
Under consideration for publication in Theory and Practice of Logic Programming 1

Tabling as a Library with Delimited Control

BENOIT DESOUTER and MARKO VAN DOOREN

Ghent University, Belgium

(e-mail: benoit.desouter,marko.vandooren@ugent.be)

TOM SCHRIJVERS

KU Leuven, Belgium
(e-mail: tom.schrijvers@cs.kuleuven.be)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Tabling is probably the most widely studied extension of Prolog. But despite its im-
portance and practicality, tabling is not implemented by most Prolog systems. Existing
approaches require substantial changes to the Prolog engine, which is an investment out
of reach of most systems. To enable more widespread adoption, we present a new imple-
mentation of tabling in under 600 lines of Prolog code. Our lightweight approach relies on
delimited control and provides reasonable performance.
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1 Introduction

Tabling is one of the most widely studied extensions to Prolog because it consider-

ably raises the declarative nature of the language. Tabling takes away the sensitivity

of SLD resolution to rule and goal ordering, and allows a larger class of programs

to terminate. As an added bonus, the memoisation that is done by the tabling

mechanism may drastically improve performance in exchange for more memory.

Given all these advantages, it may come as a surprise that many Prolog systems

still do not support tabling. The reason for this is that existing implementations,

such as those of Yap and XSB, require pervasive changes to the Prolog engine. This

is a substantial engineering effort that is beyond most systems (Santos Costa et al.

2012).

Several works have already attempted to tackle this problem. Through the foreign

function interface, Ramesh and Chen (1994) extend Prolog with tabling primitives

implemented in C. A complicated program transformation introduces calls to these

C routines at the appropriate points in tabled predicates. More recently, Guzmán

et. al. (2008) have addressed the performance bottlenecks of Ramesh and Chen’s

approach. But while their improvement is successful in terms of performance, it does

require lower-level C primitives, changes to the WAM’s memory management, and

an even more complicated program transformation. These changes further increase
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the cost of porting and maintaining the mechanism, and the development effort

cannot be amortised over other features. Hence, the approach does not lower the

threshold for adopting tabling.

Extension tables (Fan and Dietrich 1992) provide a tabling mechanism that is

implemented directly in Prolog. However, the approach cannot achieve satisfactory

performance as suspended goals are always re-evaluated. The initial implementa-

tion used the assert and retract predicates for database manipulations. These

predicates are notorious for their slow performance. A later version moved the data

structures to C, but did not change the inherent recomputation behaviour.

Santos Costa et al. (2012) point out that “Making it easy to change and control

Prolog execution in a flexible way is a fundamental challenge for Prolog.”. We argue

that delimited control, a language construct for manipulating a program’s control

flow, does exactly that. Schrijvers et. al. (2013) show that the impact of delimited

control on the WAM is minimal. On top of that, the development effort of delimited

control can be amortized over the range of high-level language features they enable,

such as effect handlers (Plotkin and Pretnar 2013).

We show how delimited control can be used for a lightweight tabling mechanism.

Both the tabling control flow and data structures are written entirely in Prolog

enhanced with delimited control. It does not require deep custom changes to the

Prolog engine, complicated program transformations, or meta-interpretation. As

such our mechanism demystifies many aspects of implementing tabling.

Compared to existing state-of-the-art systems, our system needs more attention

in terms of performance, but this does not outweigh the gain in flexibility: we bring

tabling much closer to the masses. In contrast with extension tables, our approach

does not require recomputation of suspended goals. Our tabling implementation is

available at http://users.ugent.be/~bdsouter/tabling/.

2 Background: Delimited Continuations

Delimited control (Felleisen 1988; Danvy and Filinski 1990) is the key ingredient

of our lightweight tabling approach. This technique originates in functional pro-

gramming and was recently introduced in Prolog by Schrijvers et al. (2013; 2013)

in the form of two built-ins: reset/3 and shift/1 for delimiting and capturing the

continuation respectively.

• reset(Goal,Cont,Term1) executes Goal. If Goal calls shift(Term2), its fur-

ther execution is suspended and unified with continuation Cont. A continua-

tion is an unspecified Prolog term, which can be resumed using call/1. It can

be called, saved, copied and compared like any other term, but it is opaque:

from its representation we cannot determine anything about the actual goals

it represents.

