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Abstract

This paper studies a discrete-time queueing system where each customer has a max-
imum allowed sojourn time in the system, referred to as the “deadline” of the customer.
More specifically, we model the deadlines of the consecutive customers as independent
and geometrically distributed random variables. Customers enter the system according
to a general independent arrival process, i.e., the numbers of arrivals during consecutive
time slots are i.i.d. random variables with arbitrary distribution. Service times of the cus-
tomers are deterministically equal to one slot each. For this queueing model, we are able
to obtain exact formulas for such quantities as the generating function and the expected
value of the system content, the mean customer delay and the deadline-expiration ratio.
These formulas, however, contain infinite sums and infinite products, which implies that
truncations are required to actually compute numerical values. Therefore, we also derive
some easy-to-evaluate approximate results for the main performance measures, based on
a polynomial approximation technique. We believe this technique, in its own right, is also
one of the major (methodological) contributions of the paper.

Possible applications of this type of queueing model are numerous: the (variable)
deadlines could model, for instance, the fact that customers may become impatient and
leave the queue unserved if they have to wait too long in line, but they could also reflect
the fact that the service of a customer is not useful anymore if it cannot be delivered soon
enough, etc.

Key words: queueing; discrete-time; deadlines; closed-form results; polynomial ap-
proximation
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1 Introduction

In a typical queueing model, customers present themselves near some service facility to receive
some kind of service, and – if they cannot be served immediately upon arrival – wait patiently in
a queue until the server is available for them. In some cases, however, customers may leave (or
abandon) the queue unserved if their time in the queue becomes too big. Although sometimes
referred to as “queues with abandonments” or “queues with reneging” in the literature, this
type of queues is usually known as “queues with customer impatience”.

The motivations for studying queues with customer impatience are legion. Early papers
on the topic were written in the context of telephone traffic and call centers. One of the
pioneering works is that of Palm [31]. He considered an unlimited M/M/n queue and assumed
that each individual customer stays in the queue as long as his waiting time does not exceed
an exponentially distributed impatience time (i.e., M/M/n+M, where the “+M” specifies the
impatience law). This is the so-called Erlang-A model; it is the simplest model including
abandonments. Amongst other results, he represented the steady-state distribution of the
number of customers in the Erlang-A system, and some of its important performance measures,
in terms of incomplete Gamma functions and the blocking probability in the Erlang-B (i.e.,
M/M/n/n) system. Several authors extended his results, in various directions and sometimes
independently of each other. Readers are referred to the invited review paper of Gans et al.
[16] and to the PhD thesis of Zeltyn [39] for extensive literature reviews (up to 2003-2004) and
relevant results on call center research in general, including models of customers’ impatience,
and specifically on M/M/n queues with exponentially and generally distributed patient times,
respectively. More recent references on customer impatience research in the context of call
centers can be found in [22]. In [22], moreover, the authors propose an extension of the Erlang
A model in which the possibility of balking (refusing to join the queue) is included. This
simple extension makes the performance prediction by the queueing model much more accurate.
Furthermore, they study a number of different service level definitions, including all those used
in practice, and show how to explicitly compute their performance measures by using existing
results on the virtual waiting time, i.e., the waiting time that a customer with infinite patience
would experience.

Customer impatience (or, more general, abandonments), however, is also not to be ignored
in, for example, real-time telecommunication applications (see, e.g., [7, 18, 26, 36]), inventory
management (see, e.g., [2, 9, 19]), emergency situations, staffing decisions (see, e.g., [1, 12, 41]),
parking policy (see, e.g., [27]), etc. Usually, it is the customer that takes the decision to
abandon prematurely, e.g., because the customer (usually, a human being in this case) does
not like to or cannot wait any longer. A call center is the most obvious example of this type of
abandonments. On the other hand, also the system itself may decide to remove customers from
the queue, e.g., if servicing those customers is deemed not to be useful any more after some
time in the queue or if the customers are “expired” (e.g., perishable goods). The first situation
may appear in audio or video streaming applications (see, e.g., [14, 28, 30]). In particular, when
packets belonging to such applications would not arrive soon enough at their next destination
if they have to wait any longer, they are removed from the buffer (see, e.g., [18, 29, 33]).
The second situation can be of great importance in inventory management (see, e.g., [9, 19]).
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There are many examples of perishable products such as food items, chemicals, pharmaceutical
products, blood, etc. Understanding such systems and investigating the impact of the finiteness
of product lifetimes on production and inventory control decisions is thus clearly necessary in
a society in which waste is less and less accepted and in which extra costs (e.g., for cleaning up
waste) are more and more avoided. For other examples and situations in which abandonments
play an important role, we refer to [21] and [38].

There is clearly no shortage of continuous-time models to study queues with customer
impatience (see, e.g., Zeltyn and Mandelbaum [40] and references therein for a good overview).
In the present paper, however, we make a rare attempt to investigate a discrete-time queueing
model with customer impatience, by means of a simple analytical model. Specifically, we study
a GI/1/1 queue where the patience times (or “deadlines”) of the customers are independent and
geometrically distributed. We are able to obtain exact formulas for the probability generating
function and the mean of the system content, the mean customer delay and the deadline-
expiration ratio. These formulas, however, contain infinite sums and infinite products, and
are thus not quite useful to see the impact of the various system parameters. Therefore,
we also derive some easy-to-evaluate approximate results for the main performance measures.
Jean-Marie and Hyon [20] consider the same model, but are interested in optimization rather
than in in-depth structural analysis. They show that the optimal control of service in the
GI/1/1+Geo queue is a threshold policy and they give the value of this threshold. In Kim et al.
[24], furthermore, the authors study a discrete-time multi-server queue in which the customers
arrive according to a simple Bernoulli process, in which the service times are geometrically
distributed, and in which the customers wait for service for a limited time with a general
distribution. They present exact expressions for the loss probability and the queue-length
distribution. Van Velthoven et al. [34] derive an expression for the probability of abandonment
in a Geo/Geo/1+GI queue and show that systems with a smaller patience distribution in
the convex-ordering sense give rise to fewer abandonments (due to impatience), irrespective
of whether customers become patient when entering the service facility. Finally, Wu et al.
[37] combine the concept of customer impatience with the concepts of retrials and priorities
in a discrete-time Geo/G/1 queue. They analyze the Markov chain underlying the considered
queueing system and obtain the system-state distribution as well as the orbit-size and the
system-size distributions in terms of their generating functions. Besides, they investigate a
stochastic decomposition property and the corresponding continuous-time queueing system.

