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Contemporary neuroimaging methods can shed light on the basis of human neural and

cognitive specializations, with important implications for neuroscience and medicine.

Indeed, different MRI acquisitions provide different brain networks at the macroscale;

whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident

with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for

the variations in the blood-oxygenation-level-dependent T2* signal, providing functional

connectivity (FC). Understanding the precise relation between FC and SC, that is,

between brain dynamics and structure, is still a challenge for neuroscience. To investigate

this problem, we acquired data at rest and built the corresponding SC (with matrix

elements corresponding to the fiber number between brain areas) to be compared with

FC connectivity matrices obtained by three different methods: directed dependencies by

an exploratory version of structural equation modeling (eSEM), linear correlations (C) and

partial correlations (PC). We also considered the possibility of using lagged correlations in

time series; in particular, we compared a lagged version of eSEM and Granger causality

(GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was

comparable to those obtained from C and PC, but eSEM (not C, nor PC) provides

information about directionality of the functional interactions. Second, interactions on a

time scale much smaller than the sampling time, captured by instantaneous connectivity

methods, are much more related to SC than slow directed influences captured by the

lagged analysis. Indeed the performance in correlating with SC was much worse for GC

and for the lagged version of eSEM. We expect these results to supply further insights

to the interplay between SC and functional patterns, an important issue in the study of

brain physiology and function.
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1. Introduction

Three different main classes of brain networks are currently
investigated (Friston, 1994; Sporns et al., 2004, 2005; Bonifazi
et al., 2009; Friston, 2011): networks defined by theirstructural
connectivity (SC) refer to anatomical connections between brain
regions; networks defined by their functional connectivity (FC)
account for statistical similarities in the dynamics between
distinct neuronal populations; and effective connectivity (EC)
networks identify interactions or information flow between
regions.

Current magnetic resonance imaging (MRI) techniques
have allowed SC, FC, and EC brain networks to be
measured at the macroscale. Thus, SC networks have
been obtained from diffusion tensor images (DTI) and
high-resolution tractography (Craddock et al., 2013)
while FC networks have been obtained from correlations
between blood oxygen-level dependent (BOLD) time-series
(Biswal et al., 1995).

Different methods can assess EC. One possibility is the
dynamic causal modeling, addressing how the activity in
one brain area is affected by the activity in another area
using explicit models of neural populations (Friston et al.,
2003; Penny et al., 2004). Other possibilities are data-
driven approaches with no further assumptions about the
hemodynamic response, nor about the biophysics of the
BOLD signal from individual neuron to population level.
Two popular existing data-driven methods to calculate EC are
Granger causality (GC) (Granger, 1969) and transfer entropy
(Schreiber, 2000).

Another well-known method to calculate EC is the structural
equation modeling (SEM). Although SEM assumes an implicit
model (i.e., an influence matrix) (Bollen, 1989), in the present
study we focus on an exploratory version of SEM (labeled eSEM)
where all variables might (a priori) interact with all the others.
Notice that, eSEM is by construction exploratory whilst SEM
is largely confirmatory. Both SEM and eSEM are methods to
calculate EC, since both methods provide directed connectivity
matrices.

In this paper, we aim to bring some light in a long lasting
question: How brain structure is shaped by its function, and
viceversa? Or alternatively, using the language of networks: How
are the three classes of networks SC, FC and EC related to each
other? It is important to emphasize that, this challenging problem
has not yet a clear answer for any general brain condition and
data set. Here, to address this question, we will focus here in
the resting brain, i.e., when the brain is not performing any
goal-oriented task.

Abbreviations: SC, Structural Connectivity; FC, Functional Connectivity; EC,

Effective Connectivity; eSEM, Exploratory Structural Equation Modeling (a non-

lagged model); eSEM1, eSEM with lag=1; eSEM2, eSEM with lag=2; eSEM3,

eSEM with lag=3; GC, Granger Causality; GC1, GC with lag=1; GC2, GC

with lag=2; GC3, GC with lag=3; C, Correlation; PC, Partial Correlation; RSN,

Resting State Network; DMN, Default Mode Network; SM, Sensory Motor; ExC,

Executive Control; ROI, Region of Interest; CP, (Structurally) Connected Pairs;

NCP, (Structurally) Non-Connected Pairs.

