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ABSTRACT

Ionizing radiation is a potent activator of the tumor suppressor

gene p53, which itself regulates the transcription of genes involved

in canonical pathways such as the cell cycle, DNA repair and

apoptosis as well as other biological processes like metabolism,

autophagy, differentiation and development. In this study, we

performed a meta-analysis on gene expression data from different

in vivo and in vitro experiments to identify a signature of

early radiation-responsive genes which were predicted to be

predominantly regulated by p53. Moreover, we found that several

genes expressed different transcript isoforms after irradiation in a

p53-dependent manner. Among this gene signature, we identified

novel p53 targets, some of which have not yet been functionally

characterized. Surprisingly, in contrast to genes from the canonical

p53-regulated pathways, our gene signature was found to be highly

enriched during embryonic and post-natal brain development and

during in vitro neuronal differentiation. Furthermore, we could show

that for a number of genes, radiation-responsive transcript variants

were upregulated during development and differentiation, while

radiation non-responsive variants were not. This suggests that

radiation exposure of the developing brain and immature cortical

neurons results in the p53-mediated activation of a neuronal

differentiation program. Overall, our results further increase the

knowledge of the radiation-induced p53 network of the embryonic

brain and provide more evidence concerning the importance of p53

and its transcriptional targets during mouse brain development.
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INTRODUCTION
The tumor suppressor protein p53 is indisputably one of the

central players of cancer biology as over half of all human

cancers carry inactivating mutations in the TP53 gene (Soussi

et al., 2005). It is therefore no wonder that TP53 (Trp53 in the

mouse) has become one of the most intensively investigated

genes since it was first discovered more than three decades ago

(DeLeo et al., 1979). One of its first identified functions was that

of a DNA binding transcription factor (Kern et al., 1991) which

activates or suppresses genes, mostly those involved in cell cycle

arrest, DNA repair, apoptosis and senescence as a response to

various cellular stresses including DNA damage. This is probably

the most classic function of p53, which serves to stall the cell

cycle to allow cells to repair the DNA before the cycle can be

resumed. However, when the damage is too severe to be properly

repaired, apoptosis, senescence or, in the case of embryonic stem

cells, premature differentiation (Lin et al., 2005) may be induced,

safeguarding the organism from developing neoplasia (Vousden

and Prives, 2009). Although the transcription-dependent

functions of p53 seem to be most important – 90% of cancer-

related p53 mutations occur within the DNA binding domain

(Soussi et al., 2005) – p53 can also induce apoptosis

independently of its role as a transcription factor. In this case,

p53 protein translocates to the mitochondria and triggers

apoptosis via activation of pro-apoptotic Bcl-2 family members.

This way of inducing cell death can occur very fast (within

30 min) and can precede the induction of pro-apoptotic p53 target

genes (Erster et al., 2004). Exactly how p53 regulates different

cell fates in response to DNA damage is not yet fully understood,

but it has been shown to be dependent on the cell type, cell cycle

phase, as well as the dynamics of p53 activation. DNA damage

induced by c-radiation initiates pulses in p53 protein levels of

which the number, but not the amplitude or frequency depend on

the dose (Batchelor et al., 2011). Recently, it was demonstrated

that the fate of c-irradiated cells changes by additional treatment

with the Mdm2 inhibitor Nutlin-3 resulting in a sustained

induction of p53 levels (Purvis et al., 2012). Although these

canonical functions have long been associated with the tumor

suppression activity of p53, two recent studies showed that the

combined loss of p53-dependent cell cycle arrest, apoptosis and

senescence in p53 mutants is not sufficient to abrogate its effect

on tumor suppression (Brady et al., 2011; Li et al., 2012b). This

suggests that other p53-mediated mechanisms, such as glycolysis

and the regulation of oxidative stress may be critical components

for tumor suppression (Li et al., 2012b).

Indeed, in recent years, p53 itself and a number of its

transcriptional targets have been shown to also play a role in other

biological processes such as energy metabolism, angiogenesis,

autophagy, immunity, cellular differentiation, cell motility and

migration, cell-cell communication and (neural) development

(Menendez et al., 2009; Riley et al., 2008; Vousden and Prives,
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2009). The latter can easily be envisaged by the regulatory role of
p53 in eliciting physiological neuronal apoptosis during brain

development, which is necessary for the correct sculpting and
wiring of the brain. Several studies, however, have also
demonstrated that p53 is involved in neuronal differentiation,
axon guidance, neurite outgrowth and axonal regeneration (Di

Giovanni and Rathore, 2012). For instance, p53 has been shown
to promote neurite outgrowth in both PC12 cells and primary
neurons through a mechanism depending on CBP/p300 and P/

CAF-mediated acetylation of p53 leading to subsequent
transcriptional activation of neurite outgrowth promoting genes
such as GAP-43 and Coronin 1b (Gaub et al., 2010; Tedeschi

et al., 2009). The importance of p53 for normal brain development
is further exemplified by the observation that 16% of surviving
p532/2 mice develop exencephaly, most probably as a result of

either cellular overgrowth or reduced apoptosis in the brain
(Tedeschi and Di Giovanni, 2009). The lack of complete
penetrance of this phenotype, suggests that the absence of p53 in
these mice can be partially compensated for by other genes, for

instance by the p53 family members p63 and p73, both of
which have been shown to play important roles during neural
development (Quadrato and Di Giovanni, 2012). Furthermore, also

inappropriate activation of the p53 pathway during embryonic
development has been shown to result in neural tube defects (Van
Nostrand et al., 2014) or microcephaly-like brain defects when this

activation is restricted to the embryonic cerebral cortex (Pollock
et al., 2014).

Nevertheless, conflicting results exist regarding the role of p53

in neuronal differentiation. For instance, mouse neuroblasts either
coming from p532/2 mice or treated with p53 antisense
oligonucleotides displayed accelerated neuronal differentiation
(Ferreira and Kosik, 1996). Moreover, a recent study showed that

loss of p53 function in neural stem cells leads to enhanced
proliferation and accelerated differentiation. At the level of the
brain, this is reflected by an increase in neurogenesis at the

expense of gliogenesis during embryonic development in p532/2

mice (Liu et al., 2013). In neural progenitors on the other hand,
the loss of p53 function results in early neurogenesis, which could

be partially reversed by restoring its function or treatment with
antioxidants (Forsberg et al., 2013). Together, these data
demonstrate that the role of p53 in the developing brain is
highly cell type-dependent.

