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Comparing Indoor and Outdoor Network Models for Automatically 

Calculating Turns  

The goal of this paper is to compare several indoor and outdoor network models 

for wayfinding, on their suitability for automatically calculating turns. Automatic 

turn calculations are of relevance in providing improved cognitive algorithms for 

route guidance, as it has been widely recognized that routes with minimal angular 

deviations are easier to follow. It is demonstrated that the currently available 

indoor network models not allow accurate calculation of the number of turns 

along a path, while the common outdoor route networks do. This discrepancy is 

found to be rooted in an inconsistent definition of indoor decision nodes which in 

turn is linked to the inherent differences in space structure between indoor and 

outdoor environments. Additionally, it is proven that these also have a major 

influence on the generation of accurate indoor route instructions. 

Recommendations for future research within the context of both turn calculations 

and verbalizations of directional changes are made, as well as in the broader 

context of indoor spatial analyses. 

Keywords: network; turn; navigation 

1. Introduction and background 

According to Montello (2005), as long as people have to decide where to go and how to 

get there, navigation will remain one of the fundamental behavioural problems for 

human cognition. Navigation processes are said to consist of both locomotion and 

wayfinding components (Montello 2005). Wayfinding is thereby the process of 

determining and following a route between origin and destination and is often guided by 

external aids (Golledge 1999). In the context of this paper, we focus on these guidance 

aids, improving users’ wayfinding experiences, and not on the cognitive act of 

wayfinding itself. The setting for our research is limited to indoor spaces as research on 

indoor environments has repeatedly demonstrated the challenges of successfully 

performing wayfinding tasks in complex three-dimensional spaces (e.g. disorientation 



after vertical travel, less visual routing aid, deficient cognitive map creation) (Hölscher 

et al. 2009). 

Even though wayfinding aids for indoor spaces have gained an enormous 

amount of interest over the last decade, indoor algorithmic support is still mostly 

confined to common shortest path algorithms (Vanclooster et al. 2014). In outdoor 

environments, a set of more ‘cognitive’ algorithms has specifically been created to deal 

with wayfinding challenges by providing routes that are more intuitive to follow and 

more adhering to how people describe paths to unfamiliar users. Several of those 

algorithms rely on a minimization of number of turns as main cost heuristic (e.g. fewest 

turns path algorithm, simplest path algorithm). Indeed, turn minimization has been 

recognized as an important route selection criterion, next to distance and time (Golledge 

1995). Also, routes of minimal deviations are often perceived more optimal and 

comfortable (Winter 2002). Providing these comfortable and easy to follow routes, is 

even more important indoors than outdoors, as external cues and extrinsic points of 

view are less manifest in indoor spaces (Padgitt and Hund 2012). A major part of 

algorithms with turn minimizations is the automatic calculation of turns. Therefore, the 

goal of this paper is to examine turn calculations on indoor networks and compare them 

with known efforts in outdoor space. The following sections give an overview of 

several turn conceptualizations and definitions. Section 2 and Section 3 demonstrate 

turn calculations on both outdoor road networks and various indoor space 

representations. In Section 4, several challenges of the indoor application of turn 

calculations are discussed in more detail. 

1.1. Turn conceptualizations in wayfinding research 

Over time various definitions and measures for detecting turns have been proposed, 

embedded on different conceptualizations of space. Most commonly, turn calculations 



are of interest for calculating fewest turns paths minimizing the number of directional 

changes and this using a route graph (Hillier and Iida, 2005). The simplest path 

algorithm extends this thought as it calculates paths with a minimal route description 

complexity based on the required amount of information at each intersection. Although 

simplest path algorithms exist under multiple variants (Mark 1986, Duckham and Kulik 

2003, Richter and Duckham 2008), all of them attach a larger cost when dealing with 

turns. Winter (2002) from his part proposed a line graph to describe turns as edge-edge 

relationships in response to the common more costly approaches of splitting up graphs 

in multiple nodes or adding turn penalty tables. Since nowhere is mentioned what 

exactly is considered a turn, it can only be assumed from the construction rules of the 

line graph that every outdoor intersection gives occasion to turns. On the other hand, 

Jiang and Liu (2010) compute fewest turns paths based on a natural routes concept, i.e. 

where various street edges are merged into a single road. In this case, not every junction 

is considered a decision point and turns are only counted when changing from one 

natural road to another, not the directional changes within a natural road. 