Notice that despite the simplicity of the context where
these patterns of brain activity are generated, the resting
brain dynamics is complex, encompassing a superposition of
multiple resting state networks (RSNs) (Raichle et al., 2001;
Fox et al., 2005; Raichle and Mintun, 2006; Raichle and
Snyder, 2007; Raichle, 2009); each RSN underlying a different
cognitive function e.g., there are visual networks, sensory-
motor networks, auditory networks, default mode networks,
executive control networks, and some others (for further details
see for instance (Beckmann et al., 2005) and references
therein).

Pioneering work showed that SC and FC are correlated to
some extent (Hagmann et al., 2008; Honey et al., 2009). After
these fundamental papers, some other studies made use of the
combined data sets to address different aspects of brain dynamics
(Fraiman et al., 2009; Cabral et al., 2011; Deco et al., 2011;
Goni et al., 2013; Haimovici et al., 2013; Kolchinsky et al., 2014;
Marinazzo et al., 2014; Messé et al., 2014). In this paper, both
structural and functional data have been used to demonstrate to
which extent the EC obtained by eSEM and the FC obtained by C
and PC are similar to SC.

Previous approaches analyzed fMRI data based on SEM
(Bullmore et al., 2000; Schlösser et al., 2006; Kim et al., 2007;
Gates et al., 2010, 2011), dealing with subsets of candidate
regions selected on the basis of prior knowledge. However,
the performance of these approaches depends strongly on
the correctness and completeness of the hypothesized model
of connections. In the present work, eSEM is applied in an
exploratory fashion to a multivariate dataset corresponding to
a specific brain system consisting in 15 different regions of
interest (ROIs), fully covering (with no further assumptions
about the underlying connectivity) three of the well-known RSNs
(Beckmann et al., 2005): The sensory-motor network (SM), the
executive-control network (ExC) and the default mode network
(DMN). The application of eSEM returns an influence matrix
which is not symmetric (i.e., a region A can influence B differently
than how B influences A) and describes fully connected directed
dependencies between ROIs.

The performance achieved by eSEM in correlating with
SC (thus, measusing the similarity between eSEM and SC)
is also compared with FC, obtained by two other methods:
the linear correlation (C) and partial correlation (PC). Unlike
C, PC is commonly used to analyze direct relationships
among fMRI time series with good performance (Marrelec
et al., 2006; Marrelec and Benali, 2009; Maki-Marttunen et al.,
2013), since network influences beyond the specific pair are
removed.

Furthermore, eSEM is also applied to lagged time series
to estimate a saturated, fully connected, but recursive model.
Notice that bi-directional influences here are detected as cross-
lagged effects. The results from this lagged version of eSEM are
compared with those from GC. As a result, we will show that
lagged methods are less related to SC measures, which implies
that the dependencies found in the data on slower time scales
(in comparison to instantaneous interactions) are less related
to SC.

Frontiers in Psychology | www.frontiersin.org 2 July 2015 | Volume 6 | Article 1024

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Alonso-Montes et al. eSEM vs. SC in the resting brain

2. Materials and Methods

2.1. Same-subject Structure-function
Acquisitions
This work was approved by the Ethics Committee at the
Cruces University Hospital; all the methods were carried out in
accordance to approved guidelines. A population of n = 12 (6
males) healthy subjects, aged between 24 and 46 (33.5 ± 8.7),
provided information consents before the imaging session. For
all the participants, we acquired same-subject structure-function
data with a Philips Achieva 1.5T Nova scanner. The total scan
time for each session was less than 30 min and high-resolution
anatomical MRI was acquired using a T1-weighted 3D sequence
with the following parameters: TR = 7.482ms, TE = 3.425ms;
parallel imaging (SENSE) acceleration factor=1.5; acquisition
matrix size = 256 × 256; FOV = 26 cm; slice thickness =

