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Abstract Multi-fidelity surrogate modelling offers an
efficient way to approximate computationally expen-
sive simulations. In particular, Kriging-based surrogate
models are popular for approximating deterministic data.
In this work, the performance of Kriging is investi-
gated when multi-fidelity gradient data is introduced
along with multi-fidelity function data to approximate
computationally expensive black-box simulations. To
achieve this, the recursive CoKriging formulation is ex-
tended by incorporating multi-fidelity gradient infor-
mation. This approach, denoted by Gradient-Enhanced
recursive CoKriging (GECoK), is initially applied to
two analytical problems. As expected, results from the
analytical benchmark problems show that additional
gradient information of different fidelities can signifi-
cantly improve the accuracy of the Kriging model. More-
over, GECoK provides a better approximation even when
the gradient information is only partially available. Fur-
ther comparison between CoKriging, Gradient Enhanced
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1 Introduction

The computational complexity of physics-based simula-
tion codes has grown phenomenally in recent years. De-
spite continual advancement in computing power, there
is a growing reluctance among researchers in using high-
fidelity analysis codes due to prohibitive computational
cost. It is rarely feasible to make many repetitive runs
of high-fidelity computer simulations. This complexity
is more evident in routine activities, such as optimiza-
tion, sensitivity analysis, design space exploration, etc.
(Forrester et al. 2006). Faced with these limitations, the
alternative of using approximations or surrogate models
of the actual, computationally expensive analysis codes
(surrogate modelling) has received critical acclaim in
recent years. The intention of surrogate modelling is to
accurately imitate the behaviour of the computation-
intensive simulator over an entire input space with a
minimal number of expensive simulations.

Jin et al. (2000), Simpson et al. (2001) and Wang
and Shan (2006) provided an overview of the most com-
monly used surrogate modelling techniques. Kriging,
which was proposed by Sacks et al. (1989b) for the
design and analysis of computer experiments, is ar-
guably popular to approximate deterministic data re-
sulting from computer codes (Sacks et al. 1989a; Kleij-
nen 2009). One of the primary goals of surrogate mod-
elling is to enhance the accuracy of surrogate mod-
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els with additional data which are not computation-
intensive. To this end, surrogate modelling by incorpo-
rating all the cheaply available additional information,
such as gradients, Hessian data, multi-fidelity data, prior
knowledge, etc., is increasingly popular (Forrester et al.
2008; Courrier et al. 2014). For example, Morris et al.
(1993) proposed gradient enhancement in Kriging, known
as direct Gradient Enhanced Kriging (GEK), and showed
that GEK significantly reduces the training sample data
required to provide accurate surrogate models. Chung
and Alonso (2002) compared direct GEK with an alter-
native formulation of GEK, called indirect GEK, which
uses the same mathematical formulation of Kriging,
but augments the training data with additional func-
tion values estimated from the gradient information.
The authors stated that indirect GEK is prone to nu-
merical errors introduced during the estimation of ad-
ditional function values from gradients, whereas direct
GEK exhibits formulation complexity at high dimen-
sionality. Liu (2003) further investigated indirect GEK
and proposed an alternative approach based on Neu-
ral Networks trained with both function and gradient
information, but its performance is lower than indirect
GEK. Laurenceau and Sagaut (2008) studied an aero-
dynamic problem with direct and indirect formulations
of GEK and concluded that indirect GEK outperforms
direct GEK irrespective of their equivalent mathemat-
ical formulations. More recently, Laurent et al. (2013)
applied direct GEK to mechanical functions which lead
to significant reduction in number of training samples
and computational cost required to construct accurate
approximations as compared to Kriging without gradi-
ents.

In problems where function data can be obtained
with various accuracy levels, coupling data of different
fidelities can further reduce the required training data
while providing more accurate approximations of the
actual function. Obtaining variable-fidelity data is more
popular in areas where the computational complexity
of analysis codes is dominant such as computational
fluid dynamics (CFD) and finite element (FE) anal-
ysis. For instance, gradient data of different fidelities
can be cheaply obtained in FE/CFD applications with
the use of perturbation analysis or adjoint and auto-
matic differentiation tools. Brezillon and Dwight (2005)
solved the adjoint of the Navier-Stokes equations using
an in-house CFD code which consumes only approxi-
mately 10% of the computational time required for a
single complete non-linear flow calculation to provide
all the gradient information at a single sample point.
Dwight and Han (2009), Laurenceau et al. (2010) and
Chung and Alonso (2002) demonstrated that with ad-
joint formulation k-dimensional gradients can be esti-

mated at a computational cost of estimating 1-2 func-
tion values at a single sample point. Schneider (2012)
introduced a software package called FEINS in which
the gradients can be estimated cheaply for FE prob-
lems. Degroote et al. (2013) recently demonstrated an
efficient method of estimating gradients cheaply in the
context of fluid-structure interaction (FSI) problems.
In addition, a set of CFD methods with varying de-
grees of computational complexity (Panel theory, Euler
equations, and Navier-Stokes equations) can be used to
generate data of various accuracy levels. Further, a sin-
gle physics-based simulation model, which can be eval-
uated on meshes of varying refinement, can also result
in data of various accuracy levels. Furthermore, the re-
sults from partially converged simulations using a single
physics-based simulation code can also be used to pro-
duce data of various degrees of accuracy. Coupling dif-
ferent fidelities of data, which results in accurate model
representation of the actual simulator, is not an entirely
new idea in surrogate modelling. For example, various
multi-fidelity surrogate modelling methods are already
presented in the literature (Craig et al. 1998; Cumming
and Goldstein 2009; Goldstein and Wooff 2007; Higdon
et al. 2004; Kennedy and O’Hagan 2000; Forrester et al.
2007; Bandler et al. 1994).

