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Samenva�ing

Alle materie is opgebouwd uit atomen. Democritus had dit al in de 5
de

eeuw

v.Chr. gepostuleerd, maar hij kon dit natuurlijk niet bewijzen. De wereld

van het atoom bleek echter moeilijk te doorgronden. Pas vanaf de 19
de

eeuw

kwam er echt schot in de zaak. Men ontdekte dat atomen niet ondeelbaar

waren en vond het deeltje dat wij tegenwoordig kennen als het elektron. In

het begin van de 20
ste

eeuw schakelde de ontdekkingstocht een versnelling

hoger. Men kwam tot de conclusie dat een atoom grotendeels leeg is maar

wel een harde kern hee� waarrond er elektronen bewegen. Verschillende

nieuwe modellen om het atoom te beschrijven werden ingevoerd en ver-

beterd. Een belangrijk doorbraak kwam toen men de deeltje-golf dualiteit

ontdekte: een elektron kan zich zowel als een golf en als een deeltje gedra-

gen. Via het golfkarakter kunnen typische golf fenomenen zoals di�ractie

en constructieve interferentie verklaard worden, terwijl het deeltjeskarakter

de meer intuïtieve beschrijving van het elektron toelaat. Het hoogtepunt

kwam met de formulering van de Schrödinger vergelijking: deze beschrij�

een systeem van deeltjes die interageren met elkaar. In het geval van elektro-

nen heb je paarsgewijze interactie via de Coulombkracht: elk elektron wordt

afgestoten van alle andere elektronen maar aangetrokken door de kern. Via

de Schrödinger vergelijking kun je bepalen wat de meest optimale toestand

(de toestand met de laagste energie) is van het systeem.

Het Heisenberg onzekerheidprincipe veranderde de interpretatie van de we-

reld van het atoom fundamenteel: de absolute zekerheden verdwenen en men

werkt nu met kansen. Op elke meting die men doet zit er een onbepaalde

factor die fundamenteel is en niet veroorzaakt wordt door het mee�oestel.

Enkel met herhaalde metingen kun je terug een vorm van zekerheid krijgen.

Dit alles is wat nu gekend staat onder de naam kwantummechanica. Deze

tak van de wetenschap beschrij� de wereld op kleine schaal: de e�ecten

ervan zijn pas belangrijk op de nanoschaal maar kunnen toch macroscopisch

gezien worden. De toestand van een systeem wordt beschreven door een

gol�unctie en de bijhorende energie. De gol�unctie met de laagste energie

gee� het meest stabiele systeem. De gol�unctie bevat alle informatie over
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het systeem. De energie kun je bijvoorbeeld gebruiken om te voorspellen of

een chemische reactie zal doorgaan of niet (verlaagt de reactie de energie

of niet?). Helaas kan enkel voor het meest simpele systeem, een waterstof

atoom, de gol�unctie en bijhorende energie exact worden neergeschreven.

Voor andere systemen nemen we onze toevlucht tot numerieke methoden

en benaderingen. Het probleem is dat de gol�unctie slecht schaalt met de

groo�e van het systeem: de hoeveel rekenkracht die nodig is om de gol�unc-

tie te bepalen stijgt heel erg sterk met de groo�e van het systeem. Dit maakt

dat het enkel voor kleine systemen mogelijk is om de volledige oplossing

te bepalen binnen een redelijke tijd. Om rond dit euvel te werken zijn vele

mogelijke oplossingen bedacht.

In dit werk bespreken we een van de methoden. Indien we werken in een

kwantumsysteem waar de deeltjes paarsgewijs interageren, dan bevat de

tweede orde dichtheidsmatrix van dit systeem alle belangrijke informatie.

Dit is een handiger object om te gebruiken dan de gol�unctie, omdat het

veel compacter is en een strikte ondergrens gee� voor de energie. Dit laatste

is handig omdat de meeste andere methoden een bovengrens geven op de

energie. De moeilijkheid is echter dat bij het zoeken naar de optimale dicht-

heidsmatrix de zoektocht beperkt moet worden tot een bepaalde klasse: de

dichtheidsmatrix moet N -representeerbaar zijn. Dit betekent dat er een en-

semble van gol�uncties moet bestaan waaruit de dichtheidsmatrix afleidbaar

is. Het is helaas bewezen dat dit een ontze�end moeilijk probleem is. Er is

een theorema dat de criteria voor N -representeerbaarheid bepaalt, maar dit

is niet bruikbaar als een praktische test. Wat we wel kunnen doen is dit the-

orema gebruiken om een set nodige voorwaarden op te stellen: dit betekent

dat we een aantal condities opleggen waaraan de dichtheidsmatrix minimaal

moet voldoen. In het algemeen zijn deze condities niet voldoende om eenN -

representeerbaarheid dichtheidsmatrix te vinden maar we kunnen het nu wel

benaderen. De meeste simpele voorwaarden leiden tot de zogenaamde twee-

index en drie-index condities. Dit zijn dan ook de condities die we gebruiken

in dit werk.

Daarnaast beva�en de meeste kwantum mechanische systemen een vorm

van symmetrie: je kunt bepaalde operaties uitvoeren op het systeem zonder

dat dit de gol�unctie of dichtheidsmatrix verandert. Deze vrijheidsgraden

kunnen gebruikt worden om de voorwaarden te vereenvoudigen.

De condities die we hebben afgeleid zijn algemeen: ze gelden voor elke golf-

functie. We beperken de condities nu tot een bepaalde klasse van gol�unc-

ties. Voor elk atoom zijn er een aantal orbitalen: dit zijn een soort van energie

niveau’s waarop een elektron kan geplaatst worden. We beperken ons nu tot

het geval waarop alle orbitalen ofwel bezet zijn door twee elektronen ofwel

leeg zijn. M.a.w. elk elektron is gepaard met een ander elektron, er mogen
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Samenva�ing

geen elektronen zijn die geen partner hebben. Deze restrictie zorgt ervoor

dat de twee- en drie-index condities sterk vereenvoudigd worden.

Het vinden van de optimale dichtheidsmatrix en bijhorende energie kan nu

worden geschreven als een gekend optimalisatie probleem: een semi-definiet

programmeer probleem. Om dit soort problemen op te lossen bestaan er

verschillende methoden. In essentie hebben we de keuze tussen twee soorten

algoritmes: robuust maar traag, of snel maar onstabiel. Bij de eerste kunnen

we de optimalisatie gewoon starten en wachten op het antwoord, bij de

tweede moeten we meestal eerst een aantal parameters afstellen voor het

antwoord kan gezocht worden.

De beperking tot gol�uncties die enkel gepaarde elektronen hebben hee� een

belangrijk nadeel. De energie is nu afhankelijk van de vorm van de orbitalen.

Naast de optimale dichtheidsmatrix moeten we ook de optimale vorm van

de orbitalen zoeken. Dit is een bijzonder lastig probleem: je moet het diepste

dal vinden in een ruig energie-gebergte zonder dat er een kaart beschikbaar

is. De enige computationele methoden die dit kunnen zijn bijzonder traag.

We gebruiken daarom een benaderende methode. We kiezen een startpunt

en gaan van daaruit op zoek naar het laagste punt door steeds te dalen.

Als we het startpunt goed kiezen, dan kunnen we het diepste punt vinden.

Als we een optimale vorm van de orbitalen hebben gevonden moeten we

ook nog de huidige oplossingen omze�en naar deze nieuwe vorm. In het

algemeen is dit ook een dure zaak om te berekenen. Wij lossen dit op door

enkel op een bepaalde manier naar beneden te gaan: ruw gezegd zou je

het kunnen vergelijken met de beperking dat je enkel in een van de vier

hoofdrichtingen van een kompas mag dalen. Op zich is dit geen beperking,

je zult misschien niet altijd de kortste weg kunnen volgen, maar je zult wel

altijd op je eindbestemming raken. Door deze beperking is het omze�en van

een oplossing naar de nieuwe orbitalen veel eenvoudiger en computationeel

sneller geworden.

Om te testen hoe goed deze methode werkt, passen we ze toe op een aantal

testsystemen. Voor een waterstofmolecule vinden we de exacte oplossing,

maar als we twee helium atomen uit elkaar trekken gaat er iets grondig

mis. We hebben bij dit systeem gebruik gemaakt van de symmetrie: als je

bijvoorbeeld de twee helium atomen van plaats verwisselt, verandert er niks

aan het systeem. Deze symmetrie blijkt echter de vorm van de orbitalen te

sterk te beperken. Als we de symmetrie loslaten en elke vorm van de orbitalen

toestaan, dan vinden we de energie die we verwacht hadden. Het volgende

systeem dat we onderzoeken is de vervorming van een rechthoek met op elke

hoek een waterstof atoom. Hieruit blijkt nogmaals hoe belangrijk het is dat

we de orbitalen niet beperken tot een bepaalde symmetrie en dat de keuze

van het startpunt cruciaal is. Vervolgens testen we het uit elkaar trekken van
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een aantal molecules. Bij N2 vinden we goede resultaten maar bij CN− en

NO+
botsen we op een gekend probleem van de techniek. Het aantal elektro-

nen moet mooi verdeeld worden over de atomen, maar onze benadering hee�

hier een fout: één elektron zal worden verspreid over beide atomen. Dit lijdt

tot een fysisch incorrecte situatie maar door de extra vrijheid is de energie

wel lager. Er bestaat een oplossingsmethode voor dit probleem maar ze is

complex en traag. De specifieke oplossing suggereert echter dat er misschien

een andere snellere methode zou kunnen bestaan om dit op te lossen. Tot slot

proberen we nog een CO molecule, en daar zijn de resultaten opnieuw goed.

We hebben in dit werk aangetoond dat door de gol�unctie te beperken tot een

bepaalde klasse, de voorwaarden voorN -representeerbaarheid veel simpeler

worden, en dat de optimalisatie een stuk sneller kan worden uitgerekend.

Het nadeel dat de vorm van de orbitalen ook moet worden geoptimaliseerd

is aangepakt. De eerst resultaten zijn belo�evol. In de toekomst kunnen we

beter optimalisatie technieken voor de orbitalen proberen en de drie-index

condities implementeren. Deze zouden de accuraatheid van de methode aan-

zienlijk moeten verbeteren en de gevonden dichtheidsmatrix zal ook dichter

bij de echte liggen.
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Abstract

Nothing is as simple as it seems at first.
Or as hopeless as it seems in the middle.
Or as finished as it seems in the end.

The world at the level of the atom is described by the branch of science called

quantum mechanics. The world of quantum mechanics is very di�erent from

our own macroscopic world. It is governed by probabilities and there is a

duality between particles and waves. Its foundations were built in the first

half of the twentieth century by a large group of physicists. The crown jewel

is given by the Schrödinger equation which describes a system of indistin-

guishable particles, that interact with each other. However, an equation

alone is not enough: the solution is what interests us. This is a problem,

because only for the smallest system is the analytical solution known. For

other systems we must resort to numerical techniques. And even then we

are plagued by an exponential scaling of the Hilbert space.

In the second half of the twentieth century, a wide array of approximations

were developed. This dissertation concerns itself with one of the oldest ap-

proximations: the variational optimization of the second-order reduced den-

sity matrix (v2DM). Its main a�ractive point at the time was the reduction

of the exponential scaling of the wave function to a quadratically scaling

matrix. Unfortunately, the computational burden was simple shi�ed to the

so-called N -representability problem: does there exist a wave function that

is compatible with the given reduced density matrix? The necessary and

su�icient conditions forN -representability are known but not in a practically

usable form. To make ma�ers worse, we now know that the problem belongs

to the class of the hardest problems we know. A general solution is extremely

unlikely to exist. Despite this, we can generate approximate solutions to the

N -representability problem by using a set of necessary conditions. This leads

to the classical P, Q and G conditions. It also gives rise to another unique

feature of this method: we always find a strict lower bound on the energy.
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A major advance came when it was realized that the variational optimization

of the second-order reduced density matrix can be expressed as a semidef-

inite programming problem. One could now use the vast machinery of the

convex optimization world. And for a brief period, the technique flourished.

Unfortunately, despite major advances the technique is still not on par with

the competition: there exist faster and more accurate methods.

This dissertation tries another approach: we assume that the wave function

has a Slater determinant expansion where all orbitals are doubly occupied

or empty. Every electron has a pairing partner. This assumption drastically

reduces the scaling of the two-index and three-index conditions. The down-

side is that the energy explicitly depends on the used orbitals and thus an

orbital optimizer is needed. The hope is that by using this approximation,

we can capture the lion’s share of the static correlation and that any missing

dynamic correlation can be added through perturbation theory.

We combine a boundary point method to optimize the second-order density

matrix with an orbital optimizer based on Jacobi rotations. Finding the op-

timal orbitals is a very hard problem: it means finding the lowest point in

an uncharted energy landscape. All methods that can solve this problem in

general have one thing in common: they are slow. We follow the standard

approximation: a local minimizer combined with a good guess of the starting

point. At each iteration, we look for the optimal pair of orbitals to rotate

and the optimal angle. The advantage of this method is that we avoid the

expensive transformation of the one- and two-body integrals as the Jacobi

rotation only mixes two orbitals at a time. As every unitary transformation

can be decomposed into a series of Jacobi rotations, our approach forms no

restriction in finding the optimal orbitals.

We test our method on several benchmark systems. For the hydrogen molecule,

we can reproduce the exact values as expected. For a helium dimer, the

dissociation limit is wrong. The spatial symmetry of the orbitals restricts the

orbital optimizer. If we allow it to break the spatial symmetry, the correct

dissociation limit is recovered. As a prototype for strong correlation, we test

a linear H8 chain. The choice of the starting point turns out to be crucial: only

the symmetry broken, localized orbitals can find the lowest energy curve.

Next we study the dissociation of several diatomic molecules. The results

for N2 are good but the CN− and NO+
molecule su�er from a known issue

with v2DM. The energy as a function of the number of electrons should be

piecewise linear: on two dissociated atoms we should find an integer charge.

Unfortunately, in v2DM this curve is convex which causes the algorithm to

favour fractional charges. By distributing a single electron over both atoms

the energy can be artificially lowered. There is a solution to this problem
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Abstract

in the form of subsystem constraints but it is expensive to use. However,

using the orbitals produced by an exact solver in the v2DM algorithm without

orbital optimization does give us the correct energy. This suggest that an

alternative solution within the orbital optimizer can be found.

We can conclude that the restriction of the N -representability conditions

to a doubly-occupied wave function has promise. The lower scaling makes

the method competitive with other methods, while the orbital optimization

can be handled e�iciently. The issue of the fractional charges still requires a

fast solution. There are several interesting paths to investigate in the future:

several alternative orbital optimizer schemes are worth pursuing, along with

improved guesses of the starting points. The conditions on the third-order

reduced density matrix still need testing. A good approximation of the energy

does not necessary mean that we also have a good approximation of the

second-order reduced density matrix itself. The three-index condition should

help in this case.
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Chapter 1

Introduction

We must be clear that when it comes to atoms, language can be
used only as in poetry. The poet, too, is not nearly so concerned
with describing facts as with creating images and establishing
mental connections.

Niels Bohr

Richard Feynman, one of the great physicists of the twentieth century, once

asked his students:

If, in some cataclysm, all of scientific knowledge were to be de-

stroyed, and only one sentence passed on to the next generation

of creatures, what statement would contain the most informa-

tion in the fewest words?

It is an interesting question and a wide range of answers is possible but

Feynman’s own idea is what is of interest here:

I believe it is the atomic hypothesis that all things are made of

atoms - li�le particles that move around in perpetual motion,

a�racting each other when they are a li�le distance apart, but

repelling upon being squeezed into one another. In that one

sentence, you will see, there is an enormous amount of infor-

mation about the world, if just a li�le imagination and thinking

are applied.

The idea that ma�er is built out of atoms is of a profound importance. The

world of the atom is a strange world, many things that are counterintuitive

are possible on the small scale of an atom. It took a long time for science
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to develop a good understanding of it. The branch of physics that deals

with the dynamics of particles on atomic length scales is called quantum

mechanics. Its foundations were laid in the beginning of the previous cen-

tury. One of the many counter-intuitive features of quantum mechanics is

that particles are described by a wave equation, the so-called Schrödinger

equation. Unfortunately this equation can only be solved exactly for systems

which are either very small or have special symmetry properties. For other

interesting cases one needs to introduce approximations and use numerical

techniques. In this work we will describe and develop one such technique,

the variational determination of the two-particle reduced density matrix,

and apply it to a number of non-trivial systems. We will use the second

quantization formalism as it is the natural language to explain this technique.

A short introduction to the formalism can be found in Chapter B on page 147.

1.1 Variational second-order density matrix optimiza-
tion

An N -particle quantum system with pairwise interactions is governed by a

Hamiltonian

Ĥ = T̂ + V̂ , (1.1)

where T̂ are the one-body operators and V̂ the two-body operators. We want

to find the ground state energy and wave function,

ĤΨ(x) = E0Ψ(x), (1.2)

where x is a vector in the space C3N×{↑, ↓}3N . There are few restrictions on

the wave function Ψ: it needs to belong to the class L2
of square-integrable

functions, it must be antisymmetric under the exchange of (indistinguish-

able) particles due to the Pauli exclusion principle and it has to be normal-

ized. In ab-initio quantum chemistry methods, the Hilbert space is usually

restricted to a space spanned by a finite, non-complete set of basis functions.

This has the advantage that eq. (1.2) is reduced to a discrete Hermitian eigen-

value problem. The construction of these basis sets is a science of its own:

most commonly used are linear combinations of Gaussian functions because

they allow for e�icient computation of the one- and two-electron integrals.

From now on, we will work in anM -dimensional space built by single-particle

orbitals. We will refer to these single-particle states with Greek le�ers: α, β,

γ, . . . A single-particle state is always the product of a spatial orbital and a

spin state. To refer to the spatial orbital we will use Roman le�ers: a, b, c,
etc.
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In the second quantization formalism (see Chapter B), the Hamiltonian (1.1)

can be wri�en as

Ĥ =
∑
αβ

Tαβ â
†
αâβ +

1

4

∑
αβγδ

Vαβ;γδ â
†
αâ
†
β âδâγ , (1.3)

where Tαβ = 〈α|T̂ |β〉 and Vαβ;γδ = 〈αβ|V̂ |γδ〉 are the one- and two-

electron integrals. In this work, we only consider Hamiltonians which are

field-free (e.g. no magnetic field), non-relativistic and real. The wave function

is always over the field R. These are the default assumptions in quantum

chemistry. For atoms and molecules, this means that T̂ is the sum of the

electronic kinetic energy and the nuclei-electron a�raction, whereas V̂ rep-

resents the interelectronic Coulomb repulsion. We always work within the

Born-Oppenheimer approximation [1]: we assume that the wave function

can be split in its electronic and nuclear degrees of freedom and we neglect

the la�er. The associated Schrödinger equation in its matrix form is

Ĥ |ψ〉 = E0 |ψ〉 . (1.4)

The most simple solution is the mean-field approximation, also known as

Hartree-Fock (HF), in which |ψ〉 is given by a single Slater determinant:

|ψ〉 = â†α1
â†α2

. . . â†αN
|〉 . (1.5)

A Slater determinant is nothing more than the antisymmetric linear com-

bination of a set of orthogonal single-particle states. There are
M !

N !(M−N)!
possible Slater determinants if the dimension of the single-particle basis is

M and N the number of particles. They form a complete basis in which we

can expand the wave function

|ψ〉 =
∑

α1α2α3...αN

cα1α2α3...αN â†α1
â†α2

â†α3
. . . â†αN

|〉 . (1.6)

In the Configuration Interaction (CI) method [2], the wave function is wri�en

as a linear combination of a set of Slater determinants. The coe�icients

are then optimized to find the lowest energy in eq. (1.4). The di�iculty in

this method lies in picking a suitable set of Slater determinants. The best

possible solution within the basis set limit is found when all possible Slater

determinant are used. This is called Full Configuration Interaction (FullCI)

and coincides with the exact diagonalization of the Hamiltonian matrix. Un-

fortunately, this is unfeasible for all but the smallest systems.

In practice, the expansion (1.6) is truncated at some point. The usual ap-

proach is to use the Hartree-Fock solution as a reference point and then
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Variational second-order density matrix optimization

add Slater determinants which are excitations of the reference Slater de-

terminant: one or more occupied orbital are replaced with a unoccupied

(virtual) orbital. In this way, a hierarchy is found: Slater determinants can

be cataloged according to the number of excitations needed starting from

the reference point. The number of excitations used is denoted by a le�er:

S for single excitations, D for double excitations, T for triple excitations, etc.

These methods are called single-reference as they use one reference Slater

determinant. This is not always a good approximation: for example during

bond-breaking, multiple independent Slater determinants in the wave func-

tion (1.6) will become important. The solution here is to use multi-reference

methods like Multi-Configurational Self-Consistent Field (MCSCF) [1, 2].

In MCSCF, both the coe�icients for the Slater determinants as well as the

single-particle orbitals in the Slater determinants are optimized.

The contributions to the energy are usually split up into two parts: dynamic

correlation and non-dynamic (static) correlation. There is no unambiguous

distinction between both but as a rule of thumb: the FullCI wave function

will have a (small) number of dominant Slater determinants. These are re-

sponsible for the static correlation. The dynamic correlation is given by the

Slater determinants which are excitations of the dominant set.

A more natural way to describe the state of anN -particle quantum system is

through the so-called N th-order density matrix [3]. In reality most systems

are entangled with their environment and they are described by an ensemble

of wave functions. This is elegantly expressed with the N th-order density

matrix D

D(x;x′) =
∑
i

wiΨi(x)Ψi(x
′), (1.7)

where wi ≥ 0 and

∑
iwi = 1. The N th-order density matrix is positive

semidefinite and normalized to 1. A special case is a “pure state density”,

where the system is characterized by a single wave function,

D(x;x′) = Ψ(x)Ψ(x′). (1.8)

It is characterized by the fact that D should be idempotent: D2 = D. The

first-order reduced Density Matrix (1DM) is found by integrating out all

degrees of freedom except those belonging to a single particle:

ρ(x1;x′1) = N

∫
D(x1, x2, . . . , xN ;x′1, x2, . . . , xN )dx2 . . . dxN . (1.9)

Dirac showed that Hartree-Fock solution can be expressed solely using the

1DM [4]. In other words, the 1DM contains the same information as a single

Slater determinant. The pth-order reduced density matrix is defined in a
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similar way: all degrees of freedom but p are integrated out. From now on,

we will only use the second quantization. In this formalism, the 1DM ραβ
and the second-order reduced Density Matrix (2DM) Γαβ;γδ are given by

ραβ =
∑
i

wi 〈ψi|â†αâβ|ψi〉 , (1.10)

Γαβ;γδ =
∑
i

wi 〈ψi|â†αâ
†
β âδâγ |ψi〉 , (1.11)

for an ensemble of wave functions (wi ≥ 0 and

∑
iwi = 1). The pure

state case is found when all except one wi = 0. The 1DM and 2DM are

not independent, for we can extract the 1DM out of the 2DM as:

ραβ =
1

N − 1

∑
λ

Γαλ;βλ. (1.12)

A key observation is that the ground state energy of the Hamiltonian (1.3)

can be expressed as a linear function of the 2DM

E0 = Tr (KΓ) =
1

4

∑
αβγδ

Kαβ;γδΓαβ;γδ =
∑
α<β

∑
γ<δ

Kαβ;γδΓαβ;γδ, (1.13)

where

Kαβ;γδ =
1

N − 1
(Tαγδβδ − Tβγδαδ − Tαδδβγ + Tβδδαγ) + Vαβ;γδ, (1.14)

is the reduced Hamiltonian. Not only the ground state energy but the expec-

tation value of any one- or two-particle operator can be calculating using

the 2DM. Husimi [5] was the first to realize this in 1940. The full wave

function contains all the information about the system but is a much more

complicated object. The 2DM is a much more compact object which for most

practical purposes is su�icient. It comes close to the “ultimate reduction” for

an interacting many body problem. This compactness is the main a�ractive

feature of the 2DM: the dimension of the 2DM scales quadratically with

the single-particle dimension and is independent of the number of parti-

cles. It led to the idea of quantum mechanics without wave functions: the

linear function (1.13) is used to variationally optimize the 2DM, henceforth

called Variational Optimization of the second-order reduced Density Matrix

(v2DM). However, when Coleman in 1951 performed the first variational

optimization of the 2DM on Lithium, he was astonished to find an energy

that was 20% below the ground state energy [6]. He realized that he varied

over a too large class of trial 2DM’s. Independently, Mayer [7] and Löwdin

[8] published similar results in 1955. Tredgold [9] pointed out that the varia-

tional calculations done by Mayer lead to unphysical results and concluded
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that additional constraints would be needed. In 1963 Coleman called this

the N -representability problem [10]: what are the necessary and su�icient

conditions on a 2DM to be derivable from a ensemble of wave functions, i.e.
eq. (1.11) must hold for all trial 2DM’s. Coleman derived the necessary and

su�icient conditions for N -representability on the 1DM in his paper, and

gave several necessary conditions on the 2DM. In 1963 a major step forward

was made by Garrod and Percus [11] who derived the Q and G conditions.

The computational results using these conditions on the Beryllium atom were

promising: the obtained results were quite accurate [12, 13]. However, Beryl-

lium turned out to be a special case: due to its simple electronic structure,

the Q and G conditions performed extremely well. In other systems, the same

conditions unfortunately did not perform as well [14, 15]. This led to a 25-

year-long period of darkness. While in the 1960’s there was still hope that

the N -representability problem could be solved, it became clear that it is a

very fundamental problem without a clear path forward.

In the 1990’s, a renaissance arrived. Through another method, known as the

contracted Schrödinger equation [16, 17], several groups were able to ap-

proximate the 2DM directly, without need for an underlying wave functions

[18, 19]. This renewed interest in the direct variational calculation of the

2DM. In 2001, Nakata et al. [20] realized that the variational optimization

problem could be wri�en as a semidefinite program [21], which is a class

of well-known convex optimization problems [22]. They used an o�-the-

shelf semidefinite solver [23] to calculate the energies of several atoms and

molecules with good accuracy. Mazzio�i [24] also jumped on the wagon and

the train seemed unstoppable. In 2004, Zhao et al. [25] implemented three-

index conditions T1 and T2 which led to milliHartree accuracy for some sys-

tems [26, 27], and Mazzio�i [28, 29] introduced a much faster optimization

method that extended the method to larger systems. In recent years, the

variational optimization of the 2DM has gained a lot of appeal due to it being

complementary to other variational methods: it provides a lower bound on

the energy instead, of an upper bound that is found by variational methods

that focus on the wave function. Also, in stark contrast with most wave func-

tion based methods, the v2DM method does not depend on a reference state.

The energy function is exact, only the amountN -representability conditions

limit the accuracy (and speed) of the method.

To make further progress in the v2DM method, two clear directions exist: (1)

the search for newN -representability conditions which are computationally

feasible (cheap); and (2) improving the semidefinite program algorithms to

exploit the specific structure of v2DM. On the first path, Verstichel et al. [30]

introduced subsystems constraints to fix the problem of fractional charges

[31]. Shenvi and Izmaylov [32] introduced active-space constraints. Stricter
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bounds on the two-index conditions were derived [33, 34]. Spin symmetry

and point-group symmetry of molecules were exploited [35]. A stronger

three-index condition was derived [36]. System-specific constraints were

introduced [37, 38]. Even excitation energies were calculated [39] using the

variationally optimized 2DM. Additional constraints for non-singlet states

were discussed [40]. Linear inequalities for the 2DM were found [41–43].

This list is far from conclusive and only aims to give a glance of the activity

on theN -representability front. Several books and review papers are wri�en

about v2DM and they provide an excellent overview of the road so far [6, 44–

48].

On the semidefinite programming front, several algorithms were tried and

customized to v2DM [28, 49–51]. The boundary point method [52] is cur-

rently the fastest, but it is not always stable. In the convex optimization

literature, v2DM is known under the category ’very large scale’: the most

common semidefinite programming problems are much smaller. There exist

general purpose solvers [23] but they are not e�icient enough for our problem

size.

Currently, the popularity of v2DM has again stagnated. The method is still

not competitive with other popular methods like Coupled Cluster with Sin-

gles, Doubles and Triples in Perturbation (CCSD(T)), the so-called golden

standard [53] in quantum chemistry. Although at present, much larger sys-

tems than in de past can be treated, the fundamental problem remains the

N -representability. While the three-index conditions lead to considerably

improved accuracy, they are computationally very expensive and thus un-

feasible for larger systems. The quest for cheap yet accurate conditions con-

tinues.

In Chapter 2 the N -representability problem is introduced and the classical

approximation to it. We discuss the use of symmetry to simplify the condi-

tions and end with the restriction to the class of Doubly Occupied Configu-

ration Interaction (DOCI) wave functions. We continue in Chapter 3 with

an overview of the methods we use to solve a semidefinite programming

problem and how we can tailor the algorithm to the specific case of v2DM.

A�er this we discuss in Chapter 4 the motivation of the restriction to a DOCI

wave function and put it to the test on a array of benchmark systems. In the

final Chapter 5 we draw some conclusion about the merits of this approach.

1.2 Conventions

Greek le�ers (α, β, . . . ) are used to denote a single-particle state. The spatial

part of an orbital will be referred to by Roman le�ers (a, b, . . . ). Almost all
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summations will run over the single-particle states unless explicitly marked

otherwise. To lighten the notation, the bounds of the sum over single-particle

states will not be shown. The trace of a four-index tensor object is defined as

Tr (A) =
∑
α<β

∑
γ<δ

Aαβ;γδ =
1

4

∑
αβγδ

Aαβ;γδ (1.15)

10



Chapter 2

The N -representability
problem

For a given wave function, the second-order reduced Density Matrix (2DM)

can be calculated using its definition (1.11). However, when given a random

symmetric matrix, is it possible to find a corresponding (ensemble of) wave

function which has the given matrix as the 2DM? This is the essence of theN -

representability problem. In the early days of Variational Optimization of the

second-order reduced Density Matrix (v2DM), there was still hope that this

problem could e�ectively be solved. Coulson [54] stated its importance at a

conference about “Molecular Structure Calculations” in Boulder, Colorado in

1959:

There is an instinctive feeling that ma�ers such as electron cor-

relation should show up in the two-particle reduced density ma-

trix. . . . but we still do not know the conditions that must be sat-

isfied by the 2DM. Until these conditions have been elucidated,

it is going to be very di�icult to make much progress along these

lines. . .

In this chapter we will show that the hope of finding a solution for the

N -representability problem is idle. A formal theorem about the necessary

and su�icient conditions will be presented which we will use to find some

practically usable necessary conditions. We also look at what we e�ectively

can impose from the symmetry of the wave function in the 2DM. In the

second part of this chapter, we rederive the conditions for a specific kind

of Configuration Interaction (CI) wave function which simplifies these con-

ditions greatly.
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There are two kinds ofN -representability: pure and ensemble, depending on

whether the 2DM is derivable from a pure wave function or an ensemble of

wave functions. We will only be concerned with ensembleN -representability

in what follows. The set of ensemble N -representable 2DM’s is a closed

convex set (see Chapter C on page 149). This is interesting because a convex

set is completely determined by its extreme points due to the Krein-Milman

theorem [55]. It can be shown that the extreme points for ensemble N -

representability are the pure states [6, 10]. The convexity will turn out to

be paramount importance. For a long time, it was believed that the 2DM

for the non-degenerate ground state of a Hamiltonian (with at most two-

particle interaction) corresponds to a unique wave function or ensemble of

wave functions [6] but recently counterexamples were found [56].

2.1 General N -representability theorem

The following theorem states the necessary and su�icient conditions for N -

representability of a pth-order reduced density matrix.

Theorem 1. A pth-order reduced density matrix pΓ, is N -representability if
and only if

∀H(p) : Tr
(
pΓH(p)

)
≥ E0(H(p)) , (2.1)

where E0(H(p)) is the ground state energy of the Hamiltonian H(p).

A graphical depiction of this theorem can be found in Figure 2.1 on the facing

page. The boundary of the convex set of N -representable pth-order reduced

density matrices is formed by an infinite number of tangent hyperplanes,

where each hyperplane represents a p-particle Hamiltonian and its ground

state energy. Proving the necessary statement is easy: in case that the pth-

order reduced density matrix is N -representable, this theorem simply states

that the expectation value of the reduced density matrix with a Hamiltonian

cannot be lower than the ground state energy of that Hamiltonian. To prove

the su�icient statement, we first make a detour to the separating hyperplane

theorem [22]:

Theorem 2. Let A and B be two disjunct non-empty convex sets than there
exists a hyperplane that separates both sets: there exists an a and b such that
∀x ∈ A, 〈a, x〉 ≥ b and ∀x ∈ B, 〈a, x〉 ≤ b.