A complete understanding of the exact roles of p53 is further
hindered by the shear complexity of its regulation. For instance,
up to ten different p53 isoforms have been identified so far (due

to alternative splicing, promoter usage or translational initiation
sites) and each of these can be modified by several post-
translational modifications (phosphorylation, acetylation,

ubiquitination, etc.) (Hollstein and Hainaut, 2010; Kruse and
Gu, 2009). Moreover, in different cell types p53 regulates
different target genes, some of which are also known to express

different isoforms with sometimes opposing functions (e.g. pro-
or anti-apoptotic). This explains why after more than three
decades of intensive research, many questions concerning the
different roles of this important protein remain unanswered.

In this study, we set out to identify genes and transcript variants
that were altered at an early stage after radiation exposure of the
developing mouse brain or immature primary cortical neurons, an

in vitro model of early differentiating neurons. Although gene
ontology enrichment analysis showed that this signature was
enriched in classical DNA damage response pathways such as

apoptosis and cell cycle arrest, this enrichment was based on only

a fraction of the genes. Other genes from the signature were either
poorly characterized or not enriched in specific biological functions.

However, prediction of transcription factor regulation indicated that
almost all of these genes were targets of p53. We therefore validated
several of the genes from our signature as being novel genuine p53
targets using quantitative reverse transcriptase PCR (qRT-PCR) and

chromatin immunoprecipitation (ChIP). Furthermore, we found that
almost all of these genes are significantly enriched during normal
embryonic brain development. This is in contrast to the majority of

genes that are involved in cell cycle regulation and DNA repair,
including p53 itself, which are normally repressed during brain
development. This suggests that these radiation-responsive genes

mediate important brain-related functions independent of their
potential role in the DNA damage response which is further
exemplified by our observation that they are highly regulated in

mouse models of Huntington disease (HD) and microcephaly.
Together, our data provide new insight into the p53 transcriptional
network in the developing mouse brain as well as in some of the
transcriptional changes that occur during the earliest stages of

mouse brain development.

MATERIALS AND METHODS
Animals
All animal experiments were handled in agreement with the Belgian

laboratory animal legislation and approved by the local SCK-CEN/VITO

ethical committees (ref. 02-012). C57BL/6J and Balb/cJ@Rj wild type

(Janvier/Bio-services) and Trp53 heterozygous (p53+/2) mice in C57BL/

6J background (in-house breeding) were maintained in a normal 12:00/

12:00 light/dark cycle. To minimize differences in time of fertilization,

mating of mice occurred between 07:30 am to 09:30 am. For p53

transgenic mice, tail DNA was used for Trp53 locus genotyping by PCR.

To eliminate the possible influence of gender on differential gene

expression, microarray hybridizations were performed using only male

embryos for all conditions. For all experiments, mice from at least three

different litters were used as biological replicates to further rule out

possible differences related to the developmental stage of the embryos.

Primary cortical neuron cell cultures
Primary cortical neuron cultures were prepared from C57BL6/J (for qRT-

PCR) or BALB/cJ@Rj (for microarray experiments) mouse embryos, as

previously described (Samari et al., 2013). For long-term cultures, half of

the medium was refreshed every two to three days starting on the fifth

day in vitro.

Primary astroglia cell cultures
Cortical astroglia cell cultures were prepared as described (Kaech and

Banker, 2006) using 1-day old mouse pups.

X-irradiation
At E11 or E14, pregnant females were whole body irradiated with

different doses (E11: 0.1, 0.2, 0.5 or 1.0 Gy; E14: 0.2 or 0.5 Gy) at a dose

rate of 0.35 Gy/min using a Pantak RX, 250 kV–15 mA, 1 mm Cu filter

installation. Calibration of the X-ray tube was performed using an

ionization chamber measuring air kerma. Sham-exposed mice were used

as controls. At 2 h after the irradiation, mice were sacrificed by cervical

dislocation, embryos were isolated and either the whole brains (E11) or

the separated cortices and hippocampi (E14) were microdissected and

snap-frozen in liquid nitrogen until further manipulations.

Primary cortical neuron cultures were grown for 14 h (microarrays) or

for one to seven days (qRT-PCR) prior to X-irradiation using a similar

instrumental set-up as for the animals. Cells were irradiated with doses of

0.2 or 0.5 Gy (microarrays), 1.0 Gy (qRT-PCR) or sham-irradiated. For

experiments using the p53 transcriptional inhibitor a-pifithrin (a-PFT;

P4236, Sigma-Aldrich, Diegem, Belgium), cells were treated with either

10 mM a-PFT or 1% DMSO 90 min prior to the irradiation. RNA was

extracted at 2 h or 6 h post-irradiation.
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Microarray preparation and analysis
Total RNA was extracted from flash frozen tissues or cells using the

AllPrep DNA/RNA/protein Mini kit (Qiagen, Hilden, Germany), quality-

controlled using the 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA)

and quantified using the Nanodrop 2000c spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA). Only samples with a RIN .8 were

used for hybridization for 16 h at 45 C̊ onto Affymetrix Mouse Gene 1.0

ST arrays (Affymetrix, Santa Clara, CA, USA). Arrays were washed and

stained using the GeneChip Hybridization, Wash and Stain kit (Stain

Module) (Affymetrix) and scanned using an Affymetrix GCS3000 scanner.

For microarray hybridization only male embryos were used and each

condition was performed on at least three biological replicates from

different litters except for E16 embryos for which two biological

replicates were used. All microarray data are available in MIAME

compliant format at the ArrayExpress database under accession codes

E-MTAB-2622 and E-MTAB-2632.

CEL intensity files were generated using GeneChip Operating

Software and quality tested using the Affymetrix Expression Console.

CEL-files were next uploaded to the Partek Genomics Suite (version 6.6)

and exon-level data normalization was performed using a customized

Robust Multi-array Average algorithm (background correction for entire

probe sequence, quantile normalization, log2 transformation of intensity

signals). Summarization of exon-level to gene-level data was performed

using a one-step Tukey’s biweight summarization method as

recommended by Affymetrix. Analysis of differentially expressed

(DEX) genes was performed using different ANOVA models

depending on the experiment. Thresholds for statistical significance for

each separate experiment are indicated in Fig. 1A.