1.1mm; 170 contiguous sections. Diffusion weighted images
(DWIs) were acquired using pulsed gradient-spin-echo echo-
planar-imaging (PGSE-EPI) under the following parameters: 32
gradient directions, TR= 11070.28ms, TE= 107.04ms, 60 slices
with thickness of 2mm, no gap between slices, 128 × 128 matrix
with an FOV of 23 × 23 cm. Changes in blood-oxygenation-
level-dependent (BOLD) T2∗ signals were measured using an
interleaved gradient-echo EPI sequence. The subjects lay quietly
for 7.28 min, during which 200 whole brain volumes were
obtained under the following parameters: TR = 2200ms, TE =

35ms; Flip Angle 90, 24 cm field of view, 128× 128 pixel matrix,
and 3.12× 3.19× 4.00 mm voxel dimensions.

We have shown in Diez et al. (2015a) that the relationship
between SC and FC found with the data used in this study
is confirmed by the MGH-USC Human Connectome Project,
of much higher quality. The results we show here open the
possibility to a generalization to many other data sets.

2.2. Data Preprocessing
2.2.1. Structural Data
To analyze the diffusion images (dMRI), the eddy current
correction was applied to overcome artifacts produced by
changes in the gradient field directions of the MR scanner and
subject head movement. In particular, the eddy-correct tool from
FSL was used to correct both eddy current distortions, and simple
head motion, using affine registration to a reference volume.
After this, DTIFIT was used to perform the fitting of the diffusion
tensor for each voxel, using as an input the eddy-correct output.
No extra de-noising was applied in the data and our results
were not wrapped to any template. Two computations were
performed to transform the atlas to each individual space: (1)
the transformation between the MNI template to the subject
structural image (T1), and (2) the transformation between the T1
to the diffusion image space. Combining both transformations,
each atlas region is transformed to the diffusion space, allowing
to count the number of fibers connecting all ROIs pairs. Using the
corrected data, a local fitting of the diffusion tensor was applied
to compute the diffusion tensor model at each voxel. Then, a
deterministic tractography algorithm (FACT) (Mori et al., 1999)
was applied using TrackVis (Wang et al., 2007), an interactive
software for fiber tracking.

2.2.2. Functional Data
The functional MRI (fMRI) data was preprocessed with FSL
(FMRIB Software Library v5.0). The first 10 volumes were
discarded for correction of the magnetic saturation effect and for
the remaining volumes, first the movement is corrected and then,
the slice-time is also corrected for temporal alignment. All voxels
were spatially smoothed with a 6mm FWHM isotropic Gaussian
kernel and after intensity normalization, a band pass filter was
applied between 0.01 and 0.08 Hz (Cordes et al., 2001). Finally,
linear and quadratic trends were removed. We next regressed
out the motion time courses, the average CSF signal, the average
white matter signal and the average global signal. Finally, fMRI
data was transformed to the MNI152 template, such that a given
voxel had a volume of 3mm∗3 mm∗3mm.

It is important to emphasize that to remove or not the
average global signal in FC studies is currently a controversial
issue (Saad et al., 2012); see also http://rfmri.org/GSRDiscussion.
Here, following most of the studies addressing brain FC, we
have applied the global signal removal; but the situation of
not applying the global signal removal has been also explored
(Figure S2).

2.2.3. HRF Blind Deconvolution
In order to eliminate the confounding effect of HRF on temporal
precedence, we individuated point processes corresponding to
signal fluctuations with a given signature and extracted a voxel-
specific HRF to be used for deconvolution, after following an
alignment procedure. The parameters for blind deconvolution
were chosen with a physiological meaning according to Wu et al.
(2013): for a TR equal to 2.2 s, the threshold was fixed to 1 SD
(standard deviation) and the maximum time lag was fixed to 5
TR (for further details on the complete HRF blind deconvolution
method and the different parameters to be used (see Wu et al.,
2013). The resulting time-series, after HRF blind deconvolution,
are the ones used for the calculation of EC and FC.

