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Five dating strategies were used for determining the standardless fission-track age of the Durango apatite. These
use the same fossil-track densities but differ in themanner in which the induced-track densities are determined.
A conventional age calculation,without correction for experimental factors, gives inconsistent ageswithmethod-
related differences N15%. Correcting for these factors brings the ages in line with each other and with the
reference age but leaves no room for a partial-annealing correction based on the confined-track lengths.
Three further reasons suggest that a length correction is not appropriate. (1) The evidence for length-
based corrections is inconclusive. (2) The plateau age of the Durango apatite is consistent with its apparent
fission-track age to within 1%. (3) The calculated effective etchable length of the fossil tracks agrees within
error with that of the induced tracks; both are further consistent with the measured mean length of confined
induced tracks. The circumstance that the (U,Th)/He ages of the accepted and proposed apatite age standards
are consistent with their reference ages leaves no margin for a lowered fission-track age resulting from partial
annealing, although the case of the Durango apatite itself is inconclusive because of its exceptional crystal size.
It is conjectured that the shortening of the fossil tacks in the Durango apatite is due to a lowering of the track
etch rate over time. In this case, annealing equations fitted to induced-track data underestimate the extent of
confined-track-length reduction in geological samples.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction: premises

The progress of the fission-track dating method can be divided into a
time before and an almost equal time since the recommendation of the ζ-
calibration (Hurford, 1990a, b). During the first period, it was dogged by
problems associated with the 238U-fission constant, neutron-fluence
measurement and experimental factors related to the dating techniques
(Bigazzi, 1981). Since the acceptance of the ζ-calibration and the develop-
ment of apatite (T,t)-path modelling (Crowley, 1985; Green et al., 1989),
it has met with great practical success. A decade before the
ζ-recommendation, Bigazzi (1981) proposed two strategies for overcom-
ing the problems of the fission-track method. One comes down to what
became the ζ-calibration. The other involves solving themethodological
problems in three steps: (1) achieving accurate neutron-fluence mea-
surements, (2) eliminating errors associatedwith the dating techniques,
and (3) establishing a reliable correction for partial annealing of the fos-
sil tracks. The question of the 238U-fission constant would then resolve
itself.

Our contribution sets out from the premise that neutron-fluencemea-
surements using the recommended metal monitors (Au, Co) and well-
ische Universität Bergakademie
chsen), Germany.
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thermalized irradiation facilities are no longer an issue (Bigazzi et al.,
1990; Curvo et al., 2013; De Corte et al., 1991, 1995; Van den haute
et al., 1988, 1998). Our second assumption is that thematter of thefission
constant has been settled following recent redeterminations (Eikenberg
et al., 1993; Guedes et al., 2000, 2003; Suzuki, 2005; Yoshioka et al.,
2005) and reassessments (Holden, 1989; Holden and Hoffman, 2000).
Our work concentrates instead on steps (2) and (3) of Bigazzi's (1981)
research program by using five dating methods, requiring method-
specific corrections for experimental factors, for determining the stan-
dardless fission-track age of the Durango apatite.

2. Adjusted age equation

Natural apatite contains trace amounts of uranium. A fraction of the
isotope 238U undergoes spontaneous fission over geological time. The
nuclear fragments, moving in opposite directions through the lattice,
produce a single ca. 20-μm long (Bhandari et al., 1971; Jonckheere,
2003a, b), b10-nm diameter (Afra et al., 2011; Jaskierowicz et al., 2004;
Lang et al., 2015; Li et al., 2014; Miro et al., 2005; Paul and Fitzgerald,
1992; Schauries et al., 2014) fossil fission track. The number of tracks
per unit volume (NS) is proportional to the age (t) and 238U content
(U238) of the sample and the spontaneous-fission rate (λF) of 238U (Eq. 1).

NS ¼ λF t U238 ð1Þ
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Fission tracks also form when apatite is irradiated in a reactor. The
thermal neutrons in the reactor spectrum cause a fraction of the 235U
isotope to fission, producing induced fission tracks. The number of
induced tracks per unit volume (NI) is proportional to the concentration
of 235U (U235) and the fission rate RF = σ ϕ, wherein ϕ is the thermal-
neutron fluence and σ the effective cross-section for 235U-fission by
thermal-neutron capture (Eq. 2).

NI ¼ σ ϕ U235 ð2Þ

It follows from Eqs. (1) and (2) that:

t ¼ λFð Þ−1 NS=NIð Þ U235=U238ð Þ σ ϕ ð3Þ

Eq. (1) neglects the depletion of 238U by spontaneous fission and
α-disintegration. An exact equation derived by Price and Walker
(1963) implies that Eq. (1) is accurate to within 1% for t b 1010 a.
Eq. (2) does not account for burn-up of 235U or for the production
of induced tracks by epithermal- and fast-neutron fission of 235U.
Eqs. (1) and (2) furthermore do not consider spontaneous or induced
fission of other isotopes. In practice, these are negligible for the neutron
fluences required for dating apatite and for irradiations in well-
thermalized reactor channels (Tagami and Nishimura, 1992; Wagner
and Van den haute, 1992). Eq. (3) is adequate for dating samples up to
100 Ma.

There is a complication related to the 235U-fission rate RF = σ ϕ in
Eq. (3), when ϕ is calculated from the γ-activities of co-irradiated
metal-activation monitors (Au, Co). This calculation is in practice based
on the “simple” Høgdahl formalism, which can cope with non-ideal
epithermal-neutron spectra, and gives the conventional sub-cadmium
neutron fluence ϕS. The Høgdahl formalism is however not suited for
non-(1/v) reactions such as thermal-neutron induced 235U fission. The
appropriate formalism for non-(1/v) reactions is the more sophisticated
Westcott convention, which includes the g(Tn) correction factor
(Westcott g-factor; Tn: Maxwellian neutron temperature) and uses the
conventional total (Westcott) neutron fluence ϕW. It can be shown
that in well-thermalized irradiation channels ϕW ≈ ϕS (ϕW = β ϕS). In
channel 8 of the Thetis nuclear reactor (Universiteit Gent; thermal to
epithermal fluence ratio: f = 155; epithermal spectrum parameter:
α = 0.10), used for the irradiations in this work, β = 1.0025
(Jonckheere, 1995; Verheijke, 1994) and g(Tn) = 0.9832 (Holden,
1999; Tn = 27 °C: Wagemans et al., 1988). Another consideration con-
cerns the rare-earth-element content of the Durango apatite, in particu-
lar the Gd concentration of up to 200 ppm. Its high neutron-absorption
cross-section (ca. 49,000 b) can cause fluence depression in the samples
of up to ca. 4% (Naeser and Fleischer, 1975). The calculated correction
factor for thermal-neutron shielding (Gth; De Corte et al., 1991) in the
Durango sections dated here is Gth = 0.986 ± 0.001 (Bellemans, pers.
com.; Jonckheere, 2003b). Combining these factors, the fission rate
RF = σ ϕ in Eq. (3) can be rewritten as:

RF ¼ g Tnð Þ σ0ð Þ Gth β ϕSð Þ ¼ 0:972 σ0 ϕSð Þ: ð4Þ

σ0 is the conventional (2200 m/s) fission cross-section of 235U (σ0 =
586 ± 3 b; Holden and Holden, 1989) and ϕS the conventional
subcadmium neutron fluence calculated from the measured γ-activities
of the co-irradiated metal-activation monitors using the Høgdahl
formalism.

The natural isotopic ratio I = θ235/θ238 (7.253 10−3; Cowan and
Adler, 1976) is substituted for (U235/U238) in Eq. (3) for calculating the
age of a sample. This is accurate if U238 and U235 in Eqs. (1)–(3) refer
to the same elemental uranium concentration, i.e. if the fossil and
induced fission-track densities, NS and NI, have been produced by the
same concentration of uranium atoms. Natural apatite minerals often
exhibit within-grain and between-grain uranium inhomogeneities. For
this reason, the estimates of NS and NI are either each averaged over
representative grain samples (multi-grain or population methods) or
both measured in the same grains (single-grain or matched-areas
methods; Gleadow, 1981; Galbraith, 1981).

The external-detector method (Gleadow, 1981) is the single-grain
methodmost used for dating. The fossil tracks are counted in a polished
internal apatite surface and the induced tracks in an external detector
irradiated in contact with it. Thus, the fossil tracks result from uranium
fission on both sides of the etched apatite surface (4π-geometry)
whereas the induced tracks result from uranium fission on one side of
the surface of the external detector (2π-geometry). The ratio of the
fossil to induced-track densities (ρS/ρI) is therefore multiplied by a
geometry factor G (= 2π/4π). This also applies to the re-etch method
(Gleadow, 1981), where the induced tracks are counted in an external
apatite surface.

The Durango apatite dated in this work consists of cm-sized crystals,
which were cut into ca. ½-mm thick sections for the specific purpose of
comparing the fission-track ages of basal and prism faces. Part of the
analyses was carried out with a population method. In our case this
did not involve different aliquots but different sections from a single
crystal (Section 3). One section was annealed and irradiated for
counting the induced tracks, while the adjoining section, which was
neither annealed nor irradiated, was used for counting the fossil tracks.
In the presence of uranium-concentration gradients, this presents a risk
of systematic error. To avoid it, both sections were re-irradiated in
contact with muscovite external detectors. A correction factor U can
then be calculated from the induced-track densities ρED in both external
detectors and the respective neutron fluences ϕS:

U ¼ ρED=ϕSð ÞI= ρED=ϕSð ÞS: ð5Þ

The subscripts outside the brackets refer to the irradiations of the sec-
tions with fossil (S) and induced (I) tracks. The single-grain dating
methods present a similar problem. For the external-detector and
re-etch methods (Gleadow, 1981), it is assumed that half the uranium
that produced the fossil tracks is not available for producing induced
tracks during neutron irradiation. In the presence of significant short-
range uranium variation perpendicular to the apatite surface, this
assumption is invalid. We have no means of accounting for it, and
assume that it is negligible (U = 1). With the repolish method
(Gleadow, 1981), there is a small offset between the sections used for
counting the fossil and induced tracks due to the intervening repolish.
It is again assumed that no correction is required.