Analysis of alternative exon usage
Detection of alternatively spliced/transcribed (DAS) genes was

performed using two parallel approaches. Firstly, we used Alternative

Splice ANOVA models in Partek Genomics Suite for all different

experiments. To minimize the number of false positives, a filter was used

to select for probesets with a log2 expression signal .5.5, which was

calculated from the expression level frequency histograms. Probesets

with a lower expression signal, but with a p-value,0.05, were retained

for the analysis. In contrast to what is suggested by Affymetrix, we did

retain DEX genes in the Alternative Splice analysis because we were not

only interested in alternative splicing events, but also in alternative

transcription, as this was shown to occur more frequently than alternative

splicing during mouse cerebellar development (Pal et al., 2011). The

second method we used was the AltAnalyze software package (Emig

et al., 2010), which applies both the Splicing Index and Microarray

Detection of Alternative Splicing. Settings for the analysis were as

default (e.g. detection above background p-value.0.05, probability

statistic: moderated t-test), except that we used a raw expression

threshold .45 (,5.5 log2 value) and a gene expression cut-off .100 to

ensure DEX genes to be taken into account. Results from both methods

were then pooled and exon expression plots of genes that were detected

as DAS in at least two separate experiments were visually inspected to

identify false positive results. Genes of which the splicing pattern was not

dose-dependent or which suggested probeset cross hybridization or non-

expressed probesets, were therefore omitted (Affymetrix, Technical

Note). Genes which were detected as DEX in one experiment and DAS in

another, were finally also included in the list of RR genes.

Reverse transcription and quantitative PCR
Complementary DNA was prepared from total RNA using the GoScriptTM

Reverse Transcriptase kit (Promega, Leiden, The Netherlands) using 1 ml

of random hexamer primers and 3.75 mM MgCl2 in 20 ml reactions.

Primers used for quantitative PCR are listed in supplementary material

Table S1. We used the MESA Green kit (Eurogentec, Seraing, Belgium)

according to the manufacturer’s instructions using an Applied Biosystems

Fig. 1. Identification of a core gene signature of radiation-responsive genes in the embryonic mouse brain. (A) Experimental design. (B) Venn diagram
showing the overlap of the differentially expressed genes between the different experiments. (C-E) Box plots depicting mRNA expression of core DEX genes in
brains from E11 embryos (n53) at 2 h post-irradiation (C), primary cortical neuron cultures of 1 DIV (n54) at 6 h post-irradiation (D), and cortex and
hippocampus of E14 embryos (n53) at 2 h post-irradiation (E) with different doses of X-rays. Expression is relative to the expression of sham-irradiated controls.
Centerlines show the median, boxes represent the range between first and third quartiles and whiskers represent the highest and lowest values. *p,0.05,
***p,0.0001 (Wilcoxon signed rank test).
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7500 Fast real-time PCR instrument (Thermo Fisher Scientific). Reaction

efficiencies were used for relative quantification using the method as

described by Pfaffl (Pfaffl, 2001). Gapdh was used as an internal reference

gene. For all qRT-PCR experiments the specificity of the primers was

validated using a melting curve.

Gene ontology enrichment analysis
For Gene Ontology (GO) enrichment analysis we used the GOrilla

tool (Eden et al., 2009) with the following settings: Organism: Mus

musculus; Running mode: Two unranked lists of genes (target list: DEX

genes; background list: genes expressed above background in at least 30%

of all samples); p-value threshold: 0.001. The results of this analysis were

subsequently reduced using REVIGO (Supek et al., 2011) with default

settings. REVIGO serves to remove redundant GO terms. The version of

the Gene Ontology used was: go_201304-termdb.obo-xml.gz (which can

be found at http://archive.geneontology.org/full/2013-04-01/).

Transcription factor binding site enrichment analysis
ChIP enrichment analysis (Lachmann et al., 2010) was performed to

identify potential transcriptional regulators of RR genes.

Western blotting
Western blot analysis was performed on total proteins extracted from

brains of mice irradiated at E11 and dissected 2 h after irradiation. Proteins

were harvested by lysing brain tissues with 200 ml RIPA buffer (50 mM

Tris/HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%

SDS) containing protease inhibitor and phosphatase inhibitors cocktail

tablets (Roche, Brussels, Belgium). Western blotting was performed using

standard procedures with the following primary antibodies: p53-Ser15-P

(catalog number 9284, Cell Signaling Technology, Leiden, The

Netherlands), total p53 (Pab 240, Abcam, Cambridge, UK), and Gapdh

(ab8245, Abcam, Cambridge, UK) as a loading control. For visualization

we used chemiluminescence (Clarity Western ECL Substrate, Bio-Rad,

Temse, Belgium).

Identification of p53 binding sites for ChIP
Potential p53 binding sites were identified to be used as target sequences for

ChIP-PCR. Because p53 is known to bind both in the promoter as well as in

the body of genes (Li et al., 2012a; Riley et al., 2008) we downloaded

genomic sequences starting from 5000 base pairs before the transcription

start site until the end of the transcript. These sequences were then used for a

matrix scan analysis (http://rsat.ulb.ac.be/rsat/) using the MA0106.1 (TP53)

matrix from the JASPAR database. Parameters used were: Mus musculus-

specific background model estimation (Markov order50) and scanning

options were used as default with a p-value threshold set at 1024. Primers

for PCR (supplementary material Table S2) were designed to span the

predicted binding sites (supplementary material Fig. S3).

Chromatin immunoprecipitation
ChIP was performed on brains from E11 mice that were pooled per litter.

For each condition, three independent litters were used for ChIP with the

SimpleChIP Enzymatic Chromatin IP kit (Magnetic beads) (Cell Signaling

Technology, Danvers, MA, USA) according to the manufacturer’s protocol

with minor modifications.

Brains were dissected at 2 h after (sham-)irradiation and fixed in 1%

formaldehyde (252549, Sigma-Aldrich, Bornem, Belgium) supplemented

with Protease Inhibitor Cocktail (P8340, Sigma-Aldrich, Bornem,

Belgium) for 10 min at room temperature on an orbital shaker (300

r.p.m.). Formaldehyde was quenched using glycine, tissues were rinsed

twice with phosphate buffered saline (PBS) and collected in PBS

containing phenylmethanesulfonyl fluoride (93482, Sigma-Aldrich,

Bornem, Belgium). DNA was digested using 20 ml of micrococcal

nuclease (20 gel units/ml) for 20 min at 37 C̊. Chromatin was isolated and

DNA-protein complexes were immunoprecipitated using antibodies

against phospho-p53 (Ser15) (catalog number 9284, Cell Signaling

Technology, Leiden, The Netherlands) or mouse IgG provided with the

kit. Purified DNA fragments were amplified by PCR (Taq & Load

Mastermix, MP Biomedicals, Santa Anna, CA, USA) using 34 cycles.