2.3. ROIs Extraction
Regions of interest (ROIs) were defined by using the masks of
the resting state networks (RSNs) reported in Beckmann et al.
(2005), which can be downloaded from http://www.fmrib.ox.ac.
uk/analysis/royalsoc8/. Note that, we are not dealing with the
independent components per se, but with the voxels time-series
localized within themasks. Similar approaches based on the RSNs
masks to define ROIs have been widely used before (Tagliazucchi
et al., 2012; Haimovici et al., 2013; Carhart-Harris et al., 2014;
Tagliazucchi et al., 2014; Diez et al., 2015b).

Specifically, the following three RSNs were selected: the
default mode network (DMN), the executive control (ExC)
network and the sensory motor (SM) network. Next, these
three networks were manually subdivided in distinct spatially
contiguous regions (see Figure 1). For each region, a region
growing segmentation method was applied by manually selecting
a seed region, thus obtaining a total of 15 different ROIs: 1 SM
region, 6 DMNs and 8 ExCs regions. In particular, the “island
effect” method incorporated in 3D Slicer (http://www.slicer.org)
was applied, which selects all the voxels of the contiguous region
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FIGURE 1 | Sketch for regions of interest (ROIs). Fifteen different ROIs were extracted from three different resting state networks: 1 ROI in the sensory motor

(SM), 6 ROIs in the default mode network (DMN), and 8 ROIs in the executive control (ExC).

given an initial seed. Visual representations of all ROIs are given
in Figure 1 and their sizes in Table 1.

2.4. Calculation of Structural, Functional and
Effective Connectivity Matrices
2.4.1. Structural Connectivity (SC)
Matrices were obtained per each subject by counting the number
of fibers connecting two ROIs (that is, starting in one ROI and
finalizing in another) for each individual pair; thus, for a number
of 15 ROIs, it gave 105 different values.

2.4.2. Functional Connectivity (FC)
Matrices were calculated by applying to the rs-fMRI time series
two methods: the linear correlation coefficient (C) and the partial
correlation analysis (PC). Here, C was calculated by using the corr

function from Matlab (MathWorks Inc., Natick, MA). Assuming
C to be a non-singular matrix, the elements of the PC matrix
satisfy that PCij ∝ (C−1)ij, so they are proportional to the
elements of the so-called precision matrix (Maki-Marttunen
et al., 2013). Here, PC was computed using the partialcorr
function from Matlab (MathWorks Inc., Natick, MA). Thus, PC
is an extension of C to calculate direct interactions between
pairs, as it achieves to remove for a given pair the correlation
contribution from other pairs.

2.4.3. Effective Connectivity (EC) by the Exploratory

Structural Equation Modeling (eSEM)
This refers to a statistical technique aiming to estimate
Granger-causal relationships based on quantitative
and qualitative causal information, by means of linear
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TABLE 1 | ROI size (mm3).

Network ROIs Size (mm3)

Sensory motor (SM) network SM 194.960

Default mode network (DMN) DMN1 97.091

DMN2 44.115

DMN3 28.374

DMN4 22.330

DMN5 8.343

DMN6 10.826

Executive control (ExC) ExC1 79.956

ExC2 43.313

ExC3 52.225

ExC4 48.483

ExC5 15.769

ExC6 15.745

ExC7 11.723

ExC8 32.752

regression-based models. Unlike regression, SEM is formulated
as a confirmatory model rather than a predictive model. Being
interested in the description of the directed dependencies
between the 15 ROIs, avoiding any prior hypothesis on the
connectivity pattern, we here applied multiple regressions
among all the variables. Therefore, our analysis by SEM has
neither structural model nor a measurement model, and provides
a fully connected estimate of the directed dependencies among
all the pairs of ROIs. This exploratory analysis is referred as
eSEM. This model does not use temporal correlations in the data
and it is applied to non-lagged time series.

To estimate the model parameters of eSEM, a standard
maximum likelihood estimation was used using the lavaan
package in R (Rosseel, 2012; R Core Team, 2014). Notice that,
this is justified since for saturated linear models, the maximum
likelihood estimates are identical to least squares estimates.

