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RESUME 

CHAPITRE 1 INTRODUCTION ET CONTEXTE DE L’ETUDE 

La protection des plantes est nécessaire pour prévenir des risques de pertes de rendement, 

dues à la présence de mauvaises herbes et de maladies (Rice et al., 2007). 

Malheureusement, l’application de produits de protection des plantes (PPP) peut causer des 

pollutions de surface ou des eaux, aussi bien que des contaminations par des organismes 

nuisibles. Par conséquent, leur meilleure utilisation est un enjeu social, sanitaire et 

économique majeur, de plus en plus régulé par des lois environnementales internationales. 

Ces PPP sont majoritairement appliqués par des solutions liquides utilisant différents types 

de pulvérisateurs équipés de buses hydrauliques. Ces buses atomisent le liquide pour 

produire un large spectre de tailles de gouttelettes (~ 10-1000 µm) et de vitesses (~ 0-25 

m/s) (Nuyttens et al., 2007a; 2009). Ces deux caractéristiques majeures influencent 

l’efficacité du jet projeté. En premier, les fines gouttelettes sont sujettes à des effets de 

dérive qui modifient la forme du jet et peuvent entrainer des pollutions environnementales 

(Nuyttens et al., 2010). En second, les gouttes de taille importante ont une plus grande 

énergie cinétique qui augmente leur capacité à pénétrer la canopée mais aussi leur chance 

de rebondir ou d’éclater à l’impact sur le feuillage (Zwertvaegher et al., 2014). Au-delà de 

ces deux caractéristiques, d’autres paramètres importants du jet influencent l’efficacité de 

l’application telles que : les directions de gouttes, la forme du volume de projection, la 

longueur de la nappe liquide et sa structure, la structure des gouttes individuelles et les 

dimensions 3D du jet (Miller & Ellis, 2000). Les caractéristiques du jet dépendent du type de 

buse, de leur taille, des propriétés du liquide projeté, de la pression utilisée pour pulvériser 

et des réglages du pulvérisateur (hauteur de la rampe par rapport à la végétation, vitesse 

d’avancement, …). 

Ainsi, le challenge est de réduire les pertes de produits pendant le transport jusqu’au 

feuillage, de maximiser le dépôt de produit et de minimiser les pertes à l’impact en 

améliorant le processus de pulvérisation (Zabkiewicz, 2007); ceci en sélectionnant et 

utilisant les équipements adéquats et les meilleurs conditions de pulvérisation (matériel et 

produit) (Dorr et al., 2007). Puisque les mécanismes de projection de gouttelettes quittant 
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une buse sont très complexes et délicats à quantifier ou modéliser, il est nécessaire de 

développer des techniques de quantification précises. Bien que certaines méthodes sont 

déjà disponibles pour la détermination de quelques caractéristiques des jets, aucune n’est 

cependant capable de caractériser en totalité le processus de pulvérisation. Par conséquent, 

l’ajustement des pulvérisateurs est toujours basé sur des expériences pratiques et des tests 

d’affinement, puisque prendre en considération toutes les combinaisons possibles est 

impossible. L’utilisation de modèles pourrait augmenter la connaissance des procédés de 

transport des gouttelettes et les effets des réglages du pulvérisateur et des conditions 

environnementales. La validation de ces modèles est cependant difficile et ne peut pas être 

réalisée avec des techniques de mesures traditionnelles, comme la mesure de la distribution 

du jet ou la mesure de la vitesse de l’air. Par conséquent, la disponibilité de systèmes non 

intrusifs est d’une grande importance.  

Des techniques optiques quantitatives mais en fournissant pas d’images sont disponibles 

mais sont complexes, chères et dans la plupart des cas limitées à la mesure de petits 

volumes. Ces limitations concomittentes avec les récents développements des traitements 

d’images (augmentation de la sensibilité des systèmes et coût réduit) ont accru l’intérêt 

porté aux techniques d’imagerie rapide pour les applications agricoles et plus 

particulièrement pour la fertilisation (Vangeyte, 2013; Cool et al., 2014) ou la pulvérisation. 

La petite taille des gouttes et leur vitesse élevée sont deux challenges intéressants à relever 

pour la caractérisation d’un jet. Ces caractéristiques microscopiques aussi bien que celles 

macroscopiques (jet réel) influencent l’efficacité du jet projeté. Ainsi, obtenir des 

informations plus précises sur ces paramètres peut permettre d’atteindre un usage de 

pesticides plus efficace. L’objectif général de ce projet de recherche est ainsi de développer 

des systèmes d’imagerie performants (acquisition et traitement) pour la visualisation et la 

détermination des caractéristiques des gouttelettes de produits phytosanitaires. Pour 

atteindre cet objectif, plusieurs sous-objectifs sont pointés correspondant chacun à un 

chapitre différent de la thèse.  
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CHAPITRE 2 ETUDE BIBLIOGRAPHIQUE SUR LES PROCESSUS DE PULVERISATION, 

LES TECHNIQUES D’APPLICATION EXISTANTES ET LES METHODES DE MESURE 

POUR LA CARACTERISATION DES JETS 

Plutôt que d’utiliser des pesticides chimiques ou de synthèse, la gestion des infestations 

utilise une large gamme de méthodes de prévention et de contrôle. Cette thèse s’intéresse 

aux techniques d’application de jets de produits qui sont les plus utilisées pour appliquer des 

pesticides. Le processus de pulvérisation consiste en plusieurs sous-processus formant une 

chaîne de pulvérisation globale (Matthews, 2000). Chaque partie de la chaine peut influer 

sur l’efficacité du jet projeté: cuve, régimes de fonctionnement et d’atomisation (Figure 1), 

transport jusqu’à la cible et impact sur la cible (feuillage). 

 

Figure 1. Les différentes formes de jets en fonction des buses utilisées (Schick, 1997) 

Ce travail de thèse se focalisera donc sur deux phases essentielles de la pulvérisation : la 

formation des gouttes et l’atomisation et transport vers la cible. Les techniques d’acquisition 

d’images développées peuvent aussi être utilisées pour étudier l’impact des gouttes sur le 

feuillage et la rétention comme indiqué par Zwertvaegher et al. (2014). Pour notre étude, 3 

sortes de buses ont été testées : buses à cône creux, buse à jet plat et buse à jet plat et 

inclusion d’air, qui sont les plus utilisées en arboriculture et viticulture. 

La distribution du jet et le dépôt ont été utilisés pour évaluer les performances des buses 

pour des applications agricoles. Ces caractéristiques sont traditionnellement mesurées avec 

des techniques intrusives appelées méthodes d’échantillonnage qui peuvent affecter le 

comportement du jet (Rhodes, 2008). Ces nombreuses méthodes sont divisées en trois 

catégories: méthodes mécaniques, électriques et optiques. 
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Les méthodes mécaniques impliquent la collection d’échantillons de jet sur une surface 

solide ou sur une cellule contenant un liquide spécifique. Les méthodes électriques mesure la 

distribution des tailles de gouttes via la détection et l’analyse de pulses électroniques 

produits par les jets. Des informations sur cette technique peuvent être trouvées chez 

Gardiner (1964). Ceci étant, les méthodes les plus connues sont les techniques optiques qui 

sont divisées en plusieurs catégories : les systèmes de diffusion de lumière (Phase Doppler 

Particle Analyzers (PDPA) (Nuyttens et al., 2007a; 2009), les analyseurs de diffraction laser 

(Malvern Analyzer (Stainier et al., 2006)) et les sondes optiques (Teske et al., 2002), et les 

méthodes d’imagerie rapide (caméra rapide avec une lumière à haut éclairage (Kim et al., 

2011) ou caméra standard et système stroboscopique associé (Cointault et al., 2002; Kuang-

Chao et al., 2008; Hijazi et al., 2010; Li et al., 2010; Vangeyte, 2013). 

Ces techniques peuvent fournir des informations additionnelles sur les trajectoires des 

gouttelettes, ce qui est nécessaire pour les travaux sur l’impact des gouttes. Cependant, les 

mécanismes d’atomisation, d’éjection et d’impact des gouttelettes sont très complexes et 

délicats à quantifier ou modéliser. Aucune méthode n’offre donc la possibilité de 

caractériser totalement le processus d’application de jets de pesticides. Néanmoins, les 

techniques d’imagerie sont non intrusives et ont prouvé leur efficacité pour de nombreuses 

applications. C’est pourquoi le développement d’outils spécifiques de caractérisation des 

gouttelettes et des jets est le premier axe de travail de cette thèse.  

CHAPITRE 3 DEVELOPPEMENT DE SYSTEMES D’ACQUISITION D’IMAGES 

RAPIDES BASES SUR DES EXPERIMENTATIONS POUR DES GOUTTELETTES 

UNIQUES 

Les caractéristiques des jets de pesticides générés par des buses agricoles jouent un rôle 

important dans la précision et l’efficacité des produits de protection des plantes, dans le 

domaine de l’agriculture de précision (Stafford, 2000). 

La faible précision et les pertes des produits réduisent l’efficacité de leur application et 

augmentent la contimation à l’environnement et les risques pour l’opérateur. Le challenge à 

relever est de réduire les pertes pendant le transport vers la cible et de maximiser le dépôt 

de produits et donc le processus de pulvérisation (Zabkiewicz, 2007). Les caractéristiques les 
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plus importantes d’un jet de produit phytosanitaire influençant le processus de pulvérisation 

sont la taille et la vitesse des gouttelettes, la forme de la distribution du jet, la longueur de la 

nappe liquide et son épaisseur, la structure des gouttes seules et les dimensions 3D du jet 

(Miller & Ellis, 2000; Nuyttens et al., 2009). 

L’objectif de ce chapitre a été de développer deux systèmes d’acquisition d’images basés sur 

des images de gouttelettes uniques obtenues par un générateur de gouttelettes 

piézoélectriques dans son fonctionnement en mode « goutte à la demande » (Switzer, 1991; 

Yang et al., 1997; Lee, 2003). Différents réglages de caméra rapide, différentes illuminations, 

différents diffuseurs et lentilles ont été testés en utilisant l’imagerie d’ombroscopie (pour le 

fond) (Lecuona et al., 2000; Castanet et al., 2013). Les évaluations de l’impact de ces 

paramètres ont été effectuées en mesurant trois paramètres de qualité d’une image 

(entropie, contraste et SNR), la stabilité de l’illumination et le rapport de sur-exposition, et la 

précision (de l’ordre de 1/2 pixel). Ces systèmes d’imagerie ont été utilisés pour caractériser 

les caractéristiques d’une goutte seule (chapitre 5) à partir d’algorithmes de traitement 

d’images (chapitre 4). De la même manière, ils ont permis de mesurer les caractéristiques 

d’un micro-jet (taille et vitesse des gouttes) (chapitre 6) et d’un jet réel (angle de jet, 

longueur de la nappe liquide, trajectoire) (chapitre 7). 

Le développement et la conception des systèmes d’imagerie rapide ont été effectués en 

utilisant des gouttelettes contrôlées au niveau de leur taille dans le mode « goutte à la 

demande ». Pour cela, un générateur de gouttelettes (Université de Liége, Gembloux, Agro-

Bio-Tech, Belgium) (Figure 2) a été utilisé dans cette étude. Il est composé d’une chambre 

d’alimentation en liquide avec un élément piézoélectrique qui peut être piloté avec des 

tensions jusqu’à 60V. Ce générateur est capable de produire des gouttelettes selon deux 

modes: «goutte à la demande » et mode continu (Rayleigh Breakup), qui sont détaillés plus 

finement dans le chapitre 5. 
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Figure 2. Schématisation globale du générateur de gouttelettes 

En se basant sur les paramètres de qualité d’une image, 4 réglages pour l’acquisition des 

images ont été sélectionnés. Leur stabilité lumineuse et le rapport de sur-exposition ont été 

établis en comparant les histogrammes de valeurs d’intensité de pixels de 10 ROI (Region Of 

Interest) consécutives prises avec les mêmes réglages sans la présence d’une gouttelette. 

L’analyse des images combine des techniques et des mesures basées sur les intensités de 

niveaux de gris des pixels des images qui ont été utilisées pour déterminer les 

caractéristiques des images obtenues pour les différents réglages envisagés. A partir des 

histogrammes, différentes propriétés statistiques du 1er ordre (Materka & Strzelecki, 1998) 

des images prises avec et sans gouttelettes ont été déterminées et utilisées pour 

comparaison des différents réglages des systèmes d’imagerie: la moyenne des niveaux de 

gris ou moyenne, le contraste moyen ou écart-type, et l’entropie (Haralick et al., 1973; 

Gonzalez et al., 2004).  

Les expérimentations mises en oeuvre permettent de conclure quant à la bonne qualité des 

systèmes d’acquisition pour mesurer les éléments suivants : 

 Caractéristiques d’un micro-jet (taille et vitesse des gouttelettes). Le système conçu 

consiste en une caméra rapide fonctionnant avec un temps d’exposition idéal de 6 µs, 

munie d’une lentille microscopique à une distance de travail de 430 mm (champ de vue 

de 10.5 mm x 8.4 mm), et d’une source lumineuse à Xénon utilisée en éclairage 

backlight sans diffuseur. 

 Caractéristiques d’un macro-jet (jet réel) (angle du jet, forme …). Le système conçu 

consiste en une caméra rapide fonctionnant avec un temps d’exposition de 15 µs, munie 
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d’une lentille macro à zoom à une distance de travail de 143 mm (champ de vue de 88 

mm X 110 mm), et d’une source lumineuse combinant un spot halogène et un diffuseur. 

Les sytèmes d’imagerie mis en place peuvent également être utilisés pour visualiser et 

déterminer les caractéristiques d’un micro-jet et d’un macro-jet de pulvérisation selon des 

techniques non invasives. En outre, ils offrent la possibilité d’étudier les gouttes et le 

comportement du jet à l’impact comme indiqué par Zwertvaegher et al. (2014).  

CHAPITRE 4 DEVELOPPEMENT DES ALGORITHMES D’ANALYSE ET DE 

TRAITEMENT DES IMAGES POUR LA CARACTERISATION D’UNE SEULE 

GOUTTELETTE 

Le suivi et l’évaluation des tailles des gouttelettes en mode continu et mode “goutte à la 

demande” sont déterminés en se basant sur un algorithme de suivi d’objets (Jain & Nagel, 

1979; Baek & Lee, 1996; Lecuona et al., 2000; Maggio & Cavallaro, 2011; Castanet et al., 

2013) développés sous Matlab (2011b). Une fois que les images ont été acquises par la 

caméra rapide, une séquence d’étapes de pré-traitement et traitement pour l’analyse 

d’images été mise en place comme décrit dans la Figure 3. 

 
Figure 3. Flow chart de l’algorithme d’analyse des images pour la caractérisation des 

gouttelettes 

 

La Figure 4 fournit un exemple d’image obtenue par le système (a) ainsi que le résultat du 

pré-traitement (b), pour le mode «goutte à la demande». 
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Figure 4. Image originale (a) et résultat après pré-traitement (b) pour le mode «goutte à la 

demande»  

 

Les algorithmes de segmentation peuvent être classés selon deux catégories principales : 

seuillage et détection de contours (Gonzalez et al., 2004). Une technique de segmentation 

basée sur le seuillage par histogramme a été utilisée pour notre projet afin de discriminer les 

gouttelettes du fond (chapitre 5). La seconde catégorie d’algorithmes de segmentation qui 

recherche les changements nets de contours a été utilisée pour la définition d’un critère de 

focalisation optique (chapitre 6). 

Lorsque les gouttes sont extraites du fond, différentes opérations de morphologie 

mathématique comme la dilatation, l’érosion, l’ouverture et la fermeture ont été envisagées 

pour caractériser les gouttes. L’élément structurant choisit est un disque faisant écho à la 

sphéricité suposée des gouttelettes. Pour notre objectif, une fermeture a été utilisée: 

dilatation suivie par une érosion. Ceci permet de lisser les contours des objets, d’associer 

ensemble les coupures de contours et de remplir les zones dont la taille est inférieure à celle 

de l’élément structurant. Ensuite une labellisation des gouttelettes est réalisée. Finalement, 

l’extraction de région est effectuée en mesurant les propriétés des objets labellisés comme 

le diamètre, l’aire, le périmètre, l’orientation (Figure 5). 

 

 

a. 1 mm 
b. 
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Figure 5. Résultat de l’extraction de région pour le mode “goutte à la demande” (le centre de 

la goutte est marqué d’une étoile bleue et les contours sont en rouge) 

 

Dès que le centre et la localisation des gouttes sont déterminés, le tracking de ces gouttes 

est réalisé en recherchant la même goutte sur deux images successives ainsi que le vecteur 

déplacement et la vitesse. Cela est possible grâce à la large gamme de fréquences 

d’acquisition de la caméra rapide. Le tracking d’une goutte dans l’image I est étendu dans 

l’image suivante J. Chaque suivi entre deux images peut générer plusieurs résultats. La 

vitesse d’une goutte est calculé avec l’équation (1) (Lecuona et al., 2000): 

�⃗�𝑖𝑗 =
𝑑𝑖𝑗

Δ𝑡
=

(𝑋𝑗 − 𝑋𝑖, 𝑌𝑗 − 𝑌𝑖)

Δ𝑡
 (1) 

où 𝑑𝑖𝑗 et �⃗�𝑖𝑗 sont le vecteur déplacement et la vitesse respectivement. 

La vitesse d’une goutte est calculée comme le déplacement divisé par le temps entre deux 

expositions (fpour le mode «goutte à la demande»: 1 image = 1 ms et pour le mode continu: 

1 image = 0.1 ms). Un des résultats est fournit sur la Figure 6. 

 
Figure 6. Tracking des gouttelettes en mode “goutte à la demande” 
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CHAPITRE 5 GENERATION ET CARACTERISATION DE GOUTTELETTES UNIQUES A 

PARTIR DE TECHNIQUES D’IMAGERIE ET D’UN GENERATEUR DE GOUTTELETTES 

PIEZOELECTRIQUES SELON DEUX MODES : GOUTTELETTES A LA DEMANDE ET 

MODE CONTINU 

Les différentes mesures ont été effectuées grâce à l’utilisation d’un générateur de 

gouttelettes fonctionnant selon deux modes: gouttelettes à la demande ou mode continu. 

Les effets des paramètres de fonctionnement du générateur, incluant la largeur de pulse et 

son amplitude avec 4 tailles d’orifice de buses (261 µm, 123 µm, 87 µm and 67 µm) sur le 

diamètre des gouttes et leur vitesse ont été caractérisés. Les tailles et vitesses des 

gouttelettes ont mesurées avec succès par le système d’imagerie et les traitements 

développés dans les chapitres 3 et 4.  

Le calcul de la taille des gouttelettes et leur tracking ont été réalisés en 3 étapes: 1) 

Détection du mouvement des gouttes en utilisant une technique de détection de contours 

basée sur un changement local de luminance dans l’image (Lecuona et al., 2000); 2) Tracking 

des gouttelettes entre deux images successives et 3) Mesure des caractéristiques des 

gouttelettes (taille, vitesse, espacement entre gouttelettes (en mode continu)). La vitesse 

d’une goutte est calculée en mesurant sa position entre deux images successives, 

connaissant le délai entre deux images, grâce au système d’acquisition mis en œuvre. Une 

description détaillée des techniques d’analyse d’images est fournie au chapitre 4. 

Plusieurs conclusions ont été obtenues à partir des travaux de ce chapitre : 

 Les expérimentations en mode continu ont montré que les caractéristiques initiales des 

gouttelettes issues du générateur sont une fonction double de la largeur du pulse et de 

la taille de l’orifice. Les valeurs de largeur du pulse sont des paramètres critiques pour 

l’éjection des gouttes. En changeant la largeur, il est ainsi possible de contrôler la vitesse 

des gouttes et la taille de leur diamètre. En général, diminuer la valeur de ta et 

augmenter celle de tp induit une augmentation du diamètre de la goutte. De manière 

identique, si la taille de l’orifice d’une buse augmente, le diamètre de la goutte 

également.  
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 Avec le mode “goutte à la demande”, les tailles des gouttelettes se situent dans 

l’intervalle 134.1 μm et 461.5 μm. Principalement, les plus petites et plus grandes 

gouttelettes ont été mesurées avec l’orifice de buse le plus petit. Les vitesses mesurées 

se situent entre 0.08 m/s et 1.78 m/s. En outre, nous avons noté un effet de l’amplitude 

du pulse sur la vitesse et le diamètre de la goutte. En mode continu, la plus petite 

vitesse de 1.84 m/s a été mesurée avec l’orifice de buse le plus petit tandis que la 

vitesse la plus élevée (4.66 m/s) l’a été avec l’orifice le plus grand. Dans ce dernier 

mode, les vitesses obtenues se rapprochent des valeurs utilisées pour des pulvérisations 

réelles. 

 Le rapport entre le diamètre d’une goutte et l’orifice d’une buse en mode “goutte à la 

demande” est inscrit dans l’intervalle 1.3 à 3.9. 

 Le mode continu pour chaque buse a été établit pour une fréquence résultant en une 

génération continue de gouttelettes. Cette fréquence combinée avec des amplitudes de 

pulse différentes ont été utilisées pour tester l’impact sur le diamètre des gouttes, 

l’espacement inter-gouttes et la vitesse. En se basant sur les résultats des 

expérimentations l’effet de l’amplitude du pulse sur l’espacement inter-goutte est 

statistiquement significatif. En outre, il existe une relation globalement linéaire entre le 

diamètre des gouttes et la vitesse, pour le mode continu. 

 

CHAPITRE 6 DEVELOPPEMENT D’ALGORITHMES DE TRAITEMENT DES IMAGES 

POUR LA CARACTERISATION DE MICRO-JETS ET COMPARAISON DES RESULTATS 

OBTENUS AVEC LES RESULTATS DU SYSTEME PDPA 

La distribution des vitesses et tailles des gouttelettes est un paramètre important des jets de 

pulvérisation. L’objectif de ce chapitre est de mesurer les caractéristiques d’un micro-jet 

(taille et vitesse des gouttelettes) de différentes buses hydrauliques (Albuz ATR orange et 

rouge, TeeJet XR 110 01, XR 110 04 and Al 110 04) en utilisant le système d’acquisition 

d’images développés dans le chapitre 3 (Figure 7), et les méthodes de traitement d’images 

développées dans les chapitres 4 et 5. 
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Figure 7 Système d’acquisition des images pour la caractérisation d’un jet de gouttelettes 

Dans une première partie, un critère de focalisation optique des gouttelettes est présenté, 

basé sur le gradient de niveaux de gris, pour décider quelles sont les gouttelettes dans et en 

dehors du plan focal. L’analyse des images pour caractériser ce critère comporte 3 étapes 

(Figure 8): pré-traitement par soustraction du fond, segmentation d’image et détection de 

contour, calcul du paramètre de focalisation optique et du critère. 

 
Figure 8 Flow chart de l’algorithme d’analyse des images pour l’établissement du critère de 

focalisation optique  des gouttelettes 
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A partir du processus de traitement des images précèdent, un paramètre critique de 

focalisation (Infc) a été établit pour chaque taille de goutte et un critère de focalisation 

optique a été déduit afin de définir si une goutte est dans le plan focal ou pas. La zone de 

focalisation des gouttes est définie comme la zone dans laquelle une gouttelette avec un 

certain diamètre est dans le plan focal.  

Dans une seconde partie, le critère de focalisation optique a été appliqué à différentes 

images de jets pour les 5 buses testées, et les caractéristiques des gouttelettes ont ensuite 

été déterminées. Les effets des types de buses et des tailles de buses sur la taille du jet et la 

vitesse des gouttelettes ont été étudiés. Les résultats ont été comparés avec le système laser 

PDPA (Nuyttens et al., 2007a). 

Les principaux résultats de ce chapitre sont les suivants : 

 Un critère de focalisation basé sur le gradient de niveaux de gris a été mis en place pour 

déterminer les gouttelettes qui sont dans le plan focal. Différentes tailles de 

gouttelettes ont été générées grâce à un générateur de gouttelettes piézoélectriques et 

des buses en verre en mode continu à différentes distances du plan focal en utilisant un 

système de micro-translation. Ceci a permis la mesure d’un gradient de niveaux de gris 

et d’un paramètre de focalisation optique pour chaque gouttelette. A partir de là, un 

paramètre de focalisation critique (Infc) a été établit pour chaque goutte et un critère de 

focalisation des gouttes en a été déduit. La zone de focalisation des gouttelettes est 

ensuite définie comme la zone dans laquelle une goutte avec un certain diamètre est 

dans le plan focal. 

 Le critère définit a été appliqué aux images de jets de pulvérisation pour différentes 

buses hydrauliques et les caractéristiques des gouttelettes ont été calculées. Les effets 

du type de buse et de leur diamètre sur ces caractéristiques ont par ailleurs été étudiés. 

 Les résultats sur les taille et vitesse des gouttelettes obtenus grâce au traitement des 

images ont montré qu’il était possible de mesurer les caractéristiques d’un jet avec un 

système non invasif à partir de techniques d’imagerie. 

 Ces résultats ont été comparés avec ceux obtenus par la technique du PDPA laser 

considérée comme la référence. 
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CHAPITRE 7 DEVELOPPEMENT D’ALGORITHMES DE TRAITEMENT D’IMAGES 

POUR LA CARACTERISATION DE MACRO-JETS ET COMPARAISON DES 

RESULTATS AVEC CEUX OBTENUS VIA LE SYSTEME «PATTERNATOR» DE 

L’INSTITUT ILVO 

Les jets de pesticides sont appliqués avec différents types de buses, chacune possédant ses 

propres caractéristiques. L’objectif de ce chapitre 7 est de mesurer les caractéristiques d’un 

jet global (angle de pulvérisation, longueur de la nappe liquide, forme du jet et volume de 

pesticides projeté) provenant de différents types de buses hydrauliques en utilisant le 

système d’imagerie développé dans le chapitre 3 et des traitements d’images spécifiques. 

Les tests inclus 5 buses différentes communément utilisées (Albuz ATR orange et rouge, 

TeeJet XR 110 01, XR 110 04 et Al 110 04), avec différents angles de projection et tailles. A 

partir des images de jet, les caractéristiques macroscopiques obtenues sont comparées à des 

résultats obtenus grâce au dispositif «patternator» disponibles à l’institut ILVO, en Belgique. 

Les principaux résultats obtenus sont les suivants: 

 Les angles des jets des combinaisons buse/pression à la sortie de l’orifice (0 cm) ont été 

mesurés par imagerie. Les valeurs obtenues sont plus grandes que l’angle nominal des 

jets, excepté pour la buse XR 110 01. Pour les buses à cône creux et à inclusion d’air, 

l’analyse d’images fournie une très bonne représentation des angles des jets même si 

les angles sont surestimés pour les deux buses standard à jet plat. 

 A partir des mesures effectuées avec le système “patternator” à trois hauteurs 

différentes (15cm, 30 cm et 50 cm), les angles des jets actuels diminuent avec la hauteur 

de positionnement des buses du fait de la gravité. Cet effet est bien plus prononcé pour 

les jets les plus fins. 

 La plus petite nappe liquide a été calculée pour la buse XR 110 01 (18.5 mm), suivie des 

deux buses à cône creux (27.4 et 31.3 mm). La plus longue nappe a été obtenue pour les 

buses XR 110 04 (38.9 mm) et AI 110 04 (43.1 mm). 

 Concernant la forme du jet, les largeurs des distributions des gouttelettes à 4 hauteurs 

(5, 10, 15, 20 cm) pour toutes les buses et pour les angles correspondant ont été 

calculées et comparées aux résultats obtenus par le système «patternator». En général, 

le volume de gouttelettes le plus grand a été trouvé directement sous la buse et 
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diminue de chaque côté de la buse. En complément, plus la buse est haute, plus les pics 

de distribution du jet sont lissés compares à ceux obtenus à une hauteur de 15 cm. A 

cause de la gravité, la forme du jet est parabolique et l’angle du jet décroît 

généralement quand la hauteur de positionnement de la buse augmente. 

La comparaison des résultats d’analyse d’images et du « patternator » a été effectuée à 

une hauteur de 15 cm. L’erreur relative sur l’angle du jet pour la buse XR 110 01 était de 

0.5 %, et de 0.6% pour les buses XR 110 01 et AI 110 04. L’erreur sur l’angle du jet était 

plus grande pour la buse à cône creux, les buses ATR orange et rouge, avec 2.8% et 5.4% 

respectivement. 

CHAPITRE 8 CONCLUSION 

Dans les 50 dernières années, les avancées dans le domaine de la protection des plantes ont 

contribué à augmenter les rendements et à assurer une large production. Facile à utiliser et 

plutôt bon marché à l’époque, les pesticides ont prouvé leur efficacité. Cependant, quand ils 

sont appliqués aux cultures, une partie du produit n’atteint pas sa cible et est perdu dans 

l’air ou au sol. Par conséquent, des efforts ont été consentis pour améliorer leur efficacité et 

leur innocuité sanitaire, souvent grâce à des lois environnementales internationales. 

Les produits sont appliqués à partir de matériels combinant type de buse/pression induisant 

des gammes de vitesses et de tailles de gouttelettes très diverses (Chapitre 2). Une mesure 

simultanée de ces vitesses et tailles est ainsi d’une grande importance dans le processus de 

pulvérisation. Il existe de nombreuses méthodes pour la mesure des caractéristiques des 

gouttelettes qui peuvent être divisées en trois catégories: mécaniques, électriques et 

optiques. Ces dernières apparaissent comme les plus pertinentes puisqu’étant non invasives 

et en perturbant donc pas le processus de pulvérisation. 

Les améliorations récentes dans le domaine du traitement des images et la réduction du 

coût des systèmes d’imagerie ont ainsi accru l’intérêt des techniques d’imagerie rapide pour 

les applications agricoles telles que la pulvérisation de pesticides. 

Cette thèse s’est donc focalisée sur le développement d’une telle technique pour la 

caractérisation des sprays (micro et macro). Les travaux effectués ont permis de démontrer 

que les caractéristiques d’un jet de pesticides peuvent être correctement et précisément 
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mesurées par des techniques d’imagerie non-invasives couplées à des traitements 

spécifiques. 

Les travaux à venir consisteraient notamment en l’amélioration de la précision des mesures 

effectuées: précision sub-pixellique, calcul des profondeurs de champ, mesure de particules 

non sphériques. 

Mots-clés: Générateur de gouttelettes, imagerie rapide, traitment d’image, angle de 

pulvérisation, caractérisation gouttelette, buses hydrauliques 
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SUMMARY 

 
In recent years, advances in plant protection have contributed considerably to increasing 

crop yields in a sustainable way. Easy to apply and rather inexpensive, pesticides have 

proven to be very efficient. However, when pesticides are applied to crops some of the spray 

may not reach the target, but move outside the intended spray area. This can cause serious 

economic and environmental problems. 

Most of the pesticides are applied using agricultural sprayers. These sprayers use hydraulic 

nozzles which break the liquid into droplets with a wide range of droplet sizes and velocities 

and determine the spray pattern. Small droplets are prone to wind drift, while large droplets 

can runoff from the target surface and deposit on the soil. Therefore, efforts are being 

undertaken to come to a more sustainable use of pesticides which is more and more 

regulated by international environmental laws. One of the main challenges is to reduce 

spray losses and maximize spray deposition and efficacy by improving the spray 

characteristics and the spray application process. Because mechanisms of droplets leaving a 

hydraulic spray nozzle are very complex and difficult to quantify or model, there is a need for 

accurate quantification techniques. 

The recent improvements in digital image processing, sensitivity of imaging systems and cost 

reduction have increased the interest in high-speed (HS) imaging techniques for agricultural 

applications in general and for pesticide applications in specific.  

This thesis focused on the development and application of high speed imaging techniques to 

measure micro (droplet size and velocity) and macro (spray angle and shape, liquid sheet 

length) spray characteristics.The general aim was to show that the spray characteristics from 

agricultural spray nozzles can be measured correctly with the developed imaging techniques 

in a non-intrusive way. 

After a review of the spray application process and techniques for spray characterization 

(Chapter 2), two image acquisition systems were developed in Chapter 3 based on single 

droplet experiments using a high speed camera and a piezoelectric droplet generator. 58 
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combinations of lenses, light sources, diffusers, and exposure times were tested using 

shadowgraph (background) imaging and evaluated based on image quality parameters 

(signal to noise rate, entropy ratio and contrast ratio), light stability and overexposure ratio 

and the accuracy of the droplet size measurement. These resulted into development of two 

image acquisition systems for measuring the macro and micro spray characteristics. The HS 

camera with a macro video zoom lens at a working distance of 143 mm with a larger field of 

view (FOV) of 88 mm x 110 mm in combination with a halogen spotlight and a diffuser was 

selected for measuring the macro spray characteristics (spray angle, spray shape and liquid 

sheet length). The optimal set-up for measuring micro spray characteristics (droplet size and 

velocity) consisted of a high speed camera with a 6 µs exposure time, a microscope lens at a 

working distance of 430 mm resulting in a FOV of 10.5 mm x 8.4 mm, and a xenon light 

source used as a backlight without diffuser.  

In Chapter 4 image analysis and processing algorithms were developed for measuring single 

droplet characteristics (size and velocity) and different approaches for image segmentation 

were presented.  

With the set-up for micro spray characterization and using these dedicated image analysis 

algorithms (Chapter 4), measurements using a single droplet generator in droplet on 

demand (DOD) and continuous mode were performed in Chapter 5. The effects of the 

operating parameters, including voltage pulse width and pulse amplitude with 4 nozzle 

orifice sizes (261 µm, 123 µm, 87 µm and 67 µm) on droplet diameter and droplet velocity 

have been characterized. The experiments in DOD mode have shown that the initial droplet 

characteristics from the droplet generator are a function of the double pulse width 

(absorption time (ta) and pulsation time (tp)) and the orifice size. By changing pulse width, it 

was possible to control droplet velocity and size. In general, decrease of ta and increase of tp 

increased the droplet diameter. Similarly, increasing the nozzle orifice size increased the 

droplet diameter. With the DOD mode, droplet sizes ranged between 134.1 μm and 461.5 

μm. Foremost, the smallest and the fastest droplets were measured with the smallest nozzle 

orifice. The measured droplet velocities ranged between 0.08 m/s and 1.78 m/s. Besides, an 

effect of the pulse amplitude on the droplet diameter and velocity was noticed. The ratio of 

the droplet diameter and nozzle orifice in DOD mode ranged from 1.3 to 3.5. The continuous 

mode for every nozzle was established for a high frequency (kHz) resulting in a continuous 
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droplet generation. This frequency together with different pulse amplitudes were used to 

test the effect on the droplet diameter, inter-droplet spacing and velocity. As for the DOD 

mode, the droplet diameter was mainly controlled by the nozzle orifice. The droplet size 

here was between 167.2 μm and 455.8 μm. Furthermore, the nozzle orifice also influenced 

the droplet velocity i.e., the bigger the nozzle orifice was, the higher the droplet velocity. 

