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ABSTRACT 24 

High levels of nest predation influence the population dynamics of many tropical birds, 25 

especially when deforestation alters nest predator communities. Consequences of tropical 26 

forest fragmentation on nest predation, however, remain poorly understood, as natural 27 

predation patterns are only well documented in a handful of tropical forests. Here, we show 28 

the results of an extensive study of predation on natural nests of Cabanis’s Greenbul during 29 

three years in a highly fragmented cloud forest in SE Kenya. Overall predation rates derived 30 

from 228 scrub nests averaged 69%, matching the typical high predation level on tropical bird 31 

species. However, predation rates strongly varied in space and time, and a model that 32 

combined fragment-, edge-, concealment-, year- and nest timing effects was best supported by 33 

our data. Nest predation rates consistently increased from forest edge to interior, opposing the 34 

classic edge effect on nest predation, and supporting the idea that classic edge effects are 35 

much rarer in Afrotropical forests than elsewhere. Nest concealment also affected predation 36 

rates, but the strength and direction of the relationship varied across breeding seasons and 37 

fragments. Apart from spatial variation, predation rates declined during the breeding season, 38 

although the strength of this pattern varied among breeding seasons. Complex and variable 39 

relationships with nest predation, such as demonstrated here, suggest that several underlying 40 

mechanisms interact and imply that fixed nesting strategies may have variable - even 41 

opposing - fitness effects between years, sites and habitats. 42 

 43 

KEYWORDS: tropical birds; habitat fragmentation; nest success; Taita Hills; Phyllastrephus 44 

cabanisi placidus 45 

 46 

RUNNING HEADLINE: Variation in nest predation within Afrotropical forest fragments 47 

 48 
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INTRODUCTION 50 

 51 

Predation on eggs and nestlings constitutes a major cause of reproductive failure in birds 52 

(Wilcove 1985, Martin and Roper 1988), and high predation rates may contribute to the 53 

decline in avian populations (Martin and Clobert 1996, Stratford and Robinson 2005, 54 

Robinson and Sherry 2012). Understanding spatial and temporal variation in nest predation 55 

therefore is a prerequisite to predict avian population dynamics and viability under landscape 56 

or climate change (Robinson et al. 1995, Chalfoun et al. 2002, Grant et al. 2005). This 57 

particularly applies to species from tropical rainforests that currently suffer from severe 58 

anthropogenic effects such as habitat loss and biological invasions, without similar episodes 59 

in the recent past. Yet, data on natural nest predation from the tropics remain scarce and are 60 

strongly biased towards Neotropical forests (Robinson et al. 2000, Kvarnbäck et al. 2008, 61 

Ryder et al. 2008, Brawn et al. 2011; but see Thompson 2004, Spanhove et al. 2009a, 62 

Newmark and Stanley 2011 for some examples on Afrotropical forest birds). Nest predation 63 

studies from the tropics therefore remain invaluable, as they may document unusual patterns 64 

which can lead to new insights in processes that are even relevant for bird communities well 65 

outside the original study area. 66 

 67 

Reproductive failure due to nest predation is generally high in small, isolated and degraded 68 

forest fragments (Small and Hunter 1988, Tewksbury et al. 2006), in particular near forest-69 

matrix ecotones (edge effect on nest predation sensu Gates and Gysel 1978, Andrén and 70 

Angelstam 1988),). However, a vast amount of studies do not support a general negative 71 

impact of fragmentation on breeding success, and a few studies even support the opposite 72 

patterns (Lahti 2001, Batáry and Báldi 2004, Vetter et al. 2013). In Afrotropical forests in 73 

particular, nest predation rates are often lower near forest edges or in small forest remnants 74 

with high edge-to-interior ratios. For instance, in the forest remnants of the Taita Hills (SE 75 

Kenya), Spanhove et al. (2009a) revealed relaxed predation rates on nests of the forest-76 

dependent White-starred Robin (Pogonocichla stellata) in the smallest fragments with the 77 

highest edge-to-interior ratio. Experiments with artificial ground nests in the same area 78 

revealed highly similar results (Githiru et al. 2005, Spanhove et al. 2009c). In the nearby 79 

Usambara mountains of NE Tanzania, inverse edge effects were shown in six out of eleven 80 

forest species (Newmark and Stanley 2011), and predation rates on artificial shrub nests did 81 

not vary significantly with fragment size or distance from the forest edge (Hanson et al. 82 