In a second part of this study, eSEM was also applied to
lagged time series to estimate a saturated, fully-connected, but
recursive model. Notice that lagged eSEM is recursive but the
non-lagged eSEM is not. The observed variables are the time
series for the 15 ROIs augmented with lagged versions of the
same time series. For eSEM1, only the time series accounting for
lag=1 were added, resulting in 30 variables in total; for eSEM2,
both lag=1 and lag=2 time series were added, resulting in 45
observed variables in total; finally, for eSEM3, lag=1, lag=2,
and lag=3 time series were added, resulting in 60 observed
variables in total. Three types of parameters were included in
the model: (1) all autoregressive regressions within each ROI to
take into account the time-dependencies; (2) all possible cross-
lagged regressions between the ROIs; (3) (residual) covariances
for all other pairwise relations that were not included in the set
of regressions (for example, all contemporaneous connections).
Importantly, contemporaneous regressions between ROIs at the
same time point were not included. Moreover, to estimate
the model parameters of eSEM1, eSEM2 and eSEM3, standard

maximum likelihood estimation was used using the lavaan
package (Rosseel, 2012).

After estimation of all model parameters, an influence matrix
was computed as follows: For each pair, the evidence for this
particular (directed) connection was collected. For eSEM1, this
was simply the regression coefficient corresponding to the cross-
lagged effect of one ROI on another (controlling for both auto-
regressive effects and cross-lagged effects of other ROIs). That is,
the effect of a ROI on the previous time point on a target ROI at
the current time point. For eSEM2, this was a function (here, the
product) of two regression coefficients: one for the effect of a ROI
on the previous time point on the target ROI at the current time
point (just like eSEM1), and one for the effect of a ROI measured
two time points toward the target ROI at the current time point.
This was done for all possible pairs, averaging all ROIs of the
influence matrix except for the diagonal, which was kept at zero.

Notice that the cross-lagged evidence is only used to
determine the directed influence of one ROI on another, while
controlling for both auto-regressive effects and the cross-lagged
effects of other ROIs. In fact, the regression coefficients computed
by eSEM1, eSEM2 and eSEM3 are identical to those that would
be computed when Granger causality (GC1, GC2, GC3, of order
1, 2, and 3 respectively) is employed (Granger, 1969); see also
Appendix for further details. But instead of computing an F-
statistics for each pairwise connection as GC does, here, we
use the product regression coefficient(s) to average the influence
matrix.

2.5. Statistical Analysis
The values of the average matrices across subjects eSEM, C
and PC were compared into two groups: values associated
to structurally connected pairs (CP), meaning that two ROIs
are connected with a non-zero fiber number, and those ones
associated to non-connected pairs (NCP), i.e., zero fibers existed
between the two ROIs. A One-Way ANOVA test was performed
using the MATLAB function anova1 (MathWorks Inc., Natick,
MA) between CP and NCP (statistical significance is considered
to have a p < 0.01). Thus, small p-values show that the
connectivity matrices calculated on the two groups CP and NCP
have a different mean, i.e., they are different from each another
which indicates that a given method can separate connected pairs
from non-connected ones. The same analysis was also applied to
eSEM1, eSEM2, eSEM3, GC1, GC2, GC3.

3. Results

Firstly, the three different resting networks SM, DMN, and ExC
were selected. Next, the three networks were divided in a total
number of 15 different ROIs (see Section 2 and Figure 1 for
details).

Next, the average across subjects SC matrix (Figure 2A1) was
computed by averaging the fiber number between pairs of ROIs.
Notice that SC is a matrix with many near-zero values. So, it is
represented in logarithmic scale just to improve visualization, but
all the analyses were performed using the original SC matrix.

Next, three connectivity matrices were calculated for each
subject from the rs-fMRI time series: eSEM, C and PC (details
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FIGURE 2 | Structural, effective and functional connectivity

matrices (SC, EC and FC, respectively). (A1) SC matrix calculated

by the fiber number. Because many of the values in this matrix are very

small, we plotted it in logarithmic scale only to enhance visibility.