PCR products were run on a 1.5% agarose gel and the intensity of the

bands was quantified using ImageJ. For normalization, densitometric

signals from IgG were subtracted from p53-Ser15-P signals for each

sample.

Gene set enrichment analysis (GSEA)
GSEA was performed using default settings. Because of the small

amount of samples (n52–3), we used 1000 permutations (gene_set), with

a weighted enrichment statistic and a signal-to-noise metric for gene

ranking. As gene sets, we used all significant differentially expressed

genes (ANOVA p,0.001 and FC.|2|) at any of the used developmental

stages (E9, E10, E11, E14, E16), as well as gene sets that were

downloaded from the MSigDB database (Cell Cycle, Apoptosis, DNA

Repair, Brain Development, Neuron Differentiation). For the radiation-

responsive gene set, only DEX genes were used since GSEA does not

take alternative splicing into account.

RESULTS
Identification of a radiation-responsive gene signature in the
developing brain
The initial objective of this study was to perform a meta-analysis
in order to identify a bona fide set of genes which mediate the

early effects of exposure to ionizing radiation in the developing
brain. To this end, we combined whole genome expression data
from different experiments that had previously been performed in

our lab as explained in Fig. 1A. For each of the individual
analyses, we identified DEX probesets which resulted in the
identification of 115, 82, 78, and 105 DEX probesets in the E11
brain, primary cortical neuron cultures and the E14 cortex and

hippocampus, respectively (Fig. 1A). We next considered only
those probesets that were DEX in at least two of these
experiments, resulting in a signature consisting of 78 probesets,

corresponding to 74 individual genes (Fig. 1B; supplementary
material Table S3). Interestingly, all of these genes were
upregulated after radiation exposure. In all of the separate

experiments, the average expression of DEX genes was dose-
dependently induced even at the lowest doses of 0.1 Gy in the
whole brain at E11 (Fig. 1C) and of 0.2 Gy in primary cortical

neuron cultures (Fig. 1D) as well as in the E14 cortex and
hippocampus (Fig. 1E).

Radiation-induced alternative splicing
Alternative splicing is a very frequent event during embryonic
development (Revil et al., 2010) and especially in the brain
(Grosso et al., 2008; Yeo et al., 2004; Zheng and Black, 2013),

where it is important for neurogenesis, neuronal migration,
synaptogenesis, and neuronal differentiation (Norris and Calarco,
2012). Moreover, recent studies have shown that exposure to

ionizing radiation can affect alternative splicing of a number of
genes (Muñoz et al., 2009; Sprung et al., 2011). Therefore, we
also analyzed radiation-induced DAS genes from these

experiments and identified 50 genes that showed transcript
variation after X-irradiation in at least two separate experiments
(Fig. 2A). After additional visual inspection of their exon

intensity signals in a genomic context, we omitted 16 false
positives because of probeset cross hybridization, non-expressed
probesets or lack of dose-dependence. Thus, 34 genes were
finally retained as being DAS. Most of these were also DEX at

the gene level, although we identified another seven genes which
were detected as being only DAS, but not DEX, in at least two of
our experimental settings (Fig. 2B). The latter thus represent

genes of which the expression levels of only one or a few exons
were changed after irradiation, and would have been missed if we
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had only analyzed the data at the gene level. Furthermore, two
genes (Ptpn14 and Pvt1) were identified as DEX in one

experiment and DAS in another. The union of DEX genes (74
genes), DAS genes (7 genes) and Ptpn14 and Pvt1 were finally
considered as the radiation-responsive (RR) gene signature (83

genes, Fig. 2B; supplementary material Table S3).
To confirm the microarray results regarding alternative

splicing, we used exon- and variant-specific qRT-PCR to

validate a few candidate genes in brains from E11 mice that
were irradiated with different doses of X-rays. D630023F18Rik

(further referred to as C2orf80) has several known transcript
isoforms depending on the usage of alternative 39 splice sites or

an alternative 39 exon (Fig. 2C). Our microarray data suggested
that exposure to radiation results in the specific induction of a not
yet identified short isoform. This was confirmed by qRT-PCR

using primers specific for the 59 part (long) or the 39 part (short)
of the gene, showing that there was a dose-dependent increase in

the expression of the 39 part only (Fig. 2C). Another DAS gene
was Zfp365, of which different isoforms exist, depending on the

usage of an alternative promoter or a bleeding exon (Fig. 2D).
According to the microarrays, both long and short isoforms are
expressed in the embryonic brain, but radiation exposure

specifically induced the long isoform (Fig. 2D). qRT-PCR
experiments using transcript-specific primers partially
confirmed these results. Indeed, we found a dose-dependent

induction of both variants, although the induction of the short
variant was significantly reduced compared to the long variant
(Fig. 2D). Finally, Ano3 (also known as Tmem16c) has two
known isoforms, one of which is a truncated transcript that lacks

the eight most distal exons (Fig. 2E). Of this gene, several exons
showed a deviating expression profile after radiation, indicating
the induction of unknown splice variants (Fig. 2E, left panel).

This was again confirmed by qRT-PCR, showing a dose-
dependent increase in the expression of isoforms containing

Fig. 2. Identification and validation of
radiation-induced alternatively spliced
genes. (A) Venn diagram showing the overlap of
the DAS genes between the different
experiments. (B) Venn diagram showing the
overlap between radiation-induced DEX and
DAS gene signatures. The combination of DEX
and DAS genes, together with Ptpn14 and Pvt1,
which were DEX in one experiment and DAS in
another, is then the radiation-responsive (RR)
gene signature. (C–E) Validation of radiation-
induced alternative splicing of D630023F18Rik/
C2orf80 (C), Zfp365 (D), and Ano3/Tmem16c

(E). Left panels show exon organization of the
gene, with exons shown as grey boxes and
known variants indicated by connecting lines
(top), and log2 microarray expression signals for
each separate probeset (below). Right panels
show mRNA expression of different transcript
variants as assessed by qRT-PCR from brains
of in utero (E11) irradiated mice (n53).
Transcript-specific primers are indicated with
arrowheads on the left panels. Asterisks indicate
significant difference compared to 0 Gy
(*p,0.05; **p,0.01; ***p,0.001). For
comparisons between transcript variants a
paired Student’s t-test was used (#p,0.05;
##p,0.01). Error bars represent s.e.m.
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exons 3 and 4, whereas isoforms containing exon 17 were
significantly less induced after radiation exposure (Fig. 2E).