The contributions of the present paper concern the specific model that is considered and
the methods that are used to obtain exact and approximate results for the main performance
measures. As for the model, it is, as far as we know, the first attempt to perform a structural
analysis of a discrete-time queue with customer impatience and a general independent arrival
process. We are totally aware of the simplicity of the service process and of the abandonment
process. However, since we want the focus of this paper to lie on the proposed approximation
method, we have kept these processes as simple as possible. Of course, we will focus on
generalizations of these processes in the future. It is commonly known from the continuous-
time literature on queues with customer impatience that exact results of even simple models
are often far from user-friendly and that more general models may soon become analytically
intractable, so approximations have to be proposed to study these systems. We mention a
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few of them; we refer to Xiong et al. [38] and Sakuma et al. [32] for more. Boxma and de
Waal [8] were amongst the first who developed several approximations for the probability to
abandon in the (continuous-time) M/G/n+G queue. These approximations, based on intuition
and observations, use the exact results obtained for the M/M/n+M and M/M/n+D cases.
Extensive tests of these approximations reveal a near-insensitivity of the overflow probability
with respect to the service-time distribution, and - apart from a small traffic region - a rather
weak sensitivity with respect to the patience distribution. In [38], the authors propose a
methodology for approximating the mean waiting time by mapping a multi-server queue to a
single server queue with an augmented service rate. The main objective of [32], finally, is to
provide an approximation for the waiting-time distribution in an analytically tractable form.
Their approximation is based on the tail asymptotics of this distribution, under the condition
that the impatient time is an unbounded and asymptotically light-tailed random variable. In our
paper, we propose to use a polynomial (finite power-series) approximation method to estimate
the main performance measures. This technique is not completely new (see, e.g., Blanc [3] and
Hooghiemstra et al [17]). However, whereas in these papers the power-series approximation
is usually expressed in terms of powers of the load or the traffic intensity of the system, we
use the patience distribution parameter to form the power series. In this way, we arrive at
approximate, yet much simpler expressions than with the “exact” method. We show with some
numerical examples that the approximate expressions are quite accurate. Moreover, they are
much more suitable to study the influence of the system parameters. Therefore, we believe
that this solution technique can be useful for more advanced queueing models with customer
impatience. Note that the approach with power series in a parameter other than the load has
also proven to be useful in other types of queueing models, e.g., a Generalized Processor Sharing
model [35] and a model with train arrivals [11].

2 Mathematical model

We consider a discrete-time queueing system with one single server and an infinite waiting room.
As in all discrete-time models, the time axis is divided into fixed-length intervals referred to as
slots. New customers may enter the system at any given (continuous) point on the time axis,
but services are synchronized to (i.e., can only start and end at) slot boundaries. We assume
that the service of each customer requires exactly one slot.

The arrival process of new customers in the system is characterized by means of a sequence
of i.i.d. nonnegative discrete random variables with common probability mass function (pmf)
a(n) and common probability generating function (pgf) A(z), respectively. More specifically,

a(n) , Prob[ n customer arrivals in one slot ] , n ≥ 0 ,

A(z) ,
∞∑
n=0

a(n) zn .

The mean number of customer arrivals per slot, in the sequel referred to as the (mean) arrival
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rate, is given by
λ , A′(1) .

For ease of notation further in the paper, we also define the following arrival-process related
quantities:

α , A(0) ; β , 1− A(0) ; γ , λ− 1 + A(0) . (1)

As mentioned above, the special feature of the queueing model at hand is the fact that
customers may leave the system before they have actually received service. Here we make
a distinction between the queue, which collects the customers that are actually waiting for
service, and the system, which encompasses all the customers, either waiting or being served.
Customers that have entered the server, possibly after having spent some time in the queue,
stay in the system until they have received service. However, no customer stays in the queue
longer than a prescribed maximum time duration, referred to as the deadline of the customer.
We assume that the deadlines of the customers may be different from one customer to another,
but they are statistically independent and geometrically distributed with parameter σ, i.e., the
pmf s(n) and the pgf S(z) of the deadlines are given by

s(n) , Prob[ deadline equals n slots ] = (1− σ)σn−1 , n ≥ 1 ,

S(z) ,
∞∑
n=1

s(n) zn =
(1− σ)z

1− σz
.

The mean deadline is given by

D , S ′(1) =
1

1− σ
. (2)

The geometric nature of the deadlines implies that the probability that the deadline of any
customer C, in the queue at the beginning of any slot S, expires at the end of the slot S does
not depend on the amount of time customer C already spent waiting in the queue, and is simply
given by 1− σ. This property is crucial in the analysis of the system in the next sections.

The structure of the rest of this paper is as follows. In section 3, we analyze the queue-
ing performance of the system, resulting in an exact yet complicated expression for the pgf
of the number of customers in the system. Section 4 is devoted to an alternative approach
in which we express the pgf of the system content in the form of (several) polynomials in the
parameter σ. Here, we are able to obtain much simpler, but also approximate, results than
in the previous section. From both types of results, we derive (complicated) nearly exact and
(easier) approximate expressions for the mean system content, the mean customer delay and
the deadline-expiration ratio, in section 5. In section 6, we compare the different approxima-
tions and illustrate our results by means of some numerical examples. Section 7 states some
conclusions and indicates some possible future work.

3 Exact analysis of the system-content pgf

Let uk denote the system content, i.e., the total number of customers present in the system,
at the beginning of the k-th slot, and ak the number of customers entering the system during
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this slot. Then, the number of customers in the queue, i.e., the number of customers that can
potentially abandon from the system prematurely, can be expressed as (uk−1)+, by introducing
the notation (. . .)+ to indicate the quantity max(0, . . .). It follows that the following recursive
system equation can be established between uk and uk+1:

uk+1 =

(uk−1)+∑
i=1

ci,k + ak , (3)

In the above equation, the ci,k’s are a sequence of i.i.d. Bernoulli random variables with param-
eter σ, i.e., with common pgf

C(z) , 1− σ + σz . (4)

Specifically, ci,k can be interpreted as the indicator function (taking values 1 or 0) of the event
that the i-th customer in the queue at the beginning of slot k stays in the queue at the end of
slot k.

For all k, let Uk(z) denote the pgf of uk. Then, from equation (3) we can derive

Uk+1(z) = A(z) · E
[
z
∑(uk−1)+

i=1 ci,k

]
, (5)

with E[·] the expectation operator. Here, the second factor in the right hand side of (5) can be
expanded further by means of the law of total probability, yielding

Uk+1(z) = A(z)

[
Prob[uk = 0] +

∞∑
j=1

Prob[uk = j] [C(z)]j−1

]
,

which can be rewritten as

Uk+1(z) = A(z)

[
Uk(0) +

Uk(C(z))− Uk(0)

C(z)

]
. (6)

Now, let us assume that the queueing system at hand is stable. In fact, it is not difficult
to see that the system is always stable if the parameter σ is strictly less than 1, because in
that case the deadlines are finite (with probability 1) and, hence, also the sojourn times of
the customers in the system are necessarily finite. On the other hand, if σ = 1, the system
reduces to a simple discrete-time buffer without deadlines, which is stable if and only if the
mean number of customers entering the system per slot, given by λ, is strictly less than 1. We
now let the time parameter k go to infinity in equation (6). Assuming the system reaches a
steady state, then both functions Uk(·) and Uk+1(·) converge to a common limit function U(·),
which denotes the pgf of the system content at the beginning of an arbitrary slot in steady
state. As a result, equation (6) translates into

U(z) = F (z) [U(C(z)) + (C(z)− 1)U(0)] , (7)

where

F (z) , A(z)

C(z)
. (8)
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We are now faced with the problem of solving the (non-classical) functional equation (7). We
note that very similar functional equations occur in the analysis of (continuous-time) queueing
models with so-called “synchronized services” [13, 23]. These are queueing systems in which all
customers present in the system are served simultaneously (from beginning to end) and leave
the system (at exactly the same time instant) with some fixed probability at the end of each
service cycle. Although such queueing models are quite different from our model, the formal
resemblance of the resulting functional equations is striking. We refer to [13, 23] for a more
formal justification of the solution method to be explained next.