Space Syntax community presents a highly different view on space structures. 

One of their conceptualizations of space is the axial map, i.e. a graph of axial lines 

representing visibility relationships by drawing the fewest longest lines of sight which 

traverse all convex spaces (Turner et al. 2001). On this axial map, a spatial integration 

measure can be calculated, quantifying the number of turns to reach all street segments. 

As such, it forms a measure of the cognitive complexity of reaching a street and is 

found to predict pedestrian usage (Turner et al. 2001). The connectivity relationship 

present in the graph topology models in this case turns as a visual transition instead of 

the pure connectivity of roads and edges in previously discussed road graphs.  



1.2. Definition of a turn 

In general, a turn can be defined as a directional change from a reference line 

(Cambridge Dictionary http://dictionary.cambridge.org/dictionary/british/turn_10). The 

angle is a central point in this definition, consisting of the corner between two distinct 

rays issuing from the same vertex. In case of navigation systems and concurrent route 

instructions, not every change of direction has to be labelled turn. Evidence has shown 

that some turns are more important to humans than others (Turner 2001). However, 

there is no agreement on which angles form the boundary for deciding the significance 

of a directional change. For example, Mark (1986) describes in his simplest path 

algorithm that an angular change above some threshold incurs a maximal turn cost of 9. 

However, the threshold itself has not been mentioned. In more recent wayfinding 

literature, a turn is defined as a decision to deviate from the straight ahead by more than 

45° (Hölscher et al. 2011). 

The definition of a turn is also tightly linked to the user’s perception on making 

a significant change in direction, which in turn is connected to how people verbalize 

navigational paths. Route instruction verbalization is characterized by three main 

components: (1) structure of decision point, (2) the action itself (directional change or 

not), and (3) salient features (Klippel et al. 2012). To model the intended action at 

intersections, different directional models have been developed over time. For example, 

Klippel et al. (2005) present an eight-direction model with each sector having an 

increment of 45° in the prototypical directions, which has been confirmed in 

behavioural experiments to include all elements relevant for human direction giving at 

intersections in city street networks. 

The authors decide to concur with this idea and will describe a turn as any 

directional change deviating from the straight ahead by an angle of 45° or more. 

Obviously, there are possibilities to alter this threshold and calculate its impact on the 



results of the number of turns over various algorithmic tests. In this paper, turns are only 

counted at intersections where path alternatives were available and a decision had to be 

made. Although in future work, this can be extended to include all types of turns and 

curvature. 

1.3. Algorithm to automatically calculate the number of turns 

To automatically determine the exact number of turns on a path, it is required to 

calculate each angle created by three consecutive nodes in the path. One of the 

alternatives to measuring the size of angle utilizes the gradient, i.e. the grade of a slope, 

which is equal to the tangent of the angle. As such, in (Figure 1), an algorithm is 

presented that calculates the angle between two connected edges by using the x- and y-

coordinates of the nodes that form the start and end points of the intersecting lines. 

(Figure 2) visualizes the various components used in the algorithm. 

<Insert Figure 1 about here> 

<Insert Figure 2 about here> 

Note that in case of dealing with vertical connectors in 3D indoor space (e.g. 

staircases or elevators), the slopes would have to be calculated in the vertical plane. 

Also, depending on the type of staircase and the accuracy with which the network 

describes the inner complexity of the object, additional turns will have to be calculated 

on intermediate levels, coinciding with the curvature of the path (Stoffel et al. 2008). 

2. Turn calculation on outdoor network models 

As mentioned in Section 1.1, several examples of algorithms with turn minimization in 

outdoor environments have been proposed, largely based on traditional route graphs. In 

this section, we use such route graphs to calculate turns with the coordinates of the 

individual nodes as key elements. More specifically, we will review as example of an 



outdoor network the automatic turn calculations on the international Geographic Data 

Files (GDF) standard as this is a well-documented example of outdoor street networks 

(ISO 2002).  

