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Abstract 
Part of the added value of living lab or other in-situ 
research resides in its capability to capture contextual 
and personal data of end-users in real life 
environments. In this paper, we present an architecture 
for the wearable living lab (WELLS), allowing the 
collection of user experience feedback in a more 
permanent and unobtrusive way. It enables mainly the 
user researcher to capture contextual and experience 
data during a Proxy technology assessment, a 
formative or a summative software evaluation. 
 
Introduction 

Wearables provide intrinsically different 
opportunities for the research process of several 
application domains ranging from health to consumer 
research. We perceive wearables as any computing 
device that can be worn on the body (from smart-
textiles to smart-bracelets, -jewelry and –watches). 
They enable the monitoring, tracking and controlling 
of several human activity types. A distinguishing 
feature is that, unlike other devices such as 
smartphones, wearables are often worn almost 
permanently and therefore allow the continued and 
longitudinal capturing of data. The market for 
wearables is looking promising and wearable 
computing devices are increasingly hitting the market, 
like smart and sport watches (e.g. Pebble, Apple 
Watch,...), fitness trackers (e.g. Fitbit, Jawbone 
UP3,...) or smart glasses (e.g. Google Glass). 
Consumer-grade wearables allow the measurement of 
different types of user data in a less obtrusive and often 
more objective way than current, mainstream living lab 
data collection methods , i.e. observation techniques or 
surveys. Also, software development is more and more 
taking place in the context of mobile devices, where 
the interactions that the user has with the system are 
mediated by the context in which the use takes place 
(at work, at home, in the car, in bed,...). The 
assessment of such systems requires an in-situ or “in 
the wild” evaluation.  

Current application developers and researchers try 
to evaluate the software product by logging the actions 
of the users. However, logging data on itself has its 
limitations as it cannot track all contextual elements 
nor the individual’s personal experiences related to the 
usage of the application. Therefore, (additional) 
experience sampling is used to capture in the moment 
experiences of users. Both techniques allow to track 
users ‘in the wild’, but requires specific research 
methods that afford the continuous evaluation of the 
user’s response to the system.  

Katz (2001) concluded that there is an invisible side 
of emotions that cannot be induced from observations 
of user behavior alone. One way to measure emotional 
fluctuations is by researching their physiological 
changes via skin conductance in order to understand 
arousal. Due to the specific set-up and technology 
required, such measurements were only possible in a 
dedicated physical location. Because of the ongoing 
commercialization of wearables allowing measurement 
of behavior as well as psychological changes, 
wearables provide research opportunities in living lab 
environments. To allow this, the challenge which was 
already addressed in e.g. the work of Kocielnik et al 
(2013) or Sano & Picard (2013), to make such 
measurement work outside of controlled lab 
conditions, must be further taken up for application in 
living lab conditions. In other words, we must ask how 
these measurements can be made in the in-situ 
evaluation conditions that distinguish living lab 
projects from other design approaches.   

In this position paper, we discuss how wearables 
can be used in living lab projects (and by extension 
other types research with an in-situ component) to 
perform novel types of systems evaluation. To do this, 
we first discuss the process structure of living lab 
projects, which informs us on what living lab stages 
can benefit from unobtrusive systems evaluation. Then, 
we proceed to discuss how this can be done with the 
means that are currently or in the near future on the 
consumer market. We focus on consumer-grade 
devices, as it is important that the user of the device 
become as accustomed to it as possible, in order not to 
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bias the data (Henandez et al 2014). Consumer-grade 
devices are designed to accomplish exactly such 
accustomedness. Another reason for focusing on 
consumer-grade wearables is that evaluations in living 
labs are often large-scale. This can only be achieved if 
the wearables to be used are already owned by the user, 
or because their cost of acquisition is low. In sum, this 
paper discusses how the need for in-situ evaluations 
that exist in living labs can be met by the opportunity 
of new wearables becoming available as consumer 
devices. 

