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Wood coatings are widely used for aesthetic and protective reasons. Assessment of 
coating performance during service life is crucial in order to establish a knowledge 
database for product optimization. A vast amount of techniques is available for 
analysis of a coating’s behavior of which micro-imaging is an important tool. In 
addition to standard microscopy techniques, high-resolution X-ray tomography is 
presented as a modality offering non-destructive visualization of a coating and the 
substrate applied on. Combined with analysis of the 3D volumetric data, surface 
roughness, structure and thickness of the coating layer, penetration depth and 
related mechanical anchoring can be studied in relation with the underlying substrate. 
To provide a clear illustration of the possibilities and limitations of this technique, both 
an opaque solvent-borne and an opaque water-borne coating applied on two different 
wood types were scanned and analyzed. Clearly, three-dimensional X-ray imaging at 
high resolution produces valuable information merely by visualization. Moreover by 
proper analysis quantitative data is obtained taking into account the limitations of X-
ray computed tomography and of automated image processing.  
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In spite of the use of synthetic alternatives, the importance of wood as an industrial 
material cannot be underestimated. Although its undeniable advantage as a 
renewable material with unique properties, wood has the disadvantage that due to its 
biological nature, it has an inherent variability and is susceptibility to micro-
organisms.1 In order to protect wood from both physical as well as biological 
weathering, application of a protective coating layer is a well-established technique 
for wood protection in addition to wood modification and wood preservation. The 
performance of a wood coating in the field or in simulated service is measured in 
many ways, of which micro-imaging and accompanying analysis of the visual 
information is a way of assessing its weathering behaviour. Techniques such as 
conventional light microscopy and fluorescence microscopy2 are complemented with 
high-end modalities as atomic force microscopy,3,4 scanning electron microscopy5 
and confocal laser microscopy.6 Only the last technique can envisage a coating non 
destructively in three dimensions, yet, although its superior resolution, confocal 
microscopy still has a limited probing capacity. In addition to above-mentioned 
techniques, X-ray tomography is a high-end tool for fast and non-destructive three-
dimensional analysis. The technique has been used in several research domains for 
various applications ranging from plant biology7 to soil science.8 Previous studies 
using X-ray tomography have been performed on thermal barrier coatings,9 paper10,11 
and cultural heritage.12 High-resolution X-ray tomography is particularly interesting for 
the study of wood coatings regarding the structure of the substrate and the average 
thickness and penetration depth of a coating. Furthermore, the digitalized coating 
structure allows analysis of its surface and inner structure as well. To demonstrate 
the power of X-ray tomography and its limitations, two coated wood samples were 
visualized and analyzed.  
 
Experimental Methods and Materials 
 
Sample description 
 
Wood from the following tree species was used: Scots pine (Pinus silvestris) and 
padouk (Pterocarpus soyauxii), representing respectively a softwood and a tropical 
hardwood species. Pine sapwood is a light material often used as test substrate in 
European standards whereas padouk is a durable and dens tropical species from 
Africa used for the production of window joinery. The wood was cut from straight-
grained material and two small boards were sawn with a growth ring angle of 45° with 
the surface. The boards were brush-coated with an opaque solvent-borne and an 
opaque water-borne coating. Details of coating application and coating composition 
are not given, as the purpose of this paper is an illustration of X-ray imaging and 
accompanying analysis, not an in-depth study of wood coatings itself. 
 
Image acquisition 
 
Samples for scanning were prepared by sawing a section of the coated boards into 
parallelepiped-shaped specimen. The top section of the wood sample, measuring 
approximately 2 x 2 x 2 mm was scanned using the X-ray equipment built at the 
Centre for X-ray Tomography at Ghent University (UGCT - http://www.ugct.ugent.be). 
This is a state-of-the-art scanner,13 highly flexible, with in-house developed software 
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for scanner control, sample reconstruction, analysis and visualization. The X-ray 
source, a Feinfocus nano-focus tube, can reach a focal spot size down to one μm. All 
samples were scanned at an average voltage of 70 kV, a target current of 30 μA and 
an exposure time of 1800 ms per image. A rotation step size of 0.36° was used. 
Reconstruction took 20 min with Octopus, a server/client tomography reconstruction 
package for parallel and cone beam geometry (www.xraylab.com).14 With the 
described set-up, micron resolution can be reached, in this paper resulting in scans 
with voxels sizing approximately 2 x 2 x 2 μm with 216 greyscale levels.  
 