2.1. GDF standard background 

The GDF standard is an international standard used in outdoor route calculations. It 

contains multiple classes of typical objects for outdoor navigation, with the ‘roads and 

ferries’ data model being the most interesting in this context (Figure 3). The road 

network can be represented at two different levels of detail (level 1 and level 2). A Road 

is defined as a Level 2-Feature composed of one, many or no Road Elements and forms 

a connection between two Intersections. It serves as the smallest independent unit of a 

road network at Level 2. A Road Element is defined as a linear section of the earth, 

designed for vehicular movement. It serves as the smallest, independent unit of the road 

network at Level 1 and is bounded by Junction Elements (ISO 2002). 

<Insert Figure 3 about here> 

2.2. Application of automatic turn calculation algorithm to GDF 

The relationship between Roads, Road Elements and Intersections can adopt various 

shapes. These situations correspond to the figures 15, 16 and 18 in the GDF standard 

(ISO 2002, p.26). 

 Road containing 1 Road Element: a 1-on-1 mapping of the original Road 

Element (Level 1) to a Road in level 2. (Figure 4-left column) 

 Road containing 2 Road Elements: 2 Road Elements can be aggregated into 1 

Road on level 2 if each Road Element is a one-way Road and the Road is one 

single functional unit. (Figure 4-right column) 



 Road containing no Road Elements: all Road Elements are mapped onto either 

one of the Intersections. (Figure 5) 

In the following sections we examine these situations in light of their feasibility 

to accurately calculate turns using the algorithm in (Figure 1).  

First, for Roads with a single Road Element, the example in (Figure 4-left) 

demonstrates that this network model supports accurate turn calculations. Having a path 

from A to D, the angles in nodes B and C can be easily calculated with the algorithm in 

(Figure 1). For example, for the turn angle in B, nodes A and C are used respectively as 

Nstart and Nend. A perceptive turn zone of 90° (45° left and right of the straight ahead) 

designates all areas that are not considered as turns. In this case, line BC deviates more 

than 45° from the straight ahead (line ABD) introducing a (right) turn in node B. The 

same principle applies for the turn calculation in node C where a left turn is calculated. 

<Insert Figure 4 about here> 

For Roads containing two Road Elements (Figure 4-right), the example shows a 

similar situation. However, in this case the intersections on level 2 are split up in 

multiple junctions on level 1. This leads to a more intricate turn calculation in node C. 

Over the entire path, four decision points have to be passed, with node C consisting of 

three junctions. In node C1, the wayfinder has to continue his path straight ahead (line 

C1C2 forms the extension of line BC1), while in node C2 a left turn is calculated 

(segment C2C3 is located outside the perceptive turn zone in node C2). Finally, in node 

C3, a continuation of the straight ahead is required and as such no change in the number 

of turns can be detected. However, the adjoining verbal instructions required to support 

wayfinding along this path have to be altered; i.e. ‘take the second street on the left’. 

Note that in this case, taking the first street on the left (i.e. going left in node C1) will 

not be allowed due to the directionality of the separate streets. 



In case of Roads with no Road Elements (Figure 5), a path from A to D shows 

that only one turn (in node B or node E in a level 2 model) is recorded, which is in line 

with the expected decision making of a wayfinder. On level 1, the angle made by the 

segments BCD is precisely located within the perception turn zone. Even if this was not 

the case, the angle in node C should never be counted as a turn, as it is not a real 

decision point but rather a merging point with the main road through node D. The 

decision to turn right is already made in node B.  

<Insert Figure 5 about here> 

In conclusion, as most of the movement on roads is quite guided and restricted, 

the calculation of turns does not induce any problems in common road and intersection 

situations. Independent of the level of detail at which the roads and intersections are 

modelled, the node-coordinate based algorithm works as expected for turn calculations 

on outdoor networks. 

3. Turn calculation on indoor network models 

As research on indoor navigation is still in its early stages, the standardization of indoor 

network models has not yet reached full maturity. Graphs are, also indoors, the main 

navigational model fitting the requirements of connectivity. Various network options 

have so far been proposed, starting from a direct spatial unit representation with 

adjustments resulting in three main clusters: corridor derivation, cell decomposition and 

visibility partitioning. (Figure 6) presents two example paths for each of the indoor 

network representations. Path 1 connects node 1 and node 2 and path 2 links node 3 

with node 4. (Table 1) presents the results of the turn calculations using the algorithm in 

(Figure 1) over the different indoor networks.  

