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Abstract

We consider a two-parameter family of Rényi relative entropies Dα,z(ρ||σ) that are
quantum generalisations of the classical Rényi divergence Dα(p||q). This family includes
many known relative entropies (or divergences) such as the quantum relative entropy,
the recently defined quantum Rényi divergences, as well as the quantum Rényi relative
entropies. All its members satisfy the quantum generalizations of Rényi’s axioms for a
divergence. We consider the range of the parameters α, z for which the data processing
inequality holds. We also investigate a variety of limiting cases for the two parameters,
obtaining explicit formulas for each one of them.

1 Introduction

The quantum relative entropy as introduced by Umegaki [1] is the proper [2] quantum gen-
eralisation of the classical Kullback-Leibler divergence and it therefore plays a central role
in quantum information theory. In particular, fundamental limits on the performance of
information-processing tasks in the so-called “asymptotic, memoryless (or i.i.d.) setting” is
given in terms of quantities derived from the quantum relative entropy.

There are, however, several other entropic quantities and generalized relative entropies (or
divergences) which are also of operational significance. One of the most important of these is
the family of relative entropies called the α-Rényi relative entropies (α-RRE)Dα(ρ||σ), where
α ∈ (0, 1)

∪
(1,∞), which are quantum generalisations of the classical Rényi divergences. For

α ∈ (0, 1) these relative entropies arise in the quantum Chernoff bound [5] which character-
izes the probability of error in discriminating two different quantum states in the setting of
asymptotically many copies. In analogy with the operational interpretation of their classical
counterparts, the α-RRE can be viewed as generalized cutoff rates in quantum binary state
discrimination [6].

In the light of this plethora of different entropic quantities that arise in quantum in-
formation theory, it is desirable to find a mathematical framework that unifies as many of
these quantities as possible. Recently, a non-commutative generalization of the α-RRE was
defined that partially provided such a framework. Known alternatively as the α quantum
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Rényi divergence (α-QRD) or the “sandwiched” Rényi relative entropy, it depends on a pa-
rameter α ∈ (0, 1)

∪
(1,∞) [11, 12, 13, 14]. For two positive semidefinite operators ρ and

σ we denote it as D̃α(ρ||σ). It has been proved to reduce to the min-relative entropy when
α = 1/2, to the quantum relative entropy in the limit α → 1, and to the max-relative entropy
in the limit α → ∞ [7, 8]. Consequently, many properties of the min-, max- and quantum
relative entropies can be inferred directly from those of the α-QRD. For example, the data-
processing inequality (i.e. monotonicity under completely positive trace-preserving maps) of
these relative entropies is implied by that of D̃α(ρ||σ) for α ≥ 1/2 [16, 17]. The fact that
the min- and max-relative entropies provide lower and upper bounds to the quantum relative
entropy follows directly from the fact that the function D̃α(ρ||σ) is monotonically increasing
in α [14]. Also joint convexity of the min- and quantum relative entropies is implied by the
joint convexity of D̃α(ρ||σ) for 1/2 ≤ α ≤ 1 [16].

In spite of these and various other interesting properties, which have been proved using a
variety of sophisticated mathematical tools, the framework of the α-QRD family has certain
limitations: (i) the data-processing inequality, which is one of the most desirable properties
of any divergence-type quantity, is not satisfied for α ∈ (0, 1/2) [14, 18], and (ii) the α-QRD
family is not the only quantum generalisation of the classical Rényi divergences, as it does
not incorporate the previously mentioned α-RRE family.

In this paper we address both limitations by introducing a two-parameter family of quan-
tum relative entropies that generalise the classical Rényi divergences. We refer to them as
α-z-Rényi relative entropies (α-z-RRE), and denote them as Dα,z(ρ||σ), with α and z be-
ing two real parameters. For every value of the parameter z one thus obtains a different,
continuously varying quantum generalisation of Dα(p||q). This new family satisfies the data
processing inequality (DPI) for all values of α, with certain restrictions on the parameter z
as indicated below. Furthermore, both the α-QRD and the α-RRE are included as special
cases (for z = α and z = 1, respectively).

In Section 2 we define this new family of relative entropies and summarize our main
results. We state how the other known relative entropies can be obtained from this family;
we prove that the α-z-RRE satisfies the quantum generalizations of Rényi’s axioms for a
divergence, and describe the regions in the α-z plane where these entropies satisfy the data-
processing inequality. We study a special case of the α-z-RRE, which we denote as D̂α (and
informally call the reverse sandwiched Rényi relative entropy) due to its similarities with the
α-QRD (or sandwiched Rényi relative entropy). It satisfies the data-processing inequality
for α ≤ 1/2, and we obtain an interesting closed expression for it in the limit α → 1. In
Sections 3, 4 and 5 we study limiting cases of the α-z-RRE. We end the paper with a brief
summary of our results and some open questions in Section 6.

Obtaining a single quantum generalization of the classical Rényi divergence, which would
cover all possible operational scenarios in quantum information theory, is a challenging (and
perhaps impossible) task. However, we believe that the α-z-RRE is currently the best candi-
date for such a quantity, since it unifies all known quantum relative entropies in the literature
to date.
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2 Definitions and Main Results

Throughout the paper H denotes a finite-dimensional Hilbert space. We denote by P(H)
the set of positive semidefinite operators on H and by D(H) the set of density operators on
H, i.e. operators ρ ∈ P(H) with Tr ρ = 1. Further, we denote the support of an operator ρ
by supp ρ. Logarithms are taken to base 2. We denote the ordered eigenvalues of a d × d
Hermitian matrix X as λ1(X) ≥ λ2(X) ≥ . . . ≥ λd(X).

Let us first give the definition of the α-z-Rényi relative (α-z-RRE) entropies; ∀ρ ∈
D(H), σ ∈ P(H) with supp ρ ⊆ suppσ

Dα,z(ρ||σ) :=
1

α− 1
log fα,z(ρ||σ), (1)

where fα,z(ρ||σ) is the trace functional

fα,z(ρ||σ) := Tr
(
ρα/2zσ(1−α)/zρα/2z

)z
(2)

= Tr
(
σ(1−α)/2zρα/zσ(1−α)/2z

)z
. (3)

Here, α ∈ R and the limit has to be taken for α tending to 1, and z ∈ R+ and the limit has
to be taken for z tending to 0. Also, negative powers are defined in the sense of generalized
inverses; that is, for negative x, ρx := (ρ|supp ρ)

x. The above definition is easily extended
to the case in which ρ ≥ 0 but Tr ρ ̸= 1 (see (12)). The trace functional can be written
alternatively as

fα,z(ρ||σ) = Tr
(
ρα/zσ(1−α)/z

)z
. (4)

This is because for any pair of square matrices A and B, the eigenvalues of AB and BA are
the same (see, e.g. [27], exercise I.3.7). Hence, the matrix ρα/zσ(1−α)/z has real, non-negative
eigenvalues (even though it is not in general self-adjoint), and the trace functional Tr(·)z in
this expression is well-defined as the sum of zth powers of these eigenvalues, which are the
same as those of ρα/2zσ(1−α)/zρα/2z.

