Variable-fidelity surrogate modelling with Kriging

Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract—Variable-fidelity surrogate modelling offers an efficient
way to approximate function data available in multiple degrees of ac-
curacy each with varying computational cost. In this paper, a Kriging-
based variable-fidelity surrogate modelling approach is introduced
to approximate such deterministic data. Initially, individual Kriging
surrogate models, which are enhanced with gradient data of different
degrees of accuracy, are constructed. Then these Gradient enhanced
Kriging surrogate models are strategically coupled using a recursive
CoKriging formulation to provide an accurate surrogate model for
the highest fidelity data. While, intuitively, gradient data is useful
to enhance the accuracy of surrogate models, the primary motivation
behind this work is to investigate if it is also worthwhile incorporating
gradient data of varying degrees of accuracy.
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I. INTRODUCTION

The analysis and optimization of physics-based simulation
codes require a significant investment of computational time
and resources, despite a substantial advancement in computing
power in the recent years. One of many ways of circum-
venting this problem is by constructing cheap approximations,
known as surrogate models, for the expensive physics-based
simulation codes. Surrogate modeling is successfully applied
to model low dimensional problems with various techniques
such as Artificial Neural Networks, Kriging, Support Vector
Machines etc. A thorough description of various surrogate
modeling techniques is given in [1], [2] and [3]. In this respect,
various attempts to enhance the accuracy of surrogate models
with secondary information such as gradients, Hessian data,
cheap function data, etc. have been carried out in literature
in recent years [4], [5], [6], [7], [8]. For example, additional
gradient data is used to enhance the accuracy of Artificial
Neural Networks based surrogate models in [9] and [10].

Kriging surrogate models are popular for approximating
deterministic and computation-intensive simulation codes [11].
Direct incorporation of gradient data in Kriging was first
introduced by Morris et al. in [5] and was further explored
by various researchers in [6], [7], [12]. Incorporating gradi-
ents, either directly or indirectly, in Kriging is observed to
significantly increase the accuracy of the surrogate models
while requiring less training data [5], [6], [12]. Yamazaki
et al. [4] incorporated first-order and second-order gradient
data in Kriging and showed that gradient and Hessian data
incorporation resulted in more accurate surrogate models than
the models based on function data only. Liu incorporated
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gradient data in an integrated mean squared error-based Krig-
ing formulation, but its performance is lower than that of
incorporating gradients indirectly in Kriging [7].

Function data of varying degrees of accuracy can also be
used to enhance the accuracy of the Kriging surrogate model.
This approach is commonly known as CoKriging. Data (func-
tion+gradients) of different fidelities can be obtained in various
areas of science and engineering with computational fluid
dynamics (CFD) and finite element (FE) analysis being most
popular due to their very expensive nature. Data of different
fidelities can be either obtained by solving mathematically
different simulation codes or by solving a single simulation
code on meshes with different resolution or with different
convergence criteria . For instance, gradient data of different
fidelities can be cheaply obtained in FE/CFD applications
with the use of perturbation analysis or adjoint and automatic
differentiation tools. Function data of different fidelities are
initially coupled in [13] with a linear regression formulation.
An autoregressive formulation based multi-fidelity surrogate
modelling is further introduced in [14] and is observed to
be efficient in [15]. A multi-fidelity Kriging model enhanced
with two different fidelities of gradient data in an optimization
context is demonstrated in [16], but its advantage over the
standard multi-fidelity Kriging model without gradients in
finding global optima is still ambiguous.

In this work, the recently introduced recursive multi-fidelity
Kriging formulation [17] is adapted to directly cope with
different fidelities of function and gradient data to enhance
the accuracy of the overall surrogate model. In this context,
analytical expressions for the derivatives of the Matérn %
correlation function are derived and the recursive formulation
based Gradient enhanced CoKriging (GCoK) approach is
introduced in this work. The approach is demonstrated on an
analytical problem and subsequently applied to solve a real-life
problem. While gradient data is already proven to be useful
in enhancing the accuracy of a surrogate model, this work
extends the investigation on whether including gradient data
of varying degrees of accuracy is also beneficial.