Let us now assume that
pΓ̃ is not N -representable. The separating hyper-

plane theorem implies that there exists a Hamiltonian H(p)
for which

Tr
(
pΓ̃H(p)

)
≤ k, (2.2)
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Figure 2.1: Graphical depiction of the necessary and su�icient conditions

for N -representability. Every Hamiltonian H(p)
can be rep-

resented by a hyperplane that bounds the convex set of N -

representable
pΓ.

while for all N -representable reduced density matrices
pΓ,

Tr
(
pΓH(p)

)
≥ k. (2.3)

Now we have

Tr
(
pΓ̃H(p)

)
≤ k ≤ E0(H(p)) ≤ Tr

(
pΓH(p)

)
, (2.4)

becauseE0(H(p)) is the lowest possible value obtainable by the last trace due

to the variational principle. We can conclude that if a reduced density matrix

is not N -representable, there will be a Hamiltonian for which the reduced

density matrix will give a ground state energy which is too low.

This theorem also shows that the 2DM corresponding to the ground state

wave function of a Hamiltonian will be on the border of theN -representable

convex set [6]. One can even say that every point on the border corresponds

to the ground state of some Hamiltonian. Note that this in general is not in-

vertible: a 2DM on the border can correspond to the ground state of multiple

Hamiltonians.

A noteworthy fact is the unitary invariance of this theorem. The ground state

energy of the p-Hamiltonian H(p)
is not dependent on the choice of single-

particle basis. Any unitary transformation of the single-particle basis will
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lead to the same ground state. This also means that the N -representability

conditions must be unitary invariant.

This theorem is not directly usable as a test for N -representability as it re-

quires the ground state energy of every possible Hamiltonian beforehand. It

can however be used as a necessary condition as we will show in Section 2.3.

2.2 N -representability is QMA-complete

Although we now have some insight into the problem, we are still no closer

to a real solution. And unfortunately, in the general case, we never will:

in 2007, it was proven by Liu, Christandl, and Verstraete [57] that the N -

representability problem is QMA-complete. This is the quantum generaliza-

tion of NP-complete. To explain what this means, we will make a short detour

into computational complexity theory. First, we will define some commonly

used terms:

• Polynomial Time: an algorithm runs in polynomial time if there is an

upper bound on the runtime, expressed as a polynomial in the problem

size.

• Deterministic Turing machine: a theoretical machine [58, 59] devised

by Turing in 1937 for computations. Every non-quantum computer

today is a deterministic Turing machine. It consists of an infinitely

long tape divided into cells, with in each cell a symbol. These symbols

belong to a finite alphabet. There is also a head which can read the

symbol in the current cell and move the tape to the next or previous cell.

The machine has a state register which holds its state and a finite table

of instructions that, given the current state and the current symbol,

tells what to do next. It can take three consecutive actions: replace the

symbol in the current cell with another, move the head to the next or

previous cell, and change the state register to a new state.

• Non-deterministic Turing machine: in a deterministic Turing machine,

the action table holds exactly one action for every possible symbol

and state. In a non-deterministic Turing machine, multiple actions are

possible and it follows them all in parallel. One could think of it as

a Turning machine that can clone itself. A non-deterministic Turing

machine and a deterministic Turing machine are equivalent in what

they can calculate, they di�er in the time it takes them to do it. It

should be noted that a quantum computer is not a non-deterministic

Turing machine.
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The N -representability problem

• Decision problem: a question to which the answer is yes or no. The

question can have several inputs. For example: given x, is x a prime

number?

• Promise problem: a decision problem along with a promise about the

inputs. For example: given a natural number x, is x a prime number?

With that knowledge, we can define the classic complexity classes:

• Deterministic Polynomial Time (P): a decision problem that can be

solved in polynomial time on a deterministic Turing machine. For ex-

ample: given a natural number x, is x a prime number [60]? Or what

is the greatest common divisor for two numbers x and y. These are

problems which can be solved e�iciently.

• Nondeterministic Polynomial Time (NP): a decision problem that can

be solved in polynomial time on a non-deterministic Turing machine.

However, the proof of the answer can be verified in polynomial time

on a deterministic Turing machine. This means that if we are given

a specific instance of a problem and a witness (or certificate) that the

answer is yes, we can verify that e�iciently. For example: integer/prime

factorization. Finding the factorization is di�icult, but verifying a given

factorization is easy.

• NP-hard: a problem is NP-hard, when any problem in NP can be re-

duced to it in polynomial time. These problems are at least as hard

as the hardest problems in NP. Furthermore, if a polynomial time al-

gorithm is found for any NP-hard problem, all NP-hard problems are

solved. Notice that not all NP-hard problems are in NP: a NP-hard

problem does not have to be a decision problem. For example, the

traveling salesmen problem: given a set of places and the distances

between them, find the shortest route to visit all the places exactly

once.

• NP-complete: a problem is NP-complete when it is in NP and in NP-

hard. For example, the decision version of the traveling salesmen: when

given a total distance L, is there a path with a shorter total distance?

As this is a subset of NP, the solution can be verified in polynomial

time.

• Bounded-Error Probabilistic Polynomial Time (BPP): runs in polyno-

mial time on probabilistic Turing machine. This is a deterministic Tur-

ing machine together with a random number generator: it is allowed
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N -representability is QMA-complete

Figure 2.2: The relation between the di�erent complexity classes. The ques-

tion whether P=NP is one of the unsolved millennium problems

and the associated prize is one million dollars [61].

to make random decisions but the probability of giving the wrong an-

swer is at most 1/3 (bounded error). The certainty of a solution can be

improved by doing multiple computations. For example, some Monte-

Carlo algorithms fall under this class. The class P is clearly a subset of

BPP but its relation to NP is not yet known.

• Merlin-Arthur (MA): a class of decision problems that can only be com-

puted non-deterministically. The Merlin-Arthur protocol is a kind of

game: in this system, Merlin has access to unlimited computational

power and sends a certificate (or proof) of the problem to Arthur. Using

a BPP, Arthur then needs to verify the certificate so that if the answer is

yes, he must conclude so with a probability of a least 2/3. If the answer

is no, Arthur must accept all certificates with a probability of at most

1/3.

The relation between the di�erent classes is shown in Figure 2.2. All of these

classes have a quantum version, in which probabilities enter the game. But

first we must introduce a quantum computer: quantum computers maxi-

mally exploit the non-classical features of a quantum (many-body) system.

In analogy with classical information theory, information can be encoded in

the quantum states of a quantum system, like the two spin projections of a

spin 1/2 particle, also referred to as a qu-bit. A qubit can be in a superposition

of both 0 and 1. However in sharp contrast with classical bits, two qubits

can become entangled, leading to remarkable quantum algorithms that are

impossible on a classical level, such as prime-factorization with a polynomial

scaling (in the input size) [62], or O(
√
N) searching in an unsorted database

[63].
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• Bounded-Error �antum Polynomial Time (BQP): A quantum version

of BPP. It uses a qubit instead of a random number generator. The

above mentioned prime-factorization is part of BQP.

• �antum Merlin Arthur (QMA): the quantum generalization of NP. It

is the same as MA but now Arthur has a BQP to help him verify the

certificate. The certificate can now take the form of a quantum state.

For example, for a given Hamiltonian, is the ground state energy less

than Ẽ? The certificate in this case would be the ground state wave

function. Just like the class NP, it is hard to find a solution, but once

found, it is easily verified for its correctness.

QMA-hard and QMA-complete have the same relative meaning as in the

classical case.

We now return to the original problem ofN -representability which was proven

to be QMA-complete [57, 64]. Liu, Christandl, and Verstraete [57] proved this

first by showing the QMA-hardness of the problem. They did this by reducing

the N -representability problem to the 2-local-spin Hamiltonian which was

already proven to be QMA-complete [65, 66] (the 2-local refers to a Hamil-

tonian with spins pairwise interacting). Secondly, they proved that it is part

of the QMA class by building a setup in which Arthur can verify the N -

representability with the requested accuracy and soundness. The proof for

Arthur in this case would be the N th-order density matrix D. It is easy to

verify that the original Γ is reducible from this density.

In this regard, the variational optimization of the second-order density matrix

is similar to Density Functional Theory (DFT) [67–69]. Both are exact in

principle but depend on an unknown: N -representability for v2DM and the

universal functional for DFT. The universal functional has also been shown

to be QMA-complete [70].

Note that computational complexity theory deals with worst-case scenarios.

It might be that in specific cases, the N -representability problem can be

solved due to, for example, symmetry. In the case of N = 2 and N = 3 [71],

the necessary and su�icient conditions forN -representability of the 2DM are

known. The ensemble N -representability of the first-order reduced Density

Matrix (1DM) is an entirely di�erent ma�er: it belongs to the complexity

class P.

2.2.1 Formal definition

The problem of N -representability is special case of a general set of prob-

lems knows as quantum marginal problems [72–74]. The classical marginal
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problem [75] is defined as follows: given a set of random variables X1, X2,
. . . , Xn and their joint probability distribution, p(X1, X2, . . . , Xn), we can

calculate a k marginal distribution. This is done by integrating over a subset

of n−k random variables. For example, one of the

(
n
k

)
marginal distributions

is

gkn(X1, X2, . . . , Xk) =

∫
p(Xk+1, Xk+2, . . . , Xn)dXk+1 . . . dXn. (2.5)

The classical marginal problem is the question, when given the set of all k
marginal distributions gkn(. . .), does there exist a joint distribution p(X1, X2,
. . . , Xn) that is compatible with it in the sense of eq. (2.5)? The quantum

version of the marginal problem for identical particles is found when the

probability distribution is replaced by theN th-order densityD. The marginal

distribution is then the kth-order reduced density matrix

kΓα1α2...αk;β1β2...βk =
∑

αk+1...αN

∑
βk+1...βN

NDα1α2...αN ;β1β2...βN (2.6)

Due to the fact that we work with identical particles and that any permuta-

tion of them should results in the same density up to a sign, all

(
N
k

)
marginal

distribution are the same. The question in the quantum version is then: what

are the necessary and su�icient conditions for eq. (2.6) to hold. We can now

also see that the necessary and su�icient conditions for N -representability

of the
kΓ in case ofN = k are trivial as the

kΓ is then theN th-order density

D matrix. The conditions on the N th-order density matrix D are much

simpler: it should be positive semidefinite, D � 0, and the trace should be

one, Tr (D) = 1.

2.3 Approximately N -representability conditions

In Section 2.1 on page 12 we showed the necessary and su�icient conditions

for N -representability. These required the knowledge of the ground state

energy of every possible Hamiltonian and are thus not usable as a su�icient

condition. We can, however, use it as a necessary condition: if we restrict

(2.1) to Hamiltonians of which we know the ground state energy or a lower

bound on it, we can approximate the convex set of N -representable 2DM’s.

In Figure 2.3 on the next page we give a graphical interpretation of this idea.

The approximate set of N -representable 2DM will be larger than the true

set: there will be 2DM’s which fulfil all the necessary conditions but are still

not derivable from an ensemble of wave functions. As a consequence the

variational optimization of the 2DM will give a lower bound on the energy.

This is one of the highly a�ractive features of v2DM.
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The N -representability problem

Figure 2.3: Graphical depiction of the necessary conditions for N -

representability. H
(p)
1 belongs to the class of Hamiltonians of

which we know a bound on ground state energy whileH
(p)
2 does

not. The true convex set of N -representable
pΓ is smaller than

the approximate convex set delimited by the Hamiltonians of the

class of H
(p)
1 .

2.3.1 The first-order reduced density matrix

The N -representability conditions for the 1DM are in the computational

complexity class P as we will show. The 1DM is defined as

ραβ = 1Γ =
∑
i

wi 〈ψi|â†αâβ|ψi〉 , (2.7)

with

∑
iwi = 1 and wi ≥ 0. From now on, we will use ρ to denote the 1DM.

Several properties can be easily derived from the definition (2.7)

ραβ = ρβα, (2.8a)

Tr (ρ) =
∑
α

ραα = N, (2.8b)

ρ � 0. (2.8c)

The last equation means that the 1DM must be positive semidefinite (see

Chapter C on page 149). This can be understood by thinking of eq. (2.7) as

an overlap. If we transform to the single-particle basis which diagonalizes

the 1DM, the eigenvalues will be the norm of the states and thus have to be

larger or equal to zero. The eigenvalues of the 1DM are called the natural
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occupation numbers [8] and the corresponding eigenvectors are the natural

orbitals or simply the naturals.

A class of Hamiltonians for which we know a lower bound on the ground

state energy is giving by

Ĥ = B̂†B̂, (2.9)

as they are positive semidefinite

z†Ĥz = z†B̂†B̂z = ‖Bz‖2 ≥ 0. (2.10)

The operator B̂ is a p-particle operator. For the 1DM there are two subclasses,

• B̂† =
∑

α pαâ
†
α leads to∑

αβ

pα 〈ψ|â†αâβ|ψ〉 pβ ≥ 0. (2.11)

This is equivalent with the already stated condition that the 1DM has

to be positive semidefinite.

• B̂† =
∑

α qαâα leads to∑
αβ

qα 〈ψ|âαâ†β|ψ〉 qβ ≥ 0. (2.12)

This can be wri�en as a function of the 1DM using the fundamental

anticommutator relations (B.5) to find

q = 1− ρ � 0 (2.13)

This condition means that the occupation number of an orbital cannot

be greater than one or that the probability of finding a hole has to be

positive.

Both conditions together enforce that the eigenvalues of the 1DM have to

lay in the interval [0, 1]:
0 � ρ � 1 (2.14)

This is of course nothing but the Pauli Exclusion principle. The bounds are

strict: in the Hartree-Fock solution (a single Slater determinant) the orbitals

will have an occupation of either zero or one. This makes us wonder if con-

dition (2.14) is also su�icient for N -representability of the 1DM.

We already showed that theN -representability conditions should be unitary

invariant for transformations of the single-particle basis. The eigenvalues of

the 1DM form a complete set of unitary invariants for transformations of the
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single-particle basis. As a consequence, the N -representability of the 1DM

should be expressible solely as a function of its eigenvalues (and the number

of particles N ). Furthermore, it can be proven that the extreme elements of

the convex set of 1DM’s are N -representable by a single Slater determinant

[10]. Any element in the convex set can be wri�en as a convex combination

of the extreme elements. This means that the condition (2.14) is not only

necessary but also su�icient for N -representability!

Instead of optimizing the 2DM, we can also optimize the 1DM. To calculate

the energy however, we need the 2DM. It is possible to write the 2DM in the

cumulant expansion [18, 45, 76–78]

2Γ = ρ ∧ ρ+ ∆, (2.15)

2Γαβ;γδ = ραγρβδ − ραδρβγ + ∆αβ;γδ. (2.16)

The wedge denotes the Grassmann product (see Chapter C on page 149).

The 2DM can be split up into a part expressible in terms of the 1DM and

the cumulant ∆, which cannot be expressed as a function of the 1DM. We

can approximate the 2DM by se�ing the cumulant part equal to zero. This

boils down to taking an uncorrelated 2DM. The cumulant part holds the two-

particle correlations. In fact, the necessary and su�icient conditions for the

cumulant to be zero is that the 1DM is idempotent: ρ2 = ρ [77]. This means

that optimizing the 1DM with the cumulant of the 2DM equal to zero is

equivalent to Hartree-Fock. The optimization problem for the 1DM is

E = min
ρ

Tr
(
H(1)ρ

)
+ Tr (ρV ρ) while (2.17)

Tr (ρ) = N

ρ � 0

1− ρ � 0

The variation is done over all real, symmetric N × N matrices. The two-

particle interaction is represented by V . The energy functional is unfor-

tunately no longer linear in the 1DM, which complicates the optimization.

Veeraraghavan and Mazzio�i [79, 80] have used this approach to find a global

minimum for the Hartree-Fock energy. They rewrote the optimization prob-

lem to a Semidefinite Programming form and deduced an upper and lower

bound on the Hartree-Fock energy.

2.3.2 The second-order reduced density matrix

The second-order reduced Density Matrix (2DM) is defined by

Γαβ;γδ = 2Γαβ;γδ =
∑
i

wi 〈ψi|â†αâ
†
β âδâγ |ψi〉 . (2.18)
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Again

∑
iwi = 1 and wi ≥ 0. From now on, we will use Γ to denote the

2DM. As with the 1DM, several properties can be derived directly from the

definition (2.18)

Γαβ;γδ = −Γβα;γδ = −Γαβ;δγ = Γβα;δγ , (2.19a)

Γαβ;γδ = Γγδ;αβ, (2.19b)

Tr (Γ) =
∑
α<β

Γαβ;αβ =
N(N − 1)

2
, (2.19c)

Γ � 0. (2.19d)

The last condition can be interpreted in the same way as condition (2.8c) on

the 1DM: as the positivity of an overlap matrix in the two-particle space.

As already stated, the N -representability conditions for the 2DM form a

much harder problem. While the necessary and su�icient conditions for N -

representability on the 1DM can be enforced solely using the spectrum of

the 1DM, this cannot be the case for the 2DM. In general, a unitary trans-

formation of the single-particle basis cannot diagonalize the 2DM and thus

the spectrum of the 2DM does not form a complete set of unitary invariants.

This is one of the reasons why the N -representability problem for the 2DM

is so much harder than for the 1DM. Coleman [10] derived upper bounds on

the eigenvalues of the 2DM

0 ≤ λ ≤

{
N − 1 when N is odd

N when N is even

(2.20)

For the 2DM we can again use the positivity of Hamiltonians of the class

(2.9). To lighten the notation, we will not shown the ensemble summation in

the conditions. This leads to the following conditions

• B̂† =
∑

αβ pαβ â
†
αâ
†
β gives∑

αβγδ

pαβ 〈ψ|â†αâ
†
β âδâγ |ψ〉 pγδ ≥ 0, (2.21)

which is equivalent with condition (2.19d). This condition has several

names in the literature: P, D and I condition. We will use the la�er.

The 1DM can be extracted from the 2DM

ραβ =
1

N − 1

∑
λ

Γαλ;βλ. (2.22)

If we enforce this condition, the 1DM is also positive semidefinite∑
αβ

zαραβzβ =
1

N − 1

∑
αβ

∑
δγ

zαδγδΓαγ;βδzβ ≥ 0, (2.23)
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as this is a special case of the general condition (2.21).

• B̂† =
∑

αβ qαβ âαâβ gives∑
αβγδ

qαβ 〈ψ|âαâβ â†δâ
†
γ |ψ〉 qγδ ≥ 0, (2.24)

which is the Q condition of Garrod and Percus [11]. We define the Q

matrix as

Qαβ;γδ = 〈ψ|âαâβ â†δâ
†
γ |ψ〉 . (2.25)

Condition (2.24) expresses the positive semidefiniteness of the Q ma-

trix. The probability of finding a two-hole pair has to be greater than

zero. The Q matrix has the same symmetry in the indices as the 2DM,

e.g. (2.19a) and (2.19b). It can be wri�en as a function of the 2DM using

the fundamental anticommutator relations eq. (B.5) on page 147

Qαβ;γδ(Γ) = δαγδβδ − δαδδβγ + Γαβ;γδ

− δαγρβδ + δβγραδ + δαδρβγ − δβδραγ ,
(2.26a)

Q(Γ) = 21 + Γ− 11 ∧ ρ. (2.26b)

With 1 we denote the identity matrix, the superscript denotes the

space. This condition enforces the positive semidefiniteness of the q
matrix (2.13) in the same way as eq. (2.23). The I and Q condition

are enough to enforce the N -representability of the 1DM as the trace

is also fixed by condition (2.19c). However, the set over which the

variation is done when using the I and Q condition is still larger than

the true N -representable set of the 2DM and as such the energy be

lower than the true ground state energy.

• B̂† =
∑

αβ gαβ â
†
αâβ gives∑
αβγδ

gαβ 〈ψ|â†αâβ â
†
δâγ |ψ〉 gγδ ≥ 0, (2.27)

which leads to the G condition [11]

Gαβ;γδ = 〈ψ|â†αâβ â
†
δâγ |ψ〉 . (2.28)

This condition enforces the positive semidefiniteness of the G matrix

which expressed the probability of finding a particle-hole pair must be

larger than zero. We can again express the G condition as a function of

the 2DM using the anticommutator relations (B.5)

Gαβ;γδ = δβδραγ − Γαδ;γβ. (2.29)
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A major di�erence with the I and Q condition is that the symmetry

within a pair state is gone: Gαβ;γδ 6= Gβα;γδ . The G matrix is only

symmetric under exchange of the pair: Gαβ;γδ = Gγδ;αβ .

• B̂† =
∑

αβ g̃αβ âαâ
†
β gives∑

αβγδ

g̃αβ 〈ψ|âαâ†β âδâ
†
γ |ψ〉 g̃γδ ≥ 0, (2.30)

We will show that this condition is not independent of the G condition

and therefore it is not used. It expresses the probability of finding a

hole-particle pair.

It is possible to use a more general form of the B̂† operator in the Hamiltonian

(2.9). For the so-called G′ condition, we use

B̂† =
∑
αβ

g′αβ â
†
αâβ + C, (2.31)

where C is a constant operator. This leads to the following condition

〈ψ|B̂†B̂|ψ〉 =
∑
αβγδ

g′αβ Gαβ;γδ g
′
γδ + C

∑
αβ

g′αβ ραβ

+ C
∑
γδ

g′γδ ργδ + C2 ≥ 0 . (2.32)

It is clear that we find the G condition (2.27) when we choose C = 0. We can

rewrite the B̂† operator

B̂† =
∑
αβ

g′αβ â
†
αâβ + C

=
∑
αβ

−g′αβ âβ â†α +
∑
αβ

δαβg
′
αβ + C.

If we choose C =
∑

α−g′αα, we find the condition (2.30). The most strict

choice of C is

C = −
∑
αβ

g′αβραβ, (2.33)

which can be understood if we rewrite eq. (2.32) to

∑
αβγδ

g′αβ Gαβ;γδ g
′
γδ +

C +
∑
αβ

g′αβ ραβ

2

−
∑
αβγδ

g′αβg
′
γδ ραβργδ ≥ 0 .
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The choice (2.33) will give the lowest upper bound. The major disadvan-

tage is that the condition is not linear in Γ anymore due to the last term.

This complicates the Semidefinite Programming problem considerably and is

therefore avoided. It turns out that the G condition will give the same results

as using condition (2.31): the nullspace (the eigenspace corresponding to a

zero eigenvalue) of both conditions are the same. To understand this, let us

look at the condition that the G matrix has a zero eigenvalue∑
γδ

Gαβ;γδ vγδ =
∑
γ

ραγvγβ −
∑
γδ

Γαδ;γβvγδ = 0. (2.34)

If we trace this, we find∑
α

∑
γδ

Gαα;γδ vγδ =
∑
αγ

ραγvγα + (N − 1)
∑
γδ

ρδγvγδ

= N
∑
αβ

ραβvβα = 0. (2.35)

The G′ condition with the optimal choice for C (eq. (2.33)) is

G′αβ;γδ(Γ) = Gαβ;γδ(Γ)− ραβργδ. (2.36)

We again look at the condition for a zero eigenvalue∑
γδ

G′αβ;γδvγδ =
∑
γδ

Gαβ;γδvγδ − ραβ
∑
γδ

ργδvγδ = 0. (2.37)

This shows that if G has a zero eigenvalue, than G′ also has a zero eigenvalue

with the same eigenvector. The converse is also true. If v is an eigenvector of

G′ with zero eigenvalue, then the following vector is an eigenvector of G with

zero eigenvalue

v′αβ = vαβ −
∑
γδ

ργδvγδ
δαβ
N
, (2.38)

which can be seen from∑
γδ

Gαβ;γδv
′
γδ =

∑
γδ

G′αβ;γδv
′
γδ +

∑
γδ

ραβργδv
′
γδ

=
∑
γδ

ραβργδvγδ −
∑
γδ

Tr (ρv)
δγδ
N
ραβργδ

= ραβTr (ρv)− Tr (ρv) ραβ
∑
γ

ργγ
N

= 0.
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We have used the fact that v′ is also an eigenvector of G′∑
γδ

G′αβ;γδv
′
γδ =

∑
γδ

G′αβ;γδvγδ − Tr (ρv)
1

N

∑
γ

G′αβ;γγ = 0,

because ∑
γ

G′αβ;γγ =
∑
γ

δβγραγ −
∑
γ

Γαγ;γβ −
∑
γ

ραβργγ

= ραβ + (N − 1)ραβ −Nραβ = 0.

We have shown that the nullspaces of G and G′ coincide. This means that the

boundary of the region where G and G′ are positive semidefinite is the same

and both conditions will produce identical results. As G′ is non-linear in Γ,

we always use G.

The combination of the I, Q and G conditions are called two-index conditions.

For some systems, these conditions produce good results [81]. However, we

have seen that a good approximation to the energy does not necessarily mean

that we have a good approximation to the 2DM itself. This can be seen if

we try to calculate other operators, like the spin expectation value or the

correlation functions. To fix this, we can use higher order density matrices.

2.3.3 The third-order reduced density matrix

The third-order reduced Density Matrix (3DM) is defined as

3Γαβγ;δεζ =
∑
i

wi 〈ψi|â†αâ
†
β â
†
γ âζ âεâδ|ψi〉 , (2.39)

again with

∑
iwi = 1 andwi ≥ 0. Several properties can be directly deduced

from the definition

3Γαβγ;δεζ = sgn(σ)sgn(τ) 3Γσ(α)σ(β)σ(γ);τ(δ)τ(ε)τ(ζ) ∀σ, τ ∈ S3, (2.40a)

3Γαβγ;δεζ = 3Γδεζ;αβγ , (2.40b)

Tr
(

3Γ
)

=
∑

α<β<γ

3Γαβγ;αβγ =
N(N − 1)(N − 2)

6
, (2.40c)

3Γ � 0. (2.40d)

Property (2.40a) holds for all elements of the permutation group of 3 ele-

ments, S3. The 2DM can be calculated from the 3DM

Γαβ;γδ =
1

N − 2

∑
λ

3Γαβλ;γδλ. (2.41)
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If the 3DM fulfils condition (2.40d) then the 2DM is also be positive semidef-

inite. In the same way as for the 1DM and 2DM, we can enforce the positive

semidefiniteness of the Hamiltonian class (2.9) where B̂† has three particle

operators.

• B̂† =
∑

αβγ pαβγ â
†
αâ
†
β â
†
γ leads to∑

αβγ

∑
δεζ

pαβγ 〈ψ|â†αâ
†
β â
†
γ âζ âεâδ|ψ〉 pδεζ ≥ 0, (2.42)

which is equivalent with condition (2.40d). The probability of finding a

three-particle triplet must be larger than zero. This is the
3I condition.

• B̂† =
∑

αβγ q
1
αβγ â

†
αâ
†
β âγ leads to∑

αβγ

∑
δεζ

q1
αβγ 〈ψ|â†αâ

†
β âγ â

†
ζ âεâδ|ψ〉 q

1
δεζ ≥ 0. (2.43)

We define the
3E matrix as

3Eαβγ;δεζ = 〈ψ|â†αâ
†
β âγ â

†
ζ âεâδ|ψ〉 ,

3E � 0. (2.44)

Rewriting this as a function of the 3DM, we find

3E(3Γ)αβγ;δεζ = δγζΓαβ;δε − 3Γαβζ;δεγ . (2.45)

• B̂† =
∑

αβγ q
2
αβγ â

†
αâβ âγ leads to∑

αβγ

∑
δεζ

q2
αβγ 〈ψ|â†αâβ âγ â

†
ζ â
†
εâδ|ψ〉 q2

δεζ ≥ 0. (2.46)

We define
3F matrix as

3Fαβγ;δεζ = 〈ψ|â†αâβ âγ â
†
ζ â
†
εâδ|ψ〉 , 3F � 0. (2.47)

Rewriting this as a function of the 3DM, we find

3F(3Γ)αβγ;δεζ = 3Γαζε;δγβ + δγζGαβ;δε − δβζGαγ;δε

+ δεγΓαζ;δβ − δβεΓαζ;δγ (2.48)

This condition implies the G condition for the two-index constraint

Gαβ;γδ =
1

N + 1

∑
λ

3Fαβλ;γδλ. (2.49)
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• B̂† =
∑

αβγ q
3
αβγ âαâβ âγ leads to∑
αβγ

∑
δεζ

q3
αβγ 〈ψ|âαâβ âγ â

†
ζ â
†
εâ
†
δ|ψ〉 q

3
δεζ ≥ 0. (2.50)

We define the
3Q matrix as

3Q � 0, 3Qαβγ;δεζ = 〈ψ|âαâβ âγ â†ζ â
†
εâ
†
δ|ψ〉 . (2.51)

Rewriting this as a function of the 3DM, we find

3Q(3Γ)αβγ;δεζ = −3Γαβγ;δεζ+

δγζδβεδαδ − δγεδαδδβζ + δαζδγεδβδ − δγζδαεδβδ + δβζδαεδγδ − δαζδβεδγδ
− (δγζδβε − δβζδγε) ραδ + (δγζδαε − δαζδγε) ρβδ − (δβζδαε − δαζδβε) ργδ
+ (δγζδβδ − δβζδγδ) ραε − (δγζδαδ − δαζδγδ) ρεβ + (δβζδαδ − δαζδβδ) ργε
− (δβδδγε − δβεδγδ) ραζ + (δγεδαδ − δαεδγδ) ρβζ − (δβεδαδ − δαεδβδ) ργζ
+ δγζΓαβ;δε − δβζΓαγ;δε + δαζΓβγ;δε − δγεΓαβ;δζ + δβεΓαγ;δζ − δαεΓβγ;δζ

+ δγδΓαβ;εζ − δβδΓαγ;εζ + δαδΓβγ;εζ , (2.52a)

3Q(3Γ) = 31− 21 ∧ ρ+ Γ ∧ 11− 3Γ. (2.52b)

This condition implies the Q condition for the two-index constraints

Qαβ;γδ =
1

2

∑
λ

3Qαβλ;γδλ. (2.53)

All other permutations of the operator for the
3E and

3F condition are not

independent of these conditions. For example: B̂† =
∑

αβγ f̃αβγ âαâ
†
β âγ =∑

αβγ −f̃αβγ â
†
β âαâγ +

∑
αγ δαβ f̃ααγ âγ . This will not generate any addi-

tional constraints.

The direct optimization of the 3DM with the conditions
3I, 3E,

3F and
3Q

yields be�er results than the optimization of the 2DM as all the two-index

conditions are included as well [6, 82, 83]. However, due to the computational

cost, this is not o�en done. The middle way is to keep optimizing the 2DM

but enforce some three-index constraints which can be wri�en as a function

of the 2DM. If we take the anticommutator of a three-index operator, we ef-

fectively lower the rank by one and we have something that can be expressed

as a function of the 2DM. We enforce the Hamiltonian class

Ĥ = B̂†B̂ + B̂B̂†. (2.54)

We can find three independent conditions from this class. They were first

derived by Erdahl [84] and used by Zhao et al., Hammond and Mazzio�i

[25, 26] in practical calculations.
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• B̂† =
∑

αβγ t
1
αβγ â

†
αâ
†
β â
†
γ leads to∑

αβγ

∑
δεζ

t1αβγ 〈ψ|â†αâ
†
β â
†
γ âζ âεâδ + âζ âεâδâ

†
αâ
†
β â
†
γ |ψ〉 t1δεζ ≥ 0. (2.55)

This is the T1 condition and we define the T1 matrix as

(T1)αβγ;δεζ = 〈ψ|â†αâ
†
β â
†
γ âζ âεâδ + âζ âεâδâ

†
αâ
†
β â
†
γ |ψ〉 . (2.56)

Notice that T1 = 3I + 3Q. It can be wri�en as a function of the 2DM

using the anticommutator relations (B.5) resulting in

(T1(Γ))αβγ;δεζ =

δγζδβεδαδ − δγεδαδδβζ + δαζδγεδβδ − δγζδαεδβδ + δβζδαεδγδ − δαζδβεδγδ
− (δγζδβε − δβζδγε) ραδ + (δγζδαε − δαζδγε) ρβδ − (δβζδαε − δαζδβε) ργδ
+ (δγζδβδ − δβζδγδ) ραε − (δγζδαδ − δαζδγδ) ρεβ + (δβζδαδ − δαζδβδ) ργε
− (δβδδγε − δβεδγδ) ραζ + (δγεδαδ − δαεδγδ) ρβζ − (δβεδαδ − δαεδβδ) ργζ
+ δγζΓαβ;δε − δβζΓαγ;δε + δαζΓβγ;δε − δγεΓαβ;δζ + δβεΓαγ;δζ − δαεΓβγ;δζ

+ δγδΓαβ;εζ − δβδΓαγ;εζ + δαδΓβγ;εζ , (2.57a)

T1(Γ) = 31− 21 ∧ ρ+ Γ ∧ 11. (2.57b)

The 1 again denotes the identity matrix in the appropriate space.