For commuting ρ and σ, Dα,z(ρ||σ) reduces to the classical α-Rényi divergence, for all
values of z, as required.

Clearly, this family includes the α-RRE family:

Dα(ρ||σ) :=
1

α− 1
log Tr

(
ρασ1−α

)
= Dα,1(ρ||σ), (5)

and the α-QRD family:

D̃α(ρ||σ) :=
1

α− 1
log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
= Dα,α(ρ||σ). (6)

Specifically, we get the known correspondences [14]

Dmin = D1/2,1/2, D = lim
α→1

Dα,α, and Dmax = lim
α→∞

Dα,α. (7)
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Here Dmin, D and Dmax denote the min-relative entropy [7], the quantum relative entropy
and the max-relative entropy [8], respectively:

Dmin(ρ||σ) := −2 logF (ρ, σ), where F (ρ, σ) = ||√ρ
√
σ||1,

D(ρ||σ) := Tr ρ log ρ− Tr ρ log σ,

Dmax(ρ||σ) := inf{γ : ρ ≤ 2γσ}. (8)

Figure 1: Schematic overview of the relative entropies that are unified by Dα,z, as indicated
by the dark-blue lines and dots. The region where the Data Processing Inequality (DPI)
has been proven to hold has been coloured light-blue, and the orange region is where we
conjecture validity of DPI. Outside these two regions DPI does not hold. For details, see
Section 2.2.

These correspondences are illustrated in Figure 1. Also included in the family is a quantity
defined by Hayashi in [3], which essentially is Dα,2. Furthermore, as was pointed out by Lin
and Tomamichel [35], the derivatives of Dα,1 and Dα,α with respect to α and taken at α = 1
are both equal to one half the so-called quantum information variance [36, 37]

V (ρ||σ) := Tr ρ(log ρ− log σ)2 −D(ρ||σ)2.

The epithet “sandwiched” in the original name of the α-QRD stems from the fact that
in its formula ρ appears sandwiched between two powers of σ. Now note that one could
also consider another way of sandwiching by putting σ between two powers of ρ, modifying
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the exponents accordingly so that the functional again coincides with Dα in the commutative
setting. This new quantity D̂α (which we informally call the reverse sandwiched Rényi relative
entropy) is defined as

D̂α(ρ||σ) =
1

α− 1
log Tr

(
ρ

α
2(1−α)σρ

α
2(1−α)

)1−α
= Dα,1−α(ρ||σ). (9)

From (11) we immediately obtain the symmetry relation

(α− 1)D̂α(ρ||σ) = (−α)D̃1−α(σ||ρ). (10)

For α = 0, D̂α reduces to the 0-Rényi relative entropy, a quantity of particular operational
relevance in one-shot information theory [9, 10]. This is in contrast to the α-quantum Rényi
divergence, which does not in general reduce to the 0-Rényi relative entropy in the limit
α → 0 [18].

Remarks.

1. For states ρ and σ with identical support, Dα,z is even in z: Dα,z(ρ||σ) = Dα,−z(ρ||σ).
This is no longer the case when the support of ρ is a proper subset of suppσ. For
example, one easily checks that f2,−1(ρ||σ) = Tr ρ2(σ|supp ρ)

−1, whereas f2,1(ρ||σ) =
Tr ρ2(σ−1)|supp ρ. Taking z < 0 might therefore complicate matters substantially,
whereas there is no guarantee that the results will be interesting. We therefore have
limited our considerations to z > 0 throughout.

2. The family obeys a symmetry condition with respect to α:

(α− 1)Dα,z(ρ||σ) = (−α)D1−α,z(σ||ρ). (11)

3. The family coincides with certain quantum entropic functionals defined by Jakšić et
al. [19] for the study of entropic fluctuations in non-equilibrium quantum statistical
mechanics. These functionals were defined in the context of a dynamical system: in
particular, ρ was the reference state of a dynamical system, and σ was the state ρt
resulting from ρ due to time evolution under the action of a Hamiltonian for a time t.
In contrast, we define Dα,z(ρ||σ) for arbitrary positive semidefinite states ρ and σ, and
study its properties from a quantum information theoretic perspective.

2.1 Axiomatic properties

Following [14], we can check whether the α-z-RRE satisfies the six quantum Rényi axioms,
as do the α-RRE and α-QRD. These are quantum generalizations of axioms that were put
forward by Rényi in [20] as natural requirements that any classical divergence should satisfy.
A quantum divergence is a functional which maps a pair of positive semidefinite operators
ρ, σ, with supp ρ ⊆ suppσ onto R. Its classical counterpart is obtained by replacing the
operators by probability distributions.

Within this context we need to slightly redefine the α-z-RRE for non-normalized states
ρ: ∀ρ, σ ∈ P(H) with supp ρ ⊆ suppσ,

Dα,z(ρ||σ) :=
1

α− 1
log

fα,z(ρ, σ)

Tr ρ
. (12)
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(I) Continuity: For ρ ̸= 0 and supp ρ ⊆ suppσ, Dα,z(ρ||σ) is continuous in ρ, σ ≥ 0
throughout the parameter space except for α ≤ 0. At α = 0, the α-RRE is dependent
on the rank of ρ and is therefore not continuous. This was actually the reason why
Rényi included the continuity axiom: to exclude the cases α ≤ 0, where the relative
entropy functional was not deemed a reasonable measure of information ([20], p. 558)
due to its discontinuity.

The only case where it is not obvious that continuity holds for α > 0 is the case z = 0.
This will be considered in Section 3.

(II) Unitary invariance: For unitary U , Dα,z(UρU∗||UσU∗) = Dα,z(ρ||σ).

(III) Normalization: Dα,z(1||12) = 1 (for scalar arguments, and when using base-2 loga-
rithms), as is the case for any divergence that reduces to the classical Rényi divergence
for commuting arguments.

(IV) Order Axiom: The axiom requires that

Dα,z(ρ||σ)
{

≤
≥

}
0 whenever ρ

{
≤
≥

}
σ.

Note that this axiom is a weaker version of the Data Processing Inequality (DPI)
considered below, as follows from Lemma 5 in [4].

Proposition 1. Dα,z satisfies the Order Axiom when z ≥ |α− 1|.