First, however, we note that if σ = 1, the solution of (7) is very simple, because in that case
C(z) = z and (7) is, in fact, a simple linear equation for U(z) with the well-known [10] solution

U(z)|σ=1 =
(1− λ)(z − 1)A(z)

z − A(z)
, (9)

which is valid for λ < 1. The corresponding probability of an empty buffer is then given by

U(0)|σ=1 = 1− λ (10)

and the mean system content is

E[u] |σ=1 = λ+
A′′(1)

2(1− λ)
. (11)

If σ < 1, however, the problem is much less trivial. One way to proceed is to use equation (7)
recursively (similarly as in [13, 23]), as follows:

U(z) = F (z) [U(1− σ + σz) + σ(z − 1)U(0)]

= F (z)F (1− σ + σz)U(1− σ2 + σ2z)

+ F (z)F (1− σ + σz)σ2(z − 1)U(0) + F (z)σ(z − 1)U(0)

= F (z)F (1− σ + σz)F (1− σ2 + σ2z)U(1− σ3 + σ3z)

+ F (z)F (1− σ + σz)F (1− σ2 + σ2z)σ3(z − 1)U(0)

+ F (z)F (1− σ + σz)σ2(z − 1)U(0) + F (z)σ(z − 1)U(0)

= · · ·

= U(1− σm+1 + σm+1z)
m∏
i=0

F (1− σi + σiz) + U(0)(z − 1)
m∑
i=0

σi+1

i∏
j=0

F (1− σj + σjz) ,

(12)
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which is valid for all integers m ≥ 0.
Taking the limit of the above result for m → ∞ and using the fact that limm→∞ σm+1 = 0

because σ < 1, we obtain

U(z) = U(1)
∞∏
i=0

F (1− σi + σiz) + U(0)(z − 1)
∞∑
i=0

σi+1

i∏
j=0

F (1− σj + σjz) . (13)

The quantity U(1) in the right hand side of (13) is known to be U(1) = 1 (normalization of the
system-content distribution). The remaining unknown U(0) can now be computed by choosing
z = 0 in (13) and solving the resulting equation for U(0), which leads to

U(0) =

∏∞
i=0 F (1− σi)

1 +
∑∞

i=1 σ
i
∏i−1

j=0 F (1− σj)
. (14)

An explicit expression for the pgf U(z) is therefore given by

U(z) =
∞∏
i=0

F (1− σi + σiz) +

∏∞
i=0 F (1− σi)

1 +
∑∞

i=1 σ
i
∏i−1

j=0 F (1− σj)
(z − 1)

∞∑
i=0

σi+1

i∏
j=0

F (1− σj + σjz) .

(15)
We note that choosing z = 0 in (12) and solving the resulting equation for U(0), we can

also easily derive an exact relation between the quantities U(0) and U(1 − σm+1), which will
prove to be useful further on. The result is

U(0) = U(1− σm+1)

∏m
i=0 F (1− σi)

1 +
∑m+1

i=1 σi
∏i−1

j=0 F (1− σj)
. (16)

Equation (16) is valid for all m ≥ 0; in the limit for m → ∞ it reduces to (14).
The formulas (14) and (15) are exact, but not very transparent as to the dependence of

U(0) and U(z) (and the performance measures that could be derived from them) on the various
parameters of the system under study. Specifically, the main drawback of the formulas obtained
so far is that they are expressed in terms of infinite sums and infinite products which may not,
in all cases, allow the easy computation of numerical results. In an attempt to overcome these
difficulties, we propose an alternative approximative approach in the next section.

4 Polynomial approximation of the system-content pgf

From the results in the previous section it is clear that the performance of the system depends
both on the characteristics of the arrival process, i.e., the pgf A(z), and the deadline param-
eter σ. In this section, we aim for an approximative representation of the pgf U(z) (and the
performance measures derived from it) in the form of a polynomial (finite power series) in the
parameter σ. In particular, we approximate U(z) as

U(z) ≈
L∑
i=0

σiVi(z) , (17)
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where L is some finite integer and the functions Vi(z) are independent of σ, but, of course,
still dependent on the arrival characteristics. Instead of trying to solve the functional equation
(7) for the pgf U(z), we now focus on the derivation of the functions Vi(z), for 0 ≤ i ≤ L.
Note that, owing to the fact that L is finite, the expression in (17), seen as a function of
the parameter σ, always converges. It seems reasonable to expect that the accuracy of the
polynomial approximation increases with L. Ideally, however, in order not to complicate the
computations, a “low” value of L should suffice to obtain accurate results. In the sequel, we
choose L = 3 and L = 4; both values are compared in section 6. It can be seen that our approach
is somewhat similar to the well-known power series algorithm (PSA), discussed originally in
[3, 17] and frequently used by Blanc in other papers (see, e.g., [4, 5, 6]). The difference is that
in the PSA, as used in the papers just mentioned, infinite power series are used (which rises
the issue of the convergence of these series) and the parameter of interest is not σ (as in our
case), but the traffic intensity or the utilization factor of the queue at hand. Furthermore, the
PSA is usually applied to express equilibrium probabilities of some Markov chain in the form
of a power series, whereas we apply it to approximate a pgf.