Early radiation-responsive genes are mostly p53 targets
enriched in canonical p53-regulated pathways
Gene ontology enrichment analysis showed that RR genes are

enriched in classical radiation response pathways such as
apoptosis, DNA damage response and cell cycle arrest
(Fig. 3A) which are well known to be regulated by p53. In

order to verify this, we analyzed the overrepresentation of the
gene signature in gene lists from genome-wide ChIP experiments
using Chip Enrichment Analysis (ChEA) (Lachmann et al.,

2010). This showed that p53 was by far the most significant
transcription factor predicted to be involved in the regulation of
these genes (Fig. 3B) as we already observed in previous

experiments on E13 mouse brains (Verheyde et al., 2006).
Other predicted regulators of RR genes were, among others,
Smad2, which localizes to DNA double strand breaks and
cooperates with p53 in the DNA damage response (Wang et al.,

2013), as well as c-Myc and E2f1, which have been shown to
stabilize p53 via mechanisms similar to those in response to DNA
damage (Lindström and Wiman, 2003). Yet, the complete lack of

radiation-induced expression of DEX genes in p532/2 cortical
neuron cultures (Fig. 1D), suggests that if other factors were
involved in transcriptional regulation of these genes, they would

still depend on p53 as a co-factor. The ChEA analysis further
showed that there was a very large overlap (Fig. 3B,C) between
our RR signature and genes that were bound by p53 and/or DEX

after treatment of mouse embryonic fibroblasts (MEFs) with the
DNA damaging agent doxorubicin (Kenzelmann Broz et al.,
2013). It is interesting to note that while only a small fraction
(33%) of DEX genes in doxorubicin-treated MEFs are bound by

p53, almost all (92%) of the genes from our signature were p53-
bound in these cells, indicating that they are genuine

transcriptional targets of p53.

Validation of novel p53 target genes
For validation experiments, we selected random genes based on

their novelty as potential p53 targets. We also further analyzed
the known p53 target Eda2r, because it was the most significantly
regulated gene in each of the four separate experiments,

indicating the importance of this gene in the p53-mediated
response in the brain. The early activation of p53 at 2 h post-
irradiation was first demonstrated by western blotting using an

antibody against the phosphorylated form of p53 at the serine 15
residue (Fig. 4A), which is the main target of the DNA damage
response to radiation (Meek, 2009). Next, we performed qRT-

PCR on brains from control and 1 Gy X-irradiated p53+/+, p53+/2

and p532/2 littermates at E11. Trp53 gene expression levels in
p53+/2 mice were about half of those in wild-type mice, whereas
in p532/2 mice it was not at all detectable (Fig. 4B). For all of the

tested target genes, we found a significant upregulation, ranging
from 1.7-fold (Nr1d1, p50.0002) to 46-fold (C2orf80,
p50.0008), in the irradiated brains from p53+/+ mice, which

was attenuated in p53+/2 mice and completely abrogated in
p532/2 mice (Fig. 4C). This shows that p53 gene dosage, and
therefore the amount of available p53, is important for the extent

of the transcriptional regulation of these genes. These data further
revealed that Eda2r and Ano3 expression decreased with
decreasing p53 gene dosage in non-irradiated control animals

(Fig. 4C), suggesting that they are constitutively regulated by
p53. In contrast, the other tested genes seem to become activated
by p53 only in response to stress signals such as DNA damage, at
this early time point in brain development.

Fig. 3. Radiation-responsive genes are involved in classical p53-mediated DNA damage response pathways. (A) GO enrichment analysis of RR genes.
(B) ChIP enrichment analysis of RR genes. Numbers in bars indicate the number of genes from the RR gene signature that are represented in the
respective gene lists. Numbers behind transcription factors indicate PubMed IDs of the respective studies. (C) Overlap between our RR gene signature, and
DEX and p53-bound genes in doxorubicin-treated MEFs (Kenzelmann Broz et al., 2013).
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We also validated the expression levels of several genes after
irradiation of immature and maturing primary cortical neuron
cultures. These experiments again confirmed our microarray data

by showing an upregulated expression of radiation-responsive
gene isoforms in the irradiated cultures (Fig. 4D; supplementary
material Fig. S1), which could be prevented by prior treatment of

the cells with the p53 inhibitor a-pifithrin (supplementary
material Fig. S1). Interestingly, we also observed that the
transcriptional effect of radiation exposure was less pronounced

in the more mature cultures compared to immature cultures
(Fig. 4D), in line with a previous study which demonstrated that
DNA damage-dependent p53 activation is more robust in

immature compared to mature cortical neurons (Martin et al.,
2009). To obtain better insight in the cell type specificity of this
p53-mediated transcriptional response, we also evaluated
radiation-induced gene expression in astroglial cell cultures.

This showed that the p53 response was not induced in these cells
(supplementary material Fig. S2), suggesting that it is neuron-
specific.

Finally, we performed ChIP-PCR on a selection of genes to
assess radiation-induced binding of p53 to their promoters. We
found that for all of the tested genes p53 binding was very low in

non-irradiated brains and was substantially increased 2 h after
irradiation (Fig. 4E). Interestingly, in the cases of C2orf80 and
Zfp365, our data indicate that the alternative transcription we

observed after irradiation (Fig. 3A,B) resulted from the binding
of p53 to an alternative promoter of the gene (supplementary
material Fig. S3), as could also be predicted from our microarray

results.

Radiation-responsive genes are significantly enriched during
brain development
Several genome-wide studies of p53 target gene expression in
different non-neuronal cell types have demonstrated that p53
targets are enriched in genes involved in functions such as neuron

differentiation, nervous system development and axon guidance
(Botcheva et al., 2011; Kenzelmann Broz et al., 2013; Kracikova
et al., 2013; Smeenk et al., 2008; Yoon et al., 2002). Moreover, as

Fig. 4. p53-dependent expression of novel target genes. (A) Western blotting was performed using antibodies against the phosphorylated (p53-Ser15-P) as
well as the total form of p53. (B,C) mRNA expression was determined by qRT-PCR in E11 brains from p53+/+, p53+/2 and p532/2 littermates (n54) at 2 h post-
irradiation. Please note the logarithmic scale of the Y-axis in B. *p,0.05; **p,0.01; ***p,0.001 for the difference between control and irradiated mice from
the same genotype (Student’s t-test). #p,0.05; ##p,0.01; ###p,0.001 for difference with control p53+/+ mice (Student’s t-test). (D) mRNA expression was
determined by qRT-PCR in primary cortical neuron cultures (1 DIV and 7 DIV) at 2 h and 6 h post-irradiation (n53–4). *p,0.05; ***p,0.001 (Student’s t-test).
(E) ChIP-PCR was performed on pooled brains from individual litters (n53) of in utero irradiated mice at 2 h post-irradiation. Densitometric analysis of gel
electrophoresis bands was performed using ImageJ. *p,0.05; **p,0.01 (paired Student’s t-test). In all panels data indicate mean+s.e.m. ND, not detected; DIV,
days in vitro.
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previously mentioned, p53 is believed to be important for neuron
differentiation and brain development. Therefore, we analyzed

gene expression changes in control mice with the purpose of
evaluating specifically the expression of RR genes at five
different stages of embryonic brain development (E9, E10, E11,
E14, E16).