• B̂† =
∑

αβγ t
2
αβγ â

†
αâ
†
β âγ leads to∑

αβγ

∑
δεζ

t2αβγ 〈ψ|â†αâ
†
β âγ â

†
ζ âεâδ + â†ζ âεâδâ

†
αâ
†
β âγ |ψ〉 t

2
δεζ ≥ 0. (2.58)

This is the T2 condition and we define the T2 matrix as

(T2)αβγ;δεζ = 〈ψ|â†αâ
†
β âγ â

†
ζ âεâδ + â†ζ âεâδâ

†
αâ
†
β âγ |ψ〉 . (2.59)

Notice that T2 = 3E + 3F. As a function of the 2DM this becomes

(T2(Γ))αβγ;δεζ = (δαδδβε − δαεδβδ)ργζ − δαδΓγε;ζβ + δγζΓαβ;δε

+ δβδΓγεζα + δαεΓγδ;ζβ − δβεΓγδζα (2.60)

• B̂† =
∑

αβγ t
3
αβγ â

†
αâβ â

†
γ leads to∑

αβγ

∑
δεζ

t3αβγ 〈ψ|â†αâβ â†γ âζ â†εâδ + âζ â
†
εâδâ

†
αâβ â

†
γ |ψ〉 t3δεζ ≥ 0. (2.61)
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This is the T3 condition and we define the T3 matrix as

(T3)αβγ;δεζ = 〈ψ|â†αâβ â†γ âζ â†εâδ + âζ â
†
εâδâ

†
αâβ â

†
γ |ψ〉 . (2.62)

As a function of the 2DM this becomes

(T3(Γ))αβγ;δεζ = δαδδβγδεζ − δαδΓεγ;βζ − δαζΓεζ;δβ − δγδΓαε;βζ
+ δβεΓαγ;δζ − δγζΓαε;δβ − δαδδεζρβγ + δαζδγβρεδ

+ δγδδεζραβ + (δαδδγζ − δαζδγδ)ρβε. (2.63)

Like the G′ condition, it is also possible to derive a T′2 condition. This condi-

tion will turn out be more useful than G′. The T′2 condition is generated by

Ĥ = B̂†1B̂1 + B̂2B̂
†
2, (2.64)

where

B̂†1 =
∑
αβγ

t2αβγ â
†
αâ
†
β âγ +

∑
λ

â†λ, (2.65a)

B̂†2 =
∑
αβγ

t2αβγ â
†
αâ
†
β âγ . (2.65b)

As the sum of positive semidefinite operators (2.64) must be positive semidef-

inite too. The condition consists of the T2 condition plus additional terms∑
αβγ

∑
δεζ

t2αβγ(T2)αβγ;δεζ t
2
δεζ +

∑
αβγλ

t2αβγ 〈ψ|â†αâ
†
β âγ âλ|ψ〉 t̃

2
λ

+
∑
µδεζ

t̃2µ 〈ψ|â
†
δâ
†
εâζ âµ|ψ〉 t2δεζ +

∑
λµ

t̃2λρλµt̃
2
µ ≥ 0. (2.66)

We can write this as a matrix condition

T′2 =

[
(T2)αβγ;δεζ ωαβγ;λ

ωµ;δεζ ρµλ

]
� 0, (2.67)

with

ωαβγ;λ = Γαβ;λγ . (2.68)

The condition (2.67) includes the T2 condition as a diagonal block of a positive

semidefinite matrix must also be positive semidefinite (see Chapter C on

page 149). It also encompasses the T3 condition

B̂† =
∑
αβγ

t3αβγ â
†
αâβ â

†
γ

= −
∑
αβγ

t3αβγ â
†
αâ
†
γ âβ +

∑
αβ

t3αββ â
†
α (2.69)
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This is equivalent with condition (2.65a)

t2αβγ = −t3αβγ , (2.70a)

t̃2λ =
∑
α

t3λαα. (2.70b)

In practice, the T′2 condition is used as it encompasses both the T2 and the

T3 condition for a negligible additional cost. It has been found that the T′2
condition produces slightly be�er results than the combination of T1 and T2

[46, 82].

2.3.4 Other Constraints

Until now, we used a class of positive semidefinite Hamiltonians to approxi-

mateN -representability. In principle, any knowledge about the ground state

of the system can be enforced and can possibly improve the energy or the

reduced density matrix. For example, if the ground state should be a singlet

(Ŝ = 0), the expectation value of the spin operator can be enforced

Tr (SΓ) = 0. (2.71)

For spin expectation value, we can even do be�er as will be explained in

Section 2.4.1. In general, we are of course interested in constraints that give

the largest improvement of the energy. However, only part of all conceivable

constraints will actually improve the energy.

I. Sharp conditions

Another straightforward improvement would be to have stricter bounds on

the I, Q and G conditions. The I condition reflects that the probability for

a given pair to be occupied cannot be negative. If the used basis set is large

enough and the filling is below half, it seems fair to assume that the lowest

eigenvalue of the I will be zero. However, this does not mean that there is no

room for improvement: we can look for the worst possible violation of this

and imposes it. On the other side, we can also derive the maximal eigenvalue

of the I condition: the condition belongs to a class of exactly solvable Hamil-

tonian known as the Richardson-Gaudin pairing Hamiltonians [85–87]. It is

thus possible to e�iciently calculate the largest eigenvalue [33]. In practical

procedure, we look for the worst possible violation of the upper bound so that

the condition is as tight as possible. For the Q condition, a similar approach

is possible for an upper bound. In contrast with the I condition, the lower

bound can also be improved: the Q condition expresses that the probability
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for a given pair to be unoccupied cannot be negative. It seems probable that

the lowest eigenvalue will be greater than zero. The G condition is somewhat

di�erent: there is no known way to find stricter upper or lower bounds in the

general case, but if we assume that the matrix gαβ in eq. (2.27) on page 23 is

Hermitian (B̂† = B̂), we can [34]. The eigenstates of the B̂ operator are now

Slater determinants and the eigenvalues simply are the sum of the orbital

energies of the occupied orbitals. As we assumed Hermiticity, the eigenvalues

of the G condition are the squares of the eigenvalues of B̂. Determining an

upper bound is now easy: it is either the sum of theN lowest orbital energies

or the N highest. The lower bound is an entirely di�erent story: di�erent

eigenvalues can cancel each other. It is basically an integer programming

problem. It can be shown to be related to the p-dispersion problems [34, 88],

which is NP-hard [89].

These stricter versions of the two-index conditions are know as the sharp

condition. For a complete derivation of these sharp constraints, I refer to

reference 90. Unfortunately, in practice these conditions do not improve the

result for most systems [90], and therefore they are seldom used.

II. Subsystem constraints

Another set of N -representability conditions worth mentioning are the so-

called subsystem constraints [30]. The idea is to apply constraints to the

2DM restricted to a subspace of the single-particle Hilbert space. The concept

of fractional N -representability is needed for this: using an ensemble of

wave functions with a di�erent number of particles, it is possible to give

an equivalent definition of fractional N -representability [90]. The full N -

representability conditions do not automatically fulfill the same set of con-

ditions for a subsystem. These conditions are needed in the dissociation of

diatomic molecules [30, 31, 91].

2.4 Symmetry considerations

Symmetry plays a fundamental role in physics, especially in quantum me-

chanics [92, 93]. The knowledge of the symmetry of the system allows us

to understand a great deal without even knowing the ground state wave

function. For example, the existence of the dipole momentum of a molecule

can be predicted on symmetry basis alone. There are selection rules for which

transitions of energy levels are allowed in a molecule, which are solely based

on the symmetry of the molecule. It also simplifies the possible solutions

of the Schrödinger equation as every eigenvalue can be labeled on symmetry
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grounds. In real life, symmetry is o�en associated with beauty and harmony.

In quantum mechanics, symmetry is also a source of beauty but in the math-

ematical sense. A symmetry in quantum mechanics means that the system

is invariant under an operator. Mathematically this means that the operator

must commute with the Hamiltonian of the system: if Â is the symmetry

operator then

ĤÂ |ψ〉 = ÂĤ |ψ〉 = EÂ |ψ〉 , (2.72)

from which

[Ĥ, Â] = 0. (2.73)

The basic concept in symmetry is the group: this is a set of operations that

leave a system invariant, together with following properties. If G is a sym-

metry group, together with an operation to combine two elements then

• ∀a ∈ G and ∀b ∈ G then ab ∈ G.

• There is a unique element e ∈ G such that ∀a ∈ G, ae = ea = a.

• ∀a ∈ G, there exists an element b ∈ G such that ab = ba = e.

• ∀a, b, c ∈ G: a(bc) = (ab)c.

There are 2 major categories, discrete symmetries and continuous symme-

tries. A discrete symmetry has a finite number of operations. An example

is the group Cs which contains two operations: the identity operator and a

reflection around a plane. A continuous symmetry depends on some con-

tinuous parameter. For example, a sphere has a continuous symmetry: the

group O(3) of all rotations in R3
around an axis.

The elements of a group are abstract operations, to use them on a system we

need a representation of the elements. This is where representation theory

comes in [92, 94, 95]. In representation theory, the elements of a group

are represented by linear transformations on a vector space. The dimension

of the vector space (or representation space) is called the dimension of the

representation. The following relation must hold for a representation, where

φ : G → V is the image from the group to the vector space: ∀a, b ∈ G :
φ(ab) = φ(a)φ(b). An important concept are the irreducible representations,

as these are the building blocks for all other representations. A representation

is irreducible if the representation space has no subspaces which are also

closed under the group operations. If such a subspace would exists, it is

called a subrepresentation. If the only subrepresentation of a representation

is the trivial subrepresentation (only the identity), the representation is irre-

ducible. Every other (reducible) representation can be expressed as a direct

sum of these. Linear transformations on vector spaces can be represented
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by matrices. A matrix is non-reducible if there does not exists a similarity

transformation that reduces all the matrices in the representation to a block

diagonal form. Every group has a trivial representation in which every el-

ements in represented by the identity matrix. For a complete introduction

into group theory and representation theory, I refer to references 92, 94–

96. In what follows, we will only be concerned with representations of finite

groups. We will first look at exploiting the spin symmetry of the system and

then the point group symmetry.

2.4.1 Spin symmetry

Spin is a strange, fundamental concept in quantum mechanics. It is the

intrinsic angular momentum of a particle [1, 97]. Originally, it was thought

be the e�ect of the particle spinning around its axis, hence the name [98].

Now we understand that spin is a fundamental property of a particle. Wolf-

gang Pauli is the father of the concept and worked out the mathematical

description. Spin also allows us to split all particles into two disjunct groups:

fermions and bosons. The la�er have an integer spin and are symmetric

under particle exchange while the former have a half-integer spin and are

antisymmetric under particle exchange (the Pauli exclusion principle). In this

work, we are only concerned with fermions and more specifically, electrons

with spin 1/2. In all that follows, we will assume that we are dealing with

electrons. We wish to exploit the invariance of the Hamiltonian under rota-

tions in the spin space. The symmetry group for spin 1/2 fermions is SU(2):

the group of all unitary 2 × 2 matrices with det = 1. The spin operator is

given by

Ŝ =
~
2
σ̂, (2.74)

with the three Cartesian components

Sx =
~
2
σx, Sy =

~
2
σy, Sz =

~
2
σz, (2.75)

where σ is given by the three Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.76)

As angular momentum operators, they have to obey the structure relations

of the Lie-algebra of SU(2) [92, 99].

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy. (2.77)
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The Hamiltonian is invariant under spin rotations

[Ĥ, Ŝ2] = 0, [Ĥ, Ŝz] = 0, (2.78)

with

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z . (2.79)

Furthermore, [Ŝ2, Ŝz] = 0 so that the eigenvalues and eigenvectors of the

Hamiltonian can be labeled with the eigenvalues of Ŝ2
and Ŝz . This means

that

Ŝ2 |Ψ〉 = S(S + 1) |Ψ〉 , (2.80)

Ŝz |Ψ〉 = Sz |Ψ〉 = M |Ψ〉 , (2.81)

and we can write

Ĥ |ΨSM 〉 = ESM |ΨSM 〉 . (2.82)

It is also useful to define the ladder operators which can increase or lower

M : Ŝ± = Ŝx ± iŜy . Their e�ect is

Ŝ± |ΨSM 〉 = ~
√
S(S + 1)−M(M ± 1) |ΨSM±1〉 . (2.83)

We now want to exploit this symmetry in v2DM calculations. The idea is

to use spin symmetry to reduce the size of the 2DM. In this part, we will

explicitly denote the spin in a single-particle state

|α〉 → |aσa〉 . (2.84)

Roman le�ers will be used to denote the spatial part of the single-particle

state, and σ will be used for the associated spin state. We want to couple

electrons together. For this we need the Clebsch-Gordan coe�icients: these

coe�icients allow us to reduce a coupled representation into the irreducible

(uncoupled) representations. We want to find a state that fulfills all the

previously mentioned properties of the spin operator. Let us take a look at

the case of coupling of two electrons

|ab;SMS〉 =
∑
σaσb

〈1
2
σa

1

2
σb|SMS〉 |aσabσb〉 . (2.85)

The factor 〈12σa
1
2σb|SMS〉 is a Clebsch-Gordan coe�icient for SU(2). They

can be found in Chapter D on page 153 together with some properties. Two

spin-1/2 particles can be coupled together to a singlet (S = 0) or a triplet
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(S = 1). If we write out eq. (2.85), we find

|ab; 00〉 =
1√
2

(|a ↑ b ↓〉 − |a ↓ b ↑〉) , (2.86a)

|ab; 1 −1〉 = |a ↓ b ↓〉 , (2.86b)

|ab; 10〉 =
1√
2

(|a ↑ b ↓〉+ |a ↓ b ↑〉) , (2.86c)

|ab; 11〉 = |a ↑ b ↑〉 . (2.86d)

Note that state (2.86a) is symmetric under exchange of a⇔ bwhile eqs. (2.86b)

to (2.86d) are antisymmetric. The norm of (2.85) is not unity

〈ab;SMS |cd;S′M ′S〉 = δSS′δMSM
′
S

(
δacδbd + (−1)S δadδbc

)
. (2.87)

With this knowledge, we can now define the spin-coupled version of the B̂†

operator for the I condition

B̂†
SMS

ab =
1√

1 + δab

[
â†a ⊗ â

†
b

]S
M

=
1√

1 + δab

∑
σaσb

〈1
2
σa

1

2
σb|SMS〉 â†aσa â

†
bσb
. (2.88)

Using this definition, the 2DM becomes

SMΓ
SMS ;S′M ′S
ab;cd =

∑
i

wi 〈ψSM,i|B̂†
SMS

ab B̂
S′M ′S
cd |ψSM,i〉 , (2.89)

where the sum runs over an ensemble of wave functions with spin S and spin

projection M. We now couple both B̂ operators together to total spin ST

SMΓ
SMS ;S′M ′S
ab;cd = (−1)S

′−M ′S
∑
i

wi
∑
STMT

〈SMSS
′−M ′S |STMT 〉

〈ψSM,i|
[
B̂†

SMS

ab ⊗ B̂S′M ′S
cd

]ST

MT

|ψSM,i〉 .
(2.90)

The prefactor appears because the B̂ operators need to be spherical tensor

operators (see Chapter D). As the ket and bra wave functions have the same

spin projection M, we can deduce that MT = 0. Let us now assume that

the ensemble consists of singlet wave functions (S = M = 0). It follows that

ST = 0 because of spin conservation and thus S = S′. The Clebsch-Gordan

coe�icient in eq. (2.90) reduces to

〈SMSS−MS |00〉 =
(−1)S−MS

√
2S + 1

. (2.91)
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The spin coupled 2DM for the singlet ensemble is

00Γ
SMS ;S′M ′S
ab;cd =

δSS′δMSM
′
S

2S + 1∑
i

wi 〈ψ00,i|
[
B̂†

SMS

ab ⊗ B̂SMS
cd

]0

0

|ψ00,i〉 . (2.92)

Note that this is independent of MS . The 2DM is split up into a S = 0 block

and a three-fold degenerate S = 1 block. For a singlet state, our notation

can be abbreviated to ΓSab;cd.

For higher spin states a similar reduction is possible provided we use a spin-

averaged ensemble for the wave function

SΓ
SMS ;S′MS

ab;cd = (−1)S
′−MS

∑
i

wi
∑
ST

〈SMSS
′−MS |ST 0〉

1

2S + 1

∑
M

〈ψSM,i|
[
B̂†

SMS

ab ⊗ B̂S′MS
cd

]ST

0

|ψSM,i〉 . (2.93)

All members of the spin multiplet have an equal weight in the ensemble. This

forms no restriction because of the spin symmetry: the ground state will be

degenerate in the multiplet. If we now apply the Wigner-Eckart theorem (see

Chapter D on page 153) to the operator in eq. (2.93), we find

〈ψSM,i|
[
B̂†

SMS

ab ⊗ B̂S′MS
cd

]ST

0

|ψSM,i〉 = (−1)S−M
(
S S ST
M −M 0

)
〈ψS,i||

[
B̂†

SMS

ab ⊗ B̂S′MS
cd

]ST

0

||ψS,i〉 .

(2.94)

If we replace the prefactor by following Wigner 3-j symbol (related to Clebsch-

Gordan coe�icients, see Chapter D)(
S S 0
M −M 0

)
=

(−1)S−M

2S + 1
, (2.95)

then we can use the orthogonality relation for Clebsch-Gordan coe�icients∑
M

(
S S 0
M −M 0

)(
S S ST
M −M 0

)
= δST 0 (2.96)

to find

SΓ
SMS ;S′MS

ab;cd = δSS′
1

2S + 1

1

2S + 1

∑
i

wi 〈ψS,i||
[
B̂†

SMS

ab ⊗ B̂SMS
cd

]0

0

||ψS,i〉 .

(2.97)
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Again, we find an expression that is independent of the spin projection. The

reduction of the 2DM is the same as for the singlet ensemble: a S = 0 block

and a three-fold degenerate S = 1 block. The same abbreviated notation can

be used. The symmetry in the spatial orbital indices is as follows

ΓSab;cd = (−1)SΓSba;cd = (−1)SΓSab;dc = ΓSba;dc. (2.98)

The minus factor is due to the (anti)symmetry in the index, like in eqs. (2.86a)

to (2.86d). The S = 0 block has dimension
M
4

(
M
2 + 1

)
while the S = 1 block

has a dimension of
M
4

(
M
2 − 1

)
, where M is the number of spin orbitals. If

we sum these and keep the three-fold degeneracy in mind, we find the full

dimension of the uncoupled 2DM, as expected. To summarize, the couple

and uncoupled formulas for the 2DM are

Γaσabσb;cσcdσd =
√

(1 + δab) (1 + δcd)
∑
SMS

〈1
2
σa

1

2
σb|SMS〉

〈1
2
σc

1

2
σd|SMS〉ΓSab;cd

(2.99a)

ΓSab;cd =
1√

(1 + δab) (1 + δcd)

∑
σaσb

∑
σcσd

〈1
2
σa

1

2
σb|SMS〉

〈1
2
σc

1

2
σd|SMS〉Γaσabσb;cσcdσd

(2.99b)

The reduction of the 2DM can be seen as

Γ =


→


Γ0

Γ1

Γ1

Γ1

 . (2.100)

In the same way, all conditions can be spin-adapted. The 1DM splits into two

degenerate blocks. The Q reduction is identical to the 2DM and the G condi-

tion has a similar reduction but without the symmetry in the spatial orbital

indices. The three-index conditions are more complicated as an intermediary

coupling has to take place and there are several possible paths to couple to

the total spin. For a complete description of the spin-adapted conditions, we

refer to reference 90.

The reduction of the 2DM using spin symmetry can be seen as an N -re-

presentability condition which is necessary but not su�icient. The problem

of guaranteeing that the wave function has the desired spin is called the

S-representability problem [35, 40, 100–103]. It was introduced by Pérez-

Romero, Tel, and Valdemoro [100] as: “we say that an
pΓ is S-representable

when there is an N -electron wave function corresponding to a pure spin
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quantum number S from which this
pΓ can be derived.” The symmetry

reduction due to spin will not alter the energy of the v2DM optimization

because both the Hamiltonian and theN -representability conditions already

have the correct spin symmetry. This can also be understood from the block

structure of the reduced Hamiltonian: any o�-block-diagonal element will

only increase the energy. It does reduce the optimizing time as it reduces

the number of matrix elements. To enforce the spin of the ensemble of wave

functions, the most straightforward way is to enforce the expectation value

of the Ŝ2
operator. In the singlet case, we can do even be�er. Let us take a

look at the Ŝz operator.

Ŝz =
∑
aσa

σaâ
†
aσa âaσa =

∑
a

1

2

(
â†a↑âa↑ − â

†
a↓âa↓

)
. (2.101)

To calculate the Ŝz operator using the 2DM, we must transform it to the

two-particle basis

Ŝz =
∑
aσa

σaâ
†
aσa âaσa =

1

N − 1

∑
aσabσb

σaâ
†
aσa â

†
bσb
âbσb âaσa , (2.102)

the expectation value is

Sz =
1

N − 1

∑
(aσa)<(bσb)

(σa + σb) Γaσabσb;aσabσb . (2.103)

We want to use the spin-coupled version of eq. (2.101). For a particle-hole

operator a slight complication arises which is fully explained in Chapter D

Ŝz =
∑
σa

(−1)
1
2
−σaσa

∑
a

â†aσa
˜̂aa−σa

=
∑
σa

(−1)
1
2
−σaσa

∑
S

〈1
2
σa

1

2
−σa|S0〉

∑
a

[
â†aσa ⊗ ˜̂aa−σa

]S
0
. (2.104)

The prefactor can again be wri�en as a Clebsch-Gordan coe�icient

〈jmj−m|10〉 =

√
3(−1)j−mm

√
2j + 1

√
j(j + 1)

. (2.105)

If we use this in eq. (2.104), we get

Ŝz =
1√
2

∑
σa

∑
S

〈1
2
σa

1

2
− σa|10〉 〈1

2
σa

1

2
−σa|S0〉

∑
a

[
â†aσa ⊗ ˜̂aa−σa

]S
0

=
1√
2

∑
a

[
â†a ⊗ ˜̂aa

]1

0
, (2.106)
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where we used the orthogonality properties of Clebsch-Gordan coe�icients.

If we want the singlet state, the expectation value of Ŝz should be zero. As this

operator acts in the particle-hole space, this would mean that the G matrix

has a zero eigenvalue with eigenvector
1√
2
δS1δab:

∑
c

G1
ab;cc(Γ) = 〈ψ|

[
â†a ⊗ âb

]1
Ŝz|ψ〉 = 0. (2.107)

The beauty of the spin symmetry is that by imposing Ŝz = 0, we also impose

Ŝx = Ŝy = 0 due to the three-fold degenerate S = 1 block. The total spin

will then also be zero as Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z . This is a stronger condition

than only enforcing Ŝ2 = 0. If we write eq. (2.107) in function of the 2DM

directly, we find

∀a < b
∑
S

(2S + 1)

(
1

2

1

N − 1
− (−1)S

{
1
2

1
2 1

1
2

1
2 S

})
∑
b

√
(1 + δab) (1 + δcd)Γ

S
ab;cb = 0.

(2.108)

This gives us
M
4

(
M
2 − 1

)
linear constraints. The G condition has a zero

eigenvalue and this has to be dealt with accordingly (using a pseudo-inverse

for example).

For higher spin states we can only enforce the spin expectation value of Ŝ2

as a linear constraint Tr
(
S2Γ

)
= S(S + 1). The uncoupled operator can be

wri�en as

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ Ŝ2

z , (2.109)

where

Ŝ+ =
∑
a

â†a↑âa↓, (2.110a)

Ŝ− =
∑
a

â†a↓âa↑. (2.110b)

Using eqs. (2.110a) and (2.110b) in eq. (2.109), we find

Ŝ2 =
∑

(aσa)<(bσb)

(
1

N − 1

(
1 + σ2

a + σ2
b

)
+ 2σaσb

)
â†aσa â

†
bσb
âbσb âaσa

+
∑
ab

â†a↑â
†
b↓âb↑âa↓. (2.111)
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This gives us one linear constraint. It is fair to assume that this condition

is less stringent than in the singlet case. A possible solution is to use an

ensemble of the maximal spin projection wave functions (Sz = S) [35].

On this ensemble, the same game as for the singlet can be played but with

the Ŝ+ operator. Forcing a zero expectation value will again lead to a zero

eigenvalue in the G matrix. The downside of this is that the symmetry reduc-

tion is smaller and computationally more demanding. For the singlet case,

the maximal spin-projection ensemble and the spin-weighted ensemble are

equivalent.

Angular momentum symmetry is mathematically exactly the same as spin

symmetry. If a system has total angular momentum symmetry, meaning it

is rotation invariant or there is a rotation axis (all linear molecules), this can

also be exploited in v2DM. The approach is very simulair to the spin case. For

a complete derivation, we refer the reader to reference 90.

2.4.2 Spatial point group symmetry

Most small to medium sized molecules have a discrete geometric symmetry.

For example, a homonuclear diatomic molecule such as N2, will have a mirror

plane orthogonal on the connecting axis. We call this point group symmetry.

The given example is Cs symmetry. The group consists of two operators:

the identity operation and the mirror operation. The name comes from the

fact that these symmetry groups leave at least one point invariant in all

operations. We will introduce the most o�en encountered classes of point

groups

• Cn: the group of all rotations that leaves ann-fold axis invariant (mean-

ing rotations of
360◦

n ). By convention the z-axis is chosen as rotation

axis.

• Cs: reflection around a plane.

• Ci: inversion symmetry.

• Cnv : Cn with the addition of n mirror planes containing the axis of

rotation.

• Cnh: Cn with reflection around the plane perpendicular to the rotation

axis. C1h = Cs.

• Dn: Cn with n two-fold rotation axis perpendicular on to the n-fold

axis.
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• Dnh: Cnh with n reflection planes containing the n-fold rotation axis

and one of the two-fold axis.

For example, the C2H4 molecule shown in Figure 2.4 hasD2h symmetry. The

H

C

H

C

H

H

Figure 2.4: The ethylene molecule has D2h symmetry.

main two-fold rotation axis is the connecting axis between the two carbon

atoms (the z-axis). The two two-fold rotation axes are the x- and y-axis. The

three reflection planes are xy, xz and yz.

In quantum chemistry, we will most o�en use abelian point groups (∀a, b ∈
G : ab = ba). Abelian symmetry groups have one-dimensional irreducible

representations and this simplifies the mathematics involved considerably as

we work with scalars instead of matrices. This also means that we will usually

use a subgroup of the real symmetry group of the molecule. For example,

H2 molecule has D∞h symmetry but we will use D2h because the la�er is

Abelian. The Abelian groups that can be used areC1,Ci,C2,Cs,C2v ,D2,C2h

and D2h. The group C1 is a special case. It is equivalent with no symmetry.

Its only operation is the identity operation and thus every molecule has at

least C1 symmetry. In the rest of the text, C1 and symmetry breaking will be

used interchangeably. There is a standard nomenclature for the irreducible

representations of point groups. I will give a short overview of what is useful

for this work. The irreducible representation are classified according to their

action on scalars, vector, etc. If under their action, the sign of the quantity

does not change, we call it symmetric and the irreducible representation is

denoted with an A. If the sign does change, it is called antisymmetric and

the irreducible representation is denoted with a B. As an example, we show

the character table and the multiplication table of C2 group in Table 2.1 on

the facing page. The character table contains the trace of the matrices of the

irreducible representations. It it split up into conjugacy classes as the trace

is invariant under a similarity transformation. These tables are extremely

useful for decomposing a representation in its irreducible parts. The first

irreducible representation A is called the trivial representation because all

the representation matrices (scalars in this case) are one. Every group has

this irreducible representation.

The basis functions in which the atomic orbitals are represented are usually

not orthogonal. It is possible to transform these basis function to symmetry-
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E C2

A 1 1

B 1 -1

(a) Character table of C2

A B

A A B

B B A

(b) Multiplication table of C2

Table 2.1: C2 overview: it has 2 classes of operations. The identity operation

and rotations over 180◦. The two irreducible representations are

A and B.

adapted basis functions [104–107]: linear combinations are made such that

the resulting orbitals all transform according to an irreducible representation

of the symmetry group. In other words, every orbital can be labeled accord-

ing to an irreducible representation. This allows for a serious reduction of

the computational cost of calculating the one- and two-electron integrals.

Symmetry restricts the number of non-zero integrals: two orbitals can only

interact when they belong to the same irreducible representation. This means

that in order for a matrix element to be non-zero, the representations of the

operators in the matrix element have to couple to the trivial irreducible rep-

resentation. For the one-particle operator: 〈ψ|â†aσa âbσb |ψ〉 can only be non-

zero when Ia⊗Ib = I1, where Ia denotes the irreducible representation of or-

bital a and I1 is the trivial representation. This is equivalent with Ia = Ib. For

two-particle operators, the same condition holds: 〈ψ|â†aσa â
†
bσb
âdσd âcσc |ψ〉 6=

0 when Ia⊗ Ib⊗ Ic⊗ Id = I1. This is equivalent with Ia⊗ Ib = Ic⊗ Id. This

means that a two-particle operator B̂†aσabσb can be labeled by the irreducible

representation Ia ⊗ Ib: the operator B̂† can be wri�en as

B̂†
I

aσabσb
= δIa⊗Ib,I â

†
aσa â

†
bσb
. (2.112)

The 2DM thus is

Γaσabσb;cσcdσd = δI1I2 〈ψ|B̂†
I1

aσabσb
B̂I2
cσcdσd

|ψ〉 . (2.113)

The 2DM falls apart in blocks per irreducible representation:
IΓaσabσb;cσcdσd .

Notice that this in independent of the wave function. Combining point group

symmetry with spin symmetry is straightforward as both are unrelated: we

simply have to a�ach a label for the irreducible representation to the operator

(2.88):

B̂†
SMS ;I

ab =
1√

1 + δab
δIa⊗Ib,I

[
â†a ⊗ â

†
b

]S
M

=
1√

1 + δab
δIa⊗Ib,I

∑
σaσb

〈1
2
σa

1

2
σb|SMS〉 â†aσa â

†
bσb
. (2.114)
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Irrep. S = 0 S = 1

Ag 16 6

B1g 2 2

B2g 6 6

B3g 6 6

Au 2 2

B1u 11 11

B2u 6 6

B3u 6 6

55 45

Table 2.2: The reduction due to spin and point group symmetry (D2h) for

the H2 molecule.

The entire analysis of Section 2.4.1 on page 34 can now be repeated with

the additional label for the irreducible representation and the constraint that

both B̂ operators should have the same label. Each spin block will split up

into blocks per irreducible representation. The transformation formulas are

Γaσabσb;cσcdσd =
√

(1 + δab) (1 + δcd)δIa⊗Ib;Ic⊗Id∑
SM

〈1
2
σa

1

2
σb|SM〉 〈

1

2
σc

1

2
σd|SM〉ΓS;Ia⊗Ib

ab;cd ,
(2.115a)

ΓS;I
ab;cd =

1√
(1 + δab) (1 + δcd)

δIa⊗Ib;IδIc⊗Id;I

∑
σaσb

∑
σcσd

〈1
2
σa

1

2
σb|SM〉 〈

1

2
σc

1

2
σd|SM〉Γaσabσb;cσcdσd ,

(2.115b)

where ΓS;I
denotes the block with spin S and irreducible representation I .

