Microkinetic analysis of Fischer-Tropsch synthesis on Fe and Co catalysts

Gisela Lozano¹, Joris W. Thybaut¹, Karine Surla², Pierre Galtier², Guy B. Marin¹

¹LPT, Ghent University, Krijgslaan 281 – S5, B-9000 Ghent, Belgium ²Institut Français du Pétrole, B.P. 3, 69390 Vernaison, France

> EUROPACAT-VIII 26 - 31 August 2007, Turku, Finland

Fischer-Tropsch synthesis

http://www.tw12.ugent.be/

General scheme - Objective

Single-Event MicroKinetics

- Microkinetic model accounts for the rate of every elementary step → detailed selectivities → potential tool to design more performing catalysts
- Single-Event MicroKinetics (SEMK) consist of extracting the symmetry factors from the entropic contribution

$$k = \frac{\sigma_{glob,r} k_B T}{\sigma_{glob,\neq} h} \exp(\Delta \tilde{S}^{0,\neq}/R) \exp(-\Delta H^{0,\neq}/R T)$$
$$\tilde{k} = \tilde{A} \exp(-E_a/RT)$$

Unique single-event rate coefficient for each reaction family

General scheme

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$ Formation building blocks $MMMC + MH \leftrightarrow MMMCH + M$ $MMMCH + MH \leftrightarrow MMCH_2 + 2M$ $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$ Formation of water $MMO + MH \leftrightarrow MOH + 2M$ $MOH + MH \leftrightarrow H_2O + 2M$

Chain growth and termination

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$ Formation building blocks $MMMC + MH \leftrightarrow MMMCH + M$ $MMMCH + MH \leftrightarrow MMCH_2 + 2M$ $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$ Formation of water $MMO + MH \leftrightarrow MOH + 2M$ $MOH + MH \leftrightarrow H_2O + 2M$

Chain growth and termination

Methylene insertion/de-insertion

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

Reductive elimination/oxidative addition

Formation building blocks $MMMC + MH \leftrightarrow MMMCH + M$ $MMMCH + MH \leftrightarrow MMCH_2 + 2M$ $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$ Formation of water $MMO + MH \leftrightarrow MOH + 2M$ $MOH + MH \leftrightarrow H_2O + 2M$

Ň

Ň

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

 β -hydride elimination/addition

Formation building blocks $MMMC + MH \leftrightarrow MMMCH + M$ $MMMCH + MH \leftrightarrow MMCH_2 + 2M$ $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$ Formation of water $MMO + MH \leftrightarrow MOH + 2M$ $MOH + MH \leftrightarrow H_2O + 2M$

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$ Formation building blocks $MMMC + MH \leftrightarrow MMMCH + M$ $MMMCH + MH \leftrightarrow MMCH_2 + 2M$ $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$ Formation of water $MMO + MH \leftrightarrow MOH + 2M$ $MOH + MH \leftrightarrow H_2O + 2M$

Chain growth and termination

Alkene desorption/chemisorption

Max. C atom	alkyls	alkanes	alkenes	number elem. steps
8	131	36	94	922
10	528	107	390	3730
12	2084	334	1571	14752

- Numerical representation of molecules: •
 - Boolean matrices (chemical transformation)

11

0

()

1

 $\mathbf{0}$

()

0

0

0

0

0

0 0

0

0

()

1

 $\mathbf{0}$

0

0

0

General scheme

Model equations

 $\frac{dx_i}{d(W/F_{CO,ini})} = R_i \qquad \begin{array}{c} \zeta H_3 \\ CH_2 \\ H_2 \\ H_3 \\ H_4 \\ H_4 \\ M_4 \\$

Gas-phase compounds

Surface intermediates

$$R_{alkane,l} = \sum_{i=1}^{nalkyls} \frac{1}{2} z \frac{\sigma_r}{\sigma_{\neq}} \tilde{k}_{re,M-alkyls} C_{M-alkyl_i \rightarrow l} \frac{C_{M-H}}{C_{M_{tot}}} - \frac{1}{2} z \frac{\sigma_r}{\sigma_{\neq}} \tilde{k}_{oa,alkanes} p_{alkane,l} C_M \frac{C_M}{C_{M_{tot}}}$$

- Probability of finding occupied/unoccupied neighbour surface atoms
- Single-event kinetic coefficient: $\tilde{k} = \tilde{A} \exp(-E_a/RT)$
- Thermodynamic consistency guaranteed by pple microscopic reversibility $\widetilde{A}_{rev} = \widetilde{A}_{for} / \exp(\Delta \widetilde{S}_r^0 / R)$ $E_{a,rev} = E_{a,for} - \Delta H_r^0$ 13

Pre-exponential factors

$$\widetilde{A}_{for} = \frac{k_B T}{h} \exp\left(\frac{\Delta \widetilde{S}^{0,\neq}}{R}\right)$$
$$\widetilde{A}_{rev} = \widetilde{A}_{for} / \exp\left(\Delta \widetilde{S}_r^0 / R\right)$$

$$\Delta \widetilde{S}^{0,\neq} = \widetilde{S}_{TS}^{0} - \sum_{i=1}^{nreact} \upsilon_i \widetilde{S}_i^0$$
$$\Delta \widetilde{S}_r^0 = \sum_{i=1}^{nprod} \upsilon_i \widetilde{S}_i^0 - \sum_{j=1}^{nreact} \upsilon_j \widetilde{S}_j^0$$

$$\widetilde{S}_{i/TS}^{0} = \widetilde{S}_{i/TS,gas}^{0} + \Delta \widetilde{S}_{chem}^{0}$$

Benson GAV stable molecules and radicals

- Entropy change associated to the chemisorption step proportional to the loss of translational entropy
- Single pre-exponential factors per reaction family
- Fixed kinetic parameters in the model