(A2–A4) EC (eSEM) and FC matrices (C and PC), all of them

normalized in the [0,1] range for comparison purposes. (B)

Correlation-based similarity between SC and eSEM, C and PC,

calculated either over all pairs or only on connected pairs. (C) Mean

values of connectivity matrices separated in two groups: pairs such that

they have non-zero fibers between them (structurally connected pairs,

CP) and non-connected pairs (NCP). *p < 0.01, otherwise means no

statistical significance.

in Section 2). Next, an average matrix across subjects was
calculated for all matrices. The values of eSEM, C and PC
after normalization in the range [0,1] are represented in
Figures 2A2–A4. Notice that, unlike C and PC, eSEM provides
a non-symmetrical connectivity matrix.

To address the similarity between these matrices, and
following previous work (Hagmann et al., 2008; Honey et al.,

2009), the Pearson’s correlation between the SC entries (vector-
wise using all matrix elements) and the corresponding ones
for eSEM, C and PC was computed. The three connectivity
matrices increased their similarity (based on correlation) with
SC on connected pairs, pairs connected with non-zero fibers
between ROIs, compared to the situation when all pairs were
used for the correlation calculation, i.e., values in Figure 2B2
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are bigger than in Figure 2B1. The same results also hold
when Spearman’s correlations were calculated (Figure S1). It is
important to emphasize that these results did not depend on the
effect of removing or not the global signal to the time series data.
Indeed, similar results than in Figures 2B1,B2 were obtained
without global signal removal (Figure S2). Thus, after this simple
analysis, we show that the three measures (eSEM, C and PC) are
dependent on SC.

We next investigated whether average values of eSEM, C
and PC had significant differences between CP and NCP (non-
connected pairs). The three connectivity matrices showed bigger
(significant) values on CP compared to NCP (Figure 2C),
thus indicating that the three methods eSEM, C and PC
separated the groups of structurally connected links from those
which were not connected. Moreover, PC performed better
than eSEM, whilst eSEM and C performed approximately
equal.

Next, we addressed the effect that lagged interactions had on
eSEM. Thus, when calculating eSEM on lagged-time series, eSEM
could not distinguish (i.e., the p-value between the two groups
was high) between CP andNCP (see Figure 5). And this occurred
independently on using eSEM or a different model accounting
for lagged interactions, here, the method of multivariate GC
was used (Figure 5). These results indicated that instantaneous
measures of interactions (i.e., approaches dealing only with
equal-time correlations) are better shaped by SC in comparison
to algorithms using temporal information (and this was observed
both using eSEM and GC).

For a further analysis we looked at the values of SC, eSEM, C
and PC on three specific links: the ones with a highest value in
each SC, FC, and EC:

• The structural link, the pair of ROIs sharing the highest value
of SC, which was ExC1-DMN2 (x-label colored in magenta in
Figure 3).

• The functional link, the pair of ROIs with highest value of C,
which was coincident with the pair with maximum PC, that
was ExC2-DMN5 (x-label colored in green).

• The effective link, the pair of ROIs with highest value of SEM:
ExC6-DMN6 (x-label colored in black).

From the structural link, and although the average value of eSEM
performed similarly to C (Figure 2B), eSEM gave a significantly
smaller value than C and PC, reflecting high relation between
ExC1 and DMN2 due to SC. By looking at the functional link,
eSEM also provided a high value, indicating that the two areas
with neuronal activity most statistical similar each other, ExC2
and DMN5, also had a high directed influence between them.
Finally, results on the effective link showed that the link with
the highest dynamical influence, from DMN6 to ExC6, also had a
high value of C and PC.

Beyond results at the level of individual links, scatter plots
between the different connectivity matrices (SC, eSEM, C and
PC) for all the pairs are shown in Figure 4. The matrices
resulting from eSEM, C and PC were significantly correlated with
the structural one, SC (rounded green rectangles in Figure 4).
Correlation coefficients were 0.44, 0.43, and 0.50 for respectively
eSEM, C and PC.