Craig et al. (1998) initially presented a linear regres-
sion formulation based multi-fidelity surrogate mod-
elling which is further improved by Cumming and Gold-
stein (2009) using a Bayes linear formulation (Goldstein
and Wooff 2007). An autoregressive formulation based
multi-fidelity modelling is introduced by Kennedy and
O’Hagan (2000) and is quoted to be very efficient by
Forrester et al. (2007) and Qian and Wu (2008). Huang
et al. (2006) proposed an optimisation procedure, de-
noted by multiple-fidelity sequential kriging optimisa-
tion (MFSKO), based on this autoregressive formula-
tion. Leary et al. (2004) demonstrated a multi-fidelity
Kriging model enhanced with two different fidelities
of gradient data in an optimisation context. The au-
thors observed that the gradient incorporated multi-
fidelity Kriging model is more accurate than the stan-
dard multi-fidelity Kriging model without gradients.
The authors further stated that the advantage of find-
ing global optima with gradient incorporated multi-
fidelity Kriging model over the standard multi-fidelity
Kriging model without gradients is still ambiguous and
unclear. Recently, Le Gratiet (2012) proposed a recur-
sive formulation based multi-fidelity Kriging modelling.
This approach significantly reduces the modelling com-
plexity associated with multi-fidelity Kriging models.
This is also the context of the work presented here. Ad-
ditionally, we introduce the gradient-enhanced recur-
sive CoKriging (GECoK) method, an extension of the
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recursive CoKriging method (Le Gratiet 2012), which
incorporates function and gradient data of multiple fi-
delities while constructing approximation models. We
mainly focus on investigating the effect of multi-fidelity
gradient enhancement in Kriging-based surrogate mod-
els. To that end, the analytical expressions for the gra-
dients of various correlation functions with respect to
design variables are derived, and the GECoK method-
ology is also investigated if only a part of the gradi-
ent information is available. Furthermore, the analytical
equation of the likelihood gradients is derived and in-
tegrated in the GECoK formulation, by evaluating the
gradients of various correlation functions with respect
to the hyper-parameters. This investigation is carried
out by applying GECoK to two analytical and two real-
life examples.

2 Mathematical formulation

The Kriging prediction ŷ(x∗) of a function y(x) at a
prediction point x∗ is built from a constant trend func-
tion, µ̂ and the realization of a stationary Gaussian
random process which represents the local features of
y(x) around n sample points, X = {x(1), ...,x(n)}T , as
(Sacks et al. 1989b),

ŷ(x∗) = µ̂+ψTΨ−1(y − f µ̂), (1)

where ψ contains correlations between x∗ and the sam-
ple data points; Ψ is a n× n symmetric matrix of cor-
relation between the sample data points; y contains
the function values of the sample data; f is a n × 1
column vector of ones; and the trend function µ̂ =
(fTΨ−1f)−1fTΨ−1y.

The Maximum Likelihood Estimate (MLE) of the
hyper-parameters (θm,m = 1, ..., k) is obtained by max-
imizing the concentrated ln-likelihood

φ =
−n ln(σ̂2)− ln|Ψ|

2
, (2)

where k is the dimensionality, i.e., number of design
variables and σ̂2 = (y − f µ̂)TΨ−1(y − f µ̂)/n is the
estimated Kriging variance. For details on the maxi-
mum likelihood estimation method in standard Kriging
and GEK, the readers are referred to Davis and Morris
(1997), Zimmermann (2010), March et al. (2010) and
Zimmermann (2013).

Gradient Enhanced Kriging (GEK) is a natural ex-
tension of Kriging and incorporates additional gradient
information of the sample data in building surrogate
models. GEK mathematically varies from Kriging in
terms of ψ, Ψ, y and f . Hence, the GEK prediction
ˆ̇yGEK(x∗) of the function y(x) becomes,

ˆ̇yGEK(x∗) = ˆ̇µ+ ψ̇
T
Ψ̇−1(ẏ − ḟ ˆ̇µ), (3)

where
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(4)

ψ̇ =

(

ψ,
∂ψ

∂x1
, ...,

∂ψ

∂xk

)T

, (5)

ẏ =

(

y,
∂y

∂x1
, ...,

∂y

∂xk

)T

, (6)

ḟ =
(

11, ...1n, 0n+1, ..., 0(k+1)n

)T
, (7)

where ψ̇ contains correlations of both function and gra-
dient data between x∗ and the sample data points, Ψ̇
is a (k + 1)n × (k + 1)n symmetric block matrix and
contains the correlations of function and gradient data
between the sample data points and ẏ contains the
function and the gradient values of the sample data.
The notations ∂Ψ

∂x
(j)
u

and ∂2
Ψ

∂x
(i)
u ∂x

(j)
v

denote the correla-

tion between function and uth dimension gradients and
correlation between uth dimension gradients and vth

dimension gradients, respectively. The direction of dif-
ferentiation is denoted by i and j with x(i) and x(j)

denoting two different samples.
CoKriging is considered as a multi-response exten-

sion to Kriging whereas GECoK is a multi-response
extension to GEK. GECoK exploits the relationship
between low-fidelity and high-fidelity sample data to
enhance the prediction accuracy. It is based on the
recursive CoKriging model of Le Gratiet (2012). Ad-
ditionally, it incorporates multi-fidelity gradient data
along with multi-fidelity function data to enhance sur-
rogate model accuracy. Although GECoK can be eas-
ily extended to multi sets of variable-fidelity data, we
limit ourselves to two sets of variable-fidelity data, i.e.,
a low- and a high-fidelity data set. GECoK uses two
Kriging models to approximate the high-fidelity and the
low-fidelity sample data. These two Kriging models are
further related by a scaling or regression parameter ρ.
Hence, building a GECoK model can be interpreted as
constructing two separate GEK models independently.
The first GEK model ˆ̇yGEK

c (x) is constructed with the
low-fidelity data (Xc, ẏc), where

ẏc =

(

yc,
∂yc

∂x1
, ...,

∂yc

∂xk

)T

. (8)
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The hyper-parameters θc for the low-fidelity GEK
model can be found by maximizing the concentrated
ln-likelihood

φGEK
c =

−(nc(k′c + 1)) ln(σ̂2GEK

c )− ln|Ψ̇c|
2

, (9)

where k′c ≤ k is the number of dimensions in which
the (low-fidelity) set of gradients is incorporated and

σ̂2GEK

c = (ẏc − ḟ ˆ̇µc)T Ψ̇−1
c (ẏc − ḟ ˆ̇µc)/(nc(k′c + 1)) is the

estimated variance of the low-fidelity GEK model.
Based on the method of ρ estimation, there are two

different possible ways of constructing the second GEK
model. Traditionally, ρ is estimated using MLE. In that
case, the second GEK model is constructed with the
residuals of the scaled low-fidelity data and high-fidelity
data (Xe, ẏd = ẏe − ρˆ̇yGEK

c (Xe)), where

ẏe =

(

ye,
∂ye

∂x1
, ...,

∂ye

∂xk

)T

, (10)

