify representative chunks of an application in a microarchitecture-
independent way. The SMARTS [71] methodology and Conte et al. [20]
construct a sample consisting of a large number of sampling units of a rel-
atively small number of instructions per sampling unit. These approaches
are unable to accurately estimate run-time of synchronized multi-threaded
applications.

5.7.2 Multi-Threaded Sampling

Ekman et al. [24] propose matched-pair comparison as a way to reduce
sample size for multi-threaded workloads, but show that synchronized ap-
plications do not see a significant sample size reduction with their tech-
nique.

Wenisch et al. [69] propose Flex Points as a way to increase simulator
performance for multi-threaded commercial workloads. Van Biesbrouck et
al. [66] propose the Co-Phase Matrix as a reduction technique for multi-
program workloads. Both of these techniques depend on the fact that each
thread is independent. Explicit thread synchronization violates their as-
sumptions.

Perelman et al. [55] extend the SimPoint methodology to parallel work-
loads via instruction-based sampling. Recent work [3; 12] has shown
however that instruction-based sampling is inaccurate for multi-threaded
workloads that employ active or idle waiting due to synchronization. Fur-
thermore, application IPC is an inappropriate metric for multi-threaded
workloads [2]. BarrierPoint, instead, predicts total application execution
time, and uses both code and data memory signatures to identify represen-
tative barrierpoints.

Time-based sampling of multi-threaded applications, proposed by
Ardestani et al. [3], Carlson et al. [12] and described in Chapter 4, allows
for accurate sampled simulation of synchronizing multi-threaded appli-
cations. By extrapolating time during fast-forwarding phases, and taking
care to keep thread interactions through synchronization and shared mem-
ory intact, execution time can be accurately predicted. These approaches
suffer from two major limitations, which we overcome with BarrierPoint.
First, it requires functional simulation of the entire program execution and
in addition requires the memory hierarchy to be warmed in between sam-
pling units. In contrast, BarrierPoint can leverage checkpointing to allow

108 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

barrierpoints to be simulated independently and in parallel, and does not
require functional simulation and cache warming of the complete bench-
mark execution. Second, time-based sampling can lead to the creation
of different samples across processor architectures which may complicate
performance analysis. BarrierPoint overcomes this limitation by proposing
well-defined, fixed units of work in a microarchitecture-independent way.

5.7.3 Simulation parallelism

Simulation latency can be improved by exploiting parallelism in the units
of work that need to be simulated. For example, both SimPoint and
SMARTS have proposed checkpointing techniques to simulate each sam-
pling unit independently and in parallel [65; 68]. Bryan et al. [9] demon-
strates the potential speedup when executing multiple inter-barrier regions
in parallel, provided that massive simulation resources are available. Our
work takes this work one step further by reducing the number of inter-
barrier regions to be simulated in detail, which dramatically reduces the
number of simulation machines needed. This improves overall time-to-
discovery while being able to accurately predict total application execution
time from the selected of barrierpoints.

5.7.4 Warmup

The cold-start problem is a well-known problem in sampled simulation.
No-State-Loss (NSL) [21] and Live-points [68] propose the playback of
unique addresses in the memory hierarchy to warm up cache state prior
to each sampling unit, and apply it to single-threaded workloads running
on single-core systems. MRRL [34] uses the distribution of reuse distances
to determine how far to go back prior to the sampling unit to warm up
caches. We extend these methods to support multi-threaded workloads
and multi-core cache hierarchies by replaying an amount of data equal to
the largest last-level cache visible to each core.

Van Biesbrouck et al. [65] propose a warmup method, memory hier-
archy state (MHS), that uses a snapshot of the largest cache to be simu-
lated, and reduces the state for the target simulated cache. This technique
requires explicit cache state reconstruction in the simulator, is limited to
single-core systems, and does not provide a way to reconstruct coherency
state.

Barr et al. [6] propose a method for reconstructing cache and coherency
state in multi-processor systems. They therefore propose a data structure,
called the Memory Timestamp Record (MTR), that records the timestamp
of the last access to each cache block before a sampling unit. The MTR
allows the simulator to reconstruct coherency state as well as a cache hier-

5.7 Related Work 109

archy of arbitrary size and associativity, assuming a lower bound on cache
line size.