Obviously, there was a linear trend between the droplet diameter and velocity in continuous 

mode. The ratios between the droplet diameter and the nozzle orifice ranged from 1.3 to 

3.9. In continuous mode, the lowest droplet velocity of 1.84 m/s was measured with the 

smallest nozzle orifice size while the highest droplet velocity of 4.66 m/s was measured with 

the biggest nozzle orifice size. Based on the results in both modes, similar droplet sizes were 

produced in both modes but in continuous mode it was possible to achieve faster droplets 

which correspond better with real spray application. 

In Chapter 6, the image acquisition technique for measuring micro spray characteristics was 

used for measuring the droplet size and velocity characteristics of agricultural hydraulic 

spray nozzles. This included the development of an in-focus droplet criterion based on the 

gray level gradient to decide whether a droplet is in focus or not. Differently sized droplets 

generated with a piezoelectric generator and glass nozzles in continuous mode at different 

distances from the focal plane and lens using a micro translation stage were measured. This 

enabled measurement of the gray level gradient and in-focus parameter for every droplet 

size at different positions. From here, a critical in-focus parameter (Infc) was established for 

every droplet size and an in-focus droplet criterion was deduced to decide whether a droplet 

is in focus or not depending on its diameter and in-focus parameter. In this study the 

focused droplet zone (FDZ) was defined as the zone in which a droplet with a certain 

diameter is in focus and a linear relation between droplet size and FDZ was found.  

The developed in-focus droplet criterion was applied to spray images of five nozzles taken at 

different positions: two standard flat fan nozzles (XR 110 01 & 04 at 400 kPa), an air inclusion 

nozzle (AI 110 04 at 400 kPa) and two hollow cone nozzles (ATR orange at 600 kPa and red at 

800 kPa). The effects of nozzle type, nozzle size and measuring position on droplet size and 

velocity characteristics were studied.  
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The droplet size and velocity results from the imaging technique have shown that it is 

possible to measure the spray characteristics in a nonintrusive way using an image 

acquisition set-up and image processing. Measured droplet sizes ranged from 24 µm to 543 

µm depending on the nozzle type and size. Droplet velocities at 0.5 m below the nozzle 

ranged from 0.5 m/s up to 12 m/s. Spray droplet size characteristics such as DV0.1, DV0.5, DV0.9 

and RSF as well as spray velocity characteristics such as VVol10, VVol50, VVol90 and VSF, were 

extracted from the images. Similar effects of nozzle type and measuring position on droplet 

sizes as well as on droplet velocities were found with the imaging technique as with the 

Phase Doppler Particle Analyzer (PDPA) laser technique. The developed imaging technique 

can be seen as an alternative to the well-established PDPA laser technique. The droplet 

diameter and velocity characteristics showed a relatively good comparison with the results 

measured with the PDPA laser. When compared with the PDPA laser, the imaging technique 

generally measured less small droplets and in some cases also less big droplets. Differences 

between both techniques can be attributed to the fact that the smallest measured droplet 

size with the imaging system is 24 µm while smaller droplets are measured with the PDPA. In 

addition, the number of droplets measured with the imaging technique was much smaller 

compared with the PDPA which increases the chance to miss one of the biggest droplets. 

This can be improved by taking more images. Differences in droplet velocity characteristics 

between both techniques can be attributed to the fact that the PDPA laser is only measuring 

droplet velocity in one dimension and hence underestimates the actual droplet velocity. In 

addition, the imaging technique applied did not allow the measurement of droplets faster 

than about 12 m/s based on FOV and the acquisition rate while some droplets with higher 

speeds were observed with the PDPA mainly for the XR 110 04. In future, the imaging system 

can be further improved to be able to measure at a higher frame rate with the same 

accuracy.  

In Chapter 7, the image acquisition system for macro spray characterization was used to 

measure the spray angle, spray shape and liquid sheet length of the same nozzle-pressures 

combinations as mentioned above. Where possible, the results were compared with the 

existing non-imaging measuring techniques like a horizontal patternator. The measured 

spray angles were higher than the nominal spray angle except for the XR 110 01 nozzle. For 

the hollow cone (ATR orange and red) and air inclusion nozzle (AI 110 04), the imaging 
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technique gave a good comparison of the spray angle while the spray angle was 

underestimated for both standard flat fan nozzles (XR 110 01 & 04). The shortest liquid sheet 

was found for the XR 110 01 nozzle (18.5 mm), followed by the two hollow cone nozzles 

(27.4 and 31.3 mm). The longest liquid sheets were found for the XR 110 04 (38.9 mm) and 

AI 110 04 (43.1 mm). In addition, from the spray shape, the spray pattern width at four 

heights (5, 10, 15 and 20 cm) of all selected nozzles and the corresponding spray angles were 

calculated and compared with the results from the horizontal patternator. For the spray 

angle, a good correspondence between imaging technique and patternator was found with 

relative errors of 0.5% for the XR 110 01, 0.6% for the XR 110 01 and AI 110 04 and 2.8% and 

5.4% for the ATR orange and ATR red, respectively. 

Keywords: Piezoelectric droplet generator, high-speed imaging technique, image processing, 

spray angle, spray shape, droplet characterization, spray nozzles 
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SAMENVATTING 

De voorbije jaren werd veel aandacht besteed aan innovaties in gewasbescherming vooral 

met het oog op het verhogen van opbrengsten op een duurzame manier. Het gebruik van 

chemische gewasbeschermingsmiddelen (GBM) met een hoge efficiëntie speelt hierin nog 

steeds een belangrijke rol. Hieraan zijn echter ook belangrijke nadelen verbonden. Tijdens 

hun toepassing kunnen GBM b.v. verloren gaan en op ongewenste plaatsen terechtkomen 

met financiële, economische en milieukundige gevolgen. 

GBM worden meestal toegepast met landbouwspuiten. Deze spuittoestellen gebruiken 

hydraulische spuitdoppen die het spuitbeeld vormen en de spuitvloeistof omzetten in 

spuitdruppels met een breed spectrum van druppelgroottes en –snelheden. Kleine druppels 

driften echter makkelijk weg onder invloed van wind terwijl grote druppels van het gewas 

kunnen afrollen en de bodem contamineren. Om die redenen worden meer en meer 

inspanningen geleverd om tot een duurzamer gebruik van GBM te komen en is er steeds 

meer internationale regelgeving betreffende het gebruik van GBM. Eén van de grootste 

uitdagingen is om via geschikte spuittechnieken de verliezen naar de omgeving te 

minimaliseren in combinatie met het maximaliseren van depositie en bio-efficiëntie. Omdat 

het druppelvormingsproces van hydraulische spuitdoppen complex en moeilijk te 

kwantificeren of modelleren is, is er nood aan accurate meettechnieken. De recente 

ontwikkelingen in soft- en hardware openen mogelijkheden om hogesnelheidscamera’s en 

beeldverwerking te gebruiken voor landbouwtoepassingen in het algemeen en 

spuittoepassingen van GBM in het bijzonder.  

Dit onderzoek focust op de ontwikkeling en toepassing van technieken van snelle 

beeldacquisitie en –verwerking voor het niet-intrusief opmeten van de micro- 

(druppelgrootte en –snelheid) en macro- (spuithoek, spuitbeeld, lengte vloeistofvlies) 

karakteristieken van spuitnevels van GBM. 

Na een review over spuittoepassingen van GBM en technieken om spuitnevels te 

karakteriseren (Hoofdstuk 2), werden in dit proefschrift twee snelle beeldacquisitiesystemen 

ontwikkeld in Hoofdstuk 3 op basis van single-droplet experimenten met een 
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snellebeeldcamera en een piëzo-electrische druppelgenerator. 58 combinaties van lenzen, 

lichtbronnen, diffusoren en sluitertijden werden getest en geëvalueerd op basis van 

beeldkwaliteitsparameters (signaal-ruisverhouding, entropieratio en contrastratio), 

lichtstabiliteit en hoeveelheid overbelichting en de meetnauwkeurigheid. Dit resulteerde in 

twee bruikbare beeldacquisitiesystemen. De hogesnelheidscamera met een 

macrovideozoomlens op een afstand van 143 mm met een gezichtsveld van 88 mm x 110 

mm in combinatie met een halogeenspotlicht en een diffusor werd geselecteerd voor het 

meten van macrokarakteristieken van spuitnevels (spuithoek, spuitbeeld, lengte 

vloeistofvlies). De optimale opstelling voor het opmeten van de microkarakteristieken 

(druppelgrootte en -snelheid) bestond uit een hogesnelheidscamera met 6 µs sluitertijd, een 

microscopische lens op een afstand van 430 mm, resulterend in een gezichtsveld  van 10,5 

mm x 8,4 mm, en een Xenon tegenlicht zonder diffusor.  

Met deze laatste techniek en de nodige ontwikkelde beeldverwerkingsalgoritmen 

(Hoofdstuk 4) werden in Hoofdstuk 5 metingen uitgevoerd met een druppelgenerator in 

droplet on demand (DOD) en continue modus. De effecten van instellingen (elektrische 

spanning, pulsbreedte en pulshoogte) en dopopening (261 µm, 123 µm, 87 µm and 67 µm) 

op druppelgrootte en –snelheid werden bepaald. De experimenten in DOD-modus toonden 

aan dat de initiële druppelkarakteristieken bepaald werden door de dubbele pulsbreedte 

(absorptietijd ta en pulsatietijd tp) en de grootte van de dopopening. Door te spelen met de 

pulsbreedte was het mogelijk om druppelgrootte- en snelheid te beïnvloeden. Algemeen 

leidden een daling van ta en een stijging van tp tot een toename van de druppelgrootte. In 

DOD-modus varieerden de druppelgroottes tussen 134,1 μm en 461,5 μm. De kleinste en 

tegelijk snelste druppels werden gegenereerd met de kleinste dopopening. De 

druppelsnelheden varieerden van 0,08 m/s tot 1,78 m/s. Daarnaast werd ook een effect van 

pulshoogte vastgesteld. De verhouding tussen druppelgrootte en grootte van de dopopening 

varieerde van 1,3 tot 3,5 in DOD-modus. In continue modus werd voor elke dopopening een 

hoogfrequent signaal (kHz) aangelegd resulterend in een continue druppelproductie. De 

effecten van frequentie en amplitude op druppelgrootte en –snelheid en de afstand tussen 

de druppels werden bepaald.  Naar analogie met de DOD-modus werden druppelgroottes 

voornamelijk bepaald door de grootte van de dopopening. Druppelgroottes varieerden van 

167,2 μm tot 455,8 μm. Daarnaast resulteerde een grotere dopopening eveneens in hogere 
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druppelsnelheden en was er een duidelijk lineair verband tussen druppelgroottes en -

snelheden. De verhouding tussen druppelgrootte en grootte van de dopopening varieerde 

van 1,3 tot 3,9 in continue modus terwijl de druppelsnelheden varieerden tussen 1,84 m/s 

en 4,66 m/s. Zowel in DOD- als in continue modus kon een gelijkaardige range van 

druppelgroottes gegenereerd worden maar in continue modus waren de druppels sneller en 

dus representatiever voor een echte spuittoepassing. 

In hoofdstuk 6 werd het beeldacquisitiesysteem voor het opmeten van de micro- 

karakteristieken van spuitnevels gebruikt om de druppelgroottes en –snelheden op te meten 

voor werkelijke spuitnevels van hydraulische spuitdoppen. In een eerste fase werd een in-

focuscriterium opgesteld op basis van de grijswaarden-gradiënt om te bepalen of een 

druppel al dan niet in focus is. Verschillende druppelgroottes werden gegenereerd in 

continue modus met de druppelgenerator op verschillende afstanden van het focaal vlak 

met behulp van een micro-positioneersysteem. Voor elke positie en druppelgrootte werden 

de grijswaarden-gradiënt en de in-focusparameter bepaald. Op basis hiervan werd een 

kritische in-focusparameter (Infc) gedefinieerd voor elke druppelgrootte en een in-focus 

criterium dat bepaalt of een druppel al dan niet in focus is op basis van de diameter en de in-

focusparameter. De focused droplet zone (FDZ) werd gedefinieerd als de zone waarin een 

druppel met een bepaalde diameter in focus is. Een lineaire correlatie tussen druppelgrootte 

en FDZ werd vastgesteld. 

Het ontwikkelde in-focuscriterium werd toegepast op beelden genomen met vijf 

spuitdoppen op verschillende posities in de spuitnevel: twee standaardspleetdoppen (XR 

110 01 & 04 bij 4.00 kPa), een luchtmengdop (AI 110 04 bij 400 kPa) en twee werveldoppen 

(ATR oranje bij 600 kPa en ATR rood bij 800 kPa). De effecten van doptype, dopgrootte en 

positie op druppelgroottes en –snelheden werden geëvalueerd. 

De gemeten druppelgroottes en –snelheden met de beeldverwerkingstechniek toonden aan 

dat het mogelijk was om microkarakteristieken van spuitnevels op te meten op een niet 

intrusieve manier. De gemeten druppelgroottes varieerden van 24 µm tot 543 µm 

afhankelijk van doptype en –grootte. Druppelsnelheden op 0,5 m onder de spuitdop 

varieerden van 0,5 m/s tot 12 m/s. Druppelgroottekarakteristieken zoals DV0.1, DV0.5, DV0.9 en 

RSF en druppelsnelheidskarakteristieken zoals VVol10, VVol50, VVol90 and VSF werden berekend. 
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Gelijkaardige effecten van doptype en positie op druppelgroottes en –snelheden werden 

vastgesteld met de ontwikkelde beeldverwerkingstechniek als met de algemeen aanvaarde 

Phase Doppler Particle Analyzer (PDPA)--lasertechniek. Er werd een relatief goede correlatie 

gevonden tussen druppelkarakteristieken gemeten met de nieuw ontwikkelde techniek en 

de PDPA laser. In vergelijking met de PDPA-laser werden met de beeldverwerkingstechniek 

algemeen minder zeer kleine druppels opgemeten en in sommige gevallen ook een kleiner 

aantal grote druppels. Verschillen tussen beide technieken waren onder meer te wijten aan 

het feit dat de minimale gemeten druppelgrootte met de beeldverwerkingstechniek 24 µm is 

terwijl met de PDPA nog kleinere druppels kunnen worden opgemeten. Daarenboven was 

het aantal opgemeten druppels met de beeldverwerkingstechniek klein ten opzichte van de 

PDPA- techniek waardoor de kans stijgt om enkele van de zeer grote druppels te missen. Het 

nemen en analyseren van meer beelden kan dit verhelpen. Het verschil in druppelsnelheden 

tussen beide technieken is te wijten aan het feit dat de PDPA-laser slechts de verticale 

component van de druppelsnelheid meet, waardoor de werkelijke druppelsnelheid 

onderschat wordt. Daarnaast konden met de beeldverwerkingstechniek geen druppels 

sneller dan ongeveer 12 m/s opgemeten worden op basis van FOV en frame rate terwijl met 

de PDPA sporadisch druppels met hogere snelheden opgemeten werden voornamelijk bij de 

XR 110 04. In de toekomst kan de beeldverwerkingstechniek verder geoptimaliseerd worden 

door te meten bij een hogere frame rate  met een zelfde nauwkeurigheid. 

In hoofdstuk 7 werd het beeldacquisitiesysteem voor het opmeten van de macro- 

karakteristieken van spuitnevels gebruikt om de spuithoek, het spuitbeeld, en de lengte van 

het  vloeistofvlies te bepalen voor dezelfde dop-druk–combinaties als hierboven. Waar 

mogelijk werden de resultaten vergeleken met die van traditionele meettechnieken zoals de 

verdeeltafel. De opgemeten spuithoeken bleken groter dan de nominale waarden met 

uitzondering van de XR 110 01. Voor de werveldoppen (ATR oranje en rood) en de 

luchtmengdop (AI 110 04) werd een goede overeenkomst gevonden tussen de met de 

beeldverwerkingstechniek gemeten spuithoeken en met de traditionele meettechniek 

terwijl voor beide standaardspleetdoppen (XR 110 01 en XR 110 04) een lagere waarde werd 

gevonden met de beeldverwerking. De kleinste lengte van het vloeistofvlies werd 

opgemeten voor de XR 110 01 (18.5 mm), gevolgd door beide werveldoppen (27.4 en 31.3 

mm), terwijl de grootste waarden opgemeten werden voor de XR 110 04 (38.9 mm) en de AI 
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110 04 (43.1 mm). De spuitbreedtes op vier hoogtes (5, 10, 15 en 20 cm) werden opgemeten 

samen met de overeenkomstige spuithoeken en vergeleken met de resultaten van de 

horizontale verdeeltafel. Voor de spuithoek werd een goede overeenkomst tussen beide 

meettechnieken gevonden met een relatieve fout van 0.5% voor de XR 110 01, 0,6% voor de  

XR 110 04 en de AI 110 04 en 2,8% en 5,4% voor respectievelijk de oranje en de rode 

werveldop. 

Trefwoorden: Piëzo-electrische druppelgenerator, snelle beeldacquisitie en –verwerking, 

beeldverwerking, spuithoek, spuitbeeld, druppelkarakterisatie, spuitdoppen 
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1 GENERAL INTRODUCTION  

1.1 INTRODUCTION 

Plant protection is necessary for preventing a decline in yields, due to appearance of 

pests, weeds and diseases. Plant protection products (PPP) are essential tools for plant 

protection and disease prevention. Without pesticides a significant percentage of food and 

fiber crops would be lost, plant diseases would increase, and valuable native habitats would 

be devastated (Rice et al., 2007). Unfortunately the application of PPP may cause pollution 

of surface- and groundwater, contamination of non-target organisms as well as human 

hazards. More than 80% of pesticide may be lost during spraying due to drift (up to 15%), 

rebound (up to 30%), run-off (up to 20%) and other processes (up to 15%) including 

evaporation or photolysis and thus can affect public health as well as contaminate water, soil 

and the atmosphere of an ecosystem (Pimentel, 1995; Knowles, 2001; Pimentel & Burgess, 

2012). Therefore their safe and efficient use is a major social and economic issue which is 

more and more regulated by international environmental laws while they play an important 

role in agricultural marketing.  

PPP are mainly applied as liquid solutions by using different types of sprayers equipped 

with hydraulic spray nozzles (Figure 1.1). These nozzles atomize the liquid to produce a 

broad spectrum of droplet sizes (~ 10-1000 µm) and velocities (~ 0-25 m/s) (Nuyttens et al., 

2007a; 2009). Droplet size as well as droplet velocity characteristics both influence the 

efficiency of the spray application. First, small droplets are subject to spray drift which 

distorts the spray pattern and causes environmental pollution (Nuyttens et al., 2010). 

Second, large droplets have a greater kinetic energy which increases their ability to 

penetrate into the canopy but also the chance to rebound or shatter when the droplet 

impacts the plant surface (Zwertvaegher et al., 2014). 
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Figure 1.1. Orchard (left) (www.airtecsprayers.com) and field (right) crop spray application 

(ILVO) 

 

Besides droplet sizes and velocities, other important spray characteristics influencing the 

efficiency of the application process are droplet directions, the volume distribution pattern, 

the spray sheet structure and length, the structure of the individual droplets and the 3D 

spray dimensions (Miller & Ellis, 2000). Spray characteristics depend on nozzle type, nozzle 

size, liquid properties, spray pressure and sprayer settings (boom height, driving speed, etc.). 

Hence, the challenge is to reduce spray losses during transport to their target and maximize 

spray deposition and efficacy and minimize off-target spray deposition by improving the 

spray application process (Zabkiewicz, 2007) by selecting and using adequate spray 

equipment and spray solutions at the right conditions (Dorr et al., 2007). 

Because mechanisms of droplets leaving a hydraulic spray nozzle are very complex and 

difficult to quantify or model, there is a need for accurate quantification techniques. 

Although techniques are available to measure some specific spray characteristics, none of 

them are able to fully characterize a spray application process. Therefore, adjusting sprayers 

is still based on practical experience and ‘trial and error’ as it is impossible to test any 

combination of sprayer type and settings, nozzle type, air support, spray pressure, crop 

characteristics, driving speed etc. on the application efficacy. The use of models could 

increase the knowledge on droplet transport processes and the effect of sprayer settings 

and environmental conditions. The validation of this is however difficult and cannot only be 

performed with traditional measuring techniques (like spray liquid distribution and air 

velocity measurements). 
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Spray characterization techniques can be classified in three broad categories: mechanical, 

electrical and optical. With mechanical techniques, droplets are collected and analyzed using 

sampling devices. However, these sampling devices may affect the spray flow behavior and 

can only be used to evaluate spray deposition and estimate droplet size (Rhodes, 2008). 

Therefore, the availability of non-intrusive systems for spray characterization is of great 

importance. 

Quantitative (optical) non-imaging droplet characterization techniques are available but they 

are complex, expensive and in most cases limited to small measuring volumes. The 

limitations of the non-imaging techniques and the recent improvements in digital image 

processing, sensitivity of imaging systems and cost reductions, have increased the interest in 

high speed imaging techniques for agricultural applications in general and for fertilizer 

(Vangeyte, 2013; Cool et al., 2014) and pesticide applications in specific. Imaging analyzers 

are spatial sampling techniques consisting of a light source, a camera and a computer with 

image acquisition and processing software. The small droplet size and the high velocity of 

the ejected spray droplets make it a challenge to use imaging techniques for spray 

characterization. 

1.2 RESEARCH OBJECTIVES AND THESIS OUTLINE 

 Spray nozzles do not atomize the liquid into droplets of identical size and velocity but 

into a range of droplets of various sizes and velocities. These micro spray characteristics 

(droplet size and velocity) as well as the macro spray characteristics (spray angle, liquid 

sheet length, etc.) influence the efficiency of the spray application. Consequently more 

information on the micro and macro spray characteristics can lead to a more efficient 

pesticide usage. 

Therefore, the general objective of this doctoral research is to develop image acquisition 

systems for pesticide sprays which are then used to systematically measure different micro 

and macro spray characteristics. 

To achieve this main objective, the following sub-objectives are addressed, each 

corresponding with one of the following chapters: 
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 To review the spray application process and application techniques together with the 

available measuring techniques for micro and macro spray characteristics (Chapter 

2); 

 To develop and describe image acquisition systems for measuring the micro and 

macro spray characteristics (Chapter 3); 

 To develop and describe image analysis and image processing algorithms for single 

droplet characterization (Chapter 4); 

 To generate and characterize single droplets using imaging techniques and a 

piezoelectric droplet generator in two modes: Droplet on Demand (DOD) and 

continuous mode (Chapter 5); 

 To develop image processing algorithms for micro-spray characterization and to 

compare imaging results with Phase Doppler Particle Analyzer results for different 

agricultural spray nozzles (Chapter 6); 

 To develop image processing algorithms for macro-spray characterization and to 

compare these results with the horizontal spray patternator results (Chapter 7). 

Finally, Chapter 8 highlights the most important conclusions and some guidelines for future 

research. A schematic overview of the outline of this thesis is presented in Figure 1.2. 

  



General introduction 

51 

Chapter 2 The spray application process and techniques 
for spray characterization: A review 

Chapter 1 General introduction 

Chapter 3 Development of image acquisition systems for micro 

& macro spray characterization 

Macro-spray characteristics Micro-spray characteristics 

Chapter 8 Conclusions and Future work 

Chapter 4 Image analysis and image 

processing algorithms for single droplet 

characterization 

Continuous 
mode 

PDPA 
Image 

analysis 

Horizontal 
patternator 

Chapter 5 Single droplet characterization 

Chapter 6 Micro-spray characterization 

from a single nozzle 

Chapter 7 Macro-spray 

characterization from a single nozzle 

Image 
analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.2. Schematic representation of the outline of this thesis 

DOD mode 
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2 THE SPRAY APPLICATION PROCESS AND TECHNIQUES FOR SPRAY 

CHARACTERIZATION: A REVIEW
i 

 

A review of the use of plant protection products and the spray application process is given in 

this chapter. Different techniques for measuring the spray distribution and deposition are 

also described. Furthermore, methods for measuring spray droplet characteristics, like non-

imaging and imaging and their advantages and limitations are listed here. 

 

 

 

 

 

 

 

 

 

 

                                                      
i
 Part of this chapter was adapted from:  

Hijazi, B., Decourselle, T., Vulgarakis Minov, S., Nuyttens, D., Cointault, F., Pieters, J., and Vangeyte, J. 2012. 

The use of high speed imaging for applications in precision agriculture. Book chapter in "New Technologies: 

Trends, Innovations and Research". ISBN 978-953-51-0480-3. 
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2.1 THE USE OF PLANT PROTECTION PRODUCTS 

In the coming years, agriculture will face a 30 percent increase in the global 

population, intensifying competition for increasingly scarce land, water and energy 

resources, and the existential threat of climate change. To provide for a population 

projected to reach 9.3 billion in 2050 estimates are that food production will need to 

increase from the current 8.4 billion tons to almost 13.5 billion tons a year (FAO, 2014). Plant 

protection products (PPP) help farmers to grow more food on less land by protecting crops 

from huge losses due to pests and diseases and raising yields per hectare. 

These PPP are generally chemicals used to eliminate or control a variety of agricultural pests 

during the growing season. The most applied PPP are insecticides (to kill insects), herbicides 

(to kill weeds) and fungicides (to control fungi, mold and mildew). When applying PPP the 

aim is always to maximize the amount reaching the target and minimize the amount 

reaching off-target areas. However, the use and disposal of toxic PPP by farmers and the 

general public provide many possible sources of PPP in the environment. This may lead to 

transport of PPP through the air or water, into the soil or even into living organisms.  

It is estimated that about 25% of more than 2.5 million tons of PPP  that are yearly applied in 

the world is used in the EU (Balsari & Marucco, 2011). Pesticide regulations exist to ensure 

the safe use of pesticides, so that farmers are equipped with the right tools for sustainable 

productivity so that consumers can be confident about the safety of their food and 

environments. Therefore, farmers and industry work together within the framework of EU 

Regulations and Directives to minimize any negative impacts. 

In 2006, the European Commission adopted the ‘Thematic Strategy on the Sustainable 

use of Pesticides’ (European Commission, 2006). It was stated that by 2014 each country 

must adopt the principles of integrated pest management (IPM) and all pesticides 

application equipment will have to be inspected at least once by 2016 to grant a proper 

efficient use of any PPP (European Commission, 2009). IPM is an ecosystem strategy for crop 

production and protection which combines techniques to control pests and diseases and 

minimizes crop damage and the use of pesticides. IPM uses four approaches for pest 

management evaluations, decisions and controls (US Environmental Protection Agency, 

2013): 
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 Action thresholds are set: the pest population density, at which it makes economic 

sense to take a control measure, is determined. 

 Pest monitoring: pests are identified in the field and their population build-up is 

monitored to allow for sound control decisions. 

 Pest prevention: if significant pest damage is expected, preventive measures are 

taken to avoid this damage. 

 Pest control: when action thresholds are surpassed, despite the applied preventive 

measures, the pest control method posing the least risk to producers, consumers and 

the environment is chosen first. If this control method does not work, more risky 

methods can be applied. 

Instead of only using synthetic chemical pesticides as a blanket solution, integrated pest 

management uses a wide array of methods for pest prevention and control. This thesis 

focuses on spray application techniques which is still the most used method to apply PPP. 

Spray application is a key component of IPM. Poor spray application can result in failure in 

what otherwise would be a successful IPM strategy. 

2.2 SPRAY APPLICATION PROCESS 

The spray application process consists of several sub-processes forming a ‘delivery 

chain’ (Matthews, 2000) (Figure 2.1). Every part of the chain can influence the spray 

efficiency. This thesis focuses on the droplet formation and atomization (2.2.2) and transport 

to the target (2.2.3). The developed image acquisition techniques can also be used to study 

droplet impact on the target and retention (2.2.4) as done by Zwertvaegher et al. (2014). 
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Figure 2.1. Delivery chain of the spray application process (Matthews, 2000) 

2.2.1 Spray tank 

The first step in the spray application process is preparing the spray tank solution. It is very 

important that the spray solution is mixed sufficiently before starting the application. With 

an inhomogeneous solution, a good and homogeneous application cannot be reached. The 

homogeneity of the solution is not only determined by good mixing practice, it also depends 

on the characteristics of the solvent. Certain products dissolve better in water than others. 

Compared to water, these adjuvants influence the liquid sheet formation and droplet 

characteristics (Wright et al., 1982). 

2.2.2 Droplet break-up regimes and atomization 

The process of droplet ejection is not as simple as taking a fluid chamber with a small hole 

and pressurizing it enough for fluid to start emerging from the ejection nozzle hole (Lee, 

2003). To accomplish monodisperse droplets ejected out of a nozzle, one needs the ability to 

produce high-speed fluid jets of approximately the diameter of the desired droplets 
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(Lindemann, 2006). Furthermore some terms concerning the droplet formation and ejection 

are necessary to be defined as they are later used in this thesis. Three breakup regimes can 

be distinguished as shown in Figure 2.2 of which the first two are found using a piezoelectric 

droplet generator (Chapters 3 to 5) while the atomization breakup is typical for hydraulic 

spray nozzles (Chapters 6 and 7).  

 

 
Figure 2.2. Different breakup regimes represented by the relationship of the velocity v versus 

the droplet diameter D for water as ejected liquid (Lindemann, 2006) 

 

 Droplet-on-demand Breakup (DOD): characterized by ejection of a single droplet with 

a diameter approximately equal or slightly bigger than the nozzle diameter (Figure 

5.3a) (Lindemann, 2006); 

 Continuous mode: characterized by a continuous stream of uniformly sized droplets 

(Figure 5.3b). This continuous jet disperses into single droplets after a certain 

distance from the nozzle due to the source of acoustic energy causing instability and 

standing waves on the fluid. However, to form uniformly sized droplets, a suitable 

resonance frequency must be applied to it (Lee, 2003). 

𝑓 =
𝜈

9.016 𝑟0
 Eq. 2.1 

 

𝑑 = 1.89 𝑑0 Eq. 2.2 
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where f is the optimal frequency, v is liquid velocity at the nozzle exit, r0 is the nozzle 

orifice radius and d0 is the diameter of the nozzle orifice; 

 Atomization Breakup: is a process in which a liquid sheet is fragmented into a fine 

spray of many single droplets (Figure 7.7a). This involves emitting the liquid through a 

small orifice at a high pressure. As a result, a wide spectrum of droplet sizes is 

generated by atomizers ranging from very narrow (several hundred µm) to wide 

(over a thousand µm) (Kirk, 2001; Teske et al., 2005). Atomization breakup is typical 

for the application of plant protection products using hydraulic nozzles as studied in 

this thesis. Therefore, the atomization break up, the liquid sheet disintegration 

process is discussed in more detail in 2.2.2.1. Finally, the relation between the spray 

nozzle and the resulting spray characteristics is described in 2.2.2.2 together with the 

spray quality (2.2.2.3). 

2.2.2.1 Liquid sheet disintegration 

When the aerodynamic forces acting on the liquid sheet become larger than the surface 

tension, the sheet starts to disintegrate (Lefebvre, 1989). Most atomizers demonstrate three 

mechanisms of sheet disintegration: by perforation, by oscillation and by rim disintegration 

(Figure 2.3). 

 
Figure 2.3. Sheet break-up by rim (left), perforated sheet (middle) and wave-sheet 

disintegration (right) (Matthews, 2000) 

 

Which kind of disintegration occurs, depends on the velocity of the liquid relative to the 

surrounding air. A large relative velocity can be caused by fast droplets moving in still air or 

by droplets with a low velocity moving in high velocity airflow (Lefebvre, 1989). At relatively 

low liquid velocities, the liquid sheet is perforated leading to growing interruptions in the 
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sheet and separated droplets (disintegration by perforation) (Miller & Ellis, 2000). At higher 

velocities, wave phenomena occur in the sheet which leads to disintegration by oscillation. 

At the end of the liquid sheet, a jet-like, torus shaped structure is separated from the sheet 

and disintegrates into droplets (Figure 2.3) (Bayvel & Orzechowski, 1993). The last kind of 

sheet break-up is rim disintegration which occurs when both surface tension and viscosity 

are high (Lefebvre, 1989). Surface tension can act upon the edges of the liquid sheet and 

contract them into a rim. 

The moment of sheet break-up determines the size of the droplets. A sheet breaking up 

early and close to the nozzle is thick and produces large droplets. A sheet breaking up at a 

greater distance from the nozzle orifice is thinner and produces smaller droplets (Miller & 

Ellis, 2000). At very high velocities, no liquid sheet is formed. Droplets are formed directly 

underneath the nozzle outlet and a very fine fog is produced (Bayvel & Orzechowski, 1993). 

In this thesis, liquid sheet length is measured using imaging techniques for different types of 

agricultural spray nozzles (Chapter 7). The mechanism of sheet disintegration is also 

influenced by fluid characteristics, like surface tension and viscosity. Increasing values of 

both properties lead to a longer sheet and thus smaller droplets (Kirk, 2001). 

2.2.2.2 Spray nozzles and their characteristics 

Each spray consists of a range of droplet sizes, referred to as the droplet size distribution. 

For a given formulation, the droplet size spectrum is determined by the nozzle type, the 

nozzle size and the spray pressure (Nuyttens et al., 2007a). 

The spray nozzle is the primary link between the plant protection product (PPP) and proper 

application to the target. The nozzle is designed to meter or regulate liquid flow rate, to 

form and control droplet size and to disperse and distribute the droplets in a specific pattern 

(Azimi et al., 1985). 

The nozzle type not only  determines the amount of spray applied but also the uniformity of 

the applied spray, the coverage obtained on the sprayed surfaces and the amount of drift 

that might occur (Sumner, 2009). 

Each nozzle type has specific characteristics and is designed to be used for different 

applications. Once a system is designed, selecting a nozzle based on its characteristics is 
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crucial. The most important nozzle parameters are: flow rate, operating pressure and 

pressure losses, nozzle material, nozzle spray angle, nozzle positioning, spray height, spray 

width, spray thickness, atomization degree or droplet size, impact, spray pattern, etc. 

(Lefebvre, 1989). 

Selecting a nozzle based on the spray pattern and other spray characteristics that are 

required generally yields good results (Lipp, 2012). Different types of spray nozzles are 

available as shown in Figure 2.4. Air atomizing nozzles produce the smallest droplet sizes 

followed by fine spray, hollow cone, flat fan and full cone nozzles (Schick, 1997). 

 
Figure 2.4. Spray patterns for different nozzle types (Schick, 1997) 

 

The most commonly used nozzle types for ground application of PPP are the flat fan and 

hollow cone nozzles (Sumner, 2009). The nozzle size and corresponding color are defined by 

the International Organization for Standardization (2005). The higher the ISO number the 

larger the orifice and the flow rate and the larger the droplets in the spectrum (Lefebvre, 

1989). Pressure has an inverse relationship effect on droplet size, thus, increase in pressure 

will generally reduce the droplet size (Schick, 1997).  