In order to obtain equations for the Vi(z)’s, we first determine series expansions for all the
quantities appearing in the crucial functional equation (7). The pgf C(z) is given by

C(z) = 1 + σ(z − 1) ,

i.e., linear in σ.
Next, the quantity U(C(z)) can also be expressed as a power series in the parameter σ, by

means of a Taylor series expansion of the function U about the value 1 of its argument:

U(C(z)) = U(1 + σ(z − 1))

=
∞∑
k=0

(σ(z − 1))k

k!
U (k)(1) ,

where U (k) indicates the k-th derivative of the function U . By introducing the expansion (17)
and keeping powers of σ up to the fourth, we can transform this into

U(C(z)) ≈ 1 + σ(z − 1)
[
V ′
0(1) + σV ′

1(1) + σ2V ′
2(1) + σ3V ′

3(1)
]

+
σ2(z − 1)2

2

[
V ′′
0 (1) + σV ′′

1 (1) + σ2V ′′
2 (1)

]
+

σ3(z − 1)3

6
[V ′′′

0 (1) + σV ′′′
1 (1)]

+
σ4(z − 1)4

24
V

(4)
0 (1) ,

which is valid if σ is “low enough”. Here we have also used the normalization condition of the
system-content distribution, U(1) = 1.
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In view of equation (8), the functional equation (7) can now be rewritten as

C(z)U(z) = A(z) [U(C(z)) + σ(z − 1)U(0)] ,

or, expanding both sides of the equation in powers of σ,

[1 + σ(z − 1)][V0(z) + σV1(z) + σ2V2(z) + σ3V3(z) + σ4V4(z)]

≈ A(z) + σ(z − 1)A(z)[V ′
0(1) + σV ′

1(1) + σ2V ′
2(1) + σ3V ′

3(1)]

+
σ2(z − 1)2

2
A(z)[V ′′

0 (1) + σV ′′
1 (1) + σ2V ′′

2 (1)]

+
σ3(z − 1)3

6
A(z)[V ′′′

0 (1) + σV ′′′
1 (1)]

+
σ4(z − 1)4

24
A(z)V

(4)
0 (1)

+ σ(z − 1)A(z)[V0(0) + σV1(0) + σ2V2(0) + σ3V3(0)] . (18)

We can now identify the coefficients of equal powers of σ on both sides of the equation (18)
to determine explicit expressions for the functions Vi(z) for i ≥ 0. For the coefficients of σ0 we
easily get

V0(z) = A(z) . (19)

Next, for σ1, we obtain

V1(z) + (z − 1)V0(z) = (z − 1)A(z)[V ′
0(1) + V0(0)] ,

where, from (19),
V ′
0(1) = A′(1) = λ

V0(0) = A(0) = α ,

so that
V1(z) = (z − 1)A(z)[λ− 1 + A(0)] = γ(z − 1)A(z) . (20)

Identifying coefficients of σ2 leads to

V2(z) + (z − 1)V1(z) = (z − 1)A(z)[V ′
1(1) +

(z − 1)

2
V ′′
0 (1) + V1(0)] ,

where, from (19)-(20),
V ′
1(1) = γ

V ′′
0 (1) = A′′(1)

V1(0) = −αγ ,
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so that

V2(z) = (z − 1)A(z)

{
βγ + (z − 1)[−γ +

A′′(1)

2
]

}
. (21)

Further, identification of the coefficients of σ3 yields

V3(z) + (z − 1)V2(z) = (z − 1)A(z)[V ′
2(1) +

(z − 1)

2
V ′′
1 (1) +

(z − 1)2

6
V ′′′
0 (1) + V2(0)] ,

where, from (19)-(21),
V ′
2(1) = βγ

V ′′
1 (1) = 2λγ

V ′′′
0 (1) = A′′′(1)

V2(0) = −α

{
(1 + β)γ − A′′(1)

2

}
,

so that

V3(z) = (z − 1)A(z)

{
(β2 − α)γ + α

A′′(1)

2
+ (z − 1)γ2

+ (z − 1)2[γ +
A′′′(1)− 3A′′(1)

6
]

}
. (22)

Finally, for the coefficients of σ4, we obtain

V4(z) + (z − 1)V3(z) = (z − 1)A(z)

{
V ′
3(1) +

z − 1

2
V ′′
2 (1) +

(z − 1)2

6
V ′′′
1 (1)

+
(z − 1)3

24
V

(4)
0 (1) + V3(0)

}
,

where, from (19)-(22),

V ′
3(1) = (β2 − α)γ + α

A′′(1)

2

V ′′
2 (1) = 2γ(βλ− 1) + A′′(1)

V ′′′
1 (1) = 3γA′′(1)

V
(4)
0 (1) = A(4)(1)

V3(0) = −α

{
(β2 + β − γ)γ − β

A′′(1)

2
+

A′′′(1)

6

}
,
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so that

V4(z) = (z − 1)A(z)

{
γ[β3 + α(γ − β − 1)] + α(1 + β)

A′′(1)

2
− α

A′′′(1)

6

+ (z − 1)β
[
γ(γ − 1) +

A′′(1)

2

]
+ (z − 1)2γ

[
− γ +

A′′(1)

2

]
+ (z − 1)3

[
− γ +

A′′(1)

2
− A′′′(1)

6
+

A(4)(1)

24

]}
(23)

Combining the results in equations (19), (20), (21), (22), and (23), we now dispose of the
following approximate expressions (Û(z)3 and Û(z)4) for the pgf U(z):

Û(z)3 , V0(z) + σV1(z) + σ2V2(z) + σ3V3(z) , for L = 3 ,

Û(z)4 , V0(z) + σV1(z) + σ2V2(z) + σ3V3(z) + σ4V4(z) , for L = 4 .

In explicit form, these expressions can be written as

Û(z)3 = A(z) + σγ(z − 1)A(z) + σ2(z − 1)A(z)

{
βγ + (z − 1)[−γ +

A′′(1)

2
]

}

+ σ3(z − 1)A(z)

{
(β2 − α)γ + α

A′′(1)

2
+ (z − 1)γ2 + (z − 1)2[γ +

A′′′(1)− 3A′′(1)

6
]

}
(24)

and

Û(z)4 = Û(z)3 + σ4(z − 1)A(z)

{
γ[β3 + α(γ − β − 1)] + α(1 + β)

A′′(1)

2
− α

A′′′(1)

6

+ (z − 1)β
[
γ(γ − 1) +

A′′(1)

2

]
+ (z − 1)2γ

[
− γ +

A′′(1)

2

]
+ (z − 1)3

[
− γ +

A′′(1)

2
− A′′′(1)

6
+

A(4)(1)

24

]}
(25)

5 Derivation of performance metrics

In principle, various moments of the system-content distribution can be obtained by computing
derivatives of the exact expression (15) for the pgf U(z) at z = 1. The presence of (infinite)
sums and products, however, does not always allow an easy computation of these moments.
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To find the mean system content, for example, we first have to calculate U ′(z). From (15), we
obtain that

U ′(z) =
∞∑
i=0

σiF ′(1− σi + σiz)
∞∏

j=0,j ̸=i

F (1− σj + σjz)

+

∏∞
i=0 F (1− σi)

1 +
∑∞

i=1 σ
i
∏i−1

j=0 F (1− σj)

∞∑
i=0

σi+1

{ i∏
j=0

F (1− σj + σjz)

+ (z − 1)
i∑

j=0

σjF ′(1− σj + σjz)
i∏

k=0,k ̸=j

F (1− σk + σkz)

}
. (26)

Choosing z = 1 in this equation then yields

E[u] =U ′(1)

=
∞∑
i=0

σiF ′(1) +

∏∞
i=0 F (1− σi)

1 +
∑∞

i=1 σ
i
∏i−1

j=0 F (1− σj)

∞∑
i=0

σi+1

=
λ− σ

1− σ
+

∏∞
i=0 F (1− σi)

1 +
∑∞

i=1 σ
i
∏i−1

j=0 F (1− σj)

σ

1− σ
, (27)

where we have assumed σ < 1 (in order for the geometric series in σ to converge) and used the
definition of F (z) in equation (8). Just like the expressions (14) and (15) for U(0) and U(z),
this formula contains both an infinite sum and infinite products.