Image analysis 
 
The images were loaded in MATLAB® for preprocessing and analysis. The aim was 
to quantify surface roughness, thickness and structure of the coating layer, contact 
surface quantification and penetration depth. The various steps of the analysis are 
described below.  
Preprocessing. Although image quality of the reconstructed slices was satisfactory, 
bilateral filtering was applied as an edge-preserving smoothing technique to prevent 
averaging across edges and still average in smooth regions15 aiming at an 
improvement in image segmentation. 
Segmentation. This is nearly always the most crucial part of image analysis.16 Due to 
the differences in X-ray density of coating, wood and noise the bilateral filtered scans 
could be segmented by fitting a multimodal normal distribution consisting of three 
Gaussian-shaped curves to the histogram of the cross-sectional slices for pine. Fig. 1 
displays the histogram of a resized slice with the fit of the normal distributions for 
pine. The intersection between the first and second Gaussian distribution separates 
noise from wood. The intersection of the second and third Gaussian curve is used as 
threshold separating coating from wood. Clearly, the difference between wood and 
coating voxels is more pronounced than the demarcation between noise and wood.  
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Cleaning. A combined morphological closing and size-based opening of the 
segmented volume removed isolated voxels or voxel islands, erroneously classified 
as coating due to imperfect segmentation. 
Surface extraction. During scanning, samples were positioned upright with the 
coating layer parallel to the horizontal plane, yet small deviations from this horizontal 
position had to be corrected mathematically by rotation of the volume for correct 
calculation of layer thickness and penetration. Therefore, the surface of the coating 
layer was extracted from the segmented volume and a plane was fitted using 
principal component analysis. As such, the normal of the plane gives the rotation 
angles necessary for spatial transformation of the data.  
Surface roughness. For further analysis of the extracted and rotated surface, heights 
were averaged to zero and several roughness parameters were computed using 
ImageJ with the SurfCharJ toolbox of Chinga et al.:17 arithmetical mean deviation 
(Ra), root mean square deviation (Rq), kurtosis of the assessed profile (Rku), 
skewness of the assessed profile (Rsk), lowest valley (Rv), highest peak (Rp), the total 
height of the profile (Rt). Polar angles (orientation) and azimuthal angles (direction) of 
the facets were also calculated based on the facet normals of the triangulated 
surface. 
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Layer thickness and penetration depth. In order to exclude coating pores from being 
included erroneously in the penetration depth computation, morphological filling of 
pores in the coating was obligatory. Two methods were used to calculate layer 
thickness and penetration depth starting from the surface perpendicular downwards. 
Both are illustrated in Fig. 2b and 2c with the original image in Fig. 2a.  
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Theoretically, penetration does not take into account the simple filling of cells that are 
cut open lying at the surface. Yet the extent of coating penetration is controlled by the 
ability to flow into open ends and by transport through interconnecting pits.18 Fig. 2b 
represents the demarcation of the layer thickness according to method 1 following 
the theoretical definition. The remaining coating beneath the layer is considered to be 
penetrated in the substrate. Method 2, illustrated in Fig. 2c, is similar to the method 
elaborated in Van den Bulcke et al.19 and based on a two-dimensional view on 
penetration as layer thickness includes all coating material above the roughness of 
the substrate and penetration everything beneath it. 
Porosity. Calculation of the porosity of the segmented coating volume was based 
upon the pore volume distribution and maximum inscribed sphere distribution.  
Interface. The interface of the coating, i.e. the contact surface between coating and 
wood, was quantified as a measure of adhesion by computation of the area of the 
triangulated interface surface as an approximation of the real surface area. Logically, 
the fineness of the mesh determines the accuracy of the surface approximation.  
 