The reminder of the paper is organized as follows. The
mathematical formulation of the GCoK approach is provided
in Section II after a brief overview of Kriging. The formulation
of the analytical and the simulation-based examples are given
in Section III. Section III further discusses the results of the
analytical and the simulation-based examples. Finally, Section
IV summarizes the conclusions.

II. MATHEMATICAL FORMULATION

The standard Kriging prediction §(x*) at an untried predic-
tion point * is expressed as a summation of a constant trend
function /i and a realization of a stationary Gaussian random



process:
g(@*) = i+ " ey — fi), (1)
where 1) is a correlation vector which contains the correlation
between the sample data and x*, y is a column vector of
function values of the sample data, f is a column vector of
ones, ¥ denotes the correlation matrix which contains the
correlation between the sample data points and the constant
trend function /i is defined by generalized least squares,
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Here, in this work, the Matérn 2

5 correlation function (see
Appendix A) is used to calculate the correlation between the
sample data.

The recursive formulation based CoKriging (CoK) estimate
§©°K (x*), which is considered as a multi-function extension

to the standard Kriging estimate, can be expressed as,
x*) = pPe(X*) + Ja(x"), 3)

where §.(x*) is the function estimate from a standard Kriging
model built with cheap data (X,, y.), ga(x*) is the function
estimate from a standard Kriging model built with residuals of
the scaled cheap data and the expensive data (X, yq = Ye —
pye(X.)) and p is the scaling parameter which is calculated
along with the hyper-parameters (6,,,, m = 1, ..., k, where k is
the dimensionality of the function) of the Matérn g correlation
function using a maximum likelihood estimation method. The
recursive formulation based CoKriging results in equivalent
prediction as standard CoKriging when the expensive data is
a subset of the cheap data.

In this work, additional gradient data of two degrees of accu-
racy (i.e., cheap and expensive gradient data) are incorporated
in the recursive formulation of CoKriging and thus Equation
3 becomes,

QCOK(

GO (x*) = pp PR (x7) + g7 (x), (4)

where §S¢FE (x*) is the function estimate from a Gradient

Enhanced Kriging (GEK) model built with cheap data (X,
ve) and §§EK (x*) is the function estimate from a GEK model
built with residuals of the scaled cheap data and the expensive
data (Xe, yg = ye — (5&7FF) 2 (yFFKENT) The
notation y represents that the vector y now contains both the

function and the gradient data. A GEK estimate §“F% (2*) at
the untried prediction point * is expressed as,
~GEK 2 T - =1, 2
grrt (@) =p+ U (Y- fh), (5)
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where n is the number of training sample points, ¥ is a
(k+1)n x (k4 1)n symmetric block matrix and contains the
correlations of function and gradient data between the sample
data points and the correlation vector @) contains the correla-
tion of both function values and gradients between the sample
data and x*. The vector ¢ contains both the function Values
and the gradients of the sample data. The notations 0¥ / (%cu
and 0?W/ 02792 denote the correlation between function
data and u'" dimension gradients and correlation between u!"
dimension gradients and v'" dimension gradients, respectively.
The direction of differentiation is denoted by 7 and j with 2(*)
and 2U) denoting two different samples.

III. RESULTS AND DISCUSSION
A. Problem Formulation

Gradient enhanced CoKriging is applied to two benchmark
problems and compared against standard CoKriging. Normal-
ized Root Mean Square Error (NRMSE) on a validation data
set of n, pseudorandom points is used to assess the accuracy
of the surrogate models and can be expressed as,

\/ S (oo )’
NRMSE = o

maz(y,) — min(y,)

; (10)

where @COK contains the estimated response values and vy,
denotes the true response values.

B. Analytical Problem

Expensive and cheap versions of the analytical function are
defined as,

fe(z) = (62 — 2.0)%sin(12x — 4.0),z € [0,1] (11)

and
fe(x) =0.5(fe(2)) + 10(x — 0.5) — 5,

respectively. The design space is equidistantly sampled at 2
expensive and 7 cheap sample points. Intuitively, both CoK-
riging and GCoK interpolate the expensive data and use the
cheap data to approximate the trend of the actual function. The
CoKriging approximation with just 2 expensive sample points
gives a poor prediction whereas the gradient incorporation
at both the expensive and the cheap sample points allows
the GCoK model to not only accurately capture the actual
function trend but also to accurately overlay the actual function
behaviour (see Figure 1). This observation is further supported
by the results shown in Table I.
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Fig. 1: CoKriging with n, = 2 and n. = 7 and GCoK with
ne = 2 + gradients and n. = 7 + gradients. (1D Function)