2007). Carlson and Hartman (2001) recorded higher predation rates on artificial eggs inside 83 
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intact forests compared to fragment edges in the Udzungwa Mountains, another Eastern Arc 84 

mountain in central Tanzania, while in the lowland Kakamega forest of Western Kenya, a 85 

weak classic edge effect was found. However, the largest and least disturbed forest remnants 86 

of Kakamega showed the highest (not lowest) predation rates (Maina and Jackson 2003). In 87 

conclusion, Afrotropical studies on natural or artificial nests hardly support the classic effects 88 

of forest fragmentation on nest predation. 89 

 90 

Apart from fragmentation effects, nest predation rates have also been shown to 91 

heterogeneously vary with nest concealment, nest height, canopy structure (Martin 1992, 92 

1993, Lambert and Kleindorfer 2006, Colombelli-Négrel and Kleindorfer 2009) and timing of 93 

breeding (Mezquida and Marone 2001, Peak 2007). Furthermore, they tend to differ among 94 

successive stages of the breeding cycle, i.e. egg laying, incubation, and nestling feeding (Peak 95 

et al. 2004, Grant et al. 2005, Brawn et al. 2011). While some studies revealed higher 96 

predation rates during egg laying (Mezquida and Marone 2001), others held increased 97 

parental and nestling activity responsible for the higher rates recorded during the nestling 98 

stage (Redondo and Castro 1992, Ibáñez-Álmano et al. 2012). Some studies yet found even 99 

more complex temporal relationships, such as decreased predation rates during egg-laying, 100 

increased rates during incubation, and decreased rates after hatching (e.g. cubic or saw-tooth 101 

relationships; Grant et al. 2005, Low and Pärt 2009). These variable patterns not only reflect 102 

underlying variation in the abundance, activity patterns or prey selection of predators, but may 103 

also relate to shifts in predators response due to parental behaviour. Such variation hence 104 

pleads for the study of predation rates on natural – rather than artificial – nests to comprehend 105 

patterns in nest predation. 106 

 107 

In this study, we analysed predation rates on natural nests of Cabanis’s Greenbul 108 

(Phyllastrephus cabanisi) during three consecutive breeding seasons in two isolated cloud 109 

forest fragments in south-east Kenya. Like most other tropical species, Cabanis’s Greenbul 110 

tend to lay smaller clutches, incubate their eggs longer, provide longer post-fledgling care, 111 

and show higher adult survival rates compared to temperate forest birds of comparable size 112 

and ecology (Martin 1996, Stutchbury and Morton 2001; data on Cabanis’s Greenbul from 113 

Keith et al. 1992, and Callens 2012). Using models that can accommodate spatial and 114 

temporal variation in predation risk, we analysed to what extent predation rates vary with 115 

distance to the forest edge, concealment, vegetation structure, timing of breeding and breeding 116 

stage. Given the strong heterogeneity in strength and direction of the relationships with nest 117 



5 

 

predation emerging from the literature (see higher), we here apply an information-theoretic 118 

approach to rank a set of eighteen logistic-exposure models (sensu Shaffer 2004), without 119 

making a priori predictions on single factor effects. 120 

 121 

 122 

METHODS 123 

 124 

Study area  125 

########### Approximate position of figure 1############ 126 

 127 

The Taita Hills (maximum altitude 2220 m) are located in south-east Kenya (03°20’S, 128 

38°15’E), on the dry Tsavo plains that isolate these hills from other highland blocks by over 129 

80 km in either direction (Lovett 1985, Pellikka et al. 2009, Figure 1). While long (Mar-May) 130 

and short (Nov-Dec) rainy seasons alternate within the Intertropical Convergence Zone, mist 131 

and cloud precipitation is a year-round phenomenon in the Taita forests (mean annual 132 

precipitation ca. 1200 mm; Pfeifer et al. 2011). The verdant Taita Hills constitute the 133 

northernmost extension of the Eastern Arc Mountains, and with less than 2% of the original 134 

montane forest cover remaining and a loss of over 50% indigenous forest since 1955 (Pellikka 135 

et al. 2009), this archipelago is ranked among the most threatened sites in this globally 136 

important biodiversity hotspot (Lovett and Wasser 1993, Myers et al. 2000). At present, the 137 