• shift(Term2) unifies the remainder of Goal up to the nearest call to reset/3

(i.e., the delimited continuation) with Cont, and its return value Term2 with

Term1. Finally, it returns control to just after the reset/3 goal.

We start with an example that does not call the continuation.
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p :-
reset(q,Cont,Term1),
writeln(Term1),
writeln(Cont),
writeln(end).

q :-
writeln(’before shift’),
shift(’return value’),
writeln(’after shift’).

?- p.
before shift
return value
[$cont$(785488,[])]
end

This example shows that shift/1 instantiates the last two arguments of reset/3.

Cont represents the writeln(’after shift’) goal in the context of the activation

of the clause for q/0. But since the continuation is not called, this goal has no effect.

Term1 is unified with the term ’return value’. The execution continues after the

reset/3.

The following example shows what happens if the continuation is called:

p :-
reset(q,Cont,Term1),
writeln(Term1),
call(Cont),
writeln(end).

q :-
writeln(’before shift’),
shift(’return value’),
writeln(’after shift’).

?- p.
before shift
return value
after shift
end

3 Shallow Program Transformation

In our approach, tabled predicates require no special notation, nor any syntactic

analysis of the predicates being tabled. Predicates are written in the usual way, and

transformed by a shallow program transformation.

:- table p/2.

p(X,Y) :- p(X,Z), e(Z,Y).
p(X,Y) :- e(X,Y).

Fig. 1. Running example:
transitive closure.

p(X,Y) :- table(p(X,Y),p_aux(X,Y)).

p_aux(X,Y) :- p(X,Z), e(Z,Y).
p_aux(X,Y) :- e(X,Y).

Fig. 2. Result of the transformation.

The use of tabling is illustrated in Figure 1. Predicate p/2 computes the transitive

closure of the e/2 relation. The table-directive indicates that p/2 will be tabled.

Predicates without that directive are resolved using standard SLD-resolution.

The table/1 directive performs a very shallow program transformation, the re-

sult of which is shown in Figure 2. This transformation introduces p aux/2, which

we call the worker predicate, and p/2, the wrapper predicate. The wrapper predi-

cate is defined in terms of the tabling predicate table/2, which care of tabling that

call fully dynamically. The next section explains how table/2 can be implemented

directly in Prolog.

4 Implementation of the Tabling Library

This section explains how we implement tabling as a library.
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table(Wrapper,Worker) :-
get_table_for_variant(Wrapper,Table),
table_get_status(Table,Status)
( Status = complete ->

get_answer_from_table(Table,Wrapper)
;

( exists_scheduling_component ->
run_leader(Wrapper,Worker,Table),
get_answer_from_table(Table,Wrapper)

;
run_follower(Status,Wrapper,Worker,Table)

)
).

Fig. 3. The table/2 predicate.

4.1 The table/2 Predicate

Thanks to the shallow program transformation, the table/2 predicate intercepts

every call to a tabled predicate. Figure 3 shows that table/2 retrieves the Table

data structure for the given Wrapper call pattern. There is one table for every

distinct call pattern encountered so far; if the current call pattern has not been

encountered before, get table for variant/2 allocates a fresh data structure for

it.

Then table/2 switches on the Table’s status. If the status is complete, it means

that all answers for the Wrapper call pattern are already available in the table. The

call is then answered by consuming the answers with the get answer from table/2

predicate.

Otherwise, we either start collecting answers (run leader/3), or we are already

in the process of collecting answers and simply proceed (run follower/4). The call

that initiates answer collection is called the leader. A leader is a call to a tabled

predicate that has only non-tabled ancestors in the dynamic call graph. Other calls

to tabled predicates during answer collection are called followers. Every follower

has a leader as its ancestor. The leader and its followers make up a scheduling

component. Multiple scheduling components can occur during program execution.

Example 1

Consider the top-level call ?- p(X,Y). for our running example. Then p(X,Y)

clearly is the leader of a new scheduling component. The recursive call p(X,Z) in

the first clause constitutes a follower in its scheduling component.

The Leader The leader, defined in Figure 4, takes responsibility for computing

all the answers of its scheduling component. To quickly identify whether there

currently is a leader, we use a global non-backtrackable variable. The predicates

exists scheduling component/0 and create scheduling component/0 check and

set this variable. The predicate unset scheduling component/0 unsets it.