Our warmup methodology offers an alternative to MTR where co-
herency state and cache hierarchy is reconstructed without detailed knowl-
edge of the cache hierarchy’s coherence and multi-level state. The only
information needed is the largest total shared LLC capacity that will be
simulated in any system configuration.

5.7.5 Similarity analysis

Perelman et al.’s [55] similarity analysis extends Sherwood et al.’s work [61]
to multi-threaded workloads. Both of these works evaluate agglomer-
ated/combined thread views into fixed-length intervals but disregard its
use as they compare threads to one another during an execution run. On
the other hand we compare the entire multi-threaded application’s be-
havior between barriers, not each thread to one another. We are the first
to:

• Show that combined thread views can be used to compare inter-
barrier regions to perform workload reduction.

• Use LRU stack distances (along with BBVs) to more accurately com-
pare regions.

• Enable the use of variable-length multi-threaded execution profiles
which can occur between barriers. Perelman et al. [55] assume fixed-
length intervals that are not compatible with variable-length barrier-
points.

Sherwood et al. [61] use BBVs to identify regions of similar execu-
tion behavior, called phases, in long-running single-threaded applications;
Perelman et al. [55] extend this method to multi-threaded workloads. Shen
et al. [59] propose LRU stack distances [49] to automatically determine
phases of a single-threaded application. In contrast, our methodology uses
program semantics, barriers, to delineate phases, and we find the combined
usage of BBVs and LRU stack distances to outperform either alone.

Alameldeen et al. [2] suggest that a common unit of work is required,
but does not extend this to multi-threaded workloads, nor do they ad-
dress the reduction of simulation requirements. In contrast, we are the first
to provide an automatic workload reduction and performance estimation
methodology for barrier-based multi-threaded workloads.

110 BarrierPoint: Sampled Simulation of Multi-Threaded Applications

5.8 Conclusion

Sampling is a well-known technique to speed up architectural simula-
tion. Only recently have researchers extended sampled simulation towards
multi-threaded workloads. Some prior work assumed non-synchronizing
multi-threaded workloads for which random sampling allows for an ac-
curate representation of the overall application. Time-based sampling
proposes a solution for synchronizing multi-threaded workloads but the
main limiting factor for achieving significant simulation speedups is the
requirement for using functional warming to maintain an accurate micro-
architectural state in-between sampling units. In addition, time-based
sampling leads to different sampling units across different processor ar-
chitectures, complicating performance analysis. Prior work in speeding
up the simulation of barrier-synchronized applications requires massive
simulation resources to simulate all inter-barrier regions in parallel.

To address these limitations, we propose BarrierPoint, a methodology
for the reconstruction of application execution time using the similarity
of multi-threaded benchmarks between barriers. With BarrierPoint, it is
now possible to evaluate the performance of each selected inter-barrier re-
gion independently, leading to a higher potential for simulation speedup.
Our proposed methodology automatically identifies a select number of
most representative regions, called barrierpoints, from which it is possi-
ble to estimate total application execution time. Using a set of barrier-
synchronized parallel benchmarks from the NPB and Parsec benchmark
suites, we demonstrate that high simulation speedups that can be achieved
(with a harmonic mean of 24.7⇥ and up to 866.6⇥) while using a limited
number of simulation machine resources, and while being within 0.9% on
average and at most 2.9% compared to detailed simulation. Overall, we
reduce the amount of machine resources needed by an average of 78⇥.

Chapter 6

Conclusion

In this chapter we summarize the conclusions that can be drawn from this disser-
tation.

6.1 Overview

Processor complexity, as described by Moore’s Law, allows processor de-
signers to use an increasing amount of transistors to provide faster, more
efficient designs for next-generation microprocessors. Nevertheless, as de-
signs become more complex, the amount of time it takes to verify these
designs also increases. But because of current processor power and tech-
nology limits, these performance gains are being implemented in the form
of multi-core processors. As simulators today tend to be single-threaded,
they are facing a losing battle where the performance of the processor it-
self becomes more and more difficult to simulate over time, widening the
simulation gap.