Taita Hills cover around 430 ha of indigenous forest, fragmented into three larger forest 138 

patches (86-185 ha) and nine tiny remnants (2-8 ha), embedded in a densely populated mosaic 139 

of small-scale subsistence agriculture, bushes and exotic plantations (Pellikka et al. 2009). 140 

The remaining indigenous forest patches are mostly of a degraded Afromontane type, 141 

characterized by Albizia gummifera, Macaranga conglomerata, Newtonia buchananii, 142 

Phoenix reclinata, Strombosia scheffleri, Tabernaemontana stapfiana, and Xymalos 143 

monospora in the tree layer (Chege and Bytebier 2005, Aerts et al. 2011). 144 

 145 

Nest data for this study were collected in two of the larger forest remnants, i.e. Chawia forest 146 

(CH, 86 ha) and Ngangao forest (NG, 120 ha), which are the only two reasonably accessible 147 

forest fragments where the study species occurs in sufficient large numbers. CH is located at 148 

the top of a gently sloping cliff (1470-1600 m), while NG is located ca. 10 km north of CH, 149 

on an eastern slope (1700-1952 m) of a north-south oriented mountain ridge. The former 150 

forest is considered to be more intensively disturbed compared to NG, due to its long history 151 
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of forest clearing and strong human-induced disturbance (Beentje 1987, Wilder et al. 1998, 152 

Chege and Bytebier 2005, Callens 2012).  153 

 154 

Study species  155 

 156 

Cabanis’s Greenbul (Phyllastrephus cabanisi s.l.) is a forest specialist from central- to east-157 

African (sub)tropical lowland to montane moist forest (Keith et al. 1992, Bennun et al. 1996). 158 

Within the Taita forest archipelago, the subspecies P. c. placidus (sometimes considered as a 159 

full species, Placid Greenbul) has been recorded in twelve indigenous forest fragments, The 160 

species builds cup-shaped nests at an average height of 1.3 m in shrub, climbers or small tree 161 

species such as Chassalia discolor, Culcasia scandens, Dracaena steudneri and Uvaria sp. 162 

The onset of breeding coincides with the start of the short rain season and the breeding season 163 

generally runs from mid-October till the end of March (Keith et al. 1992). Most clutches 164 

contain two eggs (22 x 15 mm), which are incubated during 17 days and most nestlings fledge 165 

after 11-13 days. Based on occasional visual observations and video-recordings at Cabanis’s 166 

Greenbul nests during 2007-2010 in the Taita Hills (Callens 2012), the following nest 167 

predators were encountered: African Goshawk (Accipiter tachiro), Black Goshawk (A. 168 

melanoleucus), Sykes’s Monkey (Cercopithecus mitis albogularis) and Yellow Baboon 169 

(Papio cyanocephalus). We refer to Spanhove et al. (2009a) for a more comprehensive list of 170 

putative nest predators in the Taita Hills, comprising mammals (rodents, shrews, civets and 171 

mongooses), reptiles (snakes) and birds. 172 

 173 

Nest monitoring 174 

 175 

During three breeding seasons (2007- 2010), six experienced observers searched all suitable 176 

habitat and used behavioural clues to locate as many Cabanis’s Greenbul nests as possible in 177 

both forest fragments. Once detected, nest fate was recorded every third day on average (95% 178 

confidence interval: 1-6 days), allowing analysis based on ‘daily predation rates’ sensu 179 

Mayfield (1961). Nests observed during the building phase only, or initially detected with 180 

fully-grown fledglings expected to fledge the same day were omitted from further analysis. 181 

To avoid biases in the calculation of daily predation rates, we censored the final monitoring 182 

intervals for five nests that failed due to reasons other than nest predation (mainly abandoned 183 

nests). 184 

 185 
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For each nest, the distance to the nearest indigenous forest boundary was calculated in 186 

Arcmap 9.2 (Environmental Systems Research Institute, 1999-2006), using a combination of 187 