The job of the leader consists of two tasks: 1) it starts computing the answers of

the scheduling component with activate/3, and 2) it computes the least fixpoint

for the whole scheduling component with completion/0.
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run_leader(Wrapper,Worker,Table) :-
create_scheduling_component,
activate(Wrapper,Worker,Table),
completion,
unset_scheduling_component.

Fig. 4. Handling the leader call.

run_follower(fresh,Wrapper,Worker,Table) :-
activate(Wrapper,Worker,Table),
shift(call_info(Wrapper,Table)).

run_follower(active,Wrapper,Worker,Table) :-
shift(call_info(Wrapper,Table)).

Fig. 5. Handling a follower call.

Followers Followers, defined in Figure 5, have fewer responsibilities than the leader.

If the table of the follower is fresh, i.e. it is the first time the call pattern occurs,

then the follower activates the answer computation. Subsequently, it yields control

with shift/1; this is explained in more detail in the next subsection. If the table

is already actively collecting answers, the follower immediately yields control.

4.2 Activation and Delimited Answer Computation

When a call pattern is encountered for the first time, the computation of its answers

is activated with the predicate activate/3. This predicate, defined in Figure 6,

alters the table status from freshly allocated to active and puts the Worker to

work with the auxiliary delim/3 predicate. Note that a failure driven loop is used

to backtrack over all the alternatives of Worker.

activate(Wrapper,Worker,Table) :-
table_set_status(Table,active),
(

delim(Wrapper,Worker,Table),
fail

;
true

).

Fig. 6. Activation.

The body of a tabled predicate p/n is actually executed by predicate delim/3,

defined in Figure 7. This predicate runs p/n’s Worker in the context of a reset/3. If

the Worker succeeds normally, the answer is added to the table with store answer/2.

However, if the Worker calls a tabled predicate q/m — with either the same or

delim(Wrapper,Worker,Table) :-
reset(Worker,Continuation,SourceCall),
( Continuation == 0 ->

store_answer(Table,Wrapper)
;

SourceCall = call_info(_,SourceTable),
TargetCall = call_info(Wrapper,Table),
Dependency = dependency(SourceCall,Continuation,TargetCall),
store_dependency(SourceTable,Dependency)

).

Fig. 7. Delimited execution.
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a different call pattern as p/n — then Worker does not terminate normally. The

reason is that the q/m call is a follower, and run follower/4 always ends in a

shift/1 without producing an answer. Instead the Worker suspends, capturing the

remainder in Continuation.

Example 2

Consider the following clause from our running example:

p_aux(X,Y) :- p(X,Z), e(Z,Y).

The worker p aux(X,Y) for the call p(X,Y) immediately suspends at the recursive

call p(X,Z) with Continuation = e(Z,Y).

Through this suspension, we bypass the regular depth-first execution mechanism

of Prolog and avoid its potential non-termination. We replace the depth-first search

by the least fixpoint computation of the completion phase. For this purpose, we

record the suspended computation in the form of a dependency/3 structure. This

structure expresses that given an answer for the q/m call, one may obtain answers

for the p/n call by resuming the suspended continuation. We name q/m the source

call and p/n the target call. For the source call, it is sufficient to hold on to the

SourceTable to be able to retrieve an answer later. For the target call, we need

the Wrapper in addition to the table, as the Wrapper contains the partial answer

that the continuation will instantiate. This explains the form of the dependency/3

structure, which is stored in the table of the source call to be triggered whenever a

new answer is added.

Example 3

The dependency for our example above expresses that, given an answer for p(X,Z),

we may obtain answers for p(X,Y) by executing e(Z,Y). For instance, if we get the

answer X = a, Z = b for p(X,Z), and we have the fact e(b,c) then we obtain the

answer X = a, Y = c for p(X,Y).

Example 4

Assume that e/2 is defined by the facts e(a,b) and e(b,c). Then the query

?- p(X,Y) yields not only the dependency on p(X,Z) through the first clause of

p aux/2 but also the answers p(a,b) and p(b,c) through the second clause of

p aux/2. Since p(X,Z) is a variant of p(X,Y), the dependency and the two answers

are all associated with the same table.