Now, rather than departing from the explicit expression (15) of U(z), the moments of the
system-content distribution can also be computed directly from the original functional equation
(7). For instance, to find the mean system content, we take the first derivatives at z = 1 of
both sides of (7), i.e.,

U ′(1) = F ′(1) + U ′(1)C ′(1) + C ′(1)U(0)

or
E[u] = λ− σ + E[u]σ + σU(0) .

For σ < 1, this equation can be solved for E[u], which easily leads to

E[u] =
λ− σ(1− U(0))

1− σ
. (28)

Note that replacing U(0) in equation (28) by expression (14) yields the same result as (27).
Next, by applying (the discrete-time version of) Little’s theorem [25, 10, 15], the mean delay

(system time) E[d] of a customer can be obtained as

E[d] =
E[u]

λ
=

λ− σ(1− U(0))

λ(1− σ)
= D − (D − 1)(1− U(0))

λ
, (29)

where D is the mean deadline of the customers, defined in (2). Equation (29) clearly illustrates
that the mean delay of a customer cannot be higher than the mean deadline D, as expected
intuitively.

13



Another quantity of interest in the context of a queueing system with deadlines is the fraction
of customers that leave the queue unserved due to the expiration of their deadline before they
can reach the server. We call this fraction the deadline-expiration ratio in the sequel. In order
to compute this quantity from our earlier results, we make the following reasoning. From the
fact that the system at hand is stable, it follows that the total mean number of customers
leaving the system per time slot is identical to the mean arrival rate λ. Customers leave the
system either because they have received service or because they abandon from the queue before
reaching the server. A customer is served in a slot if and only if the system is non-empty at
the beginning of that slot, i.e., with probability 1 − U(0). As the system only disposes of one
single server, this is also equal to the mean number of customers that are served in a slot. It
follows that the deadline-expiration ratio can be computed as

rex =
λ− (1− U(0))

λ
, (30)

where the numerator corresponds to the mean number of customers leaving the queue unserved
per slot, i.e., the difference between the total mean number of departures in a slot (λ) and the
mean number of customers receiving service per slot (1− U(0)).

To summarize, as soon as the quantity U(0) has been computed, the other performance
measures E[u], E[d] and rex can be easily obtained from (28), (29) and (30).

5.1 Truncation approximation

As mentioned earlier, the exact expression (14) for U(0) contains both an infinite sum and
infinite products. One pragmatic way to circumvent these difficulties is to truncate the infinite
sum and products in the expression for U(0) as follows:

U(0) ≈ U(0)K ,
∏K−1

i=0 F (1− σi)

1 +
∑K−1

i=1 σi
∏i−1

j=0 F (1− σj)
, (31)

where the integer K is such that 1− σK is “close enough” to 1. (In practice, a value K = 2000
proves to be sufficient for most values of σ < 1.)

Replacing the quantity U(0) by the truncation approximation U(0)K in (28) yields a first
approximation for the mean system content E[u]. We refer to this approximation as E[u]K ,
i.e.,

E[u]K , λ− σ(1− U(0)K)

1− σ
. (32)

In a similar way, we can substitute U(0)K for U(0) in (29) and (30) to obtain approximations
for E[d] and rex; they are denoted by E[d]K and rex,K , respectively:

E[d]K , λ− σ(1− U(0)K)

λ(1− σ)
, (33)

rex,K , λ− (1− U(0)K)

λ
. (34)
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5.2 Polynomial approximation

As an alternative to truncation, we can also use the simpler polynomial approximations (24)
and (25) of the pgf U(z) to derive explicit closed-form expressions for various performance
measures of the queueing system at hand, in terms of the basic system parameters, i.e., the pgf
A(z) (and the related quantities α, β and γ) of the arrival process and the probability σ which
characterizes the deadline distribution. First, we derive from (24) and (25) approximations
Û(0)3 and Û(0)4 for the probability of an empty system:

Û(0)3 ,V0(0) + σV1(0) + σ2V2(0) + σ3V3(0) ,

Û(0)4 ,V0(0) + σV1(0) + σ2V2(0) + σ3V3(0) + σ4V4(0) ,

which can be expressed more explicitly as

Û(0)3 = α− αγσ − α

{
(1 + β)γ − A′′(1)

2

}
σ2 − α

{
(β2 + β − γ)γ − β

A′′(1)

2
+

A′′′(1)

6

}
σ3 ,

Û(0)4 = Û(0)3 − α

{
βγ(β2 − 2γ + 1 + β) + [γ − β(1 + β)]

A′′(1)

2
+ β

A′′′(1)

6
− A(4)(1)

24

}
σ4 .

(35)
Another, somewhat more involved, way to arrive at approximations for U(0) is to apply the

polynomial approximations (24) and (25) to compute approximate expressions for the quantity
U(1 − σm+1) and then use these in equation (16) to obtain estimations of U(0). This results
in two additional approximation formulas Û(0)3,m and Û(0)4,m for the probability of an empty
system:

Û(0)3,m , Û(1− σm+1)3

∏m
i=0 F (1− σi)

1 +
∑m+1

i=1 σi
∏i−1

j=0 F (1− σj)
,

Û(0)4,m , Û(1− σm+1)4

∏m
i=0 F (1− σi)

1 +
∑m+1

i=1 σi
∏i−1

j=0 F (1− σj)
,

(36)

where

Û(1− σm+1)3 , V0(1− σm+1) + σV1(1− σm+1) + σ2V2(1− σm+1) + σ3V3(1− σm+1) ,

Û(1− σm+1)4 , Û(1− σm+1)3 + σ4V4(1− σm+1) .

Next, we use two different approaches to derive approximate expressions for the mean system
content E[u], referred to as E[û]dir and E[û]ind, respectively. The first (so-called “direct”)
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approximation is obtained directly from the approximate expressions (24) or (25) of U(z):

E[û3]dir , Û ′(1)3 = V ′
0(1) + σV ′

1(1) + σ2V ′
2(1) + σ3V ′

3(1) ,

E[û4]dir , Û ′(1)4 = V ′
0(1) + σV ′

1(1) + σ2V ′
2(1) + σ3V ′

3(1) + σ4V ′
4(1) ,

or, explicitly,

E[û3]dir = λ+ γσ + βγσ2 +

{
(β2 − α)γ + α

A′′(1)

2

}
σ3 ,

E[û4]dir = E[û3]dir +

{
γ[β3 + α(γ − 1− β)] + α(1 + β)

A′′(1)

2
− α

A′′′(1)

6

}
σ4 .