TABLE I: NRMSE on a validation data set of n, = 500 with
ne = 2 and n, = 7. Imp. denotes “% of improvement” of
GCoK model over its corresponding CoKriging model. (1D
analytical function)

Model NRMSE  Imp.
CoK 0.1459
GCoK  0.0049 96%

C. Real-life problem

The real-life example involves modelling of the mean of
magnitude of the scattering S;; parameter of a microwave
inter-digital filter, denoted by |S11|mean, in the frequency
range [2.2 — 2.6] GHz with the ulterior goal of optimization
(though not the focus of this paper). The inter-digital filter
is parameterised using 5 geometrical parameters (see Figure
2). The function and gradient data of two different fidelities
are obtained by carrying out full-wave electromagnetic simula-
tions on two meshes of varying refinement (a coarse mesh with
7823 tetrahedral cells and a dense mesh with 48000 tetrahedral
cells) using CST MicroWave Studio®. The computation time of
converging to a solution on the dense mesh (i.e., high-fidelity
data) is about 900s whereas it is about 130s on the coarse mesh
(i.e., low-fidelity data). The computation time of acquiring
one function value is roughly equal to that of acquiring 10
and 20 sets of 5-dimensional gradients for the dense and
coarse meshes, respectively. Adding gradient data results in
a significant accuracy improvement in GCoK models over the
CoKriging models (see Table II and Figure 3). GCoK models
essentially benefit from the fact that the Kriging interpolation
is now constrained by both function and gradient data which
allows them to successfully capture the actual covariance
structure with less number of sample points. More accurate
GCoK models than CoKriging models are obtained even when
only introducing gradient data at X, (see Figure 4). However,
incorporating gradient data only at X, in general, does not
provide much advantage to GCoK models (see Figure 5).
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Fig. 2: The 5 geometric parameters implicitly define the length
of the microstrips (of f1, of f2 and of f3) and the spacing
between the microstrips (S1 and S2).

TABLE II: NRMSE on a validation data set of n, = 50 with
ne = 50 and n, = 100. Imp. denotes “% of improvement”
of GCoK model over its corresponding CoKriging model.

(‘Sll|mean SD)

Model NRMSE  Imp.
CoK 0.0524 -
GCoK  0.0297 43%
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Fig. 3: Evolution of NRMSE on a validation data set of
np, = 50 for a varying number of expensive data. A constant
number of cheap data n. = 100 is used for the expensive runs.
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Fig. 4: Evolution of NRMSE on a validation data set of n,, =
50 for a varying number of expensive data. A constant number
of cheap data n. = 100 is used for the expensive runs, but no
gradient data is incorporated at X.. (|S11|mean 5D)
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Fig. 5: Evolution of NRMSE on a validation data set of n,, =
50 for a varying number of expensive data. A constant number
of cheap data n. = 100 is used for the expensive runs, but no
gradient data is incorporated at Xe. (|S11|mean SD)

IV. CONCLUSION

A Kriging-based variable-fidelity surrogate modelling ap-
proach is introduced. Test results show that incorporating
additional gradient data of varying degrees of accuracy can sig-
nificantly enhance the accuracy of the Kriging-based variable-
fidelity surrogate model. Moreover, incorporating only the
highest fidelity gradient data itself results in more accurate
surrogate models than CoKriging models without gradient
data. However, when the accuracy of the gradient data be-
comes too worse, the advantage which can be reaped from
the gradient data of fidelities other than the highest fidelity
becomes negligible.

APPENDIX A

Matérn % correlation function:

Y,—s(d) = (1+ V5a + %)emp (—\/5(1) ;o (13)

3

where d = |ai, —aJ,| and a = /3% | 6,,d2,.

Gradient of correlation function with respect to X (i.e., cross-
correlation):
oW (6:9) 59d(\/5a + 1)exp (—\/5@)
oxd) 3
Hessian of correlation function with respect to X (i.e., cross-
correlation):

(14)
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