GPS coordinates (Garmin GPSMAP60CSx, root mean square error of 6m under canopy) and 188 

a forest boundary vector layer based on aerial photographs (25.01.2004, Pellikka et al. 2009) 189 

and land cover data derived from a SPOT 4 image (15.10.2003, Clark and Pellikka 2009). As 190 

deforestation has almost halted in the Taita Hills, these forest boundary data were still 191 

sufficiently accurate to calculate distance-to-edges for all nests. Exotic plantations and large 192 

open areas within the forest were not considered as indigenous forest. Nest concealment (i.e. 193 

percentage covered by foliage at a distance of 1 m) was visually estimated from the four 194 

cardinal directions and the average was used in subsequent analysis. Canopy cover was 195 

derived from standardised canopy pictures, but this variable was omitted in further analysis as 196 

it was confounded with nest concealment (significant higher concealment under an open 197 

canopy), because concealment was considered to be the ecological most relevant parameter.  198 

 199 

To study temporal variation in nest predation, we used the onset of egg laying in each nest 200 

instead of the actual date of the nest monitoring, as the latter was strongly correlated with nest 201 

age. The clutch initiation date was inferred as follows (in order of priority): (i) the observation 202 

date minus the age of the nestlings when first observed minus the average incubation time (i.e. 203 

17 days) (124 nests; maximum expected error of 2 days); or (ii) the midpoint between the last 204 

observation of a nest under construction and the first observation of a nest with eggs; or (48 205 

nests, max. error 4 days) (iii) the midpoint of all observation days of a nest with eggs 206 

(assumed to reflect the mid of incubation) minus half of the average incubation time (i.e. 8.5 207 

days) (56 nests, max. error 8.5 days). Clutch initiation dates allowed us to estimate nest ages 208 

and were used to assess relationships between the timing of breeding and nest predation. 209 

 210 

Statistical analysis  211 

 212 

Relationships with nest predation were analysed with logistic-exposure models, which are 213 

generalized linear models with binomial distribution and a link function designed for flexible 214 

nest predation analysis based on daily predation rates. More specifically, these models 215 

account for the fact that survival probability depends on the interval length by defining the 216 

logistic-exposure link function as ln[
1/t 

/ (1-
1/t

)], with  the daily survival rate and t the 217 

interval length (in days) between two nest checks (Shaffer 2004). Eighteen a priori defined 218 

models were constructed in which the explanatory variables were logically grouped according 219 
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to putative sources of variation (see Table 1 of the results). As such, distance to the forest 220 

edge, fragment and their interaction were mostly entered simultaneously, which corresponds 221 

with the most likely scenario of fragment-specific edge effects. Similarly, clutch initiation 222 

date was grouped with year and their interaction, reflecting different temporal patterns in nest 223 

predation between the three successive annual breeding seasons. For the nest age, the 224 

inclusion of a quadratic term allowed us to model more complex age- and stage-related 225 

patterns in predation as described in the introduction. This limited number of candidate 226 

models avoids substantial data dredging which would be a major risk when testing all possible 227 

combinations of mean terms and interactions (see Burnham and Anderson 2002). Models 228 

were ranked and weighted based on a small-sample information criterion (AICc, Burnham 229 

and Anderson 2002), and inference was made from an “unconditional” model derived from 230 

the weighted averaging of candidate models (Burnham and Anderson 2002, using the MuMIn 231 

package in R (Bartón 2012)). Parameter averaging was based on all 18 a priori models (‘full 232 

method’), which produces unbiased parameter estimates but no variance estimates, or 233 

restricted to the models that contain the parameters (‘subset method’), where the parameter 234 

estimates are typically biased away from zero, but where variances are estimable (Barton 235 

2012). For comparison reasons, we also provide the results of two alternative model selection 236 

methods (Online Reference 1). 237 

 238 

RESULTS 239 

 240 

A total of 228 active nests were monitored (56 nests in 2007-08, 86 nests in 2008-09, 86 nests 241 

in 2009-10), of which the majority was discovered at an early stage of nest development (91 242 

in the building stage, 113 in the egg stage and 24 in the nestling stage). Overall, 126 of the 243 

clutches were predated prior to fledging. Frequent nest checks resulted in 1134 time interval 244 

checks in which the nest fate was recorded. Daily predation rates estimated from logistic-245 

exposure models averaged at 0.038, corresponding with an overall predation rate of 69% 246 