4.3 Completion

The completion phase, defined in Figure 8, computes the fixpoint over all answers

and dependencies of the scheduling component. Just like Datalog’s semi-naive ap-

proach (Ceri et al. 1989), our implementation tries to avoid unnecessary recompu-

tation. More code details are available in Appendix C.

We maintain a worklist of all tables for which at least one associated answer

has not been fed into at least one associated dependency. This worklist is updated

whenever a new answer or new dependency is associated with a table.
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Predicate completion/0 is the driving loop of the completion phase. It re-

peatedly pops a table from the worklist and calls completion step/1 to process

answer/dependency pairs that have not yet been combined. When the worklist

is empty, the completion fixpoint has been reached. Then set all complete/0

sets the status of every table in the scheduling component to complete. Finally

cleanup tables/0 erases all the dependencies, as they are no longer necessary.

Predicate completion step/1 retrieves an unprocessed pair Answer/Dependency

from the table by calling table get work/3. It instantiates the source of the depen-

dency with the answer and resumes the dependency’s continuation with delim/3,

binding the variables in the partial answer Wrapper along the way. This process

may lead to new answers or new dependencies that spur the fixpoint computation

on. Here, a failure-driven loop is used to iterate over all answer/dependency pairs.

Example 5

Let us consider the completion that follows Example 4. There is one entry in the

worklist: the table for call variant p(X,Y). This table has two unprocessed pairs:1

p(a,b) / dependency(p(X,Z),e(Z,Y),p(X,Y))

p(b,c) / dependency(p(X,Z),e(Z,Y),p(X,Y))

The first pair yields the new answer p(a,c) with the help of the fact e(b,c). The

second pair yields nothing. The production of a new answer reschedules the table

for p(X,Y) in the worklist. Yet the second completion round yields no new answers

or dependencies and the fixpoint computation terminates with answer set {p(a,b),

p(b,c), p(a,c)} for call p(X,Y).

4.4 The Table Data Structures

The central data structure used by the tabling control flow explained above is the

table. We maintain one such table per call variant, which can be retrieved from a

global repository of all tables. This global repository is implemented in the form of

a trie data structure, also known as the call trie, that maps call patterns to tables.

There is a second global data structure, the global worklist, which maintains a

simple queue of tables for the algorithm explained in the previous subsection.

1 We have abbreviated the call information for the sake of clarity.

completion :- completion_step(SourceTable) :-
( worklist_empty -> (

set_all_complete, table_get_work(SourceTable,Answer,
cleanup_tables dependency(Source,Continuation,Target)),

; Source = call_info(Answer,_),
pop_worklist(Table), Target = call_info(Wrapper,TargetTable),
completion_step(Table), delim(Wrapper,Continuation,TargetTable),
completion fail

). ;
true

).

Fig. 8. The completion fixpoint.
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a1 d1 d1 a1 a1
. . . . . . . . . . . . . . .
am dn do ap aq

d1 a1 d1 a1 a1
. . . . . . . . . . . . . . .
dn am do ap aq

Answers & Dependencies

Fig. 9. Combining answers and dependencies in a local worklist.

The table itself consists of two parts: the answer trie and the local worklist:

• The answer trie is where get answer from table/2 finds its answers. More-

over, the trie allows store answer/2 to quickly check whether a newly pro-

duced answer has already been computed before, and to only store it in case

it has not.

• The local worklist serves the table get work/3 predicate. It retrieves pairs

of answers and dependencies that have not been combined before. For this

purpose we use a dequeue (i.e., a double-ended queue) that contains answers

and dependencies.

The dequeue maintains the invariant that an answer is to the left of a depen-

dency if and only if they have not been combined. New answers are added

on the left, because they have not been combined with any dependency yet.

New dependencies are added on the right.

For performance reasons, the dequeue batches consecutive answers into a sin-

gle entry on insertion; the same happens to consecutive dependencies. Every

batch contains homogeneous elements (either answers or dependencies) and is

implemented as a list — the position of the elements in the list is insignificant.

Batches of the same type are not merged if they become adjacent during the

combination of answers and dependencies. Doing so would reduce the number

of swaps, but at the cost of merging the lists.