NS and NI in Eq. (3) are volumetric track densities. In practice, the
fossil and induced tracks intersecting the detector surface are enlarged
by etching and their areal densities (ρS and ρI) are determined by
counting under a microscope. Because of etching and observation
effects, the track-counting efficiencies [ηq]S and [ηq]I (Jonckheere,
1995, 2003b; Wagner and Van den haute, 1992) are in general b1. For
dating methods where ρS and ρI are determined in different track-
registration geometries, it cannot be assumed that [ηq]S = [ηq]I
(Jonckheere and Van den haute, 1998, 1999, 2002). This is accounted
for by introducing a procedure factor Q = [ηq]I/[ηq]S and substituting
(NS/NI) = Q (ρS/ρI) in Eq. (3).

It is expedient to introduce an etch-time factor T for the re-etch
method (Gleadow, 1981), in which the fossil tracks are etched before
(ρS(tE); tE: etch time) and after irradiation (ρS(2tE) + ρI(tE)). Because
of the etch-time difference, it should not be assumed that the fossil
tracks are revealed and identified the same in both counts
([ηq]S(2tE) ≠ [ηq]S(tE) or ρS(2tE) ≠ ρS(tE)). T can be determined from
step-etch experiments (T= ρS(tE)/ρS(2tE)). T is important for correcting
for the effect of residual etch figures, i.e. etch pits that persist after the
lower track end-points have been overtaken by surface etching
(Jonckheere and Van den haute, 1996).

A fission fragment crossing frommineral to external detector leaves
a damage trail in both. However, not every etched track in the mineral
corresponds to one in the external detector (Iwano and Danhara,
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1998; Iwano et al., 1992, 1993; Jonckheere, 1995, 2003b) due to their
different track-revelation thresholds (range deficits; Fleischer et al.,
1975). A fraction of the fission fragments crossing the contact between
an apatite sample and a muscovite external detector leaves an etchable
track in the mica but not in the apatite (Jonckheere, 2003b). This
requires an additional correction factor R (= 1.21 ± 0.03; range deficit
factor) in Eq. (3).

The number of etched tracks intersecting a unit surface (ρ) is a func-
tion of their etchable length (l; Fleischer et al., 1975). Due to geological
annealing, the etchable lengths of fossil tracks (lS) in natural apatites are
shorter than those of induced tracks (lI). A correction factor L can be
included in Eq. (3) for dating the onset of track retention, i.e. for calcu-
lating the age of the oldest surviving track, allowing for subsequent
partial annealing. The relationship between the mean length (l/l0) and
density (ρ/ρ0) of induced tracks has been investigated in annealing
experiments (Green, 1988; Laslett et al., 1984; Naeser et al., 1989;
Watt and Durrani, 1985; Watt et al., 1984). The equations fitted to the
data (Crowley, 1993; Guedes et al., 2004; Ketcham, 2005; Ketcham
et al., 2000; Lutz and Omar, 1991; Naeser et al., 1989; Tello et al.,
2006;Willett, 1997) agree on an approximate 1:1 relationship between
(ρ/ρ0) and (l/l0) down to l/l0 ≤ 0.7. The fossil tracks in the Durango apa-
tite are ca. 10% shorter than the induced tracks (Gleadow et al., 1986;
Green, 1988; Green et al., 1986). The length-correction factor is thus
given by: L ≈ lI/lS, although its exact value would be slightly higher
due to the broadening of the fossil-track-length distribution, and some-
what dependent on the annealing equations and (T,t)-history
(Wauschkuhn et al., 2015a).

The lengths used for age correction are those of the fossil (lS) and
induced (lI) confined tracks. However, with the aid of the track-
counting efficiencies (ηq) and known physical constants, it is possible
to calculate the effective lengths of the fossil (lS,0) and induced (lI,0)
tracks from the corresponding track densities (ρS, ρI). This requires a
known reference age, an independent estimate of its uranium concen-
tration, and that the thermal-neutron fluence has been measured with
metal-activation monitors. The equations for calculating the uranium
content from the track densities (ρED) in co-irradiated external detec-
tors (Enkelmann et al., 2005a; Hoffmann et al., 2008), the standardless
fission-track ages (ϕ-ages; Jonckheere, 2003b) and the effective length
Table 1
Equations, physical constants and numerical values for calculating the uranium concentrations
the fossil and induced tracks. Reactor-specific values refer to channel 8 of the Thetis reactor (U
etching conditions in this work. Errors are 1σ.

Equation Factor

(6) Uranium concentration: dA

½U� ðppmÞ ¼
"

2 AU ½2R�M106

gED ½ηq�ED ½2R�A lM Gth gðTnÞ β σ0 θ235 dA NA
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(7) FT age (no subtraction):

tA ¼ ð 1
λα

Þ ; ln ½ðλα

λF
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lI;0 ðμmÞ ¼
"

2 AU 106

gIS ½ηq�IS Gth gðTnÞ β σ0 θ235 dA NA

i
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ρS
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tR
of the fossil and induced tracks (Jonckheere, 1995) are summarized in
Table 1, with the requisite numerical values.

3. Samples and experiments

The experiment was carried out on the Durango apatite from the
Oligocene Cerro de Mercado iron-ore deposit (Durango, Mexico),
where it occurs in association with martite within a volcanic series
(Alva-Valdivia et al., 2001; Corona-Esquivel et al., 2007, 2009; Foshag,
1929; Lyons, 1988; McDowell et al., 2005; McDowell and Keizer,
1977; Swanson et al., 1978). The distinctive cm-sized transparent yel-
low crystals contain inclusions and exhibit chemical zonation (Hasebe
et al., 2013; Johnstone et al., 2013; Marks et al., 2012; Pellas and
Perron, 1984). Its crystal properties (a = b = 9.3955 Å; c = 6.8801 Å;
Stock et al., 2015; Young et al., 1969) and chemical composition are
well established, with substantial substitutions of LREE at the Ca2+(2)-
site and HREE at the Ca2+(1)-site, charge balanced by Na+/Ca2+ and
Si4+/P5+ substitutions (Rønsbo, 1989) and a F:Cl-ratio of ca. 8:1.
(Barbarand and Pagel, 2001a, b; Barbarand et al., 2003a; Belousova
et al., 2002; Carlson et al., 1999; Goldoff et al., 2012; Marks et al., 2012;
McCubbin et al., 2010; Morishita et al., 2008; Patiño Douce et al., 2011;
Roeder et al., 1987; Rogers et al., 1984; Teiber et al., 2015; Yang et al.,
2014; Young et al., 1969). The actinide concentrations are ca. 7–
22 ppm U and 150–380 ppm Th (Abdullin et al., 2014; Boyce and
Hodges, 2005; Chew et al., 2014; Johnstone et al., 2013; Kimura et al.,
2000; Morishita et al., 2008; Soares et al., 2014; Young et al., 1969).

Table 2 summarizes some geochronological data relating to the
Durango apatite; classical fission-track ages are not included. The
Fission TrackWorkingGroup of the I.U.G.S. Subcommission onGeochro-
nology recommended the Durango apatite as one of two apatite age
standards for fission-track dating (Hurford 1990a, b). It has since also
been adopted as an age-reference material for apatite (U,Th)/He dating
and for other datingmethods as well. Although the reference age of the
Durango apatite is not specified in the recommendation, it is under-
stood that the recommended value is that based on the K/Ar ages of
ignimbrites bracketing the Mercado Iron Member, determined by F.W.
McDowell (McDowell and Keizer, 1977), reported by Naeser and
Fleischer (1975) and recalculated by Green (1985) with the constants
, the fission-track ages and plateau age of the Durango apatite and the effective lengths of
niversiteit Gent). Values specific to the track counts and length measurements refer to the

Value Reference

3.2 ± 0.1 g cm−3 McConnel (1973)
6.022 1023 Avogadro's number
238.08 mass uranium atom
0.00720 Steiger and Jäger (1977)

7.253 10−3 Cowan and Adler (1976)

(1.551 ± 0.007) 10−10 a−1 Jaffey et al. (1971); Holden (1989)
(8.45 ± 0.10) 10−17 a−1 Holden and Hoffman (2000)
586 ± 3 barn Holden and Holden (1989)
0.9832 Holden (1999)
0.986 ± 0.001 Bellemans (pers. com.)
1.0025 Jonckheere (1995)
½ or 1 Gleadow (1981); Jonckheere (2003b)

ED/[ηq]IS Method-dependent procedure factor
0.91 ± 0.01 Jonckheere and Van den haute (2002)
1.01 ± 0.01 Jonckheere and Van den haute (2002)
0.91 ± 0.01 Jonckheere and Van den haute (2002)
0.962 ± 0.017 Jonckheere (2003b)

1.21 ± 0.03 Jonckheere (2003b)

Table 3 Enkelmann et al. (2005a)
Table 5 Jonckheere and Van den haute (1996)
14.5 ± 0.1 μm Jonckheere and Van den haute (2002)
16.3 ± 0.1 μm Jonckheere and Van den haute (2002)
20.5 ± 0.3 μm Bigazzi (1967); Nagpaul et al. (1974);

Guedes et al. (2008)
31.4 ± 0.3 Ma McDowell and Keizer (1977);Green (1985)



Table 2
Published geochronological and induced and fossil track-length data for the Durango apatite. N: number of measurements; method: decay process on which the age determination is
based; (U,Th)/He does not mean that Sm is not considered (see references formethodological details); tE (s): etching time; CE (MHNO3): etchant concentration; TE (°C): etchant temper-
ature; RT: room temperature; (1) 207Pb-corrected 238U/206Pb-age; (2) uncorrected 232Th/208Pb-age; (3) Concordia age (65 μm spot); (4) Concordia age (110 μm spot); (5) 207Pb-corrected
mean age; (6) 204Pb-corrected Concordia age; (7) calculated with (U,Th)-concentrations from Zeitler et al. (1987); (8) calculated with (U,Th)-concentrations from Young et al. (1969)
and Naeser and Fleischer (1975); (9) laser degassing; (10) furnace degassing; (11) Durango apatite uranium standard; (12) Mud Tank apatite uranium standard; (13) number of dated units;
(14) tracks etched 10 min after irradiation; (15) tracks etched 41 days after irradiation. Errors recalculated to 1σ.