Proof. Noting that Tr ρ = fα,z(ρ||ρ), we need, for α > 1,

fα,z(ρ||σ)
{

≤
≥

}
fα,z(ρ||ρ) whenever ρ

{
≤
≥

}
σ,

whereas, for 0 < α < 1,

fα,z(ρ||σ)
{

≤
≥

}
fα,z(ρ||ρ) whenever ρ

{
≥
≤

}
σ.

This holds if the fractional power (1 − α)/z that is applied to σ in (2) is operator
monotone, when 0 < α < 1, and operator monotone decreasing, when α > 1. In other
words, for 0 < α < 1, (1 − α)/z must lie between 0 and 1, i.e. z ≥ (1− α). For α > 1
it must lie between −1 and 0, i.e. z ≥ (α− 1).

In Figure 1 this corresponds to the triangular region with apex (1, 0) and sides passing
through the points (0, 1) and (2, 1), respectively.

(V) Additivity with respect to tensor products: clearly,

Dα,z(ρ⊗ τ ||σ ⊗ ω) = Dα,z(ρ||σ) +Dα,z(τ ||ω).

(VI) Generalized Mean Value Axiom: This axiom describes the behavior of Dα,z with
respect to direct sums (the quantum generalization of taking the union of incomplete
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probability distributions). It requires the existence of a continuous, strictly increasing
function g such that

(Tr ρ+Tr τ) g(Dα,z(ρ⊕ τ ||σ ⊕ ω)) = (Tr ρ) g(Dα,z(ρ||σ)) + (Tr τ) g(Dα,z(τ ||ω)).

In the classical case, if g is affine this requires that the divergence between pairs of
unions of distributions is a weighted arithmetic mean of divergences, and this (along
with the other axioms) limits D to be the classical relative entropy. Taking exponential
g, g(x) = exp((α− 1)x), we obtain the classical Rényi divergences.

Now, to see that Dα,z satisfies this axiom, it is sufficient to note that

fα,z(ρ⊕ τ ||σ ⊕ ω) = fα,z(ρ||σ) + fα,z(τ ||ω).

This holds throughout the parameter space, provided we choose g(x) = exp((α− 1)x),
of course.

Note that in [20] only the case Tr ρ + Tr τ ≤ 1 and Trσ + Trω ≤ 1 is considered, so
that ρ⊕ τ and σ ⊕ ω are normalized or subnormalized density matrices, the quantum
generalization of generalized (i.e. complete or incomplete) probability distributions, but
it turns out that even without this restriction the equality of the axiom holds.

2.2 Data Processing Inequality

A more difficult question is for which parameter range Dα,z satisfies the Data Processing
Inequality (DPI). While this has not yet been established in full generality, it can be shown
to hold for certain parameter ranges, indicated on Figure 1 by light-blue shading.

Theorem 1 (Data-processing Inequality). For any pair of positive semidefinite operators
ρ, σ ∈ P(H), for which supp ρ ⊆ suppσ, and for any CPTP map Λ acting on P(H), the
Data Processing Inequality

Dα,z (Λ(ρ)||Λ(σ)) ≤ Dα,z (ρ||σ) ,

holds in each of the following cases:

• 0 < α ≤ 1 and z ≥ max (α, 1− α) (Hiai),

• 1 ≤ α ≤ 2 and z = 1 (Ando),

• 1 ≤ α and z = α (Frank and Lieb; Beigi),

• 1 ≤ α ≤ 2 and z = α/2 (Carlen, Frank and Lieb).

It is well-known that to prove DPI for Dα,z one has to show that the trace functional
fα,z(ρ||σ) that lies at the heart of Dα,z is jointly concave when α ≤ 1, or jointly convex when
α ≥ 1 (see, e.g. [16], its Proof of Theorem 1 given Proposition 3 ). In fact, it suffices to show
that the related trace functional fα,z(A;K), defined as

fα,z(A;K) := Tr(Aα/zKA(1−α)/zK∗)1/z, (13)
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is concave/convex in A (for any fixed matrix K) over the set of positive semidefinite matrices.
Joint concavity/convexity of the original functional fα,z(ρ||σ) then follows by setting K =(

0 I
0 0

)
and A = ρ⊕ σ.

Concavity of fα,z(A;K) in the case 0 < α ≤ 1 and z ≥ max (α, 1− α) follows directly from
a concavity theorem proven very recently by Hiai [22] (see also the older work [23]), whose
proof is based on the complex analysis techniques employed by Epstein in [30]. Note that this
generalises Corollary 1.1 of [15]. Epstein’s paper is rather terse and uses deep results from
complex analysis. A pedagogical introduction can be found, for example, in the appendix
of [39]. Section 6 of [34] contains a detailed proof using similar techniques as Epstein’s, but
more elementary and tailored to the problem at hand.

Convexity was proven by Frank and Lieb [16] and independently by Beigi [17] for the case
1 ≤ α and z = α, where Dα,z reduces to the QRD D̃α. Convexity for 1 ≤ α ≤ 2 and z = 1
is exactly Ando’s theorem [24]. Finally, after the appearance of the first version [34] of this
paper, Carlen, Frank and Lieb were able to prove DPI in the case 1 ≤ α ≤ 2 and z = α/2
[38].

Hiai [22] also provides necessary conditions for concavity/convexity. The regions in the
parameter space where these conditions are not satisfied are indicated in Figure 1 as white
space. About the remaining region, indicated in orange, nothing definitive is known other
than that the conditions for necessity are satisfied. For this region we conjecture that the
trace functional is convex, which would imply that DPI holds here as well.

When considering DPI, it is convenient to re-parameterize the trace functional fα,z as

fp,q(A;K) := Tr(ApKAqK∗)1/(p+q), (14)

where the parameters p and q are defined as p = α/z and q = (1 − α)/z. We obtain the
original functional by setting z = 1/(p+ q) and α = p/(p+ q).

Conjecture 1. The trace functional fp,q(A;K) is convex on the set of positive definite d× d
matrices for −1 ≤ p < 0 and 1 ≤ q ≤ 2 (or vice versa).

Figure 2 shows the regions in (p, q)-parameter space where DPI provably holds and where
we conjecture it.

Remark. One notices that whereas the α-QRD D̃α satisfies DPI only for α ≥ 1/2, the
reverse α-QRD D̂α satisfies DPI for 0 ≤ α ≤ 1/2.

2.3 Limiting cases

We study four limiting cases of the α-z-RRE: (i) limit α → 1 and z → 0, (ii) the case of
infinite α and z, (iii) fixed α and infinite z, and (iv) z = α → 0.