ẏd =

(

ye − ρŷGEK
c ,

∂ye

∂x1
− ρ

∂ŷGEK
c

∂x1
, ...,

∂ye

∂xk
− ρ

∂ŷGEK
c

∂xk

)T

(11)

and ˆ̇yGEK
c (Xe) is the GEK estimate from the low-fidelity

model. Here the notation ŷGEK
c denotes the low-fidelity

GEK estimate of the response values (not gradients)
only. The low-fidelity GEK estimate is only required
when there is no low-fidelity data ẏc available at Xe.
The hyper-parameters θd for the second GEK model
along with ρ can be similarly found by maximizing the
concentrated ln-likelihood (see Equation 9) with the
residual data (Xe, ẏd). With all the hyper-parameters
θc and θd estimated, the resulting recursive GECoK
interpolant ˆ̇yREC

e of the high-fidelity data can then be
defined as,

ˆ̇yREC
e (x∗) = ρˆ̇yGEK

c (x∗) + ˆ̇yGEK
d (x∗). (12)

It is also possible to calculate ρ using a least squares
formulation as shown by Le Gratiet (2012). The advan-
tage of using this formulation is that ρ can be expressed
as a function of X which may provide more accurate es-
timation for ρ as shown in Le Gratiet (2012). This leads
to an alternative formulation where the second GEK
model is directly built with high-fidelity data (Xe, ẏe)
and ρ is estimated from a least squares formulation as,

ρc =
HT

e

(

Ψ̇e(Xe,Xe)
−1

σ2
e

)

ẏe(Xe)

HT
e

(

Ψ̇e(Xe,Xe)−1

σ2
e

)

He

, (13)

whereHe = Gc ·ẏc(Xe)1T f , σ2
e is the estimated Kriging

variance for the second GEK model and Gc is a vec-
tor which contains the values of the regression function
in Xe. The recursive GECoK interpolant of the high-
fidelity data for the latter formulation is then expressed
as,

ˆ̇yREC
e (x∗) = ρˆ̇yGEK

c (x∗)

+ ˆ̇µe + ψ̇
T

e Ψ̇
−1
e (ẏe − ρˆ̇yGEK

c (Xe)− f ˆ̇µe).
(14)

Note that the second part of the Equation 14 is
similar to the GEK prediction formula (see Equation
3), except the fact that the interpolation is now on ẏd

while, in Equation 12, ẏd is calculated upfront before
the fitting of the second GEK model.

The Cholesky decomposition is normally used to
factorize Ψ̇ during the estimation of hyper-parameters
which involves a k-dimensional non-linear optimization.
The Cholesky decomposition is the most time consum-
ing part of Kriging modelling, and it becomes even
more computation-intensive (a computational cost of
O(((k + 1)n)3) and a memory cost of O(((k + 1)n)2))
in GEK due to additional n × k rows/columns of Ψ̇.
In this work, the analytical gradients of Equation 2 are
introduced during the likelihood optimization so that
the number of likelihood evaluations can be reduced,
which in turn reduces the overall computational cost of
the likelihood optimization (Toal et al. 2009). The an-
alytical gradients of Equation 2 with respect to θ are
defined as (Toal et al. 2009),

∂φ

∂θ
=

1

2σ̂2

[

(ẏ − f ˆ̇µ)T Ψ̇−1 ∂Ψ̇

∂θ
Ψ̇−1(ẏ − f ˆ̇µ)

]

−
1

2

[

Ψ̇−1 ∂Ψ̇

∂θ

]T

. (15)

The derivatives of every element of the correlation
matrix Ψ̇ with respect to θ must be estimated to com-
pletely define the Equation 15. Various correlation func-
tions, which can be different for each GEK model, can
be employed (Näther and Šimák 2003; Rasmussen and
Williams 2006; Stein 1999; Šimák 2002). As the corre-
lation functions must be differentiated twice in GEK to
provide the correlation between gradient observations,
we limit ourselves to the popular Gaussian correlation
function and one instance of Matérn class of correlation
functions. The Gaussian correlation function is defined
as,

ψ(d) = exp

(

−
k
∑

m=1

θmd2m

)

, (16)
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where d = |xi
m − xj

m|. The Matérn 5
2 correlation func-

tion, which is more widely used in the machine learning
context, can be expressed as,

ψν= 5
2
(d) = (1 +

√
5a+

5a2

3
)exp

(

−
√
5a
)

, (17)

where a =
√

∑k
m=1 θmd2m. The gradient, Hessian and

their derivatives with respect to θk of the Gaussian and
the Matérn 5

2 correlation functions are given in Ap-
pendix A.

3 Test problems

Two analytical examples and two simulation examples
are used as test problems. Normalized Root Mean Square
Error (NRMSE), R Squared Error (R2), Relative Av-
erage Absolute Error (RAAE) and Relative Maximum
Absolute Error (RMAE) on a validation data set of np

uniformly distributed pseudorandom points are used as
error metrics to assess the surrogate model accuracy.
The error metrics are expressed as,

NRMSE =

√

∑np
i=1(yi

t−
ˆ̇yRECi)2

np

max(yt)−min(yt)
, (18)

R2 = 1−

∑np

i=1

(

yit − ˆ̇yRECi
)2

∑np

i=1

(

yit − yt
)2

, (19)

RAAE =

∑np

i=1 |yit − ˆ̇yRECi |
std(yt)np

, (20)

RMAE =
1

std(yt)

(

max(|y1t − ˆ̇yREC1

|, |y2t − ˆ̇yREC2

|,

. . . , |ynp

t − ˆ̇yRECnp |)
)

,

(21)

where yt is the vector of true response values, ˆ̇yREC is
the vector of predicted response values, y is the mean
of the true response values on np sample points and
std stands for standard deviation. NRMSE, R2 and
RAAE show the overall surrogate modelling accuracy
whereas RMAE is a local error metric. The values of
NRMSE and RAAE approach zero as the overall surro-
gate model accuracy increases whereas high and small
values are preferable for R2 and RMAE, respectively.