There are two primary solutions to handle this growing simulation gap.
One way is to improve the performance of a simulator. By speeding up the
simulator, we can now reduce the time it takes to simulate an entire applica-
tion. In addition, an orthogonal approach deals not with the simulator, but
the application itself. Using workload sampling, it is possible to simulate
a small amount of an application in detail that provides a representative
view into the performance of an entire application. By combining both of
these techniques, one can accurately estimate application performance in a
shorter amount of time.

The main goal of this research is to allow architects and researchers to
use these tools to help in the exploration of new microarchitectural en-
hancements. We hope that through the use of these methodologies, ex-
periments that occur over long timescales with large input sets can now

112 Conclusion

become tractable to explore and optimize, allowing for optimizations that
could not previously be evaluated in a reasonable time frame.

In the following sections, we detail a number of the key findings from
this work that dead with both of these solutions to simulation.

6.1.1 Simulator Speedup with High-Level Core Models

We developed Sniper Multi-Core Simulator, as a way to speed up microar-
chitectural investigation and analysis. Two key components of the Sniper
Multi-Core Simulator are the interval simulation model, and parallel simu-
lation. Interval simulation is a high-level simulation techniques that allow
for faster simulation speeds compared to traditional simulation methodolo-
gies, while still providing the accuracy required to perform microarchitec-
tural experiments. Interval simulation, therefore, allows for a higher-level
of abstraction than traditional detailed cycle-level core models, while pro-
viding significantly more runtime accuracy than the one-IPC core model
which does not take into account application ILP or MLP. Through the use
of parallel simulation and the interval simulation technique, we show an
average absolute error within 25% of real hardware with simulation speeds
of up to 2.0 MIPS.

In addition, to interval simulation, we detail a new core model, the
instruction-window centric core model, which improves accuracy sig-
nificantly with respect to hardware, to an average error of 11.1%. The
instruction-window centric core model, while more detailed, still provides
faster simulation than a typical detailed core model while resulting in
significantly better accuracy than the simpler one-IPC core model. The
strength of the instruction-window centric model is that is allows one to
model more detailed timing interactions that occur in an out-of-order core,
while still taking advantages of the insights provided by interval simula-
tion to enable fast simulation.

6.1.2 Workload Reduction through Multi-Threaded Sampling

Workload sampling reduces the amount of work the simulator needs to
perform in order to estimate key metrics of an application, such as runtime.
Single-threaded sampling has been mature, and only recently have we seen
methodologies emerge to handle sampling of multi-threaded applications
with very specific qualities. Multi-threaded application sampling has the
ability to provide significant reductions in the amount of detailed simula-
tion that needs to be performed for microarchitectural investigations. To
close the gap for generic multi-threaded applications, we propose time-
based multi-threaded sampling to reduce the amount of an application
needs to be run in detail to as little as 10% while achieving an average abso-

6.2 Future Work 113

lute error of 3.5%. By taking into account application-specific behavior, Bar-
rierPoint uses multi-threaded application inter-barrier regions to classify
and reduce the amount of an application needs to be simulated. Through
the use of this methodology, we have seen performance improvements by a
harmonic mean of 24.7⇥ and up to 866.6⇥, with an average absolute error
of 0.9% and 2.9% at most.

6.2 Future Work

While multi-threaded sampling provides a good approach that allows for
general-purpose application reduction for simulation, the overall speedups
are limited (to around 10⇥ in our examples) in this methodology because
of the requirement to keep the memory subsystem active throughout the
entire execution of the application. BarrierPoint has the potential to pro-
vide even larger speedups because simulation time is now related to the
number of representative regions instead of total instruction count, which
can reduce simulation time significantly. The best example of this can
be seen when comparing the resulting speedups from the two sampling
methodologies. The difference in performance between the NPB sp bench-
mark which sees a simulation speedup of about 2.5⇥ with general purpose
multi-threaded sampling to 866.6⇥ with BarrierPoint, a sampling method-
ology targeted to barrier-based applications is significant, around a 300⇥
reduction. This improvement in simulation performance results from be-
ing able to take into account application-specific behavior. Through the use
of other application-specific sampling methodologies, it might be possible
to optimize other classes of multi-threaded applications to expose large re-
ductions in the amount of an application that is needed to be simulated in
detail.