In this dataset, no less than 40% of all expressed genes had
different expression levels (ANOVA p,0.001 and FC .|2|) at
some point between E9 and E16 (Fig. 5A), demonstrating that a

very large fraction of the transcriptome is modulated during the
earliest stages of brain development. The principal component
analysis plot (supplementary material Fig. S4A) further shows

that gene expression changes are very dynamic and occur over
short time periods, especially between E10 and E11 and between
E14 and E16. This corresponds to the time points when

neurogenesis is initiated in most of the brain regions (E11),
which peaks at E14, before declining again in the telencephalon,
diencephalon and midbrain (Götz and Huttner, 2005).
Interestingly, compared to the total number of expressed genes,

the fraction of radiation-induced DEX genes that were
differentially expressed during early brain development was
significantly larger [63%, p57.661025 (Chi square, Yates’

corrected)]. Moreover, when we also included genes that were
considered as alternatively spliced during development, no less
than 92% (68 out of 74) of DEX genes changed in expression at

some point between E9 and E16. Therefore, p53 seems to
preferentially target developmentally regulated genes after
radiation exposure of the developing brain.

Since many of the genes in our signature were only poorly
characterized, and in view of their aforementioned developmental
regulation, we hypothesized that these genes could be
functionally important for normal brain development. We

therefore analyzed gene expression profiles of different
functional classes of genes using GSEA (Subramanian et al.,
2005), under the assumption that similarly expressed genes are

likely to have similar biological functions, a concept known as
‘‘guilt by association’’. We first performed GSEA analysis on all
developmentally regulated genes, which showed that these are

almost equally enriched in either E9 or E16 brains (Fig. 5A). In
contrast, radiation-induced DEX genes were significantly
enriched in E16 brains (Fig. 5B). However, similar to the
totality of significant genes, genes involved in apoptosis were

equally enriched at E9 and E16 (Fig. 5C), whereas cell cycle and
DNA repair-related genes were significantly enriched in E9
brains (Fig. 5D,E). Interestingly, most of the genes from our

signature that are developmentally downregulated (left part of the
GSEA-plot, Fig. 5B), belong to pathways related to apoptosis
(Lrdd, C11orf82/Noxin, Apaf1, B230120H23Rik, Tnfrsf10b), cell

cycle regulation (Gtse1, Ckap2) and DNA repair (Polk, Ercc5,
Rnf169). On the other hand, genes involved in brain development
(Fig. 5F) and especially neuron differentiation (Fig. 5G) showed

a significant enrichment in E16 brains, comparable to the DEX
gene signature. These results are consistent with two recent
studies in mice which showed that mitosis, cell cycle and DNA
repair pathways were enriched in embryonic brains compared to

post-natal and adult brains, whereas genes involved in synaptic
transmission and ion homeostasis increased in expression during
development (Dillman et al., 2013; Pramparo et al., 2011).

Another recent study investigated genome-wide spatiotemporal
transcriptional profiles of the mid-gestational human brain
(Miller et al., 2014). Importantly, we found a very good

correspondence between our data and those of the human

embryonic brain. Miller et al. identified 42 modules of co-
expressed genes, two of which were especially consistent

between different data sets. Supplementary material Fig. S5
shows the genes from those two modules, one of which is
enriched in germinal layers and decreases in expression with age
(yellow, C38). This module is enriched in functions related to

mitosis and spindle formation (Miller et al., 2014) and contains
Ckap2, Gtse1 and C11orf82/Noxin from our gene signature
(supplementary material Fig. S5A). Another gene module

(brown, C22) is enriched in post-mitotic neurons from the
cortical plate, and increases with age. From our signature, Ampd2,
Bbc3, Cgref1, Cpt1c and Baiap2 all belong to this module

(supplementary material Fig. S5B). Notably, as in humans, the
genes from the yellow module are also enriched in the early
embryonic mouse brain whereas genes from the brown module

are enriched in the late embryonic mouse brain (supplementary
material Fig. S5C). Together, these data suggest that radiation-
induced p53 activation in the embryonic brain induces a
transcriptional profile which is reminiscent of differentiating

neurons and that the normal, physiological function of the genes
in our signature is more related to brain development or neuron
differentiation, rather than the DNA damage response.

To further validate these observations, we performed qRT-PCR
on a selection of genes from mouse brains at an expanded set of
pre- and post-natal developmental stages, as well as in cultures of

primary cortical neurons at different days in vitro (DIV). These
experiments showed that all of the tested genes were indeed
induced during brain development and in vitro neuronal

differentiation (Fig. 6). Overall, the expression levels of these
genes gradually increased during development, before reaching
maximal values at either post-natal day 10 (C2orf80 and Usp2) or
30 (Sec14l5, Ano3, Zfp365, C1orf183 and Nr1d1). Furthermore,

we observed that the developmental expression pattern of
different transcript variants of these genes was not always
comparable. Notably, the radiation unresponsive transcript

variants of Zfp365, Ano3 (Fig. 6) and Usp2 (not shown)
showed deviating expression levels with either no change, or
decreased expression during development or differentiation.

Thus, all of the tested p53-responsive variants increased in
expression during development and differentiation in contrast to
p53 itself, which decreased over time (Fig. 6). This indicates that
these genes are not regulated by p53 under normal physiological

conditions but only in response to a cellular stressor such as
ionizing radiation.