Age (Ma) N Method Reference

Individual measurements
30.6 ± 1.2(1)|32.5 ± 0.6(2) 19|19 U/Pb|Th/Pb Chew et al. (2011)
33.0 ± 1.2 45 U/Pb Chew and Donelick (2012)
31 ± 2 18 U/Pb Li et al. (2012)
32.2 ± 2.7(3)|32.0 ± 1.5(4) 10|5 U/Pb Thomson et al. (2012)
32.0 ± 0.3(5)|31.8 ± 0.2(6) 36|36 U/Pb Chew et al. (2014)
31.1 ± 0.3 12 U/Pb Cochrane et al. (2014)
31.4 ± 0.3 14 K/Ar McDowell and Keizer (1977);Green (1985)
31.4 ± 0.1 4(13) Ar/Ar McDowell et al. (2005)
43.2(7)| 32.2(8) 1 (U,Th)/He Zeitler et al. (1987)
33.9 1 (U,Th)/He Wolf et al. (1996)
27.5 ± 1.5 1 (U,Th)/He Warnock et al. (1997)
32.3 ± 0.2 25 (U,Th)/He House et al. (1999)
32.1 ± 1.7(9)|32.1 ± 1.7(10) 11|16 (U,Th)/He House et al. (2000)
31.0 ± 0.2 24 (U,Th)/He McDowell et al. (2005)
31.4 ± 0.3 34 (U,Th)/He Solé and Pi (2005)
32.8 ± 1.8 11 (U,Th)/He Foeken et al. (2006)
30.9 ± 0.9 17 (U,Th)/He Spiegel et al. (2009)
34.1 ± 0.6 5 (U,Th)/He Gong et al. (2013)
32.2 ± 1.0 15 (U,Th)/He Johnstone et al. (2013)
30.5 ± 2.2 – (U,Th)/He Mahéo et al. (2013)
31.0 ± 0.3 61 (U,Th)/He Shan et al. (2013)
30.6 ± 0.7 3 (U,Th)/He Zeng et al. (2013)
32.6 ± 1.5 6 (U,Th)/He Legrain et al. (2014)
32.6 ± 0.7 3 (U,Th)/He Cox et al. (2015)
33.7 ± 1.8 9 (U,Th)/He Hoke et al. (2015)
31.7 ± 9.4 2 (U,Th)/Ne Gautheron et al. (2006)
34.5 ± 3.3 9 (U,Th)/Ne Cox et al. (2015)
34.2 ± 8.6 1 (U,Th)/(Ne,He) Gautheron et al. (2006)
29.7 ± 1.9 1 FT ICP-MS Hasebe et al. (2004)
31.2 ± 0.2 104 FT ICP-MS Abdullin et al. (2014)
31.4 ± 2.5(11)|31.8 ± 2.4(12) 1|1 FT ICP-MS Soares et al. (2014)

Lab averages
32.1|32.0 N30 (U,Th)/He Caltech (Farley, 2000, 2002)
31.0 ± 0.9 70 (U,Th)/He CSIRO (Evans et al., 2005)
31.9 ± 0.1 169 (U,Th)/He Arizona (Reiners and Nicolescu, 2006)
32.1 ± 1.1 156 (U,Th)/He Yale (Min et al., 2006)
31.7 ± 0.3 59 (U,Th)/He Tübingen (Danišík et al., 2008)
31.1 ± 0.9 23 (U,Th)/He Curtin (Danišík et al., 2012)
30.8 ± 1.4 38 (U,Th)/He Waikato (Piotraschke et al., 2015)

Track length (μm) tE (s) CE (M) TE (°C) Reference

Induced tracks
15.2 ± 0.1 180 0.8 RT Green (1981)
15.0 ± 0.1–15.2 ± 0.2 45 0.8 RT Watt et al. (1984)
15.2 ± 0.1–17.1 ± 0.1 45–180 0.8 RT Watt and Durrani (1985)
15.9 ± 0.1–16.5 ± 0.1 20 5.0 20 Gleadow et al. (1986); Green et al. (1986)
15.9 ± 0.1 20 5.0 20 Green (1988)
16.2 ± 0.1–16.6 ± 0.1(14) 25 5.0 23 Donelick et al. (1990)
16.2 ± 0.1–16.3 ± 0.1(15) 25 5.0 23 Donelick et al. (1990)
16.2 ± 0.1–17.5 ± 0.1 15–60 5.5 21 Carlson et al. (1999)
15.3 ± 0.8 55 0.8 22 Barbarand and Pagel (2001b)
16.3 ± 0.2 50 0.8 20 Iunes et al. (2002)
16.3 ± 0.1 60 0.4 25 Jonckheere and Van den haute (2002)
15.8 ± 0.1–16.1 ± 0.1 20 5.0 20 Barbarand et al. (2003b)
15.8 ± 0.1–16.0 ± 0.1 20 5.0 20 Barbarand et al. (2003a)
17.0 ± 0.1–17.3 ± 0.1 47 5.0 20 Ravenhurst et al. (2003)
16.1 ± 0.1–16.3 ± 0.1 50 1.3 20 Tello et al. (2006)
16.1 ± 0.1–16.2 ± 0.1 20–40 5.5 21 Jonckheere et al. (2007)
16.2 ± 0.1–16.4 ± 0.1 15–35 4.0 25 Jonckheere et al. (2007)
16.2 ± 0.1–16.5 ± 0.1 20 5.5 21 Chew and Donelick (2012)
15.8 ± 0.1 20 5.0 20 Schmidt et al. (2014)

Fossil tracks
14.1 ± 0.1–14.8 ± 0.1 20 5.0 20 Gleadow et al. (1986)
14.2 ± 0.1 20 5.0 20 Green (1988)
14.9 ± 0.1 65 0.4 25 Jonckheere et al. (1993)
13.9 ± 0.2–14.9 ± 0.2 50 0.8 20 Iunes et al. (2002)

(continued on next page)
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Table 2 (continued)

Track length (μm) tE (s) CE (M) TE (°C) Reference

14.5 ± 0.1 60 0.4 25 Jonckheere and Van den haute (2002)
Fossil tracks
14.3 ± 0.1 70 0.4 25 Enkelmann and Jonckheere (2003)
14.3 ± 0.1 20 5.5 21 Enkelmann and Jonckheere (2003)
13.7 ± 0.1–14.7 ± 0.1 20 4.0 25 Jonckheere et al. (2007)
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recommended by Steiger and Jäger (1977): 31.4 ± 0.5 Ma (2σ; com-
ment (5) to Tables 2 in Hurford, 1990a, b). This value was confirmed
and specified by Ar/Ar dating of the same units: 31.4 ± 0.2 Ma (2σ;
McDowell et al., 2005). The other radiometric ages in Table 2 have
been determined on the Durango apatite itself, but are less precise or
have been obtained with methods susceptible to methodological issues
(low age; low U content; high Th/U-ratio; radiation damage effects)
that have only begun to be addressed, or both. The recommended refer-
ence age is therefore adopted here: 31.4 ± 0.5 Ma (2σ).

Sixteen sections were cut from four Durango apatite crystals with a
Struers Accutom 50 instrument, four from each crystal. Two crystals
were cut perpendicular to the c-axis, giving eight basal sections; the
two remaining crystals were cut parallel to the c-axis, giving eight
prism sections. Four basal sections and four prism sectionswere annealed
for 10 h at 450 °C to erase the fossil tracks, and mounted in resin. After
curing for 24 h at 45 °C, the mounts were ground and polished with
6-μm, 3-μm and 1-μm diamond pastes on a Struers DPU-4 apparatus.
The thickness of the mounts was reduced to 2 mm before irradiation. A
1-cm2 muscovite external detector was attached to each mount. The
samples were stacked in an irradiation can, together with Au, Co and
Cu monitors for determining the thermal-neutron fluence (Au, Co) and
axial and radial fluence gradients (Cu), and irradiated in channel 8 of
the Thetis-reactor of the Universiteit Gent. All but one basal and one
prism section with induced tracks were again cut out of the resin after
the irradiation (Fig. 1).