To study (i) we suitably parameterize z in terms of α as z = r(α − 1), where r is a
non-zero finite real number, and consider the limit α → 1 (the case of fixed α ̸= 1 and z → 0
will be studied elsewhere [25]). Note that α = 1 is the only value of α where in the limit
z → 0 the Order Axiom (IV) is satisfied. For the choice z = 1 − α, this yields the limit
α → 1 of D̂α(ρ||σ). In the general case in which ρ and σ do not commute, we obtain a rather
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Figure 2: Regions of concavity (blue, proven in this paper) and conjectured convexity (orange)
of the re-parameterized trace functional fp,q, where p = α/z and q = (1−α)/z. The dark blue
and dark orange lines indicate the values of p and q for which concavity and convexity have
already been proven. Note that the region where the Order Axiom is satisfied is the strip
−1 ≤ q ≤ 1 and excludes the upper left orange square. The Continuity Axiom is satisfied
in the region where p and p + q have the same sign (α > 0), again excluding the upper left
orange square.

surprising formula for the latter: the relative entropy, not between ρ and σ, but between ρ
and an operator σ̂ that is diagonal in the eigenbasis of ρ (see Theorems 2 and 3 for details).
In the commuting case we recover the expected expression: the relative entropy of ρ and σ.
We also prove that the α-z-RRE is continuous in ρ and σ in that limit.

To study the case (ii) of infinite α and z, we use the same parametrization of z, and take
the limit α → ∞. In this limit the α-z-RRE is expressed in terms of a max-relative entropy
(see Theorem 4 for details). In particular, our result readily yields the known [14] result that
in the limit α → ∞, the α-QRD, D̃α(ρ||σ), reduces to the max-relative entropy Dmax(ρ||σ).

Case (iii) concerns keeping α fixed (and finite) letting z tend to +∞. Using the Lie-
Trotter relation, we obtain the quantity (1/(α− 1)) log Tr exp(α log ρ+ (1− α) log σ), which
in the limit α → 1 tends to the relative entropy D(ρ||σ).

Finally, we consider the case (iv) where α and z both tend to 0, with z = α.
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3 Limiting case α → 1 and z → 0

In this section, we derive a closed form expression for the limit of Dα,z as z tends to 0. The
most interesting point to calculate this is when α = 1 because that is the only value where
the Order Axiom remains satisfied as z goes to 0, even though DPI no longer holds. It turns
out that limz→0Dα,z is discontinuous in α at α = 1 and we will have to be careful how the
limit z → 0 is taken. What we will consider is the limit α → 1 of Dα,r(α−1), with fixed r, i.e.
the limit along straight lines passing through the point (1, 0) and with slope r. This choice
is particularly convenient since for r = −1 we recover the limit limα→1 D̂α.

As we assume supp ρ ⊆ suppσ throughout, there is no loss of generality in only considering
σ > 0; that is, all matrices will be restricted to the subspace suppσ.

Lemma 1. For σ > 0, and r a non-zero finite real number,

lim
α→1

(
ρα/2r(α−1)σ−1/rρα/2r(α−1)

)r(α−1)
= ρ.

Proof. Since σ > 0, there exist a, b > 0 such that a ≤ σ ≤ b (meaning that aI ≤ σ ≤ bI).
Then, for r > 0, b−1/r ≤ σ−1/r ≤ a−1/r so that

b−1/rρα/r(α−1) ≤ ρα/2r(α−1)σ−1/rρα/2r(α−1) ≤ a−1/rρα/r(α−1).

For r < 0 the roles of a and b get interchanged.

Raising this to the power r(α − 1), for α > 1 and close enough to 1 so that this is an
operator monotone operation, yields

b1−αρα ≤
(
ρα/2r(α−1)σ−1/rρα/2r(α−1)

)r(α−1)
≤ a1−αρα.

For α < 1 and close enough to 1, a and b again have to be interchanged (as it is an operator
monotone decreasing operation).

In the limit α → 1 we then get that a1−α and b1−α both tend to 1, and these inequalities
become

ρ ≤ lim
α→1

(
ρα/2r(α−1)σ−1/rρα/2r(α−1)

)r(α−1)
≤ ρ.

As both bounds are equal, this proves that the inequalities actually are equalities.

A simple corollary of this lemma is that limα→1 fα,r(α−1) = Tr ρ = 1. Hence, as α tends
to 1, both the numerator and denominator in Dα,r(α−1) = log fα,r(α−1)/(α − 1) tend to 0.
To calculate the limit it is tempting to use l’Hôpital’s rule and calculate the derivative with
respect to α. However, this approach did not yield any simplification. Instead, we followed a
completely different approach, inspired by the power method [26] for numerically calculating
eigenvalues.

We first consider the generic case in which the spectrum of ρ is non-degenerate, i.e. all
its eigenvalues are distinct. Let us write the spectral decomposition of ρ as ρ =

∑d
i=1 µiPi,

where the eigenvalues µi appear sorted in decreasing order and where Pi are the corresponding
projectors |i⟩⟨i| on the (1-dimensional) eigenspaces. The main idea behind the power method
is that for large positive s, ρs can be well-approximated by µs

1P1, in the sense that the sum
of the remaining terms

∑d
i=2 µ

s
iPi becomes much smaller in norm than µs

1.

10



Let us denote the matrix expression inside the trace of the trace functional fα,r(α−1) by
Zα,r(ρ||σ). Rather than applying the above approximation to the entire trace of Zα,r(ρ||σ),
which would be too crude, we apply it to the calculation of its largest eigenvalue λ1 only. We
get, for z = r(α− 1) > 0,

λ1(Zα,r(ρ||σ)) = λ1

(
(ρα/2r(α−1)σ−1/rρα/2r(α−1))r(α−1)

)
≈ µα

1 Tr(P1σ
−1/rP1)

r(α−1)

= µα
1

(
(σ−1/r)1,1

)r(α−1)
,

where X1,1 indicates the upper left matrix element of a matrix X in the eigenbasis of ρ. This
is shown in full rigor in Lemma 2 below.

As we ultimately need an expression for the trace we need approximations for all eigenval-
ues of Zα,r. To proceed, we will use the so-called “Weyl trick”, which consists in calculating
the largest eigenvalue of the kth antisymmetric tensor power of Zα,r (see e.g. [27] Section I.5
for antisymmetric tensor powers and Section IX.2 for applications of the Weyl trick). For
any given matrix X, its kth antisymmetric tensor power, denoted X∧k, is defined as the
restriction of its kth tensor power X⊗k to the totally antisymmetric subspace. The reason
for looking into this is that the largest eigenvalue of X∧k is the product of the k largest
eigenvalues of X, an identity which we denote by the shorthand

λ1(X
∧k) = λ1 · · ·λk(X) := λ1(X) · · ·λk(X).

Furthermore, we have the relations (XY )∧k = X∧kY ∧k and (Xs)∧k = (X∧k)s.