In this study, hollow cone nozzles as well as standard flat fan nozzles and air inclusion flat fan 

nozzles are considered (Chapters 6 and 7). 

a. Hollow cone nozzles: are mainly used on hand-operated sprayers and on orchard 

sprayers in which spray droplets are projected into the canopy by a blast of air from a 

fan (Nuyttens, 2007a). They produce a cone-shaped pattern with the spray 
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concentrated in a ring around the outer edge of the pattern (Figure 2.5). This is the 

most popular nozzle type for orchard and vineyard spray applications. 

 
Figure 2.5. Liquid sheet and droplet formation from a hollow cone nozzle (www.lechler.de) 

 

b. Flat fan nozzles: are mostly used on field crop sprayers. They can achieve a very good 

cross distribution under a spray boom with the correct nozzle spacing and spray 

height. Flat fan nozzles produce a fan-shaped spray pattern (Nuyttens et al., 2007a) 

i.e. delivering the highest amount of spray volume in the center and lower spray 

volumes at the boundaries. Therefore, in practice, it is important to create a good 

spray overlap in order to obtain a homogeneous coverage of the field (Faqiri & 

Krishnan, 2005) (Figure 2.6). The most commonly used top angle is 110° generally 

resulting in a uniform spray distribution for a nozzle height and nozzle spacing of 0.5 

m. 

 

 
Figure 2.6. Nozzle overlap for flat fan sprayers 
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- Standard flat fan nozzles are producing the smallest droplets as compared to the 

other two types of flat fan nozzles (drift-reducing and air inclusion flat fan nozzles) 

for the same nozzle size and pressure (Figure 2.7). The small droplets secure a very 

effective coverage of the surface, but are very drift prone (Nuyttens, 2007b) 

 
Figure 2.7. Standard flat fan nozzles 

 

- Air inclusion flat fan nozzles contain a venturi insert. This venturi induces air 

through two holes at the side of the nozzle. The air is mixed with the liquid in the 

nozzle chamber (Figure 2.8). Because the liquid leaving the flat fan orifice is a 

mixture of air and spray liquid, the sheet becomes unstable very quickly and 

breaks up into large droplets, resulting in a very coarse spray (Nuyttens, 2007a). 

Therefore these droplets are less drift prone and explode on impact with leaves 

which reduces the risk of a droplet bouncing off a leaf surface.  

 
Figure 2.8. Air inclusion nozzle (Nilars, 2003) 
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2.2.2.3 Spray quality 

The term “Spray quality” is primarily used for describing the droplet size spectra of 

(agricultural) sprays. The spray characteristics like droplet size, velocity and direction 

influence the penetration and deposition of droplets. The efficiency of pesticide distribution 

often depends on droplet size (Hislop, 1987) but hydraulic spray nozzles are not able to 

produce uniform droplets. A high coverage of the target is usually best achieved with small 

droplets (Cawood et al., 1995) which are more subject to wind drift (Nuyttens et al., 2011). 

On the other hand, large droplets increase the risk of run off from target surfaces but have a 

higher kinetic energy which improves canopy penetration. The droplet size distribution is not 

homogeneous and depends on the position within the spray (Butler Ellis et al., 1997). 

Because of the importance of droplet size, the British Crop Protection Council (BCPC) has 

devised a nozzle classification scheme and also described the entire droplet spectrum 

generated by hydraulic spray nozzles (Southcombe et al., 1997). The spray classification 

system divides the quality of sprays into five categories: very coarse (VC), coarse (C), 

medium (M), fine (F), very fine (VF) and extremely coarse (XC) (Figure 2.9).  

 
Figure 2.9. Spray quality standards (Southcombe et al., 1997) 

 

A comparison of the percentile volume fractions produced by a nozzle to that of specific 

standardized reference nozzles classifies a droplet size spectrum. The DV0.5 or volume 

median diameter (VMD) is commonly used to characterize the droplet size characteristics of 

a spray. The VMD is the droplet diameter at which 50% of the spray volume is contained in 

larger droplets and the other half is contained in smaller droplets (Schick, 1997). Two nozzle-



Chapter 2 

64 

pressure combinations with the same VMD may actually produce a quite different droplet 

spectrum. Droplet spectra are normally represented by a frequency histogram or a 

cumulative volumetric droplet size distribution (Nuyttens et al., 2007a). 

A summary of the main values that are used to describe the droplet size spectra is presented 

in Table 2.1. 

Table 2.1.Overview of parameters to describe droplet size spectra 

Parameter Description Units 

VMD or Dv0.5 
Volume median diameter or diameter for which a volume 

fraction of 50% is made up of droplets with diameters smaller 
than this value 

µm 

Dv0.1, Dv0.9 
Diameter at which a volume fraction of 10, 90 percent is made 

up of droplets with diameter smaller than this value 
µm 

RSF 
Relative span factor; indicating the uniformity of the droplet size 

distribution=
𝐷𝑣0.9−𝐷𝑣0.1

𝑉𝑀𝐷
 

- 

NMD 
Number median diameter; droplet diameter for which 50% of 

the number of droplets is smaller than this value 
µm 

 

Other important droplet characteristics are droplet velocity and direction (trajectory). 

Increasing the spray liquid pressure to the nozzle results into a finer spray and increases the 

droplet velocities. As the effect of making a finer spray dominates with initial increases of 

pressure, the risk of drift tends to increase. Further increase in pressure does not result in a 

further increase of drift and may even, with some nozzles designs, result in a decrease in 

drift at high pressure due to the dominance of the droplet velocity effect (Miller & Butler 

Ellis, 1997). 

Sidahmed (1996) formulated a droplet-size/velocity equation based on the energy balance 

equation:  

𝑣 = (
𝑑3𝑣𝑎

2

𝑑𝑎
3 )

1
2⁄

 Eq. 2.3 
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Where da and va are the size-class median droplet diameter and velocity and d and v are the 

representative diameter and velocity. Hence the droplet velocity depends on its diameter at 

formation. 

2.2.3 Transport to target 

At a short distance from the nozzle the motion of droplets stops to be governed by the 

atomizer and becomes a function of physical phenomena in the atmosphere. The transition 

from motion being governed by the atomizer to being governed by the flow field is conveyed 

by stop distance or relaxation time (Bache & Johnstone, 1993). The stop distance (Ds) can be 

calculated with Eq. 2.4 (Bayvel & Orzechowski, 1993): 

𝐷𝑠 =
𝜌𝑑𝐷2𝑣0

18𝜌𝑎𝑣𝑎
 Eq. 2.4 

with 𝑣0 the droplet velocity at the nozzle exit (m s-1), D the droplet diameter (m), 𝜌𝑑 the 

droplet density (kg/m3), 𝜌𝑎 the density of the air (kg/m3) and 𝑣𝑎 the kinematic viscosity of air 

(m2/s). Relaxation time is defined as the time scale over which the movement of a particle 

reaches equilibrium within a flow field, subsequent to a disturbance. After some time, the 

aerodynamic drag forces will equal the gravitational forces and the droplet will reach a 

constant velocity, called the sedimentation velocity (Bayvel & Orzechowski, 1993). 

Although particle movement is complex and depends on many variables, some of the basic 

laws of physics can be used to predict particle movement in most cases. The motion of large 

particles is dominated by gravity and in some cases by severe cross flows. The size and mass 

of these particles can be used, along with density of the flow field, to calculate gravitational 

forces and drag coefficients, and to determine the velocity of the particles (Galeev & Zaripov, 

2003). Droplets with a diameter smaller than 100 µm are said to be buoyant because 

gravitational force acting on these droplets is roughly equal to their drag force (Whitney & 

Roth, 1985). Because movement of these droplets is governed primarily by the flow field, 

they require an advanced understanding of the turbulence phenomena in the field to 

describe their path (Shirolkar et al., 1996). 

2.2.4 Impact on target 

Collection efficiency is the probability that a drop will deposit after impact on a surface and 

is dependent on the relative velocity of the drop with respect to the target, wind velocity 

relative to the target, the size, shape, and orientation of the target, drop size and drag 
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coefficient (Shirolkar et al., 1996). Larger drops are collected more efficiently on horizontal 

surfaces while smaller drops are collected better on vertically oriented targets (Zhu et al., 

1996). 

Generally small drops have much shorter stopping distances and remain entrained in the 

flow field that moves around the collecting object (Spillman, 1984). Image acquisition 

techniques can be used to study droplet impact characteristics (Massinon & Lebeau, 2012a; 

Zwertvaegher et al., 2014). 

Spherical and cylindrical surfaces are better collectors of droplets than flat objects because 

the flow field follows the cylinder over its sides and reduces the zone of dead air behind the 

object. Objects oriented at 90° to the flow field have greater collection efficiency than those 

oriented at smaller angles. Objects oriented at smaller angles generate less severe changes 

in the flow field, which means that the droplets are less likely going to collide with an object 

(Spillman, 1984). 

2.3 MEASURING SPRAY DISTRIBUTION AND DEPOSITION 

 The spray distribution pattern and spray deposition have been used to evaluate 

nozzle performance in agricultural applications for many years. 

These characteristics are traditionally measured using intrusive measuring techniques also 

called sampling techniques: spray scanner (2.3.1), vertical patternator (2.3.2) or a 

distribution bench (2.3.3). With these techniques, droplets are collected and analyzed using 

mechanical sampling devices. However, these sampling devices may affect the spray flow 

behavior (Rhodes, 2008). 

In this thesis, these techniques are referred to as ‘traditional measuring techniques’. The 

results of these traditional measuring techniques are compared with the results from the 

developed image acquisition techniques. 

2.3.1 Spray scanner 

The spray volume cross flow distribution under a spray boom or a set of hydraulic nozzles 

mounted on a standard boom reflects the quality of the sprayer or the nozzles and the spray 

distribution under field conditions. It can be measured using a spray scanner. The spray 
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scanner available at ILVO consists of a receiver unit with 0.10 m grooves which 

autonomously moves along an aluminum rail installed beneath the spray boom (Figure 2.10). 

 
Figure 2.10. Spray scanner in Spray Tech Lab, ILVO 

2.3.2 Vertical patternator 

The vertical patternator is designed to measure the vertical liquid distribution of orchard, 

air-blast sprayers and vertical spray booms (Figure 2.11). The patternator available at ILVO 

with a height of 3.2 m is constructed with specially manufactured lamellae that allow the air 

to pass through and filter the sprayed liquid. The collected liquid between the lamellae is 

guided per 10 cm of height and drained off in measuring cylinders. 

 
Figure 2.11. Vertical patternator from Spray Tech Lab, ILVO 
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2.3.3 Spray distribution bench 

A spray distribution bench or horizontal patternator can be used to measure the spray 

distribution of a single spray nozzle or a short spray boom (Figure 2.12). It is important to 

have uniform spray distribution for efficient application of the pesticides. The uniformity of 

the spray distribution is sensitive to nozzle properties, nozzle-mounting configurations, and 

various nozzle-operation conditions (Wang et al., 1995). 

 
Figure 2.12. Spray distribution pattern at Spray Tech Lab, ILVO 

2.3.4 Measuring spray deposition 

Through the years, spray deposition data is widely used in optimizing the spray application 

techniques. Spray deposition in the crop can be assessed using water sensitive papers (WSP) 

(Foqué et al., 2012a), metal chelates (Foqué et al., 2012a), water-soluble food dyes 

(Sanchez-Hermosilla et al., 2011) or fluorescent tracers (Khot et al., 2011). For example, WSP 

can provide a qualitative and cheap evaluation of the spray distribution. Here droplets 

deposit on the water sensitive paper and create a stain (Figure 2.13). A more complete 

review on the measuring spray deposition techniques was written by Foqué (2012b). 

 
Figure 2.13. Water sensitive paper 
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2.4 METHODS FOR MEASURING SPRAY DROPLET CHARACTERISTICS 

 There are numerous methods for measuring droplet characteristics which can be 

divided into three categories: mechanical, electrical and optical methods.  

The mechanical methods involve the collection of a spray sample on a solid surface (2.3.4) or 

in a cell containing a specific liquid. Electrical methods measure droplet size distribution via 

the detection and analysis of electronic pulses produced by the spray. Charged wire and hot 

wire are two techniques used within this method. More information on this technique can 

be found in the work of Gardiner (1964). By far, the most common method is the Optical 

measurement which can be divided into non-imaging light scattering (2.4.1) and high speed 

imaging methods (2.4.2).  

2.4.1 Optical non-imaging light scattering spray characterization techniques 

Due to the development of modern technology such as powerful computers and lasers, 

quantitative optical non-imaging light scattering droplet characterization techniques have 

been developed for non-intrusive spray characterization. Although these techniques are able 

to measure some specific spray characteristics, none of them are able to fully characterize a 

spray application process. Moreover, these techniques are complex, expensive and (in most 

cases) limited to small measuring volumes. They are not able to accurately measure non-

spherical particles. The most important types of non-imaging light scattering droplet 

characterization techniques are the Phase Doppler Particle Analyzers (PDPA) (Nuyttens et al., 

2007a; 2009) (2.4.1.1), the laser diffraction analyzers, e.g., Malvern Analyzer (Stainier et al., 

2006) (2.4.1.2) and the optical array probes (Teske et al., 2002) (2.4.1.3). Several studies 

have shown a wide variation in mean droplet sizes for the same nozzle specifications while 

using different techniques (Nuyttens, 2007a). 

2.4.1.1 Phase Doppler Particle Analyzer (PDPA) 

Phase Doppler Particle Analyzers (PDPA) are flux-sampling, non-imaging instruments used to 

measure the droplet size and velocity. This technique has been used in this thesis to 

compare with the imaging results (Chapter 6). Point sampling refers to an instrument that 

focuses on a portion of the total spray pattern and requires targeting several test points 

within the spray in order to obtain a composite sample of the spray flux distribution. 
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The PDPA produces two low-power laser beams crossing each other at a point referred to as 

the probe volume. The scattered light created from a droplet passing this measuring volume 

forms an interference fringe pattern. The frequency of this scattered light is proportional to 

the droplet velocity while the spatial frequency of the interference fringe pattern is inversely 

proportional to the drop diameter. Depending on the optical configuration, PDPA measures 

sizes in the 0.5-10.000 μm range. This measuring technique is best suited for complete spray 

evaluation where droplet velocities are required for a wide range of nozzle types (Nuyttens 

et al., 2007a). 

The measuring set-up is composed of a spray unit, a three-dimensional automated 

positioning system, a controlled climate room, and a PDPA laser system (Figure 2.14). 

 
Figure 2.14. Schematic overview of the PDPA optical laser instrument (Nuyttens, 2007a) 

 

With the PDPA laser set-up available at ILVO, different scan patterns can be carried out 

(Figure 2.15), each one with the start and end position of the spray nozzle in the center of 

the XY-rectangle straight above the measuring point (Figure 2.15). 
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Figure 2.15. Scan pattern of the total scan of the spray cloud (Nuyttens, 2007a) 

 

However, the PDPA measuring system has some limitations. It requires a higher cost and 

results may differ significantly between different researchers depending on the measuring 

protocol, the settings and the type of measuring equipment (Nuyttens, 2007a). 

2.4.1.2 Laser diffraction analyzers 

Laser diffraction analyzers are spatial, non-imaging sampling devices which operate by 

directing a laser beam through a spray cloud. These analyzers consist of a transmitter, a 

receiver and a computer. Spray droplets diffract the light at different angles according to 

droplet size as they pass through the analyzer sampling area. The technique is based on 

measuring the scattered light intensity caused by the droplets using semicircular 

photodiodes. From the light intensity distribution, the droplet size spectrum of an entire 

spray cloud is computed (Nuyttens, 2007a). Droplet velocities are not measured with this 

technique. 

The most common laser diffraction instrument today is the Malvern analyzer (Teske et al., 

2002; Stainier et al., 2006). A schematic overview of the Malvern analyzer is shown in Figure 

2.16. 
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Figure 2.16. Schematic overview of the laser diffraction analyzer (Schick, 1997) 

 

Nevertheless, the most serious limitation of this technique is known as multiple scattering 

which occurs when spray densities are too high resulting in the light being scattered by 

multiple droplets before reaching the detector. This may introduce errors in computing the 

droplet size distribution (Schick, 1997). 

2.4.1.3 Optical array probes 

Optical array probes are flux-sampling instruments and also fall into the non-imaging 

category. These devices consist of a light source (low-power laser beam), photo-diode array 

and computer. With this type of instruments, droplets passing a sampling plane, created by 

the laser beam, are sized and counted by measuring the amount of laser light shadowed by 

the droplets. Moreover, information is provided that can be used to determine droplet 

velocities. The measurement range for these probes can vary from 100-12 400 μm and they 

are best suited for large capacity nozzles (Schick, 1997; Teske et al., 2002). 

A schematic overview of one optical array probe device is given in Figure 2.17. 
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Figure 2.17. Schematic overview of optical array probe device (Schick, 1997) 

 

2.4.2 High-speed imaging spray analyzers 

The limitations of the non-imaging techniques and the recent improvements in digital image 

processing, sensitivity of imaging systems and cost reduction have increased the interest in 

high-speed imaging techniques for agricultural applications in general, specifically for 

pesticide applications. Another major advantage is that a visual record of the spray under 

investigation is available, providing a simple means to verify what is being measured, and 

perhaps more importantly, what is not being measured (Kashdan et al., 2004a). 

Furthermore, another fundamental limitation of light scattering techniques is the inability to 

accurately measure non-spherical droplets. For this reason, measurements must be obtained 

sufficiently far downstream from the primary sheet or jet break-up region where ligaments 

and initially large and often non-spherical droplets are formed. This is an unfortunate 

limitation, since the near-orifice region is where the process of atomization is occurring and 

the initial droplets are formed (Kashdan et al., 2004a). 

Recent developments in nozzle technology produce sprays with droplets containing air 

inclusions. Because these internal structures can cause uncertainty with techniques that rely 

on diffraction or scattering, interest has been renewed in droplet sizing using imaging 

techniques. Moreover, imaging techniques offer greater simplicity over light scattering 

techniques. One of the main issues using imaging techniques is not only the need for 
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automated processing routines but also the problem of resolving the depth-of-field (DOF) 

effect and its inherent influence on measurement accuracy (Kashdan et al., 2004b).  

High-speed imaging analyzers are spatial sampling techniques consisting of a (strobe) light 

source, a (high-speed) camera and a computer with image acquisition and processing 

software. The image frames from the video are analyzed using various image processing 

algorithms to determine spray droplet characteristics. The imaging techniques have the 

potential to determine the droplets velocity and droplet distribution. Several industrial 

imaging techniques (PDIA, PIV, LIF) are used for droplet characterization. They have the 

potential to fully characterize spray characteristics in a non-intrusive way. For pesticide 

applications, however, technical and financial challenges make this impossible to put into 

practice. These techniques are currently mainly used for the characterization of small sprays, 

e.g., paints, medical applications, fuel injectors, etc. 

Some of the available imaging techniques mainly used for industrial spray characterization 

are discussed below (2.4.2.1– 2.4.2.3).  

Other interesting techniques were proposed to characterize pesticide sprays using either a 

high-speed camera with a high-power light source (2.4.2.4) or a high-resolution standard 

camera with a strobe light (2.4.2.5). These techniques can give additional information about 

the droplets’ trajectory, which is needed to predict the droplet impact outcome. 

2.4.2.1 Particle/droplet imaging analyzers (PDIA) 

Particle Droplet Imaging Analyzers (PDIA) automatically analyzes digital images of a spray 

(Figure 2.18). A very short flash of light illuminates a diffusing screen to back-illuminate the 

subject. A digital camera with a microscope lens captures images of the subject. Different 

magnification settings can be used to measure a very wide range of droplet sizes. Image 

analysis software analyses the images to find droplet size. Shape data for the particles can 

also be measured and recorded. By using dual laser flashes in short succession and 

measuring the movement of the particle, it is possible to measure the particle velocity. 

Information on spray geometry can be provided by switching to light sheet illumination. The 

most common PDIA in use is the VisiSizer software developed by Oxford Laser and used 

among others by Kashdan et al. (2007). This system measures cone angle, drop size and drop 
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velocity and other key parameters of the spray. Kashdan et al. (2004a; 2004b) found a good 

correlation between PDIA, PDPA and Laser Diffraction results.  

 
Figure 2.18. Typical Particle droplet imaging analyzer (Schick, 1997) 

2.4.2.2 Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) is an optical method used to obtain velocity vector 

measurements in a cross-section of a flow and related properties of particles (Grant, 1997; 

Dorr et al., 2013) (Figure 2.19). It produces two-dimensional vector fields, whereas other 

techniques measure the velocity at a point. In PIV, the particle size and density make it 

possible to identify individual particles in an image, but not with enough certainty to track it 

between images. This technique uses laser light and it is well adapted to laboratory 

conditions but cannot be used in the field. It is rather used as a reference method and not 

for pesticide spray characterization under practical conditions. Particle Tracking Velocimetry 

(PTV) (Hatem, 1997; Kreizer et al., 2010) is a variant which is more appropriate with low 

seeding density experiments, and Laser Speckle Velocimetry (LSV) with high seeding density. 

Like PIV, PTV and LSV measure instantaneous flow fields by recording images of suspended 

seeding particles at successive instants in time (Kowalczyk, 1996). Hence, LSV, PTV and PIV 

are essentially the same technique, but are used with different seeding densities of particles 

(Paul et al., 2004). 
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Figure 2.19. Measurement principals of PIV (Dantec Dynamics Inc.) 

 

2.4.2.3 Laser Induced Fluorescence (LIF) 

Laser Induced Fluorescence (LIF) is a spectroscopic method used to study the structure of 

molecules, detect selective species, and to perform flow visualization and measurements 

(Cloeter et al., 2010). The particles to be examined are excited with a laser. The excited 

particles will, after a few nanoseconds to microseconds, de-excite and emit light at a 

wavelength larger than the excitation wavelength. This light (fluorescence) is then 

measured. One advantage that LIF has over absorption spectroscopy is that LIF can produce 

two- and three-dimensional images, as fluorescence takes place in all directions (i.e., the 

fluorescence signal is isotropic). By following the movement of the dye spot using high speed 

camera and image processing, the particle velocity can be determined (Mavros, 2001). LIF 

can minimize the effect of multiple scattering found with laser diffraction analysers and can 

minimize the interference between the reflection and refraction lights (Hill & Inaba, 1989). 

The drawback of this method is that the particles reflect the LIF signal of the tracers, which 

can cause error in the measurement signal of the liquid flow. 

2.4.2.4 High resolution camera with a strobe light 

This technique combines a high resolution standard (slow speed) camera with a strobe light 

for tracking high-speed particles (Cointault et al., 2002; Kuang-Chao et al., 2008; Hijazi et al., 
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2010; Li et al., 2010; Vangeyte, 2013). The principle is that a series of light flashes is triggered 

one after the other over a single camera exposure. The number of flashes determines the 

maximum number of particle positions that can be recorded on each image.  

Cointault et al. (2002) proposed a system combining a monochrome camera (1008x1018 

pixels) with a strobe light consisting of photograph flashes to determine the trajectories and 

velocities of  fertilizer grains in a FOV of 1 m x 1 m. Vangeyte and Sonck (2005) also used a 

similar system but with a LED stroboscope and a small field of view (0.1m x 0.1m) to capture 

the fertilizer grain flow.  

This technique was already used by Reichard et al. (1998) to analyze single droplet behavior 

combining a monochrome video camera (60 fields per second) with a single backlight 

stroboscope (Type 1538-A, Genrad, Concord, MA 01742) at a flash rate of about seven times 

the field-sequential rate used to drive the camera. This produced multiple images of the 

same droplet.  

Lad et al. (2011) used a high-intensity pulsed laser (200 mJ, 532 nm) as a backlight source 

which was synchronized with a firewire type of digital camera (1280 x 960 pixels) to analyze 

a spray atomizer. The laser beam was converted to a laser cone using a concave lens, and 

then it was diffused by a diffuser. A 200 mm micro-lens equipped with a spacer was used to 

get a magnification of 2.6 of the image resulting in a field of view of 1.82 x 1.36 mm for a 

working distance of 250 mm. The digital camera captured shadow images which were 

analyzed to determine droplet sizes. The system is capable of performing an online 

characterization of spray droplets and an image calibration was performed using graph 

paper. A calibration method of an imaging system in the diameter range 4 to 72 µm has 

been reported by Kim and Kim (1994). 

Malot and Blaisot (2000) developed a particle sizing method based on incoherent backlight 

images using a stroboscope with two fibers synchronized with two cameras. This technique 

was used to project 2D images of drops on a video camera, which led to two-dimensional 

images.  
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2.4.2.5 High-speed camera with high-power light source 

An alternative method to analyze spray characteristics is to use a high-speed camera 

combining high resolution images with a high frame rate (1000 fps and more) (Kim et al., 

2011). This technique was further investigated in this thesis. Because of the short exposure 

time inherent to high-speed imaging, very high illumination intensities are needed. The usual 

method to illuminate the spray is a powerful background illumination either with a xenon 

light (Kashdan et al., 2007) or with powerful LEDs (Massinon & Lebeau, 2012b). The 

advantage of this system is the possibility to be adapted to the application condition, the 

frame rate and the resolution of the image. 

Massinon and Lebeau (2012b) and Zwertvaegher et al. (2014) used a high-speed camera (Y4 

CMOS, Integrated Design Tools) with a high magnification lens (12 x zoom Navitar, 341 mm 

working distance) coupled with high-power LED lighting and image processing to study droplet 

impact and spray retention of a real spray application. Camera resolution was reduced to 1016 

x 185 pixels to acquire 20.000 images per second with a spatial resolution of 10.58 μm.pixel-1. 

A background correction was performed with Motion Studio embedded camera software to 

get a homogeneous image. Nineteen-LED backlighting (Integrated Design Tools) with a beam 

angle of 12.5° was placed 0.50 m behind the focus area to provide high illumination and a 

uniform background to the images. Based on the pixel size of the droplet as determined 

manually from the pictures with Motion Studio software, together with the spatial resolution, 

the diameter of the droplets was calculated. Similarly, droplet velocities were calculated in a 

very-time consuming and visual way, based on the distance between the position of the 

droplet between two consecutive frames and the frame rate. In this way, only the 2-

dimensional velocity was calculated. 

Many others, like Šikalo et al. (2005) also studied the impact of droplets with a high-speed 

CCD camera but in these studies, single droplets were produced using a microdrop generator 

in DOD or continuous mode. 

In conclusion, a number of studies based on shadowgraphy have been used to measure the 

droplet size and velocity in a spray application using a standard camera/stroboscopic light 

and HS camera/coherent light. These studies are well adopted to low density sprays where 
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droplet sizes are bigger than 100 µm. In addition, in a high dense spray, the problem of DOF 

is more pronounced than in a low dense spray. 

2.5 CONCLUSION 

 The majority of pesticides used in agricultural production are delivered in the form of 

droplets produced from different types of hydraulic spray nozzles. To maximize spray 

efficiency, spray droplets must be uniformly distributed on a target surface with minimum 

losses due to drift, evaporation or run-off. More information on spray characteristics will 

help manufacturers and spray operators to get the best possible results. 

However, the mechanisms of atomization and how the droplets leave the nozzle and impact 

the leaves are very complex and difficult to quantify or model. Existing measuring techniques 

are not able to fully characterize the spray application process. Besides, imaging techniques 

are non-intrusive and have proven to be an effective tool for analysis in various domains and 

applications. Imaging techniques in combination with image processing can help 

manufacturers and users to better understand and evaluate the spray application process at 

an affordable cost. This thesis focuses on the development and application of high speed 

imaging techniques for spray characterization. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3 DEVELOPMENT OF HIGH SPEED IMAGE ACQUISITION SYSTEMS BASED 

ON SINGLE DROPLET EXPERIMENTS
ii 

 

The goal of this Chapter was to develop two image acquisition systems based on single 

droplet experiments using a piezoelectric single droplet generator and a high speed imaging 

technique which were used in this study to evaluate single droplet characteristics (Chapter 

5) as well as micro (Chapter 6) and macro (Chapter 7) spray characteristics of different spray 

nozzles. This Chapter presents experiments done with different camera settings, lenses, 

diffusers and light sources. Different image acquisition techniques were evaluated based on 

the resulting image quality parameters.  

 

 

 

 

 

 

 

 

 

 

                                                      
ii This chapter has been compiled from: 

Vulgarakis Minov, S., Cointault, F., Vangeyte, J., Pieters, J.G., and Nuyttens, D., 2015. Development of high 

speed image acquisition systems for spray characterization based on single droplet experiments. Transactions 

of ASABE 58 (1): 27-37. 



Chapter 3 

82 

3.1  INTRODUCTION 

The characteristics of pesticide sprays generated by agricultural nozzles play an 

important role in the application accuracy and efficiency of plant protection products in 

precision agriculture (Stafford, 2000). Poor accuracy and spray losses may reduce the 

effectiveness of the application and increase environmental contamination and operator 

risk. The challenge is to reduce spray losses during the transport to the target and maximize 

spray deposition and efficacy, thus improving the spray application process (Zabkiewicz, 

2007). The most important spray characteristics influencing the pesticide application process 

are droplet size and velocity, spray volume distribution pattern, liquid sheet length and 

thickness, structure of individual droplets and 3D spray dimensions (Miller & Ellis, 2000; 

Nuyttens et al., 2009). 

An overview of existing non-imaging (2.4.1) and HS imaging (2.4.2) spray 

characterization techniques was presented in Chapter 2. From this review, a high speed (HS) 

camera with a high–power light source technique seems a promising technique to measure 

spray and spray droplet characteristics combining high resolution images with a high frame 

rate (1000 fps and more) (Kim et al., 2011). Because of the short exposure time inherent to 

high-speed imaging, high illumination intensities are needed. The usual method to illuminate 

the spray is a powerful background illumination either with a xenon light (Kashdan et al., 

2007) or with power LEDs (Massinon & Lebeau, 2012b). The advantages of using this method 

are the possibility of modifying the number of frames per second and the high resolution of 

the images. Massinon and Lebeau (2012a) and Zwertvaegher et al. (2014) used a high-speed 

camera to study droplet impact and spray retention of a real spray application. Many others, 

including Šikalo (2005) studied the impact of droplets with a high-speed CCD camera but in 

these studies, single droplets were produced using a microdrop generator in an on-demand 

or continuous mode. Because spray droplets are fast, translucent and their diameters cover 

a wide range (from 10 to 1000 µm), droplet measurement accuracy strongly depends on the 

imaging and optical set-up. 

The aim of this Chapter was to develop two image acquisition systems based on images with 

single droplets generated with a piezoelectric droplet generator in the on-demand mode 

(Switzer, 1991; Yang et al., 1997; Lee, 2003). Different high-speed camera settings, 

illuminations, diffusers and lenses were tested using shadowgraph (background) imaging 
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(Lecuona et al., 2000; Castanet et al., 2013) and evaluated based on three defined image 

quality parameters (entropy ratio, contrast ratio, signal to noise ratio), the light stability and 

overexposure ratio, and the measuring accuracy. The developed image acquisition systems 

were used to characterize single droplet characteristics (Chapter 5) using adequate image 

processing algorithms (Chapter 4) and the micro (droplet size, velocity) (Chapter 6) and 

macro (spray angle, liquid sheet length, droplet trajectory) (Chapter 7) spray characteristics 

of real pesticide sprays. 

This chapter comprises four sections. Section 3.2 introduces the piezoelectric droplet 

generator, the image acquisition system and eventually the steps of image analysis based on 

a) the image quality parameters (3.3.1), b) the light stability and overexposure ratio (3.3.2) 

and c) the accuracy of the droplet size measurement (3.3.3). Section 3.3 contains the results 

and discussions from the image analysis. Section 0 concludes the chapter. 

3.2 MATERIALS AND METHODS 

3.2.1 Piezoelectric Droplet Generator 

The development of HS image acquisition systems was done using uniformly size controlled 

and on-demand droplets. For this purpose, a piezoelectric droplet generator (Université de 

Liége, Gembloux, Agro-Bio-Tech, Belgium) (Figure 3.1 top) was used in this study consisting 

of a liquid filled chamber with a piezoelectric element that can be driven with voltages up to 

60V (Figure 3.1 top). It is able to form uniform droplets in 2 modes, i.e.: Droplet-On-Demand 

(DOD) and Continuous mode, which are described in more detail in Chapter 5.  

In this chapter, the single droplet formation was done in DOD mode (Yang et al., 1997) which 

relays on the double pulse width values (absorption time: ta (ms) and pulsation time: tp 

(ms)) and voltage pulse amplitude (±Vp (V)) (Figure 3.1 bottom) which were applied using 

LabView software (National Instruments, Austin, Tex.). Applying a double voltage pulse to 

the piezoelectric element, it compresses the fluid inside the nozzle. This compression creates 

a complex acoustic wave within the fluid chamber that leads to a pressure gradient field. As 

a result, liquid is pushed out of the nozzle at the nozzle fluid-air interface (Riefler & Wriedt, 

2008) and a droplet (µm) is created. 



Chapter 3 

84 

In fact, a positive voltage sent to the piezoelectric element results in absorption (Lam et al., 

2009) and a negative voltage results in pressure in the ejection chamber. In this chapter, 

droplets were generated in DOD mode using a glass nozzle (Figure 3.1 top) with a 123 µm 

orifice size at ta = 0.4 ms, tp= 50 ms and Vp = ± 4.5 V. In Chapter 5, the effect of different 

nozzles and settings on droplet characteristics is discussed. 

 

 
Figure 3.1. Schematic overview of the droplet generator (top) and block diagram of the 

driving rectangular double pulse used to generate on-demand droplets where: ta is 

absorption time, tp is pulsation time and ± Vp is the pulse amplitude voltage set in LabView 

(bottom) 

 

The piezoelectric set-up consists of an electronic part, including amplifier, a pulse generator 

(digital-to-analogue converter (DAC) (National Instruments, Austin, USA)), a pressure 
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supplier (Furness Controls FCO 502, East Sussex, UK), and a software part (LabView) installed 

on a conventional PC (Figure 3.2 top). 

The pulse generator drives the piezoelectric element. The signal from the pulse generator 

was amplified 10 times before it was sent to the piezoelectric element via an RG-58 coaxial 

cable and the LabView software enabled specific pulse forms to be generated. 

3.2.2 Image acquisition system 

The imaging acquisition system consisted of a high-speed (HS) camera and a high power 

backlight (Figure 3.2). An overview of the different lenses, illumination systems and exposure 

times tested is given in Table 3.1. The software package Motion Studio (IDT, Lommel, 

Belgium, version: 2.09, 2011) was used as a frame capture device for choosing the settings of 

the HS camera like frame rate, record mode, sensor gain, image resolution and exposure 

mode. 
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Figure 3.2. Image acquisition system (top) with (1=droplet generator with piezoelectric 

element, 2=high-speed camera and lens, 3=light source, 4=computer with frame software, 5-

pressure supply, 6=signal amplifier, 7=pulse generator, and 8- liquid tank) and schematic of 

the system (bottom) 

 

An N3 HS camera (IDT, Lommel, Belgium) with a 25.4 mm (1 in.) CMOS sensor and 12 µm 

pixel resolution set to 1000 Hz with a +3 dB sensor gain was used (Massinon & Lebeau, 

2012b). Exposure times were set at 5, 10 and 15 µs and additionally at 6, 7, 8 and 9 µs for 

the xenon light in combination with the K2/SC long-distance microscope lens without 

diffuser (Table 3.1). In order to image a droplet, the droplet ejection was triggered with the 

camera. 