Each sectionwas pairedwith onewhichhad adjoined it in the crystal
and that had not been annealed or irradiated. Four setswere assembled;
each set comprised a pair of basal sections and a pair of prism sections.
Each such pair consisted of a section with fossil tracks and one with
induced tracks. One set was annealed for 1 h at 250 °C in a Naber N3
muffle oven, another set at 300 °C and a third at 350 °C; the fourth set
Fig. 1. Schematic organization of the experiment, showing the 8 basal and 8 prism sections of D
dating with different methods and for the determination of the plateau age. See text for detail
was not annealed. The purpose of these annealing steps was to deter-
mine the plateau age of the Durango apatite. Because of a transient
5 °C temperature drop following insertion of the samples in the oven
and 5 °C oscillations during the experiment, the cited temperatures
are nominal. This has no consequences for the plateau age because the
pairs of sections with fossil and induced tracks were annealed in close
contact. The basal and prism sections with induced tracks of the
unannealed set had beenpolishedbefore irradiation andnot unmounted
or repolished after. The induced tracks were thus registered in external
apatite surfaces (2π) while the fossil tracks in the corresponding
unirradiated sections were registered in internal surfaces. This
made it possible to date the Durango apatite with a variant of the
population method, not used for dating applications (method B). It
hasmethodological interest, however, because, in contrast to the familiar
population method (method A), it involves a geometry factor of ½ and
ηq-factor for induced-track counts in an external apatite surface, [ηq]ES,
resulting in a Q-factor like that for the re-etch method (method D).

The fourteen unmounted apatite sectionswere thereuponmounted in
resin, ground and polished as before. All apatite sections were etched for
60 s in 2.5% HNO3 at 25.0 ± 0.1 °C in a forced-circulation thermostatic
bath. The etchant temperature was recorded with a Julabo TD-300
digital thermometer with a Pt-100 sensor. After etching and rinsing in
p.a. ethanol, the eight sections with fossil tracks were covered with
1-cm2 muscovite external detectors, stacked in an irradiation can
with Au, Co and Cu monitors for measuring the thermal-neutron
fluence (Au, Co) and axial and radial fluence gradients (Cu), and
irradiated in channel 8 of the Thetis reactor. After irradiation, the external
detectors were detached and etched, together with those from the first
irradiation, for 20 min in 40% HF at 25.0 ± 0.1 °C.

At this stage, there were sixteen etched apatite sections and their cor-
responding external detectors (Fig. 1). Four apatite sections, the basal and
urango apatite and their external detectors, the two irradiations, and the samples used for
s.
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prism sections with fossil tracks and those with induced tracks that had
not been annealed after the first irradiation were used for the age deter-
minations. The remaining twelve sections that had been partially
annealed, i.e. a pair of basal sections and a pair of prism sections annealed
for 1 h at 250 °C and the corresponding pairs annealed at 300 °C and 350
°C were used for determining the plateau age. The external-detector
counts were used for calculating the uranium content of all sections.

The weights of the co-irradiated metal-activation monitors were
measured on electronic and mechanical scales to a precision of 0.01%;
the maximum deviation between the instruments was b0.1%. The
γ-activities were measured on a single-open-ended Ge(Li) detector
linked to a Canberra-S40 4000-channel analyser. Thewireformmonitors
werewound into tight spiralswith approximate point source geometries
and measured at the reference distance of 15 cm, for which a peak-
detection-efficiency calibration curve (log εP vs. log Eγ) had been
established by reactor staff with the aid of calibrated point sources. The
measurements were continued until N50,000 counts had been collected
under each peak. Accidental and true-coincidence losses are negligible
for the source-detector distance and low count rates of the measure-
ments (Moens, 1981). The peak areas were calculated assuming a sig-
moidal background for the 411.8 keV 198Au γ-peak and the 1173.2 keV
and 1332.5 keV 60Co γ-peaks (Sequal program; Op de Beeck, 1976)
and a trapezoidal background for the 511.0 keV 64Cu annihilation peak
(Trap program). The fluence calculations were carried out in the
Høgdahl convention using the formulae and nuclear constants in Van
den haute et al. (1988) and De Corte et al. (1991). The unweighted
mean of the fluences calculated from the 1173.2 keV and 1332.5 keV
60Co γ-peaks was taken as the final Co-fluence, and averaged with the
value calculated from the 411.8 keV 198Au γ-peak to obtain the final
estimate of the sub-cadmium neutron fluence in the Høgdahl formalism
(ϕS). Fluence gradients were calculated from the 511.0 keV activities of
the Cu monitors (Van den haute and Chambaudet, 1990) and assumed
linear over the dimensions of the sample stack. The fluence for each
sample was calculated by interpolation.

The track counts in apatite were carried out in transmitted light
with an Olympus BH-2 microscope, equipped with a dry no-cover
100× objective and 10× eye pieces. The nominal magnification, includ-
ing a drawing tube factor (1.25×), was 1250×. The size of the 10 × 10
counting grid was calibrated with a Graticules (50 × 2)-μm stage
micrometre and amounted to 78.5 μm × 78.5 μm (6.16 10−5 cm2); the
actual overall magnification was 1274×. The track counts in the external
detectors were carried out with cover glass and a 100× oil-immersion
objective and 10× eye pieces. The size of the counting grid was
82.9 μm ×82.9 μm (6.87 10−5 cm2) and the actual magnification
1206×. The cover glass served to protect the mica, which is more easily
scratched and more difficult to clean than the apatite mounts.

These and the following experimental steps had four goals: (1) as-
certaining the uranium concentration of the apatite sections; (2) dat-
ing basal and prism sections of the Durango apatite with the
population method (A), a variant of the population method (B), the
external-detector method (C), the re-etchmethod (D) and the repol-
ish method (E) (Gleadow, 1981); each method requires specific cor-
rections for experimental factors (Section 2); (3) determining the
plateau age of the Durango apatite, and (4) establishing the need, ex-
tent and appropriate method of age correction for partial annealing of
the fossil tracks. The sequence of experimental steps makes it more
practical to discuss population method (B) before (A).

Uranium concentration. The uranium concentration of the apatite sec-
tions was calculated from the induced-track densities in the external de-
tectors covering themounts during the first and second irradiations, and
the corresponding thermal-neutron fluences. The equation (Table 1; Eq.
6) is that of Jonckheere (1995), Enkelmann et al. (2005a) and Hoffmann
et al. (2008). Enkelmann et al. (2005a) reported partial results. Table 3
reports full details of the track counts. The concentrationswere calculat-
edwith themore recent value of g(Tn) (0.9832; Holden, 1999) instead of
the value used before (0.977; Wagemans et al., 1988; Section 2).
Populationmethod (B). In this case, the induced tracks were etched
in an external apatite surface. This is the result of polishing the
induced-track mounts before their irradiation. This method differs
from the familiar population method (A; Gleadow, 1981) in that
each population consists of an apatite section, within which random
fields were counted. It nevertheless has the essential feature of a
population method, i.e. counting of the fossil and induced tracks in
separate apatite aliquots (sections), one of which was annealed be-
fore neutron irradiation. In contrast to the familiar population method
(A), it requires a correction factor (Q= [ηq]I/[ηq]S) for the different etch-
ing and counting efficiencies of the fossil and induced tracks. The relevant
ηq-values are from Jonckheere and Van den haute (2002) and Jonckheere
(2003b) and summarized in Table 1. The age calculation also requires a
correction factor (U) for the difference between the uranium concentra-
tions of the apatite sectionswith fossil and induced tracks.Uwas calculat-
ed from the uranium concentrations in Table 3. The age calculation is
summarized in Tables 4 and 5.

Population method (A). The fossil-track counts for this dating
method are the same as for the above method (B). The sections
with the induced tracks were repolished and re-etched under the
same conditions as before. This obviates the need for the factor Q
as the fossil and induced tracks are now both counted in an internal
apatite surface. Population method (A) is equivalent to the familiar
method from a methodological perspective. In spite removing
50 μm from the surface of the sections with induced tracks, it is as-
sumed that the same uranium correction applies as for method (B).
The results are listed in Tables 4 and 5.

External-detector method (C). The fossil-track counts are the same
as before. The induced trackswere counted in external detectors cover-
ing the sections with fossil tracks during the second irradiation. This
method differs from the familiar external-detectormethod in that no ef-
fort is made to count the fossil and induced tracks in matching areas.
From the perspective of themethodological factors (Section 2), it is nev-
ertheless equivalent. The age calculation involves G, Q= [ηq]I/[ηq]S, and
R. In this case, [ηq]I refers to the track counts in themica external detec-
tors, in contrast to the population method (B) and the re-etch method
(D), where it refers to track counts in the external apatite surface. The
relevant correction factors (Jonckheere, 2003b) and external-detector
ages are summarized in Tables 4 and 5.

Re-etchmethod (D). The fossil-track counts are the same as before.
The basal and prism section with fossil tracks were re-etched for 60 s
in 2.5% HNO3 at 25 °C, revealing the induced tracks of the second ir-
radiation and increasing the total etch time of the fossil tracks to
120 s. The induced-track densities are given by: ρI = ρI+S − T ρS

(T: etch-time factor). Because the induced tracks were etched in an
external surface, G and Q are needed (Tables 4 and 5).

Repolishmethod (E). The fossil-track counts are the same as before.
The basal and prism sections were repolished and re-etched (60 s in
2.5% HNO3 at 25 °C), revealing the combined fossil and induced
tracks in internal surfaces. The induced-track densities were calcu-
lated by subtraction: ρI = ρI+S − ρS. The age calculations do not re-
quire G, T, Q or R (Tables 4 and 5).

Plateau age. The age of the unannealed reference sample is that
obtained before with the population method (A). The data for the age
plateauwere obtained on the pairs of basal and prism sectionswith fossil
and induced tracks annealed together between the two irradiations
(Fig. 1). The age calculation is as for population method (A), including
a correction (U) for the uranium concentrations of sections with fossil
and induced tracks (Table 6).