The symmetry in the spatial orbital indices is unchanged (see eq. (2.98)). The

exact reduction that the point group symmetry gives depends on the specific

group. The higher the symmetry, the greater the reduction. As an example

we take a look at H2 in the Correlation Consistent Polarized Valence Double

Zeta (cc-pVDZ) basis set [108]. The full symmetry group of H2 is D∞h but

we use the largest Abelian subgroup which is D2h. In this case, there are 5

orbitals per hydrogen atom: 1s2s2p3
. The number of pairs per irreducible

representation can be found in Table 2.2. The full dimension of the 2DM is

20(20−1)
2 = 190. Utilizing spin symmetry reduces this to a 55×55 and 45×45

block. This is already a 7-fold reduction of the number of matrix elements.

If we add the D2h symmetry to the picture, we get another 5-fold reduction:
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Instead of 190× 190 = 36100 matrix elements, we have only 942 elements,

a 38-fold total reduction!

2.5 The doubly-occupied Hilbert space

In previous sections, we only made general assumptions about the (ensem-

ble of) wave functions from which the 2DM is derivable. All wave func-

tions should be normalized and antisymmetric. For symmetry, we made

assumptions on the quantum numbers of the wave function: it should be

a singlet wave function, or the wave function should transform according to

a certain irreducible representation. But we could make other or additional

assumptions. If we take a look at the Full Configuration Interaction (FullCI)

expansion of the wave function, we see that a Slater determinant is the basic

building block

|Ψ〉 =
∑
k

∑
s

ck;s â
†
k1s1

â†k2s2 . . . â
†
kNsN

|〉 , (2.116)

where the summation runs over all possible orbitals (k) and spin configura-

tions (s). Every vector k = (k1, k2, . . . , kN ) with ki ∈ { 1, . . . , L } contains

the N orbitals that are occupied and the vector s = (s1, s2, . . . , sN ) with

si ∈ { ↑, ↓ } contains the spin states for each orbital. Both are not indepen-

dent as the Pauli exclusion principle must be obeyed. Classic wave function

techniques will start from a reference Slater determinant, usually the results

of a Hartree-Fock (HF) calculation, and add excitations on top of that [2]. In

the limit where all excitations are added, the best possible result within the

used basis set is found. However, the number of possible Slater determinants

scales exponentially as

(
2L
N

)
and we know that usually a smaller subset will

be dominant: many of the ck coe�icients will be negligible. We will make

the choice to only keep the Slater determinants where all orbitals are doubly

occupied

|Ψ〉 =
∑
k

ck â
†
k1↑â

†
k1↓ . . . â

†
kN

2
↑â
†
kN

2
↓ |〉 . (2.117)

We refer to this class of wave functions as Doubly Occupied Configuration

Interaction (DOCI). For the motivation of this choice, we refer to Section 4.3

on page 101. Notice that the number of Slater determinants in the DOCI

expansion still scales exponentially as

(L
N
2

)
. We examine the consequence of

restricting the ensemble of wave function to DOCI wave functions on the

N -representability constraints derived so far. This was originally done by

Weinhold and Wilson [109, 110]
1

but to the best of my knowledge, they were

1. E. Bright Wilson, Jr. is the father of Kenneth G. Wilson, who won the Nobel Prize for his work

on the renormalisation group.
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never used in a practical calculations. They make a reference to a third paper

but it never appeared. However, not all conditions on the 3DM were derived

by them. We shall present all of them. Notice that the wave function (2.117)

is a singlet state by definition: the expectation value of the operators Ŝz , Ŝ+

and Ŝ− are all zero. We denote the pair partner by a bar symbol: a ↑= a and

a ↓= ā (or vice versa). In this context, the concept of seniority [111] is also

very useful: the seniority number is the number of unpaired particles. DOCI

is a seniority-zero wave function.

2.5.1 The first-order reduced density matrix

The 1DM derivable from a DOCI ensemble is much simpler

ρaσabσb = δσaσbδab
∑
i

wi 〈ψi|â†aσa âaσa |ψi〉 = ρa = ρā, (2.118)

where wi ≥ 0 and

∑
iwi = 1. Due to spin symmetry (see Section 2.4.1

on page 34), we known that the 1DM is diagonal in the spin indices, but in

the case of DOCI, the 1DM must be diagonal in the spatial orbital index

too: we can only break the same pair states in the ket and bra. It even

becomes degenerate in the spin. This can be understood because of the

number operators: in the DOCI case, n̂a = n̂ā. The number of particles in a

spin-up and spin-down state is equal. The 1DM is reduced from a 2L × 2L
matrix to a vector of length L. The properties of the 1DM now are

ρa ≥ 0, (2.119a)∑
a

ρa =
N

2
. (2.119b)

The necessary and su�icient conditions for N -representability dictate that

each element ρa should be in the interval [0, 1]. Notice that in the DOCI

case, the used orbitals are automatically the natural orbitals and the elements

of vector ρa are the natural occupation numbers. However, DOCI is orbital

dependent: the orbital need to be optimized to find the lowest energy. This

will be further explained in Section 4.3.

2.5.2 The second-order reduced density matrix

The 2DM is a bit more complex. It is important to realize that all operators

need to couple to seniority zero if evaluated between two DOCI wave func-

tions. An operator cannot change the number of broken pairs. This makes

the 1DM diagonal as seen above. The B̂† operator can do two things: created
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or annihilate a doubly-occupied state (seniority zero), or break two doubly-

occupied states (seniority two). As seniority must be conserved, the 2DM is

block diagonal in the seniority number. Let us first look at the seniority-zero

block. We define the L× L pair matrix as

Πab = Γaā;bb̄ = 〈ψ|â†aâ
†
āâb̄âb|ψ〉 , (2.120)

where we have le� out the ensemble summation to lighten the notation.

From the positivity of the Hamiltonian B̂†B̂ with

B̂† =
∑
a

paâ
†
aâ
†
ā, (2.121)

it follows that the pair matrix (2.120) must be positive semidefinite

Π � 0. (2.122)

This simply implies that the overlap of the wave function with one pair re-

moved must be positive. The seniority-two block is part of the diagonal of

the 2DM: as we break two pairs, the le� and right operator must be equal.

For a < b

Dab = Γab;ab = 〈ψ|â†aâ
†
bâbâa|ψ〉 , (2.123a)

= Γab̄;ab̄ = 〈ψ|â†aâ
†
b̄
âb̄âa|ψ〉 , (2.123b)

= Γāb;āb = 〈ψ|â†āâ
†
bâbâā|ψ〉 , (2.123c)

= Γāb̄;āb̄ = 〈ψ|â†āâ
†
b̄
âb̄âā|ψ〉 . (2.123d)

Notice that eqs. (2.123a) and (2.123d) imply Daa = 0 while eqs. (2.123b)

and (2.123c) do not. As eq. (2.123b) in the case of a = b is equal to Πaa, we

will pickDaa = 0 from now on. The equality between eqs. (2.123a) to (2.123d)

can be understood from

â†aâa = n̂a = n̂ā = â†āâā = â†aâ
†
āâāâa, (2.124)

for DOCI wave functions and the fundamental anticommutator relations

eq. (B.5) on page 147. The diagonalDab is fourfold degenerate, corresponding

to Sz = −1, 0, 1. A positive semidefinite matrix must have positive elements

on its diagonal (see Chapter C on page 149) and thus the N -representability

conditions on eq. (2.123) are

Dab ≥ 0. (2.125)

This gives us a set of
L(L−1)

2 linear inequalities to impose. The general 2DM

is now reduced to a L× L matrix inequality and a set of linear inequalities.
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There are now three ways of obtaining the 1DM out of the 2DM: via the

general relation eq. (2.22) on page 22

ρa =
1

N − 1

∑
b

(
Γab;ab + Γab̄;ab̄

)
=

1

N − 1

(
Πaa + 2

∑
b

Dab

)
, (2.126)

via the seniority-two diagonal D

ρa =
1

N
2 − 1

∑
b

Dab =
2

N − 2

∑
b

Dab (2.127)

=
2

N − 2

∑
b

〈ψ|â†aâ
†
bâbâa|ψ〉 ,

and via the pairing matrix Π

ρa = Πaa = 〈ψ|â†aâ
†
āâāâa|ψ〉 . (2.128)

These are not independent of each other. To have a consistent 2DM, the

equivalence of eq. (2.127) and eq. (2.128) will have to be enforced. The trace

of the 2DM remains unaltered but we can now split it over Π and D

Tr (Π) =
∑
a

Πaa =
N

2
, (2.129)

Tr (D) =
∑
a<b

Dab =
1

2

∑
ab

Dab =
N

8
(N − 2) , (2.130)

Tr (Γ) = Tr (Π) + 4Tr (D) =
N(N − 1)

2
,

where we keep the fourfold degeneracy of D in mind.

I. The Q condition

The Q matrix has the same structure as the 2DM itself. The seniority-zero

block is derived from the positivity of∑
ab

qa 〈ψ|âaâāâ†b̄â
†
b|ψ〉 qb ≥ 0. (2.131)

We define the L× L matrix QΠ
as

QΠ
ab = 〈ψ|âaâāâ†b̄â

†
b|ψ〉 . (2.132)
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Equation (2.129) means that QΠ
should be positive semidefinite: QΠ � 0.

The QΠ
can again be expressed as a function of the Π and D matrices

QΠ
ab(Π, D) = δab(1− ρa − ρb) + Πab. (2.133)

The seniority two part is on the diagonal of the Q matrix and given by

a < b : 〈ψ|âaâbâ†bâ
†
a|ψ〉 = 1− ρa − ρb +Dab ≥ 0. (2.134)

Just like for the 2DM, this forms a set of
L(L−1)

2 linear inequalities.

II. The G condition

The G condition is somewhat more elaborate as more combinations are non-

zero. We work systematically according to seniority and spin. The full oper-

ator B̂† for the G condition is

B̂† =
∑
αβ

gαβ â
†
αâβ (2.135)

=
∑
ab

(
g1
abâ
†
aâb + g2

abâ
†
aâb̄ + g3

abâ
†
āâb + g4

abâ
†
āâb̄

)
. (2.136)

Spin projections Sz = ±1 are equivalent, so we only consider the Sz = +1
case: the g2

and g3
terms will generate equivalent constraints. We always

assume a 6= b, since for a DOCI wave function â†aâā = 0. The particle-hole

operators generating this constraint are of the form

B̂† =
∑
ab

g2
abâ
†
aâb̄, (2.137)

which leads to the following seniority-2 positivity condition:∑
abcd

g2
ab 〈ψ|â†aâb̄â

†
d̄
âc|ψ〉 g2

cd =∑
abcd

g2
ab [δbdδac(ρa −Dab)− δadδbcΠab] g

2
cd =∑

ab

g2
ab

[
(ρa −Dab)g

2
ab −Πabg

2
ba

]
≥ 0 (2.138)

This condition is almost diagonal, as g2
ab is only connected with itself and g2

ba.

If we order the summation∑
a<b

g2
ab(ρa−Dab)g

2
ab−g2

abΠabg
2
ba+g

2
ba(ρb−Dab)g

2
ba−g2

baΠabg
2
ab ≥ 0, (2.139)
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we can see that this is equivalent with the positive semidefiniteness of the

following set of 2× 2 matrices

∀a < b

[
ρa −Dab −Πab

−Πab ρb −Dab

]
� 0 . (2.140)

For the Sz = 0 and seniority-two case, the particle-hole operators are of the

form

B̂†1 =
∑
ab

g1
abâ
†
aâb, (2.141a)

B̂†4 =
∑
ab

g4
abâ
†
āâb̄, (2.141b)

with a 6= b. These terms are coupled to each other. The diagonal terms,

B̂†1B̂1 and B̂†4B̂4, are

〈ψ|â†aâbâ
†
dâc|ψ〉 = δacδbd(ρa −Dab) = 〈ψ|â†āâb̄â

†
d̄
âc̄|ψ〉 . (2.142)

The o�-diagonal terms, B̂†1B̂4 and B̂†4B̂1, are

〈ψ|â†aâbâ
†
d̄
âc̄|ψ〉 = δadδbcΠab = 〈ψ|â†āâb̄â

†
dâc|ψ〉 , (2.143)

which in the same way leads to the set of 2× 2 constraint matrices

∀a < b

[
ρa −Dab Πab

Πab ρb −Dab

]
� 0 . (2.144)

These only di�er with (2.140) in the sign of the o�-diagonal elements but the

characteristic polynomial of both is the same and thus the conditions are

equivalent.

The Sz = 0 and seniority-zero part is built by two particle-hole operators

B̂†1 =
∑
a

gaâ
†
aâa, (2.145a)

B̂†2 =
∑
b

gbâ
†
b̄
âb̄. (2.145b)

This leads to a 2L× 2L matrix with diagonal elements, B̂†1B̂1 and B̂†2B̂2,

〈ψ|â†aâaâ
†
bâb|ψ〉 = δabρa +Dab = 〈ψ|â†āâāâ

†
b̄
âb̄|ψ〉 , (2.146)

and o�-diagonal elements, B̂†1B̂2 and B̂†2B̂1,

〈ψ|â†aâaâ
†
b̄
âb̄|ψ〉 = Dab + δabΠab

= δabρa +Dab (2.147)

= 〈ψ|â†āâāâ
†
bâb|ψ〉 .

50



The N -representability problem

Both blocks are identical. This means we have a positivity condition on a

block matrix of the form [
A A
A A

]
. (2.148)

Using the following block matrix property of determinants (see Chapter C

on page 149) ∣∣∣∣A B
B A

∣∣∣∣ =
∣∣A−B∣∣ ∣∣A+B

∣∣ , (2.149)

we can see that we only have to impose the positivity of one block to obey

the constraint. This leads to the matrix condition GΠ � 0 of a L×L matrix:

GΠ
ab(Π, D) = δabρa +Dab . (2.150)

Unlike the I and Q conditions, the original G matrix is never used. We have

derived a simpler set of conditions which are equivalent.

Compared to the full P, Q and G conditions, these constraints have a much

lower scaling. The matrix dimensions are reduced from L2
to L.

A DOCI wave function is a singlet state by definition. In Section 2.4.1 on

page 34 we derived a set of necessary conditions for the singlet state on

the 2DM. In the case of DOCI derived 2DM, this condition is automatically

fulfilled. The Ŝz operator is

Ŝz =
1

2

∑
a

(
â†aâa − â

†
āâā

)
. (2.151)

We reevaluated the condition eq. (2.107) on page 40,

〈ψ|â†câdŜz|ψ〉 =

=
1

2
δcd

L∑
a

(
〈ψ|â†câdâ†aâa|ψ〉 − 〈ψ|â†câdâ

†
āâā|ψ〉

)
=

1

2

L∑
a

(
〈ψ|â†aâa|ψ〉 − 〈ψ|â†câ†aâcâa|ψ〉 − 〈ψ|â†câ

†
āâcâā|ψ〉

)
=

1

2

L∑
a

(ρa + (1− δac)Dac −Πacδac − (1− δac)Dca)

= 0 .

This shows no additional constraints are needed to ensure the singlet state.
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2.5.3 The third-order reduced density matrix

The 3DM falls apart in blocks labeled by Sz and the seniority number: we

have seniority one and three, combined with Sz = ±1
2 ,±

3
2 .

The seniority-three part, which breaks up three pairs, must be diagonal so

that the three pairs can recombine. The diagonal elements of a positive

semidefinite matrix must be positive leading to

D3
abc = 〈ψ|â†aâ

†
bâ
†
câcâbâa|ψ〉 ≥ 0. (2.152)

It is clear thatD3
abc will be zero when any two indices are equal. Furthermore,

the di�erent permutations of spin-up and spin-down will lead to the same

constraint: D3
abc is fourfold degenerate for the di�erent values of Sz . There

is also permutation symmetry in the indices

∀σ ∈ S3 : D3
abc = D3

σ(a)σ(b)σ(c), (2.153)

where S3 is the symmetric group of three elements. This condition gives us

a set of
L(L−1)(L−2)

6 linear constraints. If we sum over the di�erent indices,

we find ∑
c

D3
abc =

(
N

2
− 2

)
Dab, (2.154a)

∑
bc

D3
abc =

(
N

2
− 1

)(
N

2
− 2

)
ρa, (2.154b)

∑
abc

D3
abc =

N

2

(
N

2
− 1

)(
N

2
− 2

)
. (2.154c)

The condition (2.152) implies the condition (2.125) on the 2DM.

The seniority-one part means removing an entire pair and breaking another

resulting in

Πb
ac = Πb

ca = 〈ψ|â†aâ
†
āâ
†
bâbâc̄âc|ψ〉 = Πb̄

ac = Πb̄
ca (2.155)

= 〈ψ|â†bâ
†
āâ
†
aâcâc̄âb|ψ〉

This set of L symmetric matrices is twofold degenerate in the upper index.

It belongs to Sz = ±1
2 . Furthermore, Πa

ab = Πb
ab = 0. The operator

B̂† =
∑
ab

tabâ
†
aâ
†
āâ
†
b (2.156)

leads to the condition

∀b : Πb � 0. (2.157)
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We have a set of L positive semidefinite constraints on (L − 1) × (L − 1)
matrices. Similar as the 2DM, there are some consistency conditions that

need to be fulfilled. We have,

Πb
aa = Dab = Dba, (2.158)

which means following ’li�ing’ and consistency conditions have be enforced

Πb
aa = Πa

bb, (2.159)∑
c

D3
abc =

(
N

2
− 2

)
Πb
aa, (2.160)

where we used eq. (2.154a) on page 52. Furthermore, the following sums are

known ∑
b

Πb
ac =

(
N

2
− 1

)
Πac, (2.161)

∑
ab

Πb
aa =

N

2

(
N

2
− 1

)
. (2.162)

Every part of the 1DM and 2DM can be calculated by summing over in-

dices. These conditions imply the necessary N -representability conditions

for DOCI on the 1DM and 2DM.

I. The 3Q condition

The
3Q condition has the same structure as the 3DM. The seniority-three

condition leads to

〈ψ|âaâbâcâ†câ
†
bâ
†
a|ψ〉 = 1−ρa−ρb−ρc+Dab+Dbc+Dac−D3

abc ≥ 0. (2.163)

This gives us a set of
L(L−1)(L−2)

6 linear constraints. The equivalent of the

T1 condition is found by the sum of the
3I and

3Q matrix which generates

1− ρa − ρb − ρc +Dab +Dbc +Dac ≥ 0. (2.164)

This is a constraint on the diagonal of the T1 matrix.

The seniority-one condition produces a set of L matrices of dimension (L−
1)× (L− 1). The generating operator is

B̂† =
∑
ab

qabâaâāâb, (2.165)
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which leads to

Qbac = 〈ψ|âaâāâbâ†bâ
†
c̄â
†
c|ψ〉 (2.166)

= δac (1− 2ρa − ρb + 2Dab) + Πac −Πb
ac, (2.167)

and this set of matrices has to positive semidefinite

∀b : Qb � 0. (2.168)

We can again find an equivalent T1 condition by adding Πb
to (2.167)

(T1)bac = δac (1− 2ρa − ρb + 2Dab) + Πac, (2.169)

∀b : (T1)b � 0.

II. The 3E condition

The
3E is more involved. We are looking for a set of conditions that are

equivalent with the full
3E as shown derived in Section 2.3.3. The condition

will split in blocks labeled by Sz and seniority number. Within such a block,

not all states will be coupled to each other. This is what we are looking for.

The generating operator for the
3E is

B̂† =
∑
αβγ

q1
αβγ â

†
αâ
†
β âγ , (2.170)

which again leads to a seniority one and three combined with Sz = ±1
2 ,±

3
2 .

Just like the G condition, much more combination are possible, as di�erent

terms will be connected.

We begin with the seniority-three sector. This means that we have to break

three di�erent pairs. For Sz = ±3
2 the generator is B̂† =

∑
abc q

1
abcâ

†
aâ
†
bâc̄

(a 6= b 6= c) which leads to

〈ψ|â†aâ
†
bâc̄â

†
f̄
âeâd|ψ〉 =

δcfδadδbe
(
Dab −D3

abc

)
− δafδbeδcdΠb

ac − δbfδceδadΠa
bc. (2.171)

This connects three states with the same spatial orbitals, abc̄, bcā and cab̄.
For bcā we find

〈ψ|â†bâ
†
câāâ

†
d̄
âf âe|ψ〉 =

δcfδadδbe
(
Dbc −D3

bac

)
− δafδbeδcdΠb

ac − δbdδcfδaeΠc
ab, (2.172)
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while for cab̄

〈ψ|â†câ†aâb̄â
†
ēâdâf |ψ〉 =

δcfδadδbe
(
Dac −D3

abc

)
− δadδceδbfΠa

bc − δbdδcfδaeΠc
ab. (2.173)

Combining this will eventually give us a 3× 3 matrix condition


abc̄ bcā cab̄

abc̄ Dab −D3
abc −Πb

ac −Πa
bc

bcā −Πb
ac Dbc −D3

abc −Πc
ab

cab̄ −Πa
bc −Πc

ab Dac −D3
abc

 � 0, (2.174)

for a < b and a 6= b 6= c. The row and column set of indices are the indices

for the le� and right. There are
L(L−1)(L−2)

2 such matrix conditions. We

continue with the Sz = ±1
2 sector. There are two generating operators

B̂†1 =
∑
abc

q1
abcâ

†
aâ
†
bâc, (2.175a)

B̂†2 =
∑
abc

q1
abcâ

†
aâ
†
b̄
âc̄, (2.175b)

with a 6= b 6= c. The direct term B̂†1B̂1 gives us

〈ψ|â†aâ
†
bâcâ

†
f âeâd|ψ〉 = δadδbeδcf

(
Dab −D3

abc

)
, (2.176)

while the other direct term B̂†2B̂2 leads to

〈ψ|â†aâ
†
b̄
âc̄â
†
f̄
âēâd|ψ〉 = δadδbeδcf

(
Dab −D3

abc

)
− δafδbeδcdΠb

ac. (2.177)

For the mixed term we obtain

〈ψ|â†aâ
†
bâcâ

†
f̄
âēâd|ψ〉 = δadδbfδceΠ

a
bc − δbdδafδceΠb

ac (2.178)

= (δadδbf − δbdδaf ) δceΠ
d
fe (2.179)

The second term in eq. (2.178) comes from a ↔ b. Again we see that this

couples three terms for a, b and c.


abc cba cab

abc Dab −D3
abc −Πb

ac −Πa
bc

cba −Πb
ac Dbc −D3

abc Πc
ab

cab −Πa
bc Πc

ab Dac −D3
abc

 � 0, (2.180)

This condition is equivalent with (2.174): by multiplying the first row and

column with −1 we find matrix (2.174) with the sign of the o�-diagonal
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elements flipped. As shown in Chapter C, these gives us matrices with the

same spectrum.

For the seniority-one sector, only Sz = ±1
2 is possible as only one pair is

broken. The generating operators are

B̂†1 =
∑
ab

qabâ
†
aâ
†
āâb̄, (2.181a)

B̂†2 =
∑
ab

qabâ
†
bâ
†
āâā, (2.181b)

B̂†3 =
∑
ab

qabâ
†
bâ
†
aâa, (2.181c)

with a 6= b. We begin with the diagonal terms:

• B†1B1 leads to

〈ψ|â†aâ
†
āâb̄â

†
d̄
âc̄âc|ψ〉 = δbd

(
Πac −Πb

ac

)
. (2.182)

This gives a set ofLmatrices of size (L−1)×(L−1). It can be extended

by realizing that the missing element (when a = b in eq. (2.181a)) is

part of a primed condition with B̂† =
∑

c qcâ
†
c

〈ψ|â†aâ
†
āâb̄âc|ψ〉 = δbcΠab, (2.183)

〈ψ|â†bâc|ψ〉 = δbcρb. (2.184)

If we included this element, we find for every b the L× L matrix[
Πac −Πb

ac Πab

Πcb ρb

]
� 0, (2.185)

where the index a runs over the columns and c over the rows.

• B†2B2 gives us

〈ψ|â†bâ
†
āâāâ

†
d̄
âd̄âc|ψ〉 = δbc

(
δadDab +D3

abd

)
. (2.186)

• B†3B3 produces

〈ψ|â†bâ
†
aâaâ

†
dâdâc|ψ〉 = δbc

(
δadDab +D3

abd

)
. (2.187)

The mixed terms:
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• B†1B2 leads to

〈ψ|â†aâ
†
āâb̄â

†
d̄
âd̄âc|ψ〉 = δbcΠ

d
ab (2.188)

• B†1B3 gives us

〈ψ|â†aâ
†
āâb̄â

†
dâdâc|ψ〉 = δbcΠ

d
ab. (2.189)

• B†2B3 produces

〈ψ|â†bâ
†
āâāâ

†
dâdâc|ψ〉 = δbcδadΠ

b
aa + δbcD

3
abd

= δbc
(
δadDab +D3

abd

) (2.190)

• the overlap of the primed condition results in

〈ψ|â†bâ
†
aâaâc|ψ〉 = δbcDab. (2.191)

As theB†2B2,B†3B3 andB†2B3 all produces the same element, we can reduce

this 2L×2Lmatrix to aL×Lmatrix in the same way as with theG condition.

This conditions reduces to a set of L matrices

[δadDab +D3
abd] � 0. (2.192)

Combining all these results in a set ofLmatrices with dimensions (2L−1)×
(2L− 1). We could write it down asâ

†
aâ
†
āâb̄â

†
b̄
âc̄âc â†aâ

†
āâb̄â

†
câcâb â†aâ

†
āâb̄âb

â†bâ
†
aâaâ

†
b̄
âc̄âc â†bâ

†
āâāâ

†
c̄âc̄âb â†bâ

†
aâaâb

â†bâ
†
b̄
âc̄âc â†bâ

†
c̄âc̄âb â†bâb

 � 0, (2.193)

but using the results from above leads to

∀b 6= a, 6= c,

Πac −Πb
ac Πc

ab Πab

Πa
cb δacDab +D3

abc Dab

Πbc Dbc ρb

 � 0. (2.194)

This might not look as a symmetric matrix because it has to be expanded:

the index a is column index and c the row index.
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III. The 3F condition

The generating operator for the
3F is

B̂† =
∑
αβγ

q1
αβγ â

†
αâβ âγ . (2.195)

We expect that this condition will be similar to the
3E condition. Again we

have seniority one and three combined with Sz = ±1
2 ,±

3
2 . We start with

seniority-three and Sz = ±3
2 . The generator is B̂† =

∑
abc q

1
abcâ

†
aâb̄âc̄ with

a 6= b 6= c which leads to

〈ψ|â†aâb̄âc̄â
†
f̄
â†ēâd|ψ〉 = δadδbeδcf

(
ρa −Dab −Dac +D3

abc

)
+ δafδbeδcd

(
Πb
ac −Πac

)
+ δaeδcfδbd (Πc

ab −Πab) (2.196)

when we choice an ordering in the indices a 6= b < c (meaning some terms

drop out). In the same fashion as for the
3E condition, this couples three

terms (abc, cba and bac) leading to a set of 3× 3 matrix conditionsρa −Dab −Dac +D3
abc Πb

ac −Πac Πc
ab −Πab

Πb
ac −Πac ρc −Dbc −Dac +D3

abc Πa
bc −Πbc

Πc
ab −Πab Πa

bc −Πbc ρb −Dab −Dbc +D3
abc

 � 0,

(2.197)

for a 6= b 6= c and b < c. We can combine the seniority-three, Sz = +3
2

matrix of the
3F condition with its Sz = −3

2 counterpart of the
3E condition

to find a DOCI version of the T2 condition. If we permute the rows and

columns of the matrix (2.174) to the order bcā, abc̄ and cab̄ and add it to

(2.197), the resulting matrix has no elements of the 3DM:ρa −Dab −Dac +Dbc −Πac −Πab

−Πac ρc −Dbc −Dac +Dab −Πbc

−Πab −Πbc ρb −Dab −Dbc +Dab

 � 0.

(2.198)

We continue with the Sz = ±1
2 sector. The generating operator is

B̂† =
∑
ab

qabâ
†
aâbâc̄, (2.199a)

with a 6= b 6= c which leads to

〈ψ|â†aâbâc̄â
†
f̄
â†eâd|ψ〉 = δadδbeδcf

(
ρa −Dab −Dac +D3

abc

)
+ δafδbeδcd

(
Πb
ac −Πac

)
+ δaeδcfδbd (Πc

ab −Πab) (2.200)
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This will generate an equivalent constraint as the Sz = ±3
2 case.

For the seniority-one, again only Sz = ±1
2 is possible. The same structure as

for the
3E is expected. The generating operators are

B̂†1 =
∑
ab

qabâ
†
aâaâb̄, (2.201a)

B̂†2 =
∑
ab

qabâ
†
bâaâā, (2.201b)

with a 6= b. The primed operator is B† =
∑

a qaâā.

• B†1B1 leads to

〈ψ|â†aâaâb̄â
†
d̄
â†câc|ψ〉 = δbdδac (ρc −Dab)+δbdDac−δbdD3

abc. (2.202)

Combined with the prime term this gives

〈ψ|â†aâaâb̄â
†
d̄
|ψ〉 = δbdρa − δbdDab. (2.203)

• B†2B2 produces

〈ψ|â†bâaâāâ
†
c̄â
†
câd|ψ〉 = δbdδac(ρb − 2Dbc) + δbdΠ

b
ac. (2.204)

The combination with the primed term leads to

〈ψ|â†bâaâāâ
†
d̄
|ψ〉 = −δbdΠab. (2.205)

The mixed term between B1 and B2 is

〈ψ|â†aâaâb̄â
†
c̄â
†
câd|ψ〉 = δbdδacΠab − δbdΠa

bc. (2.206)

Combining this all gives us a set of L positivity conditions on matrices of

dimensions 2L− 1δac (ρc −Dab) +Dac −D3
abc δacΠab −Πa

bc ρa −Dab

δacΠcb −Πc
ab δac(ρb − 2Dbc) + Πb

ac −Πab

ρc −Dbc −Πbc 1− ρb

 � 0,

(2.207)

for ∀b, a 6= b and c 6= b. Using its counterpart in the
3E condition, again a T2

condition can be derivedδacρc +Dac δacΠab ρa
δacΠbc δac(ρb − 2Dbc)−Πac 0
ρc 0 1

 � 0, (2.208)

where the first row and column of (2.194) are interchanged before adding it

to (2.207).
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2.6 Conclusion

In this chapter, we have introduced the N -representability problem and a

set of necessary but in general not su�icient conditions for it. We gave the

general conditions on the 1DM, 2DM and 3DM. The conditions were also

rederived in the specific case that the ensemble of wave functions consistent

only of seniority-zero wave functions. This lead to a considerably reduction

of the dimensions of the conditions. We further showed that symmetry can

also lead help to reduce the computational complexity of the conditions.

In classical wave function based methods such as Configuration Interac-

tion or Coupled Cluster, there is a systematic way to improve the result:

by including higher orders of excitations, they will eventually reach the Full

Configuration Interaction (FullCI) limit. In stark contrast, there is no such

hierarchy in the necessary N -representability conditions. The three-index

condition will improve the results over the two-index condition but beyond

that, there are no known conditions that can be expressed as a function of

the 2DM. One could use a higher reduced density matrix: the
p+1Γ and

all p + 1 index conditions will included all positivity conditions on the
pΓ.

However, this is not computationally feasible and the 2DM already contains

all the information for two-particle operators. Claims have been made about

a hierarchical solution to the N -representability problem [112, 113] but it

remains unclear if this solutions is complete. Furthermore, the condition that

could be where derived in the framework have never been put to the test. In

this regard, the similarity with DFT can again be pointed out: there is also

no systematic way of improving a functional.

It also been shown that the two- and three-index conditions are expressible

as Grassmann integrals [114] but so far, this has not lead to a new insights.

The N -representability problem has been proven to belong to the hardest

kind of problems we know and so far we are “stuck” on the two- and three-

index conditions.

To summarize, the optimization problem of the reduced density matrix can

now be formulated as

E0 = min
Γ

Tr (KΓ)

while Tr (Γ) =
N(N − 1)

2⊕
i

Li(Γ) � 0.

(2.209)

The minimization goes over all symmetry matrices, while the direct sum in

the constraints goes over the enforced N -representability conditions. The ⊕
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notation means the direct sum of block matrices. For example, for the two-

index conditions, this would mean: Li ∈ {I,Q,G}. The optimization problem

for the 3DM is identical in form but the trace has to be adjusted. In the next

chapter we will discuss how to solve this optimization problem.
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Chapter 3

Semidefinite Programming

Science is knowledge which we understand so well that we can
teach it to a computer; and if we don’t fully understand
something, it is an art to deal with it.