<Insert Figure 6 about here> 

<Insert Table 1 about here> 



3.1. Centre-Node Network 

The centre-node network model is the most elementary indoor network possible with a 

1-on-1 relationship between geometrical building structure and graph. Each spatial unit 

is represented by a node at its centre point, with the edges representing the connectivity 

relationships between the separate spatial units (e.g. Lorenz et al. 2006, Stoffel et al. 

2007). This purely topological connectivity model serves as base for several variations, 

discussed in the next sections, improving some of its shortcomings. 

Applying this model to our turn calculation algorithm, results in a non-accurate 

accounting of turns. The main problem is the non-realistic representation of the actual 

walking pattern. Given the fact that the intermediate nodes are located in the centre of 

each spatial unit, the edges connecting those, are theoretically modelled to go through 

walls. Also, it is not very realistic that a person walking through a building will each 

time pass by the centre of the room to decide where to go next. 

3.2. Geometric Network Model 

Corridors hold an important position within the internal building structures as they are 

the major connecting sections that link multiple functional building units. A geometric 

network model represents those corridors by a sub graph within the total building graph, 

which results in a more realistic representation of the actual walking pattern indoor. 

Several options have been developed with the corridor as line structure (e.g. Lee 2004). 

Again, a significant miscalculation in the number of turns is visible due to a 

mismatch between the indoor network and the actual walking pattern. Most often, these 

mistakes are induced in large open areas which are either modelled (1) by a single node 

or (2) by multiple nodes in a sub graph, both inducing unrealistic and unnecessary turn 

behaviour. Node A (on path 1) forms the topologic representation of a spatial unit, in 



this case a quite large room. The created angle using solely this centre node is in this 

example smaller than our threshold of 45°, not creating a turn while in the actual 

walking pattern a turn is experienced. Also, because of this unrealistic centre point, the 

consecutive edges and nodes create further miscalculations. The angle itself is defined 

by the wrongful modelling (under-modelling of the spatial unit) of the walking pattern. 

On the other hand, the main mismatch in path 2 occurs around nodes B1 and B2, a 

corridor subdivided in various sub-nodes according to the SMAT technique (Lee 2004). 

However, the actual walking pattern ignores this over-modelling of the spatial unit and 

takes a more direct door-to-door path. 

3.3. Cell-decomposed Model 

In a cell-decomposed model, large open areas, generally modelled by a single node, are 

subdivided into multiple cells portraying more accurately the internal room complexity, 

with each individual cell modelled by a single node. Having a more detailed 

representation of a large open area also creates a closer representation of the actual 

walking pattern through those areas, with for example avoidance of obstacles and 

inaccessible areas. The creation of cells can be proposed for several reasons such as 

room size, concavity and functionality (Lorenz et al. 2006). However, automatic 

transformation between input floor data and cell creation is currently lacking. 

The node-coordinate based turn algorithm returns with the cell-decomposed 

model a more accurate result than with any of the previous models, as the main room 

around node A is subdivided into three cells, labelled A1 to A3. This results in the 

calculation of a turn in node A3, which aligns to the actual walking pattern of a user 

when traversing this room. However, the main problem still remains on deciding which 

units should be modelled into multiple cells and how they should be subdivided. 



3.4. Visibility-based Model 

Modelling unit by unit often does not correspond to the actual walking pattern of users 

in the building, as humans rely on a more visibility based spatial reasoning. In such a 

straight door-to-door visibility-based model, all doors (nodes in the graph) are 

connected with an edge when there is a direct line of sight. For non-immediate visible 

door nodes, a visibility partitioning (e.g. Stoffel et al. 2007, Zheng et al. 2009) can be 

performed, creating intermediate nodes.  

The results of the turn calculations using a direct door-to-door visibility based 

network model show that the algorithm not necessarily calculates correct results. The 

visibility model returns less angles compared to the actual walking pattern because of its 

immediate door-to-door connections making the user sometimes go in an extremely 

sharp angle through a door. This model has also no immediate connection with the 

actual spatial units themselves, losing an important aspect for route instructions as 

people mostly connect with those spatial units and not with the doors connecting them. 