4. Results and discussion

4.1. Uranium concentration

The uranium concentrations calculated with Eq. (6) in Table 1 are
listed in Table 3. The differences with an earlier equation



Table 3
Calculation of the uranium concentrations of the Durango apatite samples; N: number of counted tracks; n: number of counted fields (1 field = 6.87 105 cm2); ρED (105 cm−2): induced-
track densities in the mica external detectors; σ/σP: ratio of the standard deviation of the track density distribution to that of a Poisson distribution; ϕ (1015 cm−2): thermal-neutron
fluence; ρED/ϕ (tracks/1010 neutrons); [U]FT (ppm): uranium concentration calculated from ρED/ϕ using Eq. (6); [U]NA (ppm): uranium concentrations determined by epithermal-neutron-
activation analysis. Errors are 1σ.

Mica ED Section N n ρED σ/σP ϕS ρED/ϕS [U]FT [U]NA

MSB 025 Basal 2929 255 1.67 ± 0.03 1.01 1.22 ± 0.02 1.37 ± 0.04 9.22 ± 0.45 9.17 ± 0.07
MIB 025 Basal 2990 229 1.90 ± 0.03 0.97 1.32 ± 0.03 1.44 ± 0.04 9.68 ± 0.47 9.35 ± 0.15
MSB 250 Basal 3309 258 1.87 ± 0.04 1.12 1.21 ± 0.02 1.54 ± 0.05 10.38 ± 0.50
MIB 250 Basal 3128 234 1.95 ± 0.04 1.07 1.31 ± 0.03 1.48 ± 0.04 9.99 ± 0.48

MSB 300 Basal 3464 212 2.38 ± 0.04 0.96 1.20 ± 0.02 1.98 ± 0.05 13.33 ± 0.64
MIB 300 Basal 4175 230 2.64 ± 0.04 1.03 1.30 ± 0.03 2.03 ± 0.05 13.67 ± 0.65
MSB 350 Basal 3543 216 2.39 ± 0.04 1.06 1.18 ± 0.02 2.02 ± 0.05 13.61 ± 0.65
MIB 350 Basal 4062 232 2.55 ± 0.04 1.09 1.30 ± 0.03 1.96 ± 0.05 13.19 ± 0.63

MSP 025 Prism 3860 254 2.21 ± 0.04 1.11 1.22 ± 0.02 1.81 ± 0.05 12.20 ± 0.59 12.18 ± 0.18
MIP 025 Prism 3860 237 2.37 ± 0.04 1.01 1.31 ± 0.03 1.81 ± 0.05 12.17 ± 0.58 12.05 ± 0.31
MSP 250 Prism 3297 211 2.27 ± 0.04 1.09 1.20 ± 0.02 1.89 ± 0.05 12.75 ± 0.62
MIP 250 Prism 3512 212 2.41 ± 0.04 0.96 1.31 ± 0.03 1.84 ± 0.05 12.38 ± 0.59

MSP 300 Prism 2536 207 1.78 ± 0.04 1.09 1.19 ± 0.02 1.50 ± 0.04 10.08 ± 0.50
MIP 300 Prism 2900 223 1.89 ± 0.04 1.05 1.30 ± 0.03 1.46 ± 0.04 9.79 ± 0.48
MSP 350 Prism 2526 222 1.66 ± 0.04 1.09 1.18 ± 0.02 1.40 ± 0.04 9.44 ± 0.47
MIP 350 Prism 3091 227 1.98 ± 0.04 0.96 1.29 ± 0.03 1.54 ± 0.04 10.33 ± 0.50
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(Enkelmann et al., 2005a; Hoffmann et al., 2008; Jonckheere, 1995)
are the new Westcott g-factor (0.9832; Holden, 1999) and the cor-
rection (β = 1.0025; Jonckheere, 1995) for the difference between
the Westcott and Høgdahl formalisms. Their combined effect is
b1%. Table 3 also reports the uranium concentrations of four sections
determined with epithermal-neutron-activation analysis (ENAA;
Bellemans, Institute for Nuclear Sciences, Universiteit Gent). These
are on average 1.3% lower, half of which is attributable to one sample.
The good agreement supports the value of the ηq-factor in Eq.
(6) ([ηq]ED = 0.91 ± 0.01; Table 1), which implies that the efficiency
of induced-track counts in muscovite external detectors is far lower
than 100%. This indicates that ηq is not a function of the bulk-etch rate
but of the fraction of shallow tracks (z b 0.5 μm; Jonckheere and Van
den haute, 2002) approaching the optical contrast limit of the micro-
scope. These results further endorse that the induced-track density in
an external detector is not proportional to the etchable track length in
the irradiated mineral but to that in the detector, corrected for the
length deficit in both (Jonckheere, 2003b). The uranium results can
also be interpreted as evidence for accurate neutron-fluence determina-
tionswith the aid of dilutemetal-activationmonitors (Au, Co). It is impor-
tant that this evidence is not affected by the interdependence of ϕ and λF
(ϕ/λF-problem), which has long been considered an unsurmountable
obstacle to standardless dating, and heralded the ζ-calibration
(Hurford, 1990a, b, 1998; Hurford and Green, 1981, 1983).
Table 4
Conventional calculation of the fission-track age of the Durango apatite. A: population method
duced-track counts in an external apatite surface; C: external-detector method; D: re-etch me
induced (I) tracks (IS: internal section; ES: external surface; ED: external detector); NS, NI:
(S) and induced (I) tracks (IS and ES: 1 field = 6.16 10−5 cm2; ED: 1 field = 6.87 10−5 cm2);
ρI); ϕS (1015 cm−2): Høgdahl thermal-neutron fluence; [tFT]C (Ma): conventional fission-track

Method Section [RG]S Ns nS ρS [R

A Basal IS 2205 246 1.45 ± 0.03 IS
A Prism IS 3172 267 1.93 ± 0.04 IS
B Basal IS 2205 246 1.45 ± 0.03 ES
B Prism IS 3172 267 1.93 ± 0.04 ES
C Basal IS 2205 246 1.45 ± 0.03 ED
C Prism IS 3172 267 1.93 ± 0.04 ED
D Basal IS 2205 246 1.45 ± 0.03 ES
D Prism IS 3172 267 1.93 ± 0.04 ES
E Basal IS 2205 246 1.45 ± 0.03 IS
E Prism IS 3172 267 1.93 ± 0.04 IS
The uranium concentrations in Table 3 give an indication of the
uranium distribution at different scales. The ratios of the standard
deviations of the track-density distributions to those of the corre-
sponding Poisson distributions (σ/σP) are on average somewhat
higher than 1 (mean: 1.04), indicating the absence of substantial
uranium inhomogeneities at the scale of the counting grid
(N0.01 mm2). The ratio of the standard deviations of the values for
the four sections fromeach crystal to their average statistical uncertainties
is of the same order (mean: 1.11), allowing a similar conclusion
concerning uranium inhomogeneities between sections at the scale of
the areas counted within each (N1 mm2). In contrast, the differences be-
tween crystals (up to 30%) aremuch larger than the variationwithin each
(standard-deviation ratio N10), as noted by Naeser and Fleischer (1975).

4.2. Apparent fission-track age

Table 1 lists the equations and the physical and empirical constants
used for calculating the fission-track ages without (Eq. 7; population
and external-detector methods) and with subtraction (Eq. 8; re-etch
and repolish methods). No annealing correction is involved at this
stage; the results are thus apparent ages, not corrected for shortening
of the fossil tracks (L = 1). Table 4 summarizes the track counts and
neutron fluences and lists the results of a conventional age calculation,
i.e. leaving out the method-specific corrections for experimental factors
with induced-track counts in an internal apatite section; B: population method with in-
thod; E: repolish method; [RG]S, [RG]I: registration geometries of the fossil tracks (S) and
fossil (S) and induced (I) tracks counts; nS, nI: number of fields counted for the fossil
ρS, ρI (105 cm−2): surface-track densities of the fossil (S) and induced (I) tracks (*: ρS +
age. Errors are 1σ.

G]I NI nI ρI ϕS [tFT]C

4265 219 3.16 ± 0.05 1.32 ± 0.03 29.6 ± 1.0
4610 190 3.94 ± 0.06 1.31 ± 0.03 31.3 ± 1.0
2500 225 1.80 ± 0.04 1.32 ± 0.03 26.0 ± 1.0
2907 219 2.15 ± 0.04 1.31 ± 0.03 28.6 ± 1.0
2929 255 1.67 ± 0.03 1.22 ± 0.02 25.9 ± 0.9
3860 254 2.21 ± 0.04 1.22 ± 0.02 25.9 ± 0.9
2226 123 *2.94 ± 0.07 1.22 ± 0.02 29.2 ± 1.1
3264 116 *4.57 ± 0.08 1.22 ± 0.02 21.8 ± 0.7
5293 204 *4.21 ± 0.06 1.22 ± 0.02 31.4 ± 1.1
3837 105 *5.93 ± 0.10 1.22 ± 0.02 28.7 ± 1.0
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discussed in Section 2. In practice thismeans thatG=½or 1, depending
on themethod, Q=1, R=1, and T=1. AlthoughU is a sample-specific
factor and not a fundamental methodological one, it was also assumed
that U= 1 for simplicity. The conventional ages exhibit a much greater
spread (21.8 ± 0.7 to 31.4 ± 1.1 Ma; Table 4; Fig. 2) than their errors
permit. Their mean (27.8 ± 0.9 Ma) is N10% lower than the reference
age (31.4 ± 0.5 Ma; Green, 1985; Hurford, 1990a, b). It is striking that
the commonpopulation (A;mean 30.5±0.8Ma) and repolishmethods
(E; mean 30.0 ± 1.4 Ma), neither of which requires methodological
corrections, give ages within b2σ of the reference age.