For X of dimension d, k can take values from 1 to d. For k = d, the totally antisymmetric
subspace is 1-dimensional and the antisymmetric tensor power X∧d is a scalar, namely the
determinant of X. Analogously, the matrix elements of X∧k for k < d are all possible k × k
minors of X (determinants of submatrices). In particular, the “upper left” element (X∧k)1,1
is the leading principal k × k minor of X. If we introduce the notation X1:k,1:k to mean the
submatrix of X consisting of the first k rows and the first k columns, this element is given
by

(X∧k)1,1 = det (X1:k,1:k) .

Let us now apply the power method to Z∧k
α,r in order to obtain an approximation for the

product of the k largest eigenvalues of Zα,r. We will denote this product by λ(k), and by
convention put λ(0) = 1. First of all, note that Zα,r(ρ||σ)∧k = Zα,r(ρ

∧k||σ∧k). Hence, we get

λ1(Zα,r(ρ||σ)∧k) ≈ λ1(ρ
∧k)α

((
(σ∧k)−1/r

)
1,1

)r(α−1)

which means that

λ(k) := λ1 · · ·λk(Zα(ρ||σ)) ≈ (µ1 · · ·µk)
α
(
det
(
(σ−1/r)1:k,1:k

))r(α−1)
. (15)

A mathematically rigorous restatement of this approximate identity will be given below as
the Approximation Lemma, Lemma 2. For k = d, we actually obtain an exact expression as

11



it reduces to the well-known statement that the determinant of a product equals the product
of the determinants:

λ(d) = det(Zα(ρ||σ)) = (det ρ)α
(
detσ−1/r

)r(α−1)
.

It is now a simple matter to obtain an approximation for TrZα,r(ρ||σ). Indeed, by taking
the quotients of successive λ(k) we get all the eigenvalues of Zα,r: λ

(k)/λ(k−1) = λk(Zα,r(ρ||σ)).
Summing these quotients then yields the trace of Zα,r:

TrZα,r(ρ||σ) =
d∑

k=1

λk(Zα,r(ρ||σ)) = λ(1) +

d∑
k=2

λ(k)

λ(k−1)
.

Inserting the approximation (15) for λ(k) yields

TrZα,r(ρ||σ) ≈ µα
1

(
(σ−1/r)1,1

)r(α−1)
+

d∑
k=2

µα
k

(
det
(
(σ−1/r)1:k,1:k

)
det
(
(σ−1/r)1:k−1,1:k−1

))r(α−1)

. (16)

Let us introduce the vector ν of leading principal minors of σ−1/r taken to the power −r,
with

νk := det
(
(σ−1/r)1:k,1:k

)−r
. (17)

Note that νd = detσ. In terms of these νk, eq. (16) can be rewritten more succinctly as

TrZα,r(ρ||σ) ≈ µα
1 ν

1−α
1 +

d∑
k=2

µα
k

(
νk
νk−1

)1−α

.

One now recognizes the trace functional fα,z in this formula, between the state ρ and a new
positive definite matrix σ̂ that commutes with ρ and that is given by

σ̂ = diagρ(ν1, ν2/ν1, ν3/ν2, . . . , νd/νd−1). (18)

Here, C = diagρ(x1, . . . , xd) denotes a matrix C that is diagonal in the eigenbasis of ρ and
has diagonal elements xi; that is, TrPiC = xi.

We then finally get, for α sufficiently close to 1:

TrZα,r(ρ||σ) ≈ Tr ρασ̂1−α. (19)

The error in this approximation tends to 0 exponentially fast as exp(−κ/|r(1 − α|)), where
κ is a strictly positive constant depending only on the eigenvalues µi, as shown in Lemma 2
below. From (19) a closed form expression for the limit α → 1 of Dα,r(α−1) can be found very
easily, and it simply gives the classical relative entropy between ρ and σ̂. We have therefore
proven:

Theorem 2. Let ρ be a positive semidefinite matrix with non-degenerate spectrum and let σ
be positive definite. Let r be a non-zero, finite real number. Then

lim
α→1

Dα,r(α−1)(ρ||σ) = D(ρ|| diagρ(ν1, ν2/ν1, ν3/ν2, . . . , νd/νd−1)),

with νk = det
(
(σ−1/r)1:k,1:k

)−r
, k = 1, . . . , d. (20)

12



In particular, for r = −1,

lim
α→1

D̂α(ρ||σ) = D(ρ|| diagρ(ν1, ν2/ν1, ν3/ν2, . . . , νd/νd−1)),

with νk = det (σ1:k,1:k) , k = 1, . . . , d. (21)

As a sanity check, we can consider what eq. (21) reduces to when ρ and σ commute. In
that case, σ is diagonal in the eigenbasis of ρ, and its leading principal minors are just the
products of its k first diagonal elements: νk = σ1,1 · · ·σk,k. Hence, the successive quotients
νk/νk−1 reduce to σk,k, and diagρ(ν1, ν2/ν1, ν3/ν2, . . . , νd/νd−1) simply turns into σ itself. We
thus find that, in the commuting case, limα→1Dα,r(α−1)(ρ||σ) = D(ρ||σ), as required.

To complete the case of non-degenerate ρ, we now provide the Approximation Lemma in
full detail.

Lemma 2 (Approximation Lemma). Let A be a positive semidefinite matrix with its eigen-
values sorted in decreasing order denoted by µi. Let B be a positive definite matrix and let
B1,1 be the upper left matrix element expressed in the eigenbasis of A. Let γ > 0. Then

λ1

(
(AβBAβ)γ

)
= µ2βγ

1 (B1,1)
γ
(
1 + c(µ2/µ1)

2β
)γ

,

for some constant value of c independent of γ > 0.

In the proof of Theorem 2 we use the case γ = r(1 − α), β = α/2γ, A = ρ and
B = σ−1/r. The limit of α going to 1 (from below, if r < 0, or from above, if r > 0)
corresponds to the limit γ → 0+, and we get that for α tending to 1, λ1

(
(AβBAβ)1−α

)
tends

to µ2βγ
1 (B1,1)

γ = µα
1 (B1,1)

r(1−α) with an exponentially decreasing relative error cγ exp(−k/γ),
with k = | log(µ2/µ1)|, provided of course that µ1 > µ2, strictly. This is because for 0 ≤ x < 1
and very small γ the function (1 + cx1/γ)γ can be approximated as

(1 + cx1/γ)γ ≈ 1 + cγ exp(−| log x|/γ).