For each of the 58 combinations of lens, light source, diffuser, and exposure time (Table 3.1), 

droplet ejection videos with 100 images were taken. When a droplet could be detected 

visually in these videos, ten consecutive images with a droplet were selected for image 

analysis. Similarly, 10 consecutive images without a droplet were also selected from these 

videos for further image analysis. 

Two types of lenses were evaluated. A macro video zoom lens (18 to 108 mm focal length, 

F/2.5to closed, 2/3 in. format, Thales Optem, Fairport, N.Y.) with a close-up lens was used 

(Kim et al., 2011) at a working distance of 143 mm, resulting in a FOV of 88 mm x 110 mm. 

To achieve a small FOV, and to measure droplet characteristics in an accurate way, a K2/SC 

long-distance microscope lens (Infinity Photo-Optical Co., Boulder, Colo.) (Riefler & Wriedt, 
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2008) was used with a CF1 objective attached directly to its front. At a working distance of 

430 mm, a FOV of 10.5 mm x 8.4 mm (Infinity Photo-Optical Company, 2009) was obtained. 

For all tests, the distances between the nozzle and light, between nozzle and diffuser glass, 

and between the diffuser and the illumination source were 320, 80 and 240 mm, 

respectively (Figure 3.2 bottom). 

Knowing that spray droplet velocities can be in the range of 1 to 15 m s-1 (Nuyttens et al., 

2007a), the exposure time should be in the time range of microseconds, thus requiring high 

illumination intensities (Ju et al., 2012). Moreover the illumination should be stable, which 

requires a precisely controlled supply voltage. Therefore, three types of light source were 

tested with and without two types of diffusers (Table 3.1). First, a Seven-Star power LED 

assembly (40 mm round, 5650 K, 14W, Philips, Lumileds, San Jose, Cal.) with a polymer 264 

lens and DC power supply delivering 1645 lm at 700 mA (Sunrise Power Transformers GmbH, 

Hamburg, Germany, 10x3 LSD) was tested. Second, a halogen spotlight (350 W, EcoHalo, 

Koninklijke Philips Amsterdam, The Netherlands) (Ulmke et al., 2001) with a maximum 

power of 500 W and a working temperature of 3200 K was included in the tests. The 

spotlight is the least expensive light source, but care must be taken not to overheat any 

object in the recorded zone. Finally, a xenon short arc lamp (model 5132, 300 W, Richard 

Wolf GmbH, Knittlingen, Germany) fed to the head by a flexible light conductor was selected 

for the purpose of achieving a clear image even at a very short exposure time (Kim et al., 

2011). This type of light source is easy to handle and capable of providing instant high-power 

white light and a high-intensity continuous spectrum with low heat buildup. 

A simple and effective way of reducing light inhomogeneity involves the use of a diffuser 

placed between the light and the lens (Kashdan et al., 2007; Lad et al., 2011) (Figure 3.2 

bottom). Two types of ground glass diffusers (TECHSPEC, Edmund Optics, Barrington, N.J. 

USA) were used: 120 grit and 220 grit sandblast, both with a thickness of 1.6 mm and a size 

of 250 mm x 250 mm. 
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Table 3.1. Summary of the tested image acquisition set-ups 

Lens Light Diffuser Exposure time (μs) 

Macro Video Zoom 
Lens 

Seven-Star LED 

120 grit 

5, 10, and 15 
220 grit 

none 

Halogen 
spotlight 

120 grit 

5, 10, and 15 
220 grit 

none 

Xenon light 

120 grit 

5, 10, and 15 
220 grit 

none 

K2/SC long-distance 
microscope system 

Seven-Star LED 

120 grit 

5, 10, and 15 
220 grit 

none 

Halogen 
spotlight 

120 grit 

5, 10, and 15 220 grit 

none 

Xenon light 

120 grit 

5, 10, and 15 220 grit 

none* 

* Additional tests at 6, 7, 8, and 9 µs exposure times. 

 

3.2.3 Image analysis 

Image analysis combines techniques and measurements based on the gray-level intensities 

of the image pixels and were used here to determine the imaging characteristics of the 

different image acquisition set-ups using image histograms. From the histograms, different 

first -order statistical properties (Materka & Strzelecki, 1998) of images taken with and 

without droplets were determined and used for comparison of the different image 

acquisition set-ups. 

As the N x M image (region) is a function f(x,y) of two variables x and y, x=0,1,…,N-1 and 

y=0,1,..,M-1, the function f(x,y) can take discrete values i=0,1,…,L-1, where L is the total 

number of intensity levels in the image. Furthermore, an intensity level histogram shows the 

the number of pixels in the image (region) that have a given intensity level: 
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ℎ(𝑖) = ∑ ∑ 𝛿(𝑓(𝑥, 𝑦), 𝑖)𝑀−1
𝑦=0

𝑁−1
𝑥=0  Eq. 3.1 

where j,iis the Kronecker delta function: 

𝛿(𝑗, 𝑖) = {
1, 𝑗 = 𝑖  
0, 𝑗 ≠ 𝑖

 Eq. 3.2 

 

Dividing the values h(i) by the total number of pixels in the image (region), we obtain the 

approximate probability density of occurrence of the intensity levels (Tuceryan & Jain, 1998): 

.1,....,1,0,
)(

)(  Li
NxM

ih
ip  Eq. 3.3 

 

The first-order statistical properties used to assess the image characteristics of the image 

acquisition set-ups were the average gray level or mean, the average contrast or standard 

deviation and the entropy (Haralick et al., 1973; Gonzalez et al., 2004) (Table 3.2). These 

values were calculated for a defined region of interest (ROI) for all the images with a droplet 

as well as for all the images without a droplet using an image processing program developed 

in Matlab (MathWorks, Inc., Natick, Mass) that is divided into three steps: (1) selecting the 

ROI in an image, (2) showing the ROI image histogram, and (3) calculating the first-order 

statistical properties of the chosen ROI. The flowchart in Figure 3.3 shows the process for 

determining the first-order statistical properties. For the macro video zoom lens, the ROI 

was defined as a region starting 5.0 mm below the nozzle with a size of 17.5 mm x 45 mm 

(Figure 3.4a). For the K2/SC long- distance microscope lens, the ROI started at 0.8 mm below 

the nozzle with a size of 2.5 mm x 8.0 mm (Figure 3.4b). In both cases, the ROI was large 

enough to capture the same droplet in at least ten consecutive images. 
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Table 3.2. First-order statistical equations 

Parameter Expression[*] Description 

Mean 

(average gray 

level) 







1

0

1 )(
L

i

iipf   

A measure of the average gray level 

of an image and indicating the 

brightness 

Standard 

Deviation 

(average 

contrast) 







1

0

2

2 ))((
L

i

iipf   

A measure of how much the gray 

level of pixels differs from the mean 

value to detect if there are any 

substantial light or dark spots in the 

image 

Entropy )(log)(
1

0

23 ipipef
L

i






  

A measure of disorder. A high 

entropy value indicates the presence 

of an object, whereas a 0 value 

corresponds with a constant image 

[*]L is the number of quantized gray levels, L=2B, where B is the number of bits. 

 

For the specific purpose of comparing the different image acquisition set-ups, three image 

quality parameters for the ROI were defined and calculated from the first-order statistical 

properties: 

Entropy Ratio 

Defined as the ratio of the entropy values from images with a droplet and without a droplet 

taken with the same image acquisition set-up, the entropy ratio should be maximized, as we 

are aiming for maximal entropy in images with a droplet and minimal entropy in images 

without a droplet. 

Contrast Ratio 

Defined as the ratio of the average contrast values from images with a droplet and without a 

droplet taken with the same image acquisition set-up, the contrast ratio should be 

maximized, as we are aiming for maximal contrast in images with a droplet and minimal 

contrast in images without a droplet. 
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Signal-to-Noise Ratio (SNR) 

SNR is defined as the ratio between the mean (signal) and the standard deviation (or average 

contrast). For images with a droplet, the SNR should be maximized, as we are aiming for a 

large signal value and a small noise value in images with a droplet. 

Based on the image quality parameters, four image acquisition set-ups were selected, and 

their light stability and overexposure ratio was assessed by comparing histograms of pixel 

intensity values of ten consecutive ROI images taken at the same settings without a droplet. 

An overexposed or saturated image contains a large number of pixels with maximum gray 

level values resulting in a loss of information. 

  
Figure 3.3. Flowchart of the first-order statistics algorithm 

 

 
Figure 3.4. Region of interest (ROI) (blue dotted rectangle) (a) with the macro video zoom 

lens and xenon light with 120 grit diffuser at 15 μs exposure time, and (b) with the K2/SC 

long-distance microscope lens and xenon light without a diffuser at 5 μs exposure time 

a

. 

b.

. 
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3.2.4 Accuracy of the droplet size measurement 

In order to determine the correct droplet size and ensure measuring accuracy, the exact 

pixel size must be known for both lenses. For the macro video zoom lens, the focal length 

and pixel size were calculated with the following equations: 

𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ =  
𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑥 𝐶𝑀𝑂𝑆 𝑤𝑖𝑑𝑡ℎ

𝑂𝑏𝑗𝑒𝑐𝑡 𝑤𝑖𝑑𝑡ℎ + 𝐶𝑀𝑂𝑆 𝑤𝑖𝑑𝑡ℎ
 Eq. 3.4 

𝑃𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 =
𝐶𝑎𝑚𝑒𝑟𝑎 𝑝𝑖𝑥𝑒𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 Eq. 3.5 

 

where the CMOS width for this 25.4 mm (1 in.) camera sensor was 12.8 mm 

(www.idtvision.com). 

For the K2/SC long-distance microscope lens, multiple images of a Halcon ceramic calibration 

plate (2.5 mm x 2.5 mm) were taken to ensure coverage of the whole FOV using the xenon 

light as a front light. The resulting images were processed with HDevelop software (version 

8.0, GmbH, MVTec Software GmbH, München, Germany) to determine the actual pixel size.  

The size of the droplets produced in the DOD mode with the droplet generator was 

measured using the image processing algorithms, discussed in detail in Chapter 4. To 

validate the droplet size measurement accuracy of the imaging system, the measured value 

was compared with the actual droplet size by collecting and weighing 100 droplets at the 

same nozzle settings in a Petri dish. This Petri dish was covered with Parafilm during this test 

to prevent evaporation. The test was performed in a climate controlled room at 20°C and 

47% RH. The measurement was repeated 5 times. 

3.2.5 Statistical analysis 

The statistical analysis was carried out separately for each of the two lenses. To test the 

effects of the different combinations of the two diffusers and no diffuser, the exposure 

times, and the three lighting systems (independent variables) on the entropy ratio, contrast 

ratio and SNR ratio (dependent variables), an analysis of variance (ANOVA) was performed. 

In addition to the main effects, all two-way and three-way interactions were tested. A p-

value of 0.05 was considered statistically significant. Non-significant interactions were 

removed from the model. The test was performed in SPSS Statistics 19 (IBM, Armonk, USA). 
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Significant differences were assessed using the Scheffé and Student–Newman-Keuls (SNK) 

post hoc tests. 

3.3 RESULTS AND DISCUSSION 

 The different image acquisition systems were evaluated based on the following 

criteria: image quality parameters (including entropy ratio, contrast ratio, and SNR), light 

stability and overexposure ratio, and accuracy of the droplet size measurement. 

3.3.1 Image quality parameters 

Entropy ratio, contrast ratio, and SNR for the different image acquisition systems are 

presented in Figure 3.5 for the macro video zoom lens and in Figure 3.6 for the K2/SC long-

distance microscope lens. For the macro video zoom lens (Figure 3.5, Table A1), no 

significant effect on the entropy ratio of the three-way interaction light x diffuser x exposure 

time (p=0.077) was found, but the two-way interactions light x diffuser (p=0.019) and light x 

exposure time (p<0.001) did have significant effect. For the two-way interaction diffuser x 

exposure time, a p value of 0.06 was found. Post hoc test revealed that, at 15 µs exposure 

time, the combinations spotlight x 120 grit diffuser and spotlight x 220 grit diffuser had 

significantly higher entropy ratios than the other combinations. For these two image 

acquisition set-ups, no significant difference in entropy ratio was found. 

For the contrast ratio, the three-way interaction light x diffuser x exposure time was 

significant (p<0.001). Similar to the entropy ratio, the combinations spotlight x 120 grit 

diffuser x 15 µs exposure time (p<0.001) and spotlight x 220 grit diffuser x 15 µs exposure 

time (p<0.001) had significantly higher contrast ratios than all other combinations. The same 

conclusion was found for SNR: the combinations spotlight x 120 grit diffuser x 15 µs 

exposure time (p<0.001) and spotlight x 220 grit diffuser x 15 µs exposure time (p<0.001) 

had significantly higher SNR than all other combinations. 

These results show that for all three image quality parameters, the best results for the 

macro video zoom lens were found when using the spotlight in combination with a diffuser 

and an exposure time of 15 µs. No significant differences were found between the two types 

of diffusers. Therefore, the combinations spotlight x 120 grit diffuser x 15 µs exposure time 

and spotlight x 220 grit diffuser x 15 µs exposure time were selected for further analysis. 
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Figure 3.5. Image quality parameters (entropy ratio (a), contrast ratio (b) and SNR (c)) for the 

macro video zoom lens for different exposure times and lighting systems. Bars with asterisks 

Mean values are statistically different:*= p<0.05 (Scheffé test). 
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For the K2/SC long -distance microscope lens (Figure 3.6, Table A2), the three-way 

interaction light x diffuser x exposure time was significant for the entropy ratio (p<0.001) as 

well as for the contrast ratio (p<0.001). In both cases, the Scheffé post hoc tests revealed 

that the combination xenon x no diffuser x 15 µs exposure time (p<0.001) had significantly 

higher ratios than all other combinations. For the SNR, the Scheffé test confirmed that the 

combination xenon x no diffuser x 15 µs exposure time (p< 0.001) had higher values than all 

other combinations, while the SNK test showed that the combination xenon x no diffuser x 

10 µs exposure time (p< 0.001) outperformed all others. 

These results show that the best results with the K2/SC long-distance microscope lens were 

always obtained with the xenon light source without a diffuser. For this set-up and 

depending on the statistical test used, the best exposure time was 10 or 15 µs based on the 

image quality parameters. With the combination xenon x no diffuser x 10 µs exposure time 

was selected for further analysis because images taken with the 15 µs exposure time were 

visually found to be partly overexposed, which might affect the accuracy of the droplet size 

measurement. Additionally, the combination LED x no diffuser x 5 µs was selected as the 

best low cost alternative for the expensive xenon light based on the relatively good image 

quality parameters, although it was not statistically significant. 
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Figure 3.6. Image quality parameters (entropy ratio (a), contrast ratio (b) and SNR (c)) for the 

K2/SC long-distance microscope lens for different exposure times and lighting systems. Bars 

with asterisk are statistically different: *= p<0.05 (Scheffé test) and **= p<0.05 (SNK test) 

 

3.3.2 Light stability and overexposure ratio 

An appropriate image acquisition set-up for droplet characterization must be capable of 

delivering an adequate, even and stable illumination without over- or under-exposed areas. 

In order to achieve this, the previously selected image acquisition techniques were tested for 

their light stability and overexposure ratio based on image histograms of ten consecutive 

images without a droplet (Figure 3.7). The histograms of both spotlight configurations at 15 

µs exposure time (Figure 3.7a and b) showed light instability, as the curves of different 

frames did not overlap and were partially overexposed. Because the spotlight was used 

without AC/DC converter, light instability was also present for the shorter exposure times of 
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5 and 10 μs; however, reducing the exposure time reduced the overexposure ratio (results 

not shown). 

On the other hand, the use of the LED lighting with the K2/SC long-distance microscope lens 

at 5 μs gave rise to a clear and stable peak around a gray level of 40 but with relatively dark 

images (Figure 3.7c). The xenon light at 10 µs exposure time appeared stable but the images 

were overexposed (Figure 3.7d; note the different scale of the y-axis in this figure).  
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Figure 3.7. Histograms of ten consecutive images for four imaging set-ups: (a) macro video 

zoom lens x spotlight x 120 grit diffuser x 15 µs, (b) macro video zoom lens x spotlight x 220 

grit diffuser x 15 µs, (c) K2/SC long distance microscope lens x LED x no diffuser x 5 µs and (d) 

K2/SC long distance microscope lens x xenon x no diffuser x 10 µs 

 

Therefore, additional experiments were included to calculate the image quality parameters 

with reduced exposure times of 6, 7, 8 and 9 μs using the xenon light (Figure 3.8a). 

Increasing the exposure time considerably increased the SNR and contrast ratio. No 

correlation was found between the exposure time and the entropy ratio. At the same time 

and for droplets produced at the same settings, increasing the exposure time reduced the 

measured droplet size and increased the variation in measured droplet size (Figure 3.8b) 

because of the effect of overexposure. To find the optimal exposure time, image histograms 

were taken with the K2/SC long-distance microscope lens and xenon light at different 

exposure times and are presented in Figure 3.9. This figure shows that a 6 μs exposure time 

is optimal as it gives the brightest images without any overexposure, and the complete 

histogram is in-between the 256 intensity levels. In addition, because of the absence of 

overexposure, no reduction of measured droplet size was observed at 6 μs (Figure 3.8b). 
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Figure 3.8. (a) Image quality parameters for K2/SC long-distance microscope lens, xenon 

light, without diffuser at 5, 6, 7, 8, 9 and 10 μs exposure time and (b) effect of exposure time 

on droplet diameter measurement 
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Figure 3.9. Image histograms using the K2/SC long-distance microscope lens and xenon light 

with no diffuser at 5, 6, 7, 8, 9 and 10 μs 

3.3.3 Accuracy of the droplet size measurement 

From the camera calibration, the calculated pixel size for the set-up with the macro video 

zoom lens was 85.8 µm. This is too big to measure droplet size accurately, knowing that 

droplet sizes in a pesticide spray might vary from only a few micrometres up to 1000 µm. 

Hence, this set-up cannot be used for accurate droplet size measurements, but it can be 

useful for tracking droplets over longer distances and for measuring macro-spray 

characteristics, as it is done in Chapter 7. 

For the K2/SC long distance microscope lens, the output of the HDevelop software gave a 

focal length of 67.1 mm, corresponding to a pixel size of 8.2 µm and an image size of 10.5 

mm x 8.4 mm for the 1280 x 1024 pixel images. Moreover, at 6 µs exposure time, the 

droplets moved less than a pixel between frames, which ensured the absence of blurring 

effects (Ju et al., 2012). 
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The actual average droplet diameter based on weighing 100 droplets was 386.2 ± 6.7 μm, 

while a value of 390.2 ± 4.0 μm was found from the image analysis. Hence, the overall 

precision of the measurements was satisfactory, with a relative measurement error of about 

1% and an absolute error of about 4 μm (1/2 pixel). This droplet size was big enough to be 

measured with both image acquisition set-ups. Assuming a constant absolute error, the 

relative error will be larger while measuring smaller droplet sizes and smaller for bigger 

droplet sizes. 

3.4 CONCLUSION 

The development of an imaging system based on single droplet experiments was 

presented using a high speed camera and a piezoelectric droplet generator. Different lenses, 

light sources, diffusers, and exposure times were tested. The different imaging systems were 

evaluated based on image quality parameters (SNR, entropy ratio and contrast ratio), light 

stability and overexposure ratio and the accuracy of the droplet size measurement. The 

experiments resulted in a good image acquisition and processing system for accurate spray 

characterization. 

The optimal set-up for measuring micro spray characteristics (droplet size and velocity) 

consisted of a high speed camera with a 6 µs exposure time, a microscope lens at a working 

distance of 430 mm resulting in a FOV of 10.5 mm x 8.4 mm, and a xenon light source used 

as a backlight without diffuser. This set-up is used in Chapter 5 for single droplet 

characterization and in Chapter 6 for measuring micro spray characteristics.  

The HS camera with a macro video zoom lens at a working distance of 143 mm with a larger 

FOV of 88 mm x 110 mm in combination with a halogen spotlight and a diffuser was found to 

have the best potential for measuring macro spray characteristics, such as droplet trajectory, 

spray angle, and spray shape. With this system, attention should be paid to the light stability. 

This set-up is used in Chapter 7 to measure macro spray characteristics. 

The developed image acquisition systems can be used to visualize and determine the micro 

and macro spray characteristics of real pesticide sprays in an accurate and non-intrusive way 

as shown in next chapters. In addition, they offer the possibility of studying droplet and 

spray impact behavior as done by Zwertvaegher et al. (2014). Future work should focus on 
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further improving the droplet measuring accuracy (e.g., sub-pixel accuracy, calculating depth 

of field, non-spherical particles, etc.) because of the small, fast droplets in real spray. 
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4 IMAGE ANALYSIS ALGORITHMS FOR SINGLE DROPLET 

CHARACTERIZATION
iii 

 

This chapter presents the development of image analysis and image processing algorithms to 

evaluate the characteristics of a single droplet like droplet diameter and velocity as it is done 

in Chapter 5. The image acquisition system for micro-spray characteristics presented in 

Chapter 3 was used. Droplets were generated by a piezoelectric droplet generator in two 

modes: droplet on demand (DOD) and continuous mode. The presented algorithms also 

serve as a basis for the image based spray characterization presented in Chapter 6. 

 

 

 

 

 

 

 

                                                      
iii This chapter has been partially compiled from: 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2013. Measurement of single droplet 

characteristics using high speed imaging techniques. Proceedings of the IASTED International Conference on 

Signal Processing, Pattern recognition and Applications (SPPRA). February 12-14, Innsbruck, Austria. 321-326. 

DOI: 10.2316/P.2013.798-058 (Awarded as a Best Student Paper). 
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4.1 INTRODUCTION 

 As described in Chapter 2, both spray droplet size and velocity affect the efficiency of 

pesticide spray applications. Better knowledge and control of spray droplet characteristics 

may lead to reduction of pesticide usage and so reduce the environmental impact. For this 

reason, accurate spray droplet quantification techniques are needed. However, spray 

droplet diameters are small and cover a wide range of diameters (10-1000 µm). 

Consequently, it is necessary to magnify the images of the droplets in order to measure their 

size accurately. As droplets are translucent, a backlight must be used and because of the 

specific characteristics of this technique and application, a high power light source is needed. 

Additionally, spray droplets are fast (from 1 to 15 m/s and even faster) which means that 

high-speed cameras with a frame rate between 500 and 1000 frames/s are needed to 

capture the droplet movement. An exposure time of only a few µs is allowed, to record a 

small droplet at a considerable velocity with sufficient sharpness and contrast. This can be 

realized with a suitable shutter time of the camera. An image acquisition set-up fulfilling the 

above requirements was developed in Chapter 3 consisting of a high speed camera with a 6 

µs exposure time, a microscope lens at a working distance of 430 mm resulting in a field of 

view (FOV) of 10.5 mm x 8.4 mm and a xenon light source without diffuser used as a 

backlight. A second requirement to come to an accurate droplet characterization is the use 

of dedicated image analysis algorithms.  

This chapter presents the developed image analysis and processing algorithms for measuring 

the single droplet characteristics (size and velocity). Droplets were generated by a droplet 

generator, as described in detail in 3.2.1, in 2 modes: DOD and continuous mode.  

4.2 DROPLET CHARACTERIZATION WITH IMAGE ANALYSIS 

 Tracking and sizing the droplets in DOD and continuous mode were based on the 

object tracking algorithm (Jain & Nagel, 1979; Baek & Lee, 1996; Lecuona et al., 2000; 

Maggio & Cavallaro, 2011; Castanet et al., 2013) using image processing algorithms 

developed in Matlab (2011b). Once the images were acquired by the HS camera, a sequence 

of steps were employed to process and analyze these images, i.e. image pre-processing 

(4.2.1), image segmentation (4.2.2), droplet extraction and sizing (4.2.3), droplet tracking 
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(4.2.4) and saving the results (4.2.5). The flow chart of the image analysis algorithm is shown 

in Figure 4.1. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Flow chart of the image analysis algorithm for droplet(s) characterization 

 

Images obtained with the image acquisition system presented in Figure 3.2 include droplets 

generated in DOD (Figure 4.2a) or continuous mode (Figure 4.3a). The nozzle was always 

kept in the center of the image.  

For the DOD images, the complete FOV of 10.5 mm x 8.4 mm (1280 × 1024 pixels) was used 

at a frame rate of 1000 frames/s. Due to the bigger droplet velocities in continuous mode, a 

smaller FOV of 3.95 mm x 0.79 mm (480 x 96 pixels) was used in order to be able to increase 

the frame rate up to 10.000 frames/s. This did not have an influence on the droplet size 

measurements. 
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Figure 4.2. Original image (a) and image after pre-processing (b) in DOD 

 

 

 
Figure 4.3. Original image (a) and image after pre-processing (b) in continuous mode 

4.2.1 Pre-processing the images to enable analysis  

The quality of the images obtained by the image acquisition system influences the success of 

the image processing (Yan et al., 2009). Therefore, image pre-processing techniques are 

used to improve the quality of an image before further processing, i.e., droplet detection. In 

literature these techniques are also referred to as filtering and enhancement (Gonzalez et 

al., 2004). Images with droplets were pre-filtered to remove irrelevant and misleading image 

information like lighting patterns or dirt on the lens (Figure 4.2 and Figure 4.3).  

In order to detect, segment and track droplets automatically in videos, several approaches 

exist. For images obtained using the single droplet generator, a background subtraction 
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algorithm was used which compares a static background image without droplet(s) with the 

images with droplet(s), pixel by pixel. The purpose of this algorithm is to distinguish moving 

droplets from the static parts of the scene, i.e., nozzle, dust, etc. by differencing (Barnich & 

Droogenbroeck, 2011; Evangelio, 2014). In addition, after background subtraction, the image 

contrast is adjusted by mapping the values of the pixels to new values such that 1% of the 

pixels are saturated (Gonzalez et al., 2004). Examples of images before (Figure 4.2a and 

Figure 4.3a) and after pre-processing (filtering and background subtraction) (Figure 4.2b and 

Figure 4.3b) are shown.. 

4.2.2 Image segmentation 

The purpose of using image segmentation was to subdivide the image into its background 

and into connected pixels for further analysis, i.e., droplet(s). 

Segmentation algorithms can be categorized among two important types: gray level 

similarity detection among pixels (thresholding) and discontinuity or edge detection 

(Gonzalez et al., 2004). A histogram-based thresholding segmentation technique was used 

for segmenting images from the single droplet generator into droplets and background 

(4.2.2.1) and is used in Chapter 5. The second category of segmentation algorithms, involved 

finding abrupt changes in gray level in order to detect droplet edges in real spray images 

(4.2.2.2). This edge detection technique was therefore used in Chapter 6. 

4.2.2.1 Histogram-based thresholding  

The histogram is a graph showing the number of pixels in an image at each different 

intensity value found in that image. For an 8-bit grayscale image there are 256 different 

possible intensities. Hence, the histogram will graphically display 256 numbers showing the 

distribution of pixels amongst those grayscale values. 

Here a bi-modal thresholding was applied to extract the droplet from its image background. 

The histogram was clearly bimodal: two peaks corresponding with the droplet and 

background regions and a valley in between (Figure 4.4). The valley point is usually chosen as 

the threshold. In bimodal thresholding all gray values greater than threshold T are assigned 

to the background and all other gray values are assigned to the foreground (droplet), thus 

separating the droplet pixels from the background pixels (Acharya & Ray, 2005). 
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Figure 4.4. Bi-modal histogram for image in (a) DOD mode and (b) continuous mode both 

with a threshold value of 55% 

 

The threshold value is expressed in % of the maximum intensity level value as shown in 

Figure 4.4. There have been many thresholding methods that used the criterion-based 

concept to select the most suitable gray scale as a threshold value (Gonzalez et al., 2004). 

However, in order to apply a good segmentation, the optimal static threshold value in this 

study (Figure 4.4) was selected based on droplet size measurements in DOD mode. 

Threshold values ranging from 30 to 60% (in step of 5%) were tested as shown in Table 4.1. 

 

 

a. 

b. 
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Table 4.1.Droplet size measurements in DOD mode with nozzle 2 for ta =0.4 ms, tp =50 ms, 
Vp= ± 4.5 V applying different threshold values 

Threshold value (%) Droplet size (µm) 

30 382.3 

35 388.0 

40 393.8 

45 399.4 

50 407.6 

55 415.5 

60 418.1 

 

A static threshold T of 55 % of the intensity image value was selected to binarize the images. 

A bigger threshold value did not separate the droplet from the background (Figure 4.5c, 

Figure 4.6c). A smaller value underestimated the droplet size (Figure 4.5a, Figure 4.6a, Table 

4.1). Furthermore; examples with different threshold values for both modes are given in 

Figure 4.5 and Figure 4.6. 

 
Figure 4.5. DOD droplet images after thresholding at a) 30 %, b) 55% and 60% of the mean 

intensity value 

 

b. a. 

c. 

c. 
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Figure 4.6. Continuous mode droplet images after thresholding of a) 30 %, b) 55% and c) 60% 

of the of the mean intensity value 

4.2.2.2 Edge detection technique 

The edge detection approach is a technique to detect significant local changes in the 

intensity level in an image. The change in intensity level is measured by the gradient of the 

image (Acharya & Ray, 2005). Since an image f(x, y) is a two dimensional function, its 

gradient is a vector: 

 

∇𝑓 = [
𝐺𝑥

𝐺𝑦
] = [

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

] Eq. 4.1 

 

where Gx and Gy are the partial derivatives in the horizontal and vertical directions of the 

image. The magnitude of this vector provides information about the strength of the edge:  

|∇𝑓| = (𝐺𝑥
2 + 𝐺𝑦

2)
1

2⁄
 Eq. 4.2 

 

 

 

 

a. b. c. 
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The direction of the gradient is: 

Θ(x, y) = tan−1 (
𝐺𝑦

𝐺𝑥
⁄ ) Eq. 4.3 

 

where the angle Θ is measured with respect to the X-axis. Gradient operators compute the 

change in gray level intensities and also the direction in which the change occurs. This is 

calculated by the difference in values of the neighboring pixels, i.e., the derivatives along the 

X-axis and the Y-axis (Acharya & Ray, 2005). For a two-dimensional image the gradients are 

calculated as: 

𝐺𝑥 = 𝑓(𝑖 + 1, 𝑗) − 𝑓(𝑖, 𝑗) 
Eq. 4.4 

𝐺𝑦 = 𝑓(𝑖, 𝑗 + 1) − 𝑓(𝑖, 𝑗) 

 
Gradient operators require two masks, one for the X-direction gradient and one for the Y-

direction gradient. These two gradients are combined to obtain a vector quantity whose 

magnitude represents the strength of the edge gradient at a point in the image and whose 

angle represents the gradient angle (Acharya & Ray, 2005). An alternative approach for 

calculating edge gradients involves convolving the image with a set of edge masks (kernels) 

(Figure 4.7). A mask is a small matrix useful for blurring, sharpening, edge detection and etc. 

Each mask corresponds to the edges in the X or Y direction. Thus, the process consists of 

moving the filter mask from point to point in an image and multiplying each pixel in the 

image by a corresponding coefficient from the mask and then summing the result to obtain 

the response at each point (x, y) (Eq. 4.5). In Figure 4.7 an example is given with a 3 x 3 mask 

and the image section directly under it. 

𝑓(𝑖, 𝑗) = 𝑚11 𝐼(𝑖 − 1, 𝑗 − 1) +  𝑚12  𝐼(𝑖 − 1, 𝑗) + 𝑚13  𝐼(𝑖 − 1, 𝑗 + 1)

+ 𝑚21  𝐼(𝑖, 𝑗 − 1) + 𝑚22  𝐼(𝑖, 𝑗) +  𝑚23  𝐼(𝑖, 𝑗 + 1)

+  𝑚3 1 𝐼(𝑖 + 1, 𝑗 − 1) +  𝑚32  𝐼(𝑖 + 1, 𝑗) +  𝑚33  𝐼(𝑖 + 1, 𝑗 + 1) 

Eq. 4.5 
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Figure 4.7. Concept approach for calculating the edge gradient of pixel I(i,j) from image f 

using a 3 x 3 mask 

 

An ideal edge detector is needed to detect an edge point precisely. The decision regarding 

the existence of an edge point is based on a threshold. Hence, if the magnitude of the 

gradient is above a threshold, then an edge point exists at that point, else, there is no edge 

point. The goal of an ideal edge detector is to choose the threshold appropriately (Acharya & 

Ray, 2005). 

There are numerous edge-finding algorithms based on a single derivative with different 

masks (Ziou & Tabbone, 1998; Gonzalez et al., 2004; Umbaugh, 2010). Amongst them most 

important operators are the Robert operator, Sobel operator, Prewitt operator, Canny 

operator, etc. However, here only those that are used for droplet detection are explained, 

i.e., Sobel edge detector and Canny edge detector. 

 Sobel edge detector 

The Sobel edge detector uses two different masks to approximate digitally the first 

derivatives Gx and Gy (Figure 4.8). The left mask is responsible for horizontal edges and the 

right mask for vertical edges. Typically it is used to find the approximate absolute gradient 
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magnitude at each point in a grayscale image. The result of using the Sobel edge detector on 

a droplet image (Figure 4.9a) is shown in Figure 4.9b.  

-1 0 +1 

-2 0 +2 

-1 0 +1 
 

+1 +2 +1 

0 0 0 

-1 -2 -1 
 

Gx Gy 

Figure 4.8.Filter masks used by Sobel edge detector 

 

 Canny edge detector 

Canny edge detector is one of the standard edge detection methods (Canny, 1983) known as 

the optimal edge detector. The algorithm consists of five separate steps that can detect 

edges with noise suppression at the same time: 

 Smoothing: Blurring of the image to remove noise; 

 Finding gradients: The edges should be marked where the gradients (Eq. 4.2) of the 

image have large magnitudes; 

 Non-maximum suppression: Only local maxima should be marked as edges; 

 Double-tresholding: Potential edges are determined by thresholding; 

 Edge tracking by hysteresis: Final edges are determined by suppressing all edges that 

are not connected to a very certain edge. A result of using the Canny edge detector is 

shown in Figure 4.9c. 
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Figure 4.9. Results on droplet edge detection (b) using Sobel edge detector and (c) Canny 

edge detector 

It can be seen that the Canny edge detection (Figure 4.9c) yielded better results than Sobel 

edge detection (Figure 4.9b). This is because Canny is more robust to noise and accounts for 

regions in the image. As well, thin lines for its edges by using non maximal suppression and 

hysteresis with thresholding (Gonzalez et al., 2004). 

 

4.2.3 Droplet extraction and size measurement 

Several morphological operations may be applied to the binary images obtained after the 

image segmentation. Here only the ones that are used for droplet characterization are 

discussed. 

The operations of dilation and erosion are fundamental to morphological image processing. 