Regulation of radiation-responsive genes in neurological
disorders
Several neurodegenerative diseases and neurological disorders

have been associated with DNA damage or disturbances in the
DNA damage response in neuronal cells. For instance, HD is a
neurodegenerative disease caused by an expansion of CAG

triplicate repeats in the Huntingtin gene (Htt). HD pathogenesis is
very complex, with many cellular pathways being affected, but
one of its hallmarks is the occurrence of DNA damage, resulting
in the activation of p53 and the induction of DNA damage

response proteins prior to the accumulation of Htt protein
aggregates (Illuzzi et al., 2009). Therefore, we analyzed the
expression profile of the DEX gene signature in different mouse

models of HD by GSEA. To our surprise, we found that
expression of these genes was significantly downregulated in all
three HD models compared to control mice (Fig. 7A–C). Again,

this suggests that our gene signature is primarily involved in
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Fig. 5. Gene expression profiles of DEX genes and gene sets of different functional pathways in the embryonic brain. (A–G) Unsupervised hierarchical
clustering (left panels) and GSEA analysis (right panels) of all significant genes (A), DEX gene signature (B), apoptotic genes (C), cell cycle genes
(D), DNA repair genes (E), brain development genes (F) and neuron differentiation genes (G). For the different functional classes, we used gene lists from the
MSigDB database. NES, normalized enrichment score.
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neuronal functions since it was shown that mutant Htt
downregulates expression of neuronal genes by increasing the

nuclear translocation of the transcriptional repressor Rest/Nrsf
(Zuccato et al., 2003).

Another neurological disorder which is very often associated

with DNA repair deficiency is microcephaly (McKinnon, 2009).
In humans microcephaly is defined as a head circumference of
more than two standard deviations below the average for age and

gender. Many genetic and environmental factors can cause
microcephaly, one of which is prenatal radiation exposure,
especially during weeks 8 to 15 of pregnancy (Otake and Schull,

1993; Otake and Schull, 1998). In animal models, microcephaly
is defined as a reduced brain size and it has been recapitulated in
a number of genetic mouse models as well as by prenatal
exposure to ionizing radiation (Kitamura et al., 2001; Sun et al.,

1995). In fact, we also found that radiation exposure of pregnant
mice at E11 to doses of 0.66 Gy and higher, led to a dose-
dependent decrease in brain and body size of the pups (Verreet

et al., unpublished results). One of the genetic microcephaly
models is the MagohMos2/+ mouse (Silver et al., 2010) which is
characterized by a reduced body size and microcephaly.

Interestingly, these mice display increased neuronal DNA
damage, premature neuronal differentiation and apoptosis at
early stages of brain development, possibly as a result of mitotic
defects. Despite the rather severe phenotype, gene expression

changes in these mice were quite modest, but, as is shown by
GSEA (Fig. 7D), correlated extremely well with gene expression

changes in the irradiated embryonic brain. Altogether, the
extensive regulation of our gene signature at different
developmental stages and in differentiating cortical neurons, as

well as in several neurological mouse models further supports
their importance for the proper functioning and development of
the mouse brain.

DISCUSSION
In this study, we combined genome-wide gene expression data

from different experiments to identify a gene signature of bona fide
radiation-responsive genes in the developing brain. This signature
was found to be enriched in genes which belong to classical
pathways of the DNA damage response and predicted to be mainly

regulated by p53. We also identified several genes expressing
different transcript variants after exposure to radiation. Moreover,
we could show that radiation-induced transcript variation depends

on p53 activity, since treatment of cortical neuron cultures with
the p53 inhibitor a-PFT prior to radiation exposure prevented
the upregulation of radiation-responsive transcript variants

(supplementary material Fig. S1), and binding of p53 to
alternative promoters of C2orf80 and Zfp365 was significantly
enhanced after irradiation (Fig. 4E). As reviewed by Riley
et al., four sets of experimental criteria are commonly used

Fig. 6. mRNA expression of selected RR genes and Trp53 during mouse brain development and in differentiating primary cortical neuron cultures.
mRNA expression was determined by qRT-PCR in brains from mice at embryonic days 11, 12 and 18, postnatal days 10 and 30, and at adult age (white boxes)
and in primary cortical neuron cultures at days 1, 3, 7, 11 and 14 of culture (gray boxes). For all conditions n54 except for E11 where n53. Data are
expressed as fold changes (log2 scale) relative to E11 (for in vivo data) or DIV1 (for in vitro data). For explanation of the box and whisker plots, see Fig.1E,
embryonic day; P, post-natal day; DIV, days in vitro; FC, fold-change. *p,0.05; **p,0.01; ***p,0.001 (Student’s t-test).
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for identification of p53-regulated genes: (1) presence of a p53

responsive element (RE) in or near the gene; (2) up- or
downregulation of the gene by wild-type, but not mutant p53; (3)
transcriptional regulation of a test gene (e.g. luciferase) by a cloned

RE, and (4) validation of p53 binding to the RE using ChIP or gel
shift assays (Riley et al., 2008). Yet, based on our and previous
results (Nicholls et al., 2004; Sprung et al., 2011), we recommend

to broaden the second criterion to consider also p53-dependent
alternatively spliced or transcribed genes as genuine p53 targets.

One of the important findings of our study is the very high
overlap between p53-bound and –regulated genes (Fig. 3C).

Although we only validated p53 binding for a few novel targets,
the very high overlap of our signature with other genome-wide
screens of p53 binding after full p53 activation suggests that most,

if not all, of them are bona fide p53 targets. In all of those studies
large numbers of genes were transcriptionally regulated and/or
bound by p53 (Kenzelmann Broz et al., 2013; Menendez et al.,

2009; Nikulenkov et al., 2012; Smeenk et al., 2008), with only very
limited overlap between regulated and bound genes indicating that
also other factors were involved in directly regulating gene
expression. The moderate doses of radiation we used in our

experiments were therefore likely to generate a more specific p53-
mediated response, which does not (directly) involve other
transcription factors such as the other p53 family members, p63

and p73, as was the case in some of the aforementioned studies
(Kenzelmann Broz et al., 2013; Smeenk et al., 2008). Indeed, this is
also shown by the lack of a transcriptional response in p532/2

brains and cells, or after treatment with the p53 inhibitor a-PFT.
Although we found a significant enrichment of functions related

to the DNA damage response, this enrichment is based on less than

half of the genes in our signature. The other genes either do not
belong to significantly enriched functional pathways or have not
yet been functionally characterized. Our observation that, unlike
genes involved in the classical p53-regulated pathways, most of

our signature genes are significantly upregulated during (early)
brain development and neuronal differentiation, suggests that their
primary role is related to cellular differentiation or brain-specific

functions. This is in correspondence with results from genome-
wide p53 binding screens in different non-neuronal cell types,
which showed that p53-bound genes are enriched in functions such

as general differentiation and development, neuron differentiation

and axon guidance (Akdemir et al., 2014; Botcheva et al., 2011;