Donald E. Knuth

The world of convex optimization is a rich and interesting world. Due to the

convexity, it has many nice features: the nicest one is probably the guar-

antee that there are no local extrema. In this chapter, we will introduce

Semidefinite Programming (SDP), a subclass within convex optimization. Do

not let the word programming deceive you, SDP is a convex optimization

problem. Even linear programming problems can be expressed as a SDP

problem. More importantly, an SDP problem can be solved e�iciently, both

in theory and practice. A�er introducing the problem and several of its

properties, we discuss several methods to solve it. These methods are then

adapted to maximally exploit the specific problem structure of v2DM. There

are general purpose codes available to solve the standard form of an SDP

problem [23, 115–119], but they are in general too slow for us. SDP problems

are encountered in a wide range of fields: control theory [120], combinatorial

optimization [121] and statistics [122], to name just a few.

3.1 Primal-dual formalism

Before we continue, let us first repeat the definition of convexity. A set S
in a linear space is convex if and only if for every x1, x2 ∈ S holds that

αx1 + βx2 ∈ S with α, β ≥ 0 and α + β = 1. This means that the line

segment connecting any two points in the set must also be part of the set. A
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function f : Rn → R is convex if the domain of f is a convex set and for any

two points x and y in the domain of f must hold

f(αx+ βy) ≤ αf(x) + βf(y), (3.1)

with α, β ≥ 0 and α+β = 1. One can prove that a function is convex if on a

convex set its Hessian is positive semidefinite. Furthermore, we will use Sn

to denote the set of n× n symmetric matrices and Sn+ to mark the subset of

positive semidefinite matrices. The set Sn+ has the mathematical structure of

a cone: for every A ∈ Sn+ we have that λA ∈ Sn+, when λ > 01
.

The standard SDP problem is defined as minimizing a linear function in x ∈
Rn subjected to a matrix inequality

min cTx

while F (x) � 0,
(3.2)

where

F (x) = F0 +
n∑
i=1

xiFi. (3.3)

An SDP problem is defined by a vector c ∈ Rn and n+ 1 symmetric matrices

F0, Fi ∈ Sm. Both the objective (cTx) and constraint (F (x)) are convex

α ≥ 0, F (αx+ (1− α)y) = αF (x) + (1− α)F (y) � 0. (3.4)

To demonstrate what the solution of this problem is, we can examine an

example for x ∈ R2
in Figure 3.1 on the next page, the value of m is not

relevant at the moment. The region where the matrix inequality is satisfied

is called the feasible region. The solution of the SDP problem is found by

moving as far as possible in the direction −c within the feasible region. The

solution or optimal point xopt will always be found on the boundary of the

feasible region. This means that F (x) will have at least one zero eigenvalue.

Due to the convexity of the feasible region, it is clearly impossible to have a

local minimum: in that case it would be impossible to draw a line between

the local minimum and global minimum that stays within the feasible region.

Note that in the case m = 1 one has a linear program.

We will now introduce the dual problem. The problem (3.2) is called the

primal problem. The Lagrangian of the primal problem (3.2) is

L(x, Z) = cTx+ Tr

((
F0 +

n∑
i=1

xiFi

)
Z

)
, (3.5)

1. For completeness we should note that the cone of positive semidefinite matrices is self-dual

[22]. This will only be used indirectly in this chapter and can be mostly ignored.
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Figure 3.1: A graphical depiction of a SDP problem in two variables. The

red dot marks the optimal point. It is found by following the

direction −c until the boundary of the feasible region is hit.

where Z ∈ Sn is called the dual variable (or Lagrange multiplier [123, 124]).

It has to be negative semidefinite Z � 0 because it is the Lagrange multiplier

of an inequality: if F (x) is positive and Z negative, the second term in

(3.5) will be negative and thus decrease the Lagrangian. If F (x) would be

negative, it would increase the Lagrangian. As we prefer to work with positive

semidefinite matrices, we will replace Z by −Z .

L(x, Z) = cTx− Tr

((
F0 +

n∑
i=1

xiFi

)
Z

)
(3.6)

= x1 (c1 − Tr (F1Z)) + x2 (c2 − Tr (F2Z)) + . . .

xn (cn − Tr (FnZ))− Tr (F0Z) (3.7)

We can now define the dual function as

g(Z) = inf
x
L(x, Z) =

{
−Tr (F0Z) ci − Tr (FiZ) = 0, i = 1 . . . n

−∞ otherwise.

(3.8)

We minimize over the primal variables to find a problem in the dual variables.
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The associated dual problem is

max −Tr (F0Z)

while Z � 0

Tr (FiZ) = ci, i = 1 . . . n.

(3.9)

This is again an SDP problem and can be rewri�en to the standard form in

(3.2) [21]. Furthermore, we call Z dual feasible if Z � 0 and Tr (FiZ) = ci
(i = 1 . . . n), and x primal feasible if F (x) � 0. Feasible means that the

constraints of the problem are fulfilled.

Now, what is the point of all this? The dual problem is very powerful as it

provides a lower bound on the primal problem and vice versa. If we assume

that x is primal feasible and Z is dual feasible then

cTx+ Tr (F0Z) =
n∑
i=1

Tr (ZFi)xi + Tr (F0Z) = Tr (ZF (x)) ≥ 0. (3.10)

The last inequality follows from the positive semidefiniteness of F (x) and Z
(see Chapter C). We now have

−Tr (F0Z) ≤ cTx, (3.11)

for any feasible value of Z and x, including the optimal points of both. This

is called weak duality [22]. The di�erence between both sides of eq. (3.11) is

called the duality gap (or primal-dual gap)

η = cTx+ Tr (F0Z) = Tr (ZF (x)) ≥ 0. (3.12)

The duality gap is zero if we use the optimal points of both the primal and

dual problem; in that case we have strong duality. For SDP problems this is

the case when the Slater condition is fulfilled [21, 22]: there must be strictly

feasible points for either the primal or dual problem. This means that there

must be an x for which F (x) � 0 or a Z for which Z � 0 and Tr (FiZ) = ci
(i = 1 . . . n). If the Slater condition holds, we have at the optimal points

cTx = −Tr (F0Z) , (3.13)

from which it follows that Tr (F (x)Z) = 0 and thus

F (x)Z = 0, (3.14)

as F (x) � 0 and Z � 0 (see Chapter C). This is called the complementary

slackness condition and can be interpreted as saying that the space spanned

by the columns of Z and F (x) must be orthogonal. The duality gap gives
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us a powerful convergence measure. If we use an iterative algorithm to solve

both the primal and dual problem, we have at iteration k the current optimal

value xk and Zk and we know that

cTxk − xopt ≤ ηk = cTxk + Tr
(
F0Z

k
)
. (3.15)

If we use, as the stopping criterion ε > 0 on the duality gap, then

cTxk − xopt ≤ cTxk + Tr
(
F0Z

k
)
≤ ε. (3.16)

In other words, we know (it is guaranteed) that the current optimal value xk

is ε suboptimal. This is much more powerful than just converging to a certain

tolerance.

3.1.1 Problem definition

The perceptive reader has probably already recognized the similarity between

the dual problem (3.9) and v2DM optimization problem (2.209) from Chap-

ter 2. For the two-index optimization, the obvious choice seems to be

Z = Γ⊕ Q(Γ)⊕ G(Γ), (3.17a)

F0 = K ⊕ 0⊕ 0, (3.17b)

F1 = 1⊕ 0⊕ 0, (3.17c)

c1 =
N(N − 1)

2
. (3.17d)

However, this is not su�icient: Z contains all free variables and the Q and

G conditions are of course not independent. We need to use the equality

constraints to enforce the form of (3.17a). We will write Z as ⊕iLi to have

an expression independent of the exact N -representability constraints used

and we introduce {ei} as an orthonormal basis in the space of the Z matrix.

Let us focus on constraint L. We need to enforce that

Tr
(
ZLeLi

)
= Tr

(
L(Γ)eLi

)
, (3.18)

where the superscript L denotes the part of Z corresponding to the con-

straint L. Before we continue, we must introduce an extremely helpful tool:

the Hermitian adjoint map. It is defined as

Tr (Li(Γ)A) = Tr
(
L
†
i (A)Γ

)
, (3.19)

whereA is a symmetric matrix in the same space as the constraint Li and the

Hermitian adjoint is L
†
i . Using its definition (3.19), it is possible to derive the
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adjoint map of all N -representability conditions introduced in Chapter 2. In

Chapter F on page 157 we give a list of expressions for the Hermitian adjoint

images used in this work. We also require that every N -representability

constraint map is homogeneous
2

as this makes the mathematics involved

a lot easier. Using the Hermitian adjoint, we can rewrite eq. (3.18) to

Tr
(
ZLeLi

)
= Tr

(
ΓL†(eLi )

)
. (3.20)

We can now express this as an equality constraint for the dual problem:

Tr
(
ZFL

i

)
= 0, (3.21)

where FL
i is a block matrix with two non-zero blocks(

FL
i

)
Γ

= −L†(eLi ), (3.22a)(
FL
i

)
L

= eLi . (3.22b)

In this way, we enforce the Q, G, . . . conditions. The number of Fi matrices

will be equal to the number of independent variables in the conditions (plus

the trace condition). Using this formalism, Nakata et al. [20] implemented

the v2DM optimizing problem as an SDP problem and used the SDPA [116]

program to solve it. We will use a slightly di�erent formalism.

The core object we want to optimize is the 2DM. There are matrix inequalities

and one equality constraint that need to be enforced. We can eliminate

the trace condition by choosing a feasible starting point and restrict the

optimizing to the space orthogonal to this condition. In this case, we should

restrict the optimizing to the traceless space. Let the set {f i} be a complete,

orthogonal basis of traceless, symmetric matrices in the two-particle space.

Following properties will hold

Tr
(
f i
)

= 0, (3.23a)

Tr
(
f if j

)
= δij , (3.23b)

f iαβ;γδ = −f iβα;γδ = −f iαβ;δγ = f iβα;δγ = f iδγ;βα. (3.23c)

We can write the 2DM in this basis as

Γ =
2Tr (Γ)

M(M − 1)
1 +

∑
i

Tr
(
Γf i
)︸ ︷︷ ︸

γi

f i, (3.24)

2. A function is homogeneous with degree k when it is scale invariant: f(αx) = αkf(x).
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where M is used to denote the dimension of the single-particle space (in-

cluding spin). The energy function can be rewri�en as

E = Tr (KΓ) =
2Tr (Γ) Tr (K)

M(M − 1)
+
∑
i

γih
i, (3.25)

where

γi = Tr
(
Γf i
)
, (3.26a)

hi = Tr
(
Kf i

)
, (3.26b)

are the expansion coe�icients of the 2DM and reduced Hamiltonian in the

traceless basis. We can now restrict the optimization to the set {γi} without

having to worry about the trace condition. Using this, our objective function

is now

min
γ

∑
i

hiγi. (3.27)

The matrix constraints can be wri�en as

L(Γ) =
2Tr (Γ)

M(M − 1)
L(1) +

∑
i

γiL(f i), (3.28)

which can be simplified by defining

u0 =
N(N − 1)

M(M − 1)

⊕
j

Lj(1), (3.29)

ui =
⊕
j

Lj(f
i), (3.30)

to

L(Γ) = u0 +
∑
i

γiu
i � 0. (3.31)

This clearly has the form of the primal problem (3.2). From now on, we will

use X(Γ) = L(Γ) to specify the constraint matrix in the primal problem.

Our optimization is now

min
γ
hTγ

while X(γ) = u0 +
∑
i

γiu
i � 0.

(3.32)

This is a much more compact and elegant expression than the previously

derived dual variant of the problem. The dual problem of (3.32) is given by

max −Tr (Zu0)

while Z � 0

Tr (Zui) = hi,∀i
(3.33)
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Now the optimization problem is clearly defined, we will continue with tech-

niques to solve it
3
.

3.2 Potential Reduction method

The so-called interior point methods [125] are the standard workhorse of

Semidefinite Programming. They try to remain in the feasible region as they

approach the optimal point. The convergence properties of these methods

have been thoroughly examined and they tend to be very stable. To remain

within the feasible region, a barrier function is used

φ(γ) =

{
− ln detX(γ) X(γ) � 0

+∞ otherwise

(3.34)

This barrier function is analytic, strictly convex and self-concordant
4

[126]. It

is +∞ when there is a zero eigenvalue in X(γ) and thus forces us to remain

inside the feasible region. The point that minimizes the barrier function φ(γ)
is called the analytic center of the constraint X(γ) � 0. Using this we can

define the central path: the central path is formed by the solution of the

following optimization problem

min
γ
φ(γ)

while hTγ = e

X(γ) � 0,

(3.35)

where Emin ≤ e ≤ Emax. If we solve this problem for all allowed values of

e we find the central path. A solution of (3.35) is called the analytic center

of the primal feasible set. It is clear that all those analytic centers lie on the

central path, including the optimal point of our original SDP problem. An

interior point method will try to follow the central path to find the solution.

By doing this, it avoids the edge of the feasible region as long as possible,

as the problem becomes singular near it. In Figure 3.2 on the next page we

show the central path of the previous graphical example of an SDP problem.

Furthermore, there is a connection between the points on the central path of

the primal and dual problem. If we write down the Lagrangian of the problem

(3.35), we find

L = − ln detX(γ) + λ(hTγ − e). (3.36)

3. We should note that compared to reference 90, we have switched the primal and dual problem.

Everything is equivalent, but the notation is di�erent.

4. This is a property that is key in proving the convergence of these methods but unimportant

for what we do. A function f(x) is self-concordant when |f ′′′(x)| ≤ 2f ′′(x)
3
2 .
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Figure 3.2: Illustration of the central path. Both the minimal value and the

maximal value lie on the central path. It is formed by all analytic

centers (marked with blue dots).

The optimality condition for this Lagrangian is

Tr
(
X(γ)−1ui

)
= λhi, i = 1, . . . , n. (3.37)

The derivative of the barrier function can found in Chapter C. It is interesting

to see that the matrix X(γ)−1/λ is dual feasible when λ > 0. The associated

duality gap is

η = Tr (X(γ)Z) = Tr

(
X(γ)

X(γ)−1

λ

)
=
m

λ
, (3.38)

where m is the dimension of the X(γ) matrix. We see that the Lagrange

multiplier is directly related to the duality gap. It can even be shown that

X(γ)−1/λ is an analytic center of the dual problem [21]. In other words, if

we have a point on the central path of the primal problem, we can derive its

partner point on the central path of the dual problem. It is even so that the

optimal points X(γ) and Z will be each other’s inverse, up to a factor.

We will now focus on potential reduction techniques to solve the primal

problem. The idea is simple: we add the barrier function (3.34) to the objective

function, but scaled with a parameter t. During the calculation, we will itera-

tively solve the unconstrained problem. A�er every iteration we will decrease

the barrier, until at convergence the barrier is non-existing and we find the
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optimal point on the boundary of the feasible region. Our unconstrained

objective function is

φ(γ) = hTγ − t ln detX(γ). (3.39)

By optimizing the γi coe�icients, we automatically enforce the trace con-

dition and the barrier function will make sure that the N -representability

conditions are positive semidefinite. As a function of t, eq. (3.39) lies on the

central path. For t → ∞, we should find the analytic center of X(γ) � 0
and for t→ 0 we should find the optimal point of the SDP problem. We now

look for the minimum of φ(γ) for a fixed value of t. The standard way to

minimize an unconstrained objective function is to use the Newton-Raphson

method [127]. Under the right conditions (good starting point, well behaving

derivatives), it has quadratic convergence. First, we need a second-order

Taylor expansion of eq. (3.39)

φ(γ0 + ∆γ) ≈ φ(γ0) +
∑
i

∆γi
∂φ(γ)

∂γi
+
∑
ij

1

2
∆γi

∂2φ(γ)

∂γiγj
∆γj . (3.40)

We search for a step ∆γ that minimize eq. (3.40). By taking the derivative

we find ∑
j

∂2φ(γ)

∂γiγj
∆γj = −∂φ(γ)

∂γi
, (3.41a)

∑
j

Hij∆γj = −∇φi, (3.41b)

where the second equation introduces the symbols for the gradient and Hes-

sian of eq. (3.40). If we solve this linear system of equations, we know the

optimal update step ∆γ. All that is le� is finding an expression for the

gradient and the Hessian.

The gradient of eq. (3.40) is

∇φi =
∂φ(γ)

∂γi
= hi − t Tr

(
X(γ)−1ui

)
. (3.42)

By using the adjoint images (see Chapter F) and the structure of X(γ) we

can simplify this to

∇φi = hi − t
∑
j

Tr
(
Lj(Γ)−1Lj(f

i)
)

(3.43)

= Tr

K − t ∑
j

L
†
j(Lj(Γ)−1)

 f i
 , (3.44)

72



Semidefinite Programming

where we used the definition of the traceless basis (eq. (3.26)). We usedLj(Γ)
where we actually should use Lj(γ), but the former simplifies the notation.

The gradient can be wri�en as the projection of a matrix on the traceless

two-particle space

∇φ = P̂Tr

K − t ∑
j

L
†
j(Lj(Γ)−1)

 , (3.45)

with the traceless projection operator

P̂Tr(A) = A− Tr (A)

dimA
1. (3.46)

The nice thing about this approach is that we never need the traceless ba-

sis explicitly! We can simply construct the matrix in eq. (3.45) and do the

projection.

The Hessian is a bit more complicated. By taking the derivative of eq. (3.42)

we find

Hij =
∂2φ(γ)

∂γiγj
= t Tr

(
X(γ)−1uiX(γ)−1uj

)
(3.47)

= t
∑
k

Tr
(
Lk(Γ)−1Lk(f

i)Lk(Γ)−1Lk(f
j)
)
. (3.48)

We decompose our update step ∆γ in the traceless basis

∆γ =
∑
i

δγif
i, (3.49)

and examine the action of the Hessian on this

∑
j

Hijδγj = t
∑
k

Tr

Lk(Γ)−1

∑
j

Lk(f
j)δγj

Lk(Γ)−1Lk(f
i)


= t

∑
k

Tr
(
L
†
k

(
Lk(Γ)−1Lk(∆γ)Lk(Γ)−1

)
f i
)
. (3.50)

We see that the action of the Hessian on a traceless matrix can be expressed

as

H∆γ = t P̂Tr

(∑
k

L
†
k

(
Lk(Γ)−1Lk(∆γ)Lk(Γ)−1

))
. (3.51)

Again, no explicit reference to the traceless basis is used. Notice that eq. (3.51)

actually gives us an e�icient matrix-vector product to solve eq. (3.41b). The
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dimension of the 2DM scales as M2
(with M the size of the single-particle

basis) and the dimension of the traceless basis {γi} scales as M4
, leading

to an M8
scaling for the matrix-vector product of the Hessian. However,

eq. (3.51) only scales as M6
: we work directly without the matrix in the two-

particle space with using the traceless basis explicitly. Now that we have

an e�icient matrix-vector product, we can use a Krylov subspace method

to solve the linear system in eq. (3.41b). The idea is that the inverse of a

matrix can be expressed as a linear combination of powers of the matrix
5
. The

Hessian is positive semidefinite, which leads us to the Conjugate gradient

method [127, 128]: this is an iterative method to solve a linear system using

only matrix-vector operations. This means that we never have to explicitly

construct the Hessian, we only use its action on a vector.

Although the problem is now solved and we can calculate the update step

∆γ for eq. (3.40), we can speed up the convergence process by optimizing

the step size. This means calculating α such that φ̃(α) = φ(γ0 + α∆γ) is

minimal. The optimality condition is

dφ̃(α)

dα
=
∂φ(γ0 + α∆γ)

∂α
= 0. (3.52)

If we use eq. (3.39), we find

dφ̃(α)

dα
= Tr (K)− t

∑
j

Tr
(
Lj(γ0 + α∆γ)−1Lj(∆γ)

)
. (3.53)

Every evaluation of this would require calculating the inverse of a matrix.

Luckily, this can be avoided. First, we must calculate the eigenvalues of

following generalized eigenvalue problem

L(∆γ)w = λLL(Γ)w, (3.54)

which can be transformed to an ordinary symmetric eigenvalue problem as(
L(Γ)−

1
2L(∆γ)L(Γ)−

1
2

)
v = λLv, v = L

1
2w. (3.55)

It can be shown that eq. (3.53) can be expressed as [90]

dφ̃(α)

dα
= Tr (K)− t

∑
j

(∑
i

λ
Lj

i

1 + αλ
Lj

i

)
. (3.56)

The summation over i runs over all eigenvalues of eq. (3.54), while j runs

over all enforced matrix constraints. This way is much cheaper to calculate

5. This is a direct consequence of the Cayley–Hamilton theorem.

74



Semidefinite Programming

the optimal value of α as the eigenvalues only have to be calculated once

and then a simple bisection method [127] can be used to find the roots of

eq. (3.56).

To estimate the duality gap, we need an (approximate) solution to the dual

problem. If we have found the solution to eq. (3.40), the gradient will be zero

0 = hi − t Tr
(
X(γ)−1ui

)
. (3.57)

We see that Z = tX(γ)−1
is dual feasible and using eqs. (3.37) and (3.38) we

can estimate the duality gap to be

η = Tr (X(γ)Z) = mt, (3.58)

withm the dimension ofX(γ) orZ . We use this as our convergence criterion.

To conclude the expose about the potential reduction method, we give an

Algorithm 1 The potential reduction algorithm to solve the primal problem

tailored for v2DM.

Set ε > 0, εNR > 0 and β ∈ [0, 1]

Γ = N(N−1)
M(M−1)1; t = 1

while nt > ε do . The barrier reduction loop

while δ > εNR do . The Newton-Raphson loop

∇φ = P̂Tr

(
K − t

∑
j L
†
j(Lj(Γ)−1)

)
Solve H∆γ = −∇φ . Solved with Conjugate Gradient

Solve
dφ̃(α)

dα = 0
Γ← Γ + α∆γ
δ ← α ‖∆γ‖

end while
t← βt

end while

overview of the algorithm in pseudocode in Algorithm 1.

3.3 Boundary Point method

One of the problems with the barrier function method is that the problem

gets harder to solve as the barrier is reduced. When we approach the bound-

ary of the feasible region, the condition number of the Hessian will become

worse. As we use an iterative technique to solve the linear system of equa-

tions, the number of iterations will sharply increase towards the boundary.

For this reason it is not even interesting to start from a be�er guess: a good
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guess will be close to the boundary and we want to avoid that as long as

possible by walking on the central path. One possible solution to this is to use

an Augmented Lagrangian method [123], which adds an additional term to

the unconstrained optimization that should help to improve the convergence.

This led to the so-called Boundary Point method [129–131] in which the

complementary slackness condition (3.14) is always fulfilled. This method

jumps between the cone of positive semidefinite matrices and the space of

the other constraints until convergence: at this point the solution is primal

and dual feasible. It was first used by Mazzio�i [51] in the context of v2DM.

The augmented Lagrangian for the primal SDP problem (3.32) is

L = hTγ + Tr

(
Z

(
X − u0 −

∑
i

γiu
i

))
+
σ

2

∥∥∥∥∥X − u0 −
∑
i

γiu
i

∥∥∥∥∥
2

.

(3.59)

This has a slightly di�erent form than eq. (3.5) as we include the primal matrix

X explicitly, not as a function of γ. Remember that the Lagrangian multiplier

Z is the primary variable of the dual problem. Compared to the regular

Lagrangian, we added an additional term that adds a quadratic penalty for

infeasibility, where σ > 0 determines the strength of the penalty. In contrast

with penalty or barrier functions, σ should not go to ∞ (or 0) to reach the

optimal point. Before we continue, let us review the optimality conditions

for the primal and dual problem. A solution γ,X and Z is optimal (assuming

the Slater condition holds) when

X � 0, (3.60a)

X = u0 +
∑
i

γiu
i, (3.60b)

Z � 0, (3.60c)

Tr (Zui) = hi, (3.60d)

XZ = 0. (3.60e)

The first four conditions demand the feasibility of the solution and the last

condition ensures that the duality gap is zero.

By introducing a new matrix

W (γ) = u0 +
∑
i

γiu
i − 1

σ
Z, (3.61)

we can rewrite the eq. (3.59) to

L = hTγ +
1

2σ
‖Z‖2 +

σ

2
‖X −W (γ)‖2 . (3.62)
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We now define

f(γ,X) = hTγ +
σ

2
‖X −W (γ)‖2 . (3.63)

The method then consists of first minimizing f(γ,X) under the constraint

X � 0, while keeping Z constant. A�er this, we use the solutions γ and X
obtained in the previous step to update Z as

Z = σ(X − u0 −
∑
i

γiu
i). (3.64)

We first focus on the so-called inner problem

min
γ,X

hTγ +
σ

2
‖X −W (γ)‖2

while X � 0.
(3.65)

This is a quadratic SDP problem. Its Lagrangian is

L = hTγ +
σ

2
‖X −W (γ)‖2 − Tr (V X) , (3.66)

where V � 0 is the Lagrangian multiplier for the constraintX � 0. The nec-

essary set of conditions for optimality, the so-called Karush–Kuhn–Tucker

(KKT) conditions [22, 132, 133] for (3.65) are

∂L

∂γi
= hi − σTr

(
(X −W (γ))ui

)
= 0, (3.67a)

∂L

∂X
= σ (X −W (γ))− V = 0, (3.67b)

V � 0, (3.67c)

X � 0, (3.67d)

V X = 0. (3.67e)

Due to the Slater condition, this set of conditions is also su�icient [22].

We will now try to solve these directly. The gradient conditions eqs. (3.67a)

and (3.67b) can be rewri�en to∑
j

γjTr
(
uiuj

)
= Tr

((
X − u0 +

1

σ
Z

)
ui
)
− hi

σ
, (3.68)

V = σ (X −W (γ)) . (3.69)

Now, if we keep γ fixed, the optimization problem (3.65) is reduced to the

projection of the matrix X on the cone of positive semidefinite matrices

min
X�0
‖X −W (γ)‖ . (3.70)

77



Boundary Point method

The solution is straightforward: we have to split upW (γ) into a positive and

negative part. This can be done through a spectral decomposition

W (γ) =
∑
i

λiUiU
T
i

=
∑
i

λ+
i UiU

T
i +

∑
i

λ−i UiU
T
i

= W+(γ) +W−(γ), (3.71)

where λ+
i and λ−i denote the positive and negative eigenvalues respectively

and U is the associated eigenvector. For a fixed value of γ, the optimal value

of X = W+(γ). The optimal value of V follows from eq. (3.69)

V = −σW−(γ) � 0. (3.72)

The complimentary slackness conditionV X = 0 is fulfilled as the eigenspaces

are orthogonal. For a fixed value of X (and V ), the optimal γ can be found

by solving the linear system in eq. (3.68). This can be done very e�iciently by

using the overlap formalism from Verstichel [90]. The set uα = {u0, ui} is

non-orthogonal and has an overlap S

Sαβ = Tr
(
uαuβ

)
=
∑
k

Tr
(
Lk (fα)Lk

(
fβ
))

. (3.73)

Using the Hermitian adjoint images, this can be expressed as

Sαβ =
∑
k

Tr
(
L
†
k (Lk (fα)) fβ

)
. (3.74)

In other words, the overlap can be considered as a linear map from two-

particle to two-particle space,

S(Γ) =
∑
k

L
†
k (Lk (Γ)) . (3.75)

It can be shown that the overlap map can be expressed as a generalized Q

map for all two- and three-index N -representability conditions [90]
6
. In the

DOCI case, this does not hold. The inverse of the map (3.75) can again be

expressed as a generalized Q matrix. Compared to the time spent calculat-

ing the eigenvalues and eigenvectors of W (γ), solving the linear system in

eq. (3.68) is negligible.

We see that the inner problem (3.65) can be solved by alternating between

solving for X (with γ constant) through eq. (3.70) and solving for γ (with X

6. The complete expressions for the overlap can be found in reference 90
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constant) through eq. (3.68). When the linear system in eq. (3.68) is satis-

fied a�er projection on the cone of positive semidefinite matrices, we have

reached convergence for the inner problem. The convergence criteria can be

rewri�en as

hi − σTr
(
(X −W (γ))ui

)
= hi − Tr

(
V ui

)
≤ εinner. (3.76)

If we compare this to eq. (3.60d), we see thatV is dual feasible. By se�ingZ =
V , all conditions in eq. (3.60) are fulfilled. In other words, we can consider the

inner loop to be a projection on the dual feasibility. The outer loop in which

we update Z , can be interpreted as projecting on the primal feasibility. As

convergence criteria, we use the primal infeasibility,∥∥∥∥∥X − u0 −
∑
i

γiu
i

∥∥∥∥∥ ≤ εouter. (3.77)

During the whole optimization we have XZ = 0 meaning that the duality

gap is always zero. This interpretation also explains the name “Boundary

Point method”: during the entire optimization, we keep the duality gap zero

and alternately project on the primal and dual feasibility conditions until at

convergence both primal and dual feasible are fulfilled. In Algorithm 2 we

Algorithm 2 The boundary point algorithm to solve the primal and dual

problem tailored for v2DM.

Set εinner > 0, εouter > 0 and σ > 0
X = 0, Z = 0, k = 0
while δouter > εouter do . The outer loop

while δinner > εinner do . The inner loop

Solve for γk:

∑
j γ

k
j Tr

(
uiuj

)
= Tr

((
Xk − u0 + 1

σZ
k
)
ui
)
− hi

σ

W (γ) = u0 +
∑

i γiu
i − 1

σZ
k

Xk = W+
, V k = −σW−

δinner =
∑

i

∣∣hi − Tr
(
V kui

)∣∣ . Dual infeasibility

end while
Zk+1 ← V k

k ← k + 1
δouter =

∥∥Xk − u0 −
∑

i γiu
i
∥∥ . Primal infeasibility

end while

show the boundary point algorithm that we have implemented. The bo�le-

neck in the algorithm is the computation of the eigenvalues and eigenvectors

of W (γ). This scales as the third power of the matrix dimension, giving us

an algorithm that scales as M6
, with M the dimension of the single-particle
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space. The linear system can be solved very e�iciently for the classic two-

index and three-index conditions. In the DOCI case, we do not have a closed

form for the inverse but a Conjugate gradient algorithm can be used. The

number of iterations required to solve the linear system is small and the

bo�leneck remains the computation of W+
and W−.

Compared to other methods to solve SDP problems, the boundary point

method is faster but less stable. While the potential reduction method can

almost be used as a black box, this is certainly not the case for the boundary

point method. By tweaking the parameters, a speedup factor of 5− 10× can

be achieved compared to classic primal-dual methods. In our experience, the

following practical considerations have to be taken in account when using

the algorithm. It turns out that it is best to limit the number of iterations

of the inner loop. We limit it to 1-5 iterations. The penalty parameter σ in

the augmented Lagrangian has to be chosen carefully. The algorithm works

best when the primal and dual infeasibility are comparable. If the primal

infeasibility is greater than the dual feasibility, then we multiply σ with a

factor τ > 1. If the primal infeasibility is smaller than the dual feasibility,

we divide σ by τ . When starting the algorithm, there is a great variation in

σ until the primal and dual problem are in equilibrium and then we have a

monotonic convergence rate to primal and dual feasibility. In reference 51,

an additional parameter is introduced in the calculation of W (γ)

W (γ) = u0 +
∑
i

γiu
i − τm

σ
Z. (3.78)

We have named this factor τm the Mazzio�i factor. Se�ing it to a value in

the range [1, 1.6] can speedup the algorithm but also influenes the stability

of the algorithm. It alters the sensitivity of the {γi} on the dual infeasibility

of Z .

3.4 Conclusion

In this chapter, we have introduced a class of convex optimization problems

called Semidefinite Programming. The primal and dual formalism of these

problems was explored. Our v2DM problem was translated to a primal and

dual SDP. We investigate an interior-point method to solve the problem by

adding a barrier function to the objective function. This led to the potential

reduction algorithm tailored to v2DM. This algorithm is robust, stable and

has a scaling ofM6
for the two-index conditions andM9

for the three-index

conditions. Unfortunately, this method becomes slower and slower as we ap-

proach the solution. At every iteration, a linear system of the Hessian has to
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be solved. We have implemented this e�iciently using a Conjugate gradient

algorithm which avoids building the Hessian: we only need a matrix-vector

product. Near the boundary of the feasible set, the condition number of the

Hessian gets worse and the number of iterations needed to solve the linear

system increases sharply. In practice we see that the first steps are very quick

and most of the calculating time is spent near the boundary. This algorithm

can be used as a black box and it has only one parameter that might need

tweaking: the factor by which the barrier is decreased a�er every iteration.