The table get work/3 predicate retrieves a batch of answers immediately

to the left of a batch of dependencies, swaps their positions and yields the

elements of their Cartesian products for processing. Dependencies and answers

that are created by the combination are also sent to the appropriate tables. A

single step of this process is illustrated in Figure 9. The solid arrow denotes

the transformation of the local worklist. The wavy line denotes the emission

of new answers and dependencies that are generated by the completion step.

The answers in the gray ellipse have been added to the local worklist, and

will eventually move to the right of all dependencies.

Implementation Support The key Prolog implementation support for these tables

are mutable terms and non-backtrackable mutations (Appendix B). We also use a

global variable for the table repository. These features are widely available. The non-

backtrackable nature is essential to retain the collected answers and dependencies

across disjunctions.
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r(a,Y)

r(a,b) D1

D1 r(a,b)

r(a,c) D1 r(a,b)

D1 r(a,c) r(a,b)

r(b,Y)

r(b,c) D2 D3

D2 r(b,c) D3

D2 D3 r(b,c)

r(c,Y)

D4 D5

D4 D5 D6

11

3

2.a

2.b

α
β

γ

δ

Fig. 10. Illustration of the computation of r(a,Y).

4.5 Completion of a Double Recursive Call

Example 6

Consider a variant of our running example where the recursive clause is replaced

by:

r(X,Y) :- r(X,Z), r(Z,Y).

Figure 10 illustrates the computation of ?- r(a,Y). Each table is a rectangle.

The consecutive states of its worklist are shown from top to bottom. A dotted

arrow shows the target of a dependency. The solid and wavy lines are as in Fig-

ure 9. In the explanation, the labels of the completion steps in the figure are writ-

ten between parentheses. The call ?- r(a,Y). gives rise to the dependency D1 =

dependency(r(a,Z),r(Z,Y),r(a,Y)) and the answer r(a,b) (left rectangle).

Iteration 1 In the first iteration of completion (1), the answer is fed into the de-

pendency (wavy arrow α), hence D1 and r(a,b) are swapped. This exposes the

call r(b,Y) (middle rectangle). For this new call we immediately obtain the depen-

dency D2 = dependency(r(b,Z1),r(Z1,Y),r(b,Y)) and the answer r(b,c). We

also record dependency D3 = dependency(r(b,Y),true,r(a,Y)) between r(b,Y)

and r(a,Y). The true in D3 represents the empty continuation: finding an answer

for r(b,Y) gives an answer for r(a,Y) for free!

Iteration 2 During the second iteration, we feed the answer r(b,c) into the two

dependencies D2 (2.a, wavy arrow β) and D3 (2.b, wavy arrow γ).

β In the D2 case, we expose a new call r(c,Y) (right rectangle) yielding no direct

answer, but a new dependency D4 = dependency(r(c,Z2),r(Z2,Y),r(c,Y))

and a derived dependency D5 = dependency(r(c,Y),true,r(b,Y)).

γ In the D3 case, we obtain the new answer r(a,c) for the top-level call.
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Iteration 3 During the third iteration (3), we feed the new answer into depen-

dency D1 (wavy arrow δ). This yields the call r(c,Y) and the dependency D6 =

dependency(r(c,Y),true,r(a,Y)).

The fixpoint Finally, there is no more work to be done: at the bottom of each

rectangle, all Di are left of all answers. Hence, the fixpoint comprises the answer

table {r(a,b), r(a,c)} for the call pattern r(a,Y), the answer table {r(b,c)} for

the call pattern r(b,Y) and the empty answer table for r(c,Y).

5 Evaluation

5.1 Implementation Effort

Table 1 summarizes the implementation effort in lines of Prolog (LoC). The control

flow shown in this paper comprises 60 LoC, or less than 11% of the overall effort.

The majority goes to the two kinds of data structures, the tries (40%) and the

worklists (45%). Adding 25 lines of glue code, this amounts to an implementation

for 577 Prolog LoC.