FIGURE 3 | Connectivity values on specific links. All matrices eSEM, C,

PC, and SC were normalized in the range [0,1] for visualization purposes. The

maximum values used for normalization in each case are shown, as well as the

mean (µ) and the standard deviation (σ ) values for all matrices.

We also found that eSEM matrix was highly correlated with
C and PC matrices for both CP and NCP (rounded red circles);
indeed, for CP the correlation was equal to 0.86 (for C) and 0.93
(for PC). Thus, on CP pairs, PC and eSEM were approximately
equivalent to each other. When looking to NCP, this correlation
between eSEM and PC went down to 0.88, still a very high value.

Finally, correlation between C and PC matrices were high for
both CP (corr= 0.86) and NCP (corr= 0.63). This is represented
by the rounded blue rectangles in Figure 4.

4. Discussion

Multiple evidence have shown brain topology (i.e., structure)
supporting dynamics (i.e., function) and brain dynamics
reinforcing structure via synaptic plasticity (or punishing it via
synaptic prunning), but the precise relationship between the two
(structure and function) is still challenging (Park and Friston,
2013; Damoiseaux and Greicius, 2015).

A powerful method to approach this problem at the large-
scale brain organization is to calculate structural and functional
networks and address their mutual relationships (Park and
Friston, 2013). Following this strategy, here, we calculated SC,
FC, and EC for a very specific brain parcellation, with ROIs
covering the entirety of three well-know resting networks, the
executive control, the default mode and the sensory motor
network. After this brain division, we obtained 15 different
ROIs and by performing to the same subject two classes of
MRI acquisitions (one structural, one functional) we made a
careful comparison between SC (i.e., fiber number connectivity
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A

B C

FIGURE 4 | Scatter plots between different connectivity matrices

and separating in two groups: structurally connected pairs (CP)

and non-connected pairs (NCP). Different panels are showing

scatter plots of (A) (green rectangles) SC with eSEM, C and PC,

(B) (red rectangles) eSEM with C and PC, (C) (blue rectangles) C

with PC.

between ROIs), FC (pairwise C and PC connectivities) and EC
(by generalizing SEM to its exploratory version eSEM).

We have made use of eSEM for the inference of functional
integration; eSEM, although rooted in the SEM framework, is
exploratory and can assess influences between brain regions
without assuming any implicit model. We have studied how
much similar eSEM was to SC, an compared these results with
equal-time correlational analysis by calculating both C and PC,
which are the leading methods to estimate FC.

In the first part of this study, our results showed that eSEM, in
addition to C and PC, were able to significantly separate the set
of non-connected pairs in the structural network from the set of
connected pairs. Although the PC analysis is slightly the best one
in correlating with the strength of structural links, interestingly,
for the specific situation of restricting to connected pairs, the
eSEM estimation was almost identical to PC (correlation value of
0.93). The fact that eSEM provided a similar correlation with SC
to the one achieved by C and PC makes the use of eSEM equally
valid as C and PC for FC brain studies.

On the other hand it must be stressed that eSEM also
provided information about the case of fiber pairs where
information preferably flowed in one direction. These results
showed the usefulness of fully connected eSEM inference of
directed dependencies between structurally connected ROIs in
the human brain.

It is important to emphasize that there are other studies
also relating SEM with C and/or PC. Thus, it was shown that
PC performed better than SEM in identifying local patterns of
interaction detected by SC (Marrelec and Benali, 2009) and that
C and PC were suitable candidates to simultaneously analyse
SC and FC in the entire brain (Horn et al., 2013); furthermore,
this evidence was even stronger when focused on the Default
Mode Network, an important RSN with important implications
in memory performance. In another study, when SEM was used
in combination with DTI data (Voineskos et al., 2012), the
authors approached aging and cognitive performance using SC
to analyse tract degeneration and SEM to address white matter
tract integrity.