An alternative to avoid the downsides of the potential reduction algorithm is

the augmented Lagrangian approach. In this method, an additional term is

added to the Lagrangian to stabilize the convergence. It leads to the bound-

ary point method which has the same theoretical scaling of M6
(two-index)

or M9
(three-index) as the potential reduction method, but is nonetheless

much faster in reality. This speedup comes at a cost: the boundary point

method is much less stable. The parameters of the algorithm need careful

tweaking to ensure convergence. The boundary point method was specifi-

cally designed for systems with a large number of variables and is at its best

in these systems.

As it is the fastest method we have, it will be our preferred method for the

rest of this work.
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Chapter 4

Results

In the previous chapters, we have introduced the concept of the Variational

Optimization of the second-order reduced Density Matrix. In Chapter 2, a

necessary set ofN -representability conditions were derived and in Chapter 3

we have shown the computational methods that can be used to do the actual

optimization. It is time to use this knowledge. First we look into DOCI and

explain the motivation for the DOCI N -representability conditions derived

in Section 2.5. Next, we explore orbital optimization with the goal to com-

bine it with v2DM restricted to DOCI. We then try our method on several

benchmark systems to assess its merits.

4.1 Introduction

Before we begin the story of the marriage between DOCI and v2DM, let us

take a step back and consider the origins of DOCI. First we will introduce

some classic concepts of wavefunction-based methods [2].

In Configuration Interaction (CI) methods, the wave function is expanded in

a (complete) basis of Slater determinants. The classical approach is to pick

a reference Slater determinant and add excitations on top. This reference is

usually obtained by a Hartree-Fock (HF) calculation. This works well when

one Slater determinant is dominant in the expansion of all possible Slater

determinants (FullCI), and we speak of a single-reference method. However,

this is far from always the case: in a bond-breaking process, multiple Slater

determinants become equally important. These are called multi-reference

e�ects and to correctly describe this situation, one can use a method like

Multi-Configurational Self-Consistent Field (MCSCF). In this method, both
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the orbitals in the Slater determinants and the coe�icients of the Slater de-

terminants are optimized.

Another important distinction to introduce is static and dynamic correlation.

The static correlation is the contribution due to the di�erent dominant Slater

determinants and you need a method such as MCSCF to correctly describe

it. Dynamic correlation on the other hand is well described by a single ref-

erence Slater determinant and the excitations of this reference. A method

like Configuration Interaction with Single and Double excitations (CISD) is

very well suited to capture this part of the energy. The di�erence between

these two is not always well defined and both concepts are o�en used rather

loosely in the literature.

A�er this short introduction, we can introduce a new partitioning of the

Slater determinants based on the seniority number. As introduced in Sec-

tion 2.5, the seniority number is the number of unpaired electrons in a Slater

determinant. Notice that it is not a proper quantum number: the seniority

operator does not commute with the electronic structure Hamiltonian [111].

It finds its origin in nuclear and condensed ma�er physics where it is a good

quantum number for the pairing Hamiltonian [134]. The seniority operator

is defined as

Ω̂ =
∑
aσ

â†aσâaσ − 2
∑
a

â†a↑â
†
a↓âa↓âa↑, (4.1)

which can be calculated with the 2DM as

〈Ω̂〉 = 〈ψ|Ω̂|ψ〉

=
∑
aσ

ρaσ;aσ − 2
∑
a

Γa↑a↓;a↑a↓ (4.2)

= N − 2
∑
a

Γa↑a↓;a↑a↓.

We are interested in Doubly Occupied Configuration Interaction (DOCI) wave

functions or, equivalently, seniority-zero wave functions. The building blocks

of DOCI are electron pair states or geminals. The idea of working with

electron pairs is very old. It predates the concept of orbitals [135] and is

somewhat deviating from the orbital picture [136, 137]. It has links to the

concept of a Lewis structure [135], which is still being taught in most high-

school chemistry classes. One can build a class of wave functions based on

this: the so-called Antisymmetric Product of Geminals (APG) [138, 139]

|ψAPG〉 =

P∏
p=1

(
L∑
k=1

cp;kâ
†
p;kâ

†
p;k̄

)
|〉 , (4.3)
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where P = N/2 is the number of pairs. The geminals are not necessarily

orthogonal to each other. In this concept the pairs of electrons can be re-

garded as weakly correlated to each other, since the wave function has a

mean-field product structure in the geminals. Notice that the pairing scheme

is not fixed with APG: each geminal has its own pairing scheme. However,

the APG wave function is computationally intractable [138, 140]. An o�en

used approach to circumvent this problem is to enforce an orthogonality

restriction to the geminals (separated pair restriction). The pairing scheme is

usually also enforced to be the same for all geminals. Although in principle

any pairing scheme can be exploited, the obvious choice is the most used one:

we pair electrons of di�erent spin together in the same spatial orbital. For the

rest of this work, we use this pairing scheme. As shown in Section 2.5, this

leads to a serious simplification in the structure of the 2DM. For a random

pairing scheme, this is not the case. Within the spin-pairing scheme DOCI

is the most general type of wave function, built from Slater determinants

in which every orbital is either unoccupied or doubly occupied. It was first

mentioned in Weinhold and Wilson [141]. The wave function has the form

|ψDOCI〉 =
∑

mi={0,1}∑
mi=P

cm1m2...mL

(
â†1â
†
1̄

)m1
(
â†2â
†
2̄

)m2

. . .
(
â†Lâ

†
L̄

)mL

|〉 (4.4)

DOCI is FullCI-like but uses only the doubly occupied Slater determinants. It

is computationally cheaper than FullCI but still has a factorial scaling:

(
L

N/2

)
vs

(
L

N/2

)2
for FullCI with Sz = 0. This makes it computationally unfeasible

for all but the smallest systems. The geminal idea can also be linked to

Valence Bond (VB) theory [142, 143]: in VB, one has to pair orbitals together

manually in so-called VB structures, which are similar to Lewis structures.

The theory had/has a large traction in the chemical community due to its

more intuitive character. Unlike Molecular Orbital theory (MO), the orbitals

are localized, making it easier to use chemical intuition in building the wave

function. It was very popular in the early days of quantum mechanics but

eventually MO became dominant. Due to the use of non-orthogonal orbitals,

the computational cost was unfavorable compared to MO. Furthermore, it is

much easier to use MO as a black box: a HF calculation is used as starting

point and excitations are added on top of this, to improve the result. It turns

out that General Valence Bond (GVB) with Perfect Pairing (PP) [144] is a

special case of DOCI [145]. In this theory, the valence bond orbitals are

expanded in the atomic orbital basis set and they are optimized in a self-

consistent way. The perfect pairing refers to the coupling of the two electrons

in the pair to a singlet state: only the VB structure with the largest coe�icient

is used.
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DOCI is the most general closed-shell wave function available. Although

it received quite some a�ention in the early days of quantum chemistry, it

remained dormant for a very long time due to its scaling. In 2011, Bytautas

et al. [146] re-examined DOCI as part of a seniority hierarchy-based approx-

imation to the wave function. They found that DOCI or the seniority-zero

sector is capable of capturing the lion’s share of the static correlation. When

adding higher seniority sectors, the result quickly convergences to the FullCI

result. It was realized that DOCI is the lowest rung on a ladder of the seniority

hierarchy which eventually leads to FullCI: by adding Slater determinants

with two, four, . . . unpaired electrons, we will eventually use all Slater deter-

minants in the Hilbert space. Given the large number of Slater determinants

in the DOCI wave function, it cannot really come as a surprise that it is quite

good for describing static correlation. Dynamic correlation is be�er described

in e.g. CISD. However, using pair excitations on the DOCI wave function, one

can recover most of the dynamic correlation [147]. In essence, a single pair

excitation is a subclass of Configuration Interaction with Double excitations

(CID), a double pair excitation is subclass of Configuration Interaction with

Double and �adruple excitations (CIDQ), etc.

The renewed interest in DOCI led to the construction of mean-field scaling

approximations of DOCI wave function, the so-called Antisymmetric Product

of one-reference-orbital Geminals (AP1roG) [145, 148, 149] or equivalently

Coupled Cluster with Double excitations (CCD) [150, 151]. The wave func-

tion has the form

|ψAP1roG〉 = exp

(
P∑
i=1

L∑
a=P+1

tai â
†
aâ
†
āâīâi

)
|φ〉 , (4.5)

where |φ〉 is the reference state, usually a Restricted Hartree-Fock (RHF)

state. The coe�icients tai needs to be optimized for a given single-particle

basis. This approximation can generate results which are virtually indistin-

guishable from Full Doubly Occupied Configuration Interaction (FullDOCI)

[145]. FullDOCI refers to the equivalent of FullCI but restricted to the space

of all doubly occupied Slater determinants.

A major downside of DOCI is its orbital dependence. Any truncated CI wave

function will be dependent on the orbitals: as part of the Hilbert space is

missing, the shape of the orbitals needs to be optimized to find the (ground

state) energy. In DOCI for example, only the diagonal one-particle matrix

elements 〈α|T̂ |α〉 are used. This greatly complicates ma�ers: one needs an

algorithm to find the optimal shape, and the matrix elements for the one- and

two-particle integrals need to be transformed to the optimal basis. In MCSCF

and Valence Bond Self-Consistent Field (VBSCF), a similar issue arises. The
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’full’ problem is very challenging to solve: it means finding the global mini-

mum in an uncharted energy landscape. We know that the DOCI landscape

is riddled with local minima [152]. The methods that exist and can potentially

find the global minima, such as Simulated Annealing (SA) [127, 153, 154],

are slow. The situation is grave but not hopeless: given a suitable starting

point, a local minimization can bring us to the desired minimum. This is the

approach used by most MCSCF and VBSCF methods. In most cases, the HF

orbitals are a good choice to start the minimization. The disadvantage is of

course that one can never be sure that the lowest energy has been found,

but in practice this approach seems to work. However, it comes at a steep

computational cost: a gradient and a Hessian matrix have to be calculated,

followed by a unitary transformation of the four-index tensor with the two-

electron integrals. The la�er operation scales as O(L5). A general unitary

transformation U of a single element is

Vabcd =
∑
aã

∑
bb̃

∑
cc̃

∑
dd̃

UaãUbb̃Ucc̃Udd̃Vãb̃c̃d̃. (4.6)

This scales as O(L4). Combined with the loop over all elements, this would

give a total scaling of O(L8). Luckily, this can be reduced to O(L5) by

rewriting eq. (4.6) as

Vab̃c̃d̃ =
∑
aã

UaãVãb̃c̃d̃,

Vabc̃d̃ =
∑
bb̃

Ubb̃Vab̃c̃d̃,

Vabcd̃ =
∑
cc̃

Ucc̃Vabc̃d̃,

Vabcd =
∑
dd̃

Udd̃Vabcd̃.

We transform index per index and thus have a scaling of O(L) instead of

O(L4). However, this is still computationally more expensive than an energy

evaluation in AP1roG (which has L3
mean-field scaling). In Section 4.2 on

page 91, our solution to this problem is discussed.

We can now go back to the marriage of DOCI and v2DM. A general v2DM

calculation, using one of the SDP methods from Chapter 3 with two-index

conditions, scales as O(L6). However, the results found by these are not al-

ways accurate enough: in many cases, the three-index conditions are needed

to capture the correct physics in the system. If we use the three-index com-

mutator conditions, this increases to O(L9). If we compare this to the so-

called ’golden standard’ Coupled Cluster with Singles, Doubles and Triples in
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Perturbation (CCSD(T)) [53], which scales asO(L7) [155], we must conclude

that v2DM is not competitive in terms of accuracy and time. The benefit we

have is that v2DM finds a lower bound on the energy while other variational

methods will find an upper bound. If we make the assumption that the

ensemble of wave functions from which our 2DM should be derivable only

consists of DOCI wave functions, we can use the DOCI N -representability

conditions shown in Section 2.5. These have the advantage that the ma-

trix dimensions of the two-index conditions are reduced from L2
to L. We

additionally have a set of linear inequalities and 2 × 2 matrix conditions

but those are cheap to enforce. This changes the scaling of v2DM from

O(L6) to O(L3). In other words, it suddenly puts us in an entirely di�er-

ent ballpark. Of course, the wave function based approximations of DOCI

such as AP1roG also have mean-field scaling. The combination of v2DM

and the DOCI N -representability constraints will be called Variational Op-

timization of the second-order reduced Density Matrix in the DOCI space

(v2DM-DOCI)
1

[156] from now on. We will show that v2DM-DOCI is a be�er

approximation to FullDOCI than v2DM is to FullCI. Unfortunately, we lose

the advantage of the lower bound on the energy: with the same set of orbitals,

v2DM-DOCI still produces a lower bound on the FullDOCI energy, but as

we have to optimize the orbitals separately, this is meaningless. One thing

that remains is that v2DM-DOCI is exact for a two-particle system: DOCI

produces the exact energy for a system with only one pair when the orbitals

are optimized [146]. This can be seen as follows: the exact wave function for

two particles in the singlet (S = 0) state is

|ψ〉 =
∑
ab

cab â
†
a↑â
†
b↓ |〉 . (4.7)

In the singlet case, the wave function is antisymmetric when swapping the

spin indices and symmetric when swapping the orbital indices (see eq. (2.86a)

on page 36): this means that c is a symmetric (real) matrix. When we diag-

onalize c and transform to the basis of the eigenvectors, the wave function

becomes

|ψ〉 =
∑
k

√
λck â

†
k↑â
†
k↓ |〉 . (4.8)

From the physical point of view, this can be interpreted as first performing

rotations between the occupied and virtual orbitals until all single excitations

disappear and one finds the Brueckner determinant [157, 158]. Next, one can

rotate the virtual orbitals among each other until all double excitations no

longer contribute to the wave function. Notice that in this case, the D part

1. An alternative name is vOODo-2DM: variational, Orbital Optimized, Doubly occupied second

order Density Matrix.

88



Results

of the 2DM will be identically zero and the eigenvalues λck are the natural

occupation numbers, doubly degenerate and summing to one (two when the

degeneracy is accounted for). The transformation in eq. (4.8) is equivalent

with transforming to the basis spanned by the natural orbitals.

The reduced Hamiltonian (see Equation (1.14) on page 7) for v2DM-DOCI is

KΠ
ab =

2

N − 1
Taaδab + Vaabb, (4.9a)

KD
ab =

1

N − 1
(Taa + Tbb) + Vabab −

1

2
Vabba, (4.9b)

where Tab = 〈a|T̂ |b〉 and Vabcd = (ab|V̂ |cd). Notice the round brackets (see

eq. (B.10)). The energy function becomes

EDOCI =
∑
ab

(
KΠ
abΠab + 2KD

abDab

)
. (4.10)

We have implemented v2DM-DOCI using both a Potential Reduction Method

and a Boundary Point method (see Chapter 3). As already said, the la�er is

much faster. In contrary to general v2DM, the Potential Reduction method is

o�en di�icult to converge. It is o�en necessary to tweak the speed at which

the barrier drops and the point where convergence is reached seems to vary

greatly. Therefore we have mostly focused on the Boundary Point method.

Note that there are some default se�ings from general v2DM which have to

be changed in v2DM-DOCI, for instance the Mazzio�i factor is always set to

one. We always used primal and dual convergence criteria 10−7
and primal-

dual criteria of 10−3
. The Boundary Point method is fast but not very stable:

we added a convergence monitor that checks if the primal convergence keeps

going down. If too many steps do not decrease the primal convergence value

(typically 2000-3000 steps), the algorithm will halt. This has consequences in

the orbital optimizer on which we will expand later.

We have done a scaling test using a linear chain of hydrogen atoms in the

STO-3G basis [159]. We used a minimal basis set as this gives us a system

which we can let grow linearly: for every additional hydrogen atom, one addi-

tional orbital is used. The interatomic distance was kept fixed at 2 Bohr while

we increased the chain length. At this distance, the individual hydrogen

atoms are still within the interacting region [160]. No orbital optimizations

are performed, we directly use the HF orbitals. As reference, we calculated

the same chain with general v2DM and the Boundary Point method using

spin symmetry and the singlet constraints (see eq. (2.108)). The convergence

criteria were the same for both programs. Both were run on a single core of

Intel® Xeon® E5-2680 v3 CPU. In Figure 4.1 on the next page we show the

calculation time for all chain lengths on a log-log scale. The timings were

89



Introduction

101 102

Number of hydrogen atoms

101

102

103

104

105

106
Ti

m
e 

(s
ec

)
v2DM-DOCI

v2DM
Fit β = 3.954

Fit β = 6.485

Figure 4.1: The scaling of v2DM vs v2DM-DOCI on a log-log scale. The test

system is a linear hydrogen chain in the STO-3G basis. We fi�ed

a linear curve βx+ α to the data.

checked to be reproducible. Notice that for a chain of 34 hydrogen atoms,

the di�erence in runtime between v2DM-DOCI and v2DM is three orders of

magnitude. For the v2DM curve (red) all calculated data points are marked,

while for the v2DM-DOCI curve (blue) only every third data point is marked.

To find the leading power in scaling, we performed a linear fit on the log-log

data. The code scales as f(x) = αxβ+ . . ., where we neglect all terms expect

for the highest power. On a log-log scale, this becomes

log f(x) = β log x+ logα, (4.11)

or a simple linear curve. We used a least squares fit [127] which means

minimizing

e =
∑
i

|β log xi + logα− ti|2 (4.12)

with respect to α and β (the sum goes over the data points). For the v2DM,

we used a threshold of 600 seconds resulting in 11 data points for the fit. The

v2DM-DOCI fit used a threshold of 104
seconds, giving us 35 data points for
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α β

v2DM 2.602 10−5
6.485

v2DM-DOCI 5.268 10−5
3.954

Table 4.1: The resulting coe�icients of the linear fit in Figure 4.1

the fit. Both choices are motivated by Figure 4.1: it is visually clear that both

curves only reach a constant scaling when the problem size is su�iciently

large. It is interesting to see that v2DM-DOCI needs a much larger chain

to have a constant scaling. In Table 4.1, the results of the fit can be found:

v2DM-DOCI is two orders faster than v2DM while the leading coe�icient

changes li�le. The results deviate from our prediction of O(L3) for v2DM-

DOCI and O(L6) for v2DM. This can be explained by the internal loop of

the Boundary Point method. The actual scaling is iterative O(L3): for one

loop, the number of Floating-Point Operations per Second (FLOPS) scales as

O(L3) but its main loop adds an additional power to this. It is interesting

to notice that the additional cost is higher for v2DM-DOCI than for v2DM.

Despite its simpler structure, the DOCI N -representability constraints are

more di�icult to converge than their general counterpart. This agrees with

our experience with the code: the Boundary Point method in v2DM-DOCI

seems to be more unstable than in general v2DM.

4.2 Orbital Optimization

We now turn our a�ention to the orbital optimization of the DOCI orbitals.

Like most MCSCF methods, we will use an iterative two-step algorithm: first

we optimize the 2DM for a given set of orbitals and secondly we optimize

the orbitals using the optimal 2DM. We look for the unitary transformation

(UU † = U †U = 1) of the orbitals that gives us the lowest energy. Notice

that as we have restricted ourself to real orbitals, the transformations are

actually orthogonal (UUT = UTU = 1). We want to calculate the energy

under a unitary transformation. In general v2DM this would give

E′ =
1

4

∑
αβγδ

∑
α′β′γ′δ′

Kαβ;γδUαα′Uββ′Uγγ′Uδδ′Γα′β′;γ′δ′ . (4.13)

One can both transform the 2DM or the reduced Hamiltonian K . How-

ever, this does not hold for DOCI, since a unitary transformation will moves

us out of the DOCI space: the one- and two-electron integrals need to be

transformed directly. If one transforms the 2DM as in eq. (4.13), then it can
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only use the current DOCI space, while we want to rotate new information

from outside into the DOCI space. The transformation of the one- and two-

electron integrals is

T ′ab =
∑
a′b′

Uaa′Ubb′Ta′b′ , (4.14a)

V ′abcd =
∑

a′b′c′d′

Uaa′Ubb′Ucc′Udd′Va′b′c′d′ . (4.14b)

If we substitute this in the reduced Hamiltonian (4.9), we find

KΠ
ab =

2

N − 1
δab
∑
a′b′

Uaa′Uab′Ta′b′+∑
a′b′c′d′

Uaa′Uab′Ubc′Ubd′Va′b′c′d′ , (4.15a)

KD
ab =

1

N − 1

∑
a′b′

(Uaa′Uab′ + Uba′Ubb′)Ta′b′+

∑
a′b′c′d′

Uaa′Ubb′

(
Uac′Ubd′ −

1

2
Ubc′Uad′

)
Va′b′c′d′ . (4.15b)

The energy function (4.10) now is

E′ =
2

N − 1

∑
ab

∑
a′b′

(δabUaa′Uab′Πaa + (Uaa′Uab′ + Uba′Ubb′)Dab)Ta′b′+∑
ab

∑
a′b′c′d′

Uaa′Uab′Ubc′Ubd′Va′b′c′d′Πab+∑
ab

∑
a′b′c′d′

Uaa′Ubb′ (2Uac′Ubd′ − Ubc′Uad′ .)Va′b′c′d′Dab. (4.16)

An n × n unitary matrix can be parameterised by a antisymmetric n × n
matrix X as [161]

U = expX = 1 +X +
1

2
X2 +

1

6
X3 + . . . =

∞∑
n=0

1

n!
Xn

(4.17)

with XT = −X.

This parameterization is used since otherwise we would need a Lagrange

multiplier [123, 124] to ensure the unitarity of U in a minimization. The

most o�en used approach is to use the second-order approximation of U
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and substitute it in the energy function (4.16). We then rewrite the energy as

E(x) = E(0) +
∑
ab

xab
∂E

∂xab
+

1

2

∑
abcd

xab
∂2E

∂xab∂xcd
xcd (4.18a)

= E(0) + gTx +
1

2
xTHx, (4.18b)

where x = (X12, X13, . . .) is the vector with the non-redundant elements

of the antisymmetric matrix X , while g and H are the gradient and Hessian

of the orbital optimization. The straightforward way is to use a Newton-

Raphson method [127] to find the local minimum starting from an educated

guess. O�en the Hessian is approximated in some way to speed up the

minimization [162]. In the end we still need to transform the one- and two-

electron integrals using the found unitary matrix, which scales asO(L5). We

will try to avoid this.

One of the simplest unitary transformations are Jacobi rotations [163]: it is

a rotation in the two-dimensional subspace of two orbitals. It is also referred

to as a Givens rotation
2
. The Jacobi rotation of orbitals k and l over an angle

θ is given by(
Qkl(θ)

)
ij

= δij+(δikδjk+δilδjl)(cos θ−1)+(δikδjl−δilδjk) sin θ, (4.19)

or in matrix form

Qkl(θ) =



k l

1
.
.
.

k cos θ · · · sin θ
.
.
.

.
.
.

.

.

.

l − sin θ · · · cos θ
.
.
.

1


. (4.20)

Originally, it was used in the Jacobi Eigenvalue algorithm [127, 164]: a se-

quence of Jacobi rotations were used to zero out all o�-diagonal elements of a

matrix. Although it is considered not to be competitive with the QR algorithm

[164], it has the advantage of being inherently parallelizable. To understand

this, let us look at what happens when we perform a Jacobi rotation on a

2. The correct name would be a Givens rotation but in the �antum Chemistry literature, the

name Jacobi rotation is used consistently.
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symmetric matrix T

T ′ = Qkl(θ)T (4.21)

T ′ab =
∑
c

(
Qkl(θ)

)
ac
Tcb (4.22)

= Tab + δak (Tkb (cos θ − 1) + Tlb sin θ) +

δal (Tlb (cos θ − 1)− Tkb sin θ) . (4.23)

We can see that only row/column k and l are changed. This is also the

reason why we are interested in Jacobi rotations: if T is the matrix with

the one-particle integrals, only 2 row/columns need to be updated at each

step. For the two-particle matrix elements Vabcd the situation is slightly

more complicated, but it boils down to the same: only if at least one of the

4 indices is equal to k or l does an update have to occur. If point group

symmetry is used, the simplification is even bigger. We always assume that

the orbitals k and l belong to the same irreducible representation. Another

advantage is that no Taylor expansion is needed: we use the exact unitary

transformation instead of a second-order approximation. The antisymmetric

parameterization X of U also has a distinct form for a Jacobi rotation: all

elements are zero expect Xkl = θ. With this form, eq. (4.17) will generate

the series expansion of a cos and sin. Furthermore, using a sequence of

only Jacobi rotations forms no limitation: any orthogonal transformation

can be uniquely decomposed as a series of Jacobi rotations [165]. This leads

to a generalization of the Euler angles [166, 167]. There exist MCSCF and

Complete Active Space Self-Consistent Field (CASSCF) algorithms that use

Jacobi rotations for the orbital optimization step [168, 169].

If we substitute the unitary transformation (4.19) in the energy function (4.16)

we find a lengthy expression, which can be simplified as

E(θ) = Ã cos4 θ + B̃ sin4 θ + C̃ cos2 θ + D̃ sin2 θ + 2Ẽ cos θ sin θ

+ 2F̃ cos2 θ sin2 θ + 4G̃ sin θ cos3 θ + 4H̃ sin3 θ cos θ + Ĩ ,
(4.24)

where

Ã = VkkkkΓkk̄;kk̄ + VllllΓll̄;ll̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl (4.25a)

B̃ = VkkkkΓll̄;ll̄ + VllllΓkk̄;kk̄ + 2VkkllΓkk̄;ll̄ + 2 (2Vklkl − Vkkll) Γkl;kl (4.25b)

C̃ =
∑
a

a/∈{k,l}

{
2VkkaaΓkk̄;aā + 2VllaaΓll̄;aā + 2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γka;ka

+ 2

(
2Vlala − Vlaal +

2

N − 1
Tll

)
Γla;la

}
+

2

N − 1

(
TkkΓkk̄;kk̄ + TllΓll̄;ll̄

)
(4.25c)
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D̃ =
∑
a

a/∈{k,l}

{
2VkkaaΓll̄;aā + 2VllaaΓkk̄;aā + 2

(
2Vkaka − Vkaak +

2

N − 1
Tkk

)
Γla;la+

2

(
2Vlala − Vlaal +

2

N − 1
Tll

)
Γka;ka

}
+

2

N − 1

(
TllΓkk̄;kk̄ + TkkΓll̄;ll̄

) ]
(5.25d)

Ẽ =
∑
a

a/∈{k,l}

{
2Vklaa

(
Γll̄;aā − Γkk̄;aā

)
+ 2

(
2Vkala − Vkaal +

2

N − 1
Tkl

)

(Γla;la − Γka;ka)

}
+

2

N − 1
Tkl
(
Γll̄;ll̄ − Γkk̄;kk̄

)
(5.25e)

F̃ = (2Vkkll + Vklkl)
(
Γkk̄;kk̄ + Γll̄;ll̄

)
+ (Vkkkk + Vllll − 2 (Vkkll + Vklkl)) Γkk̄;ll̄+

(Vkkkk + Vllll − 6Vkkll + 2Vklkl) Γkl;kl (5.25f)

G̃ = VklllΓll̄;ll̄ − VklkkΓkk̄;kk̄ + (Vklkk − Vklll)
(
Γkk̄;ll̄ + Γkl;kl

)
(5.25g)

H̃ = VklkkΓll̄;ll̄ − VklllΓkk̄;kk̄ − (Vklkk − Vklll)
(
Γkk̄;ll̄ + Γkl;kl

)
(5.25h)

Ĩ =
∑
ab

a,b/∈{k,l}

{
VaabbΓaā;bb̄ +

(
2Vabab − Vabba +

2

N − 1
(Taa + Tbb)

)
Γab;ab

}
(5.25i)

The energy expression (4.24) can be simplified even more using trigonometric

identities to

E(θ) = A cos 4θ +B cos 2θ + C sin 4θ +D sin 2θ + F, (4.26)

where the constants are

A =
Ã+ B̃

8
− F̃

4
, (4.27a)

B =
G̃− H̃

2
, (4.27b)

C =
Ã− B̃ + C̃

2
− D̃

2
, (4.27c)

D = Ẽ + G̃+ H̃, (4.27d)

F =
3

8

(
Ã+ B̃

)
+
C̃ + D̃

2
+
F̃

4
+ Ĩ . (4.27e)

We now want to know the minima of this one-dimensional function. A direct

analytical result seems not feasible, so we resort to numerical techniques: we
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Figure 4.2: Equation (4.26) for the case A ≈ −0.115, B ≈ −0.839, C ≈
0.761, D ≈ −0.477 and F ≈ 0.313.

use the Newton-Raphson method [127], for which we require the gradient

and Hessian:

dE (θ)

dθ
= −4A sin 4θ − 2B sin 2θ + 4C cos 4θ + 2D cos 2θ, (4.28a)

d2E (θ)

dθ2
= −16A cos 4θ − 4B cos 2θ − 16C sin 4θ − 4D sin 2θ. (4.28b)

It is interesting to note here that it is cheaper to compute the gradient or

Hessian than it is to evaluating the energy (4.26). This is a direct consequence

of the Jacobi rotations: the constant term in eq. (4.26), e.g. the I term in

eq. (5.25i), has a double summation over all orbitals except k and l, while all

other terms have at most a summation over one index. Thus calculating the

energy scales asO(L2) while calculating the gradient and Hessian only scale

asO(L). The actual Newton-Raphson will be very fast as it only requires the

evaluation of four sine and cosine values. We always start from θ = 0 to

find a minimum. Using the Hessian (4.28b) we can make sure that we have

a minimum. It is clear that eq. (4.26) is periodic with a period of π, so we

limit our search to the interval

[
−π

2 ,
π
2

]
. Note that in case of θ = π

2 , we

simply switch two orbitals. It is possible that eq. (4.26) has multiple minima

and that we will not find the lowest one when starting from θ = 0. Such a

situation can be seen in Figure 4.2. We looked for a pa�ern in the coe�icients

to discover this kind of situation, but found none. The easiest way is simply to

perform two minimizations starting from two di�erent starting points. This
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Doubly occupied orbitals

1A1 -7.339428 2A1 -0.573370 3A1 -0.246546

Virtual orbitals

1B1 0.269938 1B2 0.269938 4A1 0.701123

Table 4.2: The restricted Hartree-Fock solution for BH in STO-3G. The or-

bital energies are in Hartree. We use C2v symmetry, the orbitals

are labelled according to irreducible representationsA1,B1 orB2.

approach works well as each minimization is very fast. In case of a positive

Hessian (or maximum), we also simply restart from θ = π
4 .

We still need to know which pair of orbitals to consider. Looping over all pos-

sible pairs of orbitals within an irreducible representation will scale asO(L2).

Combining this with the Newton-Raphson minimization, we have a O(L3)
algorithm to find the optimal set of orbitals. As already said, the update of the

one- and two-electron integrals scales as O(L). Explicit formulas to directly

calculate the reduced Hamiltonian can be found in Chapter E on page 155.

Note that the minimal energy found by eq. (4.26) is not necessarily the actual

minimum: the N -representability conditions are unitarily invariant but the

v2DM minimum is not. Let us take a look at an example: the BH molecule

in the STO-3G [159] basis with an interatomic distance of 2.33 Bohr. This

molecule has C2v symmetry with four orbitals transforming according to

irreducible representation A1, one according to B1 and one according to B2.

The result of eq. (4.26) with and without a v2DM optimization can be seen

in Figure 4.3 on the next page. As we hoped, around θ = 0, both curves

coincide. Most orbital pairs have a minimum very close to θ = 0 except one:

the rotation between orbitals 2A1 and 3A1. But even there, the minimum

predicted by the Jacobi rotations is very close to the optimized one: the

di�erence is 0.039 rad. A single Jacobi rotation already brings us very close

to the FullCI energy of -24.810 Hartree. This can be understood from the HF

solution of BH: the orbital energies (in Hartree) of the RHF solution are given

in Table 4.2. The 1A1 orbital is the 1s orbital on the Bohr atom while the 2A1

and 3A1 are a mixture of the 1s orbital on the hydrogen atom and the 2s
and 2pz orbital on the Bohr atom. The largest energy gain can be achieved

by mixing these orbitals.

It turns out that the picture painted in Figure 4.3 is correct for most molecules:

most orbital pairs will have a minimum very close to θ = 0, while a select

group will lower the energy. We present our algorithm to find the optimal

Jacobi rotation in pseudocode in Algorithm 3.