3.1 Analytical examples

The one-dimensional analytical function is obtained from
Forrester et al. (2008). Its expensive and cheap versions
are defined as,

fe(x) = (6x− 2.0)2sin(12x− 4.0), x ∈ [0, 1] (22)

and

fc(x) = 0.5(fe(x)) + 10(x− 0.5)− 5, (23)

respectively. The two-dimensional Peaks function is a
built-in MATLAB function. The expensive and cheap
versions of the Peaks function are defined as,

fe(x, y) = 3(1− x)2exp(−x2 − (y + 1)2)

− 10(
x

5
− x3 − y5)exp(−x2 − y2)

−
exp(−(x+ 1)2 − y2)

3
, [x, y] ∈ [−3, 3] (24)

and

fc(x, y) = 0.95fe(x
′, y′), x′ = 0.97x & y′ = 1.05y,

(25)

respectively.

3.2 Simulation examples

In the first simulation example, a three turn spiral in-
ductor (see Figure 1) is analyzed. The width of the con-
ductors W and the outer length Dout are considered
as design variables and their corresponding ranges are
shown in Table 1. GECoK is used to model the quality
factor Q and the inductance L of the spiral inductor at
the frequency f = 2.4 GHz. The quality factor and the
inductance can be expressed as (Yu and Bandler 2006),

Q(f,W,Dout) = −
ℑm(Y11(f,W,Dout))

ℜe(Y11(f,W,Dout))
(26)

and

L(f,W,Dout) = −
1

2πf
ℑm

(

1

Y12(f,W,Dout)

)

, (27)

where the admittance parameters (Y -parameters) are
simulated using the full-wave electromagnetic simula-
tor Agilent Advanced Design System1 (ADS) Momen-
tum. The low-fidelity data are obtained using circuit
schematic ADS simulations, while the high-fidelity data
are obtained using full-wave electromagnetic ADS Mo-
mentum simulations. The circuit schematic simulations

1 www.eesof.com, Agilent Technologies EEsof EDA, Santa
Rosa, CA.
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are based on analytical formulas for the electrical be-
havior of the spiral inductor, while the electromagnetic
simulations are based on the solution of Maxwell’s equa-
tions and are computationally more expensive. Unfor-
tunately, ADS Momentum does not provide gradient
information and therefore a parametric modeling ap-
proach (Chemmangat et al. 2011) is used to generate
macromodels to compute low-fidelity and high-fidelity
gradient data. A set of low-fidelity and a set of high-
fidelity Y -parameters are collected on a grid of 51×7×7
(f,W,Dout) samples over the frequency range [0 − 5]
GHz to build these parametric models that are then
used to generate low-fidelity and high-fidelity gradi-
ent data. The computational time to get low-fidelity
and high-fidelity admittance parameters at one sam-
ple point in the 2D (W,Dout) design space is roughly
equal to 0.0301s and 0.2541s, respectively, using a con-
temporary Windows desktop with Intel Core i3-2310M
CPU @ 2.10GHz processor and 4GB RAM. The compu-
tational time to acquire one set of 2-dimensional gra-
dient data of Q and L is very similar for both low-
fidelity and high-fidelity cases as both are estimated
from the very similar macromodels and is roughly equal
to 0.0013s. The second simulation example is a mi-

Dout
W

Port1

Port2

Fig. 1: Layout of the spiral inductor (Top View): The
dielectric is 300 µm thick with a relative dielectric con-
stant ϵr = 9.6 and a loss tangent tanδ = 0.0002.
The conductivity of the metallic layers is equal to
σ = 5.8 · 107 S/m. The spacing between conductors
is equal to 10 µm.

Table 1: Design parameters and their range of values.
(Spiral inductor 2D)

Parameter W Dout

Lower Bound (in µm) 4 140
Upper Bound (in µm) 15 210

Port 1

Port 2

(a) CST Model

(b) Top view

Fig. 2: The 5 geometric parameters implicitly define the
length of the microstrips (off1, off2 and off3) and
the spacing between the microstrips (S1 and S2).

crowave inter-digital filter which is often used in cellu-
lar phones (Couckuyt et al. 2010) (see Figure 2). This
filter has 5 geometrical parameters and the parameter
ranges are given in Table 2. GECoK is used to model
the mean of magnitude of the scattering S11 parame-
ter of the filter, denoted by |S11|mean, in the frequency
range [2.2−2.6] GHz. The function and gradient data of
S11 are obtained by carrying out full-wave electromag-
netic simulations using CST2 MicroWave Studio (CST
MWS) at 5001 frequency samples for each instance sim-
ulation. The data is further used to obtain the function
and gradient data of |S11|mean. Data of two different
fidelities are obtained by carrying out full-wave electro-
magnetic simulations on two meshes of varying refine-
ment (coarse and dense). The dense mesh has approxi-
mately 48000 tetrahedral cells and takes about 900s to
provide a converged solution (i.e., high-fidelity data).
The coarse mesh has a fixed number of 7823 tetrahedral
cells and takes about 130s to provide a converged solu-
tion (i.e., low-fidelity data). The computational time of
acquiring one function value is roughly equal to that of
acquiring 10 and 20 sets of 5-dimensional gradients for
the dense and coarse meshes, respectively.

2 www.cst.com, CST Computer Simulation Technology AG,
Darmstadt, Germany.
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Table 2: Design parameters and their range of values.
(Microwave inter-digital filter 5D)

Parameter S1 S2 off1 off2 off3
Lower Bound (in mm) 30.04 39.01 -10 -10 -10
Upper Bound (in mm) 40.04 49.01 10 10 10

4 Results and discussion

4.1 Analytical 1D test function

Figure 3 shows the high-fidelity and the low-fidelity one-
dimensional functions along with their approximations.
The design space is equidistantly sampled at 2 expen-
sive and 7 cheap sample points. The Kriging approxi-
mation with the high-fidelity corner points gives a poor
prediction whereas the GEK approximation results in a
slightly better prediction than Kriging due to the inclu-
sion of gradient information at Xe. The recursive CoK-
riging results in better approximation than both Krig-
ing and GEK approximations due to the incorporation
of additional low-fidelity data, but the GECoK approxi-
mation lies exactly on fe, being better than all the other
Kriging models. It takes 4 expensive and 11 cheap data
for CoKriging in order to overlay the GECoK approxi-
mation (see Figure 4).
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Fig. 3: Kriging with ne = 2; GEK with ne = 2 + gra-
dients; CoKriging with ne = 2 and nc = 7 and GECoK
with (ne = 2 and nc = 7) + gradients. All models are
based on the Gaussian correlation function. (1D Func-
tion)