(95% confidence interval: 63-75%) over a 30 day interval.  247 

 248 

Predation rates strongly varied among nests. The best fitting models comprised both temporal 249 

and spatial effects in the fixed part (Table 1), indicating that predation on Cabanis’s Greenbul 250 

nests differed between both fragments and varied with the combined effect of clutch initiation 251 

date and distance to the edge. At a finer spatial scale, concealment  also affected nest 252 

predation rates, however, only in models that accounted for variation at larger scales (Table 253 
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1). Models that contained fewer parameters were less strongly supported by our data, 254 

suggesting that nest predation cannot be explained by a few key characteristics. An age-255 

related shift in predation rates was not clearly supported by our data (Table 1). Both a classic 256 

p-value based stepwise backward model selection procedure and an automated AICc-based 257 

model selection procedure resulted in a comparable selection (Online Resource 1), i.e. models 258 

that combined temporal and spatial parameters in similar ways. 259 

 260 

########### Approximate position of Table 1############ 261 

 262 

The averaged model supported an increase in nest predation toward the interior of both forest 263 

fragments. In fragment NG, daily predation rates nearly doubled from the edge toward the 264 

interior (Figure 2a), while a five-fold increase was detected in fragment CH (Figure 2b). Nest 265 

concealment also affected nest predation rates, however, relationships were not consistent in 266 

both fragments. In NG, nest predation decreased with increasing concealment (Figure 2c), 267 

while in CH, an opposite pattern was found (Figure 2d). In NG, nest predation rates tended to 268 

be equally affected by vegetation structure as by edge effects (both showed approx. a twofold 269 

change). In CH, predation rates increased only three times from least to the best concealed 270 

nests, compared to five times due to inverse edge effects. In both fragments, timing of 271 

breeding had the strongest effect on nest predation: nests initiated early in the breeding season 272 

had a higher probability to become depredated compared to later ones (Figures 2e and 2f). 273 

However, this pattern strongly varied between years as shown by a tenfold decrease in the 274 

first year compared to a very weak trend in the last one. 275 

 276 

########### Approximate position of Figure 2############ 277 

 278 

 279 

DISCUSSION 280 

 281 

Results from this study show that on average 69% of all initiated clutches of Cabanis’s 282 

Greenbul were depredated at the egg or nestling stages. This rate corresponds well with the 283 

average predation rate on tropical birds (Robinson et al. 2000, Stutchbury and Morton 2001). 284 

Within the Taita Hills, nest predation rates were highly variable in space and time. Rates 285 

consistently increased from the forest edge toward the interior, a finding that strongly opposes 286 

the predictions from ‘classic’ edge effects on nest predation (sensu Gates and Gysel 1978, 287 
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Lahti 2001). Higher predation in the forest interior rather supports the notion of an ‘inverse’ 288 

edge effect, as earlier observed on nests of the White-starred Robin (Pogonocichla stellata) in 289 

the Taita Hills (Spanhove et al. 2009a), and of a small number of other species elsewhere 290 

(Lahti 2001, Newmark and Stanley 2011). 291 

 292 

Inverse edge effects on nest predation can be caused by (at least) two different mechanisms. 293 

First, relaxed predation rates near forest edges may reflect low local abundances of native 294 

(ground-dwelling) nest predators, possibly due to competition from, or predation by, domestic 295 

or feral predators (Maina and Jackson 2003). At the same time, meso-predator release (sensu 296 

Crooks and Soulé, 1999) due to the loss of primary predators from small or degraded forest 297 

fragments may cause high predation rates in the forest interior, the combined effect of which 298 

may result in inward (rather than outward) gradients in predation risk. While domestic dogs 299 

were abundant near forest edges in our study area, their impact on predator populations of 300 

Cabanis’s Greenbul (presumed to be mainly arboreal) remains unknown. 301 

 302 

Alternatively, inverse edge effects may result from a preference for interior forest habitat by 303 

nest predators, either because of higher habitat quality, lower human impact, or both (Carlson 304 

and Hartman 2001, Spanhove et al. 2009b). We assume that for Cabanis’s Greenbul, such 305 

mechanism is more likely to explain the observed pattern in nest predation, as the only 306 

predators confirmed from visual observations and video-taping (two raptors, African and 307 