One of the downsides of using Jacobi rotations versus a procedure with the
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Figure 4.3: The red curve has been calculated using eq. (4.26), while the

dashed blue curve uses the same transformed reduced

Hamiltonian but an optimized 2DM. The min refers to the

minimum of the red curve. The FullCI energy is -24.810 Eh.
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Algorithm 3 The algorithm used to find the optimal Jacobi rotation in pseu-

docode. The inputs are the 2DM, and the one- and two-electron integrals. It

returns the optimal orbital pair and angle.

procedure FindOptimalRotation(Γ, T, V )

for i← 1, nirrep do . Loop over all irreducible representations

for all (a, b) ∈ irrepi do . Loop over all orbital pairs in irrepi

(Eab, θab) = FindMinimum(Γ, T, V, a, b) . Minimum of (4.26)

end for
end for
(k, l, θ) = min (E, θ) . Find the lowest energy over all pairs

return (k, l, θkl) . Return the pair of orbitals and the angle

end procedure

full gradient and Hessian, is that it can only update two orbitals at a time,

whereas a gradient-based method can update all orbitals at the same time.

We can partially circumvent this: we found that the first sequence of Jacobi

rotations decreases the energy clearly, and is then followed by a long se-

quence of Jacobi rotations over small angles. For small angles, the 2DM does

not change much and we can skip the actual optimization. This leads to a

hybrid algorithm: first we combine the Jacobi rotations with the optimization

of the 2DM until the energy change in consecutive steps is small enough, then

we perform a sequence of Jacobi rotations with an occasional optimization of

the 2DM. A�er the energy decrease is small enough, we restart the original

Jacobi rotation with 2DM optimization until convergence has been reached.

This procedure can give a considerable speed boost. Let us now revisit our

previous test system to fit the scaling. We will use the same linear hydrogen

chain as in Figure 4.1 on page 90 but now include orbital optimization. For the

linear fit, a threshold of 104
seconds was used, resulting in 27.256 10−5 x4.200

.

If we compare this to the values in Table 4.1, we see that the orbital optimiza-

tion costs us an additional 0.25 in the leading power. This is still clearly faster

than v2DM and AP1roG. It is di�icult to draw general conclusions from this

because a hydrogen chain in STO-3G [159] is such as special case: only the

1s orbital is present.

As reference, we have also implemented a Simulated Annealing (SA) algo-

rithm [127, 153, 154] for the orbital optimization. As already stated, SA is a

slow method, but it is able to find the global minimum. It is not o�en used

in the context of electronic structure calculations [170–173] but it has been

successfully applied to protein folding [174, 175]. It is a kind of Monte Carlo

algorithm but the idea is inspired by annealing in metallurgy. The material is

slowly cooled and, once in a while, slightly reheated to minimize the number
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Figure 4.4: The scaling of v2DM-DOCI with orbital optimization on a log-log

scale. The test system is a linear hydrogen chain in the STO-3G

basis. We fi�ed a linear curve βx+ α to the data.

of defects in the material. In SA, there is an artificial temperature which

determinates the probability of accepting a new solution with a higher energy

than the previous solution. In a nutshell, the SA algorithm can start at any

random point (but a guess close to the actual solution is of course be�er), it

will then make a random move on the DOCI surface and calculate the energy

with the new set of orbitals. If the new energy is lower, the algorithm will

accept the solution and the cycle restarts. If the new energy is higher, the

algorithm will accept it with a probability depending on the temperature:

the higher the temperature, the higher the probability it will be accepted.

During the cycles, the temperature is slowly decreased until higher energy

solutions have a negligible probability of acceptance. We use Jacobi rotations

for the random perturbation on the orbitals: a pair of orbitals and the rotation

angle are chosen at random at each cycle. As acceptance probability function,

we will use a Boltzmann function: exp Eold−Enew

T . There are many parameters

that need customizing in a SA algorithm: the acceptance probability function,

the temperature change function and the random perturbation generator.
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Our algorithm is heavily inspired by that of Van Raemdonck et al. [147].

Unfortunately, this algorithm is slow: depending on the starting point, many

cycles are needed before convergence is reached. As it is a Monte Carlo

algorithm, several runs are needed to ensure that we have actually found the

correct global minimum. Our algorithm starts several “walkers” in parallel

which communicate with each other through the Message Passing Interface

(MPI) [176, 177]. They all start again from the lowest energy walker a�er a

certain number of steps. We will only use this algorithm when there is doubt

that the Jacobi rotation-based local minimizer finds the correct minimum.

4.3 DOCI tailored v2DM

Before we embark on our tour through the v2DM-DOCI results, let us first

sketch the boundary conditions. From now on, we will always use the cc-

pVDZ basis [108] unless explicitly specified otherwise. All HF calculations

were done with PSI4 [178], an open-source ab initio electronic structure pro-

gram. The symmetry-adapted molecular one- and two-particle integrals also

were extracted from PSI4. As v2DM always needs an orthogonal basis, we

work in the symmetry-adapted basis where we applied a Löwdin orthogo-

nalization [179]. This transformation has the interesting property that the

orthogonalized orbitals are, in a least-squares sense, the closest to the original

orbitals [180, 181]. When we use the RHF orbitals, we use the transformation

from the orthogonalized symmetry-adapted basis to the MO orbitals. By

doing this, we can use the optimal set of orbitals from one configuration to

the next.

We use atomic units [182], namely Bohr for distances and Hartree for en-

ergies. The symmetries to which we refer always mean the largest Abelian

subgroup of the full point group symmetry. When we refer to FullDOCI,

we mean a CI solver which is restricted to all Doubly-occupied Slater deter-

minants within the basis. The code is GPLv3-licensed [183] and available

online [184]. We use the same starting point and orbital optimization algo-

rithm in FullDOCI and v2DM-DOCI. All calculations were done on an Intel®

Xeon® E5-2680 v3 CPU with 64 GB of RAM. The v2DM-DOCI code is single

threaded while the FullDOCI code is parallelized: the sparse Hamiltonian is

constructed explicitly and the lowest eigenvalue and eigenvector are found by

an implicit restarted Arnoldi algorithm [185, 186]. It is only because of this

parallelization that we can find the FullDOCI results in a reasonable time.

More details about the working of both codes can be found in Chapter G on

page 161. In Algorithm 4 on the following page we show a schematic overview

of the entire program.
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Algorithm 4 Schematic overview of the complete v2DM-DOCI algorithm

converged← 0
while converged < 25 do . Do 25 steps within convergence criteria

Enew,Γ = v2DM(T, V ) . Do a v2DM-DOCI optimization with

electron integrals T and V
(k, l, θ) = FindOptimalRotation(Γ, T, V ) . Find the optimal rotation

T, V = TransformIntegrals(k, l, θ, T, V ) . Rotate the integrals

if |Enew − Eold| < 10−6 then . Check convergence

converged← converged + 1
end if
Eold ← Enew

end while

When the size of the problem allowed it, we used the FullCI solver from PSI4

to generate the reference results. For larger problems, we used CheMPS2

[187–190], an open-source spin-adapted implementation of Density Matrix

Renormalization Group (DMRG) [191–194] for ab initio quantum chemistry.

It uses a Matrix Product State (MPS) [195] as ansatz for the wave function

which is then iteratively optimized during a number of sweeps. The size

or bond dimension of the matrices in the MPS determine the accuracy and

speed. We have always started with a bond dimension of 500 and increased

this in steps to 2500. CheMPS2 also fully exploits spin symmetry and point

group symmetry. For all practical purposes in this work, we can consider the

energy found by CheMPS2 to be FullCI accurate.

4.3.1 Few electron systems

We first investigate a couple of special cases as reference: H2, He and He2.

The first two have only two electrons, and thus we should find the FullCI

value using only the I condition. The la�er dissociates in two two-electron

systems, and we should thus recover the correct dissociation energy. In Fig-

ure 4.5 on the next page the result for H2 can be seen. As expected, the v2DM-

DOCI curve and the FullCI curve coincide. For the neutral atom Helium,

we find a ground state energy of -2.8875948297 Hartree with v2DM-DOCI

while FullCI gives us -2.8875948311 Hartree. The di�erence between both

is 1.400 nanoHartree. In both cases we started from the RHF solution. The

number of orbital optimization steps was small (< 10). A more interesting

case is the Helium dimer in Figure 4.6 on the facing page. This system has

D2h symmetry and if we calculate v2DM-DOCI using this symmetry, the

dissociation limit produces too high an energy. It is only when we break the

symmetry (and use C1 symmetry) that we recover the correct dissociation
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Figure 4.5: The dissociation of H2 in the cc-pVDZ basis.
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Figure 4.6: The dissociation of He2 in the cc-pVDZ basis. Both the

symmetry-adapted (D2h) and symmetry-broken (C1) results are

shown.
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(a) The first occupied orbital of He2 for

D2h symmetry (Ag)

(b) The second occupied orbital of He2
for D2h symmetry (B1u)

(c) The first occupied orbital of He2 for

C1 symmetry

(d) The second occupied orbital of He2
for C1 symmetry

Figure 4.7: The occupied natural orbitals of He2 at an interatomic distance

of 10 Bohr, for both D2h and C1 symmetry. The colors indicate

the relative sign.

energy. We tried random starting points for the D2h calculation but never

found an energy lower than the one depicted in Figure 4.6. If we look at the

occupation numbers, we see exactly what we expect: two orbitals which are

doubly occupied. This example shows the importance of symmetry breaking

for DOCI. Symmetry breaking has a long history in physics [196–198]. The

exact ground state wave function (or 2DM) of a Hamiltonian needs to exhibit

the symmetry of the system but this does not hold for the approximated wave

function. On the contrary, if we use the classic variational principle, every

additional constraint on the wave function will only increase the energy.

This was called the symmetry dilemma by Lödwin [199]. The most strict

approximation in HF theory is symmetry-adapted RHF: all symmetries are

conversed. Each symmetry that is broken leads to a flavour of HF [200, 201],

with the most general one being complex General Hartree-Fock (GHF) [202].

In GHF, none of the symmetries of the system are used in the variation,

leading to a potentially much lower energy. A�erwards, a projection is done

to restore some symmetries such as particle number. However, it turns out

that it is di�icult to recover a good quantum number once it is lost. In

HF theory, this can be solved by a self-consistent variation a�er projection

approach [203]. In the present case of DOCI, we will only break the spatial

point-group symmetry. It is important to note that this is not related to

v2DM. If we use FullDOCI exactly the same issues arises. It is the DOCI

space itself that requires the symmetry breaking.

In Figure 4.7 we have visualized the natural orbitals using Jmol [204, 205]: an

isosurface of the natural orbital is plo�ed. We show the isosurface f(x, y, z) =

104



Results

Figure 4.8: The deformation of a planar H4 system. The parameter d is

varied from 1 . . . 4 Bohr.

0.05 in red and f(x, y, z) = −0.05 in blue, where f(x, y, z) is a linear com-

bination of the atom-centered, Gaussian-type orbitals. The atoms are shown

at 15% of the van der Waals radius [206]. The e�ect of symmetry breaking

is clear: in the D2h case, both occupied orbitals are a linear combination of

the 1s and 2s of both He atoms, while for C1 only the s orbital of a single

He atom is used for each natural orbital. The DOCI wave function needs this

additional degree of freedom to find the correct ground-state energy.

The next molecular system which we examine is a planar configuration of

four hydrogen atoms. We will deform a rectangle of 4 × 1 to 1 × 4 Bohr.

The coordinates of the four hydrogen atoms are (0, 0), (d, 0), (0, 5− d) and

(d, 5− d) where d is varied in steps from 1 to 4 Bohr. The configuration is

depicted in Figure 4.8. Similar systems have already been studied extensively

[207–212]. The reason for the interest in this system is the degeneracy in

the square configuration: two Slater determinants become equivalent in this

case and we have a strongly correlated system. This system has D2h sym-

metry as the full point group symmetry (instead of as an Abelian subgroup).

For the symmetry-broken v2DM-DOCI calculations, we used the Edmiston-

Ruedeberg (ER) localized orbitals [213]. These are found by maximizing the

self-interaction: the unitary transformation which causes the terms Viiii of

two-electron integrals to be maximal. We need the symmetry-broken orbitals

to find the lowest energy which is very close to the FullCI energy. Both min-

ima are found when two hydrogen atoms are at their equilibrium distance

of 1.437 Bohr: in that case, we have two almost uncoupled H2 molecules

which are 3.563 Bohr apart. When d = 2.5 Bohr, we have a perfect square

and the system is degenerate. The RHF energy has a cusp indicating that a

single Slater determinant cannot adequately describe the system. This is also

the point where the largest deviation from FullCI is found for v2DM-DOCI.

The C1 curve has a cusp while the D2h curve is smoother. We usually start

from the HF orbital around equilibrium and use the optimal orbitals from one
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Figure 4.9: The energy of the deformation of a planar H4 system.

calculation as start point for the next calculation. This fails around the peak:

the transition is very steep and it is not possible to have a smooth transition

using a set of orbitals from one side to the other. Just like the RHF curve,

there is a cusp in the energy at the square configuration. These results seem

to indicate that the seniority-two sector plays an important role. If we also

add the seniority-four sector, we find the FullCI result.

Another interesting system is the symmetric stretch of an equidistant H8

chain. It is simple yet challenging, because of the strong correlation ef-

fects in the transition from metallic hydrogen to dissociated hydrogen. It

is o�en used as a benchmark system for methods (e.g. AP1roG [145]) and

it is one of the systems studied by Bytautas et al. [146]. Practically every

method which claims to have a good description of strong correlation has

been tested on this system or a variant of it [214–218]. In Figure 4.10 on the

next page the results can be found. This system has D2h symmetry, which in

this context is equivalent with parity symmetry with respect to the middle

of the chain. In the limit of dissociated hydrogen, the v2DM-DOCI results

coincide with the DMRG results. However, in the transition from metal-

lic hydrogen to dissociated hydrogen, something interesting happens: the

symmetry-adapted optimization does not produce a smooth curve between

both regimes. The blue curve is the result when starting from the HF orbitals

at the equilibrium distance, and then using the optimal set of orbitals as

a starting point for the next distance. On the other hand, the green curve

was found by a random search at an interatomic distance of 10 Bohr. The
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Figure 4.10: The symmetric stretch of a linear H8 chain in the cc-pVDZ

basis. Not all calculated points are marked on the curves.

symmetry prevents the smooth transition between the orbitals. The energy

when starting from the HF orbitals even gives a much higher energy when

going to the non-interacting region. Furthermore, the symmetry-adapted

orbitals do not find the lowest energy at the equilibrium distance. We tried

a random search at this point but no lower energy was found. The pictures

changes when we use the symmetry-broken orbitals. As a starting point we

used the ER localized orbitals. v2DM-DOCI now gives a physically correct

picture of the system. Similar results were found by Bytautas et al. [146].

They investigated whether the result might be due to an avoided-crossing

or a two-state crossing between the ground state and an excited state, but

found nothing. In Figure 4.11 on the following page, we have plo�ed the first

excited DOCI state using the optimal set of orbitals found by v2DM-DOCI.

This has been calculated using the FullDOCI program. It is clear that the

ground state and the first excited state are separated, and no crossings are

present.

To be�er understand what is happening, we have plo�ed the occupation

numbers for both symmetries in Figure 4.12 on the next page. The colors

of the curves match those in Figure 4.10. In Figure 4.12b on the following

page for the C1 symmetry, we find the picture we expect: doubly-occupied

orbitals which split into single-occupied hydrogen in the dissociation limit.

However, in the D2h case (Figure 4.12a), there is an unphysical branch of

single-occupied orbitals. There are also orphan branches: they have no con-
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(a) The natural occupation numbers of

the H8 chain in D2h symmetry. The

di�erent curves are labeled to easily

identify them in the text.
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(b) The natural occupation numbers of

the H8 chain in C1 symmetry.

Figure 4.12: The natural occupied numbers of the H8 chain. The black line

indicates the crossing of the two D2h curves in Figure 4.10.

Only points with an occupation > 10−3
are shown. The colors

match those in Figure 4.10.
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nection from the dissociated regime to the metallic regime (and vice versa).

Let us examine the situation where all three curves are active: in Figure 4.13

on the next page we have plo�ed the occupied natural orbitals of the H8 chain

with an interatomic distance of 4 Bohr for the di�erent curves. In the case

of symmetry-broken orbitals we see a familiar picture: the highest-occupied

orbitals are the bonding combination of the 1s orbitals of two adjacent hydro-

gen atoms. As we are already near the dissociation, the antibonding orbitals

also have a non-negligible occupation. This is in essence what can also be

seen in fig. 4.12b: as the interatomic distance increases, the occupation of

the bonding orbital decreases and the occupation of the antibonding orbital

is increases, until they are degenerate. In the symmetry-adapted calculation,

it is not possible to form these combinations due to the mirror plane in the

middle. The only possibility to form direct bonding and antibonding orbitals

is for the two hydrogen atoms in the center. Indeed, these combinations are

present in both fig. 4.13a and fig. 4.13b and the occupations match those

in fig. 4.13c. These orbitals are responsible for the curve marked with B

and B
′

in Figure 4.12a: it is possible to have a smooth transition for these

from one regime to the other. If we look at the highest occupied orbitals in

fig. 4.13a, we see that these correspond to two bonding hydrogen atoms on

each side of the chain. The corresponding lower branch in fig. 4.12a (marked

with A
′
), has the antibonding combination on the same hydrogens. In the

dissociated solution Figure 4.13b, the orbitals are localized and a bonding/an-

tibonding combination does not happen due to symmetry. It consists of all

combinations of two localized hydrogen orbitals that are allowed due to the

mirror symmetry. The combination of outermost hydrogen atoms leads to

the unphysical branch (marked with C) in fig. 4.12a, with no corresponding

branch in the other regime. The connecting branch between the two regimes

which starts from occupation 1 (marked with D and D
′
) is caused by the

set of orbitals present in both fig. 4.13a and fig. 4.13b: the bonding and

antibonding combination of atoms three and six. This all shows how the

D2h symmetry prevents the orbitals from reaching the lowest energy state

shown in fig. 4.13c. We can now also be�er understand the energy curves

in fig. 4.10. With a larger interatomic distance, the localized orbital are the

most accurate description of the chain and therefore, they have the lowest

energy. However, as the interatomic distance decreases, the orbitals want to

delocalize, and the symmetry constraints make this hard to do. In fact, we

know that this delocalized description must lie in a di�erent valley in the

DOCI landscape, as the orbital optimizer cannot reach it. From the other

side, the HF orbitals are delocalized and provide a be�er starting point for

small interatomic distances. In the same way as before, if we increase the

interatomic distance, the symmetry prevents the orbitals from delocalizing

and therefore the energy keeps on rising. This system is not stable: a Peierls
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(a) The natural orbitals of H8 with D2h

symmetry starting from the HF or-

bitals (the blue curve in fig. 4.10).

(b) The natural orbitals of H8 with D2h

symmetry starting from the disso-

ciated orbitals (the green curve in

fig. 4.10).

(c) The natural orbitals of H8 with C1

symmetry starting from the ER lo-

calized orbitals (the purple curve in

fig. 4.10).

Figure 4.13: The occupied natural orbitals of the H8 chain at an

interatomic distance of 4 Bohr for the di�erent v2DM-DOCI

calculations. The occupation numbers are shown on the right

of the orbitals. All symmetry-adapted orbitals transform

according to either Ag or B1u, depending on whether the

orbital changes sign under a mirror operation.
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d Sym. DMRG ∆v2DM ∆v2DM-DOCI ∆FullDOCI

2.2 D2h -109.278 -77.375 222.578 224.455

2.2 C1 -109.278 -77.375 209.891 214.787

4.0 D2h -108.975 -96.213 257.013 258.842

4.0 C1 -108.975 -96.213 248.396 250.991

10.0 D2h -108.960 -66.384 282.966 283.108

10.0 C1 -108.960 -66.384 273.371 273.464

Table 4.3: Some points on the N2 curve from Figure 4.14. The interatomic

distance (d) is in Bohr. The DMRG energy is in Hartree. For v2DM,

v2DM-DOCI and FullDOCI, the deviation from DMRG is given in

milliHartree.

transition [219] will break the symmetry and there will be two alternative

distances between the atoms. The system will break down into four separate

H2 molecules.

This example shows the Achilles heel of our orbital optimizer: it cannot jump

to a di�erent valley in the DOCI landscape. Given a suitable starting point

it will duly find the minimum in the corresponding valley, but one never be

sure.

4.3.2 Molecular systems

Another interesting application is the dissociation of a diatomic molecule in

which static correlation is of paramount importance at dissociation. First we

must introduce some addional nomenclature for the results: v2DM-DOCI

refers to v2DM with the DOCI constraints on the 2DM and with the Jacobi

orbital optimization. FullDOCI uses the same orbital optimization algorithm.

v2DM-DOCI/FullDOCI is a single-shot v2DM-DOCI calculation using the

optimal set of orbitals from a FullDOCI calculation. FullDOCI/v2DM-DOCI

is exactly the opposite: a single-shot FullDOCI calculation using the optimal

set of orbitals from v2DM-DOCI.

The first system we study is the dissociation of N2. This is a challenging

system due to the breaking of a triple bond and is o�en used as a test case

[146, 212, 220–222]. In the cc-pVDZ basis, N2 has 28 orbitals. The results

can be seen in Figure 4.14 on the following page. In order to appreciate the

performance of v2DM-DOCI, results of other methods such as CCSD(T)[53]

and DFT with B3LYP functional[223, 224] are also presented. All DOCI curves

give a qualitatively correct description of the dissociation process. In Table 4.3

111



DOCI tailored v2DM

-109.40

-109.20

-109.00

-108.80

-108.60

 1  2  3  4  5  6  7  8  9  10

E 
(E

h)

interatomic distance (Bohr)

DMRG
v2DM

v2DM-DOCI
FullDOCI

FullDOCI/v2DM-DOCI
B3LYP

CCSD(T)

Figure 4.14: The dissociation of N2 in the cc-pVDZ basis. The DOCI curves

shown are for the C1 symmetry. Note that three curves (v2DM-

DOCI, FullDOCI, FullDOCI/v2DM-DOCI) coincide visually.

we show the exact values of some selected data points. Unlike the previous

examples, symmetry breaking does not significantly alter the energy: the

symmetry-broken energy is always lower than the symmetry-adapted value

but the di�erence is in the≤ 10 milliHartree region. More interesting to see is

that the energy di�erence between v2DM-DOCI and FullDOCI is very small.

It seems that v2DM-DOCI is a be�er approximation to FullDOCI than v2DM

is to FullCI: the di�erence is 2-3 milliHartree while v2DM usually deviates

from FullCI in the dozens of milliHartree. The CCSD(T) curve fails completely

in the dissociation limit. This is a known failure and it can be fixed within

Coupled Cluster (CC) theory [212]. Note that N2 dissociates into two N
atoms with an odd number of electrons. This forms no problem for DOCI

as the orbital optimization can handle this[152]. The di�erence between the

DOCI curves and the DMRG reference is due to dynamical correlations and

can be added in a subsequent stage, as shown in reference 225.

Another interesting case is cyanide, CN−. This heteronuclear molecule also

has a triple bond and dissociates in C− and N. The e�ect of breaking the

C2v symmetry is again minimal (see results in Table 4.4 on the facing page),

so in Figure 4.15 we restrict ourself to the C1 curve. For this heteronuclear

molecule, the dissociation limit for v2DM and v2DM-DOCI is incorrect. This

is a known failure for v2DM-based techniques [31]: the energy of the isolated

atoms as a function of fractional charge is a convex curve in v2DM whereas
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Figure 4.15: The dissociation of CN− in the cc-pVDZ basis. The DOCI

curves shown are for the C1 symmetry.

d Sym. DMRG ∆v2DM ∆v2DM-DOCI ∆FullDOCI

2.2 C2v -92.596 -70.208 186.967 192.202

2.2 C1 -92.596 -70.208 186.967 192.192

4.0 C2v -92.324 -101.281 219.639 228.307

4.0 C1 -92.324 -101.281 219.639 228.300

10.0 C2v -92.246 -116.686 218.333 253.131

10.0 C1 -92.246 -116.686 218.333 253.130

20.0 C2v -92.246 -127.996 209.275 253.135

20.0 C1 -92.246 -127.996 209.275 253.133

Table 4.4: Some points on the CN− curve from Figure 4.15. The interatomic

distance (d) is in Bohr. The DMRG energy is in Hartree. For v2DM,

v2DM-DOCI and FullDOCI, the deviation from DMRG is given in

milliHartree.
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Figure 4.16: The energy as a function of number of electrons on the oxygen

atom for the NO+
molecule. Reproduced from Reference 90

with permission of B. Verstichel.

it should be a piecewise linear curve [226, 227]. We have plo�ed the energy

as a function of the charge in Figure 4.16 for the NO+
molecule: the problem

of the convexity can be clearly seen. It will lead to a too low energy. It is the

same problem from which DFT su�ers [228] and is more commonly referred

to as the delocalization error. In DFT the approximate functionals also favour

a fractional distribution of the electrons. It can explain the underestimation

of the band-gap in DFT calculations [228]. For the same reason, v2DM will

favour fractional charges on dissociated atoms and thus give a physically in-

correct picture. This can be seen clearly on the FullDOCI/v2DM-DOCI curve:

if we use the optimal basis of v2DM-DOCI calculation, the FullDOCI energy

is much higher than the true FullDOCI energy, as the FullDOCI solution is

far from optimal with the artificial non-integer atomic charges from v2DM-

DOCI. The problem can be confirmed through a population analysis. We

will perform a Mulliken population analysis [229] at an interatomic distance

of 20 Bohr. In this case, the overlap between orbitals centered on the carbon

and the oxygen will be negligible. The diagonal elements of 1DM can then be
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Figure 4.17: The dissociation of CN− in the cc-pVDZ basis: comparing

the v2DM-DOCI/FullDOCI results with v2DM-DOCI and Full-

DOCI. The deviation from DMRG is plo�ed.

distributed as belonging to either the carbon or oxygen atom. The sum will be

the total particle number. When we do this, we find that the net charges are

C−0.43N−0.57
for the v2DM-DOCI calculation. At the same distance, DFT

with B3LYP produces C−0.42N−0.58
while v2DM finds C−0.60N−0.40

. The

physical correct dissociation would be C−1.0N0.0
.

Using so-called subsystem constraints [30, 91] (see Section 2.3.4 on page 31),

one can force the E vs N curve to be piecewise linear. However, this would

require a v2DM(-DOCI) optimization at each nearby integer value ofN . This

makes it a costly solution with the additional downside that although it

fixes the energy in the dissociation limit, the transition to this limit remains

unphysical: at the point when the subsystem constraints become active the

energy curve is ’pulled’ towards the correct limit (examples can be found in

reference 90). However, there might be another solution. In Figure 4.17, we

have used the FullDOCI optimal orbitals for the v2DM-DOCI calculation.

In this case, v2DM-DOCI gives the correct DOCI dissociation limit. This

suggests that it might be possible to find specific DOCI constraints to solve

the problem of fractional charges in v2DM-DOCI.

In Figure 4.19 on page 117, we have plo�ed the occupied natural orbitals

of both v2DM-DOCI and FullDOCI. Unfortunately, this does not learn us

much. While in the FullDOCI case all orbitals have an occupation of either

approximately two or one, the valence orbitals of v2DM-DOCI do not. For
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Figure 4.18: The eigenvalues of all the calculated 2DM’s for CN− with an

interatomic distance of 20 Bohr.

the core s orbitals, there is no di�erence. For the p orbitals, an electron

is spread out over several orbitals, leading to fractional charges. We also

examined the eigenvalues of the 2DM. These present the occupation numbers

of the natural geminals. If we look at the eigenvalues of the 2DM from

the FullDOCI calculation at an interatomic distance of 20 Bohr, there is a

clear structure. The eigenvalues are separated in 4 groups: [0.995, 1.001],
[0.491, 0.508], [0.246, 0.254] and [0, 0.001]. The number of eigenvalues in

each group is 13, 24, 12 and 356. This is not the case in the 2DM from v2DM-

DOCI: the eigenvalues are spread over the entire [0, 1.1] range. We have

plo�ed these in Figure 4.18, in order to indicate what goes wrong. Figure 4.17

seems to suggest that the problem can be solved without constraints on the

2DM but purely in the orbital optimization: given a suitable set of orbitals,

v2DM-DOCI does not necessarily use fractional charges. Although the pic-

ture of the eigenvalues of the 2DM in Figure 4.18 may suggest otherwise,

there are no fractional charges found in the resulting 2DM for the v2DM-

DOCI/FullDOCI optimization. Unfortunately, we have not yet found the

necessary constraint on the orbital optimization.

We did a calculation for the NO+
molecule but the same problem occurs here.

In Figure 4.20 on page 118 the energy curves are shown while Table 4.5 on

page 119 has the exact value of several selected data points. If we repeat the

Mulliken analysis at an interatomic distance of 20 Bohr, we find N0.45O0.55

for v2DM-DOCI, N0.67O0.33
for DFT with B3LYP and N0.47O0.53

for v2DM.
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(a) The natural orbitals of CN−
calcu-

lated by v2DM-DOCI.

(b) The natural orbitals of CN−
cal-

culated by FullDOCI.

Figure 4.19: The occupied natural orbitals of the CN− with C1 symmetry

at an interatomic distance of 10 Bohr for v2DM-DOCI and

FullDOCI. The occupation number is shown on the right of

the orbitals.
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Figure 4.20: The dissociation of NO+
in the cc-pVDZ basis. The DOCI

curves shown are for the C1 symmetry.

The physical correct disocciation would be N0.0O1.0
.

The last system we examined is another member of the isoelectronic series:

CO. The results of the calculations can be found in Figure 4.21 on the facing

page and Table 4.6 on page 120. Unlike the previous two cases, fractional

charges do not seem to be an issue here. A Mulliken population analysis finds

C0.003O−0.003
for the v2DM-DOCI calculation at an interatomic distance

of 10 Bohr. However, the ground state of the oxygen atom is a triplet

(S = 1) state while the carbon atom is a singlet. This means that the total

spin of the wave function of the dissociated system should be S = 1. The

DOCI space is singlet by nature, which means that our resulting solution

will have the wrong total spin. Despite this, the results are in agreement

with the previous results. We find a energy deviation form FullCI in the

range of 200 milliHartree. Although we enforce the singlet constraints (see

Section 2.4.1), the v2DM optimization still has the necessary freedom to enter

the triplet domain. The singlet constraints are only necessary conditions and

not su�icient for the singlet state. But looking at the results, v2DM-DOCI

does not use this freedom as FullDOCI produces an energy very close to it.

4.3.3 The Hubbard model

The Fermi-Hubbard model [230] is a model that possesses some of the non-

trivial correlations present in a solid. Originally it was formulated as a simple
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d Sym. DMRG ∆v2DM ∆v2DM-DOCI ∆FullDOCI

2.2 C2v -129.266 -82.860 228.039 236.820

2.2 C1 -129.266 -82.860 228.082 236.934

4.0 C2v -128.980 -124.913 235.704 424.907

4.0 C1 -128.980 -124.913 235.708 273.176

10.0 C2v -128.920 -175.533 208.614 340.015

10.0 C1 -128.920 -175.533 208.652 240.620

20.0 C2v -128.920 -187.722 199.268 344.949

20.0 C1 -128.920 -187.722 198.773 357.722

Table 4.5: Some points on the NO+
curve from Figure 4.20. The interatomic

distance (d) is in Bohr. The DMRG energy is in Hartree. For v2DM,

v2DM-DOCI and FullDOCI, the deviation from DMRG is given in

milliHartree.
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Figure 4.21: The dissociation of CO in the cc-pVDZ basis. The DOCI curves

shown are for the C1 symmetry.
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d Sym. DMRG ∆v2DM ∆v2DM-DOCI ∆FullDOCI

2.2 C2v -113.059 -70.607 198.729 207.680

2.2 C1 -113.059 -70.607 198.416 207.680

4.0 C2v -112.741 -107.071 201.542 208.968

4.0 C1 -112.741 -107.071 198.536 206.093

10.0 C2v -112.673 -92.418 187.388 187.871

10.0 C1 -112.673 -92.418 183.954 184.604

19.0 C2v -112.674 -91.970 187.348 188.261

19.0 C1 -112.674 -91.970 187.262 187.789

Table 4.6: Some points on the CO curve from Figure 4.21. The interatomic

distance (d) is in Bohr. The DMRG energy is in Hartree. For v2DM,

v2DM-DOCI and FullDOCI, the deviation from DMRG is given in

milliHartree.

model to study the correlations of d-electrons in transition metals. Since

then it has been the subject of intensive research. It is believed that the

two-dimensional version holds the key to understanding high temperature

superconductivity [231]. It is also an excellent model to study the e�ects

of strong correlation and this is why we will examine the DOCI results of a

one-dimensional Hubbard model. The Hamiltonian is given by

Ĥ = −t
∑
aσa

(
â†aσa âa−1σa + â†a+1σa

âaσa

)
+ U

∑
a

n̂a↑n̂a↓, (4.29)

where the ratio
U
t is the only degree of freedom and n̂a↑ is the number

operator. We assume periodic boundary conditions on the chain.