Proof. From the eigenvalue decomposition A =
∑d

k=1 µkPk and the hypothesis µ2 < µ1

we can write A = µ1P1 +X with 0 ≤ X ≤ µ2(I − P1); note also that X is orthogonal to P1.
Thus,

λ1

(
AβBAβ

)
= λ1

(
B1/2A2βB1/2

)
= λ1

(
B1/2(µ2β

1 P1 +X2β)B1/2
)
.

As the function that maps a Hermitian matrix to its largest eigenvalue is order-preserving
and subadditive, this gives us

λ1

(
AβBAβ

)
≥ λ1

(
B1/2µ2β

1 P1B
1/2
)

= µ2β
1 B1,1 (22)
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and

λ1

(
AβBAβ

)
≤ λ1

(
B1/2(µ2β

1 P1 + µ2β
2 (I − P1))B

1/2
)

≤ µ2β
1 λ1

(
B1/2P1B

1/2
)
+ µ2β

2 λ1

(
B1/2(I − P1)B

1/2
)

≤ µ2β
1 B1,1 + µ2β

2 λ1(B)

= µ2β
1 B1,1

(
1 +

λ1(B)

B1,1
(µ2/µ1)

2β

)
. (23)

Since B > 0, we have B1,1 > 0 and the division can be done. Bracketing inequalities (22)
and (23) can be combined as a single equality by introducing a constant c such that

λ1

(
AβBAβ

)
= µ2β

1 B1,1

(
1 + c(µ2/µ1)

2β
)
,

and imposing that c lies between 0 and λ1(B)/B1,1.

Raising all expressions to the (positive) power γ yields the equality of the lemma

λ1

(
(AβBAβ)γ

)
= µ2γβ

1 (B1,1)
γ
(
1 + c(µ2/µ1)

2β
)γ

.

Let us now consider what happens when the spectrum of ρ is degenerate, and whether
Dα,r(α−1)(ρ||σ) is continuous in ρ and σ (with supp ρ ≤ suppσ) in the limit α → 1. It is
clear from the definition that it is continuous for all α ̸= 1. Thus, if we can show that (20)
has a continuous extension, one that includes degenerate ρ as well, then Dα,r(α−1) is indeed
continuous in the limit α → 1.

Let us therefore consider (20) at face value (without looking back at the arguments that
were used to derive it) and see whether it is even well-defined for degenerate ρ. This is
not immediately clear because of the formula’s non-trivial dependence on the eigenbasis of
ρ: when the spectrum of ρ is degenerate, ρ has an infinity of allowed eigenbases, and the
question arises whether the choice of basis affects the outcome. It turns out, however, that
it does not, as the eigenvalue multiplicity ‘both gives and takes’, as explained below.

For the sake of concreteness, let us take a ρ for which µ1 has multiplicity 2. Then P1 is a
2-dimensional projector, and any pair of orthonormal vectors in the corresponding subspace
can serve as basis elements. For every such basis, one gets a different matrix representation
of σ. This can be recast as fixing one such representation of σ and letting a 2 × 2 unitary
matrix U act on its upper left 2× 2 block. Consequently, ν1 depends on U whereas the other
νi are independent from U , due to unitary invariance of the determinant. However, whereas
this clearly affects the first two elements in the resulting

σ̂ = diagρ(ν1, ν2/ν1, ν3/ν2, . . . , νd/νd−1),

this is actually compensated for by the multiplicity of µ1. The first two terms in the formula
for D(ρ||σ̂) are

D(ρ||σ̂) = µ1(logµ1 − log ν1) + µ1(logµ1 − log(ν2/ν1)) + · · ·
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and this simplifies to
D(ρ||σ̂) = 2µ1 logµ1 − µ1 log ν2 + · · ·

which is independent of ν1.

One checks that this argument generalizes to all possible multiplicities. In fact, an equiv-
alent formula for D(ρ||σ̂) is

D(ρ||σ̂) = −S(ρ)− µd log detσ −
d−1∑
i=1

(µi − µi+1) log νi, (24)

where S(ρ) = −Tr ρ log ρ is the von Neumann entropy of ρ. The upshot is that D(ρ||σ̂) is
independent of those elements νi that are dependent on a freedom of choice of basis caused
by degeneracy of µi. This implies that D(ρ||σ̂) is continuous in ρ and σ since every term
in (24) is continuous, as we now show. Indeed, the von Neumann entropy is well-known to
be continuous (in the sense of Fannes), and µd and νd = detσ are continuous as well since
eigenvalues of a matrix depend continuously on the entries of a matrix ([28], Appendix D).
The only potential problems stem from the terms (µi − µi+1) log νi as they explicitly depend
on the eigenprojections of ρ.

To see the problem, consider the example of a positive semidefinite matrix ρ parameterized
by the variable x, ρ(x) = diag(1+x, 1−x), with 0 < |x| < 1. Then for x > 0, P1 = diag(1, 0)
whereas for x < 0, P1 = diag(0, 1). Thus for almost all σ, ν1(x) has a discontinuity at
x = 0. However, these discontinuities only occur at the so-called exceptional points of ρ(x),
the points where some eigenvalues coincide, a.k.a. level-crossings in physics terminology. This
is because eigenprojections of Hermitian ρ(x) are holomorphic functions of x ([29], Chapter
II, Theorem 6.1). The discontinuities occur because the ordering of the eigenvalues changes
at a level-crossing, and the eigenprojections get swapped accordingly, as in the example.
The terms (µi − µi+1) log νi, however, remain continuous, since any level-crossing affecting
νi occurs when the prefactor µi − µi+1 becomes zero, which cancels the discontinuity in νi
(while still leaving a discontinuity in the derivative).

We have thus finally proven:

Theorem 3. The statement from Theorem 2 still holds when the spectrum of ρ is degenerate,
in the sense that (20) has to be interpreted as (24). The limit limα→1Dα,r(α−1)(ρ||σ) exists
as a continuous (but not necessarily smooth) function of ρ and σ.

4 The case of infinite z

In this section we study the behaviour of Dα,z for z going to infinity. As in the previous
section we first consider the parametrization z = r(α− 1), with r > 0, and take the limit of
Dα,r(α−1) as α tends to +∞.

Noting that the operator norm is the limit of the Schatten q-norm as q tends to +∞, we
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obtain from (4),

lim
α→+∞

Dα,r(α−1)(ρ||σ) = lim
α→+∞

1

α− 1
log Tr(ρα/r(α−1)σ−1/r)r(α−1)

= lim
α→+∞

log ||(ρα/2r(α−1)σ−1/rρα/2r(α−1))r||α−1

= log ||(ρ1/2rσ−1/rρ1/2r)r||∞
= log ||ρ1/2rσ−1/rρ1/2r||r∞
= r log ||ρ1/2rσ−1/rρ1/2r||∞.

Now the operator norm of a positive semidefinite matrix X equals the largest eigenvalue of
X, which in turn is the smallest value of λ such that X ≤ λI. In the present case, this
condition is ρ1/2rσ−1/rρ1/2r ≤ λI, which is equivalent to λσ1/r ≥ ρ1/r. Hence,

log ||ρ1/2rσ−1/rρ1/2r||∞ = logmin
λ

{λ : λσ1/r ≥ ρ1/r} = Dmax(ρ
1/r||σ1/r).