 
Prototype evaluation in Living Lab 
projects 

Living lab-research is a state-of-the-art 
methodology aiming at the involvement of end-users in 
the innovation process. Although there are several 
ways of integrating consumers in the innovation 
process, living labs are interesting because of the 
context for understanding customer co-creation. Living 
labs are experimental platforms where end-users can be 
studied in their everyday context (Eriksson et al. 2005). 
They confront (potential) users with (prototypes or 
demonstrators of) products and/or services in the 
innovation process (Schuurman & De Marez 2012). As 
a distinguishing factor of living labs is that the systems 
they produce are tested in non-laboratory conditions, 
but “in the wild” (Westerlund & Leminen 2011, Ballon 
2015). By introducing this in a real life environment, 
experience based learning and discovery (facilitating 
serendipity) is made possible. Through real-time 
iterations the design and development actions are 
constantly being validated. This will help developers to 
make more informed decisions, thus increasing the 
likelihood of success (Trimi & Berbegal-Mirabent, 
2012).  

Various types of process models for living labs 
have been proposed in literature (e.g. Pierson & 
Lievens 2005,  Schaffers et al 2008, Tang & 
Hämäläinen 2012, Bergvall-Kåreborn et. al 2009). 
Recently, Coenen & Robijt (2015) proposed the 
Framework for Agile Living Labs (FALL) process 
model as a way to guide both researchers and 
practitioners in how to perform a living lab project. 
This process model was shown to be compatible with 
most of the existing process model literature.   

In the FALL approach to a living lab project, there 
are 2 stages in which user feedback can be of use, i.e. 
the problem formulation and the so-called BIEL phase. 
In the problem formulation phase, users can be brought 
in contact with existing technologies that are 
configured to mimic the behaviour of the prototype 
that the project team has in mind. This is done through 
a Proxy Technology Assessment (PTA) (Pierson et al 

2006). In the iterative build, intervene, evaluate and 
learn (BIEL) phase, two different types of evaluations 
can be performed to get user feedback on a prototype: 
formative or summative evaluation. In formative 
evaluation, the prototype is of a very provisional nature 
and the aim is to get feedback that allows the living lab 
team to create better prototypes after it. In summative 
evaluation, the objective is to evaluate a more stable 
prototype and find out how effective and efficient it is 
to be able to report this to some project stakeholder 
(client who commissioned the project, customers, 
societal actors,…). These three types of prototype 
evaluation are the domains where we see potential in 
living lab projects for the application of research 
methods that are supported by wearables.  
 
WELLS or how wearables can be used to 
support prototype evaluation in living lab 
projects 

Based on our experiences in conducting real life 
evaluations of prototypes in living labs, as well as the 
literature on wearables, usability research and affective 
computing, we propose the architecture for a Wearable 
Living Lab Software Evaluation System (WELLS) 
depicted in Figure 2. Various roles are described as 
part of FALL, of which the user researcher is the role 
that is involved in carrying out the evaluation of 
prototypes. It is therefore the user researcher that will 
be the main consumer of the data generated by 
WELLS. Taking into account the opportunities of the 
wearable devices and the research needs for in-situ, 
contextual user-centered living lab research we focus 
on two main types of data-sets collected through 
wearables: bio-data and context data. 
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Figure 1: Architecture for a Wearable Living Lab Software 
Evaluation System (WELLS) 

Bio-data  
In our choice of sensors for measuring bio-data to 

be included at the core of the WELLS system, we 
concentrate on sensors that can provide a measure of 
the arousal experienced by the user. Arousal is a 
general term describing an emotional response by the 
user. The valence of the response can be either positive 
or negative representing emotions such as excitement 
and frustration. We interpret arousal according to the 
two factor theory of Schachter Singer (1962), assuming 
that arousal is the product of physiological arousal and 
the cognitive processes that respond to a particular 
situation(=context and stimuli) provoking the emotion. 
The cognition of the user will determine whether the 
physiological arousal will be perceived as anger or 
happiness. As sensors can detect arousal but not the 
valence of the emotion, the WELLS model also adds 
contextual data in order to enrich and by so interpret 
the captured bio data better.  Measuring arousal will 
detect positive or negative experiences and therefore 
identifying moments and actions where a prototype can 
be improved on.   