Black Goshawk, and two monkeys, Syke’s Monkey and Yellow Baboon) were mostly 308 

recorded in the interior of indigenous forest fragments, and monkeys are frequently chased by 309 

farmers surrounding the fragments. While forest-restricted predators may cause inverse edge 310 

effects on nest predation, such patterns can be expected to be masked due to predation by 311 

matrix and edge-associated predators, especially by corvids (Nour et al.1993). The lack of 312 

significant numbers of corvids in and around Afrotropical forests may hence be responsible 313 

for the lack of support for classic edge- and fragmentation effects on nest predation. Formal 314 

discrimination between these alternative mechanisms, however, requires targeted population 315 

studies on a wider suite of nest predators.  316 

 317 

Irrespective of these (or other) underlying mechanisms, strongly reduced levels of nest 318 

predation in more degraded forest patches or closer to forest edges may ultimately result in 319 

increased (rather than decreased) breeding success of small forest passerines in severely 320 

fragmented landscapes (Spanhove et al. 2009a). Such counter-intuitive process may (partly) 321 
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explain the observed increase in the effective size (Ne) of Cabanis’s Greenbul populations in 322 

forest CH over the last decade, while no such increase was inferred in the more pristine forest 323 

NG (analyses based on microsatellite genotypes sampled between 1996-2010; Callens 2012). 324 

Similarly, such processes may also explain why predation rates in the Taita Hills were two 325 

times lower than those recorded in continuous Usambara forest, and nearly six times lower 326 

than in Usambara’s forest fragments (Newmark and Stanley 2011). Although the overall 327 

forest type is comparable between both areas, the Taita Hills forest suffered from stronger 328 

fragmentation, resulting in much smaller forest remnants. Such differences at the landscape-329 

scale may thus trigger avian communities within forest patches (see also Lee et al. 2002).  330 

 331 

Apart from edge-related variation, predation rates in fragment NG were also lower in more 332 

concealed nests, most likely because visual, chemical or auditory cues that attract nest 333 

predators were more strongly masked (Martin 1993, Caro 2005, Colombelli-Négrel and 334 

Kleindorfer 2009). Surprisingly, however, an opposite trend was observed in fragment CH, 335 

where more strongly concealed nests suffered from higher predation levels. Such unexpected 336 

effect may result from the fact that high levels of nest concealment are often indicative of 337 

dense understory habitat, where nest predators such as rodents and shrews can thrive. 338 

Abundances of these species have been shown to be higher in CH compared to NG 339 

(Odhiambo 2000, Oguge et al. 2004), although evidence for nest predation by either of them 340 

is currently lacking, nor do we have accurate density estimates to directly test this hypothesis. 341 

 342 

Beside spatial variation, predation rates on Cabanis’s Greenbul nests also showed strong 343 

temporal variation, both within and between breeding seasons. The most striking finding was 344 

a steep decrease in predation rates during the course of the first two breeding seasons, while 345 

no obvious differences were detected between predation in the nestling stage compared to egg 346 

stage. Temporal shifts in predation are widely documented in the literature, both with 347 

increasing (e.g. Mezquida and Marone 2001, Grant et al. 2005, Peak 2007) and decreasing 348 

(e.g. Peak 2003, Shustack and Rodewald 2011) predation rates in the course of a breeding 349 

season, revealing a plethora of possible differences between egg and various nestling stages 350 

(e.g. Martin 1992, Peak et al. 2004, Grant et al. 2005, Brawn et al. 2011, Ibáñez-Álmano et al. 351 

2012). Without in-depth insights into the predator community dynamics, however, attempts to 352 

explain these patterns typically involve post-hoc reasoning and would remain highly 353 

speculative in this case study. Characteristics of the landscape structure (e.g. the extreme 354 

levels of habitat fragmentation) and behaviour of the Cabanis’s Greenbul (e.g. the cooperative 355 
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breeding behaviour or the lack of begging behaviour of nestlings) may further have shaped to 356 

the observed patterns of nest predation. Even without a full understanding of the underlying 357 

processes, detailed predation studies based on natural nests such as this one remain highly 358 

needed to document the worldwide variability in nest predation patterns, and combining 359 

multiple studies in meta-analysis may allow us to draw conclusions on the role of behaviour, 360 

landscape and nest characters (e.g. Batáry and Báldi 2004, Vetter et al. 2013). 361 