A broader direction for future work with respect to multi-threaded sam-
pling could be to expand into the direction where full-system simulation
details are taken into account. For example, the effects of external IO (net-
work traffic, or HDD/SDD accesses) might introduce some added com-
plexity into the sampling methodology and require historic analysis for pe-
riodicity in the case of general-purpose time-based sampling. Additionally,
taking into account true operating system effects might also require addi-
tional analysis. Synchronization with relaxed synchronization that takes
place during multi-threaded workload execution, even without sampling,
might pose less of a problem for accurate IO simulation because of the
much larger time scales that off-chip communications tend to deal with.
That said, for IO-heavy benchmarks or phases, it could be possible to build
an interval-style simulation methodology that uses on-and-off phases of an
IO workload to approximate runtime in a fast way.

114 Conclusion

One additional direction for future work with multi-threaded sampling
could be to allow an application’s periodicity to be determined at runtime.
This would allow one to use a generic set of sampling parameters to start,
but as the periodicity of the application is determined, to adjust the sam-
pling periods of the application under evaluation. Some challenges with
this approach are the ability to both detect the application’s periodicities re-
liability as well as doing so with a low overhead. Additionally, one would
need to determine, with confidence, whether an application’s periodicity
requires that a new run be started with the newly selected parameters. This
could also lead to a problem where an application would need to be sim-
ulated multiple times. Finally, the additional overhead in determining pe-
riodicity might erase much of the performance benefits seen by using this
technique.

Appendix A

Additional Research

This appendix provides additional references to notable research work completed
during my Ph.D. studies

A.1 Hardware/Software Co-Design

Stringent performance targets and power constraints push designers to-
wards building specialized workload-optimized systems across a broad
spectrum of the computing arena, including supercomputing applications
as exemplified by the IBM BlueGene and Intel MIC architectures. In this
work, we make the case for hardware/software co-design during early de-
sign stages of processors for scientific computing applications. Consider-
ing an important scientific kernel, namely stencil computation, we demon-
strate that performance and energy-efficiency can be improved by a factor
of 1.66⇥ and 1.25⇥, respectively, by co-optimizing hardware and software.

To enable hardware/software co-design in early stages of the design
cycle, we propose a novel simulation infrastructure by combining high-
abstraction performance simulation using Sniper with power modeling us-
ing McPAT and custom DRAM power models. Sniper/McPAT is fast —
simulation speed is around 2 MIPS on an 8-core host machine — because it
uses analytical modeling to abstract away core performance during multi-
core simulation. We demonstrate Sniper/McPAT’s accuracy through vali-
dation against real hardware; we report average performance and power
prediction errors of 22.1% and 8.3%, respectively, for a set of SPEComp
benchmarks.

W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout.
Power-aware multi-core simulation for early design stage hard-
ware/software co-optimization. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 3–12, September 2012

116 Additional Research

A.2 Workload Analysis

We propose a methodology for analyzing parallel performance by build-
ing cycle stacks. A cycle stack quantifies where the cycles have gone, and
provides hints towards optimization opportunities. We make the case that
this is particularly interesting for analyzing parallel performance: under-
standing how cycle components scale with increasing core counts and/or
input data set sizes leads to insight with respect to scaling bottlenecks due
to synchronization, load imbalance, poor memory performance, etc.

We present several case studies illustrating the use of cycle stacks. As
a subsequent step, we further extend the methodology to analyze sets of
parallel workloads using statistical data analysis, and perform a work-
load characterization to understand behavioral differences across bench-
mark suites. We analyze the SPLASH-2, PARSEC and Rodinia benchmark
suites and conclude that the three benchmark suites cover similar areas in
the workload space. However, scaling behavior of these benchmarks to-
wards larger input sets and/or higher core counts is highly dependent on
the benchmark, the way in which the inputs have been scaled, and on the
machine configuration.

W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeck-
hout. Using cycle stacks to understand scaling bottlenecks in
multi-threaded workloads. In Proceedings of the IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 38–
49, November 2011

The performance of data-intensive applications, when running on mod-
ern multi- and many-core processors, is largely determined by their mem-
ory access behavior. Its most important contributors are the frequency and
latency of off-chip accesses and the extent to which long-latency memory
accesses can be overlapped with useful computation or with each other.