(37)

The second (so-called “indirect”) approximation is obtained by substituting the polynomial
approximations Û(0)3 and Û(0)4 and Û(0)3,m and Û(0)4,m for U(0) in the exact equation (28):

E[û3]ind , λ− σ(1− Û(0)3)

1− σ
, E[û4]ind , λ− σ(1− Û(0)4)

1− σ
,

E[û3,m]ind , λ− σ(1− Û(0)3,m)

1− σ
, E[û4,m]ind , λ− σ(1− Û(0)4,m)

1− σ
.

(38)

Corresponding approximations for the mean customer delay are given by

E
[
d̂3

]
dir

, E[û3]dir
λ

, E
[
d̂4

]
dir

, E[û3]dir
λ

,

E
[
d̂3

]
ind

, E[û3]ind
λ

, E
[
d̂4

]
ind

, E[û4]ind
λ

,

E
[
d̂3,m

]
ind

, E[û3,m]ind
λ

, E
[
d̂4,m

]
ind

, E[û4,m]ind
λ

.

(39)

In view of equation (30), approximations for the deadline-expiration ratio can be computed as

r̂ex,3 =
λ− (1− Û(0)3)

λ
, r̂ex,4 =

λ− (1− Û(0)4)

λ
,

r̂ex,3,m =
λ− (1− Û(0)3,m)

λ
, r̂ex,4,m =

λ− (1− Û(0)4,m)

λ
.

(40)
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6 Discussion of results and numerical examples

In this section, we discuss the results obtained in the previous sections, both from a qualitative
perspective and by means of some numerical examples. In particular, we also validate the
approximate polynomial results against more accurate results, obtained by truncation of infinite
sums and products. We examine the case of Poisson arrivals in subsection 6.1. Some other
choices of the arrival distribution are discussed in subsection 6.2.

6.1 Poisson arrivals

In case of Poisson arrivals with mean λ, the pmf a(n) and the pgf A(z) are given by

a(n) = e−λλ
n

n!
, n ≥ 0 ,

A(z) = eλ(z−1) .

(41)

It then easily follows that α = e−λ, β = 1−e−λ, γ = λ−1+e−λ, and the consecutive derivatives
of A(z) for z = 1 are

A′(1) = λ , A′′(1) = λ2 , A′′′(1) = λ3 , A(4)(1) = λ4 . (42)

6.1.1 Probability of empty system

In Fig. 1, we have plotted the “exact” result U(0)K (with K = 2000) and the (most simple)
polynomial approximations Û(0)3 and Û(0)4 for the probability of an empty system, according
to formulas (31) and (35) respectively, versus the arrival rate λ, for various values of the
deadline-distribution parameter σ. (The curve for σ = 1 was obtained from the exact result for
this case in equation (10).) The figure shows that the probability of an empty system decreases
when the arrival rate increases, as expected. It also shows that this probability decreases more
slowly when the deadlines get smaller, i.e., when σ decreases, which can be attributed to the
fact that more customers leave the queue prematurely. Note that, when σ < 1, owing to the
finite deadlines of the customers, the queue remains empty for λ > 1 with a positive probability,
even though in this case more customers arrive per slot than the server can handle. The figure
finally also illustrates the accuracy of the polynomial approximations Û(0)3 and Û(0)4, which
is very good for all values of λ, as long as σ is not too high (say, σ < 0.75). For low values of λ
(say, λ < 0.5) as well as for high values of λ (say, λ > 1.5), the σ-polynomials are very accurate
for all σ. The figure also demonstrates that, as expected, keeping powers of σ up to the fourth
yields more accurate results than keeping powers only up to the third, but the improvement
is rather small. Therefore, we are convinced that, at least in case of Poisson arrivals, choosing
L = 3 or L = 4 is really enough to obtain fairly accurate results from fairly simple formulas.
(In the sequel, we will mainly consider the value L = 4.)

Very similar conclusions can be drawn from Fig. 2, where we have plotted U(0)K (with
K = 2000) and Û(0)3 and Û(0)4 versus the deadline-distribution parameter σ, for various
values of the arrival rate λ. This figure illustrates very clearly that the probability of an empty
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Figure 1: Probability of empty system: truncation approximation U(0)K and polynomial ap-
proximations Û(0)3 and Û(0)4, versus mean arrival rate λ, for Poisson arrivals and various
values of the deadline-distribution parameter σ
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Figure 2: Probability of empty system: truncation approximation U(0)K and polynomial ap-
proximations Û(0)3 and Û(0)4, versus deadline-distribution parameter σ, for Poisson arrivals
and various values of the mean arrival rate λ

system decreases when the deadlines get longer (i.e., for higher values of σ), because the number
of customers that leave the queue prematurely goes down in these circumstances. The accuracy
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Figure 3: Probability of empty system: truncation approximation U(0)K , simple polynomial
approximation Û(0)4 and more involved polynomial approximation Û(0)4,m, versus mean arrival
rate λ for Poisson arrivals, for σ = 0.9 and various values of m

of the polynomial approximation for σ < 0.75 and also for low and high values of λ is again
very striking.

In figures 3 and 4, we focus on the “critical” parameter values where the polynomial ap-
proximations Û(0)3 and Û(0)4 were somewhat less accurate, i.e., σ > 0.75 and 0.5 < λ < 1.5.
Specifically, Fig. 3 reconsiders the special case where σ = 0.9, in the interval 0.5 < λ < 1.5; the
figure does not just show the (so far best) approximation Û(0)4, but also the somewhat more
involved approximation Û(0)4,m, for various values of m. The results clearly illustrate that the
accuracy of the approximations increases with m. Very similar conclusions can be drawn from
Fig. 4, where we have depicted the approximations Û(0)4 and Û(0)4,m, for various m, versus σ
for two “critical” values of λ, i.e., λ = 0.7 and λ = 1.2.

We may conclude from the above results that, in case of Poisson arrivals, U(0) can usually
be quite well approximated by the simple estimation Û(0)4. If a higher precision is required, we
advise to use the somewhat more complicated formula Û(0)4,m. In theory, this approximation
becomes “exact” when m → ∞ (or m = K); in practice, a value around m = 20 seems
sufficient for good accuracy, even for “critical” parameter values, as long as σ is not too close
to its “forbidden” value σ = 1, for which the system reduces to a queue without deadlines.