All reconstructed and analyzed images of the samples were visualized with VGStudio 
MAX®, MATLAB®, ImageJ and Drishti.20 
 
Results and Discussion 
 
Fig. 3 illustrates several two- and three-dimensional images representing volume 
renderings and analyzed data of the opaque solvent-borne and opaque water-borne 
coating.  
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Fig. 3a and 3b are the original scans, false colour-coded and based on manual 
segmentation of the histogram. By virtual removal of a part of the wood substrate, the 
imprint of the wood surface at the bottom of the coating is clearly visible. This casting 
of the wood by the coating reveals, as expected, an apparently less rough print for 
padouk than for pine. The inserts in Fig. 3a and 3b are a detailed cross-sectional 
slice of the coated wood samples, resembling images acquired with confocal 
microscopy6,19 and could be used for manual demarcation of layer thickness and 
penetration depth. Clearly, padouk’s higher density results in a smaller contrast 
between coating and wood, interfering with segmentation. Fig. 3c and 3d, with ring 
artefact,21 illustrate the extracted surface of the coatings, averaged to a mean 
roughness of zero. Naturally, the level of detail is determined by the voxel size of the 
scans, which is sufficient for wood coatings. Table 1 lists several roughness 
parameters calculated for the two coatings under test.  
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The observation that the surface roughness of coated pine is higher than the surface 
roughness of padouk is self-evident as the padouk surface is in general smoother. 
Yet it should be stressed that these calculations, performed on a square of 
approximately 2 mm² of coated padouk, are not representative for the total board due 
to the heterogeneity of the wood. Regions including vessels were not included in the 
scan but can have a significant influence on the coating’s texture. By contrast, the 
surface roughness of pine is more or less representative for the total board surface, 
at least for the earlywood region as imaged in the pine scan. Typically, a waviness 
pattern caused by earlywood-latewood differences appears for coatings with 
moderate layer thickness due to incomplete levelling. An interesting view is given by 
the orientation and direction of the facets of the surface. Fig. 3e and 3f illustrate the 
orientation and Fig. 3g and 3h direction for pine and padouk. For both coatings, 
orientation is low inherent to a rather flat surface with only at some specific points 
high angles due to a high slope. The azimuthal images more or less reflect the 
topography as seen in Fig. 3c and Fig 3d. Such information can be related to gloss 
values and can be implemented in light models such as the Beckmann theory of 
reflection for gloss prediction. Especially when monitoring changes during 
weathering, surface characterization is of high interest.4 What is more, the evolution 
of a small crack present in the surface of the coating indicated by the black and white 
arrows (Fig. 3c and 3e) could be monitored throughout weathering. In this respect, 
the non-destructive nature of the technique is an obvious advantage.  
Determination of layer thickness and penetration depth is more complex. In order to 
quantify such an effect, it is necessary to be able to segment coating and wood at the 
interface properly and is only feasible if the greyscale levels differ significantly. The 
mean layer thickness and penetration depth according to method 1 are respectively 
58.2 μm and 3.8 μm for pine and 43.8 μm and 2.5 μm for padouk. By definition, 
values of penetration are quite low. However, following method 2 as given in Van den 
Bulcke et al.19 results are expected to be quite different yet the true three-
dimensional information is not used at its full potential with the latter definition. In this 
case, layer thickness and penetration depth are respectively 36.7 μm and 21.4 μm for 
pine and 37.5 μm and 6.1 μm for padouk. These results are more or less in 
agreement with the results found by Van den Bulcke et al.19 for similar coatings. The 
two-dimensional illustration of layer thickness and penetration according to the first 
method is illustrated in Fig. 4a and 4b for pine only.  
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These two-dimensional illustrations are sound for pine, yet for padouk 
misclassification results in erroneous removal of coating voxels or the addition of 
high-density crystals, present in the wood substrate, to the coating matrix. Although 
the average value smoothes such faulty segmentation and is a good estimate of 
layer thickness, the exact automated determination of penetration on each position is 
not accurate enough for padouk. Especially for automated computation of 
penetration, there is still work to do. To eliminate incorrect segmentation and when 
detailed study of penetration is aimed at, a solid solution would be differential 
imaging: subtraction of the images before and after coating application. Scanning 
with voxels < 1 μm would also contribute to a better segmentation yet reduces the 
volume that can be scanned. 
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Determination of the porosity of a coating also relates to the issue of segmentation. 
Mostly, pores are smaller than the voxel size of these tomography scans and are of 
no interest as such. However, especially when dealing with spray-coated material, 
these pores can be larger and can compromise coating quality. Yet careful 
observation reveals that sporadically, during segmentation, small parts of the coating 
are classified as pores although they can also be considered as low-density regions. 
For larger holes, this is not an issue but for smaller ones it is. For pine, the total pore 
volume amounts up to 0.07 % of the total coating volume and for padouk this is 
0.06%. As an example, the pores in the pine coating are visualized in Fig. 5a and the 
pore volume distribution and radii distribution of the inscribed spheres are graphed in 
Fig 5b.  
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The pore volume distribution is truncated at 1530 μm³. Only a few larger pores are 
present. Although the pore volumes show a broad range, the radii of the maximum 
inscribed sphere are limited due to the irregular shape of most pores.  
Quantification of the interface is a measure for the contact area between wood and 
coating and can possibly be related to adhesive strength. The area of contact for pine 
is 3.1 mm² measured on a surface of 2.2 mm² (ratio = 1.4) while for padouk this is 3.2 
mm² on a surface of 2.3 mm² (ratio = 1.4). These values do not take into account the 
penetration of the coating. When considering penetration according to the first 
method, the contact area increases considerably to 6.3 mm² (ratio = 2.7) and 6.6 
mm² (ratio = 2.7) respectively for pine and padouk. Ensuing, good penetration 
contribute to mechanical anchoring as well as chemical bridging and proper in-depth 
protection of the substrate.  
 