Table 5 lists the apparent fission-track ages based on the same track
counts (Table 4), but calculated with the correction factors discussed in
Section 2, together with their values calculated from the data in Tables 1
and 3. G depends on the method used (½ or 1). R is constant for apatite
dated usingmuscovite external detectors, but takes a different value for
other minerals or other external detectors. Q and T, in contrast, are
specific to the etching and observation conditions and the track identi-
fication criteria of themicroscope operator. Q and T are also expected to
be different for other apatite sections than basal and prism faces. U is
specific to the samples and experimental procedure in thiswork. In con-
trast to the conventional ages, the corrected apparent ages determined
with the different dating methods are consistent with each other and
the reference age (Table 5). The results range from 28.7 ± 1.0 Ma to
32.0 ± 1.7 Ma with a mean of 30.9 ± 0.3 Ma, b2% lower than the refer-
ence age. Their standard deviation (0.9 Ma) is less than the calculated
uncertainties of the individual ages. This is expected because the fossil-
track counts are the same for all dating methods and some correction
factors are common to two or more age calculations. The same applies
to the neutron fluences because a single fluence, albeit corrected for
minor fluence gradients, was determined for each of the two sample
irradiations.

Earlier studies (Bellemans, 1996; Bigazzi et al., 1990; Curvo et al.,
2013; De Corte et al., 1991, 1995; Jonckheere, 1995; Van den haute
et al., 1988, 1998) give reason for trusting that the calculated neutron
fluences are accurate. The agreement of the uraniumconcentrations cal-
culated with Eq. (6) with independent data (Enkelmann et al., 2005a;
Hoffmann et al., 2008; Section 4.1) supports this assumption. It is rea-
sonable to conclude from re-evaluations of the 238U-fission constant
(Holden, 1989; Holden and Hoffman, 2000) that the value used is also
accurate. The fact that the correction factors introduced in Section 2 re-
move the inconsistencies between the ages obtained with different dat-
ing methods is a convincing argument for concluding that these are
needed and accurate within their uncertainties. It is reasonable to con-
clude that the agreement of the mean apparent age (30.9 ± 0.6 Ma;
2σ) with the reference age (31.4 ± 0.5 Ma; 2σ) is not fortuitous. How-
ever, this runs counter to the current consensus, implemented in all
modelling algorithms, which requires that a shortening of the fossil-
Table 5
Calculation of thefission-track age of theDurango apatite, corrected for experimental factors. A:
with induced-track counts in an external surface; C: external-detector method; D: re-etchmeth
length-corrected conventional age; Q= [ηq]I/[ηq]S: correction factor for the different counting e
and Van den haute, 2002; Table 1); R: correction factor for the different length deficit of induced
etch times of the fossil and induced tracks (Jonckheere and Van den haute, 1996); U: correctio
tracks (Table 3); L: correction factor for the different etchable lengths of fossil and induced trac
fission-track age; [tFT]AL (Ma): length-corrected age. Errors are 1σ.

Meth. Sect. [tFT]C [tFT]CL G Q R

A Basal 29.6 ± 1.0 33.3 ± 1.2 1 1 1
A Prism 31.3 ± 1.0 35.2 ± 1.2 1 1 1
B Basal 26.0 ± 1.0 29.2 ± 1.1 ½ 1.12 ± 0.02 1
B Prism 28.6 ± 1.0 32.1 ± 1.1 ½ 1.12 ± 0.02 1
C Basal 25.9 ± 0.9 29.1 ± 1.1 ½ 1.00 ± 0.02 1.21 ± 0.0
C Prism 25.9 ± 0.9 29.2 ± 1.0 ½ 1.00 ± 0.02 1.21 ± 0.0
D Basal 29.2 ± 1.1 32.8 ± 1.2 ½ 1.12 ± 0.02 1
D Prism 21.8 ± 0.7 24.4 ± 0.8 ½ 1.12 ± 0.02 1
E Basal 31.4 ± 1.1 35.3 ± 1.2 1 1 1
E Prism 28.7 ± 1.0 32.2 ± 1.1 1 1 1
Mean: 27.8 ± 0.9 31.3 ± 1.1
track length of 10% or more, relative to the length of the induced tracks,
implies a proportional lowering of the apparent fission-track age
(Crowley, 1993; Green, 1988; Guedes et al., 2004; Jones and Dokka,
1990; Ketcham, 2005; Laslett et al., 1984; Lutz and Omar, 1991; Tello
et al., 2006; Watt and Durrani, 1985; Willett, 1997).

4.3. Length-corrected age

The mean lengths of fossil and induced confined tracks etched in
prism faces of the Durango apatite are lS = 14.5 ± 0.1 μm and lI =
16.3 ±0.1 μm (Jonckheere and Van den haute, 2002), in good agree-
ment with most published data, including for different etching condi-
tions (Table 2). In this case, L = lI/lS (= 1.12 ± 0.01) is a close lower
estimate of the correction factor entered in Eqs. (7) and (8) (Table 1)
for calculating the length-corrected ages. For approximate isothermal
holding, this estimate is almost independent of the annealing model
and the length-bias model (ρ/ρ0 vs. l/l0) (Wauschkuhn et al., 2015a).
The length-corrected ages, including the corrections for methodological
factors, are listed in Table 5. The ages obtained with different dating
methods are still consistent with each other, but none is in agreement
with the reference age of the Durango apatite. The mean length-
corrected age (34.7 ± 0.3 Ma) overestimates the reference age by
almost 10 standard errors, whereas themean uncorrected age underes-
timates it by less than two.

It appears that the apparent fission-track age of the Durango apatite
requires no, or at most a small, correction. This is also the case for the
Fish Canyon tuff standard (Enkelmann et al., 2005b). Green (1988)
made the same observation for apatites with “volcanic type” length
distributions, rapidly cooled apatites, most but not all of volcanic origin,
which were not reheated. The means (14.0–15.7 μm) and standard
deviations (0.8–1.3 μm) of their fossil-track-length distributions
indicate moderate ambient-temperature annealing (Gleadow et al.,
1986). Green (1988) ascribed the fact that their apparent fission-track
ages permitted no length correction to possible dating errors related
to the efficiencies of the fossil and induced-track counts rather than to
the effects of the neutron fluence or fission constant. This is not an
adequate explanation of our results, considering the explicit corrections
for these effects and their, at least partial, success at bringing the results
of different dating methods and those for basal and prism sections in
line with each other and with the reference age.

Gleadow and Duddy (1981) and Gleadow et al. (1983) proposed an
explanation based on their investigation of borehole samples from the
Australian Otway Basin. Their “ageing” concept holds that fossil tracks
in apatite undergo length reductions up to 15–20% under geological
annealing at b70 °C without attendant lowering of its apparent
fission-track age. Although the concept was abandoned, ageing could
account for our dating results. Ageing lost favour because Green
populationmethodwith induced-track counts in an internal section; B: populationmethod
od; E: repolish method; [tFT]C (Ma): conventional fission-track age (Table 3); [tFT]CL (Ma):
fficiencies of the fossil (S) and induced (I) tracks (calculated from ηq-values in Jonckheere
tracks in apatite andmuscovite (Jonckheere, 2003b); T: correction factor for the different

n factor for the different uranium contents of the apatite sections with fossil and induced
ks (confined-track lengths in Jonckheere and Van den haute, 2002); [tFT]A (Ma): apparent

T U L [tFT]A [tFT]AL

1 1.05 ± 0.04 1.12 ± 0.01 31.1 ± 1.6 35.0 ± 1.8
1 0.99 ± 0.04 1.12 ± 0.01 31.2 ± 1.5 35.1 ± 1.7
1 1.05 ± 0.04 1.12 ± 0.01 30.6 ± 1.7 34.4 ± 1.9
1 0.99 ± 0.04 1.12 ± 0.01 32.0 ± 1.7 35.9 ± 1.9

2 – 1 1.12 ± 0.01 31.3 ± 1.5 35.2 ± 1.7
2 – 1 1.12 ± 0.01 31.4 ± 1.4 35.3 ± 1.6

0.94 ± 0.03 1 1.12 ± 0.01 30.9 ± 1.6 34.7 ± 1.8
1.26 ± 0.04 1 1.12 ± 0.01 30.1 ± 1.5 33.8 ± 1.7
1 1 1.12 ± 0.01 31.4 ± 1.1 35.2 ± 1.2
1 1 1.12 ± 0.01 28.7 ± 1.0 32.2 ± 1.1

30.9 ± 0.3 34.7 ± 0.3



Fig. 2. Dating results obtained on basal and prism sections of the Durango apatite with the
population (A, B; see text), external detector (C), re-etch (D) and repolish methods (E).
Hexagons: basal sections; rectangles: prism sections; yellow: conventional age calculation
([tFT]C: Table 4); green: ages corrected for experimental factors but not for partial annealing
of the fossil tracks ([tFT]A: Table 5); error bars are 1σ. Dashed lines: reference age and 2σ
confidence interval. A conventional age calculation gives inconsistent results, of which
only a fraction is in agreement with the reference age. Corrections for method-related
experimental factors bring the fission-track ages in line with each other and with the
reference age.
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(1988) argued that it was an artefact. The ages of the borehole samples
(t) had indeed been normalized to that of a surface sample (t0), that ex-
hibited a length reduction (lS0 b lI) relative to induced tracks (lI). After
renormalizing ([t/t0] → [lS0/lI] × [t/t0]), the Otway data were found to
be in agreement with the (ρ/ρ0 vs. l/l0)-trend of induced tracks. An
objection to Green's (1988) renormalization is that it assumed what it
proved. Renormalization is acceptable if ageing is indeed an artefact.
However, if it is not, then the renormalization itself is invalid, and the
data remain unchanged, corroborating that ageing is real. A second
objection is that the observation that the renormalized (ρ/ρ0 vs. l/l0)-
trend for fossil tracks coincides with that for induced tracks does not
permit to conclude that the same annealing mechanism operates in
both cases. The two trends cannot be assumed to coincide for the
same reason that the trend for multicompositional apatites lies above
that for monocompositional apatites (Green, 1988). A third argument
against renormalization is that the renormalized apatite ages of
outcrop samples are ca. 10% older than the titanite fission-track ages
of the same volcanoclastic rocks. Barring unknown systematic errors of
the right magnitude affecting one but not the other (excluding ϕ and
λF), this is as strong an argument for ageing as the former, establishing
that Green's (1988) case is inconclusive, but not that it is invalid.