Thus we arrive at the following theorem:

Theorem 4. Let ρ be a positive semidefinite matrix and let σ be positive definite. Then for
a non-zero, finite real number r,

lim
α→+∞

Dα,r(α−1)(ρ||σ) = rDmax(ρ
1/r||σ1/r). (25)

In particular, for r = 1
lim

α→+∞
D̃α(ρ||σ) = Dmax(ρ||σ).

For α → −∞, which necessitates the stronger restriction on the supports supp ρ = suppσ,
a similar treatment yields the result that for r < 0,

lim
α→−∞

Dα,r(α−1)(ρ||σ) = rDmax(σ
−1/r||ρ−1/r) (26)

and, for r = −1,
lim

α→−∞
D̂α(ρ||σ) = −Dmax(σ||ρ). (27)

Finally, we study the limit z → ∞ when α is kept fixed (and finite). Let us first consider
the case where supp ρ = suppσ. Using the well-known Lie-Trotter product formula (see, e.g.
[27], Theorem IX.1.3), according to which limm→∞(exp(A/m) exp(B/m))m = exp(A+B) for
any two matrices A and B, we easily obtain (with A = log ρα and B = log σ1−α), for α ̸= 1,

lim
z→∞

Dα,z(ρ||σ) =
1

α− 1
log Tr exp(α log ρ+ (1− α) log σ). (28)

In the limit α → 1, we use l’Hôpital’s rule and the fact that (d/dα) Tr exp(X + αY ) =
TrY exp(X + αY ) to obtain

lim
α→1

lim
z→∞

Dα,z(ρ||σ) = D(ρ||σ). (29)

When supp ρ is a proper subset of suppσ, the same formulas hold except for the fact that we
have to restrict log σ to supp ρ (more generally, both log ρ and log σ have to be restricted to
the intersection of the supports of ρ and σ). This was proven by Hiai and Petz in [21].

After the first draft [34] of the present paper had been circulated, Lin and Tomamichel
have shown [35] that the relative entropy is recovered more generally when α goes to 1 and
z is taken to be z = g(α), for any continuously differentiable function g such that g(1) ̸= 0.
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5 Limiting case z = α → 0+

In this section, we answer the question: what is the limit of D̃α as α tends to 0; that is, what
is

lim
α→0

Dα,α(ρ||σ) = − log lim
α→0

fα,α(ρ||σ)?

As always, we assume that σ is full rank. We will also assume first that the spectrum of σ is
non-degenerate.

The answer to this question is easy when ρ and σ commute. Choosing a basis in which
both states are diagonal, with diagonal elements given by ρi and σi, respectively, the limit is
given by

lim
α→0

fα,α(ρ||σ) = lim
α→0

d∑
i=1

ραi σ
1−α
i

=
∑
i

σi : ρi ̸= 0.

In terms of the projector on the support of ρ, which we denote by Πρ, we write this as

lim
α→0

fα,α(ρ||σ) = TrΠρσ.

To answer the question in the general case, we will first show that the answer does not
depend on ρ itself, but only on Πρ, and of course also on σ. To do so, we consider the
particular expression

lim
α→0

fα,α(ρ||σ) = lim
α→0

Tr(σ1/2αρσ1/2α)α.

Let µ be the smallest non-zero eigenvalue of ρ. Then we have the inclusion µΠρ ≤ ρ ≤ Πρ.
This implies

µα Tr(σ1/2αΠρσ
1/2α)α ≤ Tr(σ1/2αρσ1/2α)α ≤ Tr(σ1/2αΠρσ

1/2α)α.

In the limit of α → 0, µα of course tends to 1, so that both sides of the inclusion become
equal and we have the identity

lim
α→0

Tr(σ1/2αρσ1/2α)α = lim
α→0

Tr(σ1/2αΠρσ
1/2α)α.

For the remainder of the argument, we will work in a basis in which Πρ is diagonal, and
given by Ir ⊕ 0, where r is the rank of ρ. Furthermore, we switch from one representation of
fα,α to another, namely

lim
α→0

fα,α(ρ||σ) = lim
α→0

Tr(Πρσ
1/αΠρ)

α.

We will also employ the spectral decomposition of σ, which we consider to be given by

σ = UΛU∗ =

d∑
i=1

λi|ui⟩⟨ui|,
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where the eigenvalues are sorted in descending order as λ1 > λ2 > · · · > λd. To deal with the
expression Πρσ

1/αΠρ, we will finally define the restriction of the eigenvectors to the support
of ρ:

|ui⟩ 7→ |ũi⟩ := Πρ|ui⟩.

With this definition, we have

Πρσ
1/αΠρ =

d∑
i=1

λ
1/α
i |ũi⟩⟨ũi|.

It goes without saying that the vectors |ũi⟩ in general no longer form an orthonormal set,

and the quantities λ
1/α
i are not eigenvalues of Πρσ

1/αΠρ.

Let us first try and find an expression for the largest eigenvalue µ1 of Zα := (Πρσ
1/αΠρ)

α

in the limit α → 0+. Given that the spectrum of σ is non-degenerate, the main contribution

to Πρσ
1/αΠρ as α → 0+ will come from λ1, and is given by λ

1/α
1 |ũ1⟩⟨ũ1|. That is true, of

course, only if |ũ1⟩ is not the zero vector (|ũ1⟩ = 0 if |u1⟩ lies outside the support of ρ).
We therefore have to correct our statement and say: the main contribution to Πρσ

1/αΠρ

will come from λi1 , and is given by λ
1/α
i1

|ũi1⟩⟨ũi1 |, where i1 is the first index value for which
|ũi⟩ ̸= 0. The limit can now be calculated easily, and we get

µ1 = lim
α→0

λi1 || |ũi1⟩⟨ũi1 | ||α = λi1 = max
i1

λi1 : |ũi1⟩ ̸= 0

Next, we calculate the product of the two largest eigenvalues of Zα, µ1µ2, in the limit α →
0+. Using the Weyl-trick, this reduces to the largest eigenvalue of the second antisymmetric
tensor power, and using the formula just obtained we find

µ1µ2 = max
i1,i2

λi1λi2 : |ũi1⟩ ∧ |ũi2⟩ ̸= 0.

The latter condition amounts to the two vectors |ũi1⟩ and |ũi2⟩ being linearly independent.
For µ1µ2µ3 we similarly obtain

µ1µ2µ3 = max
i1,i2,i3

λi1λi2λi3 : |ũi1⟩, |ũi2⟩, |ũi3⟩ linearly independent,

and so on either until µ1µ2 · · ·µr has been obtained, or no further linearly independent vectors
can be added to the set. That is, the process stops at µ1µ2 · · ·µs, where s is the rank of Πρσ
(clearly, s ≤ r).