4. Discussion 

Previous analyses have shown that with current indoor network models and a simple 

node-coordinate based algorithm, the exact number of turns could not consistently be 

deducted in indoor spaces. On outdoor networks, the turn calculation results align with 

the perceptive notion of turns. In this section we go back to the construction theory 

behind the networks to discover the reasons for these different results and their 

implications in a broader context. 

4.1. Difference between morphological and decision nodes 

Before delving in into the actual construction rules of network nodes, it is important to 

establish the difference between decision nodes and morphological nodes. Decision 



nodes can be defined as nodes created at intersections having multiple choices of next 

possible paths for the user. The opposite is true for morphological nodes inducing a 

change in direction without facilitating a choice between different paths (i.e. internal 

curvature). Both types of nodes can be found in outdoor and indoor networks. However, 

in most cases, only decision nodes are used for calculating routes. 

The type of node influences the results of turn calculations. For example, 

(Figure 4) and (Figure 5) both showed examples where the outdoor network consisted 

of only decision nodes. However, (Figure 7) demonstrates that outdoor networks can 

contain strong intermediate curvature between two consecutive intersections. By using 

only the coordinates of the decision nodes in the turn calculations, no turn is detected in 

Node 2 (the outgoing edge is located in the 45° turn zone). However, when taking the 

last node before and the first node after the intersection (Node 2) into account (in this 

example Nodes A and B), independent of their type, a turn is accounted for in this 

intersection, as such coinciding with the actual perception of a left turn. Therefore, the 

algorithm in (Figure 1) will need to take into account both decision nodes and 

morphological nodes and always rely on the last node before and the first node after the 

decision node to base the 45° threshold area upon. The 45° threshold area still only 

applies to decision nodes as turns are only defined in those nodes where a decision is 

pushed upon the user. 

<Insert Figure 7 about here> 

This disambiguation between node types and their influence on turn calculations 

also holds for indoor networks. Both coordinates of the last node before and the first 

following the indoor decision node have to be used in the algorithm in (Figure 1). As 

such, a more accurate perception of turns can be calculated, independent of where 

exactly the nodes are placed in (indoor) open areas. 



4.2. Decision node creation rules in networks 

Decision points play a pertinent role in the segmentation of route as goal-directed 

behaviour (e.g. Klippel et al. 2005), since a wayfinder follows route segments to a 

decision point where a directional choice is made leading to a new route segment. This 

definition assumes an underlying network structure of space where the crossing of 

separate branches creates decision points. 

In the construction of roads and intersections in the GDF standard, the basic 

guideline is functionality in terms of car driving. An Intersection is created when the 

extended sides of the roads overlap, at which two Junctions will be combined into one 

(Figure 8). If this is not the case, the two Junctions remain as two independent 

Intersections. An intersection can only occur where a choice between multiple road 

segments is available and as such a decision is pushed upon the users. The angle for 

deciding whether turning into a side route is defined as turn, is then modelled in this 

point following the direction where the wayfinder came from. Since centrelines of roads 

are quite easily constructed, defining outdoor decision points is fairly straightforward as 

they coincide with the actual point of decision making. 

<Insert Figure 8 about here> 

In indoor space, the various networks demonstrate a different creation theorem 

for indoor decision nodes (Table 2) and is key to the wrongful calculation of turns in 

indoor environments. Remark that a similar subdivision is made between decision nodes 

(where the user has to make a choice between multiple directions) and morphological 

nodes (visualizing the internal curvature). 

<Insert Table 2 about here> 

The indoor network model closest to the actual walking pattern in terms of 

decision node criterion is the visibility-based network. This network also returned the 



closest results in terms of turn calculations. Their common concept is the importance of 

doorways as starting point for decision making. However, the actual walking pattern 

alters this idea as not necessarily the door opening itself, but locations in front of the 

door opening itself can disambiguate between possible choices. This is a result of the 

fact that as humans, we walk in a plane perpendicular to the door opening. Additionally, 

some choices cannot be made in the door opening itself due to the concavity of rooms, 

and a point further within the room serves then as decision point. 