4.4. Plateau-age experiment

Our length measurements confirm the shortening of the fossil
tracks in the Durango apatite (Table 2) but theory is inconclusive
as to whether or not an age correction is required. An attempt was
therefore made to determine the corrected age of the Durango apa-
tite with the plateau method of Storzer and Poupeau (1973). This
method is almost never used but can be shown to be valid within
the current paradigm of the fission-trackmethod. Numerical calcula-
tions based on the Markov assumption (equivalent time; Duddy
et al., 1988) and an annealingmodel (e.g. Laslett et al., 1987) indicate
that, if the age correction implied by the confined-track lengths is
needed, then an age plateau exists at 35.3 Ma at temperatures upward
of ca. 250 °C (for 1 h annealing; Jonckheere, 2003a). Moreover, the pla-
teau method does not depend on a specific, or known, (ρ/ρ0 vs. l/l0)-
relationship or on the assumption that the same relationship holds for
geological annealing of fossil fission tracks and lab annealing of induced
tracks. Instead, it rests on the lesser condition that, when the fossil and
induced tracks have been annealed together to the same length in the
lab, the corresponding surface-track densities have also been reduced
to the same fraction.

The plateau ages were calculated with Eq. (7) (Table 1), with G = 1,
Q = 1, R = 1, and U based on the uranium concentrations in Table 3,
and are listed in Table 6 and plotted in Fig. 3. There is a clear distinction
between the ages of the samples annealed at 350 °C and at those annealed
Table 6
Calculation of the fission-track age plateau of the Durango apatite. T (°C): 1 h annealing tempera
nI: number of fields counted for the fossil (S) and induced (I) tracks (1 field = 6.16 10−5 cm2)
rection factor for the different uranium concentrations of the apatite sections with fossil and in
sion-track age. Errors are 1σ.

T Section NS nS ρS NI

~25 Basal 2205 246 1.45 ± 0.03 4265
~25 Prism 3172 267 1.93 ± 0.04 4610
250 Basal 1499 159 1.52 ± 0.04 2020
250 Prism 3118 262 1.93 ± 0.03 4894
300 Basal 2225 214 1.69 ± 0.04 2307
300 Prism 2626 330 1.29 ± 0.03 3479

350 Basal 1615 255 1.03 ± 0.03 2281
350 Prism 2318 404 0.93 ± 0.02 2884
350* Basal 1896 306 1.01 ± 0.02 3210
350* Prism 1843 270 1.11 ± 0.03 2216
250 and 300 °C. This is also so for the data of Naeser and Fleischer (1975)
and for the annealingdata of Green (1988) for theRenfrewandOtway ap-
atites, although not at exactly 350 °C. Annealing for 1 h at 350 °C brings
the tracks to the point at which unetchable gaps appear (Green et al.,
1986) or where tracks at high angles to the c-axis undergo accelerated
length reduction (Donelick, 1991; Donelick et al., 1999). The distinction
is not crucial because the relationship between the volumetric and
surface-track densities breaks down in either case. Projected-length
measurements of the fossil and induced tracks in the samples annealed
at 350 °C revealed an excess of short tracks that is reduced but not elim-
inated by an additional etch (25 s; 2.5% HNO3; 25 °C; Jonckheere, 1995).
This has unpredictable effects on the surface-track densities and results
in erratic ages.

The mean age of the samples annealed at 250 and 300 °C (plateau
age; 31.4 ± 0.7 Ma) is indistinguishable from that of the unannealed
samples (Table 6; 31.2 ± 0.7 Ma), the mean of all dating methods
(Table 5; 30.9 ± 0.3 Ma) and from the reference age (31.4 ± 0.5 Ma;
2σ). This suggests that no, or atmost a small (b2%), age correction is re-
quired and excludes themuch larger correction (N12%) required by the
measured mean confined-track lengths.
ture (*: samples etched additional 25 s);NS,NI: fossil (S) and induced (I) tracks counts; nS,
; ρS, ρI (105 cm−2): surface-track densities of the fossil (S) and induced (I) tracks; U: cor-
duced tracks;ϕS (1015 cm−2): Høgdahl thermal-neutron fluence; [tFT]A (Ma): apparent fis-

nI ρI U ϕS [tFT]A

219 3.16 ± 0.05 1.05 ± 0.04 1.32 ± 0.03 31.1 ± 1.7
190 3.94 ± 0.06 0.99 ± 0.04 1.31 ± 0.03 31.2 ± 1.6
106 3.09 ± 0.07 0.96 ± 0.04 1.31 ± 0.03 30.4 ± 1.8
211 3.76 ± 0.06 0.98 ± 0.04 1.31 ± 0.03 31.8 ± 1.6
107 3.50 ± 0.07 1.02 ± 0.04 1.30 ± 0.03 31.3 ± 1.7
228 2.48 ± 0.04 0.97 ± 0.05 1.30 ± 0.03 32.1 ± 1.8

Mean: 31.4 ± 0.7
150 2.47 ± 0.06 0.98 ± 0.03 1.30 ± 0.03 25.6 ± 1.4
270 1.73 ± 0.03 1.08 ± 0.04 1.29 ± 0.03 37.0 ± 2.0
209 2.49 ± 0.05 0.98 ± 0.03 1.30 ± 0.03 24.8 ± 1.3
202 1.78 ± 0.04 1.08 ± 0.04 1.29 ± 0.03 42.8 ± 2.4



Fig. 3. Plateau-age results for the Durango apatite normalized to the reference age. Green
hexagons: basal sections, green rectangles: prism sections (this work). Orange circles:
data of Naeser and Fleischer (1975) for b350 °C; yellow circles: plateau ages calculated
from the annealing data of Green (1988). The error bars are 1σ. Excluding the erratic
ages at 350 °C, which are due to accelerated length reduction or break-up of the tracks,
the plateau ages of the Durango apatite are consistent with its reference age, indicating
that no length correction is required.
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4.5. Effective track lengths

It appears that there is a contradiction between the mean confined-
track lengths (l) and the dating results based on surface-track densities
(ρ). These are not independent of each other but related through the
equation of Price andWalker (1963): ρ=½ l N, applicable to both fossil
and induced tracks etched in an internal apatite section. The volumetric
track densities (N) can be calculated for the four samples for which we
have independent estimates of the uranium concentration (Table 3).
Converting the ppm-concentrations to atoms per volume and factoring
in the isotopic abundances (θ235; θ238 = 1 − θ235; Table 1) gives the
isotope concentrations,U238 andU235, in Eqs. (2) and (3). These equations
then give the volumetric densities of fossil (NS) and induced (NI) tracks, if
the sample age and neutron fluence are known. From NS and NI and the
surface-track densities ρS and ρI, we can then calculate the effective
etchable lengths of the fossil (lS0) and induced (lI0) tracks: lS0 = 2ρS/NS

and lI0 = 2ρI/NI. The full equations, with corrections for the Høgdahl neu-
tron fluence (ϕS) and the track registration (gIS), etching and counting ef-
ficiencies ([ηq]IS), are given in Table 1 (Eqs. 9 and 10). The calculation
assumes that lS0 and lI0 are isotropic. The equations of Ketcham et al.
(2007) confirm that this is a good approximation for fossil (lA/lC = 0.94;
lA and lC: mean track lengths perpendicular and parallel to the apatite c-
axis) and induced tracks (lA/lC = 0.99) in the Durango apatite.

Table 7 lists the calculated effective lengths. Their ratio L= lI0/lS0 is not
independent of the dating results as it is that which gives the exact
Table 7
Calculation of the effective lengths of induced (lI0; μm) and fossil (lS0; μm) tracks in the Duran
induced and fossil-track counts;ρI,S (105 cm−2): areal densities of induced and fossil tracks; [U]EN
ϕS (1015 cm−2): Høgdahl subcadmiumneutron fluence calculated from the activities of co-irradi
1σ.

Induced tracks

Sample Section NI nI ρI

DIB 025 Basal 4265 219 3.16
DIP 025 Prism 4610 190 3.94

Fossil tracks

Sample Section NS nS ρS

DSB 025 Basal 2205 246 1.45
DSP 025 Prism 3172 267 1.93
reference age when substituted in the age equation (Section 2). The
values of lS0 and lI0 are not fixed by the dating results. The mean effective
length of the induced tracks (lI0 = 16.8 ± 0.4 μm) agrees within error
with most confined-track-length measurements using our and other
etching conditions (Table 2). It agrees somewhat better with values ob-
tained after longer etch times or for tracks etched minutes after irradia-
tion (Donelick et al., 1990). The mean effective length of the fossil tracks
(lS0 = 16.3 ± 0.4 μm) is ca. 0.5 μm less than that of the induced tracks
but consistent with it within error. It is however not consistent with
values based on confined-track-lengthmeasurements,which are on aver-
age ca. 2 μmlower (Table 2). This confirms that the shortening of the fossil
confined tracks in theDurango apatite and, by extension, in age standards
and apatites with volcanic-type length distributions has no, or at most a
small, effect on their fossil-track densities, and hence on their fission-
track ages. This supports the interpretation of Gleadow and Duddy
(1981) and Gleadow et al. (1983) and contradicts the current consensus
implemented in the fission-track modelling programs.