By successive divisions we then find the separate µi, for i = 1, 2, . . . , s. What we are after
is the sum of these µi, and this sum is simply given by

s∑
i=1

µi = max
i1,i2,...,is

s∑
j=1

λij : {|ũij ⟩} linearly independent.

A convenient way to find these linearly independent vectors is to use Gaussian elimination,
under the guise of the Row-Echelon normal Form (REF) procedure (well-known from any
introductory Linear Algebra course). The indices ij of the formula are the column indices
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of those columns that contain a row-leading entry (that is, the first non-zero entry in some
row) in the row-echelon normal form of the matrix ΠρU .

We have therefore proven:

lim
α→0

fα,α(ρ||σ) =
s∑

j=1

λij , (30)

where the λi are the eigenvalues of σ, and the indices ij can be found from the following
procedure: calculate the row-echelon form R of the matrix ΠρU (expressed in an eigenbasis
of ρ). For every row of R, determine at which column the first non-zero entry appears; these
column indices are the sought values of ij and s is the number of non-zero rows in R.

The result just obtained still holds in the case when the spectrum of σ is degenerate.
Suppose a certain eigenvalue of σ has multiplicity k. Let S be the subspace that is the
projection of this k-dimensional eigenspace to the support of ρ. The problem is that one can
choose among an infinite number of bases for S; which basis contains the highest number of
vectors that are independent from the uij that we already had? The answer is simple: that
number is really basis independent and only depends on the dimension of the intersection of
S with the subspace P spanned by these uij . Thus any basis should do, and the formula
remains as it stands.

We finish this section with a simple example of the procedure just described. Let ρ and σ
be 4-dimensional states where σ is full rank and has non-degenerate spectrum, and ρ has rank
2. In terms of the eigenbasis of ρ, the projector Πρ is represented by the diagonal matrix
Πρ = diag(1, 1, 0, 0). Furthermore, let σ have spectral decomposition σ =

∑4
i=1 λi|ui⟩⟨ui|

where the eigenvectors |ui⟩ are the columns of the unitary matrix

U = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

Thus, the matrix ΠρU (after deleting the rows that are completely zero) and its REF are
given by

ΠρU = 1
2

(
1 1 1 1
1 1 −1 −1

)
and REF(ΠρU) = 1

2

(
1 1 1 1
0 0 −2 −2

)
.

The row-leader of row 1 is in column 1, and the one of row 2 is in column 3. Therefore, we
put i1 = 1 and i2 = 3, so that the value of limα→0 fα,α(ρ||σ) =

∑s
i=1 µi is given by λ1 + λ3.

6 Discussion

In this paper we studied a two-parameter family of relative entropies, which we call the
α-z-Rényi relative entropies (α-z-RRE), from which all other known relative entropies (or
divergences) can be derived. This family provides a unifying framework for the analysis of
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properties of the different relative entropies arising in quantum information theory, such as the
quantum relative entropy, the α-quantum Rényi divergences (α-QRD), and the α-quantum
Rényi relative entropies. We have shown that the α-z-RRE satisfies the data-processing
inequality (DPI) for suitable values of the parameters α and z.

The α-QRD (or sandwiched Rényi relative entropy), which is a special case of the α-z-
RRE, has been the focus of much research of late. We have studied another special case
of the α-z-RRE, which we denote as D̂α (and informally call the reverse sandwiched Rényi
relative entropy). It satisfies DPI for α ≤ 1/2, and we obtain an interesting closed expression
for it in the limit α → 1.

Our analysis leads to some interesting open questions: (i) Does the α-z-RRE satisfy DPI
in the orange regions of the α-z-plane of Figure 1? In other words, is the trace functional
of the α-z-RRE convex in the orange regions of Figure 2? (ii) Operational relevance of
the α-QRD for α ≥ 1 has been established in quantum hypothesis testing [32], and in the
context of the second laws of quantum thermodynamics [33]. Does D̂α also have operational
interpretations in quantum information theory (for 0 ≤ α ≤ 1/2) (other than those arising
through the symmetry relation (10))?
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[6] M. Mosonyi and F. Hiai. On the quantum Rényi relative entropies and related capacity
formulas. IEEE Trans. Inf. Th., 57, 2474–2487, (2011).

20



[7] F. Dupuis, L. Kraemer, P. Faist, J.M. Renes and R. Renner. Generalized entropies. Proc.
XVIIth Int’l Conf. on Mathematical Physics, Aalborg (2012). See also arXiv:1211.3141.

[8] N. Datta. Min- and Max- Relative Entropies and a New Entanglement Monotone. IEEE
Trans. Inf. Th., 55, 2816–2826 (2009).

[9] L. Wang and R. Renner. One-Shot Classical-Quantum Capacity and Hypothesis Testing.
Phys. Rev. Lett. 108, 200501 (2012).

[10] F. Buscemi and N. Datta. Entanglement cost in practical scenarios. Phys. Rev. Lett.
106, 130503 (2011).

[11] M. Tomamichel. Smooth entropies — a tutorial, with focus on applications in cryptog-
raphy. Tutorial at QCRYPT 2012, September 2012.
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[20] A. Rényi. On measures of entropy and information. Proc. 4th Berkeley Symp. on Math.
Statist. and Probability, Vol. 1, 547–561, University of California Press (1961). Available
online at http://projecteuclid.org/euclid.bsmsp/1200512181.

[21] F. Hiai and D. Petz. The Golden-Thompson Trace Inequality is Complemented. Linear
Algebra Appl. 181, 153–185 (1993).

[22] F. Hiai. Concavity of certain matrix trace and norm functions. Linear Algebra Appl.
439(5), 1568–1589 (2013).

21



[23] F. Hiai. Concavity of certain matrix trace functions. Taiwanese J. Math. 5, 535–554
(2001).

[24] T. Ando. Convexity of certain maps on positive definite matrices and applications to
Hadamard products. Linear Algebra Appl. 26, 203–241 (1979).

[25] K.M.R. Audenaert and F. Hiai. Work in progress.

[26] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins University Press
(1983).

[27] R. Bhatia. Matrix Analysis, Springer Verlag (1997).

[28] R.A. Horn and C.R. Johnson. Matrix Analysis, Cambridge (1985).

[29] T. Kato. Perturbation theory for linear operators, Springer Verlag (1980).

[30] H. Epstein. Remarks on two theorems of Lieb. Commun. Math. Phys. 31, 317–325 (1973).

[31] W.F. Donoghue Jr. Monotone matrix functions and analytic continuation, Springer Ver-
lag (1974).

[32] M. Mosonyi and T. Ogawa. Quantum hypothesis testing and the operational interpre-
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