Various physiological measures can be used to 
indicate arousal, among which blood pressure, heart 
rate, heart rate variability (HRV), electrodermal 
activity (EDA), pupil diameter (Sano & Picard 2013) 
as well as facial expression (Albert & Tullis 2013). 
However, not all of these measures can be collected 
using unobtrusive devices. For example the 
measurement of pupil dilation requires the constant 
training of a camera on the subject’s pupil. By 
investigating current hardware offerings, we found that 
what can currently be measured in the least obtrusive 
way are electrodermal activity and heart rate. 

 
Electrodermal activity 
“Electrodermal activity is a measure of sweat excreted 
by the eccrine glands, which are innervated by the 
sympathetic nervous system”. (Hedman et al 2012). 
Electrodermal activity has been used widely to 
measure the response of the sympathetic nervous 
system to events in our environment. In the past, 
devices that were used to do this were often 
cumbersome to the wearer, resulting in feelings of 
stress resulting from wearing the device itself. 
Recently, devices like Philips’ Discrete Tension 
Indications (DTI-2) or the Empatica E4 Wristband 
have become available that allow EDA measurement 
by wearing a relatively unobtrusive, watch-like device. 
The latest in wearable fitness trackers, like the 
Jawbone UP3 wristband allows to measure 
electrodermal activity through the use of a device type 
that is becoming more and more mainstream on the 

consumer market. These mainstream devices will 
reflect a natural setting for participants and will allow 
Living Lab researchers to maintain a real life research 
setting.  
 
Heart rate 

Heart rate and heart-rate variability, or the 
fluctuations in beat-to-beat intervals, can be used to 
detect stress and arousal (Albert & Tullis 2013, Choi et 
al 2012). There are more devices that can measure 
heart rate than EDA, making it a pragmatically useful 
addition to the WELLS architecture. Indeed, heart rate 
can be measured by mainstream fitness wearables by 
wearing a sensor band on the torso. However, wearing 
such a band is obtrusive and few are the people who 
would want to wear it permanently, beyond their 
fitness workout.  But as for EDA, new devices are 
becoming available that can be worn on the wrist and 
that also measure heart rate.  

 
Context data 
Video and audio 

Video can be used to capture the interactions of the 
user in a rich way and has been proven to be highly 
valuable to detect possible improvements of the user 
experience. Within usability research, video has been 
used in various way to capture and detect user 
interactions and experience. However, this has either 
been in a controlled lab environment or with very 
obtrusive equipment when performing this in-situ. For 
a pervasive game called “Playground”, we collected 
user data with smart glasses, as they are able to capture 
the users context when using the system in a rather 
easy and less obtrusive way. Players were asked to 
play the game on smartphone, while wearing these 
smart glasses and performing the think aloud protocol. 
The latter is a standard method in which participants 
thinking aloud as they are performing a specified 
amount of tasks. Because the data is recorded, 
developers can look back at the experiences and 
reactions of the users and interpret the data. As 
pervasive games are not only about the use of the game 
on a mobile device, but also about the experience of 
the player with the physical environment in which the 
game is set. By using smart glasses, both dimensions 
(use of device and interaction with physical context) 
could be captured in rich detail.  

Our experience within the Playground project 
indicated that the use of smart glasses is promising but 
still a number of issues need to be tackled. First, they 
are less unobtrusive than expected. For example, 
Google Glass constantly shows a display in one’s field 
of vision. It is therefore hard for the user to “forget” 
the presence of the recording device. In addition, 
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battery life can be a hurdle in smart glasses. The 
battery life time of Google Glass is limited (one hour 
of video recording), making long experience sessions 
difficult. In addition, there were issues with the video 
framing. As the camera in the Google glass is located 
in the top-right corner of the glass frame, the recorded 
video did not always catch the interface on the 
smartphone. Finally, often the video was not focused 
on the interface, but on other objects in the field of 
view. This resulted in blurry recordings of the 
interface, making it hard to identify certain interface 
elements.      

An alternative to using smart glasses is devices that 
are used for “LifeLogging” or the long-term recording 
of video in daily life. One example is the Narrative clip 
2, which allows up to 30 hours of video recording 
through a device that can be clipped on clothing and is 
around 10 by 10 cm large. However, many of these 
devices do not record audio. Our experience within 
Playground learned that audio is often essential as 
extra information layer to allow users to express their 
frustration and provide additional context on what it is 
that they are experiencing.  