5.2 Performance

While raw efficiency is not the main objective of our lightweight implementation,

it is nevertheless important to achieve a reasonable performance compared to the

existing state-of-the-art tabling systems. In order to evaluate this, we compare

our implementation in hProlog 3.2.38 against XSB 3.4.0 (Swift and Warren 2012),

B-Prolog 8.1 (Zhou 2012), Yap 6.3.4 (Santos Costa et al. 2012) and Ciao 1.15-

2731-g3749edd (Hermenegildo et al. 2012) on a number of benchmarks.2 Table 2

summarizes the results (in ms) obtained on a Dell PowerEdge R410 server (2.4 GHz,

32 GB RAM) running Debian 7.6. In parentheses, we have indicated the maximum

resident set size (RSS) in megabytes and the proportion of hProlog to XSB.

Discussion The XSB system is the reference system for tabling; it has invested most

time and resources in the development of its tabling infrastructure. We see that it

is 8 to 38 times faster than our implementation, but 45 to 78 times faster for two

2 The description and code of the benchmarks can be found at http://users.ugent.be/

~bdsouter/tabling/.

Category LoC Category LoC

Control flow 60 Completion Worklists 259

Call and Answer Tries 233 Miscellaneous 25

Total 577

Table 1. Code size in lines of code.
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outliers (path right last: binary tree 18 and 10k pingpong). It has a maximum RSS

that is up to 7 times as large, and 14 times for path double first 500. In general,

standard trie-based structures overload the memory because representation sharing

is poor. This has been addressed by Raimundo and Rocha (2011).

Since XSB does not support big integers, it was not meaningful to run the Fi-

bonacci benchmark, recorded as O/F (for overflow). This is a case in point for

wider tabling support in other systems: often we need both tabling and other non-

standard features.

B-Prolog is only half as fast as XSB on many benchmarks, but is architecturally

different: BProlog implements linear tabling and uses hash tables instead of tries.

Moreover, in several cases B-Prolog is notably slower than XSB (i.e., n-reverse) and

even much slower than our own implementation (recognize, shuttle, ping pong).

Yet, unlike XSB, B-Prolog does support big integers and is substantially faster

than our approach for the fib benchmark. All in all the results are mixed and point

out several weaknesses in the B-Prolog implementation compared to our all Prolog

implementation.

The Yap tabling implementation, which is based on that of XSB, is clearly the

fastest: the underlying engine is much faster (Rocha et al. 2000). It outperforms

our approach on all benchmarks, and the other systems on most. Many benchmarks

take less than 1 ms, rounded down to 0 ms, hence the factor ∞ in the table.

The performance of Ciao lies between that of XSB and B-Prolog. Performance

of our implementation is within a factor 4 to 14 of Ciao, with reverse and path

right last as outliers. Running the Fibonacci benchmarks is currently not possible,

as tabling and bignums currently do not operate together3.

Summary We consider the performance results of our implementation very reason-

able, especially if we take into account the stark contrast between our lightweight

pure Prolog implementation and the complex integration in other systems. As part

of future work, we think that advances in three areas may positively affect per-

formance. Firstly, continuations are copied with copy term/2. A special-purpose

copy continuation/2 could do better by exploiting the known structure of these

terms. Other applications using delimited control could benefit from this optimiza-

tion as well. Secondly, we don’t statically identify strongly connected components

in the scheduling component. Doing so would allow the specialisation of comple-

tion. Finally, in contrast with state-of-the art implementations, our tries do not use

substitution factoring.

6 Related Work

Delimited Control While delimited control is well-known in the functional program-

ming world, it has not received much attention in the context of Prolog. Only re-

cently have Schrijvers et al. provided an unobtrusive implementation in the WAM

3 Personal email communication with Manuel Carro.
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Benchmark Size hProlog hProlog
XSB