Dilation is an operation that “grows” or “thickens” while erosion “shrinks” or “thins” objects 

in an image (Gonzalez et al., 2004). The specific manner is controlled by a shape referred to 

as a structuring element. For droplet characterization a disk structuring element was used. 

Combining dilation and erosion results into opening, closing and hit-or-miss transformation. 

For the droplet characterization, a closing transformation was used. The morphological 

closing is dilation followed by erosion. It tends to smooth the contour of the objects. Also, it 

joins narrow breaks, fills long thin gulfs, and fills holes smaller than the structuring element. 

Subsequently, it was possible to apply droplet labelling. 

Afterwards, region extraction was performed measuring the properties of the labelled object 

like: diameter, area, perimeter, orientation and so forth. The droplet area was calculated as 

the sum of the pixel components and the position of its center was found as the mass center 

a. b. c. 
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of the droplet (Figure 4.10, Figure 4.11). Because the droplets were not perfectly spherical 

when in motion, they were considered as elliptical shapes for the droplet diameter. Their 

long and short axes were measured to calculate the equivalent droplet diameter from the 

area (Dong et al., 2013).  

The circularity of an object can range from 0 (line) to 1 (circle) and is calculated as follows: 

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4 ∗ 𝜋 ∗ 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 Eq. 4.6 

 

The calculated circularity based on Eq. 4.6 of the droplets in Figure 4.3 was between 0.93 

and 0.95. However, droplets generated by a real spray can be much more elliptical (Lefebvre, 

1989). Therefore a lower circularity value of 0.8 was chosen to eliminate objects that are not 

droplets. 

 
Figure 4.10. Result after droplet extraction, sizing and locating the droplet center in DOD 

mode (The droplet center is marked with a blue star and the droplet edge is in red) 
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Figure 4.11. Result after droplet extraction, sizing and locating the droplet centers in 

continuous mode (The droplet centers are marked with a blue star and the droplet edges are 

in red) 

4.2.4 Droplet tracking algorithm 

Once the droplet center and position were determined, the next step involved droplet 

tracking to find the same droplet in two consecutive images, as well as the displacement 

vector and velocity (Figure 4.12). This is possible because of the large acquisition rate of the 

HS camera. 

The tracking of a droplet begins in image I and is extended to the next image by association 

with a droplet in image J. Each track at image I can generate few possible ending tracks in 

image J. The droplet velocity can be calculated as (Lecuona et al., 2000): 

�⃗�𝑖𝑗 =
𝑑𝑖𝑗

Δ𝑡
=

(𝑋𝑗 − 𝑋𝑖, 𝑌𝑗 − 𝑌𝑖)

Δ𝑡
 Eq. 4.7 

 

where 𝑑𝑖𝑗 and �⃗�𝑖𝑗 are the droplet displacement vector and velocity, respectively. The droplet 

velocity is calculated as the displacement divided by the time between two exposures (for 

DOD: 1 frame = 1 ms and for continuous mode: 1 frame = 0.1 ms). 
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Figure 4.12 Droplet tracking result from two consecutive images in DOD mode. 

4.2.5 Results 

In the last stage, the algorithm displays the actual droplet diameter by multiplying the 

droplet size in pixels with the actual pixel size (1 pixel = 8.23 µm). In continuous mode, 

besides the droplet diameter, it was possible based on the droplet center positions to 

calculate the inter-droplet spacing. Finally, the droplet velocity was plotted as a function of 

time as shown in Figure 4.13. In this example, the droplet appeared in the tenth frame and 

the droplet velocity was increasing with every following frame until the moment when it 

disappeared from our FOV. 
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Figure 4.13. Droplet velocity diagram  

 

4.3 CONCLUSION 

 Image analysis and image processing algorithms in Matlab were developed to 

evaluate the characteristics of a single droplet. These algorithms are further used in Chapter 

5 for droplet characterization in DOD and continuous mode. Furthermore, they are also used 

as a basis for developing the algorithms for micro-spray characterization of real spray nozzles 

(Chapter 6). 
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5 DROPLET GENERATION AND CHARACTERIZATION USING A 

PIEZOELECTRIC DROPLET GENERATOR AND IMAGING TECHNIQUES
iv 

 

Accurate spray (droplet) characterization helps in better understanding the pesticide spray 

application process. The goal of this chapter was to evaluate the characteristics of a single 

droplet generated using a piezoelectric single droplet generator in 2 modes: Droplet-On-

Demand (DOD) and continuous with 4 different orifice sizes. The image acquisition system 

and the image analysis algorithms developed in Chapters 3 and 4 were used. 

 

 

 

 

 

 

 

 

 

                                                      
iv
 This chapter has been compiled from: 

Vulgarakis Minov, S., Cointault, F., Vangeyte, J., Pieters, J.G., and Nuyttens, D., 2015. Droplet generation and 

characterization using piezoelectric droplet generator and high speed imaging techniques. Crop Protection 69, 

18-27. 
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5.1 INTRODUCTION 

The process of generating and controlling small droplets of constant size, form and 

velocity is necessary to study the behavior of spray droplets before, during and after impact 

in a controlled and repeatable way (Reichard, 1990). A better understanding of spray droplet 

behavior and of the complex spray application process can lead to more efficient pesticide 

usage and a reduction of the environmental impact. Poor accuracy and spray losses may 

reduce the effectiveness of the application and increase environmental contamination and 

operator risk (Matthews, 2000). Droplet sizes and velocities are important characteristics in 

the spray application process, because of their strong influence on droplet impact behavior 

(Massinon & Lebeau, 2012a; Zwertvaegher et al., 2014), crop coverage (Dorr et al., 2008), 

biological efficacy of the applied pesticide (Permin et al., 1992; Whisenant et al., 1993) and 

spray drift risk (Nuyttens et al., 2007a; 2009; 2011). 

In general, spray droplet characteristics depend on nozzle type and orifice size 

(Nuyttens et al., 2007a), liquid properties (De Schampheleire et al., 2009) and spray pressure 

(Etheridge et al., 1999). In practice, a pesticide spray produced by hydraulic nozzles is 

characterized by a wide range of droplet sizes (∼10–1000 μm) and velocities (∼0–25 m/s). 

To evaluate the behavior of such droplets in a realistic way, a droplet generation method 

that produces uniform droplets within these size and velocity ranges in a controlled and 

repeatable way is needed, while the combination with an imaging technique allows for the 

reliable and automated evaluation of droplet characteristics and behavior. 

Droplet generation can be accomplished by making one short duration fluid jet which 

condenses into a single droplet of desired diameter (Droplet-On-Demand (DOD) mode) or by 

breaking up a continuous fluid jet into uniformly sized droplets with a source of acoustic 

energy (Continuous mode) as described in detail by Lee (2003). The first mode, DOD mode, 

has been used in many technical, industrial and scientific applications because only a small 

amount of fluid is needed to form droplets e.g.: inkjet printing (Li et al., 2010), calibration of 

particle sizing instruments (Ulmke et al., 1999; Ulmke et al., 2001), one–drop-fill technology 

(Kuang-Chao et al., 2008), biotechnology and medicine (Saunders et al., 2008). Continuous 

mode has also been used in applications like fabrication of metal parts (Luo et al., 2011) and 

inkjet printing (Castrejon-Pita et al., 2008). Basi et al. (2012) used a pneumatic droplet 

generator in DOD mode for pesticide applications to crops and weeds. In addition, a 
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piezoelectric droplet generator producing highly stable water droplets in the size range of a 

few μm over long time periods was developed by  Riefler and Wriedt (2008). 

The aim of this chapter was to determine the range of droplet sizes and velocities that can 

be obtained and the corresponding settings using distilled water and a droplet generator in 

two modes, DOD and continuous mode, for different nozzle orifice sizes, using the image 

acquisition system developed in Chapter 3 consisting of a high speed (HS) camera with 

microscope lens and xenon backlight and the image processing algorithms described in 

Chapter 4. This droplet generation system may be useful for various fundamental researches 

using single and uniform size droplets such as droplet–target interactions (Reichard et al., 

1998), droplet formation and ejection (Castrejon-Pita et al., 2008) and validation of droplet 

size measuring equipment (Nuyttens et al., 2007a). 

5.2 MATERIALS AND METHODS 

5.2.1 Droplet generator set-up 

The droplet generator set-up (Université de Liège, Gembloux, Agro-Bio-Tech, 

Belgium) (Figure 5.1) used in this study was described in more detail in 3.2.1. 

 

 
Figure 5.1. Piezoelectric droplet generator: 1-Glass nozzle, 2-Piezoelectric element, 3-Clamp, 

4-Tubes 
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Different glass nozzles (Université de Liège, Gembloux, Agro-Bio-Tech, Belgium) were placed 

on the outlet of the droplet generator (Figure 5.1). In contrast with hydraulic spray nozzles, 

such nozzles can be used to produce single or a continuous stream of droplets with a 

uniform size in a controlled way. 

Tests were done with 4 glass nozzles with orifice sizes of 261.6 ± 3.3 μm (nozzle 1), 123.4 ± 

5.2 μm (nozzle 2), 87.2 ± 4.0 μm (nozzle 3) and 67.4 ± 3.3 μm (nozzle 4). These orifice 

diameters were determined by producing a continuous fluid jet through every nozzle which 

was filmed using the image acquisition set-up described below. By measuring the jet 

diameters at the orifice exit (in number of pixels) and multiplying with the 8.23 μm pixel size, 

(Vulgarakis Minov et al., 2015a) the actual orifice sizes were determined. The measurements 

were repeated 5 times. 

The droplet generator is able to form uniform droplets in 2 modes: DOD, generating single 

droplets using double square–edged pressure pulses (Switzer, 1991) (Figure 5.2a) and 

continuous, generating a continuous stream of uniformly spaced and sized droplets using a 

continuous square signal (Figure 5.2b). 

The following paragraphs contain a description of the steps involved in both modes. 

5.2.1.1 Droplet on demand (DOD) generation 

The principle of DOD mode is based on two closely timed pulses (double pulse) that are fed 

to the droplet generator to eject a single droplet (Switzer, 1991; Yang et al., 1997; Lee, 2003; 

Hsuan-Chung & Huey-Jiuan, 2010). 

The single droplet breakup (Figure 5.3a) is characterized by an ejection of a single droplet. A 

pulse width that is too large may lead to droplet ejection followed by satellite droplets of 

different sizes (jet on demand) (Riefler & Wriedt, 2008; Li et al., 2010). These satellite 

droplets and the settings at which they are formed (Figure 5.4) were not desired and not 

analyzed in this study. To avoid satellite droplets, small pulse widths should be applied. The 

surface tension of the fluid is then strong enough to absorb the fluid back to the nozzle 

(Riefler & Wriedt, 2008). 

Droplet formation in DOD-mode requires some conditions in order to generate uniform and 

single droplets in a repeatable way (Lee, 2003). Air bubbles are detrimental to the operation 
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of the droplet generation and should be removed. To prevent fluid from dripping out and air 

bubbles from entering the system via the nozzle orifice, the fluid pressure should be 

controlled until a meniscus is just visible at the tip of the nozzle. This can be achieved by 

changing the liquid column height in the fluid tank (Yang et al., 1997). After that, droplets 

can be generated by pressure pulses delivered by the actuator to the piezoelectric element 

(Castrejon-Pita et al., 2008). 

During the positive pressure period of the double pulse or the absorption time (ta) (Figure 

5.2a), the meniscus at the nozzle exit is formed and a droplet is created. Once the pressure 

reaches a negative value the droplet is ejected from the nozzle. This process occurs during 

the pulsation time (tp). More information on the droplet formation and ejection can be 

found in the study of Li et al. (2010). 

 
Figure 5.2. (a) Block diagram of the double pressure pulse for DOD mode and (b) continuous 

square signal for continuous mode 

 

 
Figure 5.3. (a) Examples of single droplet ejection in DOD mode and (b) uniformly sized 

droplets in continuous mode 
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The effects of the following pressure pulse parameters on droplet formation and droplet 

diameter and velocity were tested: absorption time (ta (ms)), pulsation time (tp (ms)) and 

pulse amplitude (±Vp (V)) (Figure 5.2a). 

In a first stage, determination of the appropriate pressure pulse settings resulting in single 

droplet breakup was done for each of the four nozzles. These preliminary tests were done at 

ta values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 and 5 ms, all 

combined with tp values of 0.01, 0.05, 0.1, 1, 5, 10, 25 and 50 ms. All 135 combinations were 

tested at a Vp value of ±4.5 V. The combinations of pulse width values resulting in a 

repeatable single droplet ejection were selected for the actual single droplet 

characterization (Figure 5.4, Table 5.1). These combinations differed considerably between 

the nozzles. For one and the same nozzle, increasing ta values were associated with 

decreasing tp values in order to produce single droplets. In addition, the effect of the pulse 

height from 3.0 V to 6.0 V at incremental steps of 0.5 V using nozzle 1 at ta = 5 ms and tp = 

0.01 ms was also evaluated. 

 
Figure 5.4. Selected pulse width values for the single droplet characterization at Vp = ± 4.5V 

for the 4 different sized nozzles which resulted in a single droplet ejection 

 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
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Table 5.1. Selected pulse width values for the single droplet characterization for the 4 
nozzles at Vp = ±4.5 V which resulted in a single droplet ejection 

nozzle 1  nozzle 2 

ta(ms) tp (ms)  ta (ms) tp (ms) 
 5 0.01  2 0.01 

5 0.05  2 0.1 

5 0.1  0.7 1 

0.7 1  0.9 1 

0.9 1  0.4 10 

0.4 5  0.4 50 

0.5 50    

nozzle 3  nozzle 4 

ta (ms) tp (ms)  ta (ms) tp (ms) 

0.8 0.01  0.4 0.6 

0.6 0.1  0.4 0.8 

0.3 1  0.4 0.9 

0.2 5  

0.01 50  

0.1 25  

The DOD measurements were repeated 5 times for every setting. After breakup from the 

nozzle exit, the falling droplet was recorded using an HS image acquisition system (5.2.3), 

and the droplet diameter and droplet ejection velocity were determined using image 

analysis (5.2.4). All measurements were done using distilled water in a climate control room 

at an ambient temperature of 20°C and a relative humidity of 47%. 

5.2.1.2 Continuous mode droplet generation 

In the continuous mode, a continuous stream of uniformly sized droplets is produced with 

the piezoelectric droplet generator. Using the LabVIEW software, a square acoustic signal 

was sent to the piezoelectric element causing instability and standing waves on the fluid 

stream as it emerges from the orifice (Lee, 2003) (Figure 5.3b). In order to form uniformly 

sized droplets (Figure 5.3b), a suitable frequency must be applied (Switzer, 1991). In contrast 

with the DOD mode where a liquid column was used, a pressure supplier was used to create 

a liquid pressure of around 2 kPa in order to create a continuous jet. 

Preliminary tests were done at frequency values from 7.5 to 8.5 kHz at incremental steps of 

0.1 kHz and amplitudes of 1.0–9.0 V at steps of 1.0 V. All combinations were tested for the 4 

nozzles resulting in 99 frequency/pulse amplitude combinations. These preliminary tests 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig4
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showed that 8 kHz was a suitable frequency for generating uniformly sized droplets for every 

nozzle. At this frequency and for each nozzle, the effects of pulse amplitude on the droplet 

diameter, droplet velocity and inter-droplet spacing were examined using image analysis 

(5.2.4). The experiments were repeated 5 times. 

5.2.2 Statistics 

Per nozzle for DOD mode, a one-way ANOVA with technique, which is a combination of ta 

and tp, was performed on the droplet diameter and droplet velocity (dependent variables). 

In addition, per nozzle for continuous mode, a one-way ANOVA with voltage height 

(independent variable) was performed on droplet diameter, droplet velocity and inter-

droplet spacing (dependent variables). Significant differences were assessed by Tukey's post 

hoc test. The experiments were statistically analyzed using IBM SPSS statistics 21 (SPSS Inc. 

2012, IBM corporation, New York, USA). Statistical significance was considered at P < 0.05. 

5.2.3 Image acquisition system 

The image acquisition system to characterize droplets developed in Chapter 3 was used. The 

system consisted of a powerful xenon light (WOLF 5132, Knittlingen, Germany, 300 W) used 

as a background illumination against the droplet generator combined with an N3 HS (high 

speed) camera (IDT, Lommel, Belgium) with a 6 μs exposure time, a K2/SC Long-Distance 

Microscope System Lens (Infinity, USA) and a frame capture device Motion studio (IDT, 

Lommel, Belgium). In order to successfully record the single droplets in DOD mode, the 

piezoelectric generator was connected to the HS camera via a trigger. 

The set-up resulted in a pixel size of 8.23 μm. In DOD mode the images were taken at full 

resolution (1280 × 1024 pixels) with a field of view (FOV) of 10.5 mm × 8.4 mm at 1000 fps. 

In continuous mode the frame rate was set to 10.000 fps due to the bigger droplet velocities 

with an image size of 480 × 96 pixels corresponding with an FOV of 3.95 mm × 0.79 mm. 

An example of the captured droplet formation in DOD mode with the described image 

acquisition system is shown in Figure 5.5. 
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Figure 5.5. Image sequence showing the formation of a 461.5 μm droplet in DOD mode with 

nozzle 1 with an ejection droplet velocity of 0.59 m/s. The different frames correspond with 

times of 0, 3, 6, 9, 12 ms after the first frame 

 

5.2.4 Droplets(s) characterization with image analysis 

Image processing algorithms were developed in Matlab (2011b, MathWorks Company, 

Massachusetts, USA) to characterize the single droplets (Chapter 4). Tracking and sizing of 

the droplet(s) were done in 3 steps:  

1) Detection of the moving droplet(s) using edge detection based on local changes in the 

image brightness (Lecuona et al., 2000); 2) Tracking of the droplet between frames and 3) 

Measurement of the droplet characteristics (size, velocity, inter-droplet spacing (continuous 

mode)). 

The velocity of a droplet is calculated based on its position in two consecutive frames and 

the time between two frames. A detailed description of the image analysis is given in 

Chapter 4. 

5.2.5 Validation 

The droplet size measuring method was validated by a droplet weight method (Li et al., 

2010) for DOD as well as for continuous mode. For the DOD mode, 100 droplets were 

collected and weighed for one test condition (nozzle 2 at ta=0.7 ms; tp=1.0 ms; Vp= ± 4.5 V). 

The total mass of droplets generated was determined using an analytical scale (Sartorius M-

Pact AX224, S.A. Sartorius Mechatronics Belgium N.V., accuracy: 0.0001 g). Droplet 

diameters were calculated from the weight and density of the collected water and compared 

to the image analysis results. For the continuous mode, validation was done using nozzle 2 at 
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a frequency of 8.0 kHz and a pulse amplitude of 8.0 V. The liquid emitted by the nozzle over 

a period of 30 s was collected, weighed and the total volume was calculated. The volume of 

one droplet was calculated by dividing the total volume by the number of droplets 

generated during the 30 s period based on the breaking frequency and compared with the 

droplet diameter resulting from the image analysis. 

Finally, to test the effect of the measuring method (image analysis vs. droplet weight) on the 

droplet diameter (dependent variable) an ANOVA was performed. A p-value <0.05 was 

considered statistically significant. The test was performed in SPSS Statistics 21 (IBM, USA). 

The significant differences were assessed using SNK (Student – Newman - Keuls) post hoc 

tests. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Droplet on demand generation 

5.3.1.1 Effects of pulse width and nozzle orifice size 

The effects of the selected pulse width values (Table 5.1) on droplet diameter and droplet 

velocity were investigated by keeping the pulse amplitude constant at ±4.5 V for all nozzles. 

The results are presented inThe mean droplet diameters for the different nozzles and pulse 

width combinations are given in Figure 5.6. For nozzle 1, pulse width values significantly 

affected the droplet diameter (P = 0.000). Of all tested combinations, these were the biggest 

droplets produced in DOD mode. Diameters ranged from 351.2 ± 1.2 µm up to 461.5 ± 3.3 

µm corresponding with about 1.3 and 1.8 times the orifice size, respectively.  

For other glass nozzles, the combination of pulse width values also significantly affected 

droplet diameters (P < 0.001). Droplet diameters ranged from 312.7 ± 1.5 - 416.5 ± 0.2 µm 

(nozzle 2), 242.9 ± 1.5 - 310.1 ± 0.3 µm (nozzle 3), 134.1 ± 3.7 - 207.2 ± 16.4 µm (nozzle 4), 

corresponding with 2.53 - 3.37 (nozzle 2), 2.78 - 3.55 (nozzle 3), 1.99 - 3.07 (nozzle 4) times 

the orifice size (Error! Not a valid bookmark self-reference.). 

In general, a decrease of ta in combination with an increase of tp tended to increase the 

droplet diameter (Riefler & Wriedt, 2008). This effect was most pronounced for larger nozzle 

orifices (nozzle 1 and nozzle 2). 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
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Table 5.2, Figure 5.6 and  

Figure 5.8. 

The mean droplet diameters for the different nozzles and pulse width combinations are 

given in Figure 5.6. For nozzle 1, pulse width values significantly affected the droplet 

diameter (P = 0.000). Of all tested combinations, these were the biggest droplets produced 

in DOD mode. Diameters ranged from 351.2 ± 1.2 µm up to 461.5 ± 3.3 µm corresponding 

with about 1.3 and 1.8 times the orifice size, respectively.  

For other glass nozzles, the combination of pulse width values also significantly affected 

droplet diameters (P < 0.001). Droplet diameters ranged from 312.7 ± 1.5 - 416.5 ± 0.2 µm 

(nozzle 2), 242.9 ± 1.5 - 310.1 ± 0.3 µm (nozzle 3), 134.1 ± 3.7 - 207.2 ± 16.4 µm (nozzle 4), 

corresponding with 2.53 - 3.37 (nozzle 2), 2.78 - 3.55 (nozzle 3), 1.99 - 3.07 (nozzle 4) times 

the orifice size (Error! Not a valid bookmark self-reference.). 

In general, a decrease of ta in combination with an increase of tp tended to increase the 

droplet diameter (Riefler & Wriedt, 2008). This effect was most pronounced for larger nozzle 

orifices (nozzle 1 and nozzle 2). 

Table 5.2. Effect of the pulse width values (ms) on the droplet diameter (μm) and droplet 
velocity (m/s) produced with nozzles 1 to 4 (mean ± std) 

Nozzle 
Pulse width 
combination 

ta (ms) / tp (ms) 

Droplet diameter 
(µm) 

Droplet velocity (m/s) 

1 

5 / 0.01 389.2 ± 2.4 b 0.33 ± 0.02 e 
5 / 0.05 360.9 ± 2.2 d 0.65 ± 0.05 b 
5 / 0.1 351.2 ± 1.2 e 0.81 ± 0.03 a 
0.7 / 1 383.4 ± 1.2 c 0.10 ± 0.01 f 
0.9 / 1 385.7 ± 3.0 bc 0.48 ± 0.02 d 
0.4 / 5 458.7 ± 3.5 a 0.34 ± 0.01 e 

0.5 / 50 461.5 ± 3.3 a 0.59 ± 0.01 c 

2 

2 / 0.01 330.1 ± 1.3 d 0.66 ± 0.03 c 
2 / 0.1 333.2 ± 1.2 c 0.72 ± 0.01 b 
0.7 / 1 390.2 ± 4.6 b 0.49 ± 0.01 d 
0.9 / 1 312.7 ± 1.5 e 0.86 ± 0.01 a 

0.4 / 10 416.5 ± 0.2 a 0.26 ± 0.01 e 
0.4 / 50 415.5 ± 0.4 a 0.26 ± 0.01 e 

3 
0.8 / 0.01 242.9 ± 1.5 d 0.30 ± 0.06 e 
0.6 / 0.1 249.1 ± 8.4 d 0.68 ± 0.10 a 
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0.3 / 1 284.6 ± 2.9 c 0.52 ± 0.09 b 
0.2 /5 310.1 ± 0.3a 0.53 ± 0.01 b 

0.01 / 50 293.0 ± 0.4 b 0.08 ± 0.01 d 
0.1 / 25 303.9 ± 0.8 a 0.19 ± 0.01 cd 

4 
0.4 / 0.6 134.1 ± 3.7 a 0.76 ± 0.12 b 
0.4 / 0.7 207.2 ± 16.4 c 1.78 ± 0.12 a 
0.4 / 0.8 171.8 ± 4.6 b 0.77 ± 0.12 b 

 

 

 
Figure 5.6. Droplet diameter (µm, mean ± std.) for different nozzles and pulse width 

combinations. Different letters indicate statistical differences within the same nozzle (P < 

0.05) 

 

Increasing the nozzle orifice increased the measured droplet diameter as it was also found 

by Kuang-Chao et al. (2008) and Basi et al. (2012). By selecting nozzle and pulse width values, 

droplets ranging from 134.1 ± 3.7 up to 461.5 ± 3.3 μm could be generated which is a 

realistic size range for real pesticide sprays (Nuyttens et al., 2007a). 

The smaller the nozzle orifice size, the more difficult it was to produce droplets. This comes 

from the fact that if the pressure (pulse width and voltage amplitude) is not high enough to 

overcome surface tension, a droplet is not ejected. Therefore, only 3 different droplet sizes 

could be generated with nozzle 4 (The mean droplet diameters for the different nozzles and 

pulse width combinations are given in Figure 5.6. For nozzle 1, pulse width values 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
http://www.sciencedirect.com/science/article/pii/S0261219414003640#tbl2
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significantly affected the droplet diameter (P = 0.000). Of all tested combinations, these 

were the biggest droplets produced in DOD mode. Diameters ranged from 351.2 ± 1.2 µm up 

to 461.5 ± 3.3 µm corresponding with about 1.3 and 1.8 times the orifice size, respectively.  

For other glass nozzles, the combination of pulse width values also significantly affected 

droplet diameters (P < 0.001). Droplet diameters ranged from 312.7 ± 1.5 - 416.5 ± 0.2 µm 

(nozzle 2), 242.9 ± 1.5 - 310.1 ± 0.3 µm (nozzle 3), 134.1 ± 3.7 - 207.2 ± 16.4 µm (nozzle 4), 

corresponding with 2.53 - 3.37 (nozzle 2), 2.78 - 3.55 (nozzle 3), 1.99 - 3.07 (nozzle 4) times 

the orifice size (Error! Not a valid bookmark self-reference.). 

In general, a decrease of ta in combination with an increase of tp tended to increase the 

droplet diameter (Riefler & Wriedt, 2008). This effect was most pronounced for larger nozzle 

orifices (nozzle 1 and nozzle 2). 

Table 5.2 and Figure 5.7). 

 
Figure 5.7. Mean droplet diameter results for the selected pulse width values for the 4 

nozzles with Vp = ± 4.5 V 

 

Figure 5.8 presents the mean droplet velocity for the different nozzles and pulse width 

combinations. 

Pulse width combinations significantly affected droplet velocities at nozzle 1 (P < 0.001), 

nozzle 2 (P < 0.001), nozzle 3 (P < 0.001) and nozzle 4 (P < 0.001). 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig6
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig6
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Figure 5.8. Droplet velocity (m/s, mean ± std.) for different nozzles and pulse width 

combinations. Different letters indicate statistical differences within the same nozzle (P < 

0.05) 

Furthermore, it can be observed in The mean droplet diameters for the different nozzles and 

pulse width combinations are given in Figure 5.6. For nozzle 1, pulse width values 

significantly affected the droplet diameter (P = 0.000). Of all tested combinations, these 

were the biggest droplets produced in DOD mode. Diameters ranged from 351.2 ± 1.2 µm up 

to 461.5 ± 3.3 µm corresponding with about 1.3 and 1.8 times the orifice size, respectively.  

For other glass nozzles, the combination of pulse width values also significantly affected 

droplet diameters (P < 0.001). Droplet diameters ranged from 312.7 ± 1.5 - 416.5 ± 0.2 µm 

(nozzle 2), 242.9 ± 1.5 - 310.1 ± 0.3 µm (nozzle 3), 134.1 ± 3.7 - 207.2 ± 16.4 µm (nozzle 4), 

corresponding with 2.53 - 3.37 (nozzle 2), 2.78 - 3.55 (nozzle 3), 1.99 - 3.07 (nozzle 4) times 

the orifice size (Error! Not a valid bookmark self-reference.). 

In general, a decrease of ta in combination with an increase of tp tended to increase the 

droplet diameter (Riefler & Wriedt, 2008). This effect was most pronounced for larger nozzle 

orifices (nozzle 1 and nozzle 2). 

Table 5.2 that the smallest droplet velocity (0.08 ± 0.01 m/s) was measured for nozzle 3 

whilst the biggest droplet velocity of 1.78 ± 0.12 (m/s) for the smallest nozzle orifice (nozzle 

4). The data showed no clear relation between pulse width values on droplet velocity at 
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constant pulse amplitude. Similarly, no clear correlation between droplet size and droplet 

ejection velocity was detected for nozzle 1 and nozzle 3 (Figure 5.9). However, a strong 

correlation (R2 = 0.96) using nozzle 2 was observed i.e. increasing the droplet diameter led to 

decreasing the droplet velocity while the opposite effect was observed for nozzle 4 (R2 = 

0.74) (Figure 5.9). The generated droplet velocities were lower than the ones of hydraulic 

spray nozzles used for pesticide applications in practice (Nuyttens et al., 2007a) indicating 

the difference in droplet formation mechanisms between DOD mode and hydraulic spray 

nozzles. 

 
Figure 5.9. Correlation between droplet diameter and velocity in DOD mode for 4 different 

nozzles at pulse amplitude of ±4.5 V 

5.3.1.2 Effect of pulse amplitude 

The effects of pulse amplitude (Vp) on droplet diameter and droplet velocities were 

investigated by keeping the pulse widths constant at ta = 5 ms and tp = 0.01 ms for nozzle 1. 

Pulse amplitude significantly affected droplet diameter (P < 0.001) as well as droplet velocity 

(P < 0.001) as shown in Figure 5.10. 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig7
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig7
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Figure 5.10. Droplet diameter (μm, mean ± std.) and velocity (m/s, mean ± std.) for nozzle 1 

at different pulse amplitudes and ta = 5 ms and tp = 0.01 ms. Different letters indicate 

statistical differences between data points within the same curve (P < 0.05) 

 

By increasing pulse amplitude from ±4.0 V up to ±4.5 V, both droplet diameter and velocity 

decreased, although not significantly for droplet velocity, and the minimum droplet 

diameter of 389.1 ± 2.4 μm and minimum velocity of 0.3 ± 0.0 m/s were obtained. 

A further increase of Vp resulted in a significant increase of both droplet diameter and 

velocity as previously found by (Sadeghian et al., 2014), although with little change 

thereafter for droplet velocity, eventually reaching a value of 438.1 ± 7.1 μm and 0.54 ± 0.0 

m/s at Vp of ±6.0 V, respectively. In contrast with the effect of pulse widths, there was a 

clear correlation between droplet diameter and velocity (Figure 5.11). Further increasing Vp 

above ±6.0 V resulted into ejection of satellite droplets. Decreasing pulse amplitudes below 

±4.0 V resulted into no ejection of droplets. 

http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig9
http://www.sciencedirect.com/science/article/pii/S0261219414003640#fig9
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Figure 5.11. Correlation between droplet diameter and velocity in DOD mode for nozzle 1 at 

different pulse amplitudes and ta = 5 ms and tp = 0.01 ms 

5.3.1.3 Validation 

The actual mean droplet diameter based on weighing 100 droplets was 346.4 ± 9.5 μm while 

a value of 339.5 ± 1.6 μm was found with image analysis. Hence, the overall accuracy of the 

measurement was satisfactory with a relative measurement error of about 2% and an 

absolute error of about 7 μm (∼1 pixel). No significant differences in droplet diameter 

between the two techniques were observed (P > 0.05). 

5.3.2 Continuous mode droplet generation 

The effects of pulse amplitude on droplet diameter, droplet velocity and inter-droplet 

spacing at the optimal frequency of 8.0 kHz for the different nozzles is shown in Figure 5.12, 

Figure 5.13 and Figure 5.14. 
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Figure 5.12. Droplet diameter (μm, mean±std.) in continuous mode for different nozzles and 

pulse amplitudes at a frequency of 8.0 kHz. Different letters indicate statistical differences 

within the same nozzle (P<0.05) 

 

 
Figure 5.13. Droplet velocity (m/s, mean±std.) in continuous mode for different nozzles and 

pulse amplitudes at a frequency of 8.0 kHz. Different letters indicate statistical differences 

within the same nozzle (P<0.05) 

 



Droplet generation and characterization using piezoelectric droplet generator and imaging 
techniques 

139 

 
Figure 5.14. Correlation between droplet diameter and velocity in continuous mode for 

different nozzles and pulse amplitudes at a frequency of 8.0 kHz 

 

For nozzle 1, the droplet diameter was significantly affected by the pulse amplitude values (P 

< 0.001) (Figure 5.12). Generally larger droplet diameters were found for pulse amplitude 

values of 3.0, 4.0, 5.0, 6.0, 8.0 and 9.0 V followed by 7.0 V pulse amplitude. Smallest droplets 

were generated at 1.0 and 2.0 V pulse amplitude. Droplet diameters with nozzle 1 ranged 

from 358.3 ± 6.9 to 455.8 ± 4.8 mm corresponding with 1.37-1.75 times the orifice size. The 

biggest droplet diameter produced in continuous mode was 455.6 mm (at 5.0 V). Using 

nozzle 2 (P < 0.001), the droplet diameter ranged between 328.4 ± 6.2 and 353.5 ± 4.6 mm. 

The effect of pulse amplitude was limited but significant with biggest droplets at 5.0 V and 

smallest droplets at 1.0 V. For nozzle 3, no significant effect of pulse amplitude was observed 

within the range from 1.0 to 7.0 V, while significantly bigger droplets were produced at pulse 

amplitudes of 8.0 and 9.0 V. (P < 0.001). With nozzle 4, smallest droplets were generated 

with a pulse amplitude of 6.0 V (P < 0.001). This was also the smallest droplet produced in 

continuous mode with a size of 167.2 ± 1.4 mm. With nozzle 4, the biggest droplets were 

produced at 7.0 up to 9.0 V. In general, no clear correlation between pulse amplitude and 

droplet diameter was found although there was a trend for bigger droplets at bigger pulse 

amplitudes.  