 
Experience sampling 
Experience sampling is a research methodology in 
which users are asked to self-report on various 
elements (such as experience, context,…) on specific 
moments (this could be time-based, event-based,…). 
Huang et al (2014) and Sano & Picard (2013) e.g. used 
experience sampling, via short questionnaires 
distributed through a smartphone app, to query the user 
on their emotional state of mind. In their research they 
demonstrated that gathering survey data can be of great 
use in identifying emotions such as stress related to a 
specific context. The captured data also linked with a 
whole batch of collected metrics like EDA, heart rate 
and others. However, in systems evaluations in living 
labs, taking place in real-life, naturalistic 
environments, the identification of stress needs to take 
place within a brief time interval from the event that 
caused the affective response. This needs to be done to 
be able to identify instants that caused an affective 
response, making aggregate experience sampling per 
day ineffective as retrospective self-reporting will not 
reveal these specific moments. Therefore, more fine-
grained approaches need to be included to measure 
affect. Two options are possible: (1) based upon real-
time data of the wearables in which the reporting is 
triggered by certain data-points. But this would require 
a permanent online connection and could also results in 
too many interactions and request. (2) based upon 
predefined intervals in which the user is asked to 
evaluate her aggregate affect level in a previous time 
interval. Such an approach would not produce labels on 

the exact moments when stressful events took place, 
but being able to search down the search space would 
be useful in analysing the large amounts of data that 
will be produced by a large-scale evaluation using the 
WELLS infrastructure.   
 
Location, event logs and time 
Keeping track of location is important to be able to 
gather context data. Such location data can come from 
geolocation based on GPS, wifi or bluetooth data as is 
often done in mobile, geolocative apps. A well-known 
drawback of such apps is the rate at which they drain a 
smartphone’s battery. Situations where location is less 
accurate but more energy efficient can be built based 
on iBeacon solutions. In such cases, the captured data 
only shows in what general area the user resides. An 
infrastructure cost is associated with such a solution, as 
the area in which the user interaction takes place needs 
to be fitted with iBeacons.  Next to location, movement 
is also an important contextual element, which can 
easily be determined due to the accelerometers within 
smartphones and wearables. This data stream is also 
important, as it can determine if a user is moving or 
not. Keeping event log data is another important aspect 
of evaluating data during in the wild trials. Such log 
data can indicate bugs and can provide useful context 
information to be able to further make sense of the 
user’s behavior. Finally, keeping accurate time is 
essential for  synchronizing data in the research 
interface when data is coming from multiple sensors 
(Banaee et al 2013). Therefore, having timestamps that 
are in sync for all measurements is critical.  
 
Smartphone 
The smartphone plays an important central role. 
Firstly, most wearables need a smartphone to make 
connection to various (cloud-based) services. 
Therefore it can be used to bundle the incoming data 
and send it over to the data repository in an efficient 
way (stability, robustness…). In the future, wearables 
may become directly connected to internet, bypassing 
the need for smartphone. Secondly, the smartphone can 
help in keeping all sensor data sets synchronized.  
 
Data repository 
The data repository should store the data coming from 
as many sources as required. It should be able to 
receive real-time or batch data from the smartphone. In 
addition, this data should be stored in such a way that 
privacy requirements are met.  
It is important to keep in mind that other metrics can be 
of use when measuring user affect. As more wearable 
sensors will become available, it will be important to 
make the architecture as extensible as possible, to be 
able to quickly add new sensors to the system.  The 
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data repository, and the way in which it is accessed, 
provides the main point in the architecture where such 
future compatibility needs to be realised. This will 
require flexible API’s that can accommodate data 
coming from a wide array of sensors as well as an 
efficient identification mechanism.  
 
Research interface 
The purpose of the research interface is to allow user 
researchers to make sense of the data that is produced 
by the sensors and the smartphone. Especially relevant 
are moments in the user’s experience that have 
generated arousal while using the application being 
evaluated. In order to support sense making by user 
researchers, the WELLS data should be visualised, 
mined and made queryable.  