In this work we present two methods to better understand application
and microarchitectural interactions. An epoch profile is an intuitive way to
understand the relationships between three important characteristics: the
on-chip cache size, the size of the reorder window of an out-of-order pro-
cessor, and the frequency of processor stalls caused by long-latency, off-
chip requests (epochs). By relating these three quantities one can more
easily understand an application’s memory reference behavior and thus
significantly reduce the design space. While epoch profiles help to pro-
vide insight into the behavior of a single application, developing an un-
derstanding of a number of applications in the presence of area and core
count constraints presents additional challenges. Epoch-based microarchitec-
tural analysis is presented as a better way to understand the trade-offs for
memory-bound applications in the presence of these physical constraints.

A.3 Undersubscription 117

Through epoch profiling and optimization, one can significantly reduce
the multidimensional design space for hardware/software optimization
through the use of high-level model-driven techniques.

T. E. Carlson, S. Nilakantan, M. Hempstead, and W. Heirman.
Epoch profiles: Microarchitecture application analysis and opti-
mization. Computer Architecture Letters, 2014

A.3 Undersubscription

High-performance computing workloads are compute and memory inten-
sive workloads that are designed to scale very well onto large machines.
While this software is able to continue to scale on many-core architectures
similar to the Xeon Phi, we investigate how the application’s working-set
directly impacts performance. As an application scales to a number of core
counts, the working set can change in different ways, where some appli-
cation’s working sets can grow, others shrink, and still others have more
complex behavior. By treating the application’s working set as the most im-
portant to performance, one can determine how the application will fit into
the cache, and also how much performance can be gained. We find that be-
cause of the complex relationships between thread count and working set,
it is possible to achieve application performance improvements through
the undersubscription of an application on a shared-memory node. In ad-
dition, we propose a clustered-cache microarchitecture that allows cores,
while undersubscribing, to achieve higher performance because they are
now able to take advantage of the larger cache sizes. Finally, we propose a
run-time system to automatically determine the optimal undersubscription
levels in the OpenMP runtime.

W. Heirman, T. E. Carlson, K. Van Craeynest, I. Hur, A. Jaleel,
and L. Eeckhout. Undersubscribed threading on clustered cache
architectures. In International Symposium on High Performance
Computer Architecture (HPCA), February 2014

118 Additional Research

Bibliography

[1] A. Alameldeen and D. Wood. Variability in architectural simulations
of multi-threaded workloads. In Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture (HPCA), pages
7–18, February 2003.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful for multi-
processor workloads. IEEE Micro, 26:8–17, July/August 2006.

[3] E. K. Ardestani and J. Renau. ESESC: A fast multicore simulator using
time-based sampling. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), pages 448–459, Febru-
ary 2013.

[4] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega.
COTSon: infrastructure for full system simulation. ACM SIGOPS Op-
erating Systems Review, 43(1):52–61, January 2009.

[5] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady. SPEComp: A new benchmark suite for measuring par-
allel computer performance. In R. Eigenmann and M. Voss, editors,
OpenMP Shared Memory Parallel Programming, volume 2104, pages 1–
10. July 2001.

[6] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic. Accelerating multi-
processor simulation with a memory timestamp record. In Proceedings
of the 2005 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 66–77, March 2005.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings of
the 17th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, October 2008.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

120 BIBLIOGRAPHY

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[9] P. Bryan, J. Poovey, J. Beu, and T. Conte. Accelerating multi-threaded
application simulation through barrier-interval time-parallelism. In
2012 IEEE 20th International Symposium on Modeling, Analysis Simu-
lation of Computer and Telecommunication Systems (MASCOTS), pages
117–126, August 2012.

[10] T. E. Carlson, W. Heirman, K. V. Craeynest, and L. Eeckhout. Barri-
erPoint: Sampled simulation of multi-threaded applications. In Pro-
ceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 2–12, March 2014.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core sim-
ulations. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 52:1–
52:12, November 2011.

[12] T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of
multi-threaded applications. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 2–12, April 2013.

[13] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An
evaluation of high-level mechanistic core models. ACM Transactions
on Architecture and Code Optimization (TACO), 2014.