6.1.2 Mean system content

Fig. 5 shows the “exact” results E[u]K (again, for K = 2000), and the four simplest power-
series approximations E[û3]dir, E[û4]dir, E[û3]ind and E[û4]ind, for the mean system content,
versus the mean arrival rate λ, for various values of the deadline-distribution parameter σ. As
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Figure 4: Probability of empty system: truncation approximation U(0)K , simple polynomial
approximation Û(0)4 and more involved polynomial approximation Û(0)4,m, versus deadline-
distribution parameter σ, for Poisson arrivals with mean arrival rate λ = 0.7 and λ = 1.2, and
various values of m
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Figure 5: Mean system content: truncation approximation E[u]K , direct polynomial approx-
imations E[û3]dir and E[û4]dir and indirect polynomial approximationsE[û3]ind and E[û4]ind,
versus mean arrival rate λ, for Poisson arrivals and various values of the deadline-distribution
parameter σ
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Figure 6: Mean system content: truncation approximation E[u]K , direct polynomial approx-
imations E[û3]dir and E[û4]dir and indirect polynomial approximationsE[û3]ind and E[û4]ind,
versus the deadline-distribution parameter σ, for Poisson arrivals with λ = 1.5

expected, all the curves increase with λ. The figure also makes clear that, for a given arrival
rate λ, the mean system content increases when the deadlines become longer, i.e., when the
parameter σ takes higher values. Again, we note that the system remains stable for λ > 1, due
to the finite length of the deadlines (if σ < 1). We also observe again that keeping powers of σ
up to the fourth is always better than up to the third.

Fig. 5 suggests that the second (“indirect”) polynomial approximation is always more
accurate than the first (“direct”) one, and is very close to the exact results for all values of σ.
In fact, this is true for most values of λ, except for “small” λ, as is clearly illustrated in Figs. 6
and 7, where we have plotted the “exact” and approximate values of the mean system content
as functions of the deadline parameter σ, for two different values of λ (1.5 and 0.3 respectively).
For high values of λ (Fig. 6), the second approximation is clearly the best, for all values of σ.
For smaller values of λ (Fig. 7), E[û]dir and E[û]ind perform equally well (irrespective of the
value of L), as long as σ < 0.85. Only for high σ, the direct approximation performs better
than the indirect one: the latter goes to infinity for σ → 1, whereas the former remains finite
for σ → 1 when λ < 1 (as it should). Fig. 8 shows that replacing E[û4]ind by the somewhat
more complicated approximation E[û4,m]ind can mitigate the reduced accuracy of the indirect
approximation in case λ < 1 up to very high values of σ < 1. For all the above reasons, we
only use the second (“indirect”) polynomial approximation in the sequel.
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Figure 8: Mean system content: truncation approximation E[u]K , simple polynomial approxi-
mation E[û4]ind and more involved polynomial approximation E[û4,m]ind, versus the deadline-
distribution parameter σ, for Poisson arrivals with λ = 0.3 and various values of m

6.1.3 Mean customer delay

The approximate mean customer delays E
[
d̂3

]
ind

and E
[
d̂4

]
ind

are compared with the “exact”

values E[d]K in Fig. 9. Again, the accuracy of the approximation turns out to be quite good
22



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5

λ

σ = 0.3

σ = 0.5

σ = 0.7

σ = 0.9

ˆ
ˆ

E[d]K
E[d3]ind
E[d4]ind

Figure 9: Mean customer delay: truncation approximation E[d]K and simple polynomial ap-

proximations E
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d̂3
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and E
[
d̂4
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, versus mean arrival rate λ, for Poisson arrivals and various

values of the deadline-distribution parameter σ

for all λ, as long as σ is not too close to 1. As expected, the mean delay increases with the
arrival rate λ. Also, the mean delay becomes smaller (for all relevant values of λ) when the
mean deadline of the customers decreases. Specifically, for the four curves in Fig. 9, we have
that the mean deadline D = 1/(1 − σ) takes values 10, 3.33, 2 and 1.42 for σ = 0.9, σ = 0.7,
σ = 0.5, and σ = 0.3 respectively. It is very clear that the curves for the mean customer delay
stay well below these mean deadlines, for all values of the arrival rate λ. Fig. 10 reconsiders
the case where σ = 0.9; it illustrates that the accuracy of the indirect approximation, which
in general can already be characterized as “quite good”, can be further improved by using the

somewhat more involved approximation E
[
d̂4,m

]
ind

instead of E
[
d̂4

]
ind

.

6.1.4 Deadline-expiration ratio

Finally, some results for the deadline-expiration ratio are shown in Fig. 11. As the deadline-
expiration ratio is computed directly from the probability of an empty system (see equations
(30) and (40)), we expect the power-series approximation r̂ex,4 to be accurate as long as σ is
not too high. This is indeed confirmed by the results in Fig. 11, which shows that even for a
σ-value as high as 0.9 the polynomial approximation is very good. In Fig. 12, we illustrate that
the accuracy can (again) be further improved by replacing r̂ex,4 by the somewhat more involved
approximation r̂ex,4,m. Furthermore, the figure reveals that, for a given deadline-distribution
parameter σ < 1, the fraction of customers that leave the queue unserved grows steadily with
the arrival rate λ. An intuitive explanation of this observation is not so obvious, in view of the
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, versus mean arrival

rate λ, for Poisson arrivals and σ = 0.9 and various values of m

fact that in a system without deadlines (i.e., σ = 1) the deadline-expiration ratio is constant
and equal to zero for all values of λ, either smaller than 1 (stable system) or larger than 1
(instable system). In a system with deadlines (σ < 1), we expect the deadline-expiration ratio
to increase with λ when λ > 1, because in this case, on average, at least λ − 1 customers per
slot (i.e., at least a fraction (λ − 1)/λ) leave the system prematurely, since the server cannot
handle more than 1 customer per slot. Perhaps more surprisingly, according to Fig. 11, the
deadline-expiration ratio also grows with λ in the region λ < 1, which means that the fraction
of customers that do get served before they leave the system decreases when λ increases. A
possible explanation for this behavior lies in the fact that for increasing λ the length of the
queue grows and customers are more likely to reach their deadline while waiting.

As a general conclusion on this series of numerical results, we may say that, in case of
Poisson arrivals, even the simplest polynomial approximations (indexed with subscript 3 or 4)
perform quite well as long as σ does not approach its “forbidden” value σ = 1. For high values of
σ, the more involved approximations (indexed with subscript (4,m)), are preferable. Actually,
this is the best we could hope for from the very beginning, because the whole polynomial
approximation approach is based on the assumption that “high powers of σ become negligible”.
This, of course, requires σ not to be too close to 1.