 
Figure 3: Wearable Living Lab research interface mockup, 

adapted from Kocielnic et al (2013). Galvanic Skin Respons 
(GSR) is synonym to eletrodermal activity (EDA). Foto is a 

still from a Google Glass recording of a user session in 
Playground Kortrijk 

 
Data mining 
The amount of data produced by sensors over a longer 
period of time can be very large. In order to make 
sense of such sensor data, which comes in the form of 
a time-series, analytical methods are necessary. Banaee 
et al (2013) provide a survey of the methods used in 
data mining and machine learning in the area of 
medical applications, that is relevant to the aims of this 
paper. In their literature review, they found support 
vector machines, decision trees, neural networks, 
hidden markov models, gaussian mixture models and 
rule-based models to be in use.  
It is important to distinguish EDA and HRV 
fluctuations resulting from movement from 
electrodermal activity resulting from emotional 
response. This can be achieved by applying rule-based 
filtering, one of the main data mining approaches 
discussed by Banaee et al (2013). The data from the 3-
axis accelerometer is crucial in distinguishing both 
types of EDA and HRV response. Rules can be built 

that disregard EDA data from periods in which the user 
was moving along one of the 3 axis in a value that 
exceeds a certain threshold.  
The main objective in the analysis of data coming from 
user experience evaluation in living labs should be on 
finding instants that coincide with increased arousal 
from users. These instants can then be labeled as 
possible candidates for further analysis. By juxtaposing 
data that has been labeled in such a way from EDA or 
HRV with video, audio and location data, a rich picture 
will emerge of what features and contextual 
circumstances can be stressful or enjoyable to the user.  
 
Visualisation 
In order to be useful, the system needs to visualize the 
data in a way that facilitates sense making. The video 
and audio data will be the main way in which the user 
researcher will come to understand what exactly was 
going on at a particular point in time. However, the 
video and audio data of a certain evaluation can be 
extensive and if the trials are large-scale, user 
researchers can not be expected to go over all the 
produced video and audio for each participant. 
Therefore, combining the video/audio feed with data 
mining techniques on data coming from other sources 
can be powerful to discover moments in the data where 
the user got frustrated with using the software.  
Kocielnic et al (2013, 2014) experimented with 
collecting work stress-related data using EDA over a 
prolonged period of time. A visualisation was created 
that combined sensor data from EDA and 
accelerometer with labels that were extracted by 
interfacing with online agendas. Not only did this 
approach deliver an instrument for the analysis of the 
data, it was also able to present the findings back to the 
user and in this way obtain better self-reporting. By 
combining a visualisation of EDA data with calendar 
data and questionnaire data, users were able to make 
sense of their experiences in terms of the relative 
stressfulness of different events in their day-to-day 
professional life.  
 
Privacy issues 
Continuous tracking poses many privacy challenges 
that neither users nor stakeholders are ready to deal 
with. Wearables constantly collect, transmit and store 
data that is considered personal, private, sensitive and 
confidential by users. This brings many benefits to the 
researchers, as it can provide them with access to end-
users’ latent experiences and fill the gap between the 
saying versus doing paradigms. Yet for users this 
constant surveillance and sousveillance can lead to 
privacy threats and risks. Sousveillance is the 
recording of an activity by a participant in the activity 
typically via small wearables or other small portable 
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technologies (Mann, Nolan & Welmann, 2003). Users 
are currently less aware of these privacy concerns 
because wearables are a relatively new thing. In 
addition, wearables are often shaped as accessories that 
never posed any privacy threats to users such as 
glasses, watches, etc. Motti & Caine (2014) identified 
several privacy concerns from users about wearables 
related to the device and the application itself, the data 
being captured and the sensors. Especially their last 
two concerns are of importance to living lab research. 
Data specific privacy concerns are related to the issues 
of users that certain data, when combined, could have 
critical implications. Next to having the explicit 
consent of the users, it will also be necessary to inform 
the users on which type of data will be collected during 
the scope of the research, what will be done with that 
data as well as to foresee the ability to delete all data 
afterwards (in line with the EU policy on the right to 
forget). 
 