4.2 Analytical 2D test function

Figure 5 depicts the evolution of NRMSE as a function
of ne for the two-dimensional Peaks function. It can be
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Fig. 4: Kriging with ne = 4; GEK with ne = 4 + gradi-
ents; CoKriging with ne = 4 and nc = 11 and GECoK
with (ne = 2 and nc = 7) + gradients. All models are
based on the Gaussian correlation function. (1D Func-
tion)

observed that GECoK models considerably reduce the
number of expensive samples required, more than 55%
in this case, to achieve the equivalent accuracy level
of CoKriging models. This is clearly the effect of in-
corporating additional gradient information at Xe and
Xc. Moreover, the Gaussian correlation function based
GECoK model requires just 5 expensive and 9 cheap
sample points to achieve 60% of accuracy improvement,
in terms of NRMSE, over its corresponding CoKriging
model (see Table 3). The Gaussian correlation function
based CoKriging model fails to accurately describe the
Peaks function with 5 expensive and 9 cheap sample
points (see Figure 6), and requires 15 expensive and
38 cheap sample points to reach the equivalent accu-
racy level of GECoK. A similar behaviour is observed
with the Matérn 5

2 correlation function too (see Table
3). The inaccuracy of CoKriging models is caused by
under-sampling and poor correlation among the avail-
able expensive sample points whereas GECoK benefits
from the incorporation of additional gradient informa-
tion at both Xe and Xc. Moreover, histogram plots
of the prediction error (difference between actual and
modelled surface of the Peaks function) on a 50 × 50
uniform grid also compares in favour of GECoK mod-
els (see Figure 7).

The Gaussian correlation function based GEKmodel
requires 9 expensive sample points to reach the accu-
racy level of GECoK with 5 expensive and 9 cheap
points. GECoK reduces the computational burden of
getting 4 expensive data with that of 9 cheap data in
this case. In turn, it conveys that if cheap data (func-
tion + gradient) at more than 2 × ne sample points
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Table 3: Error metrics on a validation data set of np = 500: Gaussian correlation function with ne = 5 and nc = 9
and Matérn 5/2 correlation function with ne = 9 and nc = 30. GEK uses only the expensive data. Imp. denotes
% of improvement of GEK/GECoK models over their corresponding CoKriging models. (Peaks 2D)

Gaussian

Model NRMSE Imp. R2 Imp. RAAE Imp. RMAE Imp.

CoKriging 0.3453 - 0 - 0.8671 - 2.7004 -
GEK 0.4680 -36% 0 0% 0.9183 -6% 3.6398 -35%
GECoK 0.1377 60% 0.8271 >100% 0.3565 59% 0.6679 75%

Matérn 5
2

CoKriging 0.1614 - 0.7627 - 0.3841 - 1.0646 -
GEK 0.2049 -27% 0.6176 -19% 0.5088 -32% 1.3358 -25%
GECoK 0.0445 72% 0.9820 29% 0.1035 73% 0.3740 65%
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Fig. 5: Evolution of NRMSE on a validation data set
of np = 500 for a varying number of expensive data. A
constant number of cheap data nc = 50 is used through-
out for all the expensive runs. (Peaks 2D)

can be obtained in the computational cost of getting
expensive data at ne sample points, which is quite pos-
sible in many engineering problems, then GECoK can
be utilized to achieve equally accurate approximations
of GEK with less computational burden. Although this
advantage, in general, is subject to the quality of the
cheap data, the GECoK models essentially benefit from
the abundantly available cheap ‘function and gradient’
data which help them to capture the correlation more
realistically than GEK.

4.3 Simulation examples

The simulation examples exhibit a similar accuracy im-
provement in GECoK models over the CoKriging mod-
els, as in the case of the analytical problems. For ex-
ample, both the Gaussian and Matérn 5

2 correlation
functions are able to accurately model the functions,
inductance L and quality factor Q, with just 3 expen-

sive and 6 cheap sample points (see Figure 8); they
are also able to achieve more than 50% of reduction in
NRMSE than the CoKriging models (see Table 4) which
require at least 6 (quality factor Q) to 13 (inductance
L) expensive and 30 cheap sample points to reach the
NRMSE achieved by the GECoK models. Surprisingly,
GEK with ne = 3 plus gradients results in more accu-
rate models than CoKriging with ne = 3 and nc = 6
contrarily to the results of the analytical functions (see
Tables 3 and 4). This is mainly due to the fact that
the gradients in GEK restrict the possible interpola-
tion through the function data and allows the likeli-
hood optimization to successfully capture the sample
data’s covariance structure. But, in the case of CoKrig-
ing, the likelihood optimization struggles to capture the
sample data’s covariance structure because of the small
number of samples in such a large design space and the
likelihood function exhibits various local optima. This
increases the probability of finding inaccurate hyper-
parameters in CoKriging which do not correspond to
the maximum likelihood exist in the sample data’s ac-
tual covariance structure. Moreover, as the likelihood
function in CoKriging now exhibits multiple local op-
tima, the optimizer becomes more vulnerable to the
likelihood function behaviour and is more likely to con-
verge at one of the local optima of the contour although
it is very much based on the capability of the optimizer
used (see Figure 9). In this work, a gradient-based op-
timizer called fmincon which is available in MATLAB
is used. As the analytical gradients of the likelihood
function are estimated (see Equation 15 and Appendix
A) in this work, a gradient based solver can incorporate
these gradients during the likelihood optimization. This
reduces the number of likelihood function evaluations,
which in turn reduces the overall surrogate modelling
time. Whereas a more exhaustive search algorithm such
as genetic algorithm may indeed find the global opti-
mum but requires a greater computational cost. This
result goes along with the intuitive fact that an expen-
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(a) Actual

(b) CoKriging

(c) GECoK

Fig. 6: Actual function, Gaussian correlation function
based CoKriging model with ne = 5 and nc = 9 and
GECoK model with (ne = 5 and nc = 9) + gradients.
The circle represents the HF sample points whereas the
asterisk symbol represents the LF sample points. (Peaks
2D)
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Fig. 7: Histogram of prediction error on a 50× 50 uni-
form grid: Gaussian correlation function with ne = 10
and nc = 19 (left) and Matérn 5/2 correlation function
with ne = 9 and nc = 30. (Peaks 2D)

sive gradient value is worth more than a cheap function
value. A similar behaviour is exhibited during the mod-
elling of |S11|mean for the microwave inter-digital filter
(see Table 6).