[14] T. E. Carlson, S. Nilakantan, M. Hempstead, and W. Heirman. Epoch
profiles: Microarchitecture application analysis and optimization.
Computer Architecture Letters, 2014.

[15] M. Casas, H. Servat, R. M. Badia, and J. Labarta. Extracting the opti-
mal sampling frequency of applications using spectral analysis. Con-
currency and Computation: Practice and Experience, 24(3):237–259, March
2011.

[16] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois.
Adaptive and speculative slack simulations of CMPs on CMPs. In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 523–534, December 2010.

[17] X. E. Chen and T. M. Aamodt. Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRs. ACM Trans. Archit. Code
Optim., 8(3):10:1–10:28, October 2011.

BIBLIOGRAPHY 121

[18] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. John-
son, J. Keefe, and H. Angepat. FPGA-accelerated simulation technolo-
gies (FAST): Fast, full-system, cycle-accurate simulators. In Proceedings
of the Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 249–261, December 2007.

[19] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for
exploiting memory-level parallelism. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 76–87, June 2004.

[20] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings of
the International Conference on Computer Design (ICCD), pages 468–477,
October 1996.

[21] T. Conte, M. Hirsch, and W.-M. Hwu. Combining trace sampling with
single pass methods for efficient cache simulation. IEEE Transactions
on Computers, 47(6):714–720, June 1998.

[22] Y. Cui, W. Wu, Y. Wang, X. Guo, Y. Chen, and Y. Shi. A discrete event
simulation model for understanding kernel lock thrashing on multi-
core architectures. In Proceedings of the 16th International Conference on
Parallel and Distributed Systems (ICPADS), pages 1–8, December 2010.

[23] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. In Proceedings of the
12th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 220–231, September/August 2003.

[24] M. Ekman and P. Stenström. Enhancing multiprocessor architecture
simulation speed using matched-pair comparison. In Proceedings of the
2005 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 89–99, March 2005.

[25] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A mechanis-
tic performance model for superscalar out-of-order processors. ACM
Transactions on Computer Systems (TOCS), 27(2):42–53, May 2009.

[26] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A performance
counter architecture for computing accurate CPI components. In Pro-
ceedings of the Twelfth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 175–
184, October 2006.

[27] A. Fog. Instruction tables. http://www.agner.org/optimize/
instruction_tables.pdf, April 2011.

122 BIBLIOGRAPHY

[28] A. Fog. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs, 2013.

[29] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks:
Fast userlevel locking in Linux. In Proceedings of the 2002 Ottawa Linux
Summit, pages 479–495, June 2002.

[30] R. M. Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33(10):30–53, October 1990.

[31] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation:
Raising the level of abstraction in architectural simulation. In Pro-
ceedings of the 16th IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 307–318, February 2010.

[32] A. Glew. MLP yes! ILP no. ASPLOS Wild and Crazy Idea Session, Octo-
ber 1998.

[33] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. D.
an B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages
102–113, June 2004.

[34] J. W. Haskins, Jr. and K. Skadron. Memory reference reuse latency: Ac-
celerated warmup for sampled microarchitecture simulation. In IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 195–203, March 2003.

[35] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout. Us-
ing cycle stacks to understand scaling bottlenecks in multi-threaded
workloads. In Proceedings of the IEEE International Symposium on Work-
load Characterization (IISWC), pages 38–49, November 2011.

[36] W. Heirman, T. E. Carlson, K. Van Craeynest, I. Hur, A. Jaleel, and
L. Eeckhout. Undersubscribed threading on clustered cache architec-
tures. In International Symposium on High Performance Computer Archi-
tecture (HPCA), February 2014.

[37] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout.
Power-aware multi-core simulation for early design stage hard-
ware/software co-optimization. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 3–12, September 2012.

[38] T. Huffmire and T. Sherwood. Wavelet-based phase classification. In
Proceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 95–104, September 2006.

BIBLIOGRAPHY 123

[39] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A Pin-based
on-the-fly multi-core cache simulator. In Proceedings of the Fourth An-
nual Workshop on Modeling, Benchmarking and Simulation (MoBS), co-
located with ISCA 2008, pages 28–36, June 2008.

[40] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
Proceedings of the 17th international conference on Parallel architectures and
compilation techniques (PACT), pages 208–219. October 2008.