 362 

Spatial and temporal variation in the strength or direction of relationships with nest predation 363 

suggests that predator communities, predator densities, or predator strategies may vary in 364 

space and time. As an example, for generalist (omnivorous) predators that also feed on fruits 365 

and seeds, phenological differences in fruit setting between fragments and years, a well-366 

known phenomenon in tropical fragmented landscapes (see Lehouck et al. 2009 for a study in 367 

the Taita archipelago), may affect their dependency on eggs or nestlings. Complex and 368 

variable relationships with nest predation, such as demonstrated here, suggest that several 369 

underlying mechanisms may interact and imply that fixed nesting strategies may have 370 

variable (and even opposing) fitness effects between years and habitats. In particular, the 371 

opposite influence of concealment on nest predation between the two fragments prevents us 372 

from defining general guidelines on forest management to safeguard the reproduction of 373 

forest birds. Yet, our results consistently identified forest edges as low-predation zones for a 374 

shrub-nesting bird species, and this finding should be considered when drawing conservation 375 

plans for fragmented Afrotropical forest. 376 

 377 
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TABLES 526 

 527 

Table 1. Fit statistics of eighteen a priori defined statistical models that explain spatial and 528 

temporal variation in daily predation rates on Cabanis’s Greenbul nests in two cloud forest 529 

fragments. Models are compared based on the number of parameters (k), an information 530 

criterion corrected for sample size (AICc), difference in AICc from the most parsimonious 531 

model (ΔAICc), and model weight (Wj) indicating the relative support for each model.  532 

 533 

Model k AICc ΔAICc Wj 

LANDSCAPE 
a
 + TIMING 

b
 + CONCEALMENT

 c 11 740.30 0.00 0.40 

LANDSCAPE 
a
 + TIMING

 b 9 740.73 0.43 0.32 

LANDSCAPE 
a
 + TIMING 

b
 + CONCEALMENT 

c
 + STAGE

 d
 13 741.65 1.35 0.20 

FRAGMENT 2 746.53 6.23 0.02 

LANDSCAPE
 a 4 746.61 6.31 0.02 

LANDSCAPE 
a
 + CONCEALMENT

 c
 6 746.73 6.43 0.02 

LANDSCAPE 
a
 + STAGE

 d
 6 747.54 7.24 0.01 

LANDSCAPE 
a
 + CONCEALMENT 

c
 + STAGE

 d
 8 747.73 7.43 0.01 

DISTANCE_TO_EDGE 2 752.02 11.72 0.00 

NEST_AGE 2 756.75 16.45 0.00 

CLUTCH INITIATION DAY 2 757.54 17.24 0.00 

NULL MODEL 1 757.68 17.38 0.00 

STAGE
 d

 3 757.94 17.64 0.00 

CONCEALMENT 2 759.58 19.28 0.00 

CONCEALMENT + STAGE
 d

 4 759.92 19.62 0.00 

YEAR 3 760.48 20.18 0.00 

TIMING
 b 6 762.55 22.25 0.00 

TIMING 
b
 + CONCEALMENT 7 764.34 24.04 0.00 

 534 
a
 comprises FRAGMENT, DISTANCE_TO_EDGE, and the two factor interaction 535 

b
 comprises CLUTCH_INITIATION_DATE, YEAR and the two factor interaction 536 

c
 models with LANDSCAPE and CONCEALMENT effects include the FRAGMENT x CONCEALMENT interaction  537 

d
 comprises NEST_AGE and its quadratic factor 538 

539 
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FIGURE CAPTIONS 540 

 541 

Fig. 1 Land cover map of the Taita Hills study area above 1300m asl, SE Kenya (b), showing 542 

indigenous forest, plantation, bushland (inclusive small tree patches) and the matrix of urban 543 

and agricultural land. Failed and successful nests are indicated on the detailed maps of 544 

Ngangao (a) and Chawia (c) forest fragment 545 

 546 

Fig. 2 Daily predation rates on Cabanis’s Greenbul nests in relation to (i) distance to forest 547 

edge in fragment Ngangao (a) and Chawia (b); (ii) nest concealment in fragment Ngangao (c) 548 

and Chawia (d); and (iii) clutch initiation date in fragment Ngangao (e) and Chawia (f). 549 

Estimates (and 95% confidence interval) are based on partial effects of the ‘subset’-averaged 550 

model and restricted to the observed range of the explanatory variable 551 

 552 

553 
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