6.2 Non-Poisson arrivals

The analysis performed in this paper is valid for all possible choices of the arrival pgf A(z).
In particular, it is by no means confined to Poisson arrivals only. In fact, from the point of
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Figure 11: Deadline-expiration ratio: truncation approximation r̂ex,K and simple polynomial
approximation r̂ex,4, versus mean arrival rate λ, for Poisson arrivals and various values of the
deadline-distribution parameter σ
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Figure 12: Deadline-expiration ratio: truncation approximation r̂ex,K , simple polynomial ap-
proximation r̂ex,4 and more involved polynomial approximation r̂ex,4,m, versus mean arrival rate
λ, for Poisson arrivals and σ = 0.9 and various values of m

view of analytical simplicity, the Poisson case is even a more complicated case than many other
choices due to the transcendental nature of the Poisson pgf eλ(z−1). In this subsection we briefly
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Figure 13: Probability of empty system: truncation approximation U(0)K , simple polynomial
approximations Û(0)3 and Û(0)4, and more involved polynomial approximations Û(0)4,m, versus
mean arrival rate λ, for geometric arrivals and σ = 0.9 and various values of m

comment on two other possible choices for A(z), i.e., geometric arrivals and batch-Bernoulli
arrivals respectively.

6.2.1 Geometric arrivals

In case of geometric arrivals with mean λ, the pmf a(n) and the pgf A(z) are given by

a(n) =
1

1 + λ

(
λ

1 + λ

)n

, n ≥ 0 ,

A(z) =
1

1 + λ− λz
.

(43)

It then easily follows that α = 1
1+λ

, β = λ
1+λ

, γ = λ2

1+λ
, and the consecutive derivatives of A(z)

for z = 1 are

A′(1) = λ , A′′(1) = 2λ2 , A′′′(1) = 6λ3 , A(4)(1) = 24λ4 . (44)

Some numerical results for geometric arrivals are presented in Figs. 13 and 14, assuming a
“challenging” value for the deadline distribution parameter, i.e., σ = 0.9. Fig. 13 depicts the
“exact” probability of empty system U(0)K along with its approximations Û(0)3 and Û(0)4 and
Û(0)4,m for various values of m. The figure shows that the most simple polynomial approxima-

tions Û(0)3 and Û(0)4 are acceptable as long as λ stays below a value of about 0.5, but they
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Figure 14: Mean system content: truncation approximation E[u]K , direct polynomial approx-
imations E[û3]dir and E[û4]dir, indirect polynomial approximations E[û3]ind and E[û4]ind, and
more involved indirect polynomial approximation E[û4,m]ind, versus mean arrival rate λ, for
geometric arrivals and σ = 0.9 and various values of m

fail completely for larger values of λ. This was not the case for Poisson arrivals - see Figs. 1
and 3. However, as soon as the more involved approximations of type Û(0)4,m are used, the
approximations become increasingly close as m increases. As in the case of Poisson arrivals, a
value of m = 20 seems to be sufficient for good accuracy. Very similar conclusions can be ob-
tained from Fig. 14 with respect to the mean system content. Again, the simplest polynomial
approximations E[û]dir and E[û]ind are not very convincing in case of geometric arrivals, but
the more involved approximations, indexed with subscript (4,m), are quite accurate; again, a
good value of m seems to be 20.

6.2.2 Batch-Bernoulli arrivals

In this subsection, we assume that customers enter the system pairwise, i.e., two by two,
according to a so-called batch-Bernoulli distribution with mean λ. This means that the pmf
a(n) and the pgf A(z) are given by

a(0) = 1− λ

2
, a(2) =

λ

2
, a(n) = 0 , if n ̸= 0 and n ̸= 2 ,

A(z) = 1− λ

2
+

λ

2
z2 .

(45)
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Figure 15: Probability of empty system: truncation approximation U(0)K , simple polynomial
approximations Û(0)3 and Û(0)4, and more involved polynomial approximations Û(0)4,m, versus
mean arrival rate λ, for batch-Bernoulli arrivals and σ = 0.9 and various values of m

It is clear that, in this case, λ ≤ 2, α = 1 − λ
2
, β = λ

2
, γ = λ

2
, and the consecutive derivatives

of A(z) for z = 1 are

A′(1) = λ , A′′(1) = λ , A′′′(1) = 0 , A(4)(1) = 0 . (46)

The batch-Bernoulli case is illustrated by means of some numerical results in Figs. 15 and 16,
again assuming σ = 0.9. Fig. 15 depicts the “exact” probability of empty system U(0)K along
with its approximations Û(0)3 and Û(0)4 and Û(0)4,m for various values of m. The accuracy
of the various approximations seems to be very similar as in the Poisson case: the most simple
approximations Û(0)3 and Û(0)4 are already quite good for all values of λ, and can be even
improved by using the more involved approximations of type Û(0)4,m. Very similar conclusions
can be obtained from Fig. 16 with respect to the mean system content. Again, among the
simplest polynomial approximations E[û]dir and E[û]ind, the indirect version is to be preferred,
but the more involved approximations, indexed with subscript (4,m), are more accurate.

6.2.3 Comparison

Having compared the numerical results that we have obtained for Poisson, geometric and
batch-Bernoulli arrivals, as described above, along with many other numerical experiments
not reported in this paper, we have come to the conviction that the most simple polynomial
approximations (indexed with subscripts 3 or 4) are quite accurate for most values of the
deadline-distribution parameter σ, as long as the successive moments of the arrival distribu-
tion, or, alternatively, the successive derivatives of the pgf A(z) at z = 1, “do not become too

28



 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

λ

E[u]K
E[û3]dir
E[û4]dir
E[û3]ind
E[û4]ind

E[û4,5]ind
E[û4,10]ind
E[û4,20]ind

Figure 16: Mean system content: truncation approximation E[u]K , direct polynomial approx-
imations E[û3]dir and E[û4]dir, indirect polynomial approximations E[û3]ind and E[û4]ind, and
more involved indirect polynomial approximation E[û4,m]ind, versus mean arrival rate λ, for
batch-Bernoulli arrivals and σ = 0.9 and various values of m

big” for λ ≈ 1. An intuitive justification of this conjecture is based on the observation that the
quantities A(k)(1) appear in the coefficients of the consecutive powers σk in the formulas for
Û(0)3 and Û(0)4 as displayed in equations (35). In the case of Poisson arrivals (equation (42)),
the A(k)(1)s remain constant for λ = 1, for geometric arrivals (equation (44)), they increase
with k and in the batch-Bernoulli case (equation (46)), they reduce to zero as k increases.

7 Conclusions and future work

This paper has examined a relatively simple model for a discrete-time single-server queueing
system with general independent arrivals, in which customers are subjected to deadlines. We
have been able to derive nearly exact but complicated formulas, as well as simpler approximate
formulas for the main performance measures of the system. From the methodological point
of view, we believe that one of the main contributions of our paper lies in the polynomial
approximation method that we have developed in sections 4 and 5, a technique that may be
useful in the solution of other queueing models that lead to hard-to-solve functional equations
such as equation (7). In terms of numerical results, we have been able to explain most of the
observed dependencies between performance measures and system parameters intuitively.

The main restriction of this work seems to be the assumption that the service times of
the customers are deterministically equal to one slot each (although an extension to geometric
service times seems straightforward) and that the deadlines of the customers are geometrically
distributed. Future work will focus on generalizations of these assumptions.
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