hProlog
B−Prolog

hProlog
Yap

hProlog
Ciao

fiba 500 24 (13) O/F (—) ∞ ∞ —

750 33 (13) O/F (—) 17 41 —

1,000 46 (13) O/F (—) 46 19 —

10,000 982 (66) O/F (—) 3 44 —

recognizea 20,000 205 (73) 26 (1) 0.003 11 4

50,000 503 (221) 30 (2) 0.001 14 4

n-reversea 500 767 (138) 38 (5) 11 15 45

1,000 2,800 (537) 31 (6) 6 8 34

shuttleb 2,000 44 (12) ∞ (2) 0.1 ∞ 9

5,000 138 (14) 23 (2) 0.08 ∞ 12

20,000 582 (29) 24 (4) 0.02 ∞ 10

50,000 1,586 (72) 29 (6) 0.01 ∞ 12

ping pong 10,000 271 (16) 45 (2) 0.07 ∞ 14

20,000 490 (28) 35 (4) 0.03 ∞ 8

path double first
loop

50 653 (14) 19 (2) 13 ∞ 7

100 4,638 (29) 17 (4) 10 ∞ 6

path double first 50 162 (12) 27 (2) 15 ∞ 14

100 989 (16) 20 (3) 12 ∞ 10

200 6,785 (53) 18 (7) 16 ∞ 10

500 110,463 (267) 25 (14) 19 ∞ 14

path right last:
pyramid 500

500 1,914 (104) 35 (7) 29 ∞ 27

path right last:
binary tree 18

18 108,662 (4,120) 78 (5) 50 3,461 42

test large joins 2c 12 3,001 (237) 10 (5) 4 ∞ 12

joins mondial 6,444 (399) 8 (2) 7 224 6

Table 2. Results of the performance benchmarks.

Source: a (Fan and Dietrich 1992) b (Demoen and Sagonas 1998a) c Yap benchmark suite

(Schrijvers et al. 2013; Schrijvers et al. 2013). In the continuation-passing imple-

mentation (Tarau and Dahl 1994) of BinProlog (Tarau 2012) this is even easier.

Schrijvers et al. also illustrate the power of delimited control by porting various

effect handlers (Plotkin and Pretnar 2013) to Prolog. As far as we know, this paper

shows the first Prolog-specific application.

XSB XSB is the best-known Prolog engine supporting tabling. Its foundation, SLG

resolution, has been described by Chen and Warren (1996). Swift and Warren (2012)

provide a recent survey. Implementing XSB has required nontrivial changes to the

architecture of the WAM. XSB maintains a forest of SLD-trees for a tabled predi-

cate. During the computation, the stack may be frozen several times.

CAT and CHAT The CAT is an alternative to the SLG-WAM used in XSB (De-

moen and Sagonas 1998a). Rather than freezing memory areas, CAT uses incre-
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mental copies to preserve the execution state of suspended computations. CAT’s

advantage is that the speed of the underlying abstract machine is not affected for

non-tabled execution. CHAT is an improved scheme incorporating some ideas from

the SLG-WAM (Demoen and Sagonas 1998b). CAT and CHAT do require changes

to the WAM, but acknowledge that the complexity and scope of these changes

should be kept limited.

Linear Tabling Linear tabling mechanisms (Zhou et al. 2000), which implement the

SLDT-resolution strategy, maintain a single execution tree, hence there is the need

to steal choicepoints from a former variant call. Each tabled call can be both a

producer and a consumer. Similar to our approach, there is no overhead for stan-

dard SLD-resolution, but the need for recomputation of subgoals cannot always

be avoided. Although simpler than SLG resolution, implementing SLDT still re-

quires the addition of 4 new specifically designed WAM-instructions, a new frame

structure and a new data area. Unlike for suspension-based mechanisms, the cut

operator works for a class of useful programs.

DRA The DRA (Guo and Gupta 2001; Guo and Gupta 2004) has a goal similar to

our approach. The technique implements tabled evaluation without stack-freezing.

It postpones clauses containing variant calls at runtime, which is similar to our

suspension creation. But to implement this technique, Guo and Gupta introduced

six new WAM instructions. Compared to XSB, Guo and Gupta’s implementation of

DRA has a significantly better space performance , but a worse time performance.

The authors cite as sources for XSB’s better time performance that XSB avoids

reconstructing the execution environment for applying looping alternatives, and

secondly that XSB includes tabling in the compiling stage. Both reasons are equally

applicable to our approach.

7 Conclusion

In order to enable a more widespread adoption of tabling, we have presented a

lightweight implementation of tabling on top of delimited control. In contrast to

existing approaches, our approach is implemented entirely in Prolog and requires

no deep modifications to the WAM or complex program transformations. While

there is obviously a trade-off between the simplicity of the implementation and

runtime performance, we believe that the current performance of our approach is

reasonable. Of course, there is ample opportunity for improvement.

In the future we would also like to extend our approach with mode-directed

tabling (Guo and Gupta 2008; Santos and Rocha 2013). Our initial exploration has

shown that this would only require a small change to the trie structure.
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