Among the correlation functions employed, the Gaus-
sian correlation function based models are observed to
be less accurate in most of the cases of the simulation
examples (see Tables 4-6 and Figures 10-11). This re-
sult goes along with the fact that the Matérn class of
correlation functions accounts for the negligible rough-
ness present in data involving typical activities of nu-
merical problem solving such as meshing and solver
run (Rasmussen and Williams (2006)). Whereas the ex-
treme smoothness requirement of the Gaussian correla-
tion function is usually considered as unrealistic for real
life data involving physical processes (Stein (1999)).
The accuracy of GECoK models is also assessed by
employing only a partial set of gradients. For exam-
ple, the gradients can be incorporated either at Xc

or Xe or even only in some of the dimensions of Xc

and/or Xe subject to their availability. Employing only
a partial set of gradients brings down the size of Ψ̇ to
(n+ (n× k′)) × (n+ (n× k′)) with k′ being the num-
ber of dimensions in which the partial set of gradients
is incorporated. GECoK provides more accurate mod-
els than CoKriging even when the gradients are intro-
duced only at Xe (see Figure 11). However, employing
gradients only at Xc, in general, does not provide much
advantage to GECoK models.

The surrogate modelling cost grows substantially in
GECoK as the gradient information is now incorpo-
rated at both Xe and Xc (see Figure 12a). Hence, for
a fair comparison, the surrogate modelling cost should
be taken into account as well. In order to ensure an
equal surrogate modelling cost for both CoKriging and
GECoK models, the correlation matrix in CoKriging
should be augmented with more function data, so that
its size equals that of Ψ̇ in GECoK. This way CoKriging
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Table 4: Error metrics on a validation data set of np = 500: Gaussian and Matérn 5/2 correlation functions with
ne = 3 and nc = 6. GEK uses only the expensive data. Imp. denotes % of improvement of GEK/GECoK models
over their corresponding CoKriging models. (Inductance 2D (L))

Gaussian

Model NRMSE Imp. R2 Imp. RAAE Imp. RMAE Imp.

CoKriging 1.71 - 0 - 3.7620 - 28.1353 -
GEK 0.0043 99% 0.9997 101% 0.0135 99% 0.0415 99%
GECoK 0.0045 99% 0.9996 101% 0.0141 99% 0.0436 99%

Matérn 5
2

CoKriging 0.0271 - 0.9870 - 0.0965 - 0.2653 -
GEK 0.0082 69% 0.9988 1% 0.0250 74% 0.0852 67%
GECoK 0.0089 67% 0.9986 1% 0.0271 71% 0.0917 65%

Table 5: Error metrics on a validation data set of np = 500: Gaussian and Matérn 5/2 correlation functions with
ne = 3 and nc = 6. GEK uses only the expensive data. Imp. denotes % of improvement of GEK/GECoK models
over their corresponding CoKriging models. (Quality factor 2D (Q))

Gaussian

Model NRMSE Imp. R2 Imp. RAAE Imp. RMAE Imp.

CoKriging 2.3015 - 0 - 5.5085 - 25.3232 -
GEK 0.0144 99% 0.9973 102% 0.0338 99% 0.1633 99%
GECoK 0.0152 99% 0.9971 102% 0.0359 99% 0.1688 99%

Matérn 5
2

CoKriging 0.0165 - 0.99 - 0.0499 - 0.1225 -
GEK 0.0026 84% 0.9999 0.3% 0.0063 87% 0.0525 57%
GECoK 0.0025 85% 0.9999 0.3% 0.0063 87% 0.0411 66%

Table 6: Error metrics on a validation data set of np = 50: Gaussian and Matérn 5/2 correlation functions with
ne = 50 and nc = 100. GEK uses only the expensive data. Imp. denotes % of improvement of GEK/GECoK
models over their corresponding CoKriging models. (|S11|mean 5D)

Gaussian

Model NRMSE Imp. R2 Imp. RAAE Imp. RMAE Imp.

CoKriging 0.2082 - 0.0057 - 0.8293 - 2.4620 -
GEK 0.0378 82% 0.9672 >100% 0.1281 85% 0.7110 71%
GECoK 0.0356 83% 0.9710 >100% 0.1217 85% 0.5687 77%

Matérn 5
2

CoKriging 0.0524 - 0.9372 - 0.1852 - 0.8378 -
GEK 0.0324 38% 0.9760 4% 0.1070 42% 0.6414 23%
GECoK 0.0297 43% 0.9798 5% 0.0993 46% 0.4833 42%

and GECoK models can be compared subject to equal
surrogate modelling cost as this cost is directly related
to the Cholesky decomposition of Ψ̇. Results of the sim-
ulation examples show that CoKriging with augmented
function data provides more accurate surrogate models
than GECoK (see Figure 12b). This confirms the intu-
itive fact that a function value is worth more than a
gradient value of equal fidelity. However, the computa-
tional cost of estimating additional function values for
CoKriging, so that the size of Ψ equals that of Ψ̇, is
significantly higher than that of acquiring function and
gradient data for GECoK (see Figure 12c). Moreover,
the surrogate modelling cost of GECoK models, in this

case, is much lower than the computational cost spent
on estimating additional function values for CoKriging
models. These facts significantly tilt comparisons in fa-
vor of GECoK. As mentioned earlier in the Section 2,
the scaling parameter ρ can be expressed as a function
of X which results in more accurate surrogate mod-
els for a simulation-based example shown in Le Gratiet
(2012) without gradients. However, when the gradient
information is incorporated, expressing ρ as a function
of X does not always lead to significant improvements
in surrogate model accuracy (see Appendix B). More-
over, better ρ estimates are obtained, when it is calcu-
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Fig. 8: Actual HF and LF functions, Gaussian correlation function based CoKriging models with ne = 3 and
nc = 6 and GECoK models with (ne = 3 and nc = 6) + gradients. The circle represents the HF sample points
whereas the asterisk symbol represents the LF sample points. (Inductance 2D (Left side figures) and quality factor
2D)

lated via MLE, as it is now based on both X and the
likelihood.
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Fig. 9: Contours of the likelihood function for the Matérn 5/2 correlation function based cheap CoKriging model
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Fig. 11: Effect of a complete and a partial set of gradients. Evolution of NRMSE on a validation data set of np = 50
for a varying number of expensive data. A constant number of cheap data nc = 100 is used throughout for all the
expensive runs. (|S11|mean 5D)
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quiring ne + (k × ne) expensive func-
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Fig. 12: GECoK with ne expensive function data + (k × ne) expensive gradient data and nc cheap function data
+ (k × nc) cheap gradient data. The size of the cheap correlation matrix is fixed to 90 × 90 for both CoKriging
and GECoK models. (|S11|mean 5D)
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5 Conclusions