The influence of the nozzle size and pulse amplitude on the droplet velocity is shown in 

Figure 5.13 with velocities ranging from 2.42 ± 0.1 m/s up to 4.57 ± 0.0 m/s. These higher 

velocities relate much better with velocities of droplets generated with hydraulic spray 

nozzles at a distance of 0.50 m below the nozzle where they generally impact the target 
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(Nuyttens et al., 2007a). A positive correlation was found between the droplet diameter and 

velocity generated with different nozzles and pulse amplitudes at a constant frequency of 

8.0 kHz (R2= 0.98) (Figure 5.14). With nozzle 1 (P < 0.001), the lowest velocities were 

produced at amplitudes of 1.0 and 2.0 V. These velocities were comparable with droplet 

velocities produced with nozzle 2 (P = 0.068) at all amplitudes. With nozzle 2, no significant 

effect of amplitude on velocity was found, but the tendency of an increase in velocity with 

an increase in amplitude was confirmed. Considering nozzle 3 (P < 0.001) and nozzle 4 (P < 

0.001), the highest velocities were obtained with the highest amplitudes of 8.0 and 9.0 V. For 

these nozzles, the effect of amplitude on velocity was limited within the range from 1.0 to 

7.0 V. 

A significant effect of pulse amplitude on inter-droplet spacing was found for every nozzle 

(Figure 5.15). For nozzle 1 (P < 0.001) a significant increase in inter-droplet spacing was 

observed with increasing pulse amplitudes with the smallest inter-droplet spacing at 1.0 V 

and the biggest inter-droplet spacing at 9.0 V. Similar as for droplet velocities, the effect of 

amplitude on inter-droplet spacing in case of nozzle 2 was limited and in most cases not 

significant with nozzle 2 (P < 0.001). There was also a significant effect of the pulse 

amplitude on the inter-droplet spacing using nozzle 3(P < 0.001) and nozzle 4 (P < 0.001). 

With nozzle 3, highest values were found at amplitudes of 5.0 and 6.0 V, with nozzle 4 at 

amplitudes from 7.0 up to 9.0 V. For these nozzles, the smallest inter-droplet spacing was 

found at 3.0 V and 6.0 V, respectively. 
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Figure 5.15. Inter-droplet spacing (μm, mean ± std.) in continuous mode for different nozzles 

and pulse amplitudes at a frequency of 8.0kHz. Different letters indicate statistical 

differences within the same nozzle (P<0.05) 

5.3.2.1 Validation 

The actual droplet diameter based on collecting droplets over a period of 30 s and weighing 

them was 320.0 ± 9.4 mm while a value of 337.1 ± 5.8 mm was found using the image 

analysis. Hence, the overall accuracy of the measurement was satisfactory with a relative 

measurement error of 5.3%. No significant differences in droplet diameter between the two 

techniques were observed (P > 0.05). 

5.3.3 Comparison between DOD and continuous mode 

The presented experiments with the DOD and continuous mode have shown comparable 

values for the biggest and smallest droplet diameters achieved with these glass nozzles. The 

smallest droplet diameters measured with image analysis in DOD and continuous mode were 

134.1 ± 3.7 mm and 167.2 ± 1.4 mm, respectively. The biggest droplet diameters in DOD and 

continuous mode were 461.6 ± 3.3 mm and 458.6 ± 4.8 mm. 

The smallest achieved droplet diameter ratio within both modes was found using nozzle 1, 

i.e. 1.34 for DOD and 1.37 for continuous mode. The biggest ratio between the droplet 

diameter and nozzle orifice size was measured with nozzle 3 in DOD (3.55) as well as in 

continuous mode (3.95) (Table 5.3). Previous studies were generally dealing with smaller 

droplet sizes and pulse widths. Riefler and Wriedt (2008) generated droplets in DOD mode 

ranging from 8 to 70 µm with a 40 µm orifice size. Kung et al. (1999) achieved a ratio up to 4 
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between droplet and orifice diameter using a very small 1 mm orifice size. Lee (2003) 

mentioned that droplet generators can produce drops of half the nozzle diameters to twice 

the whole diameter. 

On the contrary, a big difference in droplet velocity results between the modes was noticed, 

i.e. droplets fell faster in continuous mode than in DOD mode. The droplet generator 

developed droplet velocities in DOD and continuous mode in the range of 0.08 ± 0.01 to 1.78 

± 0.12 m/s and 1.84 ± 0.08 to 4.66 ± 0.17 m/s, respectively. 

Table 5.3. Ratio between nozzle orifice opening and minimal-maximal mean droplet 
diameters and minimal and maximal droplet diameters in DOD and continuous mode 

Nozzle 

DOD mode continuous mode 

ratio (mean 
droplet diameter / 
nozzle orifice size) 

minimal / maximal 
droplet diameter 

(µm) 

ratio (mean 
droplet diameter / 
nozzle orifice size) 

minimal / maximal 
droplet diameter 

(µm) 

1 1.34 ÷ 1.76 351.2 ÷ 461.5 1.37 ÷ 1.75 358.2 ÷ 458.6 

2 2.53 ÷ 3.37 312.7 ÷ 416.5 2.66 ÷ 2.86 328.5 ÷ 353.5 

3 2.78 ÷ 3.55 242.9 ÷ 310.1 3.04 ÷ 3.95 265.4 ÷ 344.8 

4 1.99 ÷ 3.07 134.1 ÷ 207.2 2.48 ÷ 3.35 167.2 ÷ 226.3 

 

5.4 CONCLUSION 

 Measurements using a single droplet generator in DOD and continuous mode were 

performed. The effects of the operating parameters, including voltage pulse width and pulse 

amplitude with 4 nozzle orifice sizes (261 µm, 123 µm, 87 µm and 67 µm) on droplet 

diameter and droplet velocity have been characterized. These different droplet sizes and 

velocities were successfully measured with the image acquisition and image processing 

system developed in Chapter 3 and 4. The experiments in DOD mode have shown that the 

initial droplet characteristics from the droplet generator are a function of the double pulse 

width and the orifice size. The pulse width values are critical parameters for droplet ejection. 

By changing pulse width, it was possible to control droplet velocity and droplet size 

diameter. In general, decrease of ta and increase of tp increased the droplet diameter. 

Similarly, increasing the nozzle orifice size increased the droplet diameter. With the DOD 

mode, droplet sizes ranged between 134.1 μm and 461.5 μm. Foremost, the smallest and 

the fastest droplets were measured with the smallest nozzle orifice. The measured droplet 
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velocities ranged between 0.08 m/s and 1.78 m/s. Besides, we noticed an effect of the pulse 

amplitude on the droplet diameter and velocity. 

The ratio of the droplet diameter and nozzle orifice in DOD mode ranged from 1.3 to 3.5. 

The continuous mode for every nozzle was established for a frequency resulting in a 

continuous droplet generation. This frequency together with different pulse amplitudes 

were used to test the effect on the droplet diameter, inter-droplet spacing and velocity. As 

for the DOD mode, the droplet diameter was mainly controlled by the nozzle orifice. The 

droplet size here was between 167.2 μm and 455.8 μm. Furthermore, the nozzle orifice also 

influenced the droplet velocity i.e., the bigger the nozzle orifice was, the higher droplet 

velocity was measured. Obviously, there was a linear trend between the droplet diameter 

and velocity in continuous mode. Based on the results from the experiments, the effect of 

the pulse amplitude on the inter-droplet spacing was statistically significant. The ratios 

between the nozzle orifice and droplet diameter ranged from 1.3 to 3.9. In continuous 

mode, the lowest droplet velocity of 1.84 m/s was measured with the smallest nozzle orifice 

size while the highest droplet velocity of 4.66 m/s was measured with the biggest nozzle 

orifice size. 

Based on the results in both modes, similar droplet diameter sizes were produced. However, 

in continuous mode it was possible to achieve faster droplets which correspond better with 

real spray application. 

Finally, the size and velocity range of the ejected droplets in both modes are valid for the 

system, nozzles and conditions (liquid properties, temperature and etc.) at which they are 

determined.



 

 

M
icro

 sp
ray ch

aracterizatio
n

 fro
m

 a sin
gle n

o
zzle

 

 

6 MICRO-SPRAY CHARACTERIZATION FROM A SINGLE NOZZLE
v 

 

Droplet size and velocity distribution are important features of an agricultural spray. The 

objective of this chapter was to measure the micro-spray characteristics (droplet size and 

velocity) for different types of hydraulic spray nozzles using the backlight image acquisition 

system developed in Chapter 3 and image processing based on image processing algorithms 

developed in Chapter 4 and Chapter 5. Tests have been done with five different commonly 

used agricultural spray nozzles (Albuz ATR orange and red, TeeJet XR 110 01, XR 110 04 and 

Al 110 04).  

 

 

 

 

 

 

 

 

                                                      
v
 This chapter has been compiled from: 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2015. Spray droplet size distribution 

measured using high speed imaging techniques (in preparation). 
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6.1 INTRODUCTION 

 In the past, various measuring techniques (Rhodes, 2008) have been employed in the 

research on spray and atomization to investigate spray characteristics including droplet sizes 

and velocities. However, there are few optical measurement techniques that are able to 

perform simultaneous non-intrusive measurements of the droplet size and velocity. 

Due to the development of modern technology such as powerful computers and lasers, 

quantitative optical non-imaging light scattering spray characterization techniques have 

been developed for non-intrusive spray characterization: Phase Doppler Particle Analyzers 

(PDPA)(Nuyttens et al., 2007a; Nuyttens et al., 2009), laser diffraction analyzers, e.g., 

Malvern Analyzer (Stainier et al., 2006) and optical array probes (Teske et al., 2002). Among 

them, the PDPA has widely been tested and recognized for spray characterization. The major 

drawback of the PDPA is that it can only measure a spherical droplet which is not always the 

case. In addition, it is a point–measurement technique and information on overall spray 

structure is beyond the capability of this laser device. 

Moreover, the limitations of the non-imaging techniques and the recent improvements in 

digital image processing, sensitivity of imaging systems and cost reductions have increased 

the interest in high speed imaging techniques for agricultural applications (Hijazi et al., 2012) 

in general and pesticide applications (Lecuona et al., 2000) in particular. 

Imaging analyzers are spatial sampling techniques consisting of a light source, a camera and 

a computer with image acquisition and processing software. The small droplet size and high 

velocity of the ejected spray droplets make it a challenge to use imaging techniques for spray 

characterization. Most imaging techniques use backlight for the illumination of the droplets 

to acquire their shadowgraphs, from which droplet characteristics are extracted. They allow 

one plane at a time to be imaged with exposure times down to a micro-second (Ju et al., 

2012). 

However, the imaging techniques have some disadvantages and their data-acquisition rates 

are generally lower than those of the laser-based techniques. In particular, the use of 

backlight can impose limitations to the measurement accuracy which is related to the depth-

of-field (DOF) effect. Chigier (1991) indicated two possible sources of measurement errors 

caused by the DOF, i.e., the ambiguity in defining the edge of an individual droplet when the 



Chapter 6 

146 

droplet is located at some distance from the focal plane but still in the range of the DOF and 

the dependence of the DOF on the droplet size itself.  

As droplets are scattered in the spray, not all droplet images are in-focus. DOF is the region 

in which the droplets are ‘acceptably’ sharp or ‘in focus’ and can thus be measured 

accurately. An in-focus droplet criterion is needed to select and further analyze these ‘in 

focus’ droplets.  

In literature, there are two major categories for the in-focus droplet identification: the first 

one uses the gray level gradient at the droplet boundaries (Lecuona et al., 2000; Kashdan et 

al., 2007) while the second uses the contrast value between the droplet and the image 

background based on point spread function (Kim & Kim, 1994; Malot & Blaisot, 2000). The 

gray level gradient techniques provide information on the relation between droplet size and 

DOF. Kashdan et al. (2007) used the thickness of blurred ‘halo’ area at the edge of the 

droplet to determine the degree of droplet defocus. The gray level gradient at the droplet 

edges in the study of Lecuona et al (2000) is found by means of Sobel masks. Large droplets 

have a higher image contrast and thus can be measured over a greater distance to the lens 

than small droplets. Kashdan et al. (2007) and Lecuona et al. (2000) observed a linear 

relation between DOF and droplet diameter.  

This chapter presents a technique based on image processing for measuring the droplet size 

and velocity characteristics of agricultural hydraulic spray nozzles using an image acquisition 

system developed in Chapter 3. The chapter is constituted of two parts. In the first part 

(6.2.1), an in-focus droplet criterion based on the gray level gradient was introduced to 

decide whether a droplet is considered to be in focus or not. A calibration system was 

devised using differently sized droplets generated with a piezoelectric droplet generator and 

glass nozzles in continuous mode, developed in Chapter 5 (Lee, 2003; Vulgarakis Minov et 

al., 2015b), at different distances from the focal plane and lens using a micro translation 

stage (Kashdan et al., 2007). This enabled measurement of the gray level gradient and the in-

focus parameter for every droplet size at various distances from the focal plane (Lecuona et 

al., 2000). From here, a critical in-focus parameter (Infc) was established for every droplet 

size and an in-focus droplet criterion was deduced to decide whether a droplet is in focus or 
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not depending on its diameter and in-focus parameter. The focused droplet zone (FDZ) is 

defined in this study as the zone in which a droplet with a certain diameter is in focus.  

In the second part (6.2.2), the in-focus droplet criterion was applied to spray images of 

different hydraulic spray nozzles and the droplet characteristics were calculated. The effects 

of the nozzle type and nozzle size on spray droplet size and velocity characteristics were 

studied.  

Droplet size and velocity results were compared with an existing non-imaging droplet 

measuring technique, the PDPA laser (Nuyttens et al., 2007a). 

6.2 MATERIALS AND METHODS 

 As already stated, this chapter is divided in two main parts: development of the in-

focus droplet criterion (6.2.1) and spray droplet characterization using the in-focus droplet 

criterion (6.2.2). 

6.2.1 Development of the in-focus droplet criterion 

6.2.1.1 Image acquisition system and measuring set-up 

The image acquisition system for the development of the in-focus droplet criterion is shown 

in Figure 6.1 and has been described in detail in Chapter 3. 

A piezoelectric droplet generator (Université de Liège, Gembloux, Agro-Bio-Tech, Belgium) 

was positioned at 320 mm from the xenon backlight illumination (model 5132, 300 W, 

Richard Wolf GmbH, Knittlingen, Germany) and at a distance ranging between 420 and 430 

mm from the lens. The camera, lens and illumination were aligned horizontally. A precision 

linear micro translation stage (Edmund Optics, 0-25 mm) with a straight line accuracy of 10 

µm moveable in the Z direction was attached to the lens. The droplet generator was 

implemented in continuous mode (Chapter 5) using glass nozzles with orifice sizes of 261, 

123, 67, 50, and 40 µm. These nozzle orifice sizes were chosen in order to produce a range of 

droplet sizes from around 100 µm up to 500 µm which is typical of most agricultural 

hydraulic spray nozzles. The applied settings of the droplet generator and the actual droplet 

sizes at the focal plane are given in Table 6.1 (Chapter 5). 
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Figure 6.1. Image acquisition system for establishing the in-focus droplet criterion 

 

Table 6.1 Actual droplet diameters in continuous mode for the different nozzle orifice sizes 
and continuous mode settings 

Nozzle orifice size (µm) 
Settings in cont. 

mode A (V) / f (kHz) 

 

Actual droplet diameter (µm) ± 
std. 

40 5.0/8.0 119.3± 2.6 
50 5.0/8.0 164.6± 1.9 
65 2.0/8.0 192.6± 1.3 
65 5.0/8.0 222.9 ± 1.6 

123 5.0/8.0 384.3 ± 0.8 
261 5.0/8.0 489.7 ± 1.9 
261 7.0/8.0 497.1± 2.0 

A: Amplitude, f: frequency 
 

6.2.1.2 Image acquisition for setting up the in-focus droplet criterion 

For establishing the in-focus droplet criterion, images were taken at different distances from 

the focal plane using all nozzles and settings given in Table 6.1. This was done by moving the 

translation stage (lens) towards and away from the focal plane in the range between 420 

mm and 430 mm in steps of 50 µm (Figure 6.1). Thus, in this manner sequences of 200 ‘out-

in-out of focus’ images were taken with every nozzle/setting combination (Table 6.1). An 
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example of images in continuous mode taken with the nozzle orifice size of 65 µm at 5.0 V 

and 8.0 kHz, generating 222.9 µm droplets, at three distances from the focal plane is shown 

in Figure 6.2. 

  

 
Figure 6.2. Droplet images in continuous mode using a nozzle with 65 µm orifice size at 5.0 V 

and 8.0 kHz at different distances from the lens: a) 420 mm; b) 423 mm c) 426 mm 

 

Once the images were acquired, a sequence of steps was employed to process and analyze 

them using Matlab and its image processing toolbox (Figure 6.3). 

6.2.1.3 Image analysis for setting up the in-focus droplet criterion 

The image analysis for setting up the in-focus criterion consisted of 3 steps: image pre-

processing (6.2.1.3.1), image segmentation (6.2.1.3.2) and droplet sizing, calculation of 

(critical) in-focus parameter and in-focus droplet criterion (6.2.1.3.3) (Figure 6.3). 

 

 

a. b. 

c. 
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6.2.1.3.1 Image pre-processing 

Image pre-processing aims at resolving problems due to lighting patterns or dirt on the lens, 

given that the light source can be non-homogeneous (Castanet et al., 2013). A background 

subtraction was performed from every single droplet image. The image background was 

reconstructed from a set of 70 images with droplets. For each of these images, the 

background was selected based on its intensity histogram with a threshold value of 80% of 

the maximal pixel intensity of 255. These 70 background images were averaged and resulted 

in the final image background.  

However, in general the image contrast was low and the droplet boundaries are uncertain. 

Therefore, to increase the contrast and highlight the intensity variation across the droplet 

boundaries, illumination normalization was performed by rescaling the gray values.  

such that exactly 1% of the pixels were saturated in order to maximize image contrast 

(Gonzalez et al., 2004).  

 
Figure 6.3. Flow chart of the image analysis algorithm for establishing the in-focus droplet 

criterion 
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6.2.1.3.2 Image segmentation 

Image segmentation was introduced to divide the image into sub-images of all individual 

droplets. The localization of droplets was performed by searching for sudden changes in the 

pixel intensity corresponding with the boundaries between a droplet and background. This 

was done by computing the intensity gradient at each point giving the direction of the large 

possible increase from light to dark and the rate of change in that direction using the Sobel 

filter (Gonzalez et al., 2004) (Figure 6.3). 

Further, the highlighted droplet contours were filled. Then, the image was binarized, i.e., 

image pixels were distinguished amongst two classes: droplets and background. The 

intensity threshold value was set to 85% of the maximum which was high enough to detect 

and maintain all the droplets even those out of focus. The droplet area was calculated as the 

sum of the component pixels, and the droplet center as the center of the droplet mass. 

Using the droplet area and assuming that the droplets can be elliptical, the droplet diameter 

was estimated as described in 4.2.3. Finally, sub-images of each detected droplet were 

constructed using the coordinates of the droplet center and the corresponding diameter. 

The size of the sub-images was equal to 1.5 times the droplet diameter, which was enough 

to capture the whole droplet and region of interest (Figure 6.3). 

6.2.1.3.3 Droplet sizing, calculation of (critical) in-focus parameter and in-focus droplet 

criterion 

This step consisted of two main parts. The size of each detected droplet was calculated 

together with the corresponding in-focus parameter. In the second part, the critical in-focus 

parameter was calculated for each droplet size and the in-focus droplet criterion was 

established. The critical-in focus parameters and the resulting in-focus droplet criterion were 

used to select in-focus droplets. 

a) Droplet sizing and calculation of in-focus parameters 

The droplet contours in the single droplet sub-images were extracted using a Canny edge 

detector (Canny, 1983) (Figure 6.3). When the contours were found, the droplet edge 

gradients, the gray level intensities of the droplet and background and the droplet size were 

calculated. 
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However, the extracted droplets did not have the same gray level intensities and edge 

gradients because of their different positions relative to the focal plane (Figure 6.3). In 

addition, droplets further from the focal plane had a bigger halo area than the droplets that 

are close to the focal plane (Figure 6.4). Figure 6.5 a, b & c shows three single droplet images 

(taken from Figure 6.2 a, b & c) and their corresponding gray level intensity profiles across 

their centers. Ideally a droplet in focus has a flat intensity profile at the bottom close to 0 

intensity level with steep edge gradients (Figure 6.5 c). In this case, the droplet edges and 

size can be determined in an accurate way. In contrast, when a droplet is situated at some 

distance from the focal plane and is out of focus (Figure 6.5 a & b), there is an ambiguity in 

defining the droplet edges (Kashdan et al., 2007). 

 

Figure 6.4. Measured droplet diameter and corresponding halo area for pictures taken of the 

222.9 µm droplet diameter at various distances from the lens 

 

The gradients at the edges of the droplets reflect their degree of focus and can be used as a 

criterion based on which the droplets are chosen for measurement (Yule, 1978). Therefore, 

the concept of the in-focus parameter was introduced to select the in-focus droplets based 

on the gray level gradient, droplet diameter and gray level intensities of the background and 

droplet (Eq. 6.1) (Lecuona et al., 2000): 
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𝐼𝑛 − 𝑓𝑜𝑐𝑢𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  
𝑔𝑟𝑎𝑑𝑒𝑑𝑔𝑒

𝐼𝑏𝑎𝑐𝑘 − 𝐼𝑑𝑟𝑜𝑝𝑙𝑒𝑡
∗ 𝑑 Eq. 6.1 

where Iback (-) and Idroplet (-) are image background and droplet gray level values, respectively, 

d is the droplet diameter (µm) and gradedge (-) is the gray level gradient at the droplet edge. 

The in-focus parameter (-) was calculated for every detected droplet.  
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Figure 6.5. Detail and gray level intensity profiles from the marked droplets shown in Figure 

6.2 a, b & c, respectively 

For example, Figure 6.6 presents the measured droplet diameters and the corresponding in-

focus parameters for the experiments with a 222.9 µm (27.1 pixels) droplet at various 

distances from the lens. It can be seen that the in-focus parameter has a maximum at or 

near the position where the measured droplet diameter is minimal and corresponds with the 

actual droplet diameter. The further the distance from the focal plane the lower the in-focus 

parameter and the bigger the measured droplet diameter and the deviation with the actual 

droplet diameter. Similar graphs were found for the other droplet diameters as shown in 

Figure 6.9. and Figure 6.10 

Horizontal position (pixels)

V
e
rt

ic
a
l 

p
o

si
ti

o
n

 (
p

ix
e

ls
)

10 20 30 40 50 60

20

40

60

80

0 10 20 30 40 50 60
0

50

100

Position of transection (pixels)

In
te

n
s
it

y
 l

e
v

e
l 

(-
)

c. 



Micro spray characterization from a single nozzle 

155 

 
Figure 6.6. Measured droplet diameter and corresponding in-focus parameter for pictures 

taken of the 222.9 µm (27.1 pixels)droplet diameter at various distances from the lens 

 

b) Calculation of critical in-focus parameters and the in-focus droplet criterion 

To separate the droplets that are in-focus from the ones out of focus, a critical in-focus 

parameter (Infc) was calculated for each of the seven droplet sizes (Table 6.1). The 

determination of Infc was done in several steps and is here illustrated again for the 222.9 µm 

droplet size. Firstly, the minimal droplet diameter was estimated from the polynomial trend 

line of second order using all measured droplet diameters (27.6 pixels, Figure 6.6). Then, an 

acceptable one pixel error value to this minimal droplet diameter was set corresponding 

with 28.6 pixels (Figure 6.7.) meaning that we accept a deviation of up to 1 pixel between 

measured and actual droplet diameter. Hence, all droplets with a measured diameter below 

28.6 pixels were considered to be in-focus, all others out of focus. 
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Figure 6.7. Acceptable measured droplet diameters for pictures taken of the 222.9 µm 

droplet diameter at various distances from the lens  

 

Next, another second order polynomial curve was fit only through these droplets considered 

in focus with an acceptable measured droplet diameter (Figure 6.8.). From this equation (y = 

0.3953.x²-336.95.x+71835) and the droplet diameter of 28.6 pixels the corresponding 

distances to the lens were calculated (424.4 mm and 428.1 mm). Combining these distances 

to the lens with the second order polynomial curve through the in-focus parameters, 

resulted into two values for the critical in-focus parameter, one on the left side, InfcL (6.0), 

and one on the right side, InfcR (6.1).The average of both values was considered the critical 

in-focus parameter Infc (6.0). All droplets with an in-focus parameter above Infc were 

considered in-focus. Besides, based on the distances from the lens at which the droplets 

were considered in focus, a focused droplet zone (FDZ) was defined. This is the zone around 

the focal plane in which droplets of a certain size are considered in-focus (Figure 6.8.). For 

the 222.9 µm droplet size, the FDZ was 3.7 mm. 
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Figure 6.8. Critical in-focus parameters and FDZ for pictures taken of the 222.9 µm droplet 

diameter  

 

In order to evaluate the relations between Infc, FDZ and droplet size, the procedure above 

was followed for all droplet sizes mentioned in Table 6.1. Results from these tests are shown 

in Figure 6.9. and Figure 6.10. and Table 6.2. 

Table 6.2 Actual droplet diameters and their corresponding Infc and FDZ 

Actual droplet diameter (µm)  Infc (-) FDZ (mm)  

119.3 3.95 2.1 
164.6 4.62 2.6 
192.6 5.50 3.2 
222.9 6.05 3.7 
384.3 8.55 4.1 
489.7 10.30 5.0 
497.1 10.30 5.0 
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Figure 6.9. Relation between the measured droplet diameter and distance to the lens for 

droplet sizes ranging from 119.3 µm up to 497.1 µm 

 

 

 

Figure 6.10. Relation between the in-focus parameter and distance to the lens for droplet 

sizes ranging from 119.3 µm up to 497.1 µm 
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Measured droplet size was lowest at or near the focal plane (Figure 6.9.). For each droplet 

size, the in-focus parameter was the biggest at or near the focal plane and mostly quickly 

drops with increasing/decreasing the distance to the focus plane (Lecuona et al., 2000; Lee & 

Kim, 2004) (Figure 6.9., Figure 6.10.). Besides, the smaller the droplet diameters, the 

narrower the corresponding curves in Figure 6.9. and Figure 6.10. meaning that smaller 

droplets completely disappeared closer to the focal plane than bigger droplets.  

Figure 6.11. and Table 6.2 show the relation between the critical in-focus parameter and the 

actual droplet diameter. It can be noted that the critical in-focus parameter increased almost 

linearly with the measured droplet diameter. In addition, this first order relation between 

droplet diameter (d) and Infc (Eq. 6.2) is defined as the in-focus droplet criterion and used for 

selecting only the focused droplets in a real spray application. 

 
Figure 6.11. Relation between the critical in-focus parameter and measured droplet 

diameter 

 

𝐼𝑛𝑓𝑐  =  0.017 ∗ 𝑑 + 2.04 Eq. 6.2 
 

Moreover, the FDZ increased linearly with measured droplet diameter (Figure 6.12.). 

Droplets beyond this zone were considered defocused and thus not measured. 
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Figure 6.12. Relation between FDZ and measured droplet diameter 

6.2.2 Spray droplet characterization using the in-focus droplet criterion 

6.2.2.1 Measuring set-up and protocol 

A similar set-up as described in 6.2.1 and Chapter 3 was used for the real spray 

characterization as shown in Figure 6.13.. Droplets dispersed in the spray were illuminated 

by a xenon light used as backlight. Spray droplet images were acquired by the HS CMOS 

camera.  

 
Figure 6.13. Image acquisition system for real spray droplet characterization 
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In this study, five different hydraulic spray nozzles were selected: two hollow cone (Figure 

7.1), two standard flat fan (Figure 7.2) and one air inclusion flat fan (Figure 7.3) nozzle. The 

selected nozzle-pressure combinations are presented in Table 6.3. The nozzle was always set 

between the lens and light source with the longest axis of the spray fan (in case of flat fan 

nozzles) parallel to the focal plane on an automated XYZ-transporter with a traverse range of 

2.0 m by 2.2 m (Nuyttens et al., 2007a). Images were acquired at 500 mm below the nozzle 

at three different positions:  in the center, at 200 mm and at the edge of the spray (Figure 

6.14.). Based on the spray angles, the zone of the edge of the spray was defined at 400 mm 

for the flat fan nozzles and at 300 mm for the hollow cone nozzles. A schematic overview of 

the selected measurement points for every spray nozzle is given in Figure 6.14.. For every 

nozzle and position combination, 500 images were taken at 1000 fps corresponding with a 

total time of 0.5s. 

The results measured with the imaging system at every point were compared with the 

results measured at the same points with the PDPA laser. Measurement set-up, protocol 

(2.4.1.1) and results have been described in detail by Nuyttens et al. (2007a). 

Table 6.3 Manufacture specifications of the tested hydraulic spray nozzles 

Nozzle type Nozzle Pressure 
(kPa) 

Spray 
angle 

(°) 

Nominal flow rate 
(l min-1) 

Hollow cone Albuza ATR orange 600 80 1.08 

Hollow cone Albuza ATR red 800 80 1.73 

Standard flat fan TeeJetb XR 110 01 400 110 0.45 

Standard flat fan TeeJetb XR 110 04 400 110 1.82 

Air inclusion flat fan TeeJetb AI 110 04 400 110 1.82 

a Saint – Gobain Solcera, Evreux Cedex, France.b TeeJet Technologies, Wheaton, U.S. 
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Figure 6.14. Spray measurement points for: a) flat fan and b) hollow cone nozzle 

6.2.3 Image analysis for spray droplet characterization 

Bigger droplets generally have a higher velocity than small droplets at 500 mm below the 

nozzle (Nuyttens et al., 2007a). Therefore, small droplets remain longer in the FOV than 

large droplets. This means that one and the same droplet can be captured in several 

consecutive pictures and that the probability to measure a droplet more than once is bigger 

a. 

b. 
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for smaller droplets than for bigger droplets. Therefore, not every consecutive image was 

analyzed but every ninth image resulting in a total number of 55 images for each nozzle at 

each position. This corresponds with a 9 ms time difference between analyzed images. This 

time difference was enough to ensure that one and the same droplet was not measured 

twice for the FOV of 10.5 mm x 8.4 mm and a minimal droplet velocity of 1 m/s (Nuyttens et 

al., 2007a). 

The image analysis for the selected images consisted of different steps: image pre-

processing, image segmentation and droplet sizing and selection based on the in-focus 

criterion and droplet velocity calculation. 

6.2.3.1 Image pre-processing 

Figure 6.15. shows an example of a typical spray image obtained with the XR110 04 nozzle in 

the center (Figure 6.14.a). The image contains artefacts which have to be rejected, since 

they would represent a source of error. 

 
Figure 6.15. Example of spray droplet image with XR110 04 nozzle at 400 kPa in the center 

 

The first step as in 6.2.1.3 was image pre-processing in order to improve the image quality 

which is essential for further image analysis. The image analysis was the same as for the 

droplet images in continuous mode described in 6.2.1.3. The result is shown in Figure 6.16.. 
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Figure 6.16. Spray droplet image shown in Figure 6.15. after image pre-processing 

6.2.3.2 Image segmentation 

Every spray droplet has a different gray level and sharpness due to differences in the degree 

of focus and illumination (Figure 6.16.). Furthermore, blurred droplets can locally modify the 

background around droplets that are more in-focus. Therefore, each droplet was separately 

analyzed by making sub-images. This image segmentation consisted of droplet localization 

and droplet extraction into single droplet sub-images. Droplet localization was achieved as 

described in 6.2.1.3 (Figure 6.17.). Each image was segmented into droplet and background 

regions by assigning pixels inside the droplet edge to the droplet and remaining pixels to the 

background (Gonzalez et al., 2004; Lee et al., 2009). Afterwards, the spray image was 

binarized for droplet detection. Morphological operations like opening, closing and filling the 

holes were applied (Figure 6.18.). Assuming the droplets are spherical, the next step 

included locating the center, calculating the area and estimating the diameter of every 

droplet. As in 6.2.1.3, single droplet images could be extracted. In addition, spray droplets 

touching the image border were rejected for reasons of measurement accuracy. 
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Figure 6.17. Spray droplet image shown in Figure 6.15. after droplet localization 

 

 
Figure 6.18. Spray droplet image shown in Figure 6.15. after applying morphological 

operations 

6.2.3.3 Droplet sizing and selection based on in-focus criterion 

Once the single droplet sub-images were extracted, a Canny edge detector was applied 

(Figure 6.19.). The next step consisted of calculating the droplet edge gradients, the gray 

level intensities of droplet and background, and the droplet size , similarly as in 6.2.1.3.  
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Figure 6.19. Examples of single spray droplet images after Canny edge detection 

 

In the final step the droplet in-focus criterion (Eq. 6.2) was applied to every spray droplet 

that satisfies the circularity criteria (4.2.3). Overlapping droplets are not circular and 

therefore were not considered in the measurements. 

Droplets having an in-focus parameter bigger than the corresponding Infc (based on the 

measured diameter and Eq. 6.2) were considered in focus and included in the spray droplet 

distribution results. All other droplets were rejected and not further used in the analysis. 

6.2.3.4 Droplet velocity 

Once the droplet center and position were determined, the next step involved droplet 

tracking to find the same droplet in two consecutive images, as well as the displacement 

vector and velocity. This was possible because of the large acquisition rate of the HS camera. 

The used droplet tracking principle is well explained in 4.2.4. 

However, few conditions related to the droplet diameter, droplet displacement and droplet 

velocity in a real spray application exist and are necessary in order to identify the same 

droplet on two successive images (Baek & Lee, 1996; Castanet et al., 2013). First is the 

condition of conservation of droplet diameter i.e. the diameter of the candidate droplet on 

the consecutive image should not differ more than 2 pixel (16.5 µm) from the droplet on the 
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first image (Baek & Lee, 1996). The second criterion is the expected droplet direction based 

on the direction of the flow (Figure 6.20). An angle of confidence Ɵ of ± 40° was considered 

to define the search area (circle sector) to find the same droplet in the consecutive image. 

The existing of a search area is important for the proper functioning of the droplet tracking 

algorithm. If the area is too big, this will result into droplet mismatches and velocity errors. 

On the other hand, if this area is too strictly defined, it will limit the detection of the fast 

droplets. 

 

 
Figure 6.20. Droplet tracking principle in the center of the spray 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Spray droplet size distribution 

Figure 6.21. shows a typical histogram of a droplet size distribution measurement resulting 

from 430 droplet size measurements using the XR110 04 at 400 kPa at 500 mm in the center 

of the spray which is obtained from the imaging system. The vertical, blue-colored, bars are 

“bins” of droplet sizes. Each “bin” has a width of 10 µm. The relative frequency of droplet 

size occurrence is on the left horizontal axis. For instance, about 3% of the droplets were 

counted in the 100 µm bin consisting of droplets from 95 µm up to 105 µm.  
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The red colored curve is the corresponding cumulative droplet size distribution. This graph 

shows, for example, that 50% of the droplets were smaller than about 130 µm. 

 
Figure 6.21. Relative frequency of droplet size occurrence (blue) and cumulative droplet size 

distribution (red) for the XR 110 04 at 400 kPa at 500 mm below the nozzle in the center of 

the spray. This data is obtained from the imaging system 

 

6.3.1.1 Effect of the measurement point for every nozzle 

Figure 6.22. presents the cumulative droplet size distributions for the five nozzle-pressure 

combinations (Table 6.3) at the three different measurement points always at 500 mm 

below the nozzle i.e. center, at 200 mm and at the edge of the spray (Figure 6.14.). In 

general, droplet sizes ranged from 24 µm up to 543 µm depending on nozzle type, size and 

measuring position. 