As the different indoor models rely on various decision node criteria, it might be 

interesting to draw some parallelisms between the outdoor intersection creation and the 

indoor equivalent. After all, the outdoor turn calculations completely coincide with the 

actual perception of turns, while all indoor models return in some way wrongful turn 

results.  

First, an exact copy of the intersection creation from outdoor space (Figure 8) to 

indoor environments is shown in (Figure 9-left). The idea is that indoor intersections are 

formed through the crossing of centrelines modelling the various rooms. Intersections 

can only be formed when two rooms are connected through a doorway. For example, 

rooms C and D are connected through a mutual door and as such their centrelines cross 

at a point in room D. Even though this network returns good results in terms of turn 

calculations, the main problem is that the created decision points are not necessarily 

linked to specific spatial units themselves. For example, although room B has a path 

through the centre of its unit connecting rooms A and D, the spatial unit itself is not 

modelled by a separate node, creating a loose relationship between the network graph 

and how people actually reason about indoor units. This is also the reason why most 

indoor networks at this point are built from modelling each spatial unit individually. 



A slightly adjusted model draws centrelines through the actual doorways 

connecting two rooms (as doors have been proven to be key in the calculation of turns) 

perpendicular to the plane of the wall where the door is located. The same problem with 

the disconnected relationship between graph and spatial unit remains, although the 

graph itself resembles the actual walking pattern more closely. However, in some cases 

(e.g. room E), the decision point is located outside the space of the spatial unit itself, 

making it not useful in the automatic calculation of the turns (Figure 9-right). As such 

the question remains to where exactly the decision point in indoor space should be best 

located, to be used in turn calculations.  

<Insert Figure 9 about here> 

4.3. Influence on verbal route instructions 

There is an inherent link between directional changes detected by measuring the 

geometrical angle of change in movement and verbal route instructions with which 

those directional changes can be explained to users. 

The generation and analysis of the effectiveness of outdoor route instructions 

has already experienced a long history within spatial cognition research (e.g. Daniel et 

al. 2003). More recent are studies examining the different components of why some 

parts of directions are perceived as being more difficult than others and how this can 

help in improving automated route guidance systems (Hirtle et al. 2010). Providing and 

following accurate route instructions in indoor environments are found to be more 

critical than outdoors (due to less external clues to maintain orientation). It is also more 

beneficial to know the particular routes than to know what cardinal direction to follow 

(Padgitt and Hund 2012). However, the following example demonstrates the intricate 

relationship between route instruction generation and indoor networks. 



Using the visibility-based network (for its relationship to actual walking 

patterns), the 45° turn threshold is drawn in the door opening. Every next door opening, 

located in this zone, is considered as ‘straight ahead’ from the previous door. For 

example, in (Figure 10-left), doors B and C are considered straight ahead from door N, 

while doors A and D require respectively a left and a right turn. However, the area of 

45° turn angle extends indefinitely into the open space area, making doors that are 

actually requiring a turn, fit in the area of ‘straight ahead’. For example, in (Figure 10-

middle) door A is now considered as being straight ahead from node N, even though it 

is located at the exact same location in a slightly expanded spatial unit. Note also that 

again door C is considered straight ahead, even though it is part of a perpendicular wall 

on the right side of door N. One could discuss why door D is considered to be on the 

right and door C on the straight ahead of door N, while verbal instructions might 

distinguish them as ‘close right’ versus ‘far right’. As such, the thresholds 

distinguishing those verbal descriptors might require a finer granularity in modelling the 

indoor spatial unit as to map the right description to the actual wayfinding perspective. 

<Insert Figure 10 about here> 

A space subdivision (similar to the cell-decomposition model) could be the 

solution where the spatial unit is subdivided into smaller areas each being modelled by a 

single node (Figure 10-right). In this case, the room is subdivided into two cells, making 

that only door B is in the straight ahead zone, while door A requires a left turn from 

door N and doors C and D a right turn. In turn, this example highlights a problem of 

scaling, i.e. to what extent does the space need to be subdivided into smaller sub units to 

capture the full meaning of the various verbal route instructions and as such also the 

correct interpretation of directional changes? 