This paper investigates the effects of multi-fidelity gra-
dient enhancement in Kriging-based surrogate modelling.
This has been carried out by introducing the Gradient-
Enhanced recursive CoKriging (GECoK) approach which
utilizes additional multi-fidelity gradient information to
enhance the accuracy of Kriging. As expected, multi-
fidelity gradient enhancement can significantly reduce
the number of computationally expensive simulations
required to provide accurate model representations. More-
over, results show that expensive gradient data often
provides more information about the function to be
modelled than cheap function data. This allows Gradi-
ent Enhanced Kriging (GEK) to result in more accurate
model representations than CoKriging. This also allows
GECoK to provide more accurate approximations than
CoKriging with only a partial set of gradients. Fur-
ther, this also reduces the size of the correlation ma-
trix, which in turn improves the overall computational
efficiency of GECoK modelling. However, function data
is more informative than gradient data of equal fidelity.
Hence, a CoKriging model with its correlation matrix
size scaled up with more function data in order to equal
that of GECoK outperforms GECoK; but, at a com-
putational cost of estimating additional function data
which is often significantly higher than that of estimat-
ing gradient data for GECoK. Furthermore, the cheap
gradient data is rarely advantageous while it can in-
crease the surrogate modelling cost significantly as it is
often abundantly available. Hence, care should be taken
when the cheap gradient data is incorporated in large
quantities.
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A Analytical expressions for gradient, Hessian and likelihood gradients of correlation functions

A.1 Gaussian correlation function:

Gradient of correlation function with respect to X (i.e., cross-correlation):

∂Ψ(i,j)

∂x(j)
= 2θdΨ(i,j) (28)

Hessian of correlation function with respect to X (i.e., cross-correlation):

∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

=

{

−4θuθvdudvΨ(i,j) if u ̸= v

[2θ − 4θ2d2]Ψ(i,j) if u = v
(29)

Derivative of correlation function with respect to θk:

∂

∂θk

(

ψ(du(v))
)

= −10θu(v)d2u(v)log(10)exp

(

−
k
∑

m=1

θmd2m

)

(30)

Derivatives of cross-correlation functions with respect to θk:

∂

∂θk

(

∂Ψ(i,j)

∂x
(j)
v

)

=

{

2dv10θv log(10)Ψ(i,j)
[

1− 10θkd2k
]

if v = k

2dv10θv log(10)Ψ(i,j)
[

−10θkd2k
]

if v ̸= k
(31)

∂

∂θk

(

∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

)

=

{

− 4dudv10θu10θv log(10)Ψ(i,j)
[

1− 10θkd2k

]

if u|v = k

4dudvd2k10
θu10θv 10θk log(10)Ψ(i,j) otherwise

(32)

∂

∂θk

(

∂2Ψ(i,j)

∂x
(i)
u=v∂x

(j)
u=v

)

=

⎧

⎨

⎩

log(10)Ψ(i,j)
[

2(10θ) + 4(103θ)d4 − 10(102θ)d2
]

if (u = v) = k

− log(10)Ψ(i,j)10θkd2k

[

2(10θ)− 4(102θ)d2
]

if (u = v) ̸= k
(33)

A.2 Matérn 5
2 correlation function:

Gradient of correlation function with respect to X (i.e., cross-correlation):

∂Ψ(i,j)

∂x(j)
=

5θd(
√
5a+ 1)exp

(

−
√
5a
)

3
(34)

Hessian of correlation function with respect to X (i.e., cross-correlation):

∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

=

⎧

⎨

⎩

−25θuθvdudvexp(−
√

5a)
3 if u ̸= v

[

−25θ2d2+5θ(
√

5a+1)
3

]

exp
(

−
√
5a
)

if u = v
(35)

Derivative of correlation function with respect to θk:

∂

∂θk

(

ψν=5/2(du(v))
)

=
−
(

5 + 5
√
5a
)

10θ log(10)d2u(v)exp
(

−
√
5a
)

6
(36)

Derivatives of cross-correlation functions with respect to θk:

∂

∂θk

(

∂Ψ(i,j)

∂x
(j)
v

)

=

⎧

⎨

⎩

10θv dvC2

[

C1 +
(

−25
6

)

10θkd2k

]

if v = k

10θv 10θkdvd2k

(

−25C2
6

)

if v ̸= k
(37)

∂

∂θk

(

∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−25C2

(

1−
√

510θk d2k
2a

)

10θu10θv dudv

3

if u|v = k

C225
√
510θu10θv10θkdudvd2k

6a
otherwise

(38)

∂

∂θk

(

∂2Ψ(i,j)

∂x
(i)
u=v∂x

(j)
u=v

)

=

{

V3 + V4 if (u = v) = k

V3 if (u = v) ̸= k
(39)
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where

V3 =

[(

25
√

5

6a

)

(10θu=v )2(du=v)2 −

( 25

6

)

10θu=v

]

C210θk d
2
k (40)

V4 =

⎛

⎝

−50C2(10θ )2d2

3

⎞

⎠ + C1C210θ C1 =

(

5
√

5

3
a +

5

3

)

C2 = log(10)exp
(

−

√

5a
)

(41)

B Comparison of MLE and Least Squares Estimation (LSE) of scaling parameter (ρ)

Table 7: Comparison of NRMSE on the validation data set for different ways of ρ estimation: 1D function with ne = 4,
nc = 11 and np = 500; Peaks, inductance (L) and quality factor (Q) functions with ne = 9, nc = 30 and np = 500
and |S11|mean with ne = 30, nc = 60 and np = 50. LSE(C) and LSE(L) correspond to Least Squares Estimation
with constant and linear distribution of ρ, respectively.

