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Introduction

The iterative solution of integral equations containing the Green function of the
Helmholtz equation as the integration kernel requires repeated matrix-vector prod-
ucts. These products can be accelerated by means of a so-called fast multipole
method (FMM). Of the many fast multipole methods in use today, the Multilevel
Fast Multipole Algorithm (MLFMA) is arguably among the most successful ones. It
allows the simulation of electrically large structures that are intractable with direct
or unaccelerated iterative solvers. Testimony to the MLFMAs myriad uses is its
implementation in various commercial EM software packages such as FEKO and
CST Microwave studio. However, the MLFMA has one big drawback: a numerical
instability prevents the method from being used on low frequency (LF) interactions,
i.e. interactions between sources and observers that are less than approximately
one wavelength apart. As a consequence configurations containing significant sub-
wavelength geometrical detail cannot be efficiently treated using the MLFMA alone
and a hybrid method is necessary. However, the LF methods in use today are gen-
erally less efficient due to non-diagonal translation operators (multipole methods)
or the need for six radiation patterns (spectral methods). In this contribution a
novel algorithm, called the Nondirective Stable Plane Wave Multilevel Fast Multi-
pole Algorithm (NSPWMLFMA) [1], will be presented that is stable at LF, exhibits
diagonal translation operators and requires only one radiation pattern. The method
is based on an analytical expression for a translation operator in the z-direction.
This translation operator is made numerically stable using a shift of the integra-
tion path into the complex plane. It even has a DC-limit. A QR-based method is
then used to extend the applicability to all the other translation directions. The
algorithm has also been parallelized using Open FMM [2]. Finally some numerical
results will be shown.

The LF breakdown of the MLFMA

The LF breakdown can be understood by looking at the translation operator of the
MLFMA

T (krT , θ, φ) =
L∑

l=0

(2l + 1)j−lh
(2)
l (krT ) Pl

(
k̂ (θ, φ) · r̂T

)
, (1)

with k the wavenumber, rT = rT r̂T the translation vector and k̂ (θ, φ) = cos φ sin θx̂+
sinφ sin θŷ + cos θẑ. The functions Pl (·) are the Legendre polynomials. Because
the spherical Hankel function h

(2)
l (krT ) increases exponentially as a function of l if

l > krT , the terms with a low l are eventually swamped in the high order terms.
Obviously, the loss of the low order terms is catastrophic because they contribute
the most to the addition theorem.
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Various approaches have been explored to deal with this problem. Maybe the most
radical approach is to replace the MLFMA with a method based on the spectral
representation of the Green function [3]. Another approach is to construct a hybrid
method where the LF interactions are treated using a multipole [4] or spectral repre-
sentation [5] based method. However, the multipole based method does not exhibit
diagonal translation operators and the spectral methods require six radiation pat-
terns for each box, making all these approaches less efficient than the MLFMA, if
it were not numerically unstable. Indeed, it is stated in [5] that the high frequency
technique (MLFMA) should be used whenever possible. Hence, a formulation of the
MLFMA that is stable at LF is desirable. A first attempt to obtain such a formula-
tion can be found in [6], where a complex shift of the integration path is performed
and the translation operators are found numerically. However, the achievable accu-
racy is rather limited [7].

A stable translation in the z-direction

The method presented here is based on a uniform discretization of the addition
theorem, as described in [8]. This means that the double Fourier spectrum of the
translation operator times |sin θ| has to be truncated at a bandwidth L. For a trans-
lation in the z-direction, the truncated translation operator T̃ (krT êz, θ, φ) depends
only on θ and can be written as follows

T̃ (krT êz, θ, φ) =
L∑

n=−L

bnejnθ, (2)

bn =
1
2π

L∑
l=0

(2l + 1)j−lh
(2)
l (krT )f l

n. (3)

The coefficients f l
n can be calculated analytically and have the crucial property that

f l
n = 0 ∀ − l < n < l. Through a series of further manipulations and a shift

of the integration path into the complex plane, this allows the construction of a
numerically stable translation in the z-direction. The analytical expression for f l

n

and an explicit formula for the magnitude of the complex shift can be found in [1].

Stable translations in the other directions

In order to obtain stable translations in a general direction rT = rT R̄ · ez with R̄ a
3× 3 rotation matrix, it is necessary to express it as a translation in the z-direction

h
(2)
0 (k |rA + rT |) =

1
4π

∫ 2π

0

∫ π

0
e
−j

(
R̄·k

)
·rAT (krT ez, θ, φ) sin θdθdφ. (4)

The key problem is that the discretization points of the radiation pattern are rotated
differently for each translation direction. Therefore we would need a separate set
of plane waves for each different translation, which would be very inefficient. To
avoid this, a QR is used to select the least dependent plane waves, such that they
constitute a basis for the other plane waves. This process then allows the stable
translation operators in the z-direction to be transformed such that they can be
used on the selected plane waves.



Numerical results

The accuracy of the proposed method was tested on the configuration shown in Fig-
ure 1. The sides of the boxes are 1m long. Figure 2 shows the obtained accuracy as
a function of the frequency. The accuracy is defined as the maximum relative error
of all the 64 interactions between the vertices of box 1 and box 2. As can be seen,

Figure 1: The geometry for testing the accuracy.

Figure 2: The maximum relative error as a function of the frequency for various
truncation bounds L.

the method keeps on working fine even for very low frequencies. In fact the method
remains stable all the way down to DC. This limit is derived in [1]. For high fre-
quencies the error increases because the required L for a certain accuracy increases.
As for simulation results, Figure 3 shows simulations of a plane wave impinging
on an A380 airplane. These simulations were performed using an asynchronously
parallelized [2, 9] vectorial version of the hybrid MLFMA - NSPWMLFMA.
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