Thermochemistry

Calculated by phenomenological method (UBI/QEP)

• Adjustable parameters: $Q_A = (Q_C, Q_H, Q_O, ...)$

Shustorovich et al., Surface Science Reports 31 (1998)

reaction coordinate

General scheme

Validation on Fe and Co

<u>Iron</u>

- Water-Gas Shift (iron oxide phase, formate mechanism, 6 additional elementary reactions)
- Range of experimental conditions:

T (K)	H_2/CO	p _{tot} (bar)	N _{obs}
523-623	2-6	6-21	90

Lox, Ph.D. Thesis, Ghent University (1987)

- Adjustable parameters:
 - Q_C, Q_H, Q_O on iron carbide phase (3)
 - $-Q_H$ on iron oxide phase (1)
 - $E_{a,for}$ of kinetically relevant reaction families (10)

Lozano-Blanco et al., OGST – Rev. IFP, Vol. 61 (2006), No. 4

<u>Cobalt</u>

- Primary-alcohols (CO insertion mechanism, 3 additional elementary reactions)
- Range of experimental conditions:

Fiore et al., Studies in Surf. Sci. and Cat. (2004)

- Adjustable parameters:
 - $Q_C Q_H Q_O$ on cobalt metallic phase (3)
 - $E_{a,for}$ of kinetically relevant reaction families (12)

Parameter estimation

Reaction familv/	\widetilde{A}_{for}	$E_{a, for} / Q$ (kJ/mol)	
elem. reaction	$(bar^{-1}s^{-1} or s^{-1})$	Fe	Со
$H_2 + 2M \leftrightarrow 2MH$	3.1 108	0.0	0.0
$CO + 2M \leftrightarrow MMCO$	2.2 107	0.0	0.0
$MMCO + 3M \leftrightarrow MMMC + MMO$	1.3 10 ¹³	56.8±0.5	52.8±6.2
$MMMC + MH \leftrightarrow MMMCH + M$	8.8 1014	77.7±0.7	74.3±10.3
$MMMCH + MH \leftrightarrow MMCH_2 + 2M$	5.7 1011	11.9±0.1	12.2±2.0
$MMCH_2 + MH \leftrightarrow MCH_3 + 2M$	2.3 1011	61.9±0.5	71.9±3.1
$MMO + MH \leftrightarrow MOH + 2M$	1.3 10 ¹²	103.8±1.0	107.0±6.6
$MOH + MH \leftrightarrow H_2O + 2M$	2.4 1011	86.2±0.6	91.6±24.3
M-C	-	639.5±2.1	611.2±2.7
M-H	-	249.2±0.6	243.3±3.2
M - O	_	578.8±0.9	553.7±6.0

Parameter estimation

Reaction familv/	\widetilde{A}_{for}	$E_{a,for} / Q$ (kJ/mol)	
elem. reaction	$(bar^{-1}s^{-1} or s^{-1})$	Fe	Со
$\begin{array}{l} MC_{n}H_{2n+1}+MMCH_{2} \leftrightarrow \\ MC_{n+1}H_{2n+3}+2M \end{array}$	8.9 10 ⁹	44.8±0.4	43.5±2.0
$MC_nH_{2n+1} + MH \leftrightarrow C_nH_{2n+2} + 2N$	$A = 2.1 \ 10^{10}$	117.8±0.7	103.6±2.0
$MC_nH_{2n+1} + M \leftrightarrow MC_nH_{2n} + MH_{2n}$	$1.1 \ 10^{10}$	96.3±0.5	86.1±1.4
$MC_nH_{2n} \leftrightarrow C_nH_{2n} + M$	1.3 10 ¹³	-	-

 Significant changes only in atomic chemisorption enthalpies and in elementary steps determining the product distribution (catalyst dependent parameters)

Model validation on Fe

T=623K;p_{tot}=21bar;H₂/CO=3 T=573K;ptot=11bar;H2/CO=3 Х $\blacksquare H_2$ Х ♦ CO 0 0 0 20 40 60 80 20 40 W/Fco ini (kg_{cat} s/mol) 0 $\blacktriangle H_2 O$ W/F_{CO ini} (kg_{cat} s/mol) T=523K;p_{tot}=21bar;H₂/CO=3 T=553K;p_{tot}=21bar;H₂/CO=3 • *CH* 1 y_i (mol i/mol CO ini) × CO₂ 0.8 0.6 0.4 0.2 0 0 40 0 20 60 $\frac{20}{W/F_{CO ini}} \frac{40}{(kg_{cat} s/mol)}$ 0 20 W/F_{CO ini} (kg_{cat} s/mol)

Model validation on Fe and Co

Fe

General trends (Fe)

Chain growth probability:

 $\alpha_n = \frac{r_{prop,n}}{r_{prop,n} + r_{term,n}}$

 At higher temperatures more hydrogenated products and lower molecular mass hydrocarbons

Secondary reactions (Co)

- Methanol addition
 - No effect on product distribution

Secondary reactions (Co)

1-octene addition

- Increases selectivities towards n-octane and 1-nonanol

Conclusions

- A single model is able to describe product distributions on Fe and Co catalysts with physically meaningful parameter values
- Single-event concept (entropy differences) allows to describe the typical deviations observed at lower carbon atoms
- 3 activation energies show strong catalyst dependency
- Relations between these activation energies and catalyst properties should be further investigated

Acknowledgements

- Financial support: Institut Français du Pétrole (IFP) and IAP program funded by the Belgian Science Policy
- PoliMi and EniTecnologie

Water-Gas Shift

Formate mechanism

Rethwisch and Dumesic, J. Catal., 101, 35-42 (1986)

Surface species