NRMSE (GECoK)

Gaussian Matérn 5
2

MLE LSE(C) LSE(L) MLE LSE(C) LSE(L)

(1D) 5.925e-04 2.996e+00 6.145e-01 3.949e-04 4.861e+00 7.855e-01
(2D) 7.614e-02 1.463e-01 1.547e-01 4.450e-02 1.375e-01 1.383e-01
(L) 1.080e-03 4.625e-04 4.608e-04 1.243e-03 1.120e-03 1.117e-03

(Q) 2.476e-03 9.073e-03 9.065e-03 2.509e-03 1.398se-03 1.393e-03

(5D) 4.279e-02 4.477e-02 4.774e-02 3.176e-02 3.569e-02 3.481e-02

NRMSE (CoKriging)

(1D) 3.782e-03 2.885e+01 3.134e+01 3.619e-02 3.122e+01 2.907e+01
(2D) 1.198e-01 1.790e-01 1.754e-01 1.613e-01 1.758e-01 1.766e-01
(L) 3.240e-03 3.187e-03 2.869e-03 3.128e-03 3.293e-03 3.238e-03
(Q) 2.886e-03 4.201e-03 4.652e-03 1.918e-03 3.081e-03 3.296e-03
(5D) 2.090e-01 2.088e-01 2.087e-01 1.159e-01 9.347e-02 1.091e-01

Table 8: Comparison of R2 on the validation data set for different ways of ρ estimation: 1D function with ne = 4,
nc = 11 and np = 500; Peaks, inductance (L) and quality factor (Q) functions with ne = 9, nc = 30 and np = 500
and |S11|mean with ne = 30, nc = 60 and np = 50. LSE(C) and LSE(L) correspond to Least Squares Estimation
with constant and linear distribution of ρ, respectively.

R2 (GECoK)

Gaussian Matérn 5
2

MLE LSE(C) LSE(L) MLE LSE(C) LSE(L)

(1D) 9.999e-01 8.406e-01 9.673e-01 9.999e-01 7.4139e-01 9.582e-01
(2D) 9.472e-01 8.049e-01 7.818e-01 9.819e-01 8.276e-01 8.257e-01
(L) 9.999e-01 9.999e-01 9.999e-01 9.999e-01 9.999e-01 9.999e-01
(Q) 9.999e-01 9.989e-01 9.989e-01 9.999e-01 9.999e-01 9.999e-01
(5D) 9.580e-01 9.540e-01 9.477e-01 9.769e-01 9.708e-01 9.722e-01

R2 (CoKriging)

(1D) 9.998e-01 0 0 9.981e-01 0 0
(2D) 8.692e-01 7.080e-01 7.197e-01 7.627e-01 7.183e-01 7.156e-01
(L) 9.998e-01 9.998e-01 9.998e-01 9.998e-01 9.998e-01 9.998e-01
(Q) 9.998e-01 9.997e-01 9.997e-01 9.999e-01 9.999e-01 9.999e-01
(5D) 0 8.456e-04 1.324e-03 6.919e-01 7.996e-01 7.267e-01
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Table 9: Comparison of RAAE on the validation data set for different ways of ρ estimation: 1D function with ne = 4,
nc = 11 and np = 500; Peaks, inductance (L) and quality factor (Q) functions with ne = 9, nc = 30 and np = 500
and |S11|mean with ne = 30, nc = 60 and np = 50. LSE(C) and LSE(L) correspond to Least Squares Estimation
with constant and linear distribution of ρ, respectively.

RAAE (GECoK)

Gaussian Matérn 5
2

MLE LSE(C) LSE(L) MLE LSE(C) LSE(L)

(1D) 3.812e-03 2.188e-01 1.019e-01 1.634e-03 2.818e-01 1.201e-01
(2D) 1.4296e-01 3.529e-01 3.967e-01 1.035e-01 3.491e-01 3.209e-01
(L) 2.088e-03 1.0346e-03 1.037e-03 3.466e-03 2.327e-03 2.322e-03

(Q) 7.130e-03 1.889e-02 1.887e-02 3.962e-03 3.652e-03 3.641e-03

(5D) 1.579e-01 1.395e-01 1.461e-01 1.199e-01 1.246e-01 1.214e-01

RAAE (CoKriging)

(1D) 7.184e-03 1.117e+00 1.066e+00 1.929e-02 1.189e+00 1.014e+00
(2D) 2.761e-01 4.696e-01 4.336e-01 3.841e-01 5.040e-01 5.032e-01
(L) 9.793e-03 8.387e-03 7.946e-03 9.280e-03 8.537e-03 8.709e-03
(Q) 8.093e-03 8.799e-03 9.404e-03 5.207e-03 7.448e-03 7.379e-03
(5D) 8.266e-01 8.327e-01 8.323e-01 4.004e-01 3.561e-01 4.018e-01

Table 10: Comparison of RMAE on the validation data set for different ways of ρ estimation: 1D function with ne = 4,
nc = 11 and np = 500; Peaks, inductance (L) and quality factor (Q) functions with ne = 9, nc = 30 and np = 500
and |S11|mean with ne = 30, nc = 60 and np = 50. LSE(C) and LSE(L) correspond to Least Squares Estimation
with constant and linear distribution of ρ, respectively.

RMAE (GECoK)

Gaussian Matérn 5
2

MLE LSE(C) LSE(L) MLE LSE(C) LSE(L)

(1D) 1.291e-02 1.101e+00 4.981e-01 2.172e-02 1.360e+00 5.394e-01
(2D) 7.517e-01 7.599e-01 9.738e-01 3.739e-01 7.886e-01 9.874e-01
(L) 2.725e-02 1.542e-02 1.514e-02 1.775e-02 2.816e-02 2.763e-02
(Q) 4.965e-02 1.540e-01 1.539e-01 2.114e-02 2.094e-02 2.082e-02

(5D) 5.854e-01 8.901e-01 9.735e-01 4.786e-01 6.143e-01 6.229e-01

RMAE (CoKriging)

(1D) 5.873e-02 2.293e+00 3.209e+00 1.815e-01 2.279e+00 3.149e+00
(2D) 1.073e+00 8.763e-01 1.129e+00 1.064e+00 8.466e-01 9.295e-01
(L) 6.677e-02 6.191e-02 5.000e-02 5.480e-02 5.668e-02 5.091e-02

(Q) 5.199e-02 9.128e-02 1.024e-01 2.702e-02 5.050e-02 5.855e-02
(5D) 2.566e+00 2.454e+00 2.454e+00 1.385e+00 1.219e+00 1.338e+00