In the second part of our study, we have applied eSEM
and multivariate Granger Causality to show that, when
lagged time series are considered to estimate EC, the results
are much less correlated with SC (Figure 5). This suggests
that fast interactions (captured by instantaneous measures of
connectivity) are shaped by the structural strength, whilst
slower directed functional interactions (those captured by
methods relying on temporal correlations) are less shaped
by the structural strength. In other words, at slow time
scales, the statistical dependencies among ROIs appear to
be less related to the details of the underlying structural
connectivity.
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A

B

FIGURE 5 | Mean values of structurally connected pairs (CP)

and not connected pairs (NCP) across several lags in (A)

Granger Causality and (B) eSEM. eSEM1, eSEM2, and eSEM3

(the same as GC1, GC2, and GC3) refers to lag= {1,2,3} for

both eSEM and GC. Notice that, in all the cases, the differences

found between the two groups were not significant according to

the p-value. So, neither eSEM nor GC distinguished between CP

and NCP.

The fact that the lagged methods found influences between
brain regions acting at a time scale equal to the sampling
time suggests that the lagged algorithms may be seen as
complementary to the standard correlational analysis. The eSEM
method, here described, is suitable tool to detect those directed
functional interactions which cannot be described merely to the
presence of a strong structural connection between brain areas.

To summarize, based on the evidence that RSNs are
functionally integrated by structural connections (van den
Heuvel and Sporns, 2013) here, by building a very simple
large-scale brain system consisting of three of those RSNs, and
without assuming any implicit connectivity between them, we
have shown that eSEM can perform equally well than C and PC
in correlating with SC, thus encouraging the use of eSEM for
FC studies at rest. Whether this statement still holds during task
paradigms needs to be investigated.
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Appendix

Effective Connectivity (EC) by Multivariate
Granger Causality (GC)
Let us first describe bivariate Granger causality (Granger, 1969).
Suppose we model the temporal dynamics of a stationary time
series {ξn}n= 1,.,N+m by an autoregressive model of orderm:

ξn =

m∑

j= 1

Aj ξn−j + En,

and by a bivariate autoregressive model which takes into account
also a simultaneously recorded time series {ηn}n=1,.,N+m:

ξn =

m∑

j= 1

A′
j ξn−j +

m∑

j= 1

Bj ηn−j + E′n.

The coefficients of the models are calculated by standard least
squares regression; m is usually selected according to the Akaike
criterion applied to the VAR modeling of the multivariate time
series, providing an optimal order of the model (Akaike, 1974).

It can be said that η Granger-causes ξ if the variance of
residuals E′ is significantly smaller than the variance of residuals
E, as it happens when coefficients Bj are jointly significantly
different from zero. This can be tested by performing an either
F-test or Levene’s test for equality of variances (Geweke, 1982).

An index measuring the strength of the causal interaction is

δ = 1 −
〈E′2〉
〈E2〉

, where 〈·〉 means averaging over n (note that

〈E〉 = 〈E′〉 = 0). Exchanging the roles of the two time series,
one may equally test causality in the opposite direction, i.e., to
check whether ξ Granger-causes η.

In the conditioned case, let {ψa
n }n= 1,.,N+m, a = 1, . . . ,M,

be M other simultaneously recorded time series. When several
variables are present in the system, the Granger influence η →

ξ must take into account their possible conditioning effect. In
this case, it is recommended to treat the data-set as a whole,
including the ψ times series in both the autoregressive models
for ξ described above. To assess causality in GC, another VAR is
learned from data excluding one variable (the candidate driver)
from the input set of variables. Then, an F-test is applied to assess
significance of the variance reduction due to the inclusion of
the candidate driver variable. The conditioned Granger causality
η → ξ measures the reduction in the variance of residuals
going from one to other of the following two conditions: (i) all
variables ψ are included in the model and (ii) all variables ψ
and the variable η are included. Conditioning on the remaining
variables allows to discard indirect interactions that would be
recognized as direct by the pairwise approach. We refer the
reader to Stramaglia et al. (2014) for a discussion on advantages
and pitfalls of pairwise and conditioned Granger causality. In
this paper we will refer to GC1, GC2, GC3 when discussing the
application of GC withm= 1, 2, 3 respectively.
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