[41] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS
Parallel Benchmarks and its performance. Technical report, NASA
Ames Research Center, October 1999.

[42] T. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA), pages 338–349, June 2004.

[43] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Moti-
vation for variable length intervals and hierarchical phase behavior.
In IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 135–146, March 2005.

[44] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 236–247, March 2005.

[45] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Composable perfor-
mance regression for scalable multiprocessor models. In Proceedings of
the 41st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 270–281, November 2008.

[46] T. Li, A. Lebeck, and D. Sorin. Spin detection hardware for improved
management of multithreaded systems. IEEE Transactions on Parallel
and Distributed Systems, 17(6):508–521, June 2006.

[47] J. D. Little. A proof for the queuing formula: L=�w. Operations research,
9(3):383–387, May/June 1961.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), pages 190–200, June 2005.

[49] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

124 BIBLIOGRAPHY

[50] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrast-
ing characteristics and cache performance of technical and multi-user
commercial workloads. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 145–156, October 1994.

[51] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel
simulator for multicores. In Proceedings of the 16th IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
1–12, January 2010.

[52] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. In Proceedings of the Inter-
national Symposium on High Performance Computer Architecture (HPCA),
pages 254–265, February 2006.

[53] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: a
framework for deterministic replay and reproducible analysis of par-
allel programs. In Proceedings of the 8th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 2–
11, April 2010.

[54] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. HAsim:
FPGA-based high-detail multicore simulation using time-division
multiplexing. In Proceedings of the International Symposium on High Per-
formance Computer Architecture (HPCA), pages 406–417, February 2011.

[55] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Du-
long. Detecting phases in parallel applications on shared memory
architectures. In Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), April 2006.

[56] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and
D. A. Wood. The Wisconsin Wind Tunnel: Virtual prototyping of par-
allel computers. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 48–60, May 1993.

[57] F. Ryckbosch, S. Polfliet, and L. Eeckhout. Fast, accurate, and vali-
dated full-system software simulation of x86 hardware. IEEE Micro,
30(6):46–56, November/December 2010.

[58] D. Sanchez and C. Kozyrakis. Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA), pages
475–486, 2013.

BIBLIOGRAPHY 125

[59] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Proceed-
ings of the 11th International Conference on Architectural Support for Pro-
gramming Languages and Sperating Systems (ASPLOS), pages 165–176,
October 2004.

[60] X. Shen, Y. Zhong, and C. Ding. Predicting locality phases for dynamic
memory optimization. Journal of Parallel and Distributed Computing,
67(7):783 – 796, July 2007.

[61] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 45–57, October 2002.

[62] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood. An-
alytic evaluation of shared-memory systems with ILP processors. In
Proceedings of the 25th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 380–391, June 1998.

[63] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, June 1972.

[64] V. Uzelac and A. Milenkovic. Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures. In Proceedings
of the 2009 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 207–217, April 2009.

[65] M. Van Biesbrouck, B. Calder, and L. Eeckhout. Efficient sampling
startup for SimPoint. IEEE Micro, 26(4):32–42, July 2006.

[66] M. Van Biesbrouck, T. Sherwood, and B. Calder. A Co-Phase Matrix
to guide simultaneous multithreading simulation. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 45–56, September 2004.

[67] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C.
Hoe, D. Chiou, and K. Asanovic. RAMP: Research accelerator for mul-
tiple processors. IEEE Micro, 27(2):46–57, March 2007.

[68] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe. Simulation sampling
with live-points. In International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 2–12, March 2006.

[69] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. Hoe. SimFlex: Statistical sampling of computer system simulation.
IEEE Micro, 26(4):18–31, July/August 2006.

126 BIBLIOGRAPHY

[70] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: Characterization and methodological considerations. In
Proceedings of the 22th International Symposium on Computer Architecture
(ISCA), pages 24–36, June 1995.

[71] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), pages 84–95, June 2003.

[72] M. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitec-
tural simulator. In IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), pages 23–34. April 2007.

[73] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance anal-
ysis using the mips r10000 performance counters. In Proceedings of the
1996 ACM/IEEE Conference on Supercomputing (SC), pages 16–16. IEEE,
November 1996.