4.6. Independent evidence

The standardlessfission-track ages of theDurango apatite, determined
with different dating procedures, with proper corrections for the associat-
ed experimental factors, but without correction for the shortening of the
fossil confined tracks, are in near-agreement with its reference age. It is
nevertheless difficult to dispel the suspicion that there exist unknown
methodological factors causing these ages to be overestimated by the
exact amount required by the fossil and induced confined-track lengths
(Green, 1988). Independent confirmation is provided by considerations
unrelated to the complexities of fission-track dating. It is known that
the apatite (U,Th)/He system is, in general, less retentive than the
fission-track system. Although the order is reversed below ca. 35 °C,
depending on the diffusion and annealing model, the difference is
small. Moreover, the track-annealing models refer to the shortening of
the confined-track length, which, according to our findings, must not in-
volve an equal lowering of the fission-track age. Therefore, the fact that
a sample's (U,Th)/He age has not been lowered relative to that
determined with high-temperature thermochronometers is a strong
indication that itsfission-track age has not been lowered either. Although
this is the case for the Durango apatite (Table 2), its exceptional crystal
size implies that significant (≥5%) He loss requires temperatures in
excess of ca. 75 °C (Durango diffusion kinetics; equivalent spherical
radius 5 mm; 30 Ma isothermal holding). The argument is therefore
inconclusive in the specific case of the Durango apatite.

The case is instead proved by the apatite (U,Th)/He ages of the Fish
Canyon Tuff, which are concordant with U/Pb and Ar/Ar ages dating its
eruption at ca. 28 Ma (Gleadow et al., 2015, and references therein). At
the classic sampling site of this age standard, the (U,Th)/He age
(20.8 ± 0.4 Ma) is lowered due to protracted cooling in the temperature
range 40–60 °C but the LA-ICP-MS fission-track age (28.8 ± 0.8 Ma) is
go apatite; NI,S: number of induced and fossil tracks; nI,S: number of fields counted for the
AA (ppm): uranium concentration determinedwith epithermal-neutron-activation analysis;
atedmetal-activationmonitors; [t]REF (Ma): reference age of the Durango apatite. Errors are

[U]ENAA ϕS lI0

± 0.05 9.35 ± 0.15 1.32 ± 0.03 17.0 ± 0.6
± 0.06 12.05 ± 0.31 1.31 ± 0.03 16.5 ± 0.7

16.8 ± 0.4

[U]ENAA [t]REF lS0

± 0.03 9.17 ± 0.07 31.4 ± 0.3 16.3 ± 0.6
± 0.04 12.18 ± 0.16 31.4 ± 0.3 16.3 ± 0.5
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not. The latter is consistent with the mean LA-ICP-MS fission-track age
(28.2 ± 0.5 Ma; Gleadow et al., 2015) and standardless external-
detector ages (27.7 ± 0.5 Ma; Enkelmann et al., 2005b; 27.3 ± 0.5 Ma;
Iwano, pers. com.). This establishes that the apatite (U,Th)/He method is
more temperature sensitive than the fission-track method, in accord
with the small grain size of the Fish Canyon Tuff compared to Durango.
Therefore, except at the classic sampling site, the fission-track ages
cannot be lower than the emplacement age dated with the (U,Th)/He
and other thermochronometers. This conflicts with the mean fossil
confined-track length (14.84± 0.04 μm; Gleadow et al., 2015) requiring
a correction of ca. 10%, giving a length-corrected age N 31 Ma, which is
irreconcilable with the emplacement age. The same reasoning and con-
clusion apply to the Limberg t3 proposed apatite age standard (mean
sanidine Ar/Ar age: 16.3 ± 0.2 Ma; mean titanite (U,Th)/He age:
16.5 ± 0.5 Ma; mean apatite (U,Th)/He age: 16.8 ± 1.0 Ma (grain size
300–500 μm);mean fossil-track length: 15.2±0.1 (1σ) μm, theoretically
requiring a age correction of ca. 7%; Kraml et al., 2006).

5. Summary and conclusions

Five dating strategies were used for determining the standardless
fission-track age (ϕ-age) of the Durango apatite, differing in the manner
in which the induced-track densities are measured. A conventional
calculation, ignoring experimental factors, gives inconsistent ages with
method-related differences N15%. Correcting for these method-specific
experimental factors brings them in linewith each other andwith the ref-
erence age, but leaves nomargin for a correction based on themean fos-
sil confined-track length. Three observations suggest that such a
correction is indeed inappropriate. (1) The evidence for age corrections
based on the mean confined-track lengths is shown to be inconclusive.
(2) The plateau age of theDurango apatite is consistentwith its apparent
age towithin 1%. (3) The calculated effective etchable length of the fossil
fission tracks agrees within error with that of the induced tracks; both
are also in agreement with the measured length of induced confined
tracks. Moreover, although the specific case of the Durango apatite is
inconclusive, the fact that the (U,Th)/He ages of dated age standards
are consistent with their reference ages, leaves no margin for a lowered
fission-track age resulting from partial annealing.

The corrections for experimental factors specific to the datingmethod
and analyst imply that – like the ζ-calibration – standardless fission-track
dating, in general, requires a personal empirical calibration factor. How-
ever, for the population method (A) and repolish method (E), it is
reasonable to assume that the overall experimental factor is equal 1
for samples homogenous in uranium. For all dating methods, the
calibration factor can be determined using age standards, in which
case the method ceases to be standardless but becomes a deconvoluted
ζ-method (Hurford, 1998). On the other hand, it is also possible to con-
struct the calibration factor from its components (G, Q, R, T; Jonckheere,
2003b; Enkelmann and Jonckheere, 2003; Enkelmann et al., 2005b;
Soares et al., 2013) or to combine both these approaches in a single
multiple calibration (ζ0-method: Jonckheere, 2003b). The ζ-method
has the advantage of eliminating the need for neutron-fluencemeasure-
ments but the disadvantage that the substituting track counts (ρD) in
micas irradiated against standard uranium glasses lack the resolution
for detecting all but large neutron-fluence gradients. The ε-method
(Hasebe et al. 2004) and ξ-method (Gleadow et al., 2015), standardless
dating methods in which the neutron irradiation and induced-track
counts are replaced by mass-spectrometric uranium measurements,
require the same attention to the track-counting efficiencies as the stan-
dardless ages determined in this work, and the question of the effective
length of the fossil tracks cannot be ignored. These experimental factors
can be sidestepped by calibration against age standards (ζMS-method;
Hasebe et al., 2013). The ζ-method still appears to be the only accepted
option for dating titanite, zircon and minerals more sensitive to irradia-
tion damage than apatite. However, Danhara and Iwano (2013) and
Iwano (pers. com., in part based on Iwano and Danhara, 1998) reported
standardless fission-track dating of zircon and titanite with the external-
detector method, despite the added complications caused by radiation
damage effects.

The recommendation of the ζ-calibration by the Fission Track
Working Group of the I.U.G.S. Subcommission on Geochronology
(Hurford, 1990a, b) has thus served asmuch to circumvent experimental
factors related to track registration, revelation and counting as to circum-
vent theϕ/λF-problem (Hurford andGreen, 1981, 1983). Thismeant that
these problems remained unresolved but supported countless geological
applications. The fact that the fission-track ages of the age standards
need no correction for partial annealing explains that the ϕ- and ζ-ages
of geological samples are consistent within error (De Grave and Van
den haute, 2002; Enkelmann et al., 2005b, 2006; Grimmer et al., 2002;
Wauschkuhn et al., 2015a). It also lends meaning to ζ-ages, which
must otherwise be interpreted as part-corrected ages (Green, 1985,
1988), with an uncertain relationship to the apatite closure temperature.

The available data indicate that the conclusion that the shortened
etchable length of the fossil confined tracks in the Durango apatite has
no effect on its apparent fission-track age applies to other age standards
(Enkelmann et al.; 2005b; Enkelmann and Jonckheere, 2003; Iwano,
pers. com., in part based on data of Iwano and Danhara, 1998; Kraml
et al. 2006) and apatites with a volcanic-type length distribution
(Green, 1988). It is probable that it also applies to sampleswith a substan-
tial component of tracks formed at low temperatures. Recent evidence
shows that terminal track sections that are unetchable in the apatite
grain interiors are revealed by surface-assisted sub-threshold etching at
their intersection with the surface (Wauschkuhn et al., 2015b). In conse-
quence, the etchable lengths of the confinedfission tracksmust not be the
same as those of the surface tracks. Step-etching results (Tamer, 2012)
further suggest that the apparent shortening of fossil confined tracks in
the Durango apatite could be due to a lowering of the track-etch rate in
geological (radiation damaged) samples. In that case, models fitted to
lab-annealing data will underestimate the length reduction of the fossil
confined tracks in geological samples etched under the same conditions
as induced tracks. In consequence, apatite fission-track modelling pro-
gramsoverstretch their (T,t)-paths andoverestimate palaeotemperatures
in their later parts. The familiar worldwide recent exhumation is then an
artefact due to a methodological imperfection rather than a consequence
of selecting the annealingmodel of Laslett et al. (1987). It also implies that
normalizing fossil-track lengths to a personal initial length (zero-length),
either that of induced tracks (Ketcham et al., 2009; 2015) or that of fossil
tracks considered not to have experienced significant geological anneal-
ing (Gunnell et al., 2003; Kohn et al., 2002; 2005), has unpredictable
effects on the thermal histories.
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