For the flat fan nozzle pressure combinations (XR 110 01, XR 110 04, AI 110 04), the finest 

droplet size spectrum was measured in the center of the spray and at 200 mm, while the 

coarsest droplet size distribution was found at the edge of the spray (Figure 6.22.). No clear 

differences in droplet size distribution between the center of the spray and at 200 mm were 

observed.  
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For the hollow cone nozzles (ATR orange, ATR red), the effect of the position in the spray 

was even more pronounced. Again, the finest droplet size spectrum was observed in the 

center of the spray followed by the 200 mm position and the 300 mm position. 
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Figure 6.22. Cumulative droplet size distributions for the five nozzle pressure combinations 

(XR 110 01, XR 110 04, AI 110 04, ATR orange, ATR red) at 0.5 m below the nozzle in the 

center, at 200 mm and at the edge of the spray  

6.3.1.2 Effect of the nozzle type at each measurement point 

Figure 6.23. presents the cumulative droplet size distributions at the three different 

measurement points for the five nozzle-pressure combinations. 

In the center of the spray, finest droplet size spectra were found for the hollow cone nozzles 

(ATR orange and red) followed by the standard flat fan nozzles (XR 110 01 and 110 04) while 

the coarsest droplets were found for the air inclusion flat fan nozzle (AI 110 04) which 

confirms previous results from, among others, Nuyttens et al. (2007a; 2009). The difference 

between the ATR orange at 600 kPa and the ATR Red at 800 kPa was limited which confirms 

the PDPA results published by Dekeyser et al. (2013). Similarly, no differences were found in 

measured droplet sizes between the XR 110 01 and the XR 110 04 nozzle at this position. 

Because of the effect of measuring position described above, at 200 mm both standard flat 

fan nozzles (XR 110 01 and 110 04) produced finer droplets compared with both hollow cone 

nozzles (ATR orange and red). These hollow cone nozzles had a steeper cumulative droplet 

size distribution curve indicating a more uniform droplet size distribution compared with the 
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air inclusion nozzle (AI 110 04). This last one had a wider droplet size distribution with more 

smaller as well as bigger droplets. As expected, biggest droplets were produced with the air 

inclusion nozzle at the three measuring positions.  

Only at the edge of the spray, a clear difference in droplet size distribution was observed 

between XR 110 01 and XR 110 04. The XR 110 01 produced much more small droplets 

resulting in a finer and wider droplet size distribution.  

The presented results are point measurements. The entire spray fan should be scanned in 

order to measure the overall droplet size characteristics. 

 

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Droplet diameter [µm]

C
um

ul
at

iv
e 

dr
o

pl
et

 s
iz

e 
d

is
tr

ib
u

ti
on

 [
%

]

center

 

 

XR 110 01

XR 110 04

AI 110 04

ATR orange

ATR red



Micro spray characterization from a single nozzle 

173 

 
 

 
Figure 6.23. Effect of the nozzle type and size on the cumulative droplet size distribution at 

each measurement point 
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6.3.1.3 Droplet size distribution parameters 

In most spray application studies, droplet size characteristics are expressed in volumetric 

terms  as presented in Table 2.1. Droplet size characteristics Dv0.1, Dv0.5, Dv0.9 and the relative 

span factor (RSF), defined as (Dv0.9 - Dv0.1)/Dv0.5, for the five nozzle pressure combinations are 

presented in Figure 6.24 and Figure 6.25., respectively. Dv0.5 is the most commonly used 

descriptor of droplet size of a spray. Dv0.5 values ranged from 105.2 µm for the ATR orange 

nozzle at the center up to 250.8 µm for the air inclusion nozzle at the edge. The smallest Dv0.5 

was measured with both hollow cone nozzles in the center of the spray. The Dv0.1, Dv0.5, Dv0.9 

values were the biggest at the edge for all nozzles. In general, similar trends were found as 

from the cumulative droplet size distributions. 
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Figure 6.24. Droplet size distriubution parameters Dv0.1, Dv0.5 and Dv0.9  (µm, mean ± std.) for five nozzle pressure combinations (Table 6.3) at 0.5 

m below the nozzle at three measurement points (center, 200mm, edge of the spray)
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The relative span factor (RSF) indicates the range or spread of droplet sizes in a spray (Table 

2.1). It is a dimensionless parameter indicative of the uniformity of the droplet size 

distribution. RSF values were the smallest for ATR orange (ranging from 0.25 up to 0.32 

depending on the position) followed by ATR red (ranging from 0.25 up to 0.30) and XR 110 

04 (ranging from 0.49 to 0.82). The highest RSF value was found with the AI 110 04 at the 

center of the spray (0.82). 

 

 

Figure 6.25. RSF (mean ± std.) for the different nozzle pressure combinations at different 

positions 

6.3.2 Spray droplet velocity distribution 
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As for the droplet diameters, cumulative droplet velocity distributions were always 
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center, at 200 mm and at the edge of the spray (Figure 6.14.). A complete overview of the 

cumulative droplet velocity distributions for the selected nozzle pressure combinations at 

three measurement points is presented in Figure 6.26.. 
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Similar as for to the droplet size distributions, each nozzle produced a droplet velocity 

distribution with velocities ranging from about 0.5 m/s up to 12 m/s. From Figure 6.26., it 

can be seen that droplet velocities at the edge of the spray were lower than the droplet 

velocities in the center and at 200 mm for the hollow cone as well as for the flat fan nozzles. 

This is probably caused by the effect of the entrained air flow in the center of the spray 

(Farooq et al., 2001) in combination with the longer distance droplets have travelled from 

the nozzle orifice to the edge of the spray compared with the center of the spray and a 

friction effect at the edges. In general, no significant differences in droplet velocities were 

observed between the center of the spray and at 200 mm. 
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Figure 6.26. Cumulative droplet velocity distributions for the five nozzle pressure 

combinations in three measurement points (Table 6.3) 

 

6.3.2.2 Effect of nozzle type at each measurement point 

Figure 6.27. shows the cumulative droplet velocity distributions for the five nozzle pressure 

combinations in three different measurement points always at 500 mm below the nozzle, 

i.e., center, at 200 mm and, at the edge of the spray.  

In the center of the spray, no clear differences in droplet velocity distribution were observed 

for the different nozzles. The air inclusion nozzle tended to produce the slowest droplets at 

this position which was even more pronounced at the other positions. As a result, the 

steepest velocity distribution was measured for the air inclusion nozzle at all positions.  

Differences between nozzles were most pronounced at the edge of the spray with the 

slowest droplets for the air inclusion nozzle followed by both hollow cone nozzles. Highest 

velocities were here observed with both standard flat fan nozzles (XR 110 01 and XR 110 04). 

Again, the presented results relate to point measurements. The entire spray fan should be 

scanned in order to measure the overall droplet velocity characteristics. 
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Figure 6.27. Effect of the nozzle-pressure combination on the droplet velocity distribution at 

each measurement point 

6.3.2.3 Droplet velocity parameters 

Apart from the droplet velocity distribution, the following volumetric droplet velocity 

parameters were also calculated: 

 Vvol10, Vvol50, Vvol90 –droplet velocity in m/s below which slower droplets constitute 10, 

50, 90% of the total spray volume; 

 VSF-velocity span factor, a dimensionless parameter indicative of the uniformity of 

the droplet size velocity distribution, defined as: 
𝑉𝑣𝑜𝑙90−𝑉𝑣𝑜𝑙10

𝑉𝑣𝑜𝑙50
; 

 NMV- number median velocity, droplet velocity for which 50% of the number of 

droplets is slower than this value. 

The results are presented in Figure 6.28. and Figure 6.29..For the flat fan nozzles as well the 

hollow cone nozzles, lowest Vvol10 values are generally lower at the spray edge than in the 

center or middle of the spray. Similar trend also is noticed for the Vvol50 values.  Highest Vvol90 

values were found for the XR 110 04 directly below the nozzle. 
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. In general, similar conclusions can be drawn as from the cumulative droplet velocity 

distributions. 

 

 

Figure 6.28. Volumetric droplet velocity parameters for every nozzle pressure combination 

from Table 6.3 at three measurement points at 500 mm below the nozzle 
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Figure 6.29. Velocity span factor for the different nozzle pressure combinations 

 

6.3.3 Comparison between imaging and PDPA measuring technique 

In Figure 6.30., the cumulative droplet size distributions measured with two techniques, i.e., 

imaging technique and PDPA laser at different measurement points for each selected nozzle 

pressure combination are presented. 

In general, similar effects of nozzle type and measuring position were found with the PDPA 

technique as with the imaging technique although cumulative droplet size distributions 

curves gained with the imaging technique were steeper than those with the PDPA laser 

corresponding with lower RSF values. This is explained in Figure 6.32. in which RSF values 

measured with both techniques are compared. This is caused by the fact that compared with 

the PDPA laser, the imaging technique generally measures a smaller number of small 

droplets and in some cases also a smaller number of big droplets. Differences between both 

techniques can be attributed to the smaller amount of droplets measured with the imaging 

technique which increases the chance to miss one of the big droplets. In addition, no 

droplets below 24 µm were measured with the imaging technique while smaller droplets 

were measured with the PDPA. 

For the XR 110 01 nozzle, a very good correlation between PDPA and imaging results was 
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resulted in a slightly coarser droplet distribution compared with the PDPA technique. The 

good correlation can be attributed to the small droplet size distribution of this nozzle and 

the absence of droplets > 250-300 µm. 

In addition, for the ATR orange and red nozzle, a good correlation between PDPA and 

imaging results was found at the center although the imaging curves were a bit steeper for 

the reasons mentioned above. Biggest differences between imaging and PDPA results were 

observed for the air inclusion nozzle. Mainly a very limited amount of droplets above 350 µm 

is measured with the imaging technique compared with the PDPA. On the other hand, there 

is still no consensus about the fact whether the PDPA, which is based on light scattering 

principles, is capable of measuring air including droplets in an accurate way. 
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Figure 6.30. Cumulative droplet size distribution results using the imaging technique and 

PDPA laser for the five nozzle pressure combinations in three measurement point 
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In Figure 6.31., both techniques are compared in terms of the nominal median diameter 

(NMD) values. The smallest difference of the NMD values was found for the XR 110 01 and 

both hollow cone nozzles (ATR orange and red). However, a difference in the NMD values 

can be seen using the XR 110 04 and the air inclusion nozzle AI 110 04 where generally 

smaller NMD values were measured with the imaging technique. This is because bigger 

droplets were measured with these nozzles using the PDPA laser. In addition, a positive 

correlation was found between the NMD values from the imaging technique and NMD 

values from the PDPA laser (R2= 0.77). 

 

 
Figure 6.31. Comparison between NMD measured values with the imaging technique and 

NMD values with the PDPA laser for all the five nozzle pressure combinations 

 

Figure 6.32. presents a comparison between RSF values measured with the imaging 

technique and the PDPA laser for all five nozzle pressure combinations at different positions. 

It can be observed that the measured RSF values with the PDPA laser were always higher 

that the RSF values gained from the imaging technique (Table 6.4).  
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Figure 6.32. Comparison between RSF measured values with the imaging technique and RSF 

values with the PDPA laser for all the five nozzle pressure combinations 

 

A complete overview of the different droplet size distribution parameters obtained with the 

imaging technique and the PDPA laser for the five nozzle pressure combinations can be 

found in Table 6.4. Average values and standard deviations with the imaging technique are 

based on five repetitions. Standard deviations are small, indicating a good repeatability of 

the measurements. 
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Table 6.4 Comparison between droplet size distribution parameters obtained with the imaging techniques and PDPA laser for the five nozzle 
pressure combinations 

 Dv0.1 (µm) Dv0.5 (µm) Dv0.9 (µm) RSF (-) 

Imaging PDPA Imaging PDPA Imaging PDPA Imaging PDPA 

XR 110 01 

center 112.2 ± 0.2 110.8 144.1 ± 0.3 151.5 183.2 ± 0.4 203.5 0. 50 ± 0.00 0.61 

200 mm  113.3 ± 0.3 114.4 142.6 ± 0.6 156.0 180.7 ± 0.2 215.3 0.47 ±0.00 0.65 

400 mm 128.9 ± 0.5 140.2 183.3 ± 0.6 185.5 223.9 ± 0.5 239.1 0.52 ± 0.01 0.53 

XR 110 04 

center  114.3 ± 0.1 134.7 145.4 ± 0.2 212.0 183.4 ± 0.3 376.1 0.47 ± 0.00 1.14 

200 mm  111.6 ± 0.2 135.2 142.5 ± 0.2 223.2 183.6 ± 0.6 407.3 0.50 ± 0.00 1.22 

400 mm  169.2 ± 0.5 148.2 200.8 ± 0.1 217.5 232.7 ± 0.2 373.0 0.30 ± 0.0 1.03 

AI 110 04 

center 127.5 ± 0.2 154.1 175.4 ± 1.3 331.9 271.7 ± 0.7 638.8 0.82 ± 0.01 1.46 

200 mm 127.1 ± 0.2 168.5 177.1 ± 0.4 358.8  248.9 ± 0.9  670.8 0.69 ± 0.00 1.40 

400 mm 191.7 ± 0.0 204.4 250.8 ± 0.3 360.0 314.8 ± 0.0  634.0 0.49 ±0.00 1.19 

ATR orange 

center 87.4 ± 0.3 87.0 105.2 ± 0.4 117.6 120.9 ± 0.9 149.7 0.3 ± 0.0 0.53 

200 mm  156.4 ± 0.1 139.2 173.0 ± 0.1 167.9 199.5 ± 0.1 208.1 0.25 ± 0.00 0.41 

300 mm 191.7 ± 2.6  170.1 220.4 ± 0.61 199.5 257.8 ±2.86  256.2 0.30 ± 0.00 0.43 

ATR red 

center 94.6 ± 0.17 85.9 110.3 ± 0.3 118.5 125.9 ± 0.1 151.7 0.28 ± 0.00 0.56 

200 mm 156.9 ± 0.1 128.9 173.0 ± 0.1 157.0 199.7 ± 0.3  196.2 0.25 ± 0.00 0.43 

300 mm 196.3 ± 0.1 174.2 221.3 ± 0.1 197.9 262.8 ± 0.3 294.6 0.30 ± 0.00 0.57 

1
8
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Figure 6.33. presents the comparison of the cumulative velocity distributions measured with 

the imaging technique and the PDPA laser at different measurement points for every 

selected nozzle-pressure combination. It can be observed that the droplet velocity 

distributions curves obtained with the imaging technique were shifted to higher values than 

the ones measured with the PDPA laser. This was most obvious with the standard flat fan XR 

110 01 and the two hollow cone nozzles. This can partly be explained by the fact that the 

PDPA laser is only measuring droplet velocitities in one dimension (vertically) and hence 

underestimates the actual droplet velocity. That is why differences between imaging and 

PDPA are generally most pronounced at the edge of the spray. In addition, the imaging 

technique applied did not allow the measurement of droplets faster than about 12 m/s 

based on the dimensions of the FOV and the acquisition rate while some droplets with 

higher speeds were observed with the PDPA mainly for the XR 110 04. In future, the imaging 

system can be further improved to be able to measure at a higher frame rate with the same 

accuracy. 

The comparison between imaging technique and PDPA can also be assessed from the 

nominal median velocities (NMV). The best correspondence was found for the AI 110 04 

value.  
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Figure 6.33. Cumulative droplet velocity distribution results using the imaging technique and 

PDPA laser for the five nozzle pressure combinations in three measurement point 
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A complete overview of the droplet velocity parameters measured with the imaging 

techniques and PDPA laser for the five nozzle pressure combinations can be found in Table 

6.5. Average values and standard deviations with the imaging technique are based on five 

repetitions. Standard deviations are small, indicating a good repeatability of the 

measurements. 
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Table 6.5 Comparison between droplet velocity distribution parameters gained with the imaging techniques and PDPA laser for the five nozzle 
pressure combinations 

 Vvol10 (m/s) Vvol50 (m/s) Vvol90 (m/s) VSF (-) 

Imaging PDPA Imaging PDPA Imaging PDPA Imaging PDPA 

TeeJet XR11001 

center 2.54 ± 0.01 1.15 6.62 ± 0.11 2.14 9.26 ± 0.02 4.47 1.01 ± 0.00 1.55 

200 mm 2.57 ± 0.00 1.37 6.05 ± 0.11 2.37 9.36 ± 0.01 5.06 1.12 ± 0.02 1.56 

400 mm 1.29 ± 0.02 0.62 24.3 ± 0.02 1.20 8.36 ± 0.01 2.53 1.65 ± 0.01 1.60 

TeeJet XR11004 

center 2.74 ± 0.02 2.34 6.32 ± 0.02 7.30 9.65 ± 0.02 14.50 1.09 ± 0.00 1.66 

200 mm 2.89 ± 0.01 2.34 6.05 ± 0.01 6.93 9.46 ± 0.02 13.28 1.09 ± 0.00 1.58 

400 mm 2.43 ± 0.01 1.13 5.98 ± 0.03 2.70 8.89 ± 0.05 7.86 1.08 ± 0.01 2.50 

AI 11004 

center 2.30 ± 0.01 2.04 5.72 ± 0.09 7.90 9.20 ± 0.03 11.04 1.21 ± 0.02 1.14 

200 mm 2.42 ± 0.02 1.72 5.59 ± 0.02 6.82 8.95 ± 0.02 9.68 1.17 ± 0.01 1.17 

400 mm 1.48 ± 0.00 1.27 3.72 ± 0.02 4.10 7.61 ± 0.02 6.79 1.65 ± 0.01 1.35 

ATR orange 

center 2.21 ± 0.06 1.04 5.82 ± 0.13 1.87 7.30 ± 0.03 3.01 0.87 ± 0.01 1.06 

200 mm 2.15 ± 0.01 0.79 6.05 ± 0.01 1.38 9.22 ± 0.03 2.76 1.17 ± 0.01 1.43 

300 mm 1.47 ± 0.03 0.67 5.93 ± 0.05 1.46 8.63 ± 0.04 4.61 1.21 ± 0.02 2.70 

ATR red 

center 2.82 ± 0.06 1.94 5.84 ± 0.03 3.01 9.31 ± 0.01 4.42 1.11 ± 0.01 0.82 

200 mm 2.71 ± 0.01 1.39 6.05 ± 0.01 2.12 9.30 ± 0.02 4.07 1.11 ± 0.01 1.27 

300 mm 1.72 ± 0.00 1.16 4.71 ± 0.04 3.26 8.35 ± 0.03 8.21 1.41 ± 0.01 2.16 

1
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6.4 CONCLUSION 

 This chapter presents a technique based on image processing for measuring the 

droplet size and velocity characteristics of agricultural hydraulic spray nozzles using the 

image acquisition system developed and presented in Chapter 3.  

The chapter consists of two parts. In the first part, an in-focus droplet criterion based on the 

gray level gradient was introduced to decide whether a droplet is in focus or not. Differently 

sized droplets generated with a piezoelectric generator and glass nozzles in continuous 

mode at different distances from the focal plane and lens using a micro translation stage 

were measured. This enabled measurement of the gray level gradient and in-focus 

parameter for every droplet size. From this, a critical in-focus parameter (Infc) was 

established for every droplet size and an in-focus droplet criterion was deduced to decide 

whether a droplet is in focus or not depending on its diameter and in-focus parameter. In 

this study, the focused droplet zone (FDZ) was defined as the zone in which a droplet with a 

certain diameter is in focus and a linear relation between droplet size and FDZ was found.  

In the second part, the in-focus droplet criterion was applied to spray images of different 

hydraulic spray nozzles and the droplet size and velocity characteristics were calculated. The 

effects of the nozzle type, and nozzle size and measuring position on spray droplet 

characteristics were studied.  

The droplet size and velocity results from the imaging technique have shown that it is 

possible to measure the spray characteristics in a non-intrusive way using image acquisition 

set-up and image processing. Measured droplet sizes ranged from 24 µm up to 543 µm 

depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s up to 

12 m/s. Information about spray droplet size characteristics such as DV0.1, DV0.5, DV0.9 and RSF 

as well as spray velocity characteristics such as VVol10, VVol50, VVol90 and VSF, were extracted 

from the images. Similar effects of nozzle type and measuring position on droplet sizes as 

well as on droplet velocities were found with the imaging technique as with the PDPA or the 

droplet size and velocity, respectively.  

The developed imaging technique can be seen as an alternative to the well-established PDPA 

laser technique. The droplet diameter and velocity characteristics showed a relatively good 

comparison with the results measured with the PDPA laser. When compared with the PDPA 
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laser, the imaging technique generally measured less small droplets and in some cases also 

less big droplets. Differences between both techniques can be attributed to the fact that the 

smallest measured droplet size with the imaging system is 24 µm while smaller droplets 

were measured with the PDPA. In addition, the number of smaller amount of droplets 

measured with the imaging technique was much smaller compared with the PDPA which 

increases the chance to miss one of the biggest droplets. This can be improved by taking 

more images. Differences in droplet velocity characteristics between both techniques can be 

attributed to the fact that the PDPA laser is only measuring droplet velocity in one 

dimension and hence underestimates the actual droplet velocity. In addition, the imaging 

technique applied did not allow the measurement of droplets faster than about 12 m/s 

based on FOV and the acquisition rate while some droplets with higher speeds were 

observed with the PDPA mainly for the XR 110 04. In future, the imaging system can be 

further improved to be able to measure at a higher frame rate with the same accuracy. 
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7 MACRO-SPRAY CHARACTERIZATION FROM A SINGLE NOZZLE
vi 

 

Agricultural pesticide sprays are applied with different types of spray nozzles each with its 

own spray characteristics. The objective of this chapter was to measure the macro-spray 

characteristics (spray angle, liquid sheet length, and spray shape) from different types of 

hydraulic spray nozzles using the backlight image acquisition system developed in Chapter 2 

and image processing technique. Tests included five different commonly used nozzles (Albuz 

ATR orange and red, TeeJet XR 110 01, XR 110 04 and Al 110 04).  

 

 

 

 

 

 

 

                                                      
vi
 This chapter has been compiled from: 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2013. Spray nozzle characterization using 

high speed imaging techniques. Proceedings 9
th

 European Conference on Precision Agriculture. July 7 -11, Lleida, 

Spain. 569-576. ISBN: 978-90-8686-224-5, DOI: 10.3920/978-90-8989-778-3.  

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2014. Spray nozzle characterization using 

backlighted high speed imaging techniques. Aspects of Applied Biology. 122: 353-361. 
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7.1 INTRODUCTION 

 Agricultural nozzles produce sprays with a distribution of droplet sizes and velocities 

(Lefebvre, 1989) as summarized in 2.2.2.2. It is important to quantify and control these 

distributions because they influence the droplet trajectories and interactions with the target 

(Butler Ellis et al., 1997). 

A large range of hydraulic nozzles have been designed in which liquid under pressure is 

forced through an orifice so that there is sufficient velocity energy to spread out the liquid, 

usually in a thin sheet which becomes unstable and disintegrates into droplets of different 

sizes (Matthews, 2000). A minimum pressure is essential to provide sufficient velocity to 

overcome the contracting force of surface tension and to obtain full development of the 

spray pattern. An increase in pressure will increase the angle of the spray as it emerges 

through the orifice and also increase the flow rate in proportion to the square root of the 

pressure (Matthews, 2000). 

The droplet spectrum depends on the nozzle output, spray angle of the nozzle and operating 

pressure, and this determines the spray quality (2.2.2.3). Therefore, it is important to select 

a nozzle that develops the desired spray pattern. The sizes of the droplets vary, in the range 

10 – 1000 µm. The shape of the spray pattern of a single nozzle depends from the applied 

pressure at the nozzle, the height of the nozzle from the spray surface, and the angle at 

which the nozzle is oriented (Azimi et al., 1985). 

Furthermore, correct selection of spray volume is important. It will influence several spray 

characteristics such as drift potential, spray coverage, droplet size, hectares per tank, and 

pesticide effectiveness (Johnson et al., 2005). 

Spray droplets play an important role in the application accuracy and efficiency of plant 

protection products. Mechanisms of droplets leaving a nozzle and impacting the leaves are 

complex and difficult to quantify or model, while existing non-imaging measuring techniques 

are not able to fully characterize the spraying process in a non-intrusive way. Therefore 

accurate quantification techniques are required to evaluate the spray application process in 

order to maximize the economic and environmental benefits of precision farming. 

Moreover, spray processes occur with a relatively high speed. 
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The limitations of the non-imaging techniques and the improvements in digital image 

acquisition and processing increased the interest in using high-speed (HS) imaging 

techniques for spray characterization (Hijazi et al., 2012) (2.4.2). 

The objective of this part of the study was to measure the spray characteristics from 

different types of single and static hydraulic spray nozzles using the backlighted high speed 

imaging system developed in Chapter 3. Tests include different nozzle types (standard flat 

fan, air inclusion, hollow cone), nozzles sizes and spray angles. From the spray images, 

macro-spray characteristics (liquid sheet length, spray angle, spray shape and volume 

distribution pattern) were analyzed using image processing. Where possible, the results 

were compared with the existing non-imaging measuring techniques like a spray distribution 

bench (horizontal patternator). 

7.2 MATERIALS AND METHODS 

 The macro-spray characteristics (spray angle, spray shape, and liquid sheet length) of 

five single hydraulic spray nozzles (7.2.1) were measured with the HS image acquisition 

system for spray characterization and image analysis (Chapter 3) and were compared with 

the results from existing non-imaging measuring techniques like the horizontal patternator 

(2.3.3). 

7.2.1 Hydraulic spray nozzles 

The spray characteristics of five different static spray nozzles were measured to evaluate the 

effect of nozzle type (hollow cone, standard flat fan and air inclusion flat fan nozzle), nozzle 

size (ISO 01 & 04) and spray angle (80° & 110°). Their properties manufacture specifications 

are given in Table 6.3. 

Hollow cone nozzles generally provide the smallest droplet sizes. Their spray pattern consists 

of droplets concentrated on the outer surface of a conically shaped volume. Furthermore, 

this is the most popular nozzle type for orchard and vineyard spray applications. An Albuz 

ATR orange (600 kPa) and red (800 kPa) hollow cone nozzle with 80° spray angles were 

tested (Figure 7.1). Besides, Dekeyser et al. (2013) used the same nozzle-pressure 

combinations for orchard spray applications. 
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Figure 7.1. Albuz ATR hollow cone: orange and red nozzle 

 

Standard flat fan nozzles are the most commonly used nozzle type for horizontal boom 

sprayers. They produce a flat sheet of liquid resulting in a bell shaped spray distribution, 

comparable to a Gaussian distribution (Huyghebaert et al., 2001). A TeeJet XR 110 01 and XR 

110 04, both at 400 kPa with a 110° spray angle, were tested (Figure 7.2). The ISO 04 nozzle 

size is commonly used in Western Europe. The small ISO 01 nozzle size was selected because 

of its small droplet sizes. 

 
Figure 7.2. TeeJet extended range flat fan nozzles: XR 110 01 (orange) and XR 110 04 (red) 

 

Air inclusion flat fan nozzles have two air inlets from which air is induced into the nozzle, 

mixing with spray liquid. As a result, the emitted spray contains large droplets, potentially 

with air bubbles, which reduce the risk of droplet bouncing off a leaf surface. Therefore, air 

inclusion nozzles are the most popular drift reducing application technique. A TeeJet AI 110 

04 nozzle at 400 kPa and with a 110° spray angle was selected (Figure 7.3).  
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Figure 7.3. TeeJet AI 110 04 nozzle 

7.2.2 Existing non-imaging techniques for spray characterization 

A wide variety of non-imaging measurement techniques have been used to determine the 

spray nozzle characteristics. The actual flow rate of all nozzle-pressure combinations was 

measured in ILVO’s Spray Tech Lab (2013) (Figure 7.4a). 

Spray distribution measurements are mainly carried out using intrusive methods like a 

patternator or spray scanner. In this work, a horizontal patternator (AAMS, Maldegem, 

Belgium, Figure 7.4 b&c) was used to measure the cross flow distribution of the five nozzle-

pressure combinations according to the International Standard ISO 5682-1(1996) in the ILVO 

Spray Tech Lab (2013). Water at a constant pressure (± 10 kPa) was sprayed from one static 

nozzle onto a 3.0 m wide channeled table and collected in a sloping section with 0.05 m wide 

groves which drained into calibrated collecting tubes. All nozzle-pressure combinations were 

tested at 3 different heights, i.e. 15, 30 and 50 cm, and in four repetitions. Nozzles were 

turned 180° (front/behind) between every repetition. The flat fan nozzles were installed with 

the longest axis of the fan perpendicular to the measuring grooves. For every nozzle setting 

the spray volumes in every tube, the collecting time, the relative humidity and the ambient 

and water temperature were registered and saved. Each measurement was stopped as soon 

as the amount of liquid collected in one of the tubes reached 90% of its capacity. 
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Figure 7.4. Non-imaging techniques for spray characterization at ILVO’s Spray Tech Lab: (a) 

flow rate test bench and (b) & (c) horizontal patternator 

 

The spray angle and spray shape of a single nozzle depend on the nozzle height, type and 

pressure and the angle at which the nozzle is oriented (Azimi et al., 1985). The actual spray 

angle (θ) for every nozzle measurement with the horizontal patternator was 

trigonometrically calculated based on the nozzle height and spray pattern width defined as 

the distance between the centers of the last filled tubes with at least 20 mL (Figure 7.5). As it 

is not possible to know exactly where the spray pattern finishes (± 2.5 cm), this measuring 

error is brought into account while calculating the measuring accuracy on the actual spray 

angle (Table 7.3). The spray shape was estimated based on the width of the spray pattern at 

the three different heights and the position of the nozzle. 

 
Figure 7.5. Spray angle (θ) estimation based on cross flow distribution measurement and 

spray height 

 

θ 

Height 

Width of the spray pattern 
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7.2.3 Image acquisition system for spray characterization 

A high-speed image acquisition system was developed for macro-spray characterization in 

Chapter 3 (Vulgarakis Minov et al., 2015a). Figure 7.6 shows a schematic overview of the 

spray characterization system. 

 
Figure 7.6. Image acquisition system for spray characterization (Vulgarakis Minov et al., 

2015a) 

 

The macro spray characteristics including the spray angle, shape and liquid sheet length 

were investigated using an image acquisition system consisting of three main parts: a 500 W 

spotlight with diffuser, a HS camera IDT N3 (8-bit dynamic range, 1280 × 1024 pixels) and a 

macro video zoom lens (Optem, 18-108, F/2.5, 20 mm focal length). The ground glass 

diffuser (TECHSPEC, Edmund Optics, USA) was used to reduce the light inhomogeneity and 

was placed between the background light and the lens (Figure 7.6) (Lad et al., 2011). The 

distance between the camera and nozzle was 14.3 cm resulting in a field of view (FOV) of 

110 mm × 88 mm with a pixel resolution of 85.8 µm. Images were acquired at a grabbing 

rate of 1000 fps with an exposure time of 15 µs and + 3dB sensor gain (Massinon & Lebeau, 

2012a). The captured images had 1280 × 1024 pixels with 8 bits of gray scale resolution. The 

Motion Studio software (IDT, Lommel, Belgium, version: 2.09, 2011) was used to view and 

save the images. The specifications of the system are shown in Table 7.1. 
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Table 7.1. Properties of the tested hydraulic spray nozzles 

HS camera IDT N3 (8-bit dynamic range, 1280 × 1024 pixels), 1000 fps 
Exposure time 15 µs 
Lens Macro Video Zoom Lens (Optem, 18-108, F/2.5, 20 mm focal length) 
Backlight 500 W Spotlight 
Diffuser 220 ground glass diffuser 
Distances 
a/b/c 

430 mm / 80 mm / 240 mm 

FOV 88.0 mm × 110 mm 
Pixel 
resolution 

85.8 µm 

 

7.2.4 Image analysis for spray characterization 

Macro-spray characteristics were determined by image analysis using dedicated algorithms 

developed in Matlab® (The MathWorks Co., Massachusetts). The key of automatically 

measuring the spray angle is to find the edge of the most left side and the most right side of 

the spray (Zhang et al., 2011). The algorithm for spray angle image analysis consisted of 

different steps: 1. acquiring the spray images (Figure 7.7a), 2. noise reduction and image 

enhancement (Figure 7.7b), 3. image binarization (Figure 7.7c), 4. applying morphological 

operations and spray edge detection (Figure 7.7d&e) and 5. detection of the two boundary 

lines of the spray angle with their orientation (Figure 7.7f). Detection of the boundary lines 

was the key problem for spray angle determination, so choosing the appropriate 

morphological operators was crucial for the detection accuracy. 
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Figure 7.7. Steps in spray angle image analysis illustrated for the TeeJet XR 110 04 

 

Determining the spray liquid sheet length was based on finding the biggest object and its 

length (starting from the nozzle exit – Figure 7.8a). For this purpose the hollow cone nozzles, 

with their conical spray pattern, were put at an angle of 40° towards the diffuser and a 

region of interest (ROI) was selected beneath the nozzle. In this way only the part of the 

spray which is sharp in the FOV is selected and used for the liquid sheet determination 

(Figure 7.8b&c).  

a. b. 

c. d. 

e. f. 
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Figure 7.8. Spray liquid sheet image analysis for (a) the TeeJet XR 11004 nozzle and (b) and 

(c) the Albuz ATR red nozzle 

 

Spray shape analysis was done by moving every single nozzle using a 3D positioning table 

(Nuyttens et al., 2007a) in horizontal steps of 2.5 cm to both sides and in vertical steps of 5 

cm in order to scan the spray fan. In this manner 140 images with flat fan nozzles and 68 

images with hollow cone nozzles of the spray were needed to be taken and connected to 

view the whole spray up to 20 cm beneath the nozzle. The spray shape was achieved by 

edge detection (Figure 7.9). All measurements were done with tap water and repeated 5 

times. 

 
Figure 7.9. Spray shape analysis of the Tee Jet XR110 04 up to 20 cm below the nozzle 
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7.3 RESULTS AND DISCUSSION 

7.3.1 Flow rate 

The measured average flow rates (± std) of the five nozzle-pressure combinations are 

presented in Table 7.2 together with the nominal flow rates, the deviation from the nominal 

flow rate (%) and the corresponding average ambient temperature (avg ± std), the relative 

humidity (avg ± std) and the spray liquid temperature (avg ± std). 