Kenzelmann Broz et al., 2013; Kracikova et al., 2013; Menendez
et al., 2009; Nikulenkov et al., 2012; Smeenk et al., 2008; Yoon
et al., 2002). Interestingly, two recent publications showed that

DNA damage-mediated p53 activation in mouse embryonic stem
cells (mESCs) preferentially induces genes which are associated
with differentiation and developmental processes rather than in cell

cycle or apoptosis (Lee et al., 2012; Li et al., 2012a). Thus, we
hypothesize that radiation-induced activation of differentiation-
related genes, results in premature differentiation of cells in the
embryonic brain. DNA damage-induced differentiation is a well-

known defense mechanism to prevent (stem) cells with excessive
damage from obtaining a malignant phenotype (Lee et al., 2010;
Wang et al., 2012). However, as mentioned in the introduction, the

effects of p53 on cellular differentiation are cell type-dependent,
with indications that p53 inhibits differentiation in neural stem
cells whereas it promotes neural gene expression and neurite

outgrowth in post-mitotic cells. Therefore, it will be important to
further investigate the exact regulation of p53 and its target
genes at the cellular rather than the tissue level. The fact that
the p53 transcriptional response was diminished in more mature

cortical neuron cultures compared to immature cultures, and
was completely absent in astroglial cells, indicates that the
transcriptional effects we observed in vivo are restricted to

certain cell type(s), including differentiating neurons.
The validity of our hypothesis that p53 activation may result in

premature neuronal differentiation, is further strengthened by the

analysis of the expression of RR genes in mouse models of
neurological disorders. Indeed, both the downregulation in HD as
well as the upregulation in an embryonic microcephaly model

displaying premature neuronal differentiation, indicate that RR
genes may have important roles in normal brain function and
differentiation. Microcephaly is the only congenital malformation
of pre-natal radiation exposure and it is often associated with

increased DNA damage, mitotic spindle defects and subsequent
premature neuronal differentiation. The very strong overlap
between gene expression profiles and phenotypes of our

prenatally irradiated mice and the microcephalic MagohMos2/+

mice (Silver et al., 2010) suggests that (1) the gene expression
changes in MagohMos2/+ mice result, at least partly, from p53

activation and (2) that these changes are responsible for the

Fig. 7. Radiation-responsive DEX genes are highly
regulated in mouse models of Huntington disease
and microcephaly. GSEA shows significant
downregulation of DEX genes in three different mouse
models of Huntington disease (A–C) and significant
upregulation of DEX genes in a mouse model of
microcephaly (D). Gene Expression Omnibus accession
numbers for each data set are shown above the graphs.
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similar phenotypes. In this respect, it is interesting to note that
several genes from our signature have been previously shown to

be involved in spindle and/or microtubule formation (Apaf1,
AW555464/Cep170b, Bloc1s2, Ckap2, Gtse1, Usp2, Zfp365).
Also, one of the genes which was upregulated in MagohMos2/+

mice and irradiated brains is Cpt1c, a brain-specific regulator of

fatty acid synthesis which is developmentally upregulated after
birth (Carrasco et al., 2013). A brain-specific gain-of-function
model of this gene displayed post-natal microcephaly and growth

retardation (Reamy and Wolfgang, 2011). To better understand
the possible function of p53 in the development of microcephaly,
it would be interesting to investigate the effects of a double

p53/Magoh deficiency on the spindle formation, neuronal
differentiation and the size of the brain.

Several of the genes from our signature have previously been

shown to be involved in brain-related functions such as neurite
outgrowth (Baiap2, Cdc42bpg, Igdcc4), focal adhesion dynamics
(Arap2), neuronal differentiation (Btg2, Foxo3, Gne, Grhl3),
calcium sensing (Hpcal1), and synaptic transmission (Rap2a).

Moreover, Ampd2 has recently been shown to be mutated in
pontocerebellar hypoplasia, a progressive neurodegenerative
disorder (Akizu et al., 2013), whereas mutations in Ano3 were

linked with craniocervical dystonia (Charlesworth et al., 2012).
We believe that elucidating the function of Ano3 in brain
development may be of importance for a number of reasons. Ano3

seems to play an important role in the mammalian brain since it
was found to be a hub gene in weighted gene co-expression
analyses of the caudate nucleus (Oldham et al., 2006), whereas it

was also identified as a hub gene in a module of co-expressed
genes that had low expression in the embryonic cortex and
hippocampus in humans, but progressively increased with age
(Kang et al., 2011). Moreover, a number of SNPs were found to

be associated with late-onset Alzheimer’s disease in a GWAS
study (Briones and Dinu, 2012). Finally, a recent study showed
that Ano3 is involved in pain processing in the rat by facilitating

Na+-activated K+ currents in sensory neurons (Huang et al.,
2013). All of these data indicate that Ano3 is important in the
mammalian brain, which is also suggested from its increasing

gene expression pattern at different stages of brain development
and brain-specific expression at adult age (data not shown). The
fact that radiation exposure results in specific induction of certain
Ano3 transcript variants, which are specifically induced during

neuron differentiation, adds to its attractiveness for further study.
Another interesting and currently unknown p53 target is

C2orf80, which showed a very high upregulation (.50-fold) of a

short isoform early after irradiation. Moreover, both short and long
isoforms are very strongly induced during in vivo brain
development (,2000-fold) and in vitro neuronal differentiation

(.100-fold). So far, this gene has only been mentioned in a couple
of research articles. In one of these, C2ORF80 along with
STMN3A, a gene involved in neurite outgrowth, were the most

significantly affected after knockdown of a psychosis susceptibility
gene in human neural progenitor cells (Hill et al., 2012).

With this study, we believe to have provided, at least in part, an
answer to the question as posed by Tedeschi and Di Giovanni:

‘‘which are the non-apoptotic p53 transcriptional targets in
developing and in mature neurons following injury?’’ (Tedeschi
and Di Giovanni, 2009). We have identified several new p53

targets with potentially important functions in (DNA damage-
induced) neuronal death or differentiation, which may ultimately
lead to a better understanding of the different processes involved

in nervous system development. However, many questions

about the exact function of some of these genes still remain
unanswered, warranting their further investigation.
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