The Hamiltonian has two competing terms: the first term, called the hopping

term favours delocalization of the electrons while the second term, called the

on-site repulsion, favours localization. In the site basis the second term is

diagonal while in the pseudo-momentum basis the first term is diagonal. It

is very interesting how such a simple model can give rise to such complex

physics. To fully appreciate this, an illustration of complexity is depicted in

the final pages of this chapter.

The one-dimensional model at half filling (one electron per site) has a known

solution given by the Lieb-Wu equations [232–234]. We examine a chain of

22 sites as we increase the on-site interaction strength with a fixed t = 1. In

Figure 4.22 on the facing page the result is plo�ed. As the starting point for

the orbital optimizer the pseudo-momentum basis was used as this is already

a mixture of all sites. At U = 0 the exact wave function is given by a single
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Figure 4.22: The results of a one-dimensional Fermi-Hubbard model with 22

sites. The energy is plo�ed for increasing interaction strength.

Slater determinant and both v2DM-DOCI and RHF produce the correct en-

ergy. At intermediate interaction strength, the deviation from FullCI is the

largest. In the limit U → ∞ the Hubbard model is reduced to a Heisenberg

antiferromagnet [235]: every electron is frozen at a site and not a single

site will be doubly occupied. Despite this, v2DM-DOCI gives a reasonable

approximation to the energy. This result demonstrates the power of orbital

optimization.

Notice that over the entire range, the deviation from FullCI for both v2DM

and v2DM-DOCI is roughly equal.

We tried a 50 sites Hubbard model but hit a wall with the orbital optimizer.

The Hilbert space becomes so large that the number of Jacobi rotations re-

quired to find the optimal orbitals becomes unmanageable. In this case, a full

Hessian approach would be more beneficial, despite the associated expensive

two-body integral transformation.

We end this chapter with the remark that v2DM-DOCI indeed seems like a

very good approximation to FullDOCI, when using the same set of orbitals.

The major di�iculty is finding the optimal set of orbitals: the choice of the

starting point is crucial.
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Reproduced with permission from my favorite cartoonist, Boulet. Copyright

Boulet, from h�p://english.bouletcorp.com.
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Chapter 5

Conclusions

The true delight is in the finding out rather than in the knowing.

Isaac Asimov

In this work we have introduced the Variational Optimization of the second-

order reduced Density Matrix to solve the many-body problem. The second-

order reduced Density Matrix (2DM) contains all necessary information to

describe such a system, and the expectation value of one- or two-particle

operators can be expressed as a linear function of the 2DM. Unlike the more

conventional quantum mechanical methods, the wave function is never used.

This method itself has a long history and a�racted quite some a�ention in the

second half of the previous century. At first glance, it has many interesting

properties: the 2DM has a much be�er scaling than the wave function, and

the method is strictly variational. Unlike wavefunction-based methods, it

produces a strict lower bound on the energy (instead of an upper bound). Un-

fortunately, the complexity of the many-body problem has not disappeared,

but is shi�ed to theN -representability problem: what are the necessary and

su�icient conditions for a 2DM to be derivable from an ensemble of many-

fermion wave functions? In the 1960’s, there was still hope that this problem

could be solved in some way, but time has learned that it is a very hard

problem (see later).

A major breakthrough came when it was realized that the v2DM problem

could be formulated as a Semidefinite Programming problem. This opened

a whole new toolbox of methods to perform the optimization. It resparked

interest, leading to numerous extensions and improvements to the method.

However, the di�iculty of the N -representability problem reared its ugly

head again, and interest in the method is fading. The technique has been

called a dead end several times. One of the goals of this work is to show
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the flexibility of the method: by using a subclass of N -representability con-

ditions, we can increases the performance of the method considerably while

still finding a good approximation to the energy. We hope that a�er reading

this work, the reader will agree that there are still interesting paths le� to

discover. We will first iterate over the contents of the chapters in this work,

to end with a general conclusion and outlook.

In Chapter 2 we formally introduced the N -representability problem. A the-

orem about the necessary and su�icient conditions for N -representability

was shown and proven. Unfortunately, this theorem does not give us a prac-

tical way to enforce N -representability. We introduced the formal complex-

ity class of the N -representability problem: �antum Merlin Arthur. This

means that in general it is very hard to find a solution to the problem but once

a solution has been found, it is easy to verify the correctness of the solution.

This sca�ers all hope of finding a general solution to the N -representability

problem. It may be possible to find a solution in specific instances of the

problem. This does not necessarily mean that the situation is hopeless, a�er

all Density Functional Theory belongs to the same complexity class and this

has not held its practical usage back.

Next we showed how theN -representability theorem can be used to generate

a set of necessary conditions. The necessary conditions on the 1DM turn out

to be also su�icient. For the 2DM we derive a set of two-index and three-

index conditions. Using the same formalism, we derive all three-index con-

ditions with the 3DM as the basic object. These conditions can be simplified

by exploiting the symmetry of the system. We show that by utilizing the spin

freedom we can reduce the 2DM into a singlet and a (three-fold degenerate)

triplet block. The spatial point-group symmetry of a system reduces the 2DM

into blocks per irreducible representation. The actual gain is dependent on

the specific spatial symmetry.

Until now, the only assumptions we made about the fermionic wave function

was that it is normalized and antisymmetric. Now we will restrict ourself

to Doubly Occupied Configuration Interaction-type wave functions: in the

Configuration Interaction expansion only the Slater determinants were all

orbitals are either doubly occupied or empty are used. This is a so-called se-

niority-zero approximation to the wave function. The structure of all density

matrices is greatly simplified by this assumption. The matrix positivity of

the 2DM is equivalent with the matrix positivity of an L×L block (with the

L the number of spatial orbitals), combined with a set of linear inequalities.

A similar reduction is possible for the 3DM. Finally we formulate the v2DM

problem we want to solve using the derived N -representability conditions.

In Chapter 3 we introduce a convex optimization problem called Semidefinite

126



Conclusions

Programming. Its so-called primal and dual formulation are derived, and the

relationship between both is shown. We reformulate our v2DM problem as

a primal SDP problem. An interior-point method is introduced to solve the

problem. By adding a barrier function to the objective function, we cannot

leave the feasible region and the problem is reduced to an unconstrained opti-

mization for which we use a Newton-Raphson method. We steadily decrease

the barrier until we have found the optimal solution. In every iteration a lin-

ear system of equations must be solved. We have implemented this e�iciently

by using a matrix-vector product of the Hessian without ever constructing

the Hessian itself. As we approach the optimal point on the boundary of

the feasible region, the condition number of the matrix gets worse and the

number of iterations required to solve the linear system increases. This limits

the usability of this method for large systems.

As a possible solution, we discuss an augmented Lagrangian technique: the

boundary point method. In this method, the duality gap is always zero and

we alternately project on the primal and dual feasibility until at convergence

we find a point that is both primal and dual feasible. This method was

developed for large systems and it is noticeably faster than other methods, al-

though the principal scaling is the same: L6
for the two-index conditions and

L9
for the three-index conditions. The disadvantage of the boundary point

method is that it is much less stable than the potential reduction method.

While the potential reduction method can be used as a black box routine,

this is certainly not the case for the boundary point method.

In Chapter 4 we motivate our interest in DOCI wave functions. The idea of

using electron pairs as the basic building blocks for wave functions is old.

Many types of pairing-based wave functions exist, but if the spin-pairing

scheme is used, DOCI is the most general type. It can be considered as the

lowest rung on the ladder in the seniority hierarchy. When seniority-two,

four, etc. Slater determinants are added, the result quickly convergences to

FullCI. The hope is that DOCI can capture the bulk of the static correlation.

Unfortunately FullDOCI still has a factorial scaling. A mean-field scaling

wave function-based approximation to it was developed: AP1roG. We ap-

proximate the 2DM as being derivable from a DOCI wave function.

An important aspect of DOCI is its orbital dependence: any truncated CI

wave function is orbital dependent. However, finding the optimal set of

orbitals is a hard problem: it means finding the global minimum in an un-

charted energy landscape. The associated transformation to the new orbitals

scales as L5
and forms the bo�leneck in the entire algorithm. Our solution

to this is to use Jacobi rotations. As they only mix two orbitals at a time,

the integral transformation can be done very e�iciently. As any orthogo-

nal transformation can be decomposed in a series of Jacobi rotations, this
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presents no limitations. The usual approach for orbital optimization is to

work with a second order Taylor series for the unitary transformation. Using

Jacobi rotations avoids this second-order approximation.

A�er having derived the necessary transformation formulas and discussed

the fine details of the orbital optimizer, we use our new algorithm, v2DM-

DOCI, on a few test cases. The DOCI wave function is exact for a two-

electron system, as is v2DM: for the H2 molecule we find the FullCI energy,

as expected. However, the dissociation of the He dimer fails. This shows the

importance of spatial symmetry breaking. To find the optimal set of orbitals,

DOCI needs to break the spatial symmetry of the system. When we perform

the calculation using C1 symmetry, the FullCI energy is recovered by v2DM-

DOCI in the limit of full dissociation. A visualization of the natural orbitals

shows that by breaking the symmetry, the orbitals on each atom of the disso-

ciated system of two He atoms can optimize separately. The next system we

try is the deformation of a H4 rectangle. At the square configuration, the four

hydrogen atoms are degenerate. This leads to a cusp in the RHF energy and

the symmetry-broken v2DM-DOCI energy. The symmetry broken solution

is found by starting from Edmiston-Ruedeberg localized orbitals.

As a prototype for strong correlation, we test our method on the symmet-

ric dissociation of an H8 chain. Again the symmetry-adapted v2DM-DOCI

energy gives a wrong description of the system. There even seem to be

two di�erent regimes. However, looking at the occupation numbers and

the shape of the orbitals, the di�erences can be fully understood. The D2h

symmetry of the system forbids the system to go in a state of 4 H2 atoms.

We continue by testing v2DM-DOCI on the dissociation of N2, CN−, NO+

and CO. The results for N2 are good: v2DM-DOCI is consistently a bet-

ter approximation to FullDOCI than v2DM to FullCI. However, in case of

the CN− and NO+
molecule we su�er from a known failure of v2DM i.e.

fractional charges on the dissociated atoms. As the particle vs energy curve

for v2DM is convex instead of piecewise linear, we end up with a fractional

electron partitioning over two dissociated atoms. A solution exists in the form

of subsystem constraints, but these are expensive to add. The v2DM-DOCI

calculation using the optimal set of orbitals from FullDOCI does produce the

correct energy. This seems to hint that a solution to this problem can be

found in the orbital optimization. The CO molecule does not su�er from this

problem, and we see the same picture as in the N2 case: v2DM-DOCI is a

very good approximations to FullDOCI.

We hope that the reader is convinced that there still is a future for v2DM in

the form of v2DM-DOCI. It does not su�er from the bad scaling of v2DM and

it seems to be a be�er approximation to FullDOCI than v2DM is to FullCI.
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However, the story is not yet over. The orbital optimizer still has room for im-

provement: be�er starting points still need to be sought. An approximation

to the Brueckner determinant might yield a good starting point. It would also

be interesting to investigate other methods for finding the optimal orbitals:

the basin-hopping method[236] seems interesting. It works by performing a

series of local minimizations to approximate the energy landscape. However,

it requires a good metric on the landscape to ’jump’ to the next valley.

A practical implementation of the 3DM conditions has not yet been realized.

It seems reasonable to assume that their e�ect will be similar to the general

case: increase the energy to milliHartree accuracy. Furthermore, we did not

verify the correctness of the 2DM itself: a good approximation to the energy

does not necessarily produce a good approximation to the 2DM. Using the

3DM conditions will certainly improve this.

As a last step we can use perturbation theory to add the missing dynamic

correlation to the energy. This should give us an good approximation to the

FullCI energy.
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Appendix B

Second quantization

The second quantization formalism is used in this work. This appendix will

give a very short introduction to the fermionic case. A complete introduction

can be found in references 237 and 2. The state on which the operators acts

is the antisymmetric N particle state,

|α1α2 . . . αN 〉 = − |α2α1 . . . αN 〉 . (B.1)

The operator â†α creates a particle in the single-particle state α

â†α |α1α2αN 〉 = |αα1α2 . . . αN 〉 , (B.2)

while the annihilation operator, âα, does the opposite

âα |αα1α2αN 〉 = |α1α2 . . . αN 〉 . (B.3)

We will use |〉 to denote the particle vacuum,

âα |〉 = 0. (B.4)

The addition and removal operators obey the fundamental anticommutation

relations:

{âα, â†β} = âαâ
†
β + â†β âα = δαβ, (B.5a)

{âα, âβ} = {â†α, â
†
β} = 0. (B.5b)

Note that the Pauli exclusion principle nicely follows from this:

â†αâ
†
α = −â†αâ†α = 0, (B.6)
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i.e. every single-particle state can be occupied by at most one fermion. A

one-body operator T̂ can be wri�en in this formalism as

T̂ =
∑
αβ

〈α|T |β〉 â†αâβ. (B.7)

For a two-body operator V̂ , this becomes

V̂ =
1

4

∑
αβγδ

〈αβ|V |γδ〉 â†αâ
†
β âδâγ . (B.8)

Note that the order for γ and δ in the operators and the two-body matrix

element is di�erent. An alternative form for eq. (B.8) is

V̂ =
1

2

∑
αβγδ

(αβ|V |γδ)â†αâ
†
β âδâγ , (B.9)

where

〈αβ|V |γδ〉 = (αβ|V |γδ)− (αβ|V |δγ), (B.10)

and |αβ) is a direct product state (not antisymmetric). A much used operator

is the number operator

n̂ =
∑
α

â†αâα, (B.11)

which simply counts the number of particles in a state:

n̂ |α1α2 . . . αN 〉 = N |α1α2 . . . αN 〉 (B.12)
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Appendix C

Mathematics

All results shown here can be found in references 22, 161, 164.

C.1 Convexity

A set S in a linear space is convex if and only if for every x1, x2 ∈ S holds

αx1 + βx2 ∈ S, (C.1)

with α, β ≥ 0 and α+ β = 1. This means that the line segment connecting

any two points in the set must also be part of the set.

A function f : Rn → R is convex if the domain of f is a convex set and for

any two points x and y in the domain of f must hold

f(αx+ βy) ≤ αf(x) + βf(y), (C.2)

with α, β ≥ 0 and α + β = 1. One can prove that a function is convex if on

a convex set its Hessian is positive semidefinite.

C.2 Positive semidefinite matrices

We now restrict ourself to symmetric matrices. A symmetric matrix is always

diagonalizable by a orthogonal matrix and has real eigenvalues. We call a

symmetric matrix A ∈ Rn×n positive semidefinite when

∀z ∈ Rn : zTAz ≥ 0. (C.3)
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Eigenvalues of symmetric matrices

When the inequality is strict, the symmetric matrix is positive definite. In

exactly the same way a negative (semi)definite matrix can be introduced.

When a matrix is neither positive or negative, it is called indefinite. From

now on, we will use � to denote that a matrix is positive semidefinite.

In a sense, a positive semidefinite matrix is the equivalent of a positive num-

ber. The most important property of a positive semidefinite matrix is that all

its eigenvalues are real and non-negative. From this follows, if A � 0 then

detA ≥ 0, (C.4)

Tr (A) ≥ 0, (C.5)

Aii ≥ 0, (C.6)

∃!S � 0 A = SS. (C.7)

Furthermore, when A � 0 and B � 0 then

A � 0, B � 0⇒ A+B � 0, (C.8)

[A,B] = 0⇒ AB � 0, (C.9)

ABA � 0, BAB � 0, (C.10)

Tr (AB) = 0⇒ AB = 0, (C.11)

The set of positive semidefinite matrices has the mathematical structure of

a cone: for every A � 0 we have that λA � 0, when λ > 0. A cone is a

substructure of a vector space. It is convex when any combination αA+ βB
is also an element of the cone for α > 0 and β > 0. Every cone has a dual

cone. LetC be the cone and V the underlying vector space of real-symmetric

matrices, then the set

v ∈ V : ∀w ∈ C,Tr (vw) ≥ 0, (C.12)

is the dual cone ofC . The dual cone is not important for this work as the cone

of positive semidefinite matrices is self-dual: the cone and the dual cone are

the same.

C.3 Eigenvalues of symmetric matrices

A real symmetric n×n matrix A will have the same spectrum as a matrix B
if they only di�er in the sign of the o�-diagonal matrix elements:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
.
.
.

.

.

.

.
.
.

.

.

.

an1 an2 . . . ann

 B =


a11 −a12 . . . −a1n

−a21 a22 . . . −a2n
.
.
.

.

.

.

.
.
.

.

.

.

−an1 −an2 . . . ann


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Mathematics

We call this the Verstichel-Claeys theorem. It is trivial in the case of a 2× 2
matrix. For a 3 × 3 matrix it can be proven by first diagonalizing the upper

2× 2 block:

A =

λ1 0 a13

0 λ2 a23

a31 a32 a33

 B =

 λ1 0 −a13

0 λ2 −a23

−a31 −a32 a33


If we multiple the last row/column of B with −1, its determinant remains

unchanged. As the determinant ofA andB are now the same, they will have

the same spectrum (as the first two eigenvalues are already equal). In this

fashion, the 4× 4 case can also be proven. By induction it can be proven for

arbitrary n.

C.4 Useful results for determinants

• Let M be a symmetric block matrix of the form

M =

[
A B
B A

]
, (C.13)

then the determinant of M is

detM = det (A+B) det (A−B). (C.14)

• For any real symmetric matrix function A(x), we can define the func-

tion φ(x) as

φ(x) = − log detA(x). (C.15)

The derivative is given by

∂φ(x)

∂x
= −Tr

(
A(x)−1∂A(x)

∂x

)
. (C.16)

C.5 Wedge product

The wedge product of two antisymmetric maps a : Rn → R and b : Rm → R
is given by

a ∧ b(x1, . . . , xn, xn+1, . . . , xm+n) =∑
σ∈Shk,m

sgnσ a(xσ(1), . . . , xσ(n)) b(xσ(n+1), . . . , xσ(n+m)), (C.17)
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Wedge product

where the summation runs over all so-called n,m shu�les. This the set of

permutations on n+m objects, such that the first n elements and the lastm
elements are ordered: σ(1) ≤ . . . ≤ σ(n) and σ(n + 1) ≤ . . . ≤ σ(n + m).

As an example, let us look at the wedge product of two 1DM’s

(ρ ∧ ρ)αβ;γδ = ραγρβδ − ραδρβγ . (C.18)
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Appendix D

Clebsch-Gordan coe�icients

In general Clebsch-Gordan coe�icients are the coe�icients needed to couple

multiple irreducible representations of a group. This appendix is about the

Clebsch-Gordan coe�icients for the SU(2) group, which are needed to cou-

ple the fermion spins. We refer to references 99, 238 and 92 for a full overview.

We want to couple two spins j1 and j2 together to good total spin J

|j1j2; JM〉 =
∑
m1m2

〈j1m1j2m2|JM〉 |j1m1〉 |j2m2〉 , (D.1)

where 〈j1m1j2m2|JM〉 is the Clebsch-Gordan coe�icient. The inverse trans-

formation is

|j1m1〉 |j2m2〉 =
∑
JM

〈j1m1j2m2|JM〉 |j1j2; JM〉 . (D.2)

There are orthogonality relations∑
m1m2

〈j1m1j2m2|JM〉 〈j1m1j2m2|J ′M ′〉 = δJJ ′δMM ′ , (D.3)∑
JM

〈j1m1j2m2|JM〉 〈j1m′1j2m′2|JM〉 = δm1m′1
δm2m′2

. (D.4)

An alternative notation are the Wigner 3j-symbols

〈j1m1j2m2|j3m3〉 = (−1)j1−j2+m3
1√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
. (D.5)
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In this case, the orthogonality relations eqs. (D.3) and (D.4) become∑
m1m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)
= δj3j′3δm3m′3

1

2j3 + 1
,

(D.6)∑
j3m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′1 m′2 m3

)
= δm1m′1

δm2m′2
. (D.7)

The Clebsch-Gordan coe�icients have the following symmetry,

〈j1m1j2m2|JM〉 = (−1)j1+j2−J 〈j2m2j1m1|JM〉 , (D.8)

= (−1)j1+j2−J 〈j1−m1j2−m2|J−M〉 . (D.9)

In the case of J = 0, we have

〈j1m1j2m2|00〉 = δj1j2δm1−m2

(−1)j1−m1

√
2j1 + 1

. (D.10)

In the case of j1 = j2 = 1/2, we have

〈1
2

1

2

1

2

1

2
|11〉 = 〈1

2
−1

2

1

2
−1

2
|1−1〉 = 1, (D.11)

〈1
2
−1

2

1

2

1

2
|10〉 = 〈1

2

1

2

1

2
−1

2
|10〉 =

√
1

2
, (D.12)

〈1
2
−1

2

1

2

1

2
|00〉 = −

√
1

2
, (D.13)

〈1
2

1

2

1

2
−1

2
|00〉 =

√
1

2
. (D.14)

In a Hilbert space with an angular momentum operator Ĵ , one can define a

spherical tensor operator Âjm as an operator that obeys the following com-

mutator relations

[Ĵ+, Â
j
m] =

√
(j ±m+ 1)(j ∓m)Âjm±1, (D.15)

[Ĵz, Â
j
m] = mÂjm. (D.16)

It is a generalization of the eigenstates |jm〉 for the Ĵz operator. Spherical

tensor operators are important in the context of the Wigner-Eckart theorem.

What is important to note, is that the Hermitian adjoint of a spherical tensor

operator is not a spherical tensor operator, but needs an additional factor

Ãjm = (−1)j+m
(
Aj−m

)†
. (D.17)

The spherical tensor operators used in this work are

â†jm,
˜̂ajm = (−1)j+m âj −m. (D.18)
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Appendix E

Formulas for Jacobi rotations

In Section 4.2 on page 91 we have introduced an orbital optimizer based on

Jacobi rotations. The energy change under a Jacobi rotation can be calculated

using Equation (4.24). In this appendix we give the formula to update the

reduced Hamiltonian for a Jacobi rotation. If we rotate between orbitals k
and l over an angle θ than the update formulas are for the case ∀a, b /∈ {k, l}

K ′aā;bb̄ = Kaā;bb̄, K
′
ab;ab = Kab;ab, (E.1)

while for the case ∀b /∈ {k, l}

K ′kk̄;bb̄ = cos2 θVkkbb − 2 cos θ sin θVklpp + sin2 θVllpp, (E.2)

K ′ll̄;bb̄ = cos2 θVllbb + 2 cos θ sin θVklpp + sin2 θVkkpp, (E.3)

K ′kb;kb =
1

N − 1

(
Tbb + cos2 θTkk − 2 sin θ cos θTkl + sin2 θTll

)
+

cos2 θ

(
Vkbkb −

1

2
Vkbbk

)
− 2 cos θ sin θ

(
Vkblb −

1

2
Vkbbl

)
+

sin2 θ

(
Vlblb −

1

2
Vlbbl

)
, (E.4)

K ′lb;lb =
1

N − 1

(
Tbb + cos2 θTll − 2 sin θ cos θTkl + sin2 θTkk

)
+

cos2 θ

(
Vlblb −

1

2
Vlbbl

)
+ 2 cos θ sin θ

(
Vkblb −

1

2
Vkbbl

)
+

sin2 θ

(
Vkbkb −

1

2
Vkbbk

)
. (E.5)
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The remaining cases are

K ′kk̄;kk̄ =
2

N − 1

(
cos2 θTkk − 2 sin θ cos θTkl + sin2 θTll

)
+

cos4 θVkkkk + sin4 θVllll + cos2 θ sin2 θ (4Vkkll + 2Vklkl)−
4 cos θ sin3 θVklll − 4 cos3 θ sin θVklkk, (E.6)

K ′ll̄;ll̄ =
2

N − 1

(
cos2 θTll + 2 sin θ cos θTkl + sin2 θTkk

)
+ cos4 θVllll+

sin4 θVkkkk + cos2 θ sin2 θ (4Vkkll + 2Vklkl) +

4 cos θ sin3 θVklkk + 3 cos3 θ sin θVklll, (E.7)

K ′kk̄;ll̄ =
(
cos4 θ + sin4 θ

)
Vkkll + cos2 θ sin2 θ (Vkkkk + Vlllll − 2Vklkl + Vkkll) +

2
(
cos3 θ sin θ − cos θ sin3 θ

)
(Vklkk − Vklll) , (E.8)

K ′kl;kl =
1

N − 1
(Tkk + Tll) + cos2 θ sin2 θ

(
1

2
Vkkkk + Vllll − 3Vkkll + Vklkl

)
+

(
cos4 θ + sin4 θ

)(
Vklkl −

1

2
Vkkll

)
+(

cos3 θ sin θ − cos θ sin3 θ
)

(Vklkk − Vklll) . (E.9)
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Appendix F

Hermitian adjoint images

All N -representability constraints are expressed as an image of the 2DM (or

3DM). We require that these images are homogeneous
1
, as it simplifies the

mathematical treatment. This means that they must be scale invariant. In

our case, they are even linear. We require that for α ∈ R

Li(αΓ) = αLi(Γ), (F.1)

where Li can be any N -representability constraint. As a consequence we

have to change the Q condition: the first term is simply the unity matrix

which can be rewri�en in homogeneous form using the trace condition

Qαβ;γδ(Γ) = (δαγδβδ − δαδδβγ)
2Tr (Γ)

N(N − 1)
+ Γαβ;γδ

− δαγρβδ + δβγραδ + δαδρβγ − δβδραγ .
(F.2)

Any non-homogeneous image can be adapted in the same way.

Another very important and helpful concept are the Hermitian adjoint im-

ages which are defined by

Tr (Li(Γ)A) = Tr
(
L
†
i (A)Γ

)
. (F.3)

The adjoint image transforms from the constraint space to the 2DM space.

The easiest way to derive them is to use the definition eq. (F.3). For the I and

Q images, this is simple: they are self-adjoint, meaning that the image is also

its adjoint. For the G condition, we have

G† (A)αβ;γδ =
1

N − 1

[
δβδAαγ − δαδAβγ − δβγAαδ + δαγAβδ

]
−Aαδ;γβ +Aβδ;γα +Aαγ;δβ −Aβγ;δα,

(F.4)

1. A function is homogeneous with degree k when it is scale invariant: f(αx) = αkf(x).
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where

Aαγ =
∑
λ

Aαλ;γλ . (F.5)

For the T1 image, it gets a bit more complicated. The adjoint transform from

the three-particle space to the two-particle space. For the Hermitian adjoint

image, we find

T
†
1 (A)αβ;γδ =

2

N(N − 1)
(δαγδβδ − δαδδβγ) Tr A+Aαβ;γδ (F.6)

− 1

2(N − 1)

[
δβδAαγ − δαδAβγ − δβγAαδ + δαγAβδ

]
,

with

Aαβ;γδ =
∑
λ

Aαβλ;γδλ, (F.7)

Aαγ =
∑
λκ

Aαλκ;γλκ. (F.8)

The Hermitian adjoint for the T2 image is

T
†
2(A)αβ;γδ =

1

2(N − 1)

[
δβδ

˜̃Aαγ − δαδ ˜̃Aβγ − δβγ ˜̃Aαδ + δαγ
˜̃Aβδ

]
(F.9)

+Aαβ;γδ −
[
Ãδα;βγ − Ãδβ;αγ − Ãγα;βδ + Ãγβ;αδ

]
,

where

˜̃Aαγ =
∑
λκ

Aλκα;λκγ , (F.10)

Aαβ;γδ =
∑
λ

Aαβλ;γδλ, (F.11)

Ãαβ;γδ =
∑
λ

Aλαβ;λγδ. (F.12)

The Hermitian adjoint image for the T′2 condition is a bit more complex. It is

found by requiring that

Tr
(
T′2(Γ)A

)
= Tr

([(
T2 (Γ) ω
ω† ρ

)(
AT Aω
A†ω Aρ

)])
= Tr

((
T′2
)†

(A)Γ
)
.

(F.13)

This leads to

T
′†
2 (A)αβ;γδ = T

†
2(AT) + (Aω)αβδ;γ + (Aω)γδβ;α (F.14)

− (Aω)αβγ;δ − (Aω)γδα;β

+
1

N − 1

(
δβδ (Aρ)γα − δαδ (Aρ)γβ − δβγ (Aρ)δα + δαγ (Aρ)δβ

)
.
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Hermitian adjoint images

F.1 Spin symmetry

Since the matrices L†(A) are two-particle matrices, the spin-coupled version

of the Hermitian adjoint maps is defined as:

L†(A)Sab;cd =
1√

(1 + δab)(1 + δcd)

∑
σaσb

∑
σcσd

〈1
2
σa

1

2
σb|SM〉 〈

1

2
σc

1

2
σd|SM〉L†(A)aσabσb;cσcdσd . (F.15)

The G† map: the first non-trivial Hermitian adjoint map is the G†. Its

spin-coupled form can be derived by substituting eq. (F.4) in eq. (F.15) and

performing the necessary angular momentum algebra. This leads to:

G†(Γ)Sab;cd =
1√

(1 + δab)(1 + δcd)

(
1

N − 1

[
δacAbd + (−1)SδadAbc

+(−1)SδbcAad + δbdAac
]
−
∑
S′

(2S′ + 1)

{
1
2

1
2 S

1
2

1
2 S′

}
[
AS
′

ad;cb + (−1)SAS
′

bd;ca + (−1)SAS
′

ac;db +AS
′

bc;da

])
, (F.16)

in which the bar function for spin-coupled particle-hole matrices is defined

as:

Aac =
1

2

∑
S

(2S + 1)
∑
b

ASab;cb . (F.17)

The spin-coupled Hermitian adjoint maps for the three-index conditions can

be derived in a similar but more complicated fashion. We refer to reference

90 for the full expressions.
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Appendix G

Computer codes

In this appendix we give some background on the computer codes used in

this work. All codes are open source under the GPLv3-license [183] and

available online [184, 239]. They are wri�en in C++ using the BLAS and

LAPACK libraries for linear algebra operations and the HDF5
1

library for

storing data. The one- and two-electron integrals are calculated using PSI4

[178] and stored in a HDF5 file using the Hamiltonian class of CheMPS2

[187–190].

G.1 doci_sdp-atom

The programdoci_sdp-atom [239] implements the v2DM-DOCI method

using both the boundary point method and the potential reduction method.

It can use a Jacobi-based orbital optimizer or a simulated annealing-based or-

bital optimizer. The code is single-threaded as it is very di�icult to parallelize

a boundary point method: you can only parallelize within a single step and

every step is already very fast. The boundary point method has a convergence

checker: if the algorithm gets stuck, it will stop it. This has consequences for

all the following steps: if the 2DM is not properly convergence, the orbital

optimizer might not make a good decision about which orbital to rotate next.

It can take a while for the program recovers from this.

1. h�p://www.hdfgroup.org
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Figure G.1: The speedup of parallelizing the FullDOCI program.

G.2 DOCI-Exact

The program DOCI-Exact [184] implements a FullDOCI algorithm. The

DOCI Hamiltonian is build and then diagonalized to find the groundstate

energy and state. It can build and store the Hamiltonian as a sparse matrix

and then utilize a implicit restarted Arnoldi algorithm [185, 186] to find the

groundstate energy using only a sparse matrix-vector product. Every N -

particle state is represented by a bit string. Calculating a single element of

the Hamiltonian is very quick and as all elements are independent, this is

very well suited for parallelization. In Figure G.1 the speed up is shown. It

is this parallelization that makes it possible to do DOCI calculations in the

cc-pVDZ basis. The same orbital optimization algorithm as for doci_sdp-
atom program are used.
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