Discussion 
We have described the general architecture of a 
wearable living lab and touched upon certain 
opportunities and challenges. However we are still in 
the phase of putting the integrated WELLS architecture 
into practice. The benefit of  WELLS is that there are 
no aspects of the architecture that can not be 
implemented using today’s consumer-grade wearables 
technologies, web-based programming languages, 
database systems, machine learning and visualisation 
techniques. What remains to be investigated, however, 
is the accuracy of the different devices that are and will 
become available and the quality of the data. In 
addition, some other concerns exist in terms of battery 
power, data heterogeneity, form-factor, ruggedness and 
ease of use.  
Battery power has been a constant issue in many 
recent technology developments. Certain applications, 
like geolocalisation, can drain a smartphone battery at 
a much increased rate compared to a normal 
smartphone application. The WELLS system will only 
remain operational for as long as all of its components 
remain active. How long we can expect this to be still 
remains unclear, but is an important unknown to figure 
out in order to allow long-term measurements of user 
experience. Data heterogeneity will result from 
different devices creating different data in a variety of 
formats. Handling this so that for example all data 
feeds can be combined and accurately synchronized is 
a hurdle which we still need to tackle. Form-factor is 
an important aspect, as it influences the obtrusiveness 
that is experienced by the user. For example the form 
factor of the Google Glass proved to be sub-optimal, as 
users would not feel comfortable with wearing the 
device. For devices in the wearable living lab to 

function well, they should be as invisible as possible, 
both for the user as its environment. Video-capturing 
devices are available that allow more discreet video-
recording, but many of them also have their 
limitations, like lack of audio recording capability. 
Still, previous research on wearables shows that even 
for more common devices such as wristbands it takes a 
while for users to get accustomed to the device and 
start behaving naturally (Hedman, 2011). Therefore we 
will need to investigate how the use of a WELLS 
architecture impacts the natural use of the systems 
under investigation. Rugedness is important, as the 
wearables living lab needs to remain operational in 
various environmental condition. Especially continued 
active when it is raining seems essential. Finally, the 
WELLS architecture should be coordinated through an 
app that runs on a smartphone and that is able to handle 
all the interactions that are needed with the user. As 
with all applications, it will be necessary to make sure 
that the user experience design of this app, and the way 
in which it integrates with the wearables, is created in 
such a way that it is as easy to use as possible. 
The WELLS architecture can be of use in each of the 
three living lab phases discussed above: a PTA, a 
formative prototype evaluation or a summative 
prototype evaluation. WELLS will be most useful in 
situation in which mobile technologies are evaluated. 
Indeed, these are the technologies that are hard to 
evaluate in usability lab conditions, as many of the 
user’s reactions will result from the combination of the 
software and the context in which the user resides.  
Ballon (2015) found that, although there is 
heterogeneity in the existing living lab approaches, 
they share four characteristics: (1) the discovery of 
unexpected usage and new service opportunities, (2) 
the evaluation or validation of new digital technology 
solutions by users, (3) a familiar usage context, and (4) 
a medium or long term research angle. We believe it is 
clear that WELLS can add novel aspects to each of 
these characteristics but can not go into detail on how 
this is the case due to space restrictions.  
We plan to use this architecture in many of our 
ongoing research and development projects. One 
example is a pervasive city game in which players can 
use their smartphone to play games in the urban 
environment. Another is a project in which the aim is 
to provide resistive schyzophrenic patients with 
cognitive behavioral therapy over wearable devices. 
Both projects are examples that will need users to 
experience the system in a prologued way, underlining 
the need for a research approach that can collect, 
analyze and visualize in the wild and continuous data, 
originating from an extensible set of sensors. 
 
Conclusion 
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We have presented an architecture for the wearable 
living lab, a system to collect user experience feedback 
in living lab projects.  The user researcher is the main 
consumer of the WELLS data and can use the system 
in a living lab project during a PTA, a formative or a 
summative software evaluation. Its relevance for 
Living Lab or other in-situ research resides in its 
capability to capture contextual and personal data of 
end-users in real life environments.  The next steps are 
to build, gradually, a concrete instance of WELLS and 
to explore and evaluate the different elements 
addressed in this paper. This will entail creating a 
system that can support a living lab research approach 
(and in-situ research in general) that can collect, 
analyze and visualize in the wild and continuous data, 
originating from an extensible set of sensors. 
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