The flow rate of different nozzles varies according to the size of the orifice, the applied 

pressure and the density of the spray liquid. Flow rate increases by installing a nozzle with a 

larger orifice or increasing the applied pressure. As a result, in Table 7.2 it can be seen that 

flat fan nozzle with ISO 04 size had four times bigger flow rate than the flat fan nozzle  ISO 01 

at the same pressure. The maximal deviation of the nominal flow rate was 2.22 % which is 

clearly below the accepted value of 10% as prescribed by Vanella et al. (2011).
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Table 7.2. Measured average flow rates of the 5 nozzle-pressure combinations and environmental conditions 

Nozzle 
Operating 

pressure (kPa) 

Nominal 
flow rate 
(L min-1) 

Actual flow 
rate 

(L min-1) 

Deviation of 
the nominal 
flow rate (%) 

Average ambient 
temperature (°C) 

Relative 
humidity ( % ) 

Spray liquid 
temperature (°C) 

ATR orange 600 1.08 1.104 ± 0.005 2.22 17 ± 0.0 55.0 ± 0.0 22.5 ± 1.3 

ATR red 800 1.73 1.740 ± 0.003 0.58 17 ± 0.0 54.7 ± 0.5 23.0 ± 1.60 

XR 110 01 400 0.45 0.443 ± 0.001 -1.50 21 ± 0.0 54.7 ± 0.5 21.3 ± 0.43 

XR 110 04 400 1.82 1.829 ± 0.001 0.50 16 ± 0.0 54.0 ± 0.0 15.8 ± 0.17 

AI 110 04 400 1.82 1.836 ± 0.000 0.88 16 ± 0.0 56.0 ± 0.0 15.3 ± 0.18 
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7.3.2 Spray angle 

The spray angles of the different nozzle-pressure combinations at three different heights 

(15, 30 and 50 cm) achieved with the horizontal patternator and with the imaging technique 

at the nozzle orifice (0 cm) are given in Table 7.3. In general the measured spray angles were 

higher than the nominal spray angles except for the Albuz red nozzle at 30 cm and the TeeJet 

XR 110 01 at the nozzle exit. Moreover, based on the results at 15, 30 and 50 cm, it was 

discovered that the actual spray angle decreased with an increase of nozzle height because 

of the effect of gravity. This effect was most pronounced for the finer sprays. For the hollow 

cone and the air inclusion nozzle, the imaging technique gave a good representation of the 

spray angle while the spray angle was underestimated for both standard flat fan nozzles.  

7.3.3 Liquid sheet length 

The smallest liquid sheet length was calculated for the TeeJet XR 110 01 nozzle (18.5 mm), 

followed by the two hollow cone nozzles (27.4 and 31.3 mm). The longest liquid sheets were 

found for the TeeJet XR 110 04 (38.9 mm) and TeeJet AI 110 04 nozzle (43.1 mm) (Table 7.3). 

Jasikova et al. (2011) measured a liquid sheet length for a full cone nozzle of 30 mm using 

imaging techniques. 
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Table 7.3. Spray angles and liquid sheet lengths of the 5 nozzles-pressure combinations 

Nozzle Pressure (kPa) Nozzle height Nominal spray angle Actual spray angle (°) Liquid sheet length (mm) 

ATR orange 600 

0 cm 

80° 

96.9 ± 6.7 
27.4 ± 1.1 

 
15 cm 
30 cm 
50 cm 

98.8 ± 7.2 
94.5 ± 3.6 
80.7 ± 2.7 

ATR red 800 

0 cm 

80° 

86.6 ± 2.0 
31.3 ± 3.1 

 
15 cm 
30 cm 
50 cm 

98.8 ± 7.2 
84.9 ± 4.2 
80.7 ± 2.7 

XR 110 01 400 

0 cm 

110° 

108.5 ± 1.3 
18.5 ± 1.8 

 
15 cm 
30 cm 
50 cm 

124.8 ± 2.0 
124.8 ± 2.0 
110.8 ± 1.5 

XR 110 04 400 

0 cm 

110° 

113.8 ± 3.4 
38.9 ± 1.8 

 
15 cm 
30 cm 
50 cm 

130.3 ± 2.8 
128.9 ± 1.5 
119.0 ± 1.2 

 
XR 110 04 

 

 
400 

 

0 cm 
 

110° 
 

120.1 ± 8.7 

43.1 ± 2.0 
15cm 
30 cm 
50 cm 

124.8 ± 2.0 
124.8 ± 2.0 
117.5 ± 1.3 
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7.3.4 Spray distribution 

Figure 7.10 presents the results of the cross flow distribution measurements of the five 

nozzle-pressure combinations at three different heights with the results expressed in relative 

values (% of the total volume ± std). 
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Figure 7.10. Spray distribution measurements (% and sd) at 3 different heights of the (a) 

Albuz ATR orange nozzle at 600 kPa, (b) Albuz ATR red nozzle at 800 kPa, (c) TeeJet XR 110 

01 at400 kPa, (d) TeeJet XR 110 04 at 400 kPa and (e) TeeJet AI 110 04 at 400 kPa 
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These graphs give the measured spray distribution pattern with the standard deviations. 

Nozzle positioning is quite important due to the fact that sprayed water distribution is not 

even. Likewise, it is obvious from these graphs that, in general, spray nozzles have parabolic 

distributions and that greater nozzle-to target- distance allows the spray droplets to spread 

more and to create a wider individual spray pattern. At the nozzle height of 15 cm, for the 

flat fan nozzles, the highest percentage of the total spray volume was found directly under 

the nozzle and gradually decreased to both sides of the nozzle. On the other hand, at 15 cm, 

hollow cone type nozzles produce larger amounts of spray near the outer edges of the spray 

pattern and less in the center. At 30 and 50 cm heights, the spray liquid stretched over more 

collecting grooves and thus the discharge out of the nozzles was distributed on a larger area 

than compared with the 15 cm height. Moreover, the spray distributions at higher heights 

had smoother peaks compared to those produced at 15 cm nozzle height. So, the spray 

liquid distribution uniformity was dependent on the nozzle height. 
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Figure 7.11. Spray distribution measurements expressed in 1. absolute (ml/min and sd) and 

2. relative flow values (% and stdev.) of the five nozzle pressure combinations at heights of 

(a) 15 cm, (b) 30 cm and (c) 50 cm 

 

Comparing the spray distributions between the different nozzles (Figure 7.11), it is obvious 

that the 110° flat fan nozzles produced a wider spray compared with the 80° hollow cone 

nozzles. The spray distributions generated by the TeeJet XR 110 04 and TeeJet AI 110 04 at 

400 kPa were similar because of the same flow rate and spray angle. Tests with the hollow 

cone nozzles at 600 kPa and 800 kPa gave results with bigger standard deviations probably 

because of the swirling effect of this nozzle in combination with the patternator interrupting 

the nozzle spray. 

7.3.5 Spray shape 

From the spray pattern widths at 15, 30 and 50 cm (resulting from the spray distribution 

measurements), the spray shapes of the 5 nozzle-pressure combinations were estimated as 

presented in Figure 7.12. Spray shape results based on the intrusive patternator 

measurements of the different nozzle-pressure combinations are summarized in Figure 7.13.  

Figure 7.14 presents the average spray shape of the TeeJet XR 110 04 determined using the 

imaging system based on 5 replicates. From this spray shape, we calculated the spray 

pattern width at 4 different heights (5, 10, 15 and 20 cm) and the corresponding spray 

angles and compared them with the patternator results at 15 cm height (Table 7.4). From 

the spray distribution measurements, it is clear that nozzle height had an important effect 

on the spray distribution. Greater nozzle to target distance allows the spray droplets to 

spread more and to create a wider individual spray pattern. In general, the highest spray 

volume was found directly under the nozzle and decreased onto both sides of the nozzle. 
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The higher the nozzle, the smoother the spray distribution peaks were, when compared to 

those produced at 15 cm nozzle height. Because of the effect of gravity, the spray shape was 

parabolic and the spray angle generally decreased with increased nozzle height.  
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Figure 7.12. Spray angle and spray shape estimation based on spray distribution 

measurements at 3 different heights of the (a) Albuz ATR orange nozzle at 600 kPa, (b) Albuz 

ATR red at 800 kPa, (c) TeeJet XR 110 01 at 400 kPa, (d) TeeJet XR 110 04 at 400 kPa and (e) 

TeeJet AI 110 04 at 400 kPa 
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Figure 7.13. Spray angle as well as spray shape of the (a) Albuz ATR orange nozzle at 600 kPa; 

(b) Albuz ATR red at 800 kPa; (c) TeeJet XR 110 01 at 400 kPa; (d) TeeJet XR 110 04 at 400 

kPa at 400 kPa and (e) TeeJet AI 110 04 at 400 kPa 
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Figure 7.14. . Spray shape estimation for TeeJet XR 110 04 nozzle at 400 kPa up to 20 cm 

below the nozzle 

 

Table 7.4 shows the comparison of image analysis results and horizontal patternator results. 

From this table, the spray angle relative error for TeeJet XR 110 04 at 15 cm height was 0.5% 

while for TeeJet XR 110 01 and AI 110 04, 0.6%. The spray angle relative error was bigger for 

the hollow cone Albuz ATR orange and red nozzles: 2.8% and 5.4%, respectively.  

Accordingly, the low spray angle relative error meets well the demands for using this 

technique. In closing, similar results for the spray shape, pattern width and spray angle were 

found using the horizontal patternator and the imaging technique. 
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Table 7.4. Spray pattern width at 4 heights (image analysis) and at 15 cm (patternator) for 
the nozzle-pressure combinations 

  
Imaging system 

Horizontal 
patternator 

Relative 
error (%) 

Nozzle 
Nozzle 
height 
(cm) 

Spray 
pattern 
width 
(cm) 

Actual 
spray 

angle (°) 

Spray 
pattern 
width 
(cm) 

Actual 
spray angle 

(°) 

Actual 
spray 
angle 

ATR orange 

5 
10 
15 
20 

12.3 
27.0 
36.8 
41.7 

101.6 
103.9 
101.6 
92.4 

- 
- 

35 
- 

- 
- 

98.8 ± 7.2 
- 

- 
- 

2.8 
- 

ATR red 

5 
10 
15 
20 

12.3 
22.1 
31.9 
41.7 

101.6 
95.7 
93.5 
92.4 

- 
- 

35 
- 

- 
- 

98.8 ± 7.2 
- 

- 
- 

5.4 
- 

XR 110 01 

5 
10 
15 
20 

22.1 
41.7 
56.4 
76.1 

131.3 
128.8 
124.0 
124.5 

- 
- 

55 
- 

- 
- 

124.8 ± 2.0 
- 

- 
- 

0.6 
- 

XR 110 04 

5 
10 
15 
20 

22.1 
46.6 
63.8 
85.9 

131.3 
133.6 
129.6 
130.0 

- 
- 

65 
- 

- 
- 

130.3 ± 2.8 
- 

- 
- 

0.5 
- 

AI 110 04 

5 
10 
15 
20 

22.1 
41.7 
56.4 
76.1 

131.3 
128.8 
124.0 
124.5 

- 
- 

55 
- 

- 
- 

124.8 ± 2.0 
- 

- 
- 

0.6 
- 

 

7.4 CONCLUSION 

 A HS image acquisition set-up and image processing algorithms were developed to 

evaluate the macro-spray characteristics, i.e. spray angle, spray shape and liquid sheet 

length, of five different spray nozzles using image acquisition and processing. The imaging 

system consisted of a HS camera, a macro video zoom lens, a diffuser and a backlight 

spotlight. Results were compared with those obtained from traditional non-imaging 

techniques. The results from the imaging technique have shown that it is possible to 

measure the spray characteristics in a nonintrusive and correct way using a correct image 

acquisition set-up and dedicated image processing algorithm. 
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8 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

8.1 GENERAL CONCLUSIONS 

In the last fifty years, advances in plant protection contributed to increasing the yields and 

ensuring large production. Easy to apply and rather inexpensive, pesticides have proven to 

be very efficient. However, when pesticides are applied to crops some of the spray may not 

reach the target, but move outside the intended spray area. Therefore, efforts are being 

undertaken to their safe and efficient use which is more and more regulated by international 

environmental laws. 

Agricultural sprays applied with different nozzle size-pressure combinations consists of range 

of droplet sizes and velocities (Chapter 2). Simultaneous measurement of these droplet sizes 

and velocities is of great significance in the spray application process. There are numerous 

methods for measuring droplet characteristics which can be divided into three categories: 

mechanical, electrical and optical methods. Application of these techniques may affect the 

spray flow behavior. A comprehensive review of these methods together with their 

limitations has been made in Chapter 2. Therefore, the availability of non-intrusive systems 

for spray characterization is of great importance. 

Recent improvements in digital image processing, the high sensitivity of imaging systems and 

cost reductions have increased the interest in high-speed imaging techniques for agricultural 

applications in general and pesticide applications in specific. The prize of high speed cameras 

(HS) is still high and they have not yet been applied as standard measuring equipment on 

agricultural machines. However, for research and development activities, a high speed 

camera is a versatile tool which can be used in different applications where fast particles or 

processes must be captured and analyzed. In addition, high speed cameras allow the viewer 

to see and better understand the fast spray atomization process which is not the case the 

commonly used non-imaging droplet characterization techniques based on light scattering 

principles. 
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This thesis focused on the development and application of high speed imaging techniques 

for spray characterization. The general aim was to show that spray characteristics can be 

correctly measured with the developed imaging techniques in a non-intrusive way. 

The main conclusions and achievements are summarized per chapter. 

8.1.1 Development of high speed image acquisition systems based on single droplet 

experiments 

The development of high speed image acquisition systems based on single droplet 

experiments was presented in Chapter 3, using a HS camera and a piezoelectric droplet 

generator able to to generate small droplets on demand or in continuous mode. This droplet 

generator can be used for studying single droplet charactristics and for the comparison with 

the spray droplet characteristics in a real spray application. It is also useful in many other 

applications where generation of wide range of uniform-sized droplets is needed e.g. 

calibration of droplet size measuring equipment or droplet impact studies. 

Different lenses, light sources, diffusers, and exposure times were tested. The different 

imaging systems were evaluated based on image quality parameters (SNR, entropy ratio and 

contrast ratio), light stability and overexposure ratio, and the accuracy of the droplet size 

measurement.  

The experiments resulted in dedicated image acquisition systems for measuring: 

 Micro spray characteristics (droplet size and velocity). The system consisted of a HS 

camera with a 6 µs exposure time, a long distance microscope lens at a working 

distance of 430 mm resulting in a FOV of 10.5 mm x 8.4 mm, and a xenon light source 

used as a backlight without a diffuser. The long-distance microscope lens could 

deliver microscopical magnification and resolution equivalent to a standard 

microscope with a pixel size of 8.2 µm. Also, they give the best performance when 

the objective is as evenly and as brilliantly illuminated as possible. Therefore, a xenon 

light source was selected without diffuser. 

 

 Macro spray characteristics (spray angle, spray shape, liquid sheet length, etc.). The 

system consisted of a HS camera with a 15 µs exposure time, a macro video zoom 
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lens at a working distance of 143 mm with a larger FOV of 88 mm x 110 mm in 

combination with a halogen spotlight and a diffuser resulting in a pixel size of 85.8 

µm. The prize of the macro video zoom lens and spotlight on the market is 

affordable. With this system, attention should be paid to the light stability. 

8.1.2 Droplet generation and characterization using a piezoelectric droplet generator and 

imaging techniques 

Measurements using a single droplet generator in droplet on demand (DOD) and continuous 

mode were performed. The effects of operating parameters, including voltage pulse width 

and pulse amplitude with 4 nozzle orifice sizes (261 µm, 123 µm, 87 µm and 67 µm) on 

droplet diameter and droplet velocity have been characterized. Droplet sizes and velocities 

of the generated droplets were successfully measured with the image acquisition and image 

processing system developed in Chapter 3 and 4. Several conclusions were obtained: 

 The experiments in DOD mode have shown that the initial droplet characteristics 

from the droplet generator are a function of the double pulse width and the orifice 

size. The pulse width values are critical parameters for droplet ejection. By changing 

pulse width, it was possible to control droplet velocity and droplet size diameter. In 

general, a decrease of ta and an increase of tp increased the droplet diameter. 

Similarly, increasing the nozzle orifice size increased the droplet diameter.  

 In DOD mode, droplet sizes ranged between 134.1 μm and 461.5 μm. Foremost, the 

smallest and the fastest droplets were measured with the smallest nozzle orifice. The 

measured droplet velocities ranged between 0.08 m/s and 1.78 m/s. Besides, we 

noticed an effect of the pulse amplitude on the droplet diameter and velocity. 

 The ratio of the droplet diameter and nozzle orifice in DOD mode ranged from 1.3 to 

3.5. 

 The continuous mode for every nozzle was established for a frequency resulting in a 

continuous droplet generation. This frequency together with different pulse 

amplitudes were used to test the effect on the droplet diameter, inter-droplet 

spacing and velocity. 

 The droplet diameter was mainly controlled by the nozzle orifice. The droplet size 

here was between 167.2 μm and 455.8 μm. 
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 The nozzle orifice also influenced the droplet velocity i.e., the bigger the nozzle 

orifice was, the higher the droplet velocity. Obviously, there was a linear trend 

between the droplet diameter and velocity in continuous mode.  

 The effect of the pulse amplitude on the inter-droplet spacing was statistically 

significant. 

 The ratios between the droplet diameter and the nozzle orifice ranged from 1.3 to 

3.9. 

 In continuous mode, the lowest droplet velocity of 1.84 m/s was measured with the 

smallest nozzle orifice size while the highest droplet velocity of 4.66 m/s was 

measured with the biggest nozzle orifice size. 

 Based on the results in both modes, similar droplet diameter sizes were produced. 

However, in continuous mode it was possible to achieve faster droplets which 

correspond better with real spray application. 

8.1.3 Micro-spray characterization from a single nozzle 

 An in-focus droplet criterion based on the gray level gradient was introduced to 

decide whether a droplet is in focus or not. From the different edge dectors, the 

Canny edge detector gave the best results regarding the quality of the segmentation 

results and in detecting droplet edges absed on gray level gradients. Differently sized 

droplets generated with a piezoelectric generator and glass nozzles in continuous 

mode at different distances from the focal plane and lens using a micro translation 

stage were measured. This enabled measurement of the gray level gradient and in-

focus parameter for every droplet size. From here, a critical in-focus parameter (Infc) 

was established for every droplet size and an in-focus droplet criterion was deduced 

to decide whether a droplet is in focus or not depending on its diameter and in-focus 

parameter. The focused droplet zone (FDZ) is in this study defined as the zone in 

which a droplet with a certain diameter is in focus and a linear relation between 

droplet size and FDZ was found.  

 The in-focus droplet criterion was applied to spray images of different hydraulic spray 

nozzles and the droplet size and velocity characteristics were calculated. The effects 

of nozzle type, nozzle size and measuring position on spray droplet characteristics 

were studied.  
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 The droplet size and velocity results from the imaging technique have shown that it is 

possible to measure the spray characteristics in a nonintrusive way using image 

acquisition set-up and image processing. Measured droplet sizes ranged from 24 µm 

up to 543 µm depending on the nozzle type and size. Droplet velocities ranged from 

around 0.5 m/s up to 12 m/s. Spray droplet size characteristics such as DV0.1, DV0.5, 

Dv0.9 and RSF as well as spray velocity characteristics such as VVol10, VVol50, VVol90 and 

VSF, were extracted from the images. Similar effects of nozzle type and measuring 

position on droplet sizes as well as on droplet velocities were found with the imaging 

technique as with the Phase Doppler particle analyzer (PDPA) for the droplet size and 

velocity, respectively. 

 The droplet diameter and velocity characteristics showed a relatively good 

correlation with the results measured with the PDPA laser. When compared with the 

PDPA laser, the imaging technique generally measured less small droplets and in 

some cases also less big droplets. Differences between both techniques can be 

attributed to the fact that the smallest measured droplet size with the imaging 

system is 24 µm while smaller droplets are measured with the PDPA. In addition, the 

number of smaller amount of droplets measured with the imaging technique was 

much smaller compared with the PDPA which increases the chance to miss one of the 

biggest droplets. This can be improved by taking more images. Differences in droplet 

velocity characteristics between both techniques can be attributed to the fact that 

the PDPA laser is only measuring droplet velocity in one dimension and hence 

underestimates the actual droplet velocity. In addition, the imaging technique 

applied did not allow the measurement of droplets faster than about 12 m/s based 

on FOV and the acquisition rate while some droplets with higher speeds were 

observed with the PDPA mainly for the XR 110 04. In future, the imaging system can 

be further improved to be able to measure at a higher frame rate with the same 

accuracy. 

 Up to now, measurements of droplet size and velocity remain difficult in dense 

sprays such as those encountered in agricultural spray applications. Commonly used 

techniques (discussed in Chapter 2) are often limited due to multi-scattering effects, 

concentration and also non-spherical shapes. The advantage of this technique on the 

others was its ability to measure and visualize different droplet sizes and velocities by 



General conclusions and suggestions for future work 

225 

using the developed in-focus criterion in a dense spray using a standard high speed 

camera and dedicated image analysis algorithms.  

8.1.4 Macro-spray characterization from a single nozzle 

 The spray angles of the selected nozzle-pressure combinations at the nozzle orifice (0 

cm) were measured with the imaging technique. The measured spray angles were 

higher than the nominal spray angle except for the XR 110 01 nozzle. For the hollow 

cone and air inclusion nozzle, the imaging technique gave a good representation of 

the spray angle while the spray angle was underestimated for both standard flat fan 

nozzles. 

 Based on the measurements with the horizontal patternator at three heights (15 cm, 

30 cm and 50 cm) actual spray angle decreased with an increase of nozzle height 

because of the effect of gravity. This effect was the most pronounced for the finer 

sprays. 

 The smallest liquid sheet wasfound for XR 110 01 nozzle (18.5 mm), followed by the 

two hollow cone nozzles (27.4 and 31.3 mm). The longest liquid sheets were found 

for the XR 110 04 (38.9 mm) and AI 110 04 (43.1 mm). 

 From the spray shape, the spray pattern width at four heights (5, 10, 15, 20 cm) of all 

selected nozzles and the corresponding spray angles were calculated and compared 

with the results from the horizontal patternator. In general, the highest spray volume 

was found directly under the nozzle while the spray volume decreased on both sides 

of the nozzle. In addition, the higher the nozzle, the smoother were the spray 

distribution peaks compared with those at 15 cm nozzle height. Because of the effect 

of gravity, the spray shape was parabolic and the spray angle generally decreases 

with the increased of the nozzle height. 

 A comparison of the image analysis results and horizontal patternator results at 15 

cm was performed. From here, the spray angle relative error for XR 110 01 at 15 cm 

height was 0.5 % while for XR 110 01 and AI 110 04 was 0.6 %. The spray angle error 

was bigger for the hollow cone nozzle, ATR orange and ATR red: 2.8 % and 5.4 %, 

respectively. 

 The developed image acqusition set-up for measuring the macro-spray 

characteristics succesfully measured the liquid sheet length from the selected nozzle-
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pressure combinations. No other research has been documented measuring the size 

of the liquid sheet of agricultural spray applications.  

 The developed algorithm measured the spray angle by defining two straight lines 

from the nozzle exit. This approach gave satisfactory results on the spray angle values 

at the nozzle exit.  

8.2 SUGGESTIONS FOR FUTURE WORK 

The piezoelectric droplet generator can be used in other scientific studies on droplet 

behavior on plant surfaces under laboratory conditions and for calibrating droplet size 

measuring equipment. 

A number of suggestions have been identified as ways in which the implanted imaging 

technique may be improved for measuring the macro and micro spray characteristics. 

Within the macro spray characteristics, further image processing improvements can be 

performed such as to calculate the spray angle at different heights (15, 30 and 50 cm) below 

the nozzle based on the width at each distance from the nozzle orifice. 

The frame rate of the current set-up restricted the measurement of the droplet velocity. It 

will make a significant contribution if the HS camera could be used at bigger frame rate than 

1000 fps in full resolution. In addition, the resolution could be further improved in order to 

be able to measure droplets below 24 µm. 

Another interesting challenge is to use a real-time image processing. Moreover, instead of 

first saving, the images on a computer and afterwards analyzing them, the camera can 

transfer only the results to a computer using a network card. This will speed up the spray 

characterization analysis. 

The developed set-up is only able to measure droplet velocities in two dimensions. Using 

two high speed cameras and stereovision, it would be possible to extract three dimensional 

information from the images. 

This imaging technique has not yet been applied on a moving spray nozzle or on a real 

sprayer in outdoor environments. For this purpose, a new set-up should be built to solve the 
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problems regarding the varying lighting conditions, shocks and dirt and an algorithm to 

control the camera’s gain and shutter parameters. 

Finally, the obtained results are very useful to compare with existing spray models (e.g. CFD 

models). 
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Appendix A TABLES 

 

Table A1. Image quality parameters (entropy ratio, contrast ratio and SNR) from the selected 
image parameters for the Macro Video Zoom lens/light/diffuser/exposure time 
combinations: entropy ratio, contrast ratio and SNR (average ± std). Mean values followed 
by the same letter in a column do not differ statistically (p<0.05; Sheffe test). 

Le
n

s 

Light Diffuser 

Entropy Ratio (-) Contrast Ratio (-) SNRa (-) 

5 μs 
exp. 
time 

10 μs 
exp. 
time 

15 μs 
exp. 
time 

5 μs 
exp. 
time 

10 μs 
exp. 
time 

15 
μs 

exp. 
time 

5 μs 
exp. 
time 

10 μs 
exp. 
time 

15 
μs 

exp. 
time 

M
ac

ro
 v

id
eo

 z
o

o
m

 le
n

s 

xenon 

none 
1.002 ±  
0.013 b 

1.006 ± 
0.004 b 

1.002 ± 
0.003 b 

1.000 ± 
0.001 b 

1.004 ± 
0.002 b 

1.003 ± 
0.003 b 

0.427 ± 
0.005 b 

0.612 ± 
0.006 b 

0.784 ± 
0.006 b 

120c 
1.000 ± 
0.003 b 

1.001 ± 
0.002 b 

1.005 ± 
0.011 b 

1.002 ± 
0.012 b 

1.007 ± 
0.011 b 

0.998 ± 
0.004 b 

2.075 ± 
0.022 b 

2.140 ± 
0.026 b 

2.226 ± 
0.017 b 

220d 

1.001 ± 
0.003 b 

1.003 ± 
0.003 b 

1.005 ± 
0.011 b 

1.006 ± 
0.014 b 

1.017 ± 
0.013 b 

1.001 ± 
0.004 b 

2.084 ± 
0.036 b 

2.095 ± 
0.028 b 

2.209 ± 
0.017 b 

Spot-
light 

none 
1.001 ± 
0.022 b 

0.999 ± 
0.016 b 

1.002 ± 
0.015 b 

0.988 ± 
0.007 b 

0.999 ± 
0.012 b 

1.002 ± 
0.016 b 

2.464 ± 
0.013 b 

3.122 ± 
0.028 b 

3.795 ± 
0.045 b 

120 
1.000 ± 
0.008 b 

0.995 ± 
0.127 b 

1.020 ± 
0.836 a 

1.001 ± 
0.040 b 

0.997 ± 
0.124 b 

2.350 ± 
1.198 a 

3.890 ± 
0.160 b 

11.463 
± 0.961 

b 

123.983 
± 

10.553 
a 

220 
1.001 ± 
0.007 b 

1.001 ± 
0.130 b 

1.000 ± 
0.974 a 

1.002 ± 
0.040 b 

1.005 ± 
0.134 b 

2.296 ± 
1.419 a 

4.093 ± 
0.161 b 

11.523 
± 1.110 

b 

162.070 
± 

22.049  
a 

Seven-
Star 
LED 

none 
1.017 ± 
0.029 b 

1.002 ± 
0.008 b 

0.996 ± 
0.006 b 

1.000 ± 
0.001 b 

1.000 ± 
0.001 b 

1.001 ± 
0.002 b 

0.574 ± 
0.002 b 

0.652 ± 
0.002 b 

0.728 ± 
0.003 b 

120 1.000 ± 
0.001 b 

1.000 ± 
0.002 b 

0.996 ± 
0.013 b 

1.001 ± 
0.002 b 

1.000 ± 
0.002 b 

0.999 ± 
0.003 b 

1.997 ± 
0.009 b 

2.373 ± 
0.004 b 

3.279 ± 
0.010 b 

220 1.000 ± 
0.001 b 

1.001 ± 
0.002 b 

1.000 ± 
0.003 b 

1.000 ± 
0.003 b 

1.000 ± 
0.001 b 

0.999 ± 
0.003 b 

2.115 ± 
0.006 b 

2.316 ± 
0.003 b 

3.342 ± 
0.009 b 

220 
1.007 ± 
0.047 b 

1.027 ± 
0.054 b 

1.018 ± 
0.112 b 

1.015 ± 
0.065 b 

1.015 ± 
0.053 b 

1.000 ± 
0.049 b 

0.323 ± 
0.024 b 

0.344 ± 
0.024 b 

0.402 ± 
0.025 b 

a SNR based on pictures with a droplet 
b no visible droplet, image oversaturated 
c 120 grit diffusing glass 
d 220 grit diffusing glass 
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Table A2. Image quality parameters (entropy ratio, contrast ratio and SNR) from the 
selected image parameters for the K2/SC Long-Distance Microscope 
lens/light/diffuser/exposure time combinations: Entropy ratio, Contrast ratio and SNR 
(average ± std). Mean values followed by the same letter in a column do not differ 
statistically (p<0.05; Sheffe test). 

Le
n

s 

Light Diffuser 

Entropy Ratio (-) Contrast Ratio (-) SNRa (-) 

5 μs 
exp. 
time 

10 μs 
exp. 
time 

15 μs 
exp. 
time 

5 μs 
exp. 
time 

10 μs 
exp. 
Time 

15 
μs 

exp. 
time 

5 μs 
exp. 
time 

10 μs 
exp. 
time 

15 
μs 

exp. 
time 

K
2

/S
C

 L
o

n
g 

-D
is

ta
n

ce
 M

ic
ro

sc
o

p
e 

le
n

s 

xenon 

none 
1.006 ± 
0.003 b 

1.297 ± 
0.138 b 

28.000 ± 
1.000 a

 
1.036 ± 
0.016 b 

3.344 ± 
0.244 b 

92.49 ± 
9.877 a  

 
6.626 ± 
0.103 b 

30.895 ± 
1.346 b 

28.680 
± 0.675 

a 

120 
1.014 ± 
0.078 b 

0.995 ± 
0.141 b 

0.984 ± 
0.047 b 

1.023 ± 
0.078 b 

0.999 ± 
0.062 b 

0.988 ± 
0.033 b 

0.339 ± 
0.027 b 

0.404 ± 
0.047 b 

0.616 ± 
0.045 b 

220 
0.988 ± 
0.045 b 

1.002 ± 
0.103 b 

0.996 ± 
0.092 b  

0.991 ± 
0.041 b  

1.002 ± 
0.070 b  

1.018 ± 
0.026 b 

0.347 ± 
0.018 b 

0.414 ± 
0.041 b  

0.634 ± 
0.033 b  

Spot-
light 

/ 
0.997 ± 
0.020 b 

1.014 ± 
0.033 b 

1.016 ± 
0.014 b 

0.996 ± 
0.024 b 

1.008 ± 
0.027 b 

1.054 ± 
0.028 b 

1.009 ± 
0.071 b 

2.650 ± 
0.165 b 

3.634 ± 
0.147 b 

120 
1.035 ± 
0.106 b 

0.993 ± 
0.039 b 

1.009 ± 
0.017 b 

0.999 ± 
0.043 b 

0.999 ± 
0.035 b 

1.002 ± 
0.026 b 

0.423 ± 
0.036 b 

0.750 ± 
0.051 b 

1.397 ± 
0.075 b 

220 
1.007 ± 
0.047 b 

1.027 ± 
0.054 b 

1.018 ± 
0.112 b 

1.015 ± 
0.065 b 

1.015 ± 
0.053 b 

1.000 ± 
0.049 b 

0.323 ± 
0.024 b 

0.344 ± 
0.024 b 

0.402 ± 
0.025 b 

Seven-
Star 
LED 

/ 
1.018 ± 
0.007 b 

1.009 ± 
0.004 b 

1.009 ± 
0.005 b 

1.165 ± 
0.031 b 

1.111 ± 
0.019 b 

1.104 ± 
0.017 b 

4.581 ± 
0.123 b 

4.315 ± 
0.071 b 

4.153 ± 
0.065 b 

120 
1.014 ± 
0.049 b 

1.012 ± 
0.052 b 

1.077 ± 
0.083 b 

1.029 ± 
0.060 b 

1.003 ± 
0.034 b 

1.022 ± 
0.037 

0.331 ± 
0.025 

0.345 ± 
0.017 b 

0.410 ± 
0.017 b 

220 
1.007 ± 
0.047 b 

1.027 ± 
0.054 b 

1.018 ± 
0.112 b 

1.015 ± 
0.065 b 

1.015 ± 
0.053 b 

1.000 ± 
0.049 b 

0.323 ± 
0.024 b 

0.344 ± 
0.024 b 

0.402 ± 
0.025 b 

a SNR based on pictures with a droplet 
b no visible droplet, image oversaturated 
c 120 grit diffusing glass 
d 220 grit diffusing glass 
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Appendix B LIST OF PUBLICATIONS 

 Book chapter: 

Hijazi, B., Decourselle, T., Vulgarakis Minov, S., Nuyttens, D., Cointault, F., Pieters, J. G. et al. 

(2012). The Use of High-Speed Imaging System for Applications in Precision Agriculture. In 

Prof.Constantin Volosencu. (Ed.), New Technologies – Trends, Innovations and Research 

(INTECH). 

 A1 publications: 

Vulgarakis Minov, S., Cointault, F., Vangeyte, J., Pieters, J.G., and Nuyttens, D., 2015. 

Development of high speed image acquisition systems for spray characterization based on 

single droplet experiments. Transactions of ASABE 58 (1), 27-37. 

Vulgarakis Minov, S., Cointault, F., Vangeyte, J., Pieters, J.G., and Nuyttens, D., 2015. Droplet 

generation and characterization using piezoelectric droplet generator and high speed 

imaging techniques. Crop Protection 69, 18-27. 

 Conference papers: 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Hijazi B, Nuyttens D. 2012. 

Development of an imaging system for single droplet characterization using a droplet 

generator. Communications in Agricultural and Applied Biological Sciences, Ghent University. 

64 th International Symposium on Crop Protection, Ghent, Belgium, 22 May 2012. 77(4): 469-

481; 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2013. Measurement of 

single droplet characteristics using high speed imaging techniques. Proceedings of the 

IASTED International Conference on Signal Processing, Pattern recognition and Applications 

(SPPRA). February 12-14, Innsbruck, Austria. 321-326. DOI: 10.2316/P.2013.798-058; 

Awarded as a Best Student Paper 

Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2013. Spray nozzle 

characterization using high speed imaging techniques. Proceedings 9th European Conference 

on Precision Agriculture. July 7 -11, Lleida, Spain. 569-576. ISBN: 978-90-8686-224-5, DOI: 

10.3920/978-90-8989-778-3  
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Vulgarakis Minov S, Cointault F, Vangeyte J, Pieters J G, Nuyttens D. 2014. Spray nozzle 

characterization using backlighted high speed imaging techniques. Aspects of Applied 

Biology January 8 -10, Oxford, UK. 122: 353-361.  

 Conference poster: 

“Evaluation of the spray characteristics of a single droplet with imaging techniques”, Poster, 

Forum for young researchers, Besancon, France, September 2012. 
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