Conclusions 
 
High-resolution X-ray tomography is a powerful imaging modality for coating 
research, if only for the visual richness of the volumetric data. If proper segmentation 
is possible, a set of characteristics can be calculated automatically using standard 
image processing algorithms. First, the assessment of the surface condition is 
straightforward. Once extracted, any parameter can be calculated related to surface 
analysis and being a non-destructive technique, monitoring coating behaviour during 
weathering with X-ray computed tomography is an option. For wood types with a 
rather low density in relation to the coating, layer thickness and penetration depth 
can be calculated rather easily owing to a good segmentation, yet for high-density 
species processing should be done carefully. Nevertheless, if automated 
computation is unsatisfactory, one can always resort to manual measurements. 
Characterization of porosity, taking into account the limits of resolution, is of minor 
importance for brush-coated boards but can be interesting for spray-coated material. 
Computation of contact surface might be an indicator for adhesive strength and is 
easily determined once a good segmentation is obtained. All above-mentioned 
parameters are derived from three-dimensional scans acquired with X-ray computed 
tomography. Many possibilities to use these virtual data of coated wood once 
labelled and characterized, are available. Derivation of parameters is merely the 
beginning, time lapse scanning and virtual testing of performance is the next step. 
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 Ra Rq Rsk Rku Rv Rp Rt 

Pine 4.5 5.5 -0.3 -0.0 -19.7 14.6 34.3 

Padouk 1.2 1.6 -1.3 11.3 -16.6 4.8 21.4 
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Fig. 1: Multimodal fit of three normal distributions to the histogram of a resized cross-
sectional slice of pine. 
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Fig. 2: (a) Original slice through the coated pine sample, (b) demarcation of layer 
thickness for three-dimensional penetration computation and (c) demarcation of layer 
thickness based on the two-dimensional approach according to Van den Bulcke et 
al.19 All coating material beneath the layer is considered to be penetration. 
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Fig. 3: (a) Original scan of Scots pine sapwood and (b) padouk with virtual removal of 
the wood substrate (the reader is referred to the online version for the coloured 
images); (c) and (d) show the surface roughness of the coating, averaged to zero 
with the calibration bar in μm; (e) and (f) display the orientation of the facets in 
degrees: 0° = perpendicular to surface; (g) and (h) represent the direction of these 
facets in degrees. Scale bars = 500 μm.  
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Fig. 4: (a) Layer thickness and (b) penetration depth of coated pine. Scale bars = 500 
μm. 
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Fig. 5: (a) Three-dimensional illustration of the pores in the coating applied on the 
pine substrate and (b) distribution of the pore volumes (solid line) and radii of the 
maximum inscribed spheres (dashed line). 
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