The example in (Figure 10) demonstrates the problematic nature of using indoor 

networks in the disambiguation of turns and in the generation of route instructions. 

Additional problems arise when considering the relationship between direction 

concepts, their directional models and the underlying spatial structure in which the 

performed action is embedded (Klippel et al. 2012). Indeed, participant’s strategies for 

verbalizing route instructions are found to change along with the complexity of the 

intersections (Klippel et al. 2012). While angular directions allow some flexibility, i.e., 

they can be modelled in different sectors (right versus sharp right), the concept for 

straight seems to be an axis as far as simple intersections are concerned (Klippel et al. 

2004). However, this becomes more complex if the action to be instructed takes place 

(a) at a complex intersection or (b) if competing branches require a disambiguation of 

the situation. 

Route instructions for indoor space have not yet been studied that extensively. 

To our knowledge, the work of Mast et al. (2012) is one of the only ones touching upon 

the complexities of indoor verbal route instruction generation. They conclude that 

generic route instructions are not sufficient as they rely on network representations 

which are not able to model the indoor spatial complexities. For example, open spaces 

might not contain any clearly identifiable paths or decision points, making it illogical to 

impose a network structure. Instead, Rüetshi and Timpf (2005) define the concept of 

scene spaces with a hierarchical arrangement of objects as opposed to network spaces 

containing an inherent network structure. Mast and Wolter (2013) use this distinction 

for a more accurate creation of indoor route instructions. They conclude that even 

though wayfinding through both space concepts requires the determination of next 

possible directions, a clear delineation of ‘decision points’ in scene space is much 

harder. This is in line with our conclusions made in Section 4.2. However, their work in 



defining improved ways to generate route instructions in scene spaces is still in 

progress. 

4.4. Concluding remarks 

This discussion has led to the following main conclusions in a more general context of 

indoor navigation research and indoor Location-Based Services.  

First, the mapping of movement to decision nodes in the network is the main 

challenge, not the calculation of turns themselves. This is due to the inherent differences 

between indoor and outdoor spaces, more specifically the contrast between the freedom 

of movement in indoor spaces versus more regulated and restricted movement in 

outdoor street networks. It can be concluded that not a single indoor network model at 

this point is all encompassing in dealing with turns. Every network poses new 

challenges to turn calculations. The visibility-based network might be the closest in 

modelling walking patterns, as it relies on similar concepts (visibility aspect, decision 

points in doorways). However, turn calculations are not accurate due to the sharp angles 

with which some doorways are entered. On the other hand, cell decomposition allows 

the mapping of spatial units with a finer granularity (which can help for example the 

accuracy of route instructions) but there is no theorem on the exact size and location of 

those cells.  

Some situations will indeed lead to better results in terms of turn calculations, 

but this seems more related to the geometry of the spatial units and not necessarily to 

the network description itself. As such, for more accurate turn calculations, doors form 

the key element together with treating every spatial unit by itself. At this point, we are 

developing a network independent algorithm for indoor turn calculations in line with the 

perceptual notion of directional changes in indoor space instead of trying to come up 

with a ‘perfect’ indoor network. 



Second, on top of the already hampered turn calculations, the specificities of 

indoor spaces pose some additional challenges for the generation of indoor route 

instructions. Imposing a network-based verbal route instruction creation method on 

scene space objects impedes the effectiveness of those instructions. However, the 

practical implementation of scene versus network space into indoor wayfinding and 

algorithms is not applicable yet and this for several reasons: (1) indoor route instruction 

creation is still at its infancy with the main problem remaining the definition of scene 

spaces and the categorization of all possible semantic objects that make up indoor 

scenes (Mast and Wolter 2013). (2) Aiding wayfinding by providing appropriate 

algorithms requires selecting paths from a network (Golledge 1999). Algorithms for 

navigation need a topology of connectivity to run on, which cannot be provided by the 

strict containment hierarchy present in scene spaces. Network models on the other hand 

are based on modelling this topologic relationship of connectivity, also indoors. How 

the network should be structured to capture the requirements for indoor route 

instructions remains currently still an open question. 

Apart from a different theory for indoor route description modelling, the 

relationship of direction concepts and intersection types indoors is also up for further 

investigation. We might not have to deal with different types of intersections indoor in 

the strict sense but might require a vaguer concept. Empirical tests on what is perceived 

as a turn in different indoor situations could be a first step towards an increased 

knowledge on the topic. This should be combined with tests on which indoor route 

instruction accompanies which indoor situation. Indeed, one can compute easily turns, 

but did the person moving really make a change in direction and did he perceive it as 

such? 



Although we focused on solutions for indoor turn calculations (and as such 

facilitating for example the application of fewest turns path algorithm indoors), bringing 

other algorithms and analytical functions to the indoor world can pose similar 

challenges. The inherent problem still remains the modelling of indoor areas by 

networks. Even though indoor environments are open space areas, they are still bounded 

by multiple impenetrable boundaries (at least for human users in navigation 

applications). Many data sources assume an ‘ideal space’, i.e. represented by unbounded 

homogenous space with Euclidean distances (Okabe and Sugihara 2012). However, 

ideal space is far from the real world, especially with respect to indoor environments. 

Indoor analyses have to deal with constraint, non-Euclidean space. While a simple 

indoor context can get by with a network abstraction, the coarseness of this 

representation can become inconsistent with more complicated analyses. As shown in 

Section 3, various options for indoor networks have already been presented. It is 

however not clear yet what and if there is a perfect indoor network available. Ongoing 

research on 3D routing using the IndoorGML standard (OGC, 2014) might be a 

valuable start for further research on determining an improved structure of indoor 

networks. On the other hand, more research might be required for the development of 

improved methodologies for indoor analyses tailored to the specificities of indoor 

spaces (e.g. by extending research on 3D indoor routing based on Indoor GML). A 

starting point can be the work of Okabe and Sugihara (2012) presenting common 

analytical concepts adapted to network spaces. Additionally, one can examine the 

results of these analyses over the various available indoor network options in order to 

provide a more comprehensive indoor network structure and understand the 

implications on analytical results. 



5. Conclusion 

In this paper, the problem of automatic turn calculation on indoor network models was 

highlighted. Accurate turn calculations are of relevance for a consistent implementation 

of cognitive algorithms based on minimization of turns as cost heuristic (e.g. fewest 

turns path, simplest path algorithm). Turn calculations based on a node-coordinate 

based algorithm were executed in both an example of an outdoor road network and 

several indoor network models. While in outdoor space, accurate results could be 

obtained independent of the level of detail, all indoor network options showed 

aberrations with the actual perception of indoor turns. It was demonstrated that these 

aberrations were rooted on a different creation of networks and as such also a different 

underlying meaning and formation of decision points. This is due to the inaccurate 

modelling of indoor scene spaces by networks which generalize both the required 

granularity for navigation applications as well as the appropriate modelling of verbal 

route instructions and directional changes. Therefore, we suggest the development of a 

network independent algorithm for indoor turn calculations in line with the perceptual 

notion of directional changes in indoor space. Furthermore, more research is required 

into the relationship between indoor network structures and the results of indoor 

analyses. 
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Table 1. Comparison between the calculated number of turns using various indoor 

network structures. 

Table 2. Decision node criterion for several indoor networks. 

Figure 1. Node-coordinate based algorithm for turn calculations. 

Figure 2. Visual explanation of the node-coordinate based algorithm for turn 

calculations. 

Figure 3. Part of the data model ‘Roads and Ferries’ over various levels of detail. 

Figure 4. Turn calculations on a Road with 1 (left) and 2 (right) Road Element(s). 

Figure 5. Turn calculations on Roads with no Road Elements. 

Figure 6. Overview of several indoor network structures and their influence on turn 

calculations. (a) Centre-Node Network; (b) Geometric Network Model (GNM) with 

only room nodes; (c) GNM with room and door nodes; (d) Cell-decomposed Network 

Model; (e) Visibility-based model; (f) Actual walking pattern. 

Figure 7. Morphological and decision nodes in an outdoor road network. 

Figure 8. Intersection construction rules in the GDF standard (based on ISO 2002). 

Figure 9. Creation of indoor decision nodes at the intersection of the extended 

doorways. 

Figure 10. Doors as